

A TURKISH LANGUAGE FACTOID QUESTION ANSWERING SYSTEM BASED ON

DEEP LEARNING NEURAL NETWORKS

by

Cavide Balkı Gemirter

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2020

ii

A TURKISH LANGUAGE FACTOID QUESTION ANSWERING SYSTEM BASED ON

DEEP LEARNING NEURAL NETWORKS

APPROVED BY:

Asst. Prof. Dr. Dionysis Goularas .

(Thesis Supervisor)

(Yeditepe University)

Prof. Dr. Emin Erkan Korkmaz .

(Yeditepe University)

Assoc. Prof. Dr. Ahmet Cüneyd Tantuğ .

(Istanbul Technical University)

DATE OF APPROVAL: /. . . . /2020

iii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor, Asst. Prof. Dr. Dionysis

Goularas, for encouraging my research and for his guidance through each stage of the

process. I have been extremely lucky to have a supervisor who cared so much about my

work, and who responded to my questions and queries so promptly.

I would also like to thank my committee members, Prof. Dr. Emin Erkan Korkmaz, and

Assoc. Prof. Dr. Ahmet Cüneyd Tantuğ for showing keen interest in the subject matter and

accepting to read and review this thesis.

I wish to acknowledge the help provided by Prof. Dr. Kemal Oflazer, for sharing his corpus.

I would like to thank Assoc. Prof. Dr. Ahmet Cüneyd Tantuğ for his support during the

study.

I am also grateful to Assoc. Prof. Dr. Ali Gökhan Yavuz for the courage he gave me to start

the master program.

A very special thank you to my leader, Mehmet Ali Cer, for his encouragement and support

in all of my studies.

My sincere thanks go to my team for their help during the generation of the data used in the

study.

Finally, I especially would like to thank my family, Zübeyde and Abdulkadir Gemirter. This

research and many other things in my life would not have been possible without your support

and love.

iv

ABSTRACT

A TURKISH LANGUAGE FACTOID QUESTION ANSWERING SYSTEM BASED

ON DEEP LEARNING NEURAL NETWORKS

In the Question Answering (QA) subfield of the Natural Language Processing (NLP)

domain, despite the significant progress in frequently used languages such as English and

Chinese, there is still a gap for uncommon languages such as Turkish due to inadequate

training data. In Turkish many of the difficulties arise from being an agglutinative language

and having a rich but complex morphology, such as a comprehensive set of possible suffix

tags and diversity of constituent orders in inverted sentences. Consequently, creating a

successful Machine Reading for Question Answering (MRQA) system for Turkish has not

been possible yet. In this study, we aim to propose an MRQA system for Turkish in the

banking domain. To the question, the system generates the best answer, which is the most

correct and the shortest span in a given text. With the BERT deep learning technique, we

trained a language model for Turkish using massive corpus collections followed by a fine-

tuning process for the MRQA task using large QA datasets. To enhance the MRQA skills of

the systems, we also translated some open-domain QA datasets from English to Turkish. At

the end of the experiments, it is seen that the system's accuracy is higher than other QA

solutions for Turkish. Moreover, the proposed method is not specific to Turkish and

applicable for numerous NLP tasks of other limited languages.

v

ÖZET

DERİN ÖĞRENME SİNİR AĞLARINI KULLANARAK TÜRKÇE’DE GERÇEKSİ

SORU CEVAPLAYAN BİR SİSTEM

Doğal Dil İşleme (NLP) alanı Soru Yanıtlama (QA) konusunda, İngilizce ve Çince gibi çok

kullanılan dillerde kaydedilen önemli ilerlemelere rağmen, yetersiz eğitim verileri nedeniyle

Türkçe gibi daha nadir kullanılan diller için hala boşluklar bulunmaktadır. Türkçe'de

zorlukların birçoğu, sondan ekli bir dil olması, olası ek kombinasyonlarının fazlalığı ve

devrik cümlelerdeki öğe dizimlerindeki çeşitliliği gibi, zengin ama karmaşık bir morfolojiye

sahip olmasından kaynaklanmaktadır. Sonuç olarak, Türkçe için henüz başarılı bir Soru

Cevaplama için Makine Okuması (MRQA) sistemi geliştirmek mümkün olmamıştır. Bu

çalışmada, bankacılık alanında kullanılabilecek bir Türkçe MRQA sistemi önermeyi

hedefliyoruz. Sistem, sorulan soruya, verilen metindeki en doğru ve en kısa cevabı

üretmektedir. BERT derin öğrenme tekniğini uygulayarak, kapsamlı korpus koleksiyonları

kullanıp Türkçe için bir dil modeli eğittik, ardından büyük QA veri kümeleri kullanarak

MRQA görevi özelinde iyileştirmeler yaptık. Sistemin MRQA becerisini arttırmak için bazı

genel içerikli QA veri setlerini de İngilizce’den Türkçe’ye çevirip eğitime dahil ettik.

Deneylerin sonunda, Türkçe için, eğittimiz sistemin doğruluğunun diğer QA çözümlerinden

daha yüksek olduğu görülmektedir. Ayrıca, önerilen yöntem sadece Türkçe'ye özgü değildir

ve diğer yaygın olmayan dillerin çeşitli NLP görevlerine de uyarlanabilir durumdadır.

vi

TABLE OF CONTENTS	

ACKNOWLEDGEMENTS .. iii

ABSTRACT ... iv

ÖZET ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. xiii

LIST OF SYMBOLS/ABBREVIATIONS .. xv

1. INTRODUCTION .. 1

2. RELATED WORK ... 5

3. METHODOLOGY ... 15

3.1. MRQA ... 15

3.2. DEEP LEARNING FOR NLP .. 17

3.2.1. Bidirectional Encoder Representations from Transformers (BERT) 19

3.2.2. Attention & Transformers .. 39

4. ANALYSIS AND DESIGN ... 53

4.1. BERT .. 53

4.2. WORD SENTENCE DISAMBIGUATION (WSD) IN BERT 55

4.3. DATA SETS ... 58

4.4. TRAINING PROCEDURE ... 62

4.5. TRAINING PARAMETERS .. 63

4.6. EVALUATION METRICS .. 64

5. IMPLEMENTATION .. 65

5.1. TRANSLATING DATA SETS .. 65

5.2. FORMATTING THE DATA SETS ... 66

5.3. GENERATING THE EXTENDED DATA SET .. 68

5.4. COLLECTING DATA SET STATISTICS .. 68

5.5. CREATING THE VOCABULARY FILE ... 69

6. TEST AND EVALUATION .. 70

vii

6.1. PRE-TRAINING EXPERIMENTS .. 70

6.2. FINE-TUNING EXPERIMENTS ... 75

6.3. ERROR TYPES IN QUESTIONS & ANSWERS ... 80

6.4. COMPARISON WITH OTHER TURKISH QA SYSTEMS 82

6.5. COMPARISON WITH OTHER BERT LANGUAGE MODELS 83

6.6. COMPARISON WITH OTHER BERT TURKISH MODELS 85

7. CONCLUSION .. 86

REFERENCES .. 88

APPENDIX A: BANKING SECTOR QA EXAMPLES .. 92

viii

LIST OF FIGURES

Figure 1.1. Diagrammatic representation of the study. .. 3

Figure 2.1. Enhancing search engines using MRC. ... 5

Figure 2.2. Module-I details. ... 6

Figure 2.3. Morphological disambiguation example [3]. .. 6

Figure 2.4. Module-II details. .. 7

Figure 2.5. Sample patterns [6]. ... 8

Figure 2.6. Regular expression examples. ... 8

Figure 2.7. Distiller example [11]. ... 9

Figure 2.8. Viterbi algorithm example [11]. .. 10

Figure 2.9. Sample phrases and their classes [11]. .. 10

Figure 2.10. HazırCevap information retrieval module [11]. .. 11

Figure 2.11. BiDAF architecture [15]. ... 12

Figure 3.1. MRQA example from SQuAD data set. .. 16

Figure 3.2. Transfer learning for NLP. .. 18

Figure 3.3. Pre-training representations. .. 18

ix

Figure 3.4. Comparison of BERT with other contextual models [2]. 19

Figure 3.5. Training steps of BERT. .. 20

Figure 3.6. Procedures of BERT [12]. ... 20

Figure 3.7. BERT pre-training subtasks. ... 21

Figure 3.8. MLM masks some of the tokens and tries to predict. 22

Figure 3.9. Masking example. ... 22

Figure 3.10. Masking journey of an input. Red items are replaced with green items. 23

Figure 3.11. Vocabulary example for Turkish. .. 24

Figure 3.12. BERT input sequence example [2]. ... 25

Figure 3.13. MLM architecture [26]. ... 26

Figure 3.14. Segment generation example. .. 27

Figure 3.15. NSP architecture [26]. ... 28

Figure 3.16. Create pre-training data steps. Dices indicate random decisions. Brackets with

-for- indicate loops. .. 30

Figure 3.17. BERT down-stream tasks [2]. ... 32

Figure 3.18. SQuAD JSON file example. .. 33

Figure 3.19. Fine-tuning steps. .. 35

x

Figure 3.20. SQuAD object example. .. 36

Figure 3.21. Fine-tuning chunks. ... 37

Figure 3.22. Overlapping example. ... 38

Figure 3.23. Fine-tuning input example. ... 39

Figure 3.24. Encoder & Decoder architecture. .. 40

Figure 3.25. Low and high attentions in an example. .. 41

Figure 3.26. Attention-based. Encoder & Decoder architecture for machine translation. .. 41

Figure 3.27. RNN Seq2Seq Encoder&Decoder example. ... 42

Figure 3.28. Attention-based Encoder&Decoder example. ... 43

Figure 3.29. Inputs of a Transformer Network. ... 44

Figure 3.30. BERT encoder & decoder stacks for a machine translation example. 45

Figure 3.31. Decoder layers of a transformer network. ... 45

Figure 3.32. Post operations after self-attention. ... 46

Figure 3.33. Self-attention steps (1). .. 48

Figure 3.34. Self-attention steps (2-6) for ‘Thinking’. ... 49

Figure 3.35. Transformer-layer = 0 and Attention-head = 0 output. 50

Figure 3.36. Transformer-layer = 4 and Attention-head = 0 output example. 51

xi

Figure 3.37. Transformer-layer = 11 and Attention-head = 6 output example. 51

Figure 4.1. BERT Architecture. ... 53

Figure 4.2. Token replacement examples. ... 54

Figure 4.3. Morphological Disambiguation result of ‘Çekoslovakyalılaştıramadıklarımızdan

mısınız?’ using Zemberek. ... 56

Figure 4.4. WordPiece Tokenizer result of ‘Çekoslovakyalılaştıramadıklarımızdan

mısınız?’. ... 57

Figure 4.5. BERT pre-training architecture. .. 58

Figure 4.6. Fine-tuning phases. .. 63

Figure 5.1. A SQuAD data set example. .. 66

Figure 5.2. SQuAD file format example. ... 67

Figure 5.3. NewsQA file format example. ... 68

Figure 6.1. Pre-training experiments. .. 70

Figure 6.2. Minimum occurrence threshold parameter and vocabulary sizes. 73

Figure 6.3. Vocabulary file size and results. .. 74

Figure 6.4. Maximum sequence length parameter and results. ... 74

Figure 6.5. Number of training steps and results. .. 75

xii

Figure 6.6. The pre-training models and their fine-tuning results. 75

Figure 6.7. Different max_seq_length parameters and results. ... 76

Figure 6.8. Different parameters and results. ... 77

Figure 6.9. Training scenarios of fine-tuning data sets. ... 78

Figure 6.10. Different training scenarios and data sets. ... 79

Figure 6.11. Different scenarios and data set evaluation results. .. 80

xiii

LIST OF TABLES

Table 2.1. Multiplexing the query example [3]. .. 6

Table 2.2. Answer pattern results of "Türkiye’nin başkenti Ankara" [6]. 9

Table 2.3. Foreign Languages and BERT. ... 14

Table 3.1. Major parameters of the pre-training task [26]. .. 29

Table 3.2. Fine-tuning SQuAD task crucial parameters [26]. ... 34

Table 3.3. Machine translation decoder example. ... 47

Table 3.4. BERT pre-trained models (earlier). .. 52

Table 3.5. BERT pre-trained models (now). ... 52

Table 4.1. Language model data sets. .. 59

Table 4.2. Fine-tuning data sets. .. 60

Table 4.3. Translation details of Fine-tuning data sets. ... 60

Table 4.4. Average content lengths of Fine-tuning data sets. .. 61

Table 4.5. Maximum content lengths of Fine-tuning data sets. ... 61

Table 6.1. BERT parameters and values used in the experiments. 72

Table 6.2. Evaluation results of different corpus sets. ... 72

xiv

Table 6.3. Best and worst parameter values for the Banking Sector QA data set. 76

Table 6.4. Different phase combinations of the data sets. ... 77

Table 6.5. Description of wrong answers with zero EM (3.2%). .. 82

Table 6.6. Examples for error types 1-5. ... 82

Table 6.7. Comparison of Turkish QA Systems. ... 83

Table 6.8. Comparison of BERT models with other languages. ... 84

Table 6.9. Comparison of Turkish base models. ... 85

xv

LIST OF SYMBOLS/ABBREVIATIONS

AI Artificial intelligence

ARCD Arabic reading comprehension dataset

BERT Bidirectional encoder representations from transformers

CWE Contextualized word embeddings

DL Deep learning

EM Exact match

FFN Feed-Forward network

IR Information retrieval

LM Language model

LSTM Long short-term memory

MLM Masked language model

MRC Machine reading comprehension

MRQA Machine reading for question answering

NE Named entity

NER Named entity recognition

NLI Natural language inference

NLP Natural language processing

NN Neural network

NSP Next sentence prediction

OOV Out of vocabulary

QA Question answering

POS Part of speech

RNN Recurrent neural network

SQuAD Stanford question answering dataset

TF-IDF Term frequency-inverse document frequency

TPU Tensor processing unit

WSD Word sence disambiguation

1

1. INTRODUCTION

With the increasing use of Artificial Intelligence (AI) over recent years, AI algorithms have

yielded better results than the old traditional solutions in varied domains. Due to the growing

training data that can be used in studies and the advancement of artificial intelligence-

specific hardware technology, such as the discovery of Tensor Processing Units (TPUs) that

work in parallel, advanced neural networks have become achievable. Especially in the

Natural Language Processing (NLP) domain, deep learning approaches have reaped much

success than the statistical methods used before artificial intelligence. The main reasons for

the success of the modern deep learning approaches are; the language models and

contextualized word representations. Using extensive corpus data, language models are

build, which summarizes the relationships of the words and the main rules of the language.

These language models support polysemy and create different word embeddings for

homophones considering their context. These advanced deep learning models can only be

experienced in commonly used languages due to the difficulties of finding training data.

Especially with the increase in the number of electronic documents and the skills of the

search engines, nowadays, access to information is effortless, obtaining the set of documents

containing the answers to the questions is simple. Instead of stating all documents, one of

the research topics that natural language processing and deep learning researchers have been

actively working on in recent years is to scan the documents for finding the best-fit answer.

Machine Reading for Question Answering (MRQA), which scans several documents to find

the best span for answering the question, is a vital task for applications such as question

answering (QA) systems and search engines. An outstanding MRQA system can find

answers to different types of questions from documents in a wide range of domains, rather

than particular question types or a closed-domain.

In the MRQA field, despite the significant progress in frequent languages such as English

and Chinese, there is still a gap for rare languages such as Turkish as a result of inadequate

training data. Furthermore, in Turkish many of the difficulties arise from being an

agglutinative language and having a rich but complex morphology, such as a comprehensive

set of possible suffix tags and diversity of constituent orders in inverted sentences. Hence,

2

creating an accomplished open-domain MRQA system for Turkish has not been possible

yet.

In Turkish, in order to find answers to questions in a given text, researchers figured out

various studies, most of which are rule-based approaches. After identifying the question type

like when who or what, in the text, predefined patterns of the classified question type look

through the phases, for obtaining the candidate answers. The answers to "when" questions

most probably include a time or date expression; therefore, phrases containing years, months,

weeks, and days are a successor to be the answer. In a similar way, the answers to "who"

questions most probably include a Named Entity (NE) that denotes a person, place, or

organization. To increase the success of these average systems, analysts should find out

diverse patterns and append to the system, which after while damaging the operating speed

of the system. The proposed Turkish MRQA solutions mostly support only specific question

types (where, when, who, what, and why), while free-form questions are still unsolved

problems.

In recent years, by the increasing number of data sets available for Machine Reading

Comprehension (MRC) studies, much progress is made in English. The Stanford Question

Answer Data Set (SQuAD) [1], published by Rajpurkar in 2016, is a fundamental resource

for MRC researches. Rather than the traditional rule-based approaches, researchers applied

many neural network approaches to the MRC problem utilizing the SQuAD data set.

Bidirectional Encoder Representatives from Transformers (BERT) [2] published by Google

in 2019, revolutionized natural language processing. BERT has achieved very high accuracy

in the MRQA problem by providing the state-of-the-art language model for English, anew

using SQuAD data.

Although some multilingual models are trained for uncommon languages, there is still a

problem of insufficient data and a lack of experience in how these algorithms can be applied

accurately to the language. Moreover, Turkish has a challenging grammar for most of NLP

tasks because of being an agglutinative language and having a rich but complex morphology,

such as a comprehensive set of possible suffix tags and diversity of constituent orders in

inverted sentences. Considering all these stated circumstances, the objective of the work

performed under this thesis is to create a language model for Turkish, followed by fine-

3

tuning the model for the QA task. Creating a language model from scratch will be

experienced, providing solutions to the problems encountered in the process. Moreover,

obtaining sufficient training data for the QA task will be tough for rare languages such as

Turkish.

