A TURKISH LANGUAGE FACTOID QUESTION ANSWERING SYSTEM BASED ON
DEEP LEARNING NEURAL NETWORKS

by
Cavide Balki Gemirter

Submitted to Graduate School of Natural and Applied Sciences
in Partial Fulfillment of the Requirements
for the Degree of Master of Science in

Computer Engineering

Yeditepe University
2020

i

A TURKISH LANGUAGE FACTOID QUESTION ANSWERING SYSTEM BASED ON
DEEP LEARNING NEURAL NETWORKS

APPROVED BY:

Asst. Prof. Dr. Dionysis Goularas L.

(Thesis Supervisor)

(Yeditepe University)

Prof. Dr. Emin Erkan Korkmaz

(Yeditepe University)

Assoc. Prof. Dr. Ahmet Ciineyd Tantug

(Istanbul Technical University)

DATE OF APPROVAL:/.... /2020

il

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor, Asst. Prof. Dr. Dionysis
Goularas, for encouraging my research and for his guidance through each stage of the
process. I have been extremely lucky to have a supervisor who cared so much about my

work, and who responded to my questions and queries so promptly.

I would also like to thank my committee members, Prof. Dr. Emin Erkan Korkmaz, and
Assoc. Prof. Dr. Ahmet Ciineyd Tantug for showing keen interest in the subject matter and

accepting to read and review this thesis.

I wish to acknowledge the help provided by Prof. Dr. Kemal Oflazer, for sharing his corpus.

I would like to thank Assoc. Prof. Dr. Ahmet Ciineyd Tantug for his support during the
study.

I am also grateful to Assoc. Prof. Dr. Ali Gékhan Yavuz for the courage he gave me to start

the master program.

A very special thank you to my leader, Mehmet Ali Cer, for his encouragement and support

in all of my studies.

My sincere thanks go to my team for their help during the generation of the data used in the

study.

Finally, I especially would like to thank my family, Ziibeyde and Abdulkadir Gemirter. This
research and many other things in my life would not have been possible without your support

and love.

v

ABSTRACT

A TURKISH LANGUAGE FACTOID QUESTION ANSWERING SYSTEM BASED
ON DEEP LEARNING NEURAL NETWORKS

In the Question Answering (QA) subfield of the Natural Language Processing (NLP)
domain, despite the significant progress in frequently used languages such as English and
Chinese, there is still a gap for uncommon languages such as Turkish due to inadequate
training data. In Turkish many of the difficulties arise from being an agglutinative language
and having a rich but complex morphology, such as a comprehensive set of possible suffix
tags and diversity of constituent orders in inverted sentences. Consequently, creating a
successful Machine Reading for Question Answering (MRQA) system for Turkish has not
been possible yet. In this study, we aim to propose an MRQA system for Turkish in the
banking domain. To the question, the system generates the best answer, which is the most
correct and the shortest span in a given text. With the BERT deep learning technique, we
trained a language model for Turkish using massive corpus collections followed by a fine-
tuning process for the MRQA task using large QA datasets. To enhance the MRQA skills of
the systems, we also translated some open-domain QA datasets from English to Turkish. At
the end of the experiments, it is seen that the system's accuracy is higher than other QA
solutions for Turkish. Moreover, the proposed method is not specific to Turkish and

applicable for numerous NLP tasks of other limited languages.

OZET

DERIN OGRENME SiNiR AGLARINI KULLANARAK TURKCE’DE GERCEKSI
SORU CEVAPLAYAN BIR SISTEM

Dogal Dil isleme (NLP) alan1 Soru Yanitlama (QA) konusunda, ingilizce ve Cince gibi ¢ok
kullanilan dillerde kaydedilen 6nemli ilerlemelere ragmen, yetersiz egitim verileri nedeniyle
Tiirkge gibi daha nadir kullanilan diller i¢in hala bosluklar bulunmaktadir. Tiirk¢e'de
zorluklarin bir¢ogu, sondan ekli bir dil olmasi, olasi ek kombinasyonlarinin fazlalig1 ve
devrik climlelerdeki 6ge dizimlerindeki ¢esitliligi gibi, zengin ama karmasik bir morfolojiye
sahip olmasindan kaynaklanmaktadir. Sonug olarak, Tiirk¢e i¢in heniiz basarili bir Soru
Cevaplama i¢in Makine Okumast (MRQA) sistemi gelistirmek miimkiin olmamistir. Bu
caligmada, bankacilik alaninda kullanilabilecek bir Tiirkce MRQA sistemi Onermeyi
hedefliyoruz. Sistem, sorulan soruya, verilen metindeki en dogru ve en kisa cevabi
iiretmektedir. BERT derin 6grenme teknigini uygulayarak, kapsamli korpus koleksiyonlari
kullanip Tiirkge i¢in bir dil modeli egittik, ardindan biiylik QA veri kiimeleri kullanarak
MRQA gorevi 6zelinde iyilestirmeler yaptik. Sistemin MRQA becerisini arttirmak i¢in bazi
genel icerikli QA veri setlerini de Ingilizce’den Tiirkge’ye cevirip egitime dahil ettik.
Deneylerin sonunda, Tiirkge i¢in, egittimiz sistemin dogrulugunun diger QA ¢odziimlerinden
daha ytiksek oldugu goriilmektedir. Ayrica, onerilen yontem sadece Tiirkge'ye 6zgii degildir

ve diger yaygin olmayan dillerin ¢esitli NLP gorevlerine de uyarlanabilir durumdadir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTSooiiiitiieeeeee ettt ettt e eve e e et il
ABSTRACT ...ttt et e ete e e te e teeeaaeeeaeeeasseereeeaseetaeeaneenns v
OZET ..ottt v
LIST OF FIGURES ...ttt ettt ettt evaeeaaeeeveeeaneeneenn viii
LIST OF TABLESottt ettt et et aeetaeeaaeeeaeeeaseeneean xiii
LIST OF SYMBOLS/ABBREVIATIONS......ooootiiitieeeeeee ettt XV
I. INTRODUCTIONcootiiiiiiieecteeeee ettt ettt et e e eaeeeaseeseesaseereeeaneenneas 1
2. RELATED WORKoooiiitiiiieteeetee ettt ettt et eaaeeveeeneeeaneeneas 5
3. METHODOLOGY ...oooviiitiiiiteiee ettt ettt eae e eveeeaeeeteeeaeeaeeeaseeereestaeeree e 15
3.1 MRQA ettt ettt et b e ae et e et te e b e eraenaeenns 15
3.2. DEEP LEARNING FOR NLPoooiiiiiiieieeeceeeeeeeceee e 17
3.2.1. Bidirectional Encoder Representations from Transformers (BERT) 19
3.2.2. Attention & TranSfOrmers..........coovviiiiiiieeeiie et 39

4., ANALYSIS AND DESIGN ..ottt ettt eeva e e ens 53
A1, BERT oot ettt ettt ettt e reeenns 53
4.2. WORD SENTENCE DISAMBIGUATION (WSD) IN BERTcccocovvrennenne. 55
4.3, DATA SETS .ottt et et et eete e eaaeereeeens 58
4.4. TRAINING PROCEDURE........c.ccoitiiiietieeee ettt 62
4.5. TRAINING PARAMETERScoiiiiioeeee ettt 63
4.6. EVALUATION METRICScooiiiiioeeeeeeeeeeee ettt 64
5. IMPLEMENTATIONcoooiiiiiiiteeeee ettt ettt et eeaeeeaae v ees 65
5.1. TRANSLATING DATA SETS ...ttt 65
5.2. FORMATTING THE DATA SETS ..ot 66
5.3. GENERATING THE EXTENDED DATA SET....ccocoviiiiieieeeeeeeeeeeeeeeee 68
5.4. COLLECTING DATA SET STATISTICSooooiieeeeeeeeeeeeeeeeee e 68
5.5. CREATING THE VOCABULARY FILEc.cooviiiiiiiiieieeeeeeeeeeee e 69

6. TEST AND EVALUATIONccciiiiiiiiiiiiiiiiiicececteee e 70

vii

6.1. PRE-TRAINING EXPERIMENTScccooiiiiiiiiiiicicccceceee 70
6.2. FINE-TUNING EXPERIMENTS.......ccccciiiiiiiiiiiiccceeceeee e 75
6.3. ERROR TYPES IN QUESTIONS & ANSWERSccccoiiiiiiiiiiiii, 80
6.4. COMPARISON WITH OTHER TURKISH QA SYSTEMS.........cccocvviviniinnn. 82
6.5. COMPARISON WITH OTHER BERT LANGUAGE MODELS....................... 83
6.6. COMPARISON WITH OTHER BERT TURKISH MODELS.............c..ccc.c.... 85
7. CONCLUSION ..ottt sttt s s 86
REFERENCES ...t 88

APPENDIX A: BANKING SECTOR QA EXAMPLES ..ot 92

viii

LIST OF FIGURES

Figure 1.1. Diagrammatic representation of the study...........ccoceeveeiiniininiiniiniiicniecne 3
Figure 2.1. Enhancing search engines using MRC............ccccooviiiiiiiiiiiniiiieeeeeeeeeen 5
Figure 2.2. Module-T details.coeiviiiiiniiiiiieecieeeeeeeee et s 6
Figure 2.3. Morphological disambiguation example [3].cccooeeeriiriiienieniieiecieeee e 6
Figure 2.4. Module-I1 details.cc.eoviiiiniiiiniinieieeeeeee et 7
Figure 2.5. Sample patterns [6].......cceevuerieriiiiiieieieeeseeese ettt 8
Figure 2.6. Regular expression €Xamples.o..ovveriiierieniriienienieeiesitesie st 8
Figure 2.7. Distiller eXxample [1T1]....ccooiiiiieiieiecieee et 9
Figure 2.8. Viterbi algorithm example [11]......coooiiiiiiiiniiiieeeeee e 10
Figure 2.9. Sample phrases and their classes [11]. ...ccccooeriiniiiiniininiinieceee 10
Figure 2.10. HazirCevap information retrieval module [11]......ccccooeriiniininiiniiiiienene 11
Figure 2.11. BiDAF architecture [15].....ccocuiiiiiiiiiiieeiieee ettt 12
Figure 3.1. MRQA example from SQUAD data Set.........ccceveriiriinirienienenieneeceeeenee 16
Figure 3.2. Transfer learning for NLP.cccocoiiiiiiiiiiiieeeeeeeeeeee e 18

Figure 3.3. Pre-training repreSentations.c..eevereerueeienienierienitenieeeesieenseseeeseeesseeseesaeenee 18

X

Figure 3.4. Comparison of BERT with other contextual models [2]........ccccceoeriiiieriennnnne 19
Figure 3.5. Training steps Of BERT.........cooiiiiiiiiiiiciee et 20
Figure 3.6. Procedures of BERT [12]..c..cooiiiiiiiiiiiiieciieee ettt 20
Figure 3.7. BERT pre-training subtasks.ccoccieviieiiiiiiiiiiieieciiece e 21
Figure 3.8. MLM masks some of the tokens and tries to predict.ccccevervverienenuennne 22
Figure 3.9. Masking eXample.cccoeriiiiiiiiiiiiiieiieeieesee ettt eeae e ens 22
Figure 3.10. Masking journey of an input. Red items are replaced with green items. 23
Figure 3.11. Vocabulary example for Turkish..........c.ccooeviiniiiiniinineccee 24
Figure 3.12. BERT input sequence example [2].......ccceoeriiniiiiniininienieeeeneeeee e 25
Figure 3.13. MLM archit€cture [20].cccocieriieiiieeiieeiieeieeieeeiee et e e et see e seeesaesnneens 26
Figure 3.14. Segment generation eXample...........coovevieiieniininiienieneeieseee et 27
Figure 3.15. NSP architeCture [26].coveeiiiiiiieiierieeieesee ettt et ens 28

Figure 3.16. Create pre-training data steps. Dices indicate random decisions. Brackets with

~FOT- INAICALE LOOPS. .neieiiieiieeie ettt ettt ettt e st e e bt e s sbeeseesaaeenseeeens 30
Figure 3.17. BERT down-stream tasks [2].ccoceeriieiiieniiiiienie et 32
Figure 3.18. SQUAD JSON file example........cccccceeriieiiieiiiiiiieiie et 33

Figure 3.19. FINC-tUNING SEEPS. ..eecuveriieriieeiiieiieeieeeiieeteeeeeeteesiteeteessreenseessaeesseessseeseesnseens 35

Figure 3.20.