The study's output will able to find the most correct and shortest answer from a given text to

the question asked. The process is called MRQA, in the use of the QA systems and search

engines. Previous studies and reports have shown that a performance-satisfactory MRQA

system for Turkish has not been developed yet; almost all are statistical models.

Figure 1.1. Diagrammatic representation of the study.

Nowadays, in the NLP domain, highly successful systems are based on architectures similar

to BERT network. Utilizing large corpus, BERT trains a language model consisting of the

contextualized word representations. The language model has a general knowledge of the

grammar and semantic relationships of words; afterward, this model can be easily adapted

to any chosen NLP task with little customization. For a language, training a model from

scratch specific to the language is more successful when compared to the multilingual model

published by BERT. In considering all these factors, a language model will be created from

scratch for the Turkish language by the BERT deep learning methods and will be customized

for the MRQA task that will serve in the banking sector. Figure 1.1 shows the block diagram

of the process.

Data (in Turkish) BERT

MRQ
A
model

Language model
generationLarge data corpus

Turkish
language model

MRQA model
for banking sector

Translated data sets,
banking sector data

set

MRQA model
generation

Question (in Turkish):
“Could you please
inform me about …”

Answer (in Turkish):
“The loan can be taken
by …”

4

This study aims to apply deep learning approaches to the MRQA problem in Turkish, in

answering questions over a given Turkish text to achieve high accuracy, as in English. The

training procedure of the Turkish language model base on the official English BERT model

published by Google. The proposed model achieved 55,26 percent exact match (EM) and

67,07 percent F1-Score for open-domain data sets, which is the union of SQuAD and

NewsQA data sets translated to Turkish. The proposed model achieved an average score of

54,09 percent exact match (EM) and 79,01 percent F1-Score for closed-domain banking

sector QA data set created in Turkish.

The thesis is arranged as follows; Section 2 gives an idea in the field of MRQA by

mentioning the relevant studies in the literature. Section 3 describes MRQA, BERT,

Transformers, and Attention in detail. Session 4 is the section describing the methodology,

including the data and the training procedures. Section 5 contains details of the software

pieces used in preprocessing data steps in this research. In Section 6, the comparison of the

current study with other Turkish and other language models and evaluation results of

different scenarios are mentioned. Finally, Section 7 concludes the findings and contains

some information on future studies.

5

2. RELATED WORK

In Turkish questioning (QA) systems, in most of the researches to improve the skills of the

search engines, two modules take part in front and behind the search engines, as seen in

Figure 2.1. Comprehending the operating principles of the search engines, to present more

fruitful results to the questions asked, the front module multiplexes the query or, on the

contrary, deletes needless parts from the query. Rather than showing all result documents to

the user, in order to find the optimum search outcome, the behind module filters the results

of the search engine [3-6]. The most popular application is AnswerBus [7], which runs on

the Bing search engine and serves in English by default. Though, using machine translation

to English, AnswerBus also offers searches in several other languages.

Figure 2.1. Enhancing search engines using MRC.

The front module advances the query, initially classifying the question via a predefined table

that holds all potential representations, as seen in Figure 2.2. For building plain variations of

the query, Turkish language processing libraries, such as Zemberek [8] or Treebank [9-10],

parses the sentences and tokenizes the words to find the stems (Figure 2.3). Table 2.1 is an

example of multiplexing a query; the second and third rows are derivative forms of the

original query. Another approach excludes prepositions, conjunctions, stop words, and using

the thesaurus expands the query by attaching the synonyms of the terms.

Module I

Multiplex
the Query

Cleanup
the Query Search

Engine

Module II

Find the best
answer

query

queries

result
documentsanswer

Asya ile Avrupa’yı ayıran boğazın adı nedir?
What is the name of the Bosphorus that

separates Asia and Europe?

İstanbul Boğazı
Bosphorus Istanbul

6

Figure 2.2. Module-I details.

Figure 2.3. Morphological disambiguation example [3].

Table 2.1. Multiplexing the query example [3].

In the candidate document results of the search engines, utilizing the class of question

identified by the first module and its predefined answer patterns, the second module traverses

the phrases that are resembling to be the answer to the question (Figure 2.4). The answer

should include at least half of the query words and also existing named entities of the

Module I

Find the
question type

Analyse the
syntax of the

query

Search
Engine

query

queries

Asya ile Avrupa’yı ayıran boğazın adı
nedir?

What is the name of the Bosphorus that
separates Asia and Europe?

Multiplex
the query

nedir?
what?

Word Dictionary Item Morphemes
asya [Asya:Noun,Prop] asya:Noun+A3sg
ile [ile:Conj] ile:Conj
avrupayı [Avrupa:Noun,Prop] avrupa:Noun+A3sg+yı:Acc
ayıran [ayırmak:Verb] ayır:Verb|an:PresPart→Adj
boğazın [boğaz:Noun] boğaz:Noun+A3sg+ın:Gen
adı [ad:Noun] ad:Noun+A3sg+ı:P3sg
nedir [Ne:Noun,Abbrv] ne:Noun+A3sg|Zero→Verb+Pres+A3sg+dir:Cop
? [?:Punc] ?:Punc

 Original text in Turkish English translation

The original query Asya ile Avrupa’yı ayıran boğazın
adı nedir?

What is the name of the
Bosphorus that separates Asia and
Europe?

Query 1 Asya ile Avrupa ayıran boğazın
adı

the name of the Bosphorus that
separates Asia and Europe

Query 2 Asya ile Avrupa ayır boğaz ad name Bosphorus separate Asia
and Europe

7

question. In Table 2.1, the query words are Asya, Avrupa, boğaz and ayır; the named entities

are Asya and Avrupa. Additionally, if the question requests a numerical value, the answer

should include numbers.

Figure 2.4. Module-II details.

After observing the potential answer statements, the following ranking formula puts in order

the candidates to pick the closest match to the real answer. In Equation 2.1, is the number

of query words existent in the potential answer, is the number of words in the query and is

the total logical distances of words in the potential answer and query.

𝑃 = #

10 ∗ 𝐶! ∗ (𝐶! − 1)
𝑇" ∗ 𝑆!

-
(2.1)

For feature extraction and named entity recognition, another study performs predefined

pattern matching algorithms on the result documents (Figure 2.5). If question class is when,

the answer is probably a combination of date or time, the system applies the patterns that are

in the third and fourth rows of the table. If question class is who, the answer is probably a

named entity, which is a person or a group, and the system applies the patterns that are in

the first and sixth rows of the table.

Module II

Filter the
sentences in
documents

Rank the
answers

Search
Engine

result
documents

possible
answers

answer
İstanbul Boğazı

Bosphorus
Istanbul

8

Figure 2.5. Sample patterns [6].

A research study discovers the answer patterns of the question classes by crawling the Web.

After generating question and answer pairs manually for every question class, the researchers

search the created data set on the Web. The system collects the documents which include

both question-answer pairs, afterward breaks into sentences to derive regular expressions of

the answer pattern for the question class. In the “the capital city of Turkey” example, the

crawler searches Ankara AND Turkey together on the Web. After assembling the sentences

that include both, the system automatically forms the regular expressions in Figure 2.6,

replacing Turkey with Q (Question) and Ankara with A (Answer).

Figure 2.6. Regular expression examples.

After the searching process, when the candidate documents are ready, the system executes

the collected answer patterns via five various forms, as seen in Table 2.2: raw string, raw

string with answer type, stemming string, stemming string with answer type, and named

entity tagged string.

• <Q>’nin başkenti olan <A>
• <A>, <Q>
• <Q>’nin başkenti olan <A> şehri
• başkent <A>, <Q>

9

Table 2.2. Answer pattern results of "Türkiye’nin başkenti Ankara" [6].

For the Geography lesson of Turkish-speaking high school students, some researchers [11]

designed a closed-domain factoid QA system (HazırCevap) to support their education and

find answers to their questions about their course of study. The system is akin to IBM Watson

DeepQA technology; the Question Analysis module obtains the focus and class of the

question. In the example of “What is the name of the largest plain in Turkey?”, the focus is

the name of a plain and the question class (QClass) is ENTITY.PLAIN. For focus extraction,

the application uses a combination of a rule-based model (Distiller) and a Hidden Markov

Model (HMM) based statistical model that uses a variation of the Viterbi algorithm. Distiller

uses the dependency tree, as seen in Figure 2.7. Viterbi algorithm marks every word with

two states: FOC means the word is a focus part, and NON means the word is a not focus part

(Figure 2.8). After all, the system uses a combination of these two results.

Figure 2.7. Distiller example [11].

Type Answer pattern
Raw String <Q>’nin başkenti <A>
Raw String with Answer Type <Q>’nin başkenti <A-NECity>
Stemming String <Q> başk <A>
Stemming String with Answer Type <Q>’nin başk <A-NECity>
Named Entity Tagged String Replace Ankara with Turkish Named Entity Tagger

result

10

Figure 2.8. Viterbi algorithm example [11].

For question classification, the application uses a rule-based model because of the success

in finding coarse classes. Some sample phrases and their classes are in Figure 2.9.

Figure 2.9. Sample phrases and their classes [11].

The system preprocesses the query by performing morphological analysis and

disambiguation using the Turkish NLP Pipeline [12]. Feds query analysis, QClass and focus

into search engines such as Indri and Apache Lucene, which are connected to the knowledge

base (Figure 2.10). Similar to previous studies, HazırCevap removes stop words and

punctuation marks.

11

Figure 2.10. HazırCevap information retrieval module [11].

After large comparison datasets such as SQuAD, NewsQA [13], HotspotQA [14] are

available, as a result of rapid improvements, the MRQA problem has substantially been

solved for English. The SQuAD data set is generated by Stanford University, which contains

more than 100,000 real question-answer pairs created by humans over 536 Wikipedia

passages. It is available in 2 versions; in version 1.1, the answers to each question are

apparent; however, in version 2.0, some questions have no answer. NewsQA data set is

generated by Microsoft Research, which contains 120K question-answer pairs created by

humans over CNN news articles.

Bi-Directional Attention Flow (BiDAF) [15] published in 2016, is a multi-stage hierarchical

process that has different levels of granularity for representing the context as character-level

(Char-CNN), word-level (GLoVE), and contextual embeddings. Instead of using a fixed-

size vector for summarizing the paragraph, for every time step, the system computes the

attention. For preventing early summarization and information loss, BiDAF uses a

bidirectional attention flow mechanism for query-aware context representation: query to

context and context to query which are generated from a similarity matrix (two boxes on the

12

right in Figure 2.11). Query2Context attention detects which query words are most related

to the context words, and Context2Query discovers which context words are most relevant

to the query words. With the representations of previous layers, the attended vector flows

through the model layer (green and orange lines that goes into the modeling layer). This

method prevents the information loss caused by early summarization. BiDAF uses memory-

less attention, which means that the attention of every time step takes only the query and

context of the current step as inputs, rather than directly depending on the attentions of

previous time steps.

Figure 2.11. BiDAF architecture [15].

Pre-trained language representations were available with ELMo [16] and Generative Pre-

trained Transformer (OpenAIGPT) [17]. ELMo is a feature-based approach that uses task-

specific architectures that are pre-trained on a large text corpus, and ELMo supports six

different NLP tasks, including question answering. OpenAIGPT is a fine-tuning approach:

generative pre-training of a language model on a diverse corpus of unlabeled text, then

discriminative fine-tuning for each particular task. Both are unidirectional; a left-to-right

approach where each token has joined the previous tokens in Transformer's self-attention

layers [18]. Uni-direction negatively effects some tasks for which it is crucial to walk in

either direction in the context, such as questions answering.

13

In 2018, Bidirectional Encoder Representations from Transformers (BERT) was published

by Google. Similar to OpenAIGPT, BERT uses a fine-tuning approach; but in contrast to

ELMo and OpenAIGPT, BERT is bidirectional. BERT uses Masked Language Model

(MLM) and Next Sentence Prediction (NSP); on pre-training, that masks and then predicts

some randomly selected words, by using self-attention based Transformers. In this way, the

model uses both the left and right contexts. BERT is easy to use and announced the state-of-

the-art results for SQuAD v1.1: for ensemble model 87.4 percent exact match and 93.2

percent F1-Score, for single model 85.1 percent exact match and 91.8 percent F1-Score. The

technical details of the BERT will be given in the next section.

In the MRQA 2019 Shared Task [19], the successes of the systems that offer a general

solution to the MRQA problem for English were compared. Eighteen data sets, including

SQuAD and NewsQA, were selected. These datasets were divided into training, dev, and

test sets, each consisting of 6 datasets. Ten different teams tried to develop models using

these data sets with various training methods developed on the BERT baseline. The success

of the resulting models was compared to BERT.

After the great success in English, BERT has come into use for other languages. For some

languages other than English, their unique models are trained instead of using BERT's

existing multilingual model (mBERT) (Table 2.3). Since Arabic has a structure quite

different from Latin languages, they have trained a BERT model specific to their language

structures, named AraBERT [20], and tested it in several down-stream tasks, including QA.

In tests conducted with the Arabic Reading Comprehension Dataset (ARCD), which was

previously translated from SQuAD to Arabic, AraBERT has performed close to mBERT.

There is an already model that Google has explicitly trained only for Chinese. This model

has been tested in the following MRC datasets generated for Chinese: CMRC 2018, DRCD,

CJRC [21]. Similarly, models named CamemBERT [22] for French, KoBERT [23] for

Korean and ParsBERT [24] for Persian have been trained, but these models do not have a

measured score on MRQA.

14

Table 2.3. Foreign Languages and BERT.

Language Model Data set EM F-Score

Arabic
mBERT ARCD 34,2 61,3
AraBERT ARCD 30,6 62,7

Chinese BERT-Chinese
CMRC 18,6 43,3
DRCD 82,2 89,2
CJRC 55,1 75,2

15

3. METHODOLOGY

This section gives an overview of the approaches that we have used in the study. Section 3.1

describes MRQA, and Section 3.2 contains modern deep learning techniques used for NLP

tasks. Section 3.2.1 presents the details of the BERT architecture. Section 3.2.2 gives

information about Attentions and Transformer Networks, which are the base of the BERT

neural networks.

3.1. MRQA

Question Answering(QA) aims to create a system that automatically returns intelligent

answers to questions that people ask in their natural (human) language. It is one of the

research areas of computer science focused on Information Retrieval(IR) and Natural

Language Processing(NLP). The information source may be a database, various reports,

internet world, or a set of unstructured text documents. Many different methods, such as

semantic analysis or text classification, can be used when creating QA systems. MRQA is a

subset of QA, aiming to exact the most correct and shortest answer from an unstructured

text, to the questions asked in human language.

For systems having question-answering facilities such as search engines or chatbots,

machine reading is crucial for answering questions relating to documents. In MRQA, the

system acquires the answer to the question in the given text. Average MRQA examples can

serve for free-formed questions in a wide range of domains, called open-domain. Search

engines are examples of open-domain MRQA systems. In Figure 3.1, an example from the

SQuAD data set is presented. The paragraph is on the left; the questions and their answers

16

list is on the right. Ground Truth Answers are the answers taken from different people when

the question asked for the paragraph and each answer is present in the paragraph.

Figure 3.1. MRQA example from SQuAD data set.

The most critical segment in MRQA systems is the type of question. The questions can be

in a wide variety of classes. There are five major question classes:

- Factoid Questions: The answer to the question is a single fact.

o What year was Atatürk born?

o What is Turkey’s largest lake?

- List Questions: The answer to the question is many facts.

o What are the big cities of Turkey?

o What are the names of the Turkish Presidents?

- Causal Questions: These are “what causes” questions.

o What causes young people to start smoking?

o What causes cancer?

- Confirmation: These are questions such as “whether or not”.

o Alan Tuning was British, right?

o Turkey is in Europe, isn’t it?

- Hypothetical Questions: These are the questions that are not based on reality.

Super Bowl 50 was an American football game to determine

the champion of the National Football League (NFL) for the

2015 season. The American Football Conference (AFC)
champion Denver Broncos defeated the National Football

Conference (NFC) champion Carolina Panthers 24–10 to
earn their third Super Bowl title. The game was played on

February 7, 2016, at Levi's Stadium in the San Francisco

Bay Area at Santa Clara, California. As this was the 50th
Super Bowl, the league emphasized the "golden anniversary"

with various gold-themed initiatives, as well as temporarily
suspending the tradition of naming each Super Bowl game

with Roman numerals (under which the game would have

been known as "Super Bowl L"), so that the logo could
prominently feature the Arabic numerals 50.

Question: Which NFL team represented the AFC at
Super Bowl 50?
Answer: Denver Broncos

17

o Let's assume you found the electricity, what would you do first?

o If the computer had never been discovered, what would we use instead?

In this thesis, we place more emphasis on factoid questions, but the study also covers free-

formed queries. The data sets used on training and evaluation processes have been produced

by human and includes all types of questions.

As mentioned in the literature review section, statistical approaches have been applied for

many years to solve MRQA problems. The system classifies the question through predefined

patterns, afterward applies the relevant answer finder regular expressions to the documents,

for finding the potential answers. These systems only answer specific question types

correctly. The common use of deep learning in the NLP field also resulted in improvements

in the MRQA problem. There are many satisfying studies on this subject in English.

3.2. DEEP LEARNING FOR NLP

NLP has numerous sub-tasks, each of which needs task-specific extensive training data. One

of the most prominent challenges in natural language processing is the training data quality

and shortage. In the field of computer vision, this problem was solved by transfer learning,

which started to be used with ImageNet. The idea is to train a neural network for general

purpose, and then explicitly fine-tune if needed for a down-stream tasks. After seeing the

benefits of the method, transfer learning started to be used in the field of natural language

processing.

The first task in Figure 3.2, named ‘pre-training’, builds a general-purpose language model

from a large amount of massive unlabeled text, called ‘corpus’. For a solid understanding of

18

the selected language, the system optimizes some parameters from scratch. OpenAI GPT is

the first example.

Figure 3.2. Transfer learning for NLP.