Figure 3.21.

Figure 3.22.

Figure 3.23.

Figure 3.24.

Figure 3.25.

Figure 3.26.

Figure 3.27.

Figure 3.28.

Figure 3.29.

Figure 3.30.

Figure 3.31.

Figure 3.32.

Figure 3.33.

Figure 3.34.

Figure 3.35.

Figure 3.36.

SQUAD object @XamPIE.cceeeviieiiiieiieiie et 36
Fine-tuning ChUunks.cocooiiiiiiiniiiiieecee e 37
Overlapping eXamPle.cceevuieiiiiiieiiieieeie e ens 38
Fine-tuning input €Xample.ccccevuiriiiriineriienieecteseeese e 39
Encoder & Decoder architecture.oouevuerierieeiienienieeiereesieeieeeesie e 40
Low and high attentions in an eXample.c..cccceevuerienirnenieneeienieneeeeene 41
Attention-based. Encoder & Decoder architecture for machine translation. ..41
RNN Seq2Seq Encoder&Decoder example.cceevveevieiiienienieeiienieenen. 42
Attention-based Encoder&Decoder example.cccceeevieviienieniieniienieenen. 43
Inputs of a Transformer NetWork.ccceeveriiiiiiiniiniieeeeeee 44
BERT encoder & decoder stacks for a machine translation example. 45
Decoder layers of a transformer network.cccceeveiieiieniiiinienieeieeeeeee, 45
Post operations after self-attention.ccccceeviiiiieniiienienie e, 46
Self-attention StEPS (1)...cccveerieeiiieiieeiieeie ettt 48
Self-attention steps (2-6) fOr “TAinKkingcccovveveeieviinciieiieeeecieee e 49
Transformer-layer = 0 and Attention-head = 0 output.cccceeveervereeneennene 50

Transformer-layer = 4 and Attention-head = 0 output example...................... 51

Xi

Figure 3.37. Transformer-layer = 11 and Attention-head = 6 output example.................... 51
Figure 4.1. BERT ATCRItECTUIE.eovuiiiiiiiiiieiieiesitee ettt 53
Figure 4.2. Token replacement €Xamples.coceveeruieiierieniiienieieeieseenie e 54

Figure 4.3. Morphological Disambiguation result of ‘Cekoslovakyalilastiramadiklarimizdan

MISTNIZ? " USING ZEMDETEK.eevviiiiiiiieiie ettt ettt e et e e et e e s aeesbeessaeesaesnaeens 56

Figure 4.4. WordPiece Tokenizer result of ‘Cekoslovakyalilastiramadiklarimizdan

TIUISIINIZ? . coeiiitientt ettt et et ettt et e bt e et e bt e e et e e bt e eat e e e ae e ea b e e bt e eat e e bt e et e e e heeenbeeebeeebeenaneeas 57
Figure 4.5. BERT pre-training archit€Cture.ccoeevuerieniiiienienieieneeieseseeeee e 58
Figure 4.6. FINe-tuning Phases.ccceeriieiiiiiiieiiesie ettt ettt sve e e seaeesaesnaeens 63
Figure 5.1. A SQUAD data set eXampPle.........cceevuiiriieiiieiiiiieerie et 66
Figure 5.2. SQuAD file format eXxample...........cccoeriieiiieriiiiiieriieieee e 67
Figure 5.3. NewsQA file format example...........cccoeiieiiieiiiiiieiiieieece e 68
Figure 6.1. Pre-training eXPeriments.ccceccueeruierieeriienieeieeseeereesreeseesaeeseessnesssaessneens 70
Figure 6.2. Minimum occurrence threshold parameter and vocabulary sizes. 73
Figure 6.3. Vocabulary file size and reSults..........cccooeevierieniiiieniiniiieneieseeeeee e 74
Figure 6.4. Maximum sequence length parameter and results.cccccocevenviniincniennne 74

Figure 6.5. Number of training steps and reSults.cccceevieriiiiiiieniiieiieeieeieeeie e 75

Xii

Figure 6.6. The pre-training models and their fine-tuning results.c..ccocevvevieneniiennnne. 75
Figure 6.7. Different max_seq_length parameters and results.ccccoceverveniincniennne. 76
Figure 6.8. Different parameters and reSults.........cocceveeverieriiiiiniineiieeeeeeeee e 77
Figure 6.9. Training scenarios of fine-tuning data Sets...........ccccevverieriienieneniieneeneeieneene 78
Figure 6.10. Different training scenarios and data Sets...........ccceveevveeierienerieeneeneeieneenne 79

Figure 6.11. Different scenarios and data set evaluation results.cccceeevvivieneniienene 80

Xiii

LIST OF TABLES

Table 2.1. Multiplexing the query example [3].cccoooiiriieiiiiiieiee e 6
Table 2.2. Answer pattern results of "Tiirkiye’nin bagskenti Ankara" [6].........ccccceevvernennen. 9
Table 2.3. Foreign Languages and BERTccccociiiiiiiiiiiieiieecece e 14
Table 3.1. Major parameters of the pre-training task [26].........cccevevieneineniiininnenieeene, 29
Table 3.2. Fine-tuning SQuAD task crucial parameters [26].ccceocveriieriienieenienieeieene 34
Table 3.3. Machine translation decoder example.coecuierieiiieniiniiieiieeieeee e 47
Table 3.4. BERT pre-trained models (€arlier).coevveiiiieriieniieiieiiieieecee e 52
Table 3.5. BERT pre-trained models (NOW).ceouieriieriieniieiieeieeieeeie et 52
Table 4.1. Language model data Sets...........cccuevviieriieriienieeii et 59
Table 4.2. FIne-tuning data SETS.c.ccceeriierieriieiie sttt eite et etee e etee e esseeseaeenseenee 60
Table 4.3. Translation details of Fine-tuning data Sets.cccceecuerrieriienieniieieeieeeeene 60
Table 4.4. Average content lengths of Fine-tuning data sets............coceveevenienenneneeneenne. 61
Table 4.5. Maximum content lengths of Fine-tuning data sets.........c..cccceeverveneinenienennne. 61
Table 6.1. BERT parameters and values used in the experiments...........ccccceceeveeviereenennne. 72
Table 6.2. Evaluation results of different corpus Sets..........cceeeeeriiieriieniiienienieeieeie e 72

X1V

Table 6.3. Best and worst parameter values for the Banking Sector QA data set. 76
Table 6.4. Different phase combinations of the data Sets.c.ceeevveriininiienennenieneenee, 77
Table 6.5. Description of wrong answers with zero EM (3.2%).cccooeivviiiiiinieniieenne 82
Table 6.6. Examples for error types 1-5.ooouiiiiioieiieeieeie et 82
Table 6.7. Comparison of Turkish QA Systems.ccceevieriiieriiriiieiieeie e &3
Table 6.8. Comparison of BERT models with other languages.cccccceeeeviiiieninenene 84

Table 6.9. Comparison of Turkish base models.ccoceeviieriiniiiniiniiee e 85

XV

LIST OF SYMBOLS/ABBREVIATIONS

Al
ARCD
BERT
CWE
DL
EM
FFN
IR

LM
LSTM
MLM
MRC
MRQA
NE
NER
NLI
NLP

NSP
0]0)%
QA
POS
RNN
SQuAD
TF-IDF
TPU
WSD

Artificial intelligence

Arabic reading comprehension dataset
Bidirectional encoder representations from transformers
Contextualized word embeddings

Deep learning

Exact match

Feed-Forward network

Information retrieval

Language model

Long short-term memory

Masked language model

Machine reading comprehension
Machine reading for question answering
Named entity

Named entity recognition

Natural language inference

Natural language processing

Neural network

Next sentence prediction

Out of vocabulary

Question answering

Part of speech

Recurrent neural network

Stanford question answering dataset
Term frequency-inverse document frequency
Tensor processing unit

Word sence disambiguation

1. INTRODUCTION

With the increasing use of Artificial Intelligence (Al) over recent years, Al algorithms have
yielded better results than the old traditional solutions in varied domains. Due to the growing
training data that can be used in studies and the advancement of artificial intelligence-
specific hardware technology, such as the discovery of Tensor Processing Units (TPUs) that
work in parallel, advanced neural networks have become achievable. Especially in the
Natural Language Processing (NLP) domain, deep learning approaches have reaped much
success than the statistical methods used before artificial intelligence. The main reasons for
the success of the modern deep learning approaches are; the language models and
contextualized word representations. Using extensive corpus data, language models are
build, which summarizes the relationships of the words and the main rules of the language.
These language models support polysemy and create different word embeddings for
homophones considering their context. These advanced deep learning models can only be

experienced in commonly used languages due to the difficulties of finding training data.

Especially with the increase in the number of electronic documents and the skills of the
search engines, nowadays, access to information is effortless, obtaining the set of documents
containing the answers to the questions is simple. Instead of stating all documents, one of
the research topics that natural language processing and deep learning researchers have been

actively working on in recent years is to scan the documents for finding the best-fit answer.

Machine Reading for Question Answering (MRQA), which scans several documents to find
the best span for answering the question, is a vital task for applications such as question
answering (QA) systems and search engines. An outstanding MRQA system can find
answers to different types of questions from documents in a wide range of domains, rather

than particular question types or a closed-domain.

In the MRQA field, despite the significant progress in frequent languages such as English
and Chinese, there is still a gap for rare languages such as Turkish as a result of inadequate
training data. Furthermore, in Turkish many of the difficulties arise from being an
agglutinative language and having a rich but complex morphology, such as a comprehensive

set of possible suffix tags and diversity of constituent orders in inverted sentences. Hence,

creating an accomplished open-domain MRQA system for Turkish has not been possible

yet.

In Turkish, in order to find answers to questions in a given text, researchers figured out
various studies, most of which are rule-based approaches. After identifying the question type
like when who or what, in the text, predefined patterns of the classified question type look
through the phases, for obtaining the candidate answers. The answers to "when" questions
most probably include a time or date expression; therefore, phrases containing years, months,
weeks, and days are a successor to be the answer. In a similar way, the answers to "who"
questions most probably include a Named Entity (NE) that denotes a person, place, or
organization. To increase the success of these average systems, analysts should find out
diverse patterns and append to the system, which after while damaging the operating speed
of the system. The proposed Turkish MRQA solutions mostly support only specific question
types (where, when, who, what, and why), while free-form questions are still unsolved

problems.

In recent years, by the increasing number of data sets available for Machine Reading
Comprehension (MRC) studies, much progress is made in English. The Stanford Question
Answer Data Set (SQuAD) [1], published by Rajpurkar in 2016, is a fundamental resource
for MRC researches. Rather than the traditional rule-based approaches, researchers applied
many neural network approaches to the MRC problem utilizing the SQuAD data set.
Bidirectional Encoder Representatives from Transformers (BERT) [2] published by Google
in 2019, revolutionized natural language processing. BERT has achieved very high accuracy
in the MRQA problem by providing the state-of-the-art language model for English, anew
using SQuAD data.