Pre-training representations can be context-free or contextual (Figure 3.3). Word2Vec and

Glove are examples of context-free models that generate a single vector for every

homonymic word. For the ‘bank’ example, the word vectors of the bank are the same for ‘I

sat on the bank in the park’ and ‘I came to see my bank accounts’, although the first one is

a seat and the second one is a finance office. Contextual models generate word vectors

considering the meaning of the sentence. The difference of contextual model vectors from

context-free models is that they handle polysemy and generate different word vectors for

homonyms, looking at the overall meaning. For the ‘bank’ example, the word vectors of the

bank are not the same.

Figure 3.3. Pre-training representations.

When building a language model, the usual approach is using the previous words, called

‘unidirectional’ language models. Recurrent Neural Networks (RNN) and OpenAI GPT are

unidirectional model examples. Bidirectional models use both from the left and right

Pre-training

Down-stream
Tasks

Large
corpus

Task
specific
data sets

Model ModelQA

MRQA

MNLI

pre-training representations

contextual

unidirectional bidirectional

19

contexts for seeing how well the word is in the sentence. ELMo is a shallow bidirectional

model example. In Figure 3.4, in OpenAI GPT only ‘I’ affects the word ‘accessed’, but in

both BERT and ELMo ‘account’ also has an effect on ‘accessed’.

Figure 3.4. Comparison of BERT with other contextual models [2].

For the second task in Figure 3.2, named ‘down-stream tasks’, two different methods are

present which share the same objective: feature-based and fine-tuning. The feature-based

approach uses task-specific architectures in the form of appending additional features to pre-

trained representations. ELMo is an example of feature-based architectures. In the fine-

tuning approach, the number of down-stream specific parameters is minimum, and the

system improves pre-trained base model to find the optimum values of down-stream task

parameters. OpenAI GPT and BERT are examples of fine-tuning architectures.

3.2.1. Bidirectional Encoder Representations from Transformers (BERT)

State-of-the-art models of NLP, such as BERT, RoBERTa, ALBERT, ELECTRA, XLNet,

T5, use two significant tasks; pre-training and fine-tuning, as in Figure 3.5. BERT is the

first deeply bidirectional unsupervised language representation, which is pre-trained using a

plain text corpus. For any language, if BERT is pre-trained using a massive corpus, the

output model will have a solid understanding of the selected language. After pre-training for

fine-tuning, the system initializes the pre-trained model with learned weights and adjusts the

weights for the optimal values of the selected down-stream task. BERT keeps the output

models of both pre-training and fine-tuning as same as possible.

20

Figure 3.5. Training steps of BERT.

Figure 3.6. Procedures of BERT [12].

Fine-tuning is for some down-stream tasks such as MRQA, Named Entity Recognition, or

text classification. In the MRQA, the system gets a data set such as SQuAD, NewsQA, or

HotspotQA and improves the model to find answers to the questions in the given text. The

SQuAD dataset is the most popular QA data set for studies in English and contains thousands

of question & answer pairs generated from Wikipedia articles. In the training phase, the

question and paragraph are the inputs of the neural network, and the answer is the output.

The neural network tunes the weights to the optimum values to find the best text span that is

closest to the real answer in the paragraph.

3.2.1.1. Task 1: Pre-training

BERT has technically two subtasks in a pre-training phrase: Masked Language Model

(MLM) and Next Sentences Prediction (NSP), as seen in Figure 3.7. In the pre-training,

Pre-training Fine-tuning

Corpus

Data
Sets

Model
ModelClassifier

MRQA
(SQuAD)

Masked
Language
Models
(MLM)

21

BERT trains both Masked LM and NSP together to minimize the combined loss functions.

The output of the pre-training is the language model with the next sentence prediction results.

Figure 3.7. BERT pre-training subtasks.

Masked Language Modeling (MLM): The training method may be language models

(LMs) or masked language models (MLMs). LM is the traditional method and generally

used in unidirectional approaches. MLM is a new method that BERT recently announced

and supports the bidirectional approach. MLM method masks some of the randomly selected

tokens from the input and predicts the original vocabulary item of the masked word. By

using a Softmax classifier, the network updates its weights by comparing the prediction with

the real answer. In this way, the neural network learns the relations of the words in the

language by handling the context both from left-to-right and right-to-left.

In Figure 3.8, BERT masks and guesses ‘on’ and ‘bank’. For masking a token, the general

rule is as following; the selected token is 80% of the time replaced with [MASK], 10% of

the time left the same, and 10% of the time replaced by a random token picked from the

vocabulary (Figure 3.9). Because [MASK] tokens are not present in the fine-tuning task,

usually, 15% of the tokens are masked for mitigation. This randomness improves the

learning skills of the model. According to BERT’s paper, the magic of these percentages is;

“If we used [MASK] 100% of the time the model wouldn’t necessarily produce good token

representations for non-masked words. The non-masked tokens were still used for context,

but the model was optimized for predicting masked words. If we used [MASK] 90% of the

time and random words 10% of the time, this would teach the model that the observed word

Pre-training

Corpus ModelMasked
Language
Models
(MLM)

Next Sentence
Prediction

(NSP)

22

is never correct. If we used [MASK] 90% of the time and kept the same word 10% of the

time, then the model could just trivially copy the non-contextual embedding.”

In training, 10 percent of 15 percent = 1.5 percent of all tokens are replaced with random

words, and this is a deficient percentage to harm the general language model. More training

steps are required in MLM compared with LMs since only 15 percent of tokens can be

masked, and only the masked words can be predicted and learned for each step. Therefore,

MLM is slower than typical LMs, but the result success rate is satisfactory. A full example

of the masking is in Figure 3.10 ; for every step, BERT selects and masks a token. For

training, the Transformer network is used, which is described in 3.2.2 section.

Figure 3.8. MLM masks some of the tokens and tries to predict.

Figure 3.9. Masking example.

I sit bank
[MASK]

theon
[MASK]

chairon

I sit on the bank

I sit on the [MASK]

%80 of the time

I sit on the bank

%10 of the time

I sit on the apple

%10 of the time

23

Figure 3.10. Masking journey of an input. Red items are replaced with green items.

For tokenization, BERT uses the WordPiece algorithm of Google [25]. WordPiece creates a

fixed-sized vocabulary that includes words, subwords, or characters (Figure 3.11). The

algorithm calculates the frequencies of tokens in the corpus and picks the most frequent ones.

Vocabulary file includes both suffixes, subwords, and also words. Most probably, every

word in a language can be tokenized by using the generated vocabulary file as a reference.

If the vocabulary file is updated, the tokenization result of sentences also changes. For

[CLS] Kış aylarında doğa , birçok bakım ##lardan , uyku ##ya yat ##mış gibidir
. Toprak , karl ##ar , buzl ##ar altında , dona ##r , katıla ##şır . [SEP] Top
##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu ##p kalırlar . [SEP]
--
[CLS] Kış aylarında doğa , birçok bakım ##lardan , uyku ##ya yat ##mış gibidir
. Toprak , karl ##ar , buzl ##ar altında , dona ##r [MASK] katıla ##şır .
[SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu ##p kalırlar .
[SEP]
--
[CLS] Kış aylarında doğa , birçok bakım ##lardan , uyku ##ya yat ##mış gibidir
. Toprak , karl ##ar , buzl ##ar altında , dona [MASK] [MASK] katıla ##şır .
[SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu ##p kalırlar .
[SEP]
--
[CLS] Kış aylarında doğa [MASK] birçok bakım ##lardan , uyku ##ya yat ##mış
gibidir . Toprak , karl ##ar , buzl ##ar altında , dona [MASK] [MASK] katıla
##şır . [SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu ##p
kalırlar . [SEP]
--
[CLS] Kış aylarında doğa [MASK] birçok bakım ##lardan , uyku [MASK] yat
##mış gibidir . Toprak , karl ##ar , buzl ##ar altında , dona [MASK] [MASK]
katıla ##şır . [SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu
##p kalırlar . [SEP]
--
[CLS] Kış aylarında doğa [MASK] birçok bakım ##lardan , uyku [MASK] yat
##mış gibidir . Toprak , karl ##ar , buzl [MASK] altında , dona [MASK]
[MASK] katıla ##şır . [SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler
uyu ##şu ##p kalırlar . [SEP]
--
[CLS] Kış Kohe doğa [MASK] birçok bakım ##lardan , uyku [MASK] yat ##mış
gibidir . Toprak , karl ##ar , buzl [MASK] altında , dona [MASK] [MASK]
katıla ##şır . [SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu
##p kalırlar . [SEP]
--
[CLS] Kış Kohe doğa [MASK] birçok bakım ##lardan , uyku [MASK] yat ##mış
gibidir . Toprak , karl ##ar , buzl [MASK] altında , dona [MASK] [MASK]
katıla ##şır . [SEP] Top ##ra ##ğın içindeki solucan ##lar , böcekler uyu ##şu
##p kalırlar Run [SEP]

24

‘helping’ as an example, the tokenizer may split as ‘help’ and ‘##ing’, but if ‘helping’ is

added to the vocabulary, ‘helping’ will be tokenized directly as ‘helping’ without splitting.

Figure 3.11. Vocabulary example for Turkish.

There are three reserved tokens in BERT architecture:

1- [CLS]: Starter token of every input sequence and the classification token for Softmax

classifier. It is used in both pre-training and fine-tuning.

2- [SEP]: Delimiter token, which splits the sequences. It is used in both pre-training

and fine-tuning. In pre-training, it cuts the two sentences. In fine-tuning, it cuts the

input sequence as question and paragraph.

3- [MASK]: Mask token used in pre-training, which indicates BERT masks this token.

In pre-training, BERT uses WordPiece tokenizer for splitting the words into pieces that may

be a character, subword, or word, named ‘tokens’. WordPiece tokenizer bases on a

vocabulary file, which consists of possible tokens of the language. Every vocabulary item

has a unique id, and the output tokens of the tokenizer are replaced with their token-ids for

generating the input sequence, named “token embeddings”. Although BERT is not a

sequential method like RNN or LSTMs, positional embeddings are build using the locations

of the words in the sentence, for preventing long-distance mappings with unnecessary tokens

25

in self-attentions. Figure 3.12 shows an example of two sentences, their tokens and

embeddings which are the inputs of the Transformer network. The text-based inputs of the

BERT are called “sequences”. Each sequence starts with [CLS] and has two sentences. To

highlight the owner sentence of the tokens as A or B, sentence embedding is used. In the

example, A represents the first sentence, B represents the second sentence. BERT adds all

these embeddings together for generating the final input embedding of the deep neural

network.

Figure 3.12. BERT input sequence example [2].

Figure 3.13 illustrates the full architecture of MLM. The system selects some tokens for

masking and then converts the input “New England Patroits … night” to embeddings. The

summed embeddings are the input of the Encoder. Using a self-attention mechanism,

Encoder generates word representations, which are the input of the Decoder. Word

representations form the language model, and like neural network hyperparameter weights,

BERT optimizes these matrices using the standard back-propagation methods. With the

Softmax loss function, the decoder compares the real and predicted values of every masked

token and enhances the weights.

26

Figure 3.13. MLM architecture [26].

Next Sentence Prediction (NSP): For some NLP tasks such as Question Answering (QA)

and Natural Language Extraction (NLI), understanding the relationship between the two

sentences is essential. Therefore, in the pre-training task, the Next Sentence Prediction (NSP)

subtask is also performed. Considering A and B sentence pairs, there is a random choice;

sometimes B is left in its correct form and marked as IsNext, or sometimes B is replaced

with a random sentence picked from the corpus and marked as NotNext. Figure 3.14 shows

examples of B sentences; Not Random indicates IsNext and Random indicates NotNext.

IsNextSequence probability is calculated using Sigmoid. During NSP training, BERT uses

binary classification (Figure 3.15). In the figure, Classifier takes “C” as the input and using

a shallow classifier predicts whether B is the next sentence of A or not.

27

Figure 3.14. Segment generation example.

A : ['Kış', 'aylarında', 'doğa', ',', 'birçok', 'bakım', '##lardan', ',',
'uyku', '##ya', 'yat', '##mış', 'gibidir', '.', 'Toprak', ',', 'karl', '##ar', ',',
'buzl', '##ar', 'altında', ',', 'dona', '##r', ',', 'katıla', '##şır', '.’]
B : ['Top', '##ra', '##ğın', 'içindeki', 'solucan', '##lar', ',', 'böcekler',
'uyu', '##şu', '##p', 'kalırlar', '.']

Kış aylarında doğa, birçok bakımlardan, uykuya yatmış gibidir.
Toprak, karlar, buzlar altında, donar, katılaşır.
Toprağın içindeki solucanlar, böcekler uyuşup kalırlar.

Not
Random

A : ['Koro', '##nav', '##ir', '##üs', 'tüm', 'dünyada', 'reel', 'ekonomi',
'##leri', 'etkiledi', '.', 'Mart', 've', 'nis', '##an', 'ayları', '##na', 'ait',
'veriler', 'açıklandı', '##kça', 'virüsü', '##n', 'ekonomi', '##ler',
'üzerindeki', 'etkileri', 'de', 'ortaya', 'çıkmaya', 'başladı', '.’]
B : ['Toprak', ',', 'karl', '##ar', ',', 'buzl', '##ar', 'altında', ',', 'dona',
'##r', ',', 'katıla', '##şır', '.', 'Top', '##ra', '##ğın', 'içindeki', 'solucan',
'##lar', ',', 'böcekler', 'uyu', '##şu', '##p', 'kalırlar', '.’] ß From
document 1

Koronavirüs tüm dünyada reel ekonomileri etkiledi.
Mart ve nisan aylarına ait veriler açıklandıkça virüsün ekonomiler üzerindeki
etkileri de ortaya çıkmaya başladı.
Reel ekonomiye ait veriler takip edilirken, virüsün yayılmasının pik yaptığı ve
ekonomi üzerindeki etkilerinin azalmaya başladığı konusunda bir görüş de
oluşmaya başladı.

Random

A : ['Reel', 'ekonomiy', '##e', 'ait', 'veriler', 'takip', 'edilirken', ',',
'virüsü', '##n', 'yayılmasın', '##ın', 'pi', '##k', 'yaptığı', 've',
'ekonomi', 'üzerindeki', 'etkilerini', '##n', 'azalma', '##ya',
'başladığı', 'konusunda', 'bir', 'görüş', 'de', 'oluşma', '##ya', 'başladı',
'.’]
B : ['Kış', 'aylarında', 'doğa', ',', 'birçok', 'bakım', '##lardan', ',',
'uyku', '##ya', 'yat', '##mış', 'gibidir', '.', 'Toprak', ',', 'karl', '##ar', ',',
'buzl', '##ar', 'altında', ',', 'dona', '##r', ',', 'katıla', '##şır', '.', 'Top',
'##ra', '##ğın', 'içindeki', 'solucan', '##lar', ',', 'böcekler', 'uyu',
'##şu', '##p', 'kalırlar', '.’] ß From document 1

Document 1

Document 2

Random

28

Figure 3.15. NSP architecture [26].

Parameters: The critical parameters of the pre-training task are in Table 3.1. In the pre-

training task, the maximum sequence length shapes the input vector size of the Transformer

network, and high values are needed to learn positional embeddings in long sequences.

BERT selects the minimum of maximum predictions per sequence and masked LM

probability multiplied by token size (in the formula below), for the number of word pieces

to mask. Do lower case and do whole word mask parameters belong to tokenization and

masking. In the NLP benchmarks, the published cased and whole word masked language

models have higher accuracies, notably for Asian languages such as Chinese or Arabic. The

current study is Turkish specific, and vocabulary file is wide enough to have most of the

words already; consequently, subword or whole word masking results similarly on

tokenization.

 masking	threshold
= 	min	(𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, number	of	tokens	
∗ 	𝑚𝑎𝑠𝑘𝑒𝑑	𝐿𝑀	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

(3.1)

29

Table 3.1. Major parameters of the pre-training task [26].

Parameter Default
value Details

max_seq_length 384

The maximum total input sequence length
after WordPiece tokenization. Sequences
longer than this will be truncated, and
sequences shorter than this will be padded.

max_predictions_per_seq
 20 Maximum number of masked LM

predictions per sequence.

do_lower_case True
Whether to lower case the input text. Should
be True for uncased models and False for
cased models.

do_whole_word_mask False Whether to use whole word masking rather
than per-WordPiece masking.

masked_lm_prob 0.15 Masked LM probability.

short_seq_prob 0.1 Probability of creating sequences which are
shorter than the maximum length.

dupe_factor 10 Number of times to duplicate the input data
(with different masks).

Implementation Details: In the pre-training implementations, BERT has two subtasks:

create pre-training data and run pre-training. Create pre-training data reads corpus files

and vocabulary, then generates TensorFlow records which will be used in run pre-training

task. As seen in Figure 3.16, most of the steps are based on random decisions. The task

creates segments as [CLS] Sentence A [SEP] Sentence B [SEP], which will be used in the

Next Sentence Prediction (NSP) task. If the generated segment is larger than the maximum

sequence length configuration parameter, system truncates the input from front or end. When

the segment is ready, the system masks some tokens until the number of masked tokens

reached the threshold that is calculated using configuration parameters. Run pre-training

task reads the generated TensorFlow records and trains the system for MLM and NSP with

transformers, which will be detailed on the 3.2.2 section.

30

Figure 3.16. Create pre-training data steps. Dices indicate random decisions. Brackets with

-for- indicate loops.