Although some multilingual models are trained for uncommon languages, there is still a
problem of insufficient data and a lack of experience in how these algorithms can be applied
accurately to the language. Moreover, Turkish has a challenging grammar for most of NLP
tasks because of being an agglutinative language and having a rich but complex morphology,
such as a comprehensive set of possible suffix tags and diversity of constituent orders in
inverted sentences. Considering all these stated circumstances, the objective of the work

performed under this thesis is to create a language model for Turkish, followed by fine-

tuning the model for the QA task. Creating a language model from scratch will be
experienced, providing solutions to the problems encountered in the process. Moreover,
obtaining sufficient training data for the QA task will be tough for rare languages such as

Turkish.

The study's output will able to find the most correct and shortest answer from a given text to
the question asked. The process is called MRQA, in the use of the QA systems and search
engines. Previous studies and reports have shown that a performance-satisfactory MRQA

system for Turkish has not been developed yet; almost all are statistical models.

Data (in Turkish) BERT MRQA model
for banking sector
Language model Question (in Turkish):
Large data corpus == generation “Could you please
inform me about ..."
Turkish 1
language model
Answer (in Turkish):
Translated data sets, MRQA model “The loan can be taken
banking sector data =——————p . = O
generation

set

Figure 1.1. Diagrammatic representation of the study.

Nowadays, in the NLP domain, highly successful systems are based on architectures similar
to BERT network. Utilizing large corpus, BERT trains a language model consisting of the
contextualized word representations. The language model has a general knowledge of the
grammar and semantic relationships of words; afterward, this model can be easily adapted
to any chosen NLP task with little customization. For a language, training a model from
scratch specific to the language is more successful when compared to the multilingual model
published by BERT. In considering all these factors, a language model will be created from
scratch for the Turkish language by the BERT deep learning methods and will be customized
for the MRQA task that will serve in the banking sector. Figure 1.1 shows the block diagram

of the process.

This study aims to apply deep learning approaches to the MRQA problem in Turkish, in
answering questions over a given Turkish text to achieve high accuracy, as in English. The
training procedure of the Turkish language model base on the official English BERT model
published by Google. The proposed model achieved 55,26 percent exact match (EM) and
67,07 percent F1-Score for open-domain data sets, which is the union of SQuAD and
NewsQA data sets translated to Turkish. The proposed model achieved an average score of
54,09 percent exact match (EM) and 79,01 percent F1-Score for closed-domain banking

sector QA data set created in Turkish.

The thesis is arranged as follows; Section 2 gives an idea in the field of MRQA by
mentioning the relevant studies in the literature. Section 3 describes MRQA, BERT,
Transformers, and Attention in detail. Session 4 is the section describing the methodology,
including the data and the training procedures. Section 5 contains details of the software
pieces used in preprocessing data steps in this research. In Section 6, the comparison of the
current study with other Turkish and other language models and evaluation results of
different scenarios are mentioned. Finally, Section 7 concludes the findings and contains

some information on future studies.

2. RELATED WORK

In Turkish questioning (QA) systems, in most of the researches to improve the skills of the
search engines, two modules take part in front and behind the search engines, as seen in
Figure 2.1. Comprehending the operating principles of the search engines, to present more
fruitful results to the questions asked, the front module multiplexes the query or, on the
contrary, deletes needless parts from the query. Rather than showing all result documents to
the user, in order to find the optimum search outcome, the behind module filters the results
of the search engine [3-6]. The most popular application is AnswerBus [7], which runs on
the Bing search engine and serves in English by default. Though, using machine translation

to English, AnswerBus also offers searches in several other languages.

Module I
Multiplex <
uc >
duery > the Query 1
Asya ile Avrupa’yi ayiran bogazin adi nedir?] g
What is the name of the Bosphorus that queries
separates Asia and Europe? CleaHUP »
the Query > Search
Engine
Module IT
result
answer . documents
— Find the best <—
Istanbul Bogaz1
n T
Bosphorus Istanbul answe

Figure 2.1. Enhancing search engines using MRC.

The front module advances the query, initially classifying the question via a predefined table
that holds all potential representations, as seen in Figure 2.2. For building plain variations of
the query, Turkish language processing libraries, such as Zemberek [8] or Treebank [9-10],
parses the sentences and tokenizes the words to find the stems (Figure 2.3). Table 2.1 is an
example of multiplexing a query; the second and third rows are derivative forms of the
original query. Another approach excludes prepositions, conjunctions, stop words, and using

the thesaurus expands the query by attaching the synonyms of the terms.

Module I
nedir?
what?
Find the
auery > question type
Asya ile Avrupa’y1 ayiran bogazin adi
nedir? 1
What is the name of the Bosphorus that
separates Asia and Europe? Analyse the Search
syntax of the Engine
query
1 queries .
Multiplex ”
the query >
Figure 2.2. Module-I details.
Word __ Dictionary Item Morphemes
asya [Asya:Noun,Prop] asya:Noun+A3sg
ile [ile:Conj] ile:Conj
avrupayl [Avrupa:Noun,Prop] avrupa:Noun+A3sg+yi:Acc
ayiran [ayirmak:Verb] ayir: Verb|an:PresPart—Adj
bogazin [bogaz:Noun] bogaz:Noun+A3sg+in:Gen
adi [ad:Noun] ad:Noun+A3sg+1:P3sg
nedir [Ne:Noun,Abbrv] ne:Noun+A3sg|Zero— Verb+Pres+A3sg+dir:Cop
? [?:Punc] ?:Punc
Figure 2.3. Morphological disambiguation example [3].
Table 2.1. Multiplexing the query example [3].
Original text in Turkish English translation
Asya ile Avrupa’y1 ayiran bogazin What is the name of the .
The original query yare pa yray & Bosphorus that separates Asia and
ad1 nedir?
Europe?
Query 1 Asya ile Avrupa ayiran bogazin the name of the Bosphorus that
adi separates Asia and Europe
Query 2 Asya ile Avrupa ayir bogaz ad gi?gigiihoms separate Asia

In the candidate document results of the search engines, utilizing the class of question
identified by the first module and its predefined answer patterns, the second module traverses
the phrases that are resembling to be the answer to the question (Figure 2.4). The answer

should include at least half of the query words and also existing named entities of the

question. In Table 2.1, the query words are Asya, Avrupa, bogaz and ayir; the named entities
are Asya and Avrupa. Additionally, if the question requests a numerical value, the answer

should include numbers.

Module II
Filter the
. result
sentences 1n
documents
documents _
possible Sear.ch
Engine
answers
answer
- Rank the
Istanbul Bogazi answers
Bosphorus
Istanbul

Figure 2.4. Module-II details.

After observing the potential answer statements, the following ranking formula puts in order
the candidates to pick the closest match to the real answer. In Equation 2.1, is the number
of query words existent in the potential answer, is the number of words in the query and is

the total logical distances of words in the potential answer and query.

|10 % G+ (G — 1) (2.1)
B T, * S

For feature extraction and named entity recognition, another study performs predefined
pattern matching algorithms on the result documents (Figure 2.5). If question class is when,
the answer is probably a combination of date or time, the system applies the patterns that are
in the third and fourth rows of the table. If question class is who, the answer is probably a
named entity, which is a person or a group, and the system applies the patterns that are in

the first and sixth rows of the table.

Entity Name Sample Pattern # of
Patterns

Name \\p{Lul+\\p{L}+\\s\\p{Lu} 4
+\\p{L}+

Length \\d+[.,]\\d+.kilometre 24

Time [0-2]\\d:\\d\\d 1

Date [0-3]1[0-9]\\D[0-1] [0~ 55
91 \\D\\d\\d\\d\\d

Price \\d+[.,]\\d+. [$] 75

Organization | \\p{Lu}+.\\p{L}+. [1L] [tT] 12
[dD]

Percentage $\\s\\d+[.,]\\d+ 7

Weight \\d+.kilogram 14

Location \\p{L}+.caddesi 20

Total Pattern Usage : 212

Figure 2.5. Sample patterns [6].

A research study discovers the answer patterns of the question classes by crawling the Web.
After generating question and answer pairs manually for every question class, the researchers
search the created data set on the Web. The system collects the documents which include
both question-answer pairs, afterward breaks into sentences to derive regular expressions of
the answer pattern for the question class. In the “the capital city of Turkey” example, the
crawler searches Ankara AND Turkey together on the Web. After assembling the sentences
that include both, the system automatically forms the regular expressions in Figure 2.6,

replacing Turkey with Q (Question) and Ankara with A (Answer).

+ <Q>’nin baskenti olan <A>
o <A>, <Q>
+ <Q>’nin baskenti olan <A> sehri

* bagkent <A>, <Q>

Figure 2.6. Regular expression examples.

After the searching process, when the candidate documents are ready, the system executes
the collected answer patterns via five various forms, as seen in Table 2.2: raw string, raw
string with answer type, stemming string, stemming string with answer type, and named

entity tagged string.

Table 2.2. Answer pattern results of "Tiirkiye’nin bagkenti Ankara" [6].

Type Answer pattern

Raw String <(Q>’nin bagkenti <A>

Raw String with Answer Type <Q>’nin bagkenti <A-NECity>

Stemming String <Q> bagk <A>

Stemming String with Answer Type <Q>’nin bagk <A-NECity>

Named Entity Tagged String Replace Ankara with Turkish Named Entity Tagger
result

For the Geography lesson of Turkish-speaking high school students, some researchers [11]
designed a closed-domain factoid QA system (HazirCevap) to support their education and
find answers to their questions about their course of study. The system is akin to IBM Watson
DeepQA technology; the Question Analysis module obtains the focus and class of the
question. In the example of “What is the name of the largest plain in Turkey?”, the focus is
the name of a plain and the question class (QClass) is ENTITY.PLAIN. For focus extraction,
the application uses a combination of a rule-based model (Distiller) and a Hidden Markov
Model (HMM) based statistical model that uses a variation of the Viterbi algorithm. Distiller
uses the dependency tree, as seen in Figure 2.7. Viterbi algorithm marks every word with
two states: FOC means the word is a focus part, and NON means the word is a not focus part

(Figure 2.8). After all, the system uses a combination of these two results.

esen (blows) ne (what)
| |
MODIFIER MODIFIER
3)
Istanbulda (at Istanbul) guneydogudan (from southeast) razgara (wind) ad (name) ver (give)

N \ | / /
SUBJEC ABLATIVE ADJUNCT DATIVE ADJUNCT SUBJECT DERIV
' —

verilir (is given)

SENTiENCE

Istanbulda gineydojudan esen rizgara ne ad verilir?

Figure 2.7. Distiller example [11].

10

forward serialization (->)

Dig ticaret diger ad ne
(external) (trade) (other) (name) (what)
FOC FOC NON FOC NON

Figure 2.8. Viterbi algorithm example [11].

For question classification, the application uses a rule-based model because of the success

in finding coarse classes. Some sample phrases and their classes are in Figure 2.9.

Coarse Class Sample Phrases
DESCRIPTION “ne isim verilir”, “temel sebebi nedir”
NUMERIC “kag”, “ne kadar”
ENTITY “riizgar tipi”, “dag1 hangisidir”, “ hangi ova”
TEMPORAL “hangi tarihte”, “kaginci yiizy1l”
LOCATION “hangi bolge”, “nerede”, “nereye”
ABBREVIATION “acihm”, “kisa yazilig1”
HUMAN “kimdir”, “kimin”, “hangi kiltir”

Figure 2.9. Sample phrases and their classes [11].