Read raw text files

Create Instances

Read line

Randomly select B

Corpus

Split documents (new line)

Tokenize documentsVocabulary

Shuffle documents

for
dupe

factor

for
each

document

Shuffle instances

Write instances

Select end point of A

Not randomly select B

Select a document

Select start point of B

Repeat for not used part

Truncate if > max_seq_length

Truncate from end

Truncate from front

Mask content

Shuffle tokens

Don’t change

80% [MASK]

Decision

for
each

token

Change with a random token

If masked token number
is enough for

masked_lm_probability
config; BREAK

Convert tokens to vocab IDsVocabulary

Vocabulary

Config

Config

Config

31

3.2.1.2. Task 2: Fine-tuning

Compared with pre-training, the fine-tuning step is speedy. For every down-stream NLP

task, by adding an extra layer to the pre-trained model, BERT tunes all the task-specific

parameters.

Down-stream NLP tasks can be grouped as following:

- Text Classification: Classification tasks, such as sentimental analysis, are sequence

level subjects and BERT trains the system with a very similar approach to Next

Sentence Prediction. For classification, BERT adds an extra layer at the top of the

system and the output of the [CLS] token is the class label. In Figure 3.17, (a) and

(b) are examples of text classification tasks.

32

Figure 3.17. BERT down-stream tasks [2].

- Named Entity Recognition (NER): The NE may be people, groups, locations or an

organization. NER is a token-based task and marks all entities in the given text with

their corresponding NEs. For NER, BERT adds an extra layer at the top of the system.

If the token is a part of an NE, the output is the tag of the NE, and else the output is

NULL. In Figure 3.17, (d) is an example of NER task.

- Question Answering (QA): QA is a token-based task. The inputs are a question and a

paragraph; the output is the start and end positions of the answer span. In Figure 3.17,

(c) is an example of the QA task.

33

The focus of this thesis is the Question Answering down-stream task, which is also referred

as MRQA. For MRQA training, SQuAD is the most common data set. An example SQuAD

JSON file is in Figure 3.18. The SQuAD is an array of paragraphs and their question &

answer pairs. Every question has an id and every answer has a start-point marker. For the

answer, the reason for the start-pointer extra field is that the answer text may appear multiple

times in the paragraph. The field is calculated by counting the number of characters from the

beginning of the paragraph to the answer starting point (the indexOf function in

programming). The SQuAD file has two versions: 1.1 and 2.0. In version 2.0, there are some

unanswerable questions whose answers are NULL. This study focuses on SQuAD v1.1.

Figure 3.18. SQuAD JSON file example.

Parameters: There are crucial parameters; shown in Table 3.2. In the fine-tuning task, the

input sequence of the Transformers is the union of the question and the paragraph; the output

is the answer. The maximum query length is the number of question tokens located in the

input sequence, and BERT ignores the longer part of the text. In the input sequence, a certain

34

number of tokens remain for the paragraph. If the paragraph is longer than the capacity,

BERT splits the paragraph into chunks by a sliding window approach. It uses the document

stride parameter to calculate the start point of the next chunk in the paragraph by adding to

the previous value at every turn. On predicting the answer, the selected span from the text

can be as much as the maximum answer length parameter, which is character-based despite

all other parameters are token-based.

Table 3.2. Fine-tuning SQuAD task crucial parameters [26].

Parameter Default
value Details

max_seq_length 384

The maximum total input sequence length
after WordPiece tokenization. Sequences
longer than this will be truncated, and
sequences shorter than this will be padded.

max_query_length
 64

The maximum number of tokens for the
question. Questions longer than this will be
truncated to this length.

max_answer_length
 30

The maximum length of an answer that can
be generated. This is needed because the
start and end predictions are not conditioned
on one another.

doc_stride
 128

When splitting up a long document into
chunks, how much stride to take between
chunks.

do_lower_case True
Whether to lower case the input text. Should
be True for uncased models and False for
cased models.

n_best_size 20 The total number of n-best predictions to
generate in the nbest_predictions output file.

version_2_with_negative False If true, the SQuAD examples contain some
that don’t have an answer.

null_score_diff_threshold 0.0 If null-score – best_not_null is greater than
the threshold predicts null.

Implementation Details: Figure 3.19 represents the step of the fine-tuning task. The system

reads the SQuAD JSON file and converts them to SQuAD objects after validation. There are

some rules for SQuAD samples:

- For training, each question should have exactly one answer.

- Answers should be in the documents. Because of some problems like Unicodes, if

answer is not in the document, system skips the sample.

35

Figure 3.19. Fine-tuning steps.

A SQuAD object is in Figure 3.20: qas_id is the question ID, doc_tokens is the tokenized

array form of the paragraph, start_position and end_positions are the begin & end indexes

of the answer in the doc_tokens array.

Read raw text files

Create Instances

Read line

Randomly select B

Corpus

Split documents (new line)

Tokenize documentsVocabulary

Shuffle documents

for
dupe

factor

for
each

document

Shuffle instances

Write instances

Select end point of A

Not randomly select B

Select a document

Select start point of B

Repeat for not used part

Truncate if > max_seq_length

Truncate from end

Truncate from front

Mask content

Shuffle tokens

Don’t change

80% [MASK]

Decision

for
each

token

Change with a random token

If masked token number
is enough for

masked_lm_probability
config; BREAK

Convert tokens to vocab IDsVocabulary

Vocabulary

Config

Config

Config

36

Figure 3.20. SQuAD object example.

The input sequence length of the neural network is configured by max_seq_length. In Figure

3.21, the tokens field is the array form of the tokenized input sequence. In tokens_ids array,

the tokens are replaced with their vocabulary IDs. There are three separator tokens: [CLS],

[SEP], [SEP]. The first part, between [CLS] and [SEP] tokens, is the question. The second

part, between [SEP] and [SEP] tokens, is the paragraph. In segment_ids, the question is

marked as 0, the paragraph is marked as 1. If the input sequence length is smaller than the

max_seq_length parameter, it is padded with 0’s as seen in the input_mask field. The start

and end position fields are the indexes of the answer in the array.

qas_id 56bf10f43aeaaa14008c9501
question_text Super Bowl 50 hangi ay, gün ve yıl gerçekleşti?
doc_tokens ['Super', 'Bowl', '50,', '2015', 'sezonunda', 'Ulusal', 'Futbol', 'Ligi',
'(NFL)', 'şampiyonunu', 'belirlemek', 'için', 'bir', 'Amerikan', 'futbol', 'oyunuydu.', 'Amerikan',
'Futbol', 'Konferansı', '(AFC)', 'şampiyonu', 'Denver', 'Broncos,', 'üçüncü', 'Super', 'Bowl',
'şampiyonluğunu', 'kazanmak', 'için', 'Ulusal', 'Futbol', 'Konferansı', '(NFC)', 'şampiyonu',
'Carolina', 'Panthers', "24-10'u", 'yendi.', 'Oyun', '7', 'Şubat', "2016'da", 'Santa', 'Clara,',
"California'daki", 'San', 'Francisco', 'Körfez', "Bölgesi'ndeki", "Levi's", "Stadı'nda", 'oynandı.',
'Bu', '50.', 'Süper', 'Kase', 'olduğu', 'için,', 'lig,', 'çeşitli', 'altın', 'temalı', 'girişimlerle', '"altın',
'yıldönümü"', 'nü', 'vurguladı', 've', 'her', 'bir', 'Super', 'Bowl', 'oyununu', 'Romen', 'rakamlarıyla',
'(oyunun', '"olarak', 'bilinen"', 'Süper', 'Kase', 'L', '"),', 'böylece', 'logo', 'belirgin', 'şekilde', 'Arap',
'rakamlarına', '50', 'sahip', 'olabilir.’]
start_position 39
end_position 41

37

Figure 3.21. Fine-tuning chunks.

In the input sequence, the capacity reserved to the paragraph is the remaining slots from the

question + three delimiter tokens. Question length is dynamic and can be up to maximum

query length. The capacity of the document is calculated using formulas 3.2 and 3.3. The

paragraph may be longer than its capacity. To deal with this problem, BERT uses a sliding

window approach. The system uses chunks as dividing the paragraph up to capacity sized

parts. In the paragraph, the start point of every chuck is calculated by the doc_stride

parameter.

 maxTokensForDoc
= maxSeqLength
− len(questionTokens) − 3

(3.2)

 contentLength
= 	min	(#	of	remaning	paragraph	tokens,maxTokensForDoc)

(3.3)

tokens
includes tokens

[CLS] Question tokens [SEP] Context tokens [SEP]

segment_ids
Seperates question and context
0 for [CLS], question and first [SEP]
1 for context and second [SEP]

0 0000…0000 0 1111…1111 1

input_ids
same as tokens, but tokens are replaced with token id’s taken from vocabulary file

3 458 7854 4521 … 4578 4 20 568 7854 … 859 4

input_mask
0 for padding tokens
1 for real tokens

1 1111…1111 1 1111…1111 1 ß if no padding

start position
Answer start position. 0 if answer is not present in this chunk.

end position
Answer end position. 0 if answer is not present in this chunk.

38

If the doc_stride parameter is set to a smaller value than the capacity, there will be overlaps

between chunks. As seen in Figure 3.22; if the capacity is 10, every chunk has a maximum

of 10 tokens. If the doc_stride is 5, 5 tokens will be overlapping with previous chunks.

Figure 3.22. Overlapping example.

The final inputs of a fine-tuning task are shown in Figure 3.23. Run fine-training task trains

the model with transformers, which will be detailed in the 3.2.2 section.

Super Bow ##l 50 , 2015 sezonunda Ulusal Futbol Ligi (NF ##L) şampiyonu

##nu belirlemek için bir Amerikan futbol oyunu ##ydu . Amerikan Futbol Konferansı (AFC)

şampiyonu Den ##ver Bron ##co ##s , üçüncü Super Bow ##l şampiyonluğu
nu

kazanmak için Ulusal

Futbol Konferansı (NF ##C) şampiyonu Carolin ##a Panth ##ers 24 - 10 '

u yendi . Oyun 7 Şubat 2016 ' da Santa Clara , California ' daki

San Francisco Körfez Bölgesi ' ndeki Levi ' s Stadı ' nda oynandı . Bu

50 . Süper Kas ##e olduğu için , lig , çeşitli altın temalı girişimler ##le

altın yıldönümü nü vurgula ##dı ve her bir Super Bow ##l oyununu Rome ##n rakamları

##yla (oyunun olarak bilinen Süper Kas ##e L) , böylece logo belirgin şekilde

Arap rakamları ##na 50 sahip olabilir .

overlapping part

Super Bow ##l 50 , 2015 sezonunda Ulusal Futbol Ligi

2015 sezonunda Ulusal Futbol Ligi (NF ##L) şampiyonu

Chunk 1

Chunk 2

39

Figure 3.23. Fine-tuning input example.

3.2.2. Attention & Transformers

Attention is a method that has given the most impressive results in the deep learning world

in recent years, and its popularity is increasing day by day. Usage areas range from image

recognition to natural language processing. The most successful practice of the attention is

the machine translation problem. Attention aims to extract a summary of the input sequence

question
Super Bowl 50 hangi ay, gün ve yıl gerçekleşti?

answer
7 Şubat 2016

tokens
[CLS] Super Bow ##l 50 hangi ay , gün ve yıl gerçekleşti ? [SEP] Super Bow ##l 50 , 2015 sezonunda Ulusal Futbol Ligi
(NF ##L) şampiyonu ##nu belirlemek için bir Amerikan futbol oyunu ##ydu . Amerikan Futbol Konferansı (AFC)
şampiyonu Den ##ver Bron ##co ##s , üçüncü Super Bow ##l şampiyonluğunu kazanmak için Ulusal Futbol Konferansı
(NF ##C) şampiyonu Carolin ##a Panth ##ers 24 - 10 ' u yendi . Oyun 7 Şubat 2016 ' da Santa Clara , California ' daki
San Francisco Körfez Bölgesi ' ndeki Levi ' s Stadı ' nda oynandı . Bu 50 . Süper Kas ##e olduğu için , lig , çeşitli altın
temalı girişimler ##le " altın yıldönümü " nü vurgula ##dı ve her bir Super Bow ##l oyununu Rome ##n rakamları ##yla
(oyunun " olarak bilinen " Süper Kas ##e L ") , böylece logo belirgin şekilde Arap rakamları ##na 50 sahip olabilir . [SEP]

input_ids
3 2488 9580 76 618 2544 699 30451 351 6 121 3650 30371 4 2488 9580 76 618 30451 366 408 772 1001 604 30517
25497 597 30675 1692 835 5601 17 7 316 455 1471 3570 30475 316 1001 5973 30517 17472 30675 1692 4111 1245
10731 1144 30 30451 594 2488 9580 76 5044 7967 17 772 1001 5973 30517 25497 501 30675 1692 14994 13 28970
1452 409 30531 138 30357 375 4770 30475 2281 147 271 418 30357 8 4019 19015 30451 13261 30357 165 888 5837
15207 1373 30357 1928 10799 30357 459 17581 30357 109 5462 30475 22 618 30475 1076 3376 14 77 17 30451 1294
30451 255 1026 20059 19009 81 30671 1026 15140 30671 1792 8896 140 6 120 7 2488 9580 76 27092 14217 9 14821
111 30517 3864 30671 11 433 30671 1076 3376 14 711 30671 30675 30451 1406 20320 3203 167 1092 14821 93 618
190 837 30475 4 0
0 0
0 0
0 0

input_mask
1 1
1 1
1 0 0
0 0
0 0
0 0

segment_ids
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1
1 0 0
0 0
0 0
0 0

start position
78

end position
80

40

that is given to the Encoder architecture and reinterpret this summary in the target Decoder

architecture. The most significant disadvantage of the fixed-length content vectors used in

the traditional Encoder & Decoder architectures is that if the input sequence is long, the

mechanism begins to forget some parts of the context after a while. Attention tries to solve

this problem. The attention focus on finding the most critical parts of the input while

summarizing the sequence, and the name 'Attention' comes from 'we pay more attention'

quote.

Encoder, Decoder and Attention are the essence of Transformer architecture. For machine

translation (Figure 3.24), the system converts a text from one language (e.g., English) to

another (e.g., Turkish). The Encoder takes the input sequence in English and converts into

an n-dimensional vector. The Decoder receives this vector and creates an output sequence,

which is the output in Turkish. The n-dimensional vector is like an imaginary language,

which both Encoder and Decoder know very well.

Figure 3.24. Encoder & Decoder architecture.

Attention detects the relevant parts of the given input sequence. In the example of ‘She is

eating a green apple.’, there is a high attention between eating and apple but low attention

between eating and red (Figure 3.25). In an attention-based Encoder & Decoder architecture,

there are weight matrices, which keeps the semantical relation densities of the words (Figure

3.26). By highlighting the significant parts of the sequence, these weight matrices improves

Decoder’s performance.

DecoderEncoder

Embeddings

Hava çok güzel .

The very nice .is

NULL
n-dimensional

vector

weather

41

Figure 3.25. Low and high attentions in an example.

Figure 3.26. Attention-based. Encoder & Decoder architecture for machine translation.

The steps of a machine translation using attention-based Encoder & Decoder architecture is:

Step 1: The encoder gets the input sequence and generates hidden state vector; [h1, h2, h3,

h4…]

Step 2: Feed Forward Neural Network generates a score vector of the hidden vector using

the previous hidden state of the decoder; [s1, s2, s3, s4…]

Step 3: Softmax Layer generates the attention weights; [e1, e2, e3, e4…]

a) All the weights lie between 0 and 1, i.e., 0 ≤ e1, e2, e3, e4, e5 ≤ 1

b) All the weights sum to 1, i.e., e1+e2+e3+e4+e5 = 1

Step 4: Context vector is calculated as summarizing the multiplication of h and e vectors;

CV.

 𝐶𝑉 = e# ∗ h# +	e$ 	 ∗ h$ 	+ 	e% ∗ h% + e& ∗ h& +	e' 	 ∗ h' (3.4)

She is eating a red apple .

High
attention

High
attention

Low
attention

DecoderEncoder

Embeddings

Hava çok güzel .

The very nice .is

NULL
n-dimensional

vector

Attention
attention weights

weather

42

Step 5: Context vector is concatenated with the output of the decoder previous steps; CV +

<NULL> for the first step, CV + <NULL The> for the second step, CV + <NULL The

weather> for the third step.

Step 6: The decoder generates the output text and also the next hidden state; The for the first

step, The weather for the second step.

In a traditional RNN Seq2Seq Encoder&Decoder model, everything is crammed into a single

context final state as in Figure 3.27. In an attention-based Encoder&Decoder model, there

are multiple hidden states which look at everything, as in Figure 3.28.

Figure 3.27. RNN Seq2Seq Encoder&Decoder example.

Encoder

Decoder

y1 y2 ym

s1 s2 sm

h1 h2 hm

x1 x2 xm

Context
(final state)

43

Figure 3.28. Attention-based Encoder&Decoder example.

There are three different attention types: Hard/Local Attention focuses on a part of input like

a patch of an image; Soft/Global Attention focuses on entire input; Self/Intra Attention

focuses on different positions of the input. Modern NLP architectures use a self-attention

mechanism.

Instead of using recurrent network structures, Transformers use the attention mechanism.

The reason is the disadvantages of existing recurrent networks, such as depending on the

time series, sequential process over previous or next words. Transformer networks support

parallelism because of no recurrence. Transformers facilitate long-range dependencies, and

there is no gradient vanishing or explosion. There are also direct connections between

components, called residual connection. As a result, fewer steps are enough for training.

Transformer networks are a stack of encoder and decoders which have self-attention

mechanisms and Feed-Forward networks. Figure 3.30 shows an example of an encoder stack

that has 12 layers and a maximum sequence length set as 512. The embedding process is

only done at the bottom-most step of the encoder. The embedding vector size is a

Encoder

Decoder

y1 y2 ym

s1 s2 sm

h1 h2 hm

x1 x2 xm

Context1 Context2 Context3

44

hyperparameter, which we can fine-tune; for the examples, it is set to 512. Every encoder

has two layers; a self-attention and a Feed-Forward Network. The input sequence of the

encoder includes the words with their positions. In the self-attention layer, there are

dependencies between the words. These dependencies are not present in the Feed Forward

Network layer, and some operations can be done in parallel in the network.