The system preprocesses the query by performing morphological analysis and
disambiguation using the Turkish NLP Pipeline [12]. Feds query analysis, QClass and focus
into search engines such as Indri and Apache Lucene, which are connected to the knowledge
base (Figure 2.10). Similar to previous studies, HazirCevap removes stop words and

punctuation marks.

11

Question Analysis

Named
Entities

Different
Word-Senses

Resource
Documents

Documents

Figure 2.10. HazirCevap information retrieval module [11].

After large comparison datasets such as SQuAD, NewsQA [13], HotspotQA [14] are
available, as a result of rapid improvements, the MRQA problem has substantially been
solved for English. The SQuAD data set is generated by Stanford University, which contains
more than 100,000 real question-answer pairs created by humans over 536 Wikipedia
passages. It is available in 2 versions; in version 1.1, the answers to each question are
apparent; however, in version 2.0, some questions have no answer. NewsQA data set is
generated by Microsoft Research, which contains 120K question-answer pairs created by

humans over CNN news articles.

Bi-Directional Attention Flow (BiDAF) [15] published in 2016, is a multi-stage hierarchical
process that has different levels of granularity for representing the context as character-level
(Char-CNN), word-level (GLoVE), and contextual embeddings. Instead of using a fixed-
size vector for summarizing the paragraph, for every time step, the system computes the
attention. For preventing early summarization and information loss, BiDAF uses a
bidirectional attention flow mechanism for query-aware context representation: query to

context and context to query which are generated from a similarity matrix (two boxes on the

12

right in Figure 2.11). Query2Context attention detects which query words are most related
to the context words, and Context2Query discovers which context words are most relevant
to the query words. With the representations of previous layers, the attended vector flows
through the model layer (green and orange lines that goes into the modeling layer). This
method prevents the information loss caused by early summarization. BIDAF uses memory-
less attention, which means that the attention of every time step takes only the query and
context of the current step as inputs, rather than directly depending on the attentions of

previous time steps.

Start End Query2Context
(Softmax \
Dense + Softmax LSTM + Softmax pu O hh
Output Layer o [ole]lel 0l 0 u,
ﬁ 2 ‘.‘ > ‘0‘ 0‘ 0‘
§m1 m; My =3¢ ‘o 3 ‘o‘ . 0‘ U,
L L] L] PADDEIMTIEIDIR

Modeling Layer

5L 1 D [] hi hy hr

91 [¢P) Or
Context2Query
Atterﬂior;rFlow Query2Context and Context2Query
Y Attention w‘ H e ﬂ ﬂ uy
E . L SRR 2 L SRR 2 >
h1 h2 h‘r Uy Uy jo; o‘ . ‘o‘ . |0H0‘ U,
Contextual s s .J e M > !.H.J U,
[= T Y
Embed Layer 2] I:] D D 2] E]
h; h, hy
o e o | O e | R O =] =
Character Word Character
Embed Layer - - =] - - Embedding Embedding
X4 Xo X3 Xy a; SN
L o _ GLOVE Char-CNN
Context Query

Figure 2.11. BiDAF architecture [15].

Pre-trained language representations were available with ELMo [16] and Generative Pre-
trained Transformer (OpenAIGPT) [17]. ELMo is a feature-based approach that uses task-
specific architectures that are pre-trained on a large text corpus, and ELMo supports six
different NLP tasks, including question answering. OpenAIGPT is a fine-tuning approach:
generative pre-training of a language model on a diverse corpus of unlabeled text, then
discriminative fine-tuning for each particular task. Both are unidirectional; a left-to-right
approach where each token has joined the previous tokens in Transformer's self-attention
layers [18]. Uni-direction negatively effects some tasks for which it is crucial to walk in

either direction in the context, such as questions answering.

13

In 2018, Bidirectional Encoder Representations from Transformers (BERT) was published
by Google. Similar to OpenAIGPT, BERT uses a fine-tuning approach; but in contrast to
ELMo and OpenAIGPT, BERT is bidirectional. BERT uses Masked Language Model
(MLM) and Next Sentence Prediction (NSP); on pre-training, that masks and then predicts
some randomly selected words, by using self-attention based Transformers. In this way, the
model uses both the left and right contexts. BERT is easy to use and announced the state-of-
the-art results for SQUAD vl1.1: for ensemble model 87.4 percent exact match and 93.2
percent F1-Score, for single model 85.1 percent exact match and 91.8 percent F1-Score. The

technical details of the BERT will be given in the next section.

In the MRQA 2019 Shared Task [19], the successes of the systems that offer a general
solution to the MRQA problem for English were compared. Eighteen data sets, including
SQuAD and NewsQA, were selected. These datasets were divided into training, dev, and
test sets, each consisting of 6 datasets. Ten different teams tried to develop models using
these data sets with various training methods developed on the BERT baseline. The success

of the resulting models was compared to BERT.

After the great success in English, BERT has come into use for other languages. For some
languages other than English, their unique models are trained instead of using BERT's
existing multilingual model (mBERT) (Table 2.3). Since Arabic has a structure quite
different from Latin languages, they have trained a BERT model specific to their language
structures, named AraBERT [20], and tested it in several down-stream tasks, including QA.
In tests conducted with the Arabic Reading Comprehension Dataset (ARCD), which was
previously translated from SQuAD to Arabic, AraBERT has performed close to mBERT.
There is an already model that Google has explicitly trained only for Chinese. This model
has been tested in the following MRC datasets generated for Chinese: CMRC 2018, DRCD,
CJRC [21]. Similarly, models named CamemBERT [22] for French, KoBERT [23] for
Korean and ParsBERT [24] for Persian have been trained, but these models do not have a

measured score on MRQA.

Table 2.3. Foreign Languages and BERT.

14

Language Model Data set EM F-Score
mBERT ARCD 34,2 61,3
Arabic
AraBERT ARCD 30,6 62,7
CMRC 18,6 43,3
Chinese BERT-Chinese DRCD 82,2 89,2
CJRC 55,1 75,2

15

3. METHODOLOGY

This section gives an overview of the approaches that we have used in the study. Section 3.1
describes MRQA, and Section 3.2 contains modern deep learning techniques used for NLP
tasks. Section 3.2.1 presents the details of the BERT architecture. Section 3.2.2 gives
information about Attentions and Transformer Networks, which are the base of the BERT

neural networks.

3.1. MRQA

Question Answering(QA) aims to create a system that automatically returns intelligent
answers to questions that people ask in their natural (human) language. It is one of the
research areas of computer science focused on Information Retrieval(IR) and Natural
Language Processing(NLP). The information source may be a database, various reports,
internet world, or a set of unstructured text documents. Many different methods, such as
semantic analysis or text classification, can be used when creating QA systems. MRQA is a
subset of QA, aiming to exact the most correct and shortest answer from an unstructured

text, to the questions asked in human language.

For systems having question-answering facilities such as search engines or chatbots,
machine reading is crucial for answering questions relating to documents. In MRQA, the
system acquires the answer to the question in the given text. Average MRQA examples can
serve for free-formed questions in a wide range of domains, called open-domain. Search
engines are examples of open-domain MRQA systems. In Figure 3.1, an example from the

SQuAD data set is presented. The paragraph is on the left; the questions and their answers

16

list is on the right. Ground Truth Answers are the answers taken from different people when

the question asked for the paragraph and each answer is present in the paragraph.

Super Bowl 50 was an American football game to determine
the champion of the National Football League (NFL) for the
2015 season. The American Football Conference (AFC)
champion Denver Broncos defeated the National Football
Conference (NFC) champion Carolina Panthers 24-10 to
earn their third Super Bowl title. The game was played on
February 7, 2016, at Levi's Stadium in the San Francisco
Bay Area at Santa Clara, California. As this was the 50th
Super Bowl, the league emphasized the "golden anniversary"
with various gold-themed initiatives, as well as temporarily
suspending the tradition of naming each Super Bowl game
with Roman numerals (under which the game would have
been known as "Super Bowl L"), so that the logo could
prominently feature the Arabic numerals 50.

Question: Which NFL team represented the AFC at
Super Bowl 50?
Answer: Denver Broncos

Figure 3.1. MRQA example from SQuAD data set.

The most critical segment in MRQA systems is the type of question. The questions can be
in a wide variety of classes. There are five major question classes:
- Factoid Questions: The answer to the question is a single fact.
o What year was Atatiirk born?
o What is Turkey’s largest lake?
- List Questions: The answer to the question is many facts.
o What are the big cities of Turkey?
o What are the names of the Turkish Presidents?
- Causal Questions: These are “what causes” questions.
o What causes young people to start smoking?
o What causes cancer?
- Confirmation: These are questions such as “whether or not”.
o Alan Tuning was British, right?
o Turkey is in Europe, isn’t it?

- Hypothetical Questions: These are the questions that are not based on reality.

17

o Let's assume you found the electricity, what would you do first?

o If the computer had never been discovered, what would we use instead?
In this thesis, we place more emphasis on factoid questions, but the study also covers free-
formed queries. The data sets used on training and evaluation processes have been produced

by human and includes all types of questions.

As mentioned in the literature review section, statistical approaches have been applied for
many years to solve MRQA problems. The system classifies the question through predefined
patterns, afterward applies the relevant answer finder regular expressions to the documents,
for finding the potential answers. These systems only answer specific question types
correctly. The common use of deep learning in the NLP field also resulted in improvements

in the MRQA problem. There are many satisfying studies on this subject in English.

3.2. DEEP LEARNING FOR NLP

NLP has numerous sub-tasks, each of which needs task-specific extensive training data. One
of the most prominent challenges in natural language processing is the training data quality
and shortage. In the field of computer vision, this problem was solved by transfer learning,
which started to be used with ImageNet. The idea is to train a neural network for general
purpose, and then explicitly fine-tune if needed for a down-stream tasks. After seeing the
benefits of the method, transfer learning started to be used in the field of natural language

processing.

The first task in Figure 3.2, named ‘pre-training’, builds a general-purpose language model

from a large amount of massive unlabeled text, called ‘corpus’. For a solid understanding of

18

the selected language, the system optimizes some parameters from scratch. OpenAl GPT is

the first example.

Task Down-stream

specific Tasks
data sets

Pre-training ‘W QA
t MRQA

MNLI

s \odel

Figure 3.2. Transfer learning for NLP.

Pre-training representations can be context-free or contextual (Figure 3.3). Word2Vec and
Glove are examples of context-free models that generate a single vector for every
homonymic word. For the ‘bank’ example, the word vectors of the bank are the same for ‘7
sat on the bank in the park’ and ‘I came to see my bank accounts’, although the first one is
a seat and the second one is a finance office. Contextual models generate word vectors
considering the meaning of the sentence. The difference of contextual model vectors from
context-free models is that they handle polysemy and generate different word vectors for
homonyms, looking at the overall meaning. For the ‘bank’ example, the word vectors of the

bank are not the same.

pre-training representations

~—

contextual

~—

unidirectional bidirectional

Figure 3.3. Pre-training representations.

When building a language model, the usual approach is using the previous words, called
‘unidirectional’ language models. Recurrent Neural Networks (RNN) and OpenAl GPT are

unidirectional model examples. Bidirectional models use both from the left and right

19

contexts for seeing how well the word is in the sentence. ELMo is a shallow bidirectional
model example. In Figure 3.4, in OpenAl GPT only ‘I’ affects the word ‘accessed’, but in
both BERT and ELMo ‘account’ also has an effect on ‘accessed’.

BERT (Ours) OpenAl GPT

Figure 3.4. Comparison of BERT with other contextual models [2].

For the second task in Figure 3.2, named ‘down-stream tasks’, two different methods are
present which share the same objective: feature-based and fine-tuning. The feature-based
approach uses task-specific architectures in the form of appending additional features to pre-
trained representations. ELMo is an example of feature-based architectures. In the fine-
tuning approach, the number of down-stream specific parameters is minimum, and the
system improves pre-trained base model to find the optimum values of down-stream task

parameters. OpenAl GPT and BERT are examples of fine-tuning architectures.

3.2.1. Bidirectional Encoder Representations from Transformers (BERT)

State-of-the-art models of NLP, such as BERT, RoBERTa, ALBERT, ELECTRA, XLNet,
TS5, use two significant tasks; pre-training and fine-tuning, as in Figure 3.5. BERT is the
first deeply bidirectional unsupervised language representation, which is pre-trained using a
plain text corpus. For any language, if BERT is pre-trained using a massive corpus, the
output model will have a solid understanding of the selected language. After pre-training for
fine-tuning, the system initializes the pre-trained model with learned weights and adjusts the
weights for the optimal values of the selected down-stream task. BERT keeps the output

models of both pre-training and fine-tuning as same as possible.

20

Pre-training Fine-tuning
Masked Model .
Language \ﬁ Classifier q Model
Models MRQA
(MLM) (SQuAD)

Figure 3.5. Training steps of BERT.

NSP Mask LM Mask LM \ /@ /@@‘D Start/End Sph
& *

BERT

BERT

le]. EIE=E]-

Masked Sentence A - Masked Sentence B Question ' Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 3.6. Procedures of BERT [12].

Fine-tuning is for some down-stream tasks such as MRQA, Named Entity Recognition, or
text classification. In the MRQA, the system gets a data set such as SQuAD, NewsQA, or
HotspotQA and improves the model to find answers to the questions in the given text. The
SQuAD dataset is the most popular QA data set for studies in English and contains thousands
of question & answer pairs generated from Wikipedia articles. In the training phase, the
question and paragraph are the inputs of the neural network, and the answer is the output.
The neural network tunes the weights to the optimum values to find the best text span that is

closest to the real answer in the paragraph.

3.2.1.1. Task 1: Pre-training
BERT has technically two subtasks in a pre-training phrase: Masked Language Model
(MLM) and Next Sentences Prediction (NSP), as seen in Figure 3.7. In the pre-training,

21

BERT trains both Masked LM and NSP together to minimize the combined loss functions.

The output of the pre-training is the language model with the next sentence prediction results.

Pre-training

Wk e Next Sentence sl Model
Language . L
Prediction
Models (NSP)
(MLM)

Figure 3.7. BERT pre-training subtasks.

Masked Language Modeling (MLM): The training method may be language models
(LMs) or masked language models (MLMs). LM is the traditional method and generally
used in unidirectional approaches. MLM is a new method that BERT recently announced
and supports the bidirectional approach. MLM method masks some of the randomly selected
tokens from the input and predicts the original vocabulary item of the masked word. By
using a Softmax classifier, the network updates its weights by comparing the prediction with
the real answer. In this way, the neural network learns the relations of the words in the

language by handling the context both from left-to-right and right-to-left.

In Figure 3.8, BERT masks and guesses ‘on’ and ‘bank’. For masking a token, the general
rule is as following; the selected token is 80% of the time replaced with [MASK], 10% of
the time left the same, and 10% of the time replaced by a random token picked from the
vocabulary (Figure 3.9). Because [MASK] tokens are not present in the fine-tuning task,
usually, 15% of the tokens are masked for mitigation. This randomness improves the
learning skills of the model. According to BERT’s paper, the magic of these percentages is;
“If we used [MASK] 100% of the time the model wouldn’t necessarily produce good token
representations for non-masked words. The non-masked tokens were still used for context,
but the model was optimized for predicting masked words. If we used [MASK] 90% of the

time and random words 10% of the time, this would teach the model that the observed word

22

is never correct. If we used [MASK] 90% of the time and kept the same word 10% of the

time, then the model could just trivially copy the non-contextual embedding.”

In training, 10 percent of 15 percent = 1.5 percent of all tokens are replaced with random

words, and this is a deficient percentage to harm the general language model. More training

steps are required in MLM compared with LMs since only 15 percent of tokens can be

masked, and only the masked words can be predicted and learned for each step. Therefore,

MLM is slower than typical LMs, but the result success rate is satisfactory. A full example

of the masking is in Figure 3.10 ; for every step, BERT selects and masks a token. For

training, the Transformer network is used, which is described in 3.2.2 section.

I sit
[MASK]

}%ﬁg\\.ﬁﬁk‘

T
e A, S S
P

chair

[MASK]

Figure 3.8. MLM masks some of the tokens and tries to predict.

— \

%380 of the time

I sit on the bank

\

I sit on the /MASK] 1 sit on the bank 1 sit on the apple

%10 of the time

%10 of the time

Figure 3.9. Masking example.

23

[CLS] Kis aylarinda doga , birgok bakim ##lardan , uyku ##ya yat ##mis gibidir
. Toprak , karl ##ar , buzl ##ar altinda , dona ##r , katila ##sir . [SEP] Top
f#tra ##gm icindeki solucan ##lar , bocekler uyu ##su ##p kalirlar . [SEP]

[CLS] Kis aylarinda doga , birgok bakim ##lardan , uyku ##ya yat ##mis gibidir
Toprak , karl ##ar , buzl ##ar altinda , dona ##r [MASK] katila ##sir
[SEP] Top ##ra ##gin icindeki solucan ##lar , bocekler uyu ##su ##p kalirlar .

[SEP]

[CLS] Kis aylarinda doga ., birgok bakim ##lardan , uyku ##ya yat ##mis gibidir
. Toprak , karl ##ar , buzl ##ar altinda , dona [MASK] [MASK] katila ##sir .
[SEP] Top ##ra ##gin icindeki solucan ##lar , bocekler uyu ##su ##p kalirlar .
[SEP]

[CLS] Kis aylarinda doga [MASK] birgok bakim ##lardan , uyku ##ya yat #H#mig
gibidir . Toprak , karl ##ar , buzl ##ar altinda , dona [MASK] [MASK] katila
#itsir . [SEP] Top ##ra ##gm icindeki solucan ##lar , bocekler uyu #isu ##p
kalirlar . [SEP]

[CLS] Kis aylarinda doga [MASK] bircok bakim ##lardan , uyku [MASK] vyat
##mig gibidir . Toprak , karl ##ar , buzl ##ar altinda , dona [MASK] [MASK]
katila ##sir . [SEP] Top ##ra ##gin igindeki solucan ##lar , bocekler uyu ##su
##p kalirlar . [SEP]

[CLS] Kis aylarinda doga [MASK] bircok bakim ##lardan , uyku [MASK] vyat
##mig gibidir . Toprak , karl ##ar , buzl [MASK] aliinda , dona [MASK]
[MASK] katila ##sir . [SEP] Top ##ra ##gmn icindeki solucan ##lar , bdcekler
uyu ##su ##p kalirlar . [SEP]

[CLS] Kis Kohe doga [MASK] bir¢gok bakim ##lardan , uyku [MASK] yat ##mig
gibidir . Toprak , karl ##ar , buzl [MASK] altinda , dona [MASK] [MASK]
katila ##sir . [SEP] Top ##ra ##&in icindeki solucan ##lar , bocekler uyu ##su
##p kalirlar . [SEP]

[CLS] Kis Kohe doga [MASK] bir¢ok bakim ##lardan , uyku [MASK] yat #tmis
gibidir . Toprak , karl ##ar , buzl [MASK] altinda , dona [MASK] [MASK]
katila ##sir . [SEP] Top ##ra ##gin igindeki solucan ##lar , bocekler uyu ##su
##p kalirlar Run [SEP]

Figure 3.10. Masking journey of an input. Red items are replaced with green items.

For tokenization, BERT uses the WordPiece algorithm of Google [25]. WordPiece creates a
fixed-sized vocabulary that includes words, subwords, or characters (Figure 3.11). The
algorithm calculates the frequencies of tokens in the corpus and picks the most frequent ones.
Vocabulary file includes both suffixes, subwords, and also words. Most probably, every
word in a language can be tokenized by using the generated vocabulary file as a reference.

If the vocabulary file is updated, the tokenization result of sentences also changes. For

24

‘helping’ as an example, the tokenizer may split as ‘help’ and ‘##ing’, but if ‘helping’ is
added to the vocabulary, ‘helping’ will be tokenized directly as ‘helping’ without splitting.

1 [PAD]
2 [EOS]
[UNK]
[CLS]
[SEP]
[MASK]
ve
bir
da
##n
de
12 olarak
: ile
##a
##te
16 ##1
bu
ig¢in
1¢ olan
20 ##1
21 yilinda
##k

Figure 3.11. Vocabulary example for Turkish.

There are three reserved tokens in BERT architecture:
I- [CLS]: Starter token of every input sequence and the classification token for Softmax
classifier. It is used in both pre-training and fine-tuning.
2- [SEP]: Delimiter token, which splits the sequences. It is used in both pre-training
and fine-tuning. In pre-training, it cuts the two sentences. In fine-tuning, it cuts the
input sequence as question and paragraph.

3- [MASK]: Mask token used in pre-training, which indicates BERT masks this token.

In pre-training, BERT uses WordPiece tokenizer for splitting the words into pieces that may
be a character, subword, or word, named ‘fokens’. WordPiece tokenizer bases on a
vocabulary file, which consists of possible tokens of the language. Every vocabulary item
has a unique id, and the output tokens of the tokenizer are replaced with their token-ids for
generating the input sequence, named “foken embeddings”. Although BERT is not a
sequential method like RNN or LSTMs, positional embeddings are build using the locations

of the words in the sentence, for preventing long-distance mappings with unnecessary tokens

25

in self-attentions. Figure 3.12 shows an example of two sentences, their tokens and
embeddings which are the inputs of the Transformer network. The text-based inputs of the
BERT are called “sequences”. Each sequence starts with [CLS] and has two sentences. To
highlight the owner sentence of the tokens as A or B, sentence embedding is used. In the
example, A represents the first sentence, B represents the second sentence. BERT adds all

these embeddings together for generating the final input embedding of the deep neural

network.
[MASK] [MASK]
Input ([CLS]] [my] [dogw [is ”cute ” [SEP]] (he][likes 1[play W (##ing]{ [SEP]]
Token
Embeddings E[CLS] Emy EIMASKI EIS Ecute E[SEP] Ehe EIMASKI Eplay E'=|ng E[SEP]
+ -+ + + + + + + + + +
Sentence
Embedding Er || Ea || Ea || Ea || Ea || Ea || Es || Es || Es = Eg
+ -+ + -+ + + + -+ + + +
Transformer
Positional
Er?nst;;zr;?ng EO El E2 E3 E4 ES E6 E? Es E9 E10

Figure 3.12. BERT input sequence example [2].

Figure 3.13 illustrates the full architecture of MLM. The system selects some tokens for
masking and then converts the input “New England Patroits ... night” to embeddings. The
summed embeddings are the input of the Encoder. Using a self-attention mechanism,
Encoder generates word representations, which are the input of the Decoder. Word
representations form the language model, and like neural network hyperparameter weights,
BERT optimizes these matrices using the standard back-propagation methods. With the
Softmax loss function, the decoder compares the real and predicted values of every masked

token and enhances the weights.