Figure 3.29. Inputs of a Transformer Network.

After generating and summing the tokens and positions embedding vectors of the input, the

final vector is the input of the stack’s bottom encoder, the green Xn vectors in the Figure

3.29. There is a chain approach; the output of the first encoder is the input of the second

encoder, the output of the second encoder is the input of the third encoder, and the output of

the last encoder is the input of all the decoders. The linear layer at the top of the decoder

stack, converts the output of the decoders to logits vector that has the same size as the

vocabulary file. After the Softmax layer converts the scores into probabilities, the system

choses the element that has the highest probability.

Encoders Stack…
Decoders Stack

…

Layer 1

Layer 2

Layer 1

Layer 2

K V

X
x1 x2

Hava çok güzel Input

Embeddings

Embeddings with positions

45

Figure 3.30. BERT encoder & decoder stacks for a machine translation example.

Figure 3.31. Decoder layers of a transformer network.

Encoders Stack

…

…
Hava çok

Decoders Stack

…

Layer 1

Layer 2

Layer 12

Layer 11

Layer 1

Layer 2

Layer 12

Layer 11

The very niceisweather

1 2 512
Maximum sequence length

K V

Q

X
x1 x2

Linear Layer

Softmax Layer

Decoders Stack

…

Layer 12

weather

Decoder stack output

Linear Layer

Softmax Layer

…

Logits

Log probabilities

Predicted word

46

The subcomponents of an encoder and a decoder are similar (Figure 3.32). With x input

vectors, self-attention computes z vectors. After the z vector is computed, a 10 percent

dropout is applied. In order to prevent early summarization of the input, x vector is added to

the z vector with residual connections shown as dotted lines in the figure. Then, to increase

the stability, the mechanism normalizes the output. For reducing the number of feature maps,

there is a Feed-Forward Network (FFN) after each self-attention layer in both encoders and

decoders.

A decoder has a different layer from Encoder, named Encoder-Decoder Attention. This layer

gets the outputs of the encoder (K and V matrices) and combines with Decoder self-attention

results (Q matrices). This operation inhibits Decoder to look further positions in the sequence

when generating the output (Table 3.3). If that is an English to Turkish machine translation

example; the task of Decoder is generating the next word. In every timestamp t, the Decoder

gets the output of the Softmax layer of timestamp t-1. The Softmax layer at the top of the

Decoder generates the next token, like a typical Encoder & Decoder architecture.

Figure 3.32. Post operations after self-attention.

Encoder

…

Self-Attention

Add & Normalize

Add & Normalize

Feed Forward Network

1 2 512

x1 x2

z1 z2

z1 z2

Decoder

…

Self-Attention

Add & Normalize

Add & Normalize

Feed Forward Network

1 2 512

Encoder-Decoder
Attention

Add & Normalize

47

Table 3.3. Machine translation decoder example.

Step Input of the decoder Output of the decoder
1 <CLS> Düşünen
2 <CLS> Düşünen Düşünen makineler
3 <CLS> Düşünen makineler Düşünen makineler …

For each token in the input sequence, three vectors (q, k, v) are created by multiplexing three

weight matrices (WQ, WK, WV) with the embedding vector (x1, x2, …, xn).

- Query vector (q): The vector of the source token which is paid attention.

- Key vector (k): The vector of the target token with which the attention will be

calculated.

- Value vector (v): Result vector.

The calculation steps of the Self-attention are based on the equation 3.5.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 g

𝑄𝐾(

h𝑑!
i𝑉

(3.5)

Step 1: System multiplies embeddings vectors (x1, x2, …, xn) with WQ, WK and WV matrices

to calculate Query (q1, q2, …, qn), Key (k1, k2, …, kn) and Value (v1, v2, …, vn) vectors.

Training process optimizes WQ, WK and WV matrices like NN hyperparameter weights.

Figure 3.33 shows the details. The vector dimensionalities are configurable. In the example,

the input and output vectors have dimensionality of 512; q, k, and v vectors have

dimensionality of 64.

48

Figure 3.33. Self-attention steps (1).

Step 2: For each source word (i), system calculates scores of each target word (j) in the input

sequence. The formula of the score is; dot product of qi and kj vectors of each source word i

and each target word j.

 𝑆𝑐𝑜𝑟𝑒 = 𝑄𝐾((3.6)

For the first word ‘Thinking’, the mechanism calculates scores for all words. For the second

word ‘Machines’, the mechanism again calculates scores for all words (Figure 3.34).

Step 3: For normalization, system divides the scores by the square root of vector

dimensionality dk = 64 (Figure 3.34).

 𝐷𝑖𝑣𝑖𝑑𝑒	𝑏𝑦	8	 =

𝑄𝐾(

h𝑑!

(3.7)

Step 4: System applies the Softmax function. Softmax result shows the effect of the target

word to the selected position (Figure 3.34). In the example, to the first word, the effect of

‘Thinking’ is 0,88, but ‘Machines’ is 0,12. The Softmax results in the figure are only for the

first word, and the system repeats same operations for other words.

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 g

𝑄𝐾(

h𝑑!
i

(3.8)

x1 x2
X

WK

WV

WQ

Hava çok güzel .

x3 x4

q1 q2 q3 q4

k1 k2 k3 k4

v1 v2 v3 v4

X

X

X

49

Step 5: For eliminating unnecessary words, system multiplies the Softmax result with Value

vectors (Figure 3.34). As a result of the Softmax score of the first-word is higher than the

second word, its value vector is more visible in order to indicate its importance factor in the

figure.

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 g

𝑄𝐾(

h𝑑!
i𝑉

(3.9)

Step 6: System sums finals vectors for attention (Figure 3.34). In z1, v1 has more density

than v2.

Figure 3.34. Self-attention steps (2-6) for ‘Thinking’.

x1

Hava

q1

k1 k2 k3 k4

v1 v2 v3 v4

d1 d2 d3 d4

n1 n2 n3 n4

Step 2: !"!

Step 3: "#!

s1 s2 s3 s4Step 4: #$%&'() (n)

Step 5: s *
v1 v2 v3 v4

z1
Step 6: sum(v)

50

BERT uses a multi-layered bidirectional Transformer encoder-based architecture.

BERTBASE configuration has 12 Transformers layers with 12 attention-heads. Let's assume

that, the input is ‘Yeşil elmayı seviyorum. Daha lezzetliler. - I like green apples. They are

more delicious.’. Figure 3.35 shows the output of Transformer-layer = 0 and Attention-head

= 0. The highlighted connection indicates a strong relationship between tokens: yeşil (green)

and elma (apple). The colored box bar represents the 12 attention heads. The visualization

changes when the selected token or attention head is changed.

Figure 3.35. Transformer-layer = 0 and Attention-head = 0 output.

In the lower layers of the transformers, there connections are usually with previous or next

words. In the higher-level layers, the semantic relations become more visible. But, there isn’t

a similar hierarchy between the attention heads in the same layer. Attention heads analyze

the same input from different perspectives within the scope of the given layer. Figure 3.36

shows Transformer-layer = 4 and Attention-head = 0 output: there is a connection between

yeşil (green) and lezzetli (delicious). Figure 3.37 shows Transformer-layer = 11 and

Attention-head = 6 output: there is a connection between yeşil (green) and seviyorum (like).

51

Figure 3.36. Transformer-layer = 4 and Attention-head = 0 output example.

Figure 3.37. Transformer-layer = 11 and Attention-head = 6 output example.

When using multi-headed attention, all weight matrices and vectors of the single-headed

attention have a new dimension representing the attention-heads:

- The q, k, and v vectors are converted to matrices.

- Q, K, and V weight matrices are converted to a set of matrices that have a matrix for

every attention-head.

Every word (i) has a zi vector, and the final output is a matrix. When multi-headed attention

is used, there are # of attention heads * z matrices. Different from single-headed attention,

52

for generating the final Z matrix output, the mechanism concatenates all z matrices and

multiples with the W0 weight matrix.

Firstly, there were two pre-trained models published by Google: BERTBASE and BERTLARGE

(Table 3.4). Later, their numbers are increased to 6 (Table 3.5). BERTBASE has a similar

model size as OpenAI GPT. BERTBASE and BERTLARGE use the same architecture and only

their parameter counts are different.

Table 3.4. BERT pre-trained models (earlier).

Model Layers Hidden layer
nodes

Attention
heads

Total
parameters

BERTBase 12 768 12 110M
BERTLarge 24 1024 16 340M

Table 3.5. BERT pre-trained models (now).

Counts Hidden layer
nodes=128

Hidden layer
nodes=256

Hidden layer
nodes=512

Hidden layer
nodes=768

Layers=2 BERTTiny
Layers=4 BERTMini BERTSmall
Layers=6
Layers=8 BERTMedium
Layers=10
Layers=12 BERTBase

53

4. ANALYSIS AND DESIGN

This section gives information about the approaches that we’ve used in the study and the

design of the system. Section 4.1 summarizes BERT, and Section 4.2 describes how BERT

solves some morphological problems of Turkish. Section 4.3 presents the data sets used in

the study. Section 4.4 defines the training procedures, and Section 4.5 lists the training

parameters. Last, Section 4.6 gives some information about our evaluation metrics.

4.1. BERT

Bidirectional Encoder Representations from Transformers (BERT) was proposed by Google

in 2018. First, system generates a context-sensitive language model, called “pre-training

task”. Then, the system can perform a series of NLP tasks, called “fine-tuning task”. Figure

4.1 presents the architecture of BERT. In this thesis, we trained a BERT model that has 110

million parameters, 12 transformer layers with 12 attention heads.

Figure 4.1. BERT Architecture.

Pre-training: BERT is an unsupervised deep learning method that builds bidirectional

transformer-based language models based on Contextualized Word Embeddings (CWE). A

language model predicts the probability of a word in a given context. After tokenization of

the input text using the WordPiece algorithm, BERT masks some tokens randomly. The

recommendation is masking 15 percent of the content. Then, the Transformer network

updates the word representation weight matrices during the prediction of each masked token

with a Softmax classifier. The Softmax loss function only counts the predictions of the

masked values and ignores the unmasked words' predictions. This training operation based

Pre-training Fine-tuning

Training
Data Set

Fine-tuning
Data Set

Language
Model

Model
QA

Next Sentence
Prediction

Language Model
Training

54

on masking is named as Masked Language Model (MLM) training. The real success of

BERT comes from the MLM start-of-art idea. In parallel to MLM training, BERT determines

the relationships between the sentences using sentence labels in the training data. This is a

binarized task called Next Sentence Prediction (NSP). Training of MLM and NSP is

called pre-training, and the output model is operable with a simple fine-tuning for many

different NLP tasks.

Figure 4.2. Token replacement examples.

Instead of always masking, BERT replaces the mask candidate word; 80 percent of the time

with [MASK], 10 percent of the time with a random subword picked from vocabulary, and

the remaining 10 percent of the time lefts as unchanged. This mitigation prevents mismatch

between pre-training and fine-tuning tasks; because [MASK] only performs in pre-training.

The Transformer is a stack of encoders that have multi-head self-attentions, therefore unlike

traditional sequential approaches that only care unidirectional as the previous or next words,

the self-attention evaluates the input as a whole and discovers which parts of the input are

more relevant with the masked word. Because of multi-heads, every attention head

separately computes attention with different weight matrices and then concatenates the

results together.

Traditional word embeddings, also called shallow representations, only focus on lower

layers of the model; hence they cannot capture higher-level information such as long-term

dependencies, negation, or anaphora from scratch data. In BERT, layers are in a chained

stack logic; the input of the lowest layer is directly the embedding, and the output of each

layer is the input of the next layer. On language model training, the transformer layers are

trained all together with massive data; consequently, the lower-levels are more concerned

Kış aylarında doğa , birçok bakım ##lardan , uyku ##ya yat ##mış gibidir

Kış dona doğa , birçok bakım ##lardan , uyku [MASK] yat ##mış gibidir

Replaced with a
random word

Not changed Masked

55

with the syntactic tasks such as connections of words, and the higher-levels are focused on

more semantic relations of the context. In transformers layers, for preventing early

summarization of the data, there are residual connections from inputs to outputs.

Fine-tuning: When the language model is generated, BERT can do a particular NLP task

by using a supplementary data set. During the fine-tuning procedure, the weighs of the BERT

network are slightly modified.

Question Answering is one of the down-stream tasks of fine-tuning. Like pre-training, BERT

again uses transformers for training. In the preparation of MLM, the input is a tokenized text

which has a certain amount of masked subwords, and the output is the prediction of the

masked words. In QA training, the input is a tokenized sequence, which is the union of

question and paragraph, and the output is the prediction of the answer. In fine-tuning, this

time, BERT optimizes the weights to the appropriate values for finding the most trustworthy

answers to the given questions and paragraphs.

In this study, because of its state-of-art solutions and highly accurate results in English and

Chinese benchmarks, we decided to train a Turkish language model then fine-tune it for a

question answering system using BERT and evaluate with a banking sector QA data set, as

seen in Figure 4.1. We have trained a model that can solve the MRQA problem and give

high success rates for Turkish, by taking the examples of the studies made for English so far.

BERT, which is the most used in current MRQA studies and a reference model in similar

studies in other languages, was taken as the basis of this study. The datasets will be detailed

in the 4.3 section.

4.2. WORD SENTENCE DISAMBIGUATION (WSD) IN BERT

In Turkish, many of the difficulties arise from being an agglutinative language and having a

rich but complex morphology, including a comprehensive set of possible suffix tags and

diversity of constituent orders in inverted sentences. Part-of-speech (POS) tagging is a

crucial preprocess for most NLP tasks, which is the process of analyzing the text

morphologically and dividing it into parts. Compared to Turkish, it is easier for

morphologically simpler and limited languages such as English. Morphological

56

disambiguation is the most challenging Turkish language problem that is essential for NLP

applications like Word Sense Disambiguation (WSD), syntactic parsing or spelling

correction. Some rule-based methods partially solve morphological disambiguation for

Turkish, such as Zemberek. ‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ is one of the

longest word in Turkish and Zemberek output is in Figure 4.3.

Figure 4.3. Morphological Disambiguation result of

‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ using Zemberek.

Word embeddings have become famous, as they enable the input text to be converted into a

numerical form and easily inserted into mathematical operations for neural networks. After

major innovations in NLP, state-of-art solutions such as BERT provide Contextualized Word

Embeddings (CWE), which includes semantic vector representations of the words depending

on their context. CWE captures the polysemy, in which although both are the same word,

the embedding vector differentiates in different contexts. The word embeddings of the 'bank'

should be different for a finance office and a seat in the park. BERT trains a language model,

which is simply a set of CWEs.

For some NLP tasks such as question answering, machine translation or text classification,

Word Sense Disambiguation (WSD) is sufficient rather than fully solving the morphological

disambiguation problem. In modern NLP, Contextualized Word Embeddings solve the Word

Sense Disambiguation problem [29]. In considering all these stated circumstances; BERT is

a solution for MRQA by overcoming Word Sense Disambiguation problem using

Contextualized Word Embeddings. For generating a BERT language model that includes

CWEs, the following approaches are combined;

- A subword-based embedding system: WordPiece.

çekoslovakyalılaştıramadıklarımızdan [Çekoslovakyalı:Noun,Prop]
çekoslovakyalı:Noun+A3sg|laş:Become
→Verb|tır:Caus
→Verb+ama:Unable|dık:PastPart
→Noun+lar:A3pl+ımız:P1pl+dan:Abl

mısınız [mı:Ques]
mı:Ques+Pres+sınız:A2pl

? [?:Punc]
?:Punc

57

- Masked Language Model (MLM) & Next Sentence Prediction (NSP) trainings.

- Bidirectional Transformers and Self-Attention.

A subword-based embedding system: WordPiece is a new generation word segmentation

algorithm that builds a language's subwords, which can be a word, a syllable, or a single

character. The algorithm divides the text into characters and then systematically brings them

together in order to create combinations, which are the candidate subwords. The candidate

subwords are applied one-by-one to the training data, followed by calculating the likelihood

of the system. Which of them most increases the likelihood is put into the vocabulary.

Vocabulary size is a parameter, and the subword selection process is repeated until reaching

the given configuration. Although WordPiece is not a morphologically perfect POS tagger

for Turkish, it is satisfactory for the tokenization of the input sequences. Figure 4.3 shows the

tokenization result of ‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ using WordPiece

algorithm. In the figure, ## indicates the subword is a suffix. For covering the unknown

words that the tokenizer cannot handle, there is also an Out-Of-Vocabulary (OOV) subword.

Figure 4.4. WordPiece Tokenizer result of ‘Çekoslovakyalılaştıramadıklarımızdan

mısınız?’.

Masked Language Model (MLM) & Next Sentence Prediction (NSP) trainings: After

tokenization of the input text with the WordPiece algorithm, BERT randomly masks some

tokens, followed by predicting the original value of these masked tokens. While the

prediction of each masked token, the transformers network optimizes the word

representation weight matrices with a Softmax classifier that compares the predicted and the

original tokens. Word representation weight matrices are the base of the Masked Language

Model (MLM). The word representation weight matrices are Contextualized Word

Embeddings (CWE), which have semantical dynamic information for the language and

support polysemy. In parallel to MLM training, BERT determines the relationships between

the sentences using sentence labels in the training data. The Next Sentence Prediction (NSP)

is a binarized task and uses a sigmoid classifier.

Çek ##os ##lovak ##yalı ##laştır ##amadı ##k
##larımızdan mısınız ?

58

Bidirectional Transformers and Self-Attention: The transformers network is a stack of

multiple layers. There is a logical hierarchy between the layers; each layer's output is the

input of the next layer. The lower-levels are more concerned with the syntactic tasks such as

connections of words, and the higher-levels are focused on more semantic relations of the

context. Each transformer layer has encoders based on multi-head self-attentions. Unlike

traditional sequential approaches that only care unidirectional as the previous or next words,

the self-attention evaluates the input as a whole and discovers which parts of the input

sequence are more relevant with the masked word. Using multi-heads, every attention head

separately computes attention with different weight matrices and then concatenates them

together for a larger perspective.

Figure 4.5 shows the transformers architecture of BERT pre-training task. The inputs are

two masked sentences labeled as “B is the next sentence of A” or “not”. The output of the

system is a masked language model that also has information about sentence relations.

Figure 4.5. BERT pre-training architecture.

4.3. DATA SETS

The concerning problem of building a question answering system with deep learning

methods is the preparation and adaptation of the training data to the chosen training

procedure. Especially for NLP tasks, the quality of the training data has a significant impact

Bi-directional
Encoder 1

Bi-directional
Encoder 12

Masked token
prediction

Multi-head 1

Masked Sentences
A and B

Next sentence
prediction

Self-Attention
Mechanism

Multi-head 12

Self-Attention
Mechanism

…

Multi-head 1

Self-Attention
Mechanism

Multi-head 12

Self-Attention
Mechanism

…

59

on the system's outcome. Regarding this matter, one of the most time-consuming parts of

this thesis study was the generation and customization of the training data. The training data

can be defined under two main headings: the corpus set used to train the language model,

and the data sets used to fine-tune the system for the QA task.

Language Model Data Sets: Table 4.1 represents the corpus set used in building the

language model. Wikipedia Corpus is the dump of Turkish Wikipedia articles published on

Wikimedia publicly [30]. News Corpus is a vast collection of online Turkish newspapers.

Economy Corpus is the smallest one specific to the banking domain, collected from several

economy blog websites. All corpora are in Turkish.

Table 4.1. Language model data sets.

Name Size Content Information

Wikipedia
Corpus (Tr) 456,5 MB ~4,5 M sentences

Turkish Wikipedia dump
922335 pages
(dump date: 08/2019)

News Corpus
(Tr) 2,5 GB ~20 M sentences News articles collection in Turkish

Economy
Corpus(Tr) 15,5 MB ~270K sentences Turkish economy blogs from Web

Fine-tuning Data Sets: Table 4.2 represents the data sets used in fine-tuning the model for

question answering. The Stanford Question Answer Data Set (SQuAD), published in 2016,

is a fundamental resource for MRQA researches. The SQuAD is an array of paragraphs and

their question & answer pairs. It is available in 2 versions: in version 1.1, the answers to each

question are apparent, and in version 2.0, some questions have no answer. In this study,

SQuAD v1.1 is the main format used, and we converted all data sets to this form as described

in 5.2 section.

SQuAD (Tr) is the Turkish translated from of original SQuAD, which is in English. The

SQuAD data set is generated by Stanford University, which contains more than 100,000 real

question-answer pairs created by humans over 536 Wikipedia passages. NewsQA (Tr) is the

Turkish translated from of original NewsQA, which is in English. NewsQA data set is

generated by Microsoft Research, which contains 120K question-answer pairs created by

humans over CNN news articles. Banking Sector QA (Tr) is the data set created by a private

60

Turkish bank's employers, supervised by the authors of this study. The documents used in

the data generation are the tutorials and legislation archives of the bank.

Table 4.2. Fine-tuning data sets.

Name Size Content Information

SQuAD (Tr) 24,42
MB

490 documents
20963 paragraphs
45872 questions
56117 answers

Q&A from paragraphs from
Wikipedia articles.
(Machine translation from English
to Turkish)

NewsQA (Tr) 19,66
MB

8379 documents
8343 paragraphs
21270 questions
21270 answers

Q&A from articles from CNN news.
(Machine translation from English
to Turkish)

Banking Sector QA
(Tr) 5 MB

679 documents
1637 paragraphs
17708 questions
17708 answers

Q&A from documents from the
banking sector.
(in Turkish)

SQuAD and NewsQA datasets are machine translated datasets, and translation process

harms some of the contexts as expected. The cleanup procedure of the dirty data is described

in the 5.1 section. Table 4.3 compares the numbers of the elements before and after the

machine translation operations; nearly half of the data had been lost. In the table, the train

set indicates the data used for training the model, and the development set shows the data

used for validating the model.

Table 4.3. Translation details of Fine-tuning data sets.

Number of Documents Paragraphs Questions Answers
SQuAD (En, Tr)
 English (Original)
 Train Set 442 18896 87599 87599
 Development Set 48 2067 10570 34726
 Turkish (Translated)
 Train Set 442 18896 40014 40014
 Development Set 48 2067 5858 16103
NewsQA (En, Tr)
 English (Original)
 Train Set 11428 11428 74160 74160
 Development Set 638 638 4212 4212
 Turkish (Translated)
 Train Set 7917 7917 20147 20147

61

 Development Set 426 426 1123 1123

Content lengths are critical on the strategy of selecting the training parameters of fine-tuning

tasks. The maximum and average lengths of the paragraphs, questions, and answers are

detailed in Table 4.4 and Table 4.5. The counting procedure is described in section 5.4.

Although the measurement unit of paragraphs and questions is token, the answer length are

character based. An extended open-domain data set is generated from the union of SQuAD

and NewsQA data sets, named SQuAD (Tr) + NewsQA (Tr). The process is described in

section 5.3.

Table 4.4. Average content lengths of Fine-tuning data sets.

Average lengths Paragraph
(token)

Question
(token)

Answer
(character)

SQuAD (Tr)
 Train Set 145,45 11,64 14,38
 Development Set 152,90 11,74 13,48
NewsQA (Tr)
 Train Set 372,17 7,67 14,06
 Development Set 364,92 7,61 13,34
SQuAD (Tr) + NewsQA (Tr)
 Train Set 212,39 10,31 14,27
 Development Set 189,13 11,08 13,47
Banking Sector QA
 Train Set 186,87 11,30 36,83
 Test Set 186,98 11,30 36,71

Table 4.5. Maximum content lengths of Fine-tuning data sets.

Maximum lengths Paragraph
(token)

Question
(token)

Answer
(character)

SQuAD (Tr)
 Train Set 845 46 169
 Development Set 783 36 149
NewsQA (Tr)
 Train Set 1074 56 317
 Development Set 942 20 162
SQuAD (Tr) + NewsQA (Tr)
 Train Set 1074 56 317
 Development Set 942 36 162

62

Banking Sector QA
 Train Set 784 49 256
 Test Set 784 49 256

4.4. TRAINING PROCEDURE

The training procedure can be defined under three main headings: the language model

generation for Turkish, preprocessing of fine-tuning data sets, and fine-tuning the model for

the question answering task.

Language Model Generation: For training a language model, a corpus and vocabulary file

is required. The corpus list, which is used in the pre-training, is detailed in the Table 4.1.

Subwords are built base on the corpora using the WordPiece algorithm. The system puts the

subwords to the vocabulary file, which most increased the likelihood of the training. 32000

subwords sized vocabulary file is used, recommended by BERT. WordPiece algorithm built

approximately 30000 of these subwords from the corpora. Then, we manually added 2000

items as abbreviations and words that are most commonly used in the economy and banking

domains, but not already present in the vocabulary file. BERT tokenize corpus using

WordPiece tokenizer. The pre-training input sequence has two parts, which may be

consecutive sentences or randomly selected pairs from the documents. Using these sentence

pairs and their label, Next Sentence Prediction (NSP) training learns the relations of the

sentences as they are pertinent or not. BERT masks some of the tokens of the input. The

prediction process of these masked tokens updates some weight vectors called word

representations that are the building blocks of the language model. Technical details of

BERT is in 3.2.1 and 4.1 sections.

Preprocessing of Fine-tuning Data Sets: The data sets, which are used in the fine-tuning,

is detailed in the Table 4.2. SQuAD and NewsQA data sets have been converted from

English to Turkish by machine translation. Naturally, some data mismatches occurred during

the process. Hence, the translated data sets had to be controlled and cleaned. BERT

automatically supports the SQuAD data set format. According to the SQuAD, we

reformatted NewsQA (Tr) and Banking Sector QA data sets. Also, a new data set is

63

generated: the extension of SQuAD (Tr) and NewsQA (Tr) data sets. The implementation

details of the processes are in Section 5.

Fine-tuning: In this study, fine-tuning has two phases. In the first phase, the system

increases its question-answering skills in an open-domain, meaning as general purpose. The

second phase is the customization of the model in a closed-domain. In other words, using

SQuAD (Tr) and NewsQA (Tr) datasets system firstly trains the language model, which is

the output of pre-training. Then, using the Banking Sector QA data set, system fine-tunes

the model in accordance with the content or question and answer patterns of the banking

industry. The MRQA training steps are illustrated in Figure 4.6.

Figure 4.6. Fine-tuning phases.

4.5. TRAINING PARAMETERS

In the pre-training task, the maximum sequence length shapes the input vector size of the

Transformer network, and high values are needed to learn positional embeddings in long

sequences. On calculating the number of word pieces to mask, BERT selects the minimum

of maximum predictions per sequence and masked LM probability multiplied by token size.

Do lower case and do whole word mask parameters belong to tokenization and masking. In

the NLP benchmarks, the published cased and whole word masked language models have

higher accuracies, notably for Asian languages such as Chinese or Arabic. The current study

is Turkish specific, and vocabulary file is wide enough to already have most of the words.

Consequently, subword or whole word masking tokenizers give similar results.

In the fine-tuning task, the input sequence of the Transformers is the union of the question

and the paragraph; the output is the answer. The maximum query length is the number of

Phase 1 Phase 2

SQuAD (Tr)

Updated model
parameters MRQA

modelBERT fine-tuning
for closed domain

BERT fine-tuning
for open domain

NewsQA (Tr)

Turkish language
model parameters

Banking sector
QA (Tr)

64

question tokens located in the input sequence, and BERT ignores the rest if a longer text. In

the input sequence, a certain number of tokens left for the paragraph. If the paragraph is

longer than its capacity, BERT splits the paragraph into chunks by a sliding window

approach. For every turn to calculate the start point of the next chunk, the document stride

parameter is added to the last pointer in the paragraph. On predicting the answer process, the

selected span from the paragraph can be as long as the maximum answer length parameter.

It is a character-based parameter, although all other parameters are token-based.

4.6. EVALUATION METRICS

Similar to other machine reading comprehension and SQuAD studies, Exact Match (EM)

and F-Score will be used as the evaluation metrics. Exact match counts the prediction only

if it is same as the real answer, the F-Score counts the predictions that are overlapping with

the real answer. EM is stiffer than F-Score.

65

5. IMPLEMENTATION

In the study, although we didn’t directly change the BERT codes, this section gives

information about some implementations we have done for the preparation of the data.

Section 5.1 summarizes the translation process of the data sets. Section 5.2 describes the

formatting procedures of the data sets. Section 5.3 presents how to generate the extended

data set used in the study. Section 5.4 defines the procedures of the collecting statistics of

the data sets, and Section 5.5 gives information about how to build a vocabulary file used in

BERT training. The BERT codes are present in Google’s GitHub repository [26].

5.1. TRANSLATING DATA SETS

We translated SQuAD and NewsQA data sets from English to Turkish using paid Google

Translate API (v3), served by Google Cloud Platform. Due to the Google Translate API's

multi-process prevention protections, operations had been done sequentially; paragraphs,

questions, and answers had been converted one by one. Translation of every data set to

Turkish nearly took two days. When using the API, it is essential to manually set the source

language to English. For unique names, API overwise detects incorrect languages such as

German or Spanish and causes erroneous translations.

Since some parts of the post-translation data become contrary to the MRQA rules, a rework

is done:

1. The answers, which are no longer present in paragraphs, are deleted.

2. Since some answers are deleted in the previous step, we remove the questions that

have no answers. Approximately 50 percent of the data has been lost after machine

translation.

3. In some of the MRQA data sets, the 'start point' is marked where the answers begin

in the paragraph. Since the location of these marks would have changed as a result

of translation, they are recalculated. If the answer appears in more than one place in

the paragraph, we manually check and mark the correct index.

66

5.2. FORMATTING THE DATA SETS

The format of the SQuAD dataset is the most minimal in the QA datasets and only contains

the required fields for MRQA studies. BERT official codes natively support the SQuAD

files for the MRQA task. An example of SQuAD v1.1 data set is in Figure 5.1. SQuAD file

form is simple, as seen in Figure 5.2. Data field includes the documents, there are

paragraphs and a title in every data, there are questions in every paragraph, there are

answers of every question, and every answer has a text and an answer_start field which

points the starting location of the text in the paragraph (indexOf function and zero-index

included).

Figure 5.1. A SQuAD data set example.

67

Figure 5.2. SQuAD file format example.

The NewsQA data set has some additional fields for other NLP tasks; question tokens,

answer spans, and context tokens. An example of the NewsQA data set is in Figure 5.3.

Since the context tokens have hundreds of items, for fitting the captured image to this page,

we manually deleted other question and context tokens. These tokens and spans are not

necessary for the MRQA task and pruned from the NewsQA (Tr) data set. The rest of the

fields are easily converted to the SQuAD form, as they are logically in the same manner.

68

Figure 5.3. NewsQA file format example.

5.3. GENERATING THE EXTENDED DATA SET

After SQuAD and NewsQA data sets were converted to the same format as described in 5.2

section, we combined them. To increase the success of training, we also shuffled the

elements of the result data set for randomness.

5.4. COLLECTING DATA SET STATISTICS

For selecting the correct parameter values of BERT, it is necessary to know the lengths of

the contents in the data set. Paragraph and question content lengths are measured by token,

and the answer length is measured by characters. It is easy to count the length of a text in

character units, but the token unit requires some additional operations. The tokenizer used

by BERT is the WordPiece algorithm, and the first and foremost part of the tokenizer is the

vocabulary file. WordPiece divides the text into pieces using this vocabulary file. The

tokenizer output of different vocabulary files is also different. For these reasons, the

vocabulary file must be created before tokenizing the paragraph and the questions of the data

set. The steps of creating the Vocabulary file is described in next section.

69

5.5. CREATING THE VOCABULARY FILE

BERT has a rule: in the corpus file, every line should contain only one sentence. Using

Zemberek tokenizer, the raw corpus files are converted as one sentence per line. To create

the vocabulary file for Turkish, we used the codes in the [31] repository. The most important

two variables are the corpus and minimum count parameter. Two variables are

interdependent; the vocabulary file always be different when the content of the corpus is

changed or when the minimum count parameter is changed. The algorithm extracts subwords

from the corpus and counts their occurrences. WordPiece puts the subwords to the

vocabulary file, which are occurred in the corpora more than the given minimum count

parameter. BERT recommends the vocabulary file size as 32K subwords. We trained the

system with various sized vocabulary files by changing the minimum count parameter. Other

parameters were used with their default values, and for each time, five iterations were done.

70

6. TEST AND EVALUATION

This section gives the details of our experiments in the study. Section 6.1 presents the pre-

training and Section 6.2 presents the fine-tuning training steps and their test results in details.

Section 6.3 analyzes the errors in the results. Section 6.4 compares the model with previous

Turkish QA solutions. Section 6.5 compares the SQuAD data set evaluation results of the

model with the BERT models of other languages, which are already trained for a QA system

using translated SQuAD data set. Last, Section 6.6 compares the results of the pre-training

BERT models that supports Turkish.

For splitting the banking sector QA data set to training and test sets, we used k-fold cross-

validation. 80 percent of the data is selected for training and 20 percent of the data is selected

for testing. The process is repeated five times; as a result, every question or answer is at once

in the test set. The average score of these 5 experiments is accepted as the final accuracy.

6.1. PRE-TRAINING EXPERIMENTS

In this study, we used three different corpus set, as described in the 4.3 section. At the

beginning of the study, we did not have all the corpus set together. Therefore, the corpuses

have been added to the system when they were available. Figure 6.1 shows the experiments

of the pre-training process.

Figure 6.1. Pre-training experiments.

ID W1
Corpus WC
Vocabulary size 30736
Train steps 3M
Learning rate 1e-4

ID W2
Corpus WC
Vocabulary size 32000
Train steps 1M + 1M
Learning rate 2e-5

ID N3
Corpus NC
Vocabulary size 32000
Train steps 500K
Learning rate 3e-5

ID N4
Corpus NC
Vocabulary size 32000
Train steps 500K
Learning rate 3e-5

ID N5
Corpus NC
Vocabulary size 32000
Train steps 500K
Learning rate 3e-5

ID E6
Corpus EC
Vocabulary size 32000
Train steps 500K
Learning rate 3e-5

71

W1: Firstly, we trained the system using Wikipedia corpus, which is medium-sized data.

Three million training steps were applied with a low learning rate (1e-4). The vocabulary

file had 30736 subwords generated using Wikipedia corpus. Evaluation data of W1 model is

the Wikipedia corpus data. It took 10 days on a TPU server.

W2: Then, we extended the vocabulary file to 32000 subwords by manually adding

economy/finance domain common words such as ATM, OTP, IBAN, arbitaj. The output of

the W1 was fine-tuned two million more training steps with a medium learning rate (2e-5).

Evaluation data of W2 model is the Wikipedia corpus data. It took 5 days on a TPU server.

N3: When the News Corpus was available, it has been added to the system. News corpus is

larger than Wikipedia. The output of the W2 was fine-tuned five hundred training steps with

a high learning rate (3e-5). Evaluation data of N3 model is the News corpus data. It took 2

days on a TPU server.

N4: The output of the N3 was fine-tuned five hundred training steps with a high learning rate

(3e-5). Evaluation data of N4 model is the News corpus data. It took 2 days on a TPU server.

N5: The output of the N4 was fine-tuned five hundred training steps with a high learning rate

(3e-5). Evaluation data of N5 model is News corpus data. It took 2 days on a TPU server.