26

<CLS> "New" "England" "Patriots" ... <SEP> "Brown" "losses" "night"
Softmax
Decoder Embedding (Inverse)
FC layer
(0.1,04,..) (0.3,1.2,..)
Vector Representation h, h, h,
Attention
Segment Embedding I A] l A l A l
+ + + +
Position Embedding | g] l 1 l 2 ‘ 154
+ + + +
Word-piece Embedding I] l ‘ l | LJ
x X, X,
<CLS> "New" "England" "Patriots" ... <SEP> "Brown" "losses" "night"
0,0,1,0,..)

Figure 3.13. MLM architecture [26].

Next Sentence Prediction (NSP): For some NLP tasks such as Question Answering (QA)
and Natural Language Extraction (NLI), understanding the relationship between the two
sentences is essential. Therefore, in the pre-training task, the Next Sentence Prediction (NSP)
subtask is also performed. Considering A and B sentence pairs, there is a random choice;
sometimes B is left in its correct form and marked as IsNext, or sometimes B is replaced
with a random sentence picked from the corpus and marked as NotNext. Figure 3.14 shows
examples of B sentences; Not Random indicates IsNext and Random indicates NotNext.
IsNextSequence probability is calculated using Sigmoid. During NSP training, BERT uses
binary classification (Figure 3.15). In the figure, Classifier takes “C” as the input and using

a shallow classifier predicts whether B is the next sentence of A or not.

27

Kis aylarinda doga, birgok bakimlardan, uykuya yatmis gibidir.
Document 1 Toprak, karlar, buzlar altinda, donar, katilasir.

Topragin i¢indeki solucanlar, bocekler uyusup kalirlar.
A: ['Kig', 'aylarinda', 'doga', ',', 'birgok’, 'bakim', ‘##lardan', '),
‘uyku', ##ya', 'yat', '##mig', 'gibidir', ', 'Toprak', '), 'karl', '##ar', ',
'buzl', '##ar', 'altinda’, ',', 'dona’, '##r', ',', 'katila', '##sir', '.”]
B : ['Top', '##ra', '##gm', 'icindeki', 'solucan', ##lar', ',', 'bocekler’,
uyu', ‘##su', '##p', 'kalirlar', ']

Not
Random

Koronaviriis tiim diinyada reel ekonomileri etkiledi.
Document 2 Mart ve nisan aylarina ait veriler agiklandike¢a viriisiin ekonomiler tizerindeki
etkileri de ortaya ¢ikmaya basladi.

A : ['Koro', ##nav', '##ir', '##is', 'tim', 'diinyada’, 'reel’, 'ekonomi’,
'H#leri', 'etkiledi', !, 'Mart', 've', 'nis', '##an', 'aylart', '##na', 'ait',
'veriler', 'aciklandr', '##kea', 'virlisi', '"##n', 'ekonomi', '##ler’,
Random ‘jjzerindeki, ‘etkileri', 'de’, 'ortaya’, '¢ikmaya’, 'basladr’, '.’]
B : ['Toprak’, '), 'karl', '##ar', ',', 'buzl', ##ar', 'altinda’, ',', 'dona’,
'Hir', '), 'katla', '#isic', ', 'Top!, ##ra!, '##gin', 'icindeki', 'solucan’,
'#lar', '), 'bocekler', 'uyu', ‘##su', "##p', 'kalirlar', '.’] < From
document 1
['Reel', 'ekonomiy', '##e', 'ait', 'veriler', 'takip', 'edilirken’, ',',
'viriisil', '##n', 'yayilmasim', '##n', 'pi', '##k', 'yaptigt', 've',
'ekonomi', "lizerindeki', 'etkilerini', '##n', 'azalma’, '##ya',
'bagladigr’, 'konusunda', 'bir', 'goriis', 'de’, 'olusma', ##ya', 'basladr,
Random ']
B : ['Kig', 'aylarinda’, 'doga’, ', 'bir¢ok’, 'bakim’, '##lardan', ',',
uyku', '#ya', 'yat', ‘##mig', 'gibidir', ', "Toprak', ',', 'karl', '##ar', ',',
'buzl', '##ar', 'altinda’, ',', 'dona’, '##r', ', 'katila', '##sir', "', "Top/,
'#ra', '##gm', 'igindeki', 'solucan', ##lar', ',', 'bocekler’, 'uyu',
"Hsu', '#ip', 'kalirlar', '.”] < From document 1

Figure 3.14. Segment generation example.

28

IsNext/Not Next
Classifier (say, sigma function)

FC layer

Attention
1 4
[0 | [1 | 2 154
\ L1 1 -
X % X

<CLS> "New" "England" "Patriots" "win" ... <SEP> "Brown" ‘"losses" ... "night"

Figure 3.15. NSP architecture [26].

Parameters: The critical parameters of the pre-training task are in Table 3.1. In the pre-
training task, the maximum sequence length shapes the input vector size of the Transformer
network, and high values are needed to learn positional embeddings in long sequences.
BERT selects the minimum of maximum predictions per sequence and masked LM
probability multiplied by token size (in the formula below), for the number of word pieces
to mask. Do lower case and do whole word mask parameters belong to tokenization and
masking. In the NLP benchmarks, the published cased and whole word masked language
models have higher accuracies, notably for Asian languages such as Chinese or Arabic. The
current study is Turkish specific, and vocabulary file is wide enough to have most of the
words already; consequently, subword or whole word masking results similarly on

tokenization.

masking threshold 3.1)
= min (maximum predictions per sequence, number of tokens
* masked LM probability)

Table 3.1. Major parameters of the pre-training task [26].

Default

Parameter Details
value
The maximum total input sequence length
max sed leneth 384 after WordPiece tokenization. Sequences
—seq_leng longer than this will be truncated, and
sequences shorter than this will be padded.
max_predictions_per_seq 20 Maximum number of masked LM
predictions per sequence.
Whether to lower case the input text. Should
do lower case True be True for uncased models and False for
cased models.
do whole word mask False Whether to use yvhole wo.rd masking rather
- - - than per-WordPiece masking.
masked Im_prob 0.15 Masked LM probability.
Probability of creating sequences which are
Tk 0.1 shorter than the maximum length.
dupe_factor 10 Number of times to duplicate the input data

(with different masks).

29

Implementation Details: In the pre-training implementations, BERT has two subtasks:

create pre-training data and run pre-training. Create pre-training data reads corpus files

and vocabulary, then generates TensorFlow records which will be used in run pre-training

task. As seen in Figure 3.16, most of the steps are based on random decisions. The task

creates segments as [CLS] Sentence A [SEP] Sentence B [SEP], which will be used in the

Next Sentence Prediction (NSP) task. If the generated segment is larger than the maximum

sequence length configuration parameter, system truncates the input from front or end. When

the segment is ready, the system masks some tokens until the number of masked tokens

reached the threshold that is calculated using configuration parameters. Run pre-training

task reads the generated TensorFlow records and trains the system for MLM and NSP with

transformers, which will be detailed on the 3.2.2 section.

30

Vocabulary
Config
x, for for
dupe each

factor | document

Config

Vocabulary

Vocabulary ——»

Figure 3.16. Create pre-training data steps. Dices indicate random decisions. Brackets with

-for- indicate loops.

31

3.2.1.2. Task 2: Fine-tuning
Compared with pre-training, the fine-tuning step is speedy. For every down-stream NLP
task, by adding an extra layer to the pre-trained model, BERT tunes all the task-specific

parameters.

Down-stream NLP tasks can be grouped as following:

- Text Classification: Classification tasks, such as sentimental analysis, are sequence
level subjects and BERT trains the system with a very similar approach to Next
Sentence Prediction. For classification, BERT adds an extra layer at the top of the
system and the output of the /CLS] token is the class label. In Figure 3.17, (a) and

(b) are examples of text classification tasks.

32

Class Class
Label Label

llh E3 % EA N 68 .T?I

BERT

[eeall & | (o [&[] [&i]

G G L B B

G—
FE- EEE- @
|_'_l []

Sentence 1

il 5

BERT

el v |

Single Sentence

=]

Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,

(b) Single Sentence Classification Tasks:
SST-2, ColA

RTE, SWAG
Start/End Span
o
BE BB 58
BERT
fen | & | [& | B [{ &][5
— e ey g

ﬁ—
[ea]C2) -][] (o] ()

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

(—T‘j(—] e 'ii
BERT
EalE=d= []

iy
[CLS)][Tok 1][Tok 2] Tok N
[

I

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Figure 3.17. BERT down-stream tasks [2].

- Named Entity Recognition (NER): The NE may be people, groups, locations or an
organization. NER is a token-based task and marks all entities in the given text with
their corresponding NEs. For NER, BERT adds an extra layer at the top of the system.
If the token is a part of an NE, the output is the tag of the NE, and else the output is
NULL. In Figure 3.17, (d) is an example of NER task.

- Question Answering (OQA4): QA is a token-based task. The inputs are a question and a
paragraph; the output is the start and end positions of the answer span. In Figure 3.17,

(c) is an example of the QA task.

33

The focus of this thesis is the Question Answering down-stream task, which is also referred
as MRQA. For MRQA training, SQuAD is the most common data set. An example SQuAD
JSON file is in Figure 3.18. The SQuAD is an array of paragraphs and their question &
answer pairs. Every question has an id and every answer has a start-point marker. For the
answer, the reason for the start-pointer extra field is that the answer text may appear multiple
times in the paragraph. The field is calculated by counting the number of characters from the
beginning of the paragraph to the answer starting point (the indexOf function in
programming). The SQuAD file has two versions: 1.1 and 2.0. In version 2.0, there are some

unanswerable questions whose answers are NULL. This study focuses on SQuAD v1.1.

{
- data: [
- A
title: "Super_ Bowl 50",
- paragraphs: [
-
context: "Super Bowl 50 was an American football game to determine the champion of the National
Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver
Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24-10 to earn
their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the
San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league
emphasized the "golden anniversary" with various gold-themed initiatives, as well as temporarily
suspending the tradition of naming each Super Bowl game with Roman numerals (under which the game
would have been known as "Super Bowl L"), so that the logo could prominently feature the Arabic
numerals 50.",
- gas: [
- i
- answers: |
=l
answer_start: 177,
text: "Denver Broncos"

answer_start: 177,
text: "Denver Broncos"

answer_start: 177,
text: "Denver Broncos"

1,
question: "Which NFL team represented the AFC at Super Bowl 502",
id: "56bed4db0acb8001400a502ec”
b
-{
- answers: |
- A
answer_start: 249,
text: "Carolina Panthers”
Y
- A
answer_start: 249,
text: "Carolina Panthers"”
b
-{

answer start: 249,

Figure 3.18. SQuAD JSON file example.

Parameters: There are crucial parameters; shown in Table 3.2. In the fine-tuning task, the
input sequence of the Transformers is the union of the question and the paragraph; the output
is the answer. The maximum query length is the number of question tokens located in the

input sequence, and BERT ignores the longer part of the text. In the input sequence, a certain

34

number of tokens remain for the paragraph. If the paragraph is longer than the capacity,
BERT splits the paragraph into chunks by a sliding window approach. It uses the document
stride parameter to calculate the start point of the next chunk in the paragraph by adding to
the previous value at every turn. On predicting the answer, the selected span from the text
can be as much as the maximum answer length parameter, which is character-based despite

all other parameters are token-based.

Table 3.2. Fine-tuning SQuAD task crucial parameters [26].

Parameter Default Details
value
The maximum total input sequence length
after WordPiece tokenization. Sequences
max_seq_length 384

longer than this will be truncated, and
sequences shorter than this will be padded.
The maximum number of tokens for the
64 question. Questions longer than this will be
truncated to this length.