E6: Then, to observe the effect of the economy data in the corpus, an economy corpus had

been crawled from Web. When the Economy Corpus was available, it has been added to the

system. Economy corpus is very smaller than the other corpuses. The output of the N5 was

fine-tuned five hundred training steps with a high learning rate (3e-5). Evaluation data of E6

model is the Economy corpus data. It took 1 day on a TPU server.

It is an experimental result to use low learning rates for initial trainings and higher learning

rates for fine-tunings. The BERT configuration values are in Table 6.1. During fine-tuning

a present model, it is forbidden to change the vocabulary size. Therefore, in W1 although the

vocabulary size 30736, it was set to 32000 in the configuration. All the experiments had been

done on a paid Google Cloud TPU (Tensor Processing Unit) server - v2. It is possible to

train shorter sequence lengths on GPU, but 512 requires a TPU hardware.

72

Table 6.1. BERT parameters and values used in the experiments.

Parameter Parameter value
BERT configuration BASE
attention_probs_dropout_prob 0.1
hidden_act Gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
intermediate_size 3072
max_position_embeddings 512
num_attention_heads 12
num_hidden_layers 12
type_vocab_size 2
vocab_size 32000
max_seq_length 512
do_lower_case False
max_predictions_per_seq 75
masked_lm_prob 0.15
dupe_factor 5

The evaluation results of W1, W2, N3, N4, N5 and E6 are in Table 6.2. BERT takes the

evaluation data of both masked LM and next sentence prediction from the corpus that already

used in the training. For W1 and W2, the test data is from the Wikipedia corpus. For N3, N4

and N5, the test data is from the News corpus. For E6, the test data is from the Economy

corpus. Predictably, comparing the test results of different corpus is an invalid test. If the

corpus is larger, its accuracy will be lower.

Table 6.2. Evaluation results of different corpus sets.

Training ID Masked LM accuracy Next sentence accuracy
W1 81.22% 100.00%
W2 76.92% 99.50%
N3 72.42% 98.25%
N4 71.67% 96.63%
N5 74.43% 98.88%
E6 100.00% 100.00%

In the experiments, it is seen that;

73

- Although both W1 and W2 are evaluated using Wikipedia corpus, there is a loss on

W2 result. Economy words, added to the vocabulary, have a negative effect on the

results. The reason is, the evaluation data is from Wikipedia, which is a general

purpose corpus.

- Compared with W2, the accuracy of N3 is lower. The reason is, the News Corpus is

larger.

- More training steps have a positive effect for N5 and N3.

- The accuracy of E6 is the highest. The reason is, the Economy Corpus is the smallest

corpus.

The language model accuracies are not directly consistent with the MRQA task accuracies.

The evaluation results of these models on MRQA task are listed in Section 6.2.

In the experiments, different vocabulary sizes had been tested. Figure 6.2 shows the

vocabulary sizes for different minimum occurrence threshold values. For Wikipedia corpus,

if minimum occurrence is set to 100, the generated vocabulary size is 96593 and if it is set

to 500, the generated vocabulary size is 40786. In the tests, W1 training scenario had been

repeated with different vocabulary sizes as seen in the Figure 6.3. It is validated that, 30-

32K is optimal for the vocabulary size.

Figure 6.2. Minimum occurrence threshold parameter and vocabulary sizes.

74

Figure 6.3. Vocabulary file size and results.

In the experiments, different max_seq_length values had been used. As proposed by BERT,

512 has given better results compared with 64, 128, 256 and 512.

Figure 6.4. Maximum sequence length parameter and results.

In the experiments, the effects of the number of training steps had been measured. In Figure

6.5, MLM is the Masked LM accuracy and NSP is the next sentence prediction accuracy. It

is seen that, using one million or more training steps gives better results.

75

Figure 6.5. Number of training steps and results.

6.2. FINE-TUNING EXPERIMENTS

The pre-training experiments have 6 output models, as detailed in Section 6.1: W1, W2, N3,

N4, N5, E6. In order to find the pre-training model, which gives the highest Exact Match

(EM) and F-Scores for fine-tuning the Banking Sector QA Dataset (DSB), all pre-training

models had been experienced. Figure 6.6 shows the results of the fine-tuning DSB with all

the pre-training models. The numbers in the legend are the subscripts of the pre-training

models. N5 and E6 have the highest F1-Scores but, the Exact Match result of E6 is lower.

Therefore, for further experiments, N5 had been used. As expected, W1 had the worst result

in the set.

Figure 6.6. The pre-training models and their fine-tuning results.

76

Cased model accuracy is 2-3 percent higher than the uncased model for Turkish. Therefore,

the cased model had been used for all experiments.

Longer maximum sequence lengths had a positive effect on training. Increasing the

maximum sequence length (64 to 128, 128 to 256, 256 to 384 and 384 to 512) raised the

masked LM accuracy ~3 percent for each step (Figure 6.7). Therefore, for further

experiments, 512 has been used. But the attention is quadratic to the sequence length. Hence,

increasing the sequence length took more training time.

Figure 6.7. Different max_seq_length parameters and results.

To determine the success of the system, we examined different training parameters. When

choosing these parameters, we based on our computations of the paragraph, question, and

answer lengths in the data sets. We decided on some values and analyzed all their

combinations. The best and worst parameter values for the Banking Sector QA data set are

in Table 6.3. Figure 6.8 presents different combinations and accuracy results in terms of EM

and F-Score. In (a) and (b) subfigures, 64 - 512 are the token counts, and in (c) 30 - 128 are

the character length.

Table 6.3. Best and worst parameter values for the Banking Sector QA data set.

Maximum
sequence

length
(token)

Document
stride

(token)

Maximum
query length

(token)

Maximum
answer
length

(character)

EM F-Score

512 256 64 64 54,09 79,01
128 64 64 30 44,38 70,11

77

Figure 6.8. Different parameters and results.

Multiple data sets are available for training; NewsQA (Tr), SQuAD (Tr), and Banking Sector

QA (Tr) data sets. The main goal is achieving a high score for the evaluation of the Banking

Sector QA data set. The SQuAD (Tr) and NewsQA (Tr) are open-domain and large data sets.

We think that doing fine-tuning more than one phase as: first, fine-tuning with open-domain

data sets and then fine-tuning with the Banking Sector QA data set will increase the success

of the system. Because of multiple open-domain data sets (SQuAD and NewsQA), different

training scenarios are possible, as seen in Table 6.4 and Figure 6.9.

Table 6.4. Different phase combinations of the data sets.

Choice Phase 1 Data Set
(Fine-tuning)

Phase 2 Data Set
(Fine-tuning)

Phase 3 Data Set
(Fine-tuning)

1 SQuAD (Tr) Banking Sector QA
(Tr) -

2 NewsQA (Tr) Banking Sector QA
(Tr) -

3 SQuAD (Tr) NewsQA (Tr) Banking Sector QA
(Tr)

(a) doc_stride (b) max_query_length

(c) max_answer_length

of tokens
of tokens

of chars

78

4 NewsQA (Tr) SQuAD (Tr) Banking Sector QA
(Tr)

5 SQuAD + NewsQA
union data set

Banking Sector QA
(Tr) -

Figure 6.9. Training scenarios of fine-tuning data sets.

For finding the scenario which has the highest accuracy, we studied several different data

set combinations. In Figure 6.10;

- DSS indicates SQuAD Data Set,

- DSN indicates NewsQA Data Set,

- DSE indicates SQuAD + NewsQA Data Sets (extended union data set),

Fine-tuning

with Banking Sector QA data set

with merged dataset
(SQuAD + NewsQA)

with SQuAD with NewsQA
Model

with NewsQA with SQuAD

SQ
uA
D

(Turkish)

N
ew
sQ
A

(Turkish)

Banking
SectorQ

A

Model Model

1

2 3

4

5

79

- DSB indicates Banking Sector QA Data Set.

In the figure, every row has multiple data sets. For the training process, there is a chain logic.

Using the given data set, the output of every training box is the input of the next one. Every

model is evaluated with the last data set item of the chain. For example, M5 is first trained

with DSS and then fine-tuned with DSB and evaluated using the DSB data set.

In the experiments, it is seen that;

- Fine-tuning with the SQuAD (Tr) data set, before training of the NewsQA (Tr) data

set, has a positive effect on the NewsQA (Tr) data set evaluation results (Figure 6.11

- a).

- Fine-tuning with the NewsQA (Tr) data set, before training of the SQuAD (Tr) data

set, has a negative effect on the SQuAD (Tr) data set evaluation results (Figure 6.11

- b).

- Fine-tuning with SQuAD (Tr) + NewsQA (Tr) (Extended) data set, before training of

the Banking Sector QA data set, has a positive effect on the Banking Sector QA data

set evaluation results (Figure 6.11 - c).

Figure 6.10. Different training scenarios and data sets.

ModelsData Sets

DSN

DSS

DSB

DSN DSS

DSS DSB

DSN DSS DSB

DSE

DSE DSB

DSS DSN

DSS DSN DSB

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

80

Figure 6.11. Different scenarios and data set evaluation results.

Five epochs count was ideal for training MRQA with BERT. Two epochs were insufficient,

and 10 epochs were not notably different than 5 epochs.

6.3. ERROR TYPES IN QUESTIONS & ANSWERS

To evaluate the system's real-world performance, we asked the team, who prepared the

questions, to think freely during the process. When writing the items, we wanted them not

to abide by any question patterns and write different forms of questions if possible.

Therefore, there were many kinds of question types in both training and test data sets. The

system gives correct answers to majority of common question types with a form or questions

that have distinct answers in the text. When we analyze the results, we observed that Exact

(a) NewsQA (Tr) (b) SQuAD (Tr)

(c) SQuAD (Tr) + NewsQA (Tr)

scenario

(d) Banking Sector QA (Tr)

(1) NewsQA
(7) SQuAD à NewsQA

(2) SQuAD
(4) NewsQA à SQuAD

scenario

scenario

scenario

(3) Banking Sector QA
(5) SQuAD à Banking Sector QA
(6) NewsQA à SQuAD à Banking Sector QA
(8) SQuAD à NewsQA à Banking Sector QA
(10) SQuAD + NewsQA à Banking Sector QA

81

Matches (EM) remained quite low compared to F-Scores. For this reason, we found the

results with an EM of 0; 572 out of 17708 answers or 3.2 percent. Table 6.5 lists the error

types of wrong answered questions and Table 6.6 gives some examples of these errors. The

errors can be categorized as:

1- Multiple possible answers: Some questions may have more than one correct answer. In

Table 6.6 for Error ID = 1, both the real and the predicted answer can be considered as

correct. 30 percent of the samples, which have zero EM in the test set, are in this category.

2- Questions requiring interpretation: In order to answer some questions, it is mandatory

to know about the whole subject. These questions require interpretation, and it is not easy to

identify their answers. They are the most challenging types of questions, and no solution has

yet been found for such questions in other languages, including English. In Table 6.6 for

Error ID = 2, the predicted answer is the direct but incorrect answer of the question.

3- Conditional answer: The answer to some questions depends on the state. There are cases

when the general answer is not valid, or on the contrary, the answer is only correct in certain

situations. In Table 6.6 for Error ID = 3, the answer is correct except a type of customer

who has a given brand's cell phone.

4- Questions requiring a list of elements: The answer to some questions consists of a list.

Instead of giving a general answer to such questions, it is sometimes necessary to return the

detailed list. In Table 6.6 for Error ID = 4, the hours in the answer is crucial.

5- Answers with syntax variations: Because of being an agglutinative language and having

a comprehensive set of possible suffix tags, it isn't easy to generate the exact match of the

real answer. In Table 6.6 for Error ID = 5, “it is” is the correct for the answer but causes a

zero EM.

6- Incorrect question: After the team prepared the questions, no corrections were made to

the written questions in order to practice the real-world. For this reason, some items in the

data set have spelling mistakes, grammatical errors, or typos.

7- Incorrect answers: The system could not answer 25 percent of the questions properly.

The reason for this is that, some questions are in an uncommon form which the system hasn't

seen in the training set, and some questions or answers are cut by the system because they

are longer than the given maximum length parameters.

82

Table 6.5. Description of wrong answers with zero EM (3.2%).

Error ID Description Counts Percentage

1 Multiple possible answers 180 31.46%

2 Questions requiring interpretation 85 14.86%

3 Conditional answers 80 13.98%

4 Questions requiring a list of
elements 5 0.8%

5 Answers with syntax variations 34 5.94%

6 Incorrect question 49 8.56%

7 Incorrect answers 139 24.30%

31,46 Total 572 100%

Table 6.6. Examples for error types 1-5.

Error ID Question Real answer Predicted answer

1 What’s IBAN? Used for transferring
money.

International Bank Account
Number

2 How is the credit card
objection made?

You should fill the
form and fax. From our website.

3
Does the application
support all phone
models?

Only except X brand supports

4 When is the job
executed? 00:00, 01:00, 02:00 in the night

5 Is it possible to pay the
tax online? possible it is possible

6.4. COMPARISON WITH OTHER TURKISH QA SYSTEMS

The output model of this study has been compared with earlier QA systems developed for

Turkish. Some of the existing systems are only trained for specific closed-domains, while

some have yielded results in open-domains. Open-domain models find answers to different

types of questions in a wide range of domains, rather than particular question types or a

closed-domain. Some of the previous systems support only a small set of specific question

types. Also, evaluation metrics of the published results are different; MRR, Precision, or EM

with F-Score. In the light of all these circumstances, it is impossible to compare the results

directly. Table 6.7 lists the accuracies of the systems. The model of this study had been tested

in both open and closed-domains. In the open-domain, we trained the system for general

purposes with the extended dataset, a combination of SQuAD (Tr) and NewsQA (Tr) data

sets. In the closed-domain, we fine-tuned the open-domain model using the Banking Sector

83

QA (Tr) data set in order to enhance the performance in the banking field. Even if the metrics

are different, we have noticed that the current system's output is either equal or higher in

terms of skills and success rates compared to other systems.

In the table, TREC-9, TREC-10, SQuAD (Tr), and NewsQA (Tr) are data sets translated to

Turkish. MRR is Mean Reciprocal Rank, which considers the rank of the first correct answer

in the list of possible answers. The specific questions in the second row are: who, where,

when, and what. Specific factoid questions in the third row are Author, Capital, Date of

Birth, Date of Death, Language of Country, Place of Birth, Place of Death.

(*) is Phase 1: Fine-tuning the model using merged SQuAD (Tr) and NewsQA (Tr) data sets.

(**) is Phase 2: Fine-tuning the model, which is already trained with Step 1, using Banking

Sector QA (Tr) data set.

Table 6.7. Comparison of Turkish QA Systems.

Study Data set Domain Metric Results
BayBilmiş TREC-9 and TREC-10 Open MRR 0,313
Automatic QA for
Turkish with
Pattern Matching

Only Specific Questions Closed Precision 0,79
(Average)

A Factoid QA
System Using
Answer Pattern
Matching

Only Specific Factoid Questions Closed MRR 0,73

Current Study
SQuAD (Tr) and NewsQA (Tr) * Open EM

F-Score
55,26
67,07

Banking Sector QA (Tr) ** Closed EM
F-Score

52,98
79,01

6.5. COMPARISON WITH OTHER BERT LANGUAGE MODELS

To figure out our QA data sets, our model has been compared with the BERT models of

other languages. The SQuAD is the best known MRQA data set. In this study, we translated

SQuAD into Turkish and included in the training. A similar translation has also been done

for Arabic, and Arabic Reading Comprehension Dataset (ARCD) is available. There are

several QA data sets prepared for Chinese. Harbin Institute of Technology's joint laboratory

has created the CMRC 2018 machine reading comprehension data set. CMRC 2018

resembles SQuAD format; the system extracts answers from chapters for the given question.

84

Delta Research Institute in Taiwan has built the DRCD data set. DRCD resembles SQuAD

format, and it is in Traditional Chinese. Harbin Institute of Technology's Xunfei Joint

Laboratory has released the CJRC machine reading comprehension data set for the judicial

field. Table 6.8 list the results of some QA models based on BERT in English, Arabic and

Chinese. Although some BERT models have developed for French, Persian, and Korean,

these models do not yet have a success rate published for the question-answering task. In the

results, it has been seen that our model’s performance is better than the Arabic model, which

is also trained with machine-translated SQuAD data set. Compared with Google’s Chinese

model, although our model has worse results than DRCD, it is mostly better than CMRC and

CJRC data set performances. The main reason for the SQuAD results score differences

between English and other languages might be the SQuAD data set's official language is

English. There is a data loss for both the counts of the examples and their semantical

meanings during the machine translation process to other languages.

In the table, SQuAD (Tr) and NewsQA (Tr) are data sets translated to Turkish. mBERT is

the multilingual and BERT-Chinese is the Chinese models, published by Google. ARCD

(Arabic Reading Comprehension Dataset) is the Arabic SQuAD data set that is already

translated from the original English SQuAD. (*) is Phase 1: Fine-tuning the model using

merged SQuAD (Tr) and NewsQA (Tr) data sets.

Table 6.8. Comparison of BERT models with other languages.

Language Model Data sets Domain EM F-Score Training Evaluation

English BERT
(Single Model)

SQuAD
(En - Original) SQuAD

Open

85,08 91,83

Arabic
mBERT ARCD ARCD 34,2 61,3
AraBERT ARCD ARCD 30,6 62,7

Chinese BERT-Chinese
CMRC CMRC 18,6 43,3
DRCD DRCD 82,2 89,2
CJRC CJRC 55,1 75,2

Turkish Current
Study

SQuAD (Tr) SQuAD (Tr) 57,60 68,34
NewsQA (Tr) NewsQA (Tr) 48,01 59,86
SQuAD (Tr) +
NewsQA (Tr)
*

SQuAD (Tr) +
NewsQA (Tr) * 55,26 67,07

85

6.6. COMPARISON WITH OTHER BERT TURKISH MODELS

Apart from our model, two more models are available in Turkish. One of them is mBERT,

the multilingual model that Google published for all languages. The other is BERTurk [32],

which has been specially trained for Turkish. We compared the success of our model with

mBERT and BERTurk in Turkish. Table 6.9 lists the results of the models. In the results, it

has been seen that our model’s performance is better than the mBERT model and a bit worse

(~2 percent) than BERTurk. The number and size of the corpora used in the training of

BERTurk is larger than ours. This might be the reason of the 2 percent differences in the

accuracies.