The maximum length of an answer that can
be generated. This is needed because the

max_query_length

max_answer_length

y start and end predictions are not conditioned
on one another.
doc stride When splitting up a l'ong document into
— 128 chunks, how much stride to take between
chunks.
Whether to lower case the input text. Should
do lower case True be True for uncased models and False for
cased models.
. The total number of n-best predictions to
n_best_size 20 . o
- = generate in the nbest predictions output file.
version 2 with negative False If true, the SQUAD examples contain some

that don’t have an answer.
If null-score — best_not _null is greater than
the threshold predicts null.

null score_diff threshold 0.0

Implementation Details: Figure 3.19 represents the step of the fine-tuning task. The system
reads the SQuAD JSON file and converts them to SQuAD objects after validation. There are
some rules for SQuAD samples:

- For training, each question should have exactly one answer.

- Answers should be in the documents. Because of some problems like Unicodes, if

answer is not in the document, system skips the sample.

35

Vocabulary

Config

x, for for
dupe each
factor | document

Config

Vocabulary

Vocabulary —»

Figure 3.19. Fine-tuning steps.

A SQuAD object is in Figure 3.20: gas_id is the question ID, doc_tokens is the tokenized
array form of the paragraph, start position and end_positions are the begin & end indexes

of the answer in the doc_tokens array.

36

qas_id 56bf10f43aeaaal4008c9501
question_text Super Bowl 50 hangi ay, giin ve yil gergeklesti?
doc_tokens ['Super', 'Bowl', '50,', '2015', 'sezonunda’, 'Ulusal', 'Futbol', 'Ligi',

'(NFL)', 'sampiyonunu', 'belirlemek’, 'i¢in', 'bir', 'Amerikan', 'futbol', 'oyunuydu.', 'Amerikan’,
'Futbol', 'Konferansi', '(AFC)', 'sampiyonu', 'Denver', 'Broncos,’, 'lgilincli', 'Super', 'Bowl',
'sampiyonlugunu', 'kazanmak', ‘i¢in', 'Ulusal’, 'Futbol', 'Konferansi', '(NFC)', 'sampiyonu',
'Carolina', 'Panthers', "24-10'n", 'yendi., 'Oyun', '7', 'Subat', "2016'da", 'Santa', 'Clara,',
"California'daki", 'San', 'Francisco', 'Korfez', "Bolgesi'ndeki", "Levi's", "Stadi'nda", 'oynandu.,
'‘Bu', '50.", 'Siiper', 'Kase', 'oldugu’, 'i¢in,', 'lig,', '¢esitli', 'altin', 'temal1', 'girisimlerle', "altin’,
'yildoniimi™, 'ni', 'vurguladt', 've', 'her', 'bir', 'Super', 'Bowl', 'oyununu', 'Romen’, 'rakamlariyla’,
'(oyunun', "olarak’, 'bilinen", 'Siiper', 'Kase', 'L', ""),', 'boylece', 'logo’, 'belirgin', 'sekilde’, 'Arap',
‘rakamlarma’, '50', 'sahip', 'olabilir.’]

start_position 39

end_position 41

Figure 3.20. SQuAD object example.

The input sequence length of the neural network is configured by max_seq length. In Figure
3.21, the tokens field is the array form of the tokenized input sequence. In tokens ids array,
the tokens are replaced with their vocabulary IDs. There are three separator tokens: [CLS],
[SEP], [SEP]. The first part, between [CLS] and [SEP] tokens, is the question. The second
part, between [SEP] and [SEP] tokens, is the paragraph. In segment ids, the question is
marked as 0, the paragraph is marked as 1. If the input sequence length is smaller than the
max_seq length parameter, it is padded with 0’s as seen in the input mask field. The start

and end position fields are the indexes of the answer in the array.

37

tokens
includes tokens
[CLS] Question tokens [SEP] Context tokens [SEP]

segment_ids

Seperates question and context

0 for [CLS], question and first [SEP]

1 for context and second [SEP]
00000...0000 0 1111...1111 1

input_ids
same as tokens, but tokens are replaced with token id’s taken from vocabulary file
3458 7854 4521 ... 4578 420 568 7854 ... 859 4

input_mask
0 for padding tokens
1 for real tokens
I 1111...1111 1 1111...1111 1 € if no padding

start position
Answer start position. 0 if answer is not present in this chunk.

end position
Answer end position. 0 if answer is not present in this chunk.

Figure 3.21. Fine-tuning chunks.

In the input sequence, the capacity reserved to the paragraph is the remaining slots from the
question + three delimiter tokens. Question length is dynamic and can be up to maximum
query length. The capacity of the document is calculated using formulas 3.2 and 3.3. The
paragraph may be longer than its capacity. To deal with this problem, BERT uses a sliding
window approach. The system uses chunks as dividing the paragraph up to capacity sized
parts. In the paragraph, the start point of every chuck is calculated by the doc_stride

parameter.

maxTokensForDoc 3.2)
= maxSeqLength
— len(questionTokens) — 3

contentLength (3.3)
= min (# of remaning paragraph tokens, maxTokensForDoc)

38

If the doc_stride parameter is set to a smaller value than the capacity, there will be overlaps
between chunks. As seen in Figure 3.22; if the capacity is 10, every chunk has a maximum

of 10 tokens. If the doc_stride is 5, 5 tokens will be overlapping with previous chunks.

Chunk 1
| Super | Bow | ##] | 50 | | 2015 |sezonunda| Ulusal | Futbol | Ligi |
Chunk 2
| 2015 |sezonunda| Ulusal | Futbol | Ligi | (| NF | HHL |) |sampiyonul
overlapping part
\
[|
Super Bow #ill 50 . 2015 sezonunda Ulusal Futbol Ligi (NF H#HL) sampiyonu
#inu belirlemek icin bir Amerikan futbol oyunu #iydu Amerikan Futbol Konferanst (AFC)
sampiyonu Den #itver Bron #ico #its . iigiincii Super Bow ## e & azanmak icin Ulusal
Futbol Konferanst (NF #C) sampiyonu | Carolin #a Panth #ters 24 - 10
u yendi Oyun 7 Subat 2016 ' da Santa Clara R California ' daki
San Francisco Kérfez Blgesi ' ndeki Levi ' s Stad: ' nda oynand: . Bu
50 . Siiper Kas e oldugu igin R lig . cesitli altn temalt girigimler il
altn yildoniimil nii vurgula Hitdi ve her bir Super Bow ##ll oyununu Rome #in rakamlart
#iyla (oyunun olarak bilinen Siiper Kas e L) . boylece logo belirgin sekilde
Arap rakamlart #ina 50 sahip olabilir

Figure 3.22. Overlapping example.

The final inputs of a fine-tuning task are shown in Figure 3.23. Run fine-training task trains

the model with transformers, which will be detailed in the 3.2.2 section.

39

question
Super Bowl 50 hangi ay, giin ve y1l gerceklesti?

answer
7 Subat 2016

tokens

[CLS] Super Bow ##1 50 hangi ay , giin ve yil ger¢eklesti ? [SEP| Super Bow ##1 50 , 2015 sezonunda Ulusal Futbol Ligi

(NF ##L) sampiyonu ##nu belirlemek i¢in bir Amerikan futbol oyunu ##ydu . Amerikan Futbol Konferansi (AFC)
sampiyonu Den ##ver Bron ##co ##s , liglincli Super Bow ##] sampiyonlugunu kazanmak i¢in Ulusal Futbol Konferansi
(NF ##C) sampiyonu Carolin ##a Panth ##ers 24 - 10 ' u yendi . Oyun 7 Subat 2016 ' da Santa Clara , California ' daki
San Francisco Korfez Bolgesi ' ndeki Levi ' s Stadi ' nda oynand1 . Bu 50 . Siiper Kas ##e oldugu i¢in , lig , ¢esitli altin
temali girisimler ##le " altin y1ldoniimii " nii vurgula ##d1 ve her bir Super Bow ##1 oyununu Rome ##n rakamlar1 ##yla
(‘oyunun " olarak bilinen " Siiper Kas ##e L ") , boylece logo belirgin sekilde Arap rakamlari ##na 50 sahip olabilir . [SEP]

input_ids

32488 9580 76 618 2544 699 30451 351 6 121 3650 30371 4 2488 9580 76 618 30451 366 408 772 1001 604 30517
25497 597 30675 1692 835 5601 17 7 316 455 1471 3570 30475 316 1001 5973 30517 17472 30675 1692 4111 1245
10731 1144 30 30451 594 2488 9580 76 5044 7967 17 772 1001 5973 30517 25497 501 30675 1692 14994 13 28970
1452 409 30531 138 30357 375 4770 30475 2281 147 271 418 30357 8 4019 19015 30451 13261 30357 165 888 5837
15207 1373 30357 1928 10799 30357 459 17581 30357 109 5462 30475 22 618 30475 1076 3376 14 77 17 30451 1294
30451 255 1026 20059 19009 81 30671 1026 15140 30671 1792 8896 140 6 120 7 2488 9580 76 27092 14217 9 14821
111 30517 3864 30671 11 433 30671 1076 3376 14 711 30671 30675 30451 1406 20320 3203 167 1092 14821 93 618
190 837 30475400
000
000
000000000000000000000000000000000000

input_mask
rrrr11rr1rr1rrrrrrrrrrrrrrrILIILIILIILILIILLILILILILIIIIIIILIILLLG
trrr11rr11rr1rryrrrrrrrrrrrrILIILIILITLILLILLILIILILIIIIIIIILLLG
11111111111111111111111111111111000000000000000000000000000000000
000
000
000

segment_ids
00000000000OOGOOTIIILIILITIITIITIITIITITLIILIILILITILIIITIITITITIILILLIITIILITILIITITITITITITT1
rrrirrrrrrrrrrrrrrrrrrrrrrrrr LI ILILIILIILILILILILILILILILILIILILIILIIIIIIILILL
1111111111111 1111111111111111111000000000000000000000000000000000
000
000
000

start position
78

end position
80

Figure 3.23. Fine-tuning input example.

3.2.2. Attention & Transformers

Attention is a method that has given the most impressive results in the deep learning world
in recent years, and its popularity is increasing day by day. Usage areas range from image
recognition to natural language processing. The most successful practice of the attention is

the machine translation problem. Attention aims to extract a summary of the input sequence

40

that is given to the Encoder architecture and reinterpret this summary in the target Decoder
architecture. The most significant disadvantage of the fixed-length content vectors used in
the traditional Encoder & Decoder architectures is that if the input sequence is long, the
mechanism begins to forget some parts of the context after a while. Attention tries to solve
this problem. The attention focus on finding the most critical parts of the input while
summarizing the sequence, and the name 'Attention' comes from 'we pay more attention'

quote.

Encoder, Decoder and Attention are the essence of Transformer architecture. For machine
translation (Figure 3.24), the system converts a text from one language (e.g., English) to
another (e.g., Turkish). The Encoder takes the input sequence in English and converts into
an n-dimensional vector. The Decoder receives this vector and creates an output sequence,
which is the output in Turkish. The n-dimensional vector is like an imaginary language,

which both Encoder and Decoder know very well.

NULL

n-dimensional

vector D P i e

Encoder > > > H %» 7/>]Z» %]L Decoder
A [' | { [I I i [
T T v | v | i “ ‘v ‘ v

T B

Embeddings The Js“weathé,r is | very | nice

T‘ T T \V \,f“

Hava c¢ok giizel

Figure 3.24. Encoder & Decoder architecture.

Attention detects the relevant parts of the given input sequence. In the example of ‘She is
eating a green apple.’, there is a high attention between eating and apple but low attention
between eating and red (Figure 3.25). In an attention-based Encoder & Decoder architecture,
there are weight matrices, which keeps the semantical relation densities of the words (Figure
3.26). By highlighting the significant parts of the sequence, these weight matrices improves

Decoder’s performance.