In the table, SQuAD (Tr) and NewsQA (Tr) are data sets translated to Turkish. mBERT is

the multilingual model published by Google. (*) is Phase 1: Fine-tuning the model using

merged SQuAD (Tr) and NewsQA (Tr) data sets. (**) is Phase 2: Fine-tuning the model,

which is already trained with Step 1, using Banking Sector QA (Tr) data set.

Table 6.9. Comparison of Turkish base models.

Data sets
Model Domain EM F-Score

Training Evaluation

SQuAD (Tr) and
NewsQA (Tr) *

SQuAD (Tr) and
NewsQA (Tr) *

BERTurk
Open

57,43 69,36
Current Study 55,26 67,07
mBERT 54,52 65,74

Banking Sector QA
(Tr) **

Banking Sector QA
(Tr) **

BERTurk
Closed

55,89 80,87
Current Study 54,09 79,01
mBERT 50,74 77,03

86

7. CONCLUSION

In this thesis, we trained a question-answering system using deep learning methods. The

output model of the study has been trained and tested both in open and closed-domains. Used

deep learning method builds a language model consists of contextual word representations

and tackles with polysemy. Our most important findings are;

In Turkish question answering systems, deep learning models give better results in both open

and closed-domains. Compared with traditional approaches, deep learning methods have

constant improvement in the skills of answering a wide range of questions. Statistical or rule-

based purposes have succeeded only in a limited subject or predefined question types. This

inference is not only specific to NLP, and also valid for other artificial intelligence problems.

The data sets used in the training of the system have an important role in the performance

of the system. The corpora used in the pre-training directly affects the quality of the generated

language model. The QA datasets used in the fine-tuning directly affect the system's ability

to question-answering. Considering the comparison of our training model with BERTurk,

the only difference is that BERTurk has been pre-trained with a larger corpus. The

performance of the language model also increased its QA success rates. For this reason, it is

important to pay attention to preparation of the data.

The fine-tuning datasets we translated into Turkish contributed to success. Even though we

used automatic machine translation and the process caused a loss in the data sets, the SQuAD

and NewsQA datasets have a tremendous effect on the system's performance for QA task. A

similar approach can be applied to other languages that suffer from massive data shortages

for applying deep learning methods.

Data sets prepared for English can be translated into any language using machine translation,

and open-domain QA systems can be trained using these translated data sets. These general-

purpose models can be fine-tuned with a proper data set for a closed-domain system later

on, if needed. Although the creation of QA data sets is time-consuming and requires human

resources, it is still an inevitable requirement to build a successful system. In recent years,

87

the researches on the NLP domain have considerably increased the number of modern

approaches, such as the BERT method used in this thesis.

To summarize, in this study, we proposed an MRQA system for Turkish in the banking

domain. To the question, the system generates the best answer, which is the most correct and

the shortest span in a given text. Applying the BERT deep learning technique, we trained a

language model for Turkish using massive corpus collections followed by a fine-tuning

process for the MRQA task using large QA datasets. To enhance the MRQA skills of the

systems, we also translated some open-domain QA datasets from English to Turkish. At the

end of the experiments, it is seen that the system's accuracy is higher than other QA solutions

for Turkish. Additionally, the proposed method is not specific to Turkish and applicable for

numerous NLP tasks of other limited languages.

It will be important that future research investigates the performance problems of BERT.

Although state-of-art scores are announced using the BERT model, it is still slow in

performance and requires TPU hardware for better results. Some newer models are recently

become available such as; ELECTRA, T5, or GPT-3. It may be useful to have the same

experiments with these methods and compare their evaluation results with BERT.

88

REFERENCES

1. Rajpurkar P, Zhang J, Lopyrev K, Liang P. Squad: 100,000+ questions for machine

comprehension of text. arXiv preprint arXiv:1606.05250. 2016;2383-92.

2. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018.

3. Amasyalı MF, Diri B. Bir soru cevaplama sistemi: Baybilmiş. Türkiye Bilişim Vakfı

Bilgisayar Bilimleri ve Mühendisliği Dergisi. 2005;1(1):1-1.

4. Biricik G, Solmaz S, Özdemir E, Amasyalı MF. A Turkish Automatic Question

Answering System with Question Multiplexing: Ben Bilirim. International Journal

of Research in Information Technology (IJRIT). 2013;1(6):46-51.

5. Çelebi E, Günel B, Şen B. Automatic question answering for Turkish with pattern

parsing. 2011 International Symposium on Innovations in Intelligent Systems and

Applications. 2011:389-93.

6. Er NP, Cicekli I. A factoid question answering system using answer pattern matching.

Proceedings of the Sixth International Joint Conference on Natural Language

Processing. 2013:854-8.

7. Zheng Z. AnswerBus question answering system. Proceedings of the Second

International Conference on Human Language Technology Research. 2002:399-404.

8. Akın AA, Akın MD. Zemberek, an open source nlp framework for Turkic languages.

Structure. 2007;10:1-5.

9. Eryiğit G, Oflazer K. Statistical dependency parsing for turkish. 11th Conference of

the European Chapter of the Association for Computational Linguistics. 2006.

10. Oflazer K, Say B, Hakkani-Tür DZ, Tür G. Building a Turkish Treebank. Treebanks.

2003:261-77.

89

11. Derici C, Çelik K, Kutbay E, Aydın Y, Güngör T, Özgür A, et al. Question analysis

for a closed domain question answering system. International Conference on

Intelligent Text Processing and Computational Linguistics. 2015:468-82.

12. Sahin M, Sulubacak U, Eryigit G. Redefinition of Turkish morphology using flag

diacritics. Proceedings of The Tenth Symposium on Natural Language Processing

(SNLP-2013), Phuket, Thailand, October. 2013.

13. Trischler A, Wang T, Yuan X, Harris J, Sordoni A, Bachman P, et al. Newsqa: A

machine comprehension dataset. arXiv preprint arXiv:1611.09830. 2016.

14. Yang Z, Qi P, Zhang S, Bengio Y, Cohen WW, Salakhutdinov R, et al. Hotpotqa: A

dataset for diverse, explainable multi-hop question answering. arXiv preprint

arXiv:1809.09600. 2018.

15. Seo M, Kembhavi A, Farhadi A, Hajishirzi H. Bidirectional attention flow for machine

comprehension. arXiv preprint arXiv:1611.01603. 2016.

16. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. Deep

contextualized word representations. arXiv preprint arXiv:1802.05365. 2018.

17. Radford A, Salimans T. Improving language understanding by generative pre-training.

2018.

18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention

is all you need. Advances in neural information processing systems. 2017:5998-6008.

19. Fisch A, Talmor A, Jia R, Seo M, Choi E, Chen D. MRQA 2019 shared task:

Evaluating generalization in reading comprehension. arXiv preprint

arXiv:1910.09753. 2019.

20. Antoun W, Baly F, Hajj H. AraBERT: Transformer-based model for Arabic language

understanding. arXiv preprint arXiv:2003.00104. 2020.

21. Cui Y, Che W, Liu T, Qin B, Yang Z, Wang S, et al. Pre-training with whole word

masking for chinese bert. arXiv preprint arXiv:1906.08101. 2019.

90

22. Martin L, Muller B, Suárez PJO, Dupont Y, Romary L, de la Clergerie ÉV, et al.

Camembert: a tasty french language model. arXiv preprint arXiv:1911.03894. 2019.

23. Korean BERT pre-trained cased (KoBERT) Github page 2020 [cited 2020 1 June].

Available from: https://github.com/SKTBrain/KoBERT.

24. Farahani M, Gharachorloo M, Farahani M, Manthouri M. ParsBERT: Transformer-

based Model for Persian Language Understanding. arXiv preprint arXiv:2005.12515.

2020.

25. Wu Y, Schuster M, Chen Z, Le Q v., Norouzi M, Macherey W, et al. Google's neural

machine translation system: Bridging the gap between human and machine

translation. arXiv preprint arXiv:1609.08144. 2016.

26. Hui J., NLP - BERT & Transformer Medium homepage 2020 [cited 2020 1 June].

Available from: https://medium.com/@jonathan_hui/nlp-bert-transformer-

7f0ac397f524.

27. Google BERT Github page 2020 [cited 2020 1 June]. Available from:

https://github.com/google-research/bert.

28. Wiedemann G, Remus S, Chawla A, Biemann C. Does BERT make any sense?

Interpretable word sense disambiguation with contextualized embeddings. arXiv

preprint arXiv:1909.10430. 2019.

29. Wikimedia homepage [cited 2020 1 June]. Available from:

https://dumps.wikimedia.org/backup-index.html.

30. Vocabulary builder for BERT Github page 2020 [cited 2020 1 June]. Available from:

https://github.com/kwonmha/bert-vocab-builder.

31. Schweter S. BERTurk - BERT models for Turkish: Zenodo; [cited 2020 1 June].

Available from: https://doi.org/10.5281/zenodo.3770924.

91

92

APPENDIX A: BANKING SECTOR QA EXAMPLES

You should take permission from the author to use or copy these data sets.

Table A.1. Example document 1.

Example Document 1

Title Müşterilerimiz ATM'lerden işlem yaparken güvenlik açısından nelere
dikkat etmeli?

Context

Kart şifrenizi Bankamız çalışanları dahil kimsenin öğrenmesine izin
vermeyiniz. Şifrenizi belirlerken doğum tarihiniz, telefon numaranız,
kart numaranız gibi kolay elde edilebilecek bilgilere dayanarak
oluşturmayınız. İşlemleriniz sırasında yardım tekliflerini kabul
etmeyiniz. Kartınızı ATM'den geri almadan, ATM'nin yanından
ayrılmayınız. Kartınızı kaybetmeniz/çaldırmanız durumunda ya da diğer
her türlü soru ve sorunlarınız için vakit kaybetmeden 0850 200 0 666
TEB Telefon Şubesi'ni arayınız.

Question-1 Kart kaybedilirse ne yapılmalıdır?
Answer-1 0850 200 0 666 TEB Telefon Şubesi'ni arayınız
Question-2 Şifre belirlerken nelere dikkat etmeliyiz?

Answer-2 doğum tarihiniz, telefon numaranız, kart numaranız gibi kolay elde
edilebilecek bilgilere dayanarak oluşturmayınız

Question-3 İşlem sırasında yardım almalı mıyız?
Answer-3 yardım tekliflerini kabul etmeyiniz

Table A.2. Example document 2.

Example Document 2
Title IBAN (ULUSLARARASI BANKA HESAP NUMARASI)

Context

Avrupa Birliği düzenlemeleri çerçevesinde, ülkeler arasında
gerçekleştirilen para transferlerinin hızı ile kalitesini artırmak ve
maliyetlerini düşürmek amacıyla International Bank Account Number-
IBAN adı verilen Uluslararası banka hesap numarası standardı
geliştirilmiştir. IBAN 26 haneden oluşmaktadır. Halk Bankası IBAN
numaraları harf içerebilmektedir. TR38 0003 2000 1250 0000 0111 01.
Müşterilerimiz hesaplarına ait İBAN numaralarını IVR üzerinden
öğrenebiliyor ve sistem otomatik olarak bu bilgiyi SMS olarak
gönderiyor. Pusulada hesap işlemleri altına eklenen "IBAN Bilgisini
SMS Gönder" menüsü ile müşterilerimize IBAN bilgisini SMS olarak
gönderebiliyoruz. İşlemler Inbound aramalarda yapılabilecek, güvenlik
seviyesi 1. Düzey+SMS OTP (SMS OTP telefonundan arıyorsa SMS
OTP tuşlamayacak) olacak şekilde düzenlendi. Müşterinin cep
telefonlarını listeleyeceğiz, seçim kısmından kayıtlı hangi telefonuna
isterse gönderebileceğiz. Cep telefonuna yapılan gönderimlerde şube
kodu, hesap no, IBAN bilgileri olacaktır. IBAN oluşan tüm hesap türleri
üzerinden menü açılacak ve IBAN bilgisi gönderilebilecektir. Yapılan
işlemler irtibat gözleme kayıt atacaktır. Menü Bireysel, Ticari, Tüzel
müşterilerimiz için açılabilecektir. IBAN Bilgilerinin SMS'le
Gönderilmesi Hesap işlemleri üzerinden IBAN Bilgisini SMS Gönder
menüsünden işlem yapıyoruz. Onay alarak işlemi tamamlıyoruz.

93

Question-1 Menü kimler için açılabilecektir?
Answer-1 Bireysel, Ticari, Tüzel müşterilerimiz için
Question-2 Müşterilere IBAN bilgisini nasıl gönderiyoruz?
Answer-2 SMS olarak
Question-3 Müşteriler IBAN numaralarını nereden öğrenebilir?
Answer-3 IVR üzerinde
Question-4 IBAN kaç haneden oluşmaktadır?
Answer-4 26
Question-5 IBAN neden geliştirilmiştir?

Answer-5
Avrupa Birliği düzenlemeleri çerçevesinde, ülkeler arasında
gerçekleştirilen para transferlerinin hızı ile kalitesini artırmak ve
maliyetlerini düşürmek amacıyla

Question-6 Cep telefonuna yapılan gönderimlerde ne olacaktır?
Answer-6 şube kodu, hesap no, IBAN bilgileri
Question-7 IBAN nedir?
Answer-7 International Bank Account Number

Table A.3. Example document 3.

Example Document 3
Title TİCARİ KMH / Hesap İşletim Ücreti İçin KMH Kullanımı

Context

Yürütme durdurma kararına göre gerçek kişi bireysel müşterilerden
hesap işletim ücreti alınmamaktadır. Ancak ticari müşteriler bu
kapsam dışındadır; dolayısıyla hesap işletim ücreti alınmaya devam
etmektedir. Kmh hesaplarından hesap işletim ücreti alınmasına dair
koşullar aşağıda belirtilmiştir. KOBİ, KOBİ (+), Tarım ve İşletme
işkolları için geçerli olmak üzere, Hesap bakiyesi yeterli ise KMH
limitlerinden tahsilat yapılmamaktadır. KMH limiti ve artı bakiye
kullanılarak tahsilat yapılabilmektedir. Sadece KMH limiti
kullanılarak tahsilat yapılabilmektedir. KMH limitinden kısmi
tahsilat yapılabilmektedir. KMH limitinden fazla tahsilat ve limit
aşımı yapılmamaktadır. Kredi durumu ' İzleme ' ve ' Normal '
haricinde olan müşterilerin KMH limitlerinden tahsilat
yapılmamaktadır. Gerçek kişi müşterilerin KMH limitlerinden
tahsilat yapılmamaktadır. Ticari müşterilerde hesap işletim ücreti
ile ilgili herhangi bir muafiyet tanımlanamamaktadır. Konu ile ilgili
mesaj (şikayet) kaydı açılmamalıdır.

Question-1 KMH limitinden kısmi tahsilat yapılabilir mi?
Answer-1 yapılabilmektedir

Question-2 Kmh hesaplarından hesap işletim ücreti alınmasına dair koşullar
nerede belirtilmiştir?

Answer-2 aşağıda

Question-3 Gerçek kişi bireysel müşterilerden hesap işletim ücreti alınmakta
mıdır?

Answer-3 alınmamaktadır
Question-4 Kimlerden hesap ücreti alınmamaktadır?
Answer-4 gerçek kişi bireysel müşterilerden
Question-5 KMH limitinden fazla tahsilat yapılabilir mi?
Answer-5 yapılmamaktadır

94

Question-6 Hesap bakiyesi yeterli ise KMH limitlerinden tahsilat yapılır mı?
Answer-6 yapılmamaktadır
Question-7 Gerçek kişi müşterilerin KMH limitlerinden tahsilat yapılır mı?
Answer-7 yapılmamaktadır
Question-8 Sadece KMH limiti kullanarak tahsilat yapılabilir mi?
Answer-8 yapılabilmektedir
Question-9 KMH limiti ve artı bakiye kullanarak tahsilat yapılabilir mi?
Answer-9 yapılabilmektedir
Question-10 Hesap bakiyesi yeterli ise ne olur?
Answer-10 KMH limitlerinden tahsilat yapılmamaktadır
Question-11 Hesap bakiyesi yeterli ise nereden tahsilat yapılmamaktadır?
Answer-11 KMH limitlerinden

Question-12 Ticari müşterilerde hesap işletim ücreti ile ilgili muafiyet
tanımlanabilir mi?

Answer-12 Tanımlanamamaktadır

Question-13 Kredi durumu ' İzleme ' ve ' Normal ' haricinde olan müşterilerin
KMH limitlerinden tahsilat yapılır mı?

Answer-13 yapılmamaktadır
Question-14 Kimler kapsam dışıdır?
Answer-14 ticari müşteriler
Question-15 Gerçek kişi müşterilerin neyinden tahsilat yapılmamaktadır?
Answer-15 KMH limitlerinden
Question-16 KMH limitinden fazla limit aşımı yapılabilir mi?
Answer-16 yapılmamaktadır
Question-17 Ticari müşterilerden hesap işletim ücreti alınıyor mu?
Answer-17 alınmaya devam etmektedir
Question-18 Neye dair koşullar aşağıda belirtilmiştir?
Answer-18 Kmh hesaplarından hesap işletim ücreti alınmasına dair
Question-19 Koni ile ilgili şikayet kaydı açılmalı mıdır?
Answer-19 açılmamalıdır

Question-20 Kredi durumu ' İzleme ' ve ' Normal ' haricinde olan müşterilerin
neyinden tahsilat yapılmamaktadır?

Answer-20 limitlerinden