41

Low
attention

She is eating a red apple

|
High
attention

High
attention

Figure 3.25. Low and high attentions in an example.

attention weights
> |

NULL
|

n-dimensional
vector

Decoder

Encoder i > >
| |

b \
Embeddings The ‘;“weathejgr is /‘ very | nice |

T S v v U oy o\

| | | |
Hava cok giizel

Figure 3.26. Attention-based. Encoder & Decoder architecture for machine translation.

The steps of a machine translation using attention-based Encoder & Decoder architecture is:
Step 1: The encoder gets the input sequence and generates hidden state vector; [hi, hz, hs,
hs...]
Step 2: Feed Forward Neural Network generates a score vector of the hidden vector using
the previous hidden state of the decoder; [s1, s2, S3, S4...]
Step 3: Softmax Layer generates the attention weights; [e1, €2, €3, €4...]
a) All the weights lie between 0 and 1, i.e., 0 <e1, €2, €3, €4, €5 < 1
b) All the weights sum to 1, i.e., e1textestestes = 1
Step 4: Context vector is calculated as summarizing the multiplication of h and e vectors;
CV.

CV =e;*h; + e; xhy, + e3*xhz +e,xh, + e5 xhg 3.4

42

Step 5: Context vector is concatenated with the output of the decoder previous steps; CV +
<NULL> for the first step, CV + <NULL The> for the second step, CV + <NULL The
weather> for the third step.

Step 6: The decoder generates the output text and also the next hidden state; The for the first

step, The weather for the second step.

In a traditional RNN Seq2Seq Encoder&Decoder model, everything is crammed into a single
context final state as in Figure 3.27. In an attention-based Encoder&Decoder model, there

are multiple hidden states which look at everything, as in Figure 3.28.

Figure 3.27. RNN Seq2Seq Encoder&Decoder example.

43

Decoder
] ! !
Y1 Y2 Ym
S _S‘ Sy _B’ Sm
Context; Context, Context;

h — h, —— h,

X1 Xy Xm
Encoder

Figure 3.28. Attention-based Encoder&Decoder example.

There are three different attention types: Hard/Local Attention focuses on a part of input like
a patch of an image; Soft/Global Attention focuses on entire input; Self/Intra Attention
focuses on different positions of the input. Modern NLP architectures use a self-attention

mechanism.

Instead of using recurrent network structures, Transformers use the attention mechanism.
The reason is the disadvantages of existing recurrent networks, such as depending on the
time series, sequential process over previous or next words. Transformer networks support
parallelism because of no recurrence. Transformers facilitate long-range dependencies, and
there is no gradient vanishing or explosion. There are also direct connections between

components, called residual connection. As a result, fewer steps are enough for training.

Transformer networks are a stack of encoder and decoders which have self-attention
mechanisms and Feed-Forward networks. Figure 3.30 shows an example of an encoder stack
that has 12 layers and a maximum sequence length set as 512. The embedding process is

only done at the bottom-most step of the encoder. The embedding vector size is a

44

hyperparameter, which we can fine-tune; for the examples, it is set to 512. Every encoder
has two layers; a self-attention and a Feed-Forward Network. The input sequence of the
encoder includes the words with their positions. In the self-attention layer, there are
dependencies between the words. These dependencies are not present in the Feed Forward

Network layer, and some operations can be done in parallel in the network.

Encoders Stack T T I T T
K| v N
. s
[]
[]
™ Layer 2
Layer 2
| | | | | I | |
~ Layer 1
Layer 1
| | | | Decoders Stack

T Embeddings with positions
Xn

T

T Embeddings

Hava ¢ok giizel Input

Figure 3.29. Inputs of a Transformer Network.

After generating and summing the tokens and positions embedding vectors of the input, the
final vector is the input of the stack’s bottom encoder, the green X, vectors in the Figure
3.29. There is a chain approach; the output of the first encoder is the input of the second
encoder, the output of the second encoder is the input of the third encoder, and the output of
the last encoder is the input of all the decoders. The linear layer at the top of the decoder
stack, converts the output of the decoders to logits vector that has the same size as the
vocabulary file. After the Softmax layer converts the scores into probabilities, the system

choses the element that has the highest probability.

— Hava ¢ok
| X | ——

X1 X2

The weather is very nice

512
\ Maximum sequence length

Figure 3.30. BERT encoder & decoder stacks for a machine translation example.

Predicted word

Log probabilities
Logits

weather

| Decoder stack output |

Figure 3.31. Decoder layers of a transformer network.

45

46

The subcomponents of an encoder and a decoder are similar (Figure 3.32). With x input
vectors, self-attention computes z vectors. After the z vector is computed, a 10 percent
dropout is applied. In order to prevent early summarization of the input, x vector is added to
the z vector with residual connections shown as dotted lines in the figure. Then, to increase
the stability, the mechanism normalizes the output. For reducing the number of feature maps,
there is a Feed-Forward Network (FFN) after each self-attention layer in both encoders and

decoders.

A decoder has a different layer from Encoder, named Encoder-Decoder Attention. This layer
gets the outputs of the encoder (K and V matrices) and combines with Decoder self-attention
results (Q matrices). This operation inhibits Decoder to look further positions in the sequence
when generating the output (Table 3.3). If that is an English to Turkish machine translation
example; the task of Decoder is generating the next word. In every timestamp t, the Decoder
gets the output of the Softmax layer of timestamp t-1. The Softmax layer at the top of the

Decoder generates the next token, like a typical Encoder & Decoder architecture.

Decoder
Encoder — ,
T T T T Add & Normalize
N L

N Sl N Feed Forward Network
i | | | | !
5 - T .
: Feed Forward Network P ")
: ! Add & Normalize

‘ ‘ Encoder-Decoder

! Attention
o > Add & Normalize | | | |

i omeee > Add & Normalize
Loa = | L L

i Self-Attention ' Self-Attention

1 2] o e e 512 1 2] e oo 512

Figure 3.32. Post operations after self-attention.

47

Table 3.3. Machine translation decoder example.

Step Input of the decoder Output of the decoder
1 <CLS> Diisiinen
2 <CLS> Diisiinen Diisiinen makineler
3 <CLS> Diisiinen makineler Diisiinen makineler

For each token in the input sequence, three vectors (q, k, v) are created by multiplexing three
weight matrices (WQ, WX, WV) with the embedding vector (x1, X2, ..., Xn).
- Query vector (q): The vector of the source token which is paid attention.
- Key vector (k): The vector of the target token with which the attention will be
calculated.

- Value vector (v): Result vector.

The calculation steps of the Self-attention are based on the equation 3.5.

Attention(Q,K,V) = softmax (?/E_T) %4 (3-5)
k
Step 1: System multiplies embeddings vectors (x1, X2, ..., Xn) with W, WX and WV matrices
to calculate Query (qi, q2, ..., qn), Key (ki, ko, ..., kn) and Value (vi, v2, ..., va) vectors.
Training process optimizes W?, WX and WV matrices like NN hyperparameter weights.
Figure 3.33 shows the details. The vector dimensionalities are configurable. In the example,
the input and output vectors have dimensionality of 512; q, k, and v vectors have

dimensionality of 64.

48

WY e X

WK | @ || X —— Il DD DD D
k, k, ks k4

wWQ | @ || X —— N N N

X T O T T ITrII
X1 X3 X4

X2 4

oottt
Hava ¢ok giizel

Figure 3.33. Self-attention steps (1).
Step 2: For each source word (1), system calculates scores of each target word (j) in the input
sequence. The formula of the score is; dot product of gi and k; vectors of each source word i

and each target word j.

Score = QKT (3.6)

For the first word ‘Thinking’, the mechanism calculates scores for all words. For the second
word ‘Machines’, the mechanism again calculates scores for all words (Figure 3.34).
Step 3: For normalization, system divides the scores by the square root of vector

dimensionality dx = 64 (Figure 3.34).

) (3.7)
72

Divide by 8 =

Step 4: System applies the Softmax function. Softmax result shows the effect of the target
word to the selected position (Figure 3.34). In the example, to the first word, the effect of
‘Thinking’ is 0,88, but ‘Machines’is 0,12. The Softmax results in the figure are only for the

first word, and the system repeats same operations for other words.

Softmax = softmax (

KT> (3.8)
72

49

Step 5: For eliminating unnecessary words, system multiplies the Softmax result with Value
vectors (Figure 3.34). As a result of the Softmax score of the first-word is higher than the
second word, its value vector is more visible in order to indicate its importance factor in the

figure.

. <QK T) (3.9)
Attention(Q,K,V) = softmax %4

/.

Step 6: System sums finals vectors for attention (Figure 3.34). In z;, vi has more density

than v».

Step 6: sum(v) |— [T

Step 5:sV — T TET

f 1 1

Step 4: softmax (n) |—

Step 3:\/% —
I B
Step 2: QKT e

I
ki ko ks 4

-—

X]
7

Hava

Figure 3.34. Self-attention steps (2-6) for ‘Thinking’.

50

BERT wuses a multi-layered bidirectional Transformer encoder-based architecture.
BERTgasEe configuration has 12 Transformers layers with 12 attention-heads. Let's assume
that, the input is ‘Yesil elmay: seviyorum. Daha lezzetliler. - I like green apples. They are
more delicious.’. Figure 3.35 shows the output of Transformer-layer = 0 and Attention-head
= 0. The highlighted connection indicates a strong relationship between tokens: yesi/ (green)
and elma (apple). The colored box bar represents the 12 attention heads. The visualization

changes when the selected token or attention head is changed.

Layer: .

[CLS] [CLS]
Yesil ¢ Yesil
elma elma
##y ##y

seviyorum seviyorum

[SEP] [SEP]

Daha Daha

lezzetli lezzetli

##ler #i#tler

[SEP] [SEP]

Figure 3.35. Transformer-layer = 0 and Attention-head = 0 output.

In the lower layers of the transformers, there connections are usually with previous or next
words. In the higher-level layers, the semantic relations become more visible. But, there isn’t
a similar hierarchy between the attention heads in the same layer. Attention heads analyze
the same input from different perspectives within the scope of the given layer. Figure 3.36
shows Transformer-layer = 4 and Attention-head = 0 output: there is a connection between
vesil (green) and lezzetli (delicious). Figure 3.37 shows Transformer-layer = 11 and

Attention-head = 6 output: there is a connection between yesil (green) and seviyorum (like).

51

Layer:
Il H Ol

[CLS] [CLS]
Yesil ¢ Yesil
elma elma
##y #i#y

seviyorum seviyorum
[SEP] [SEP]
Daha Daha
lezzetli lezzetli

##ler #itler

[SEP] [SEP]

Figure 3.36. Transformer-layer = 4 and Attention-head = 0 output example.

Layer:

[CLS] [CLS]
Yesil Yesil
elma elma
##y ##y

seviyorum seviyorum

[SEP] [SEP]

Daha Daha

lezzetli lezzetli

#i#tler ##ler

[SEP] [SEP]

Figure 3.37. Transformer-layer = 11 and Attention-head = 6 output example.

When using multi-headed attention, all weight matrices and vectors of the single-headed
attention have a new dimension representing the attention-heads:
- The q, k, and v vectors are converted to matrices.
- Q, K, and V weight matrices are converted to a set of matrices that have a matrix for
every attention-head.
Every word (i) has a z; vector, and the final output is a matrix. When multi-headed attention

is used, there are # of attention heads * z matrices. Different from single-headed attention,

52

for generating the final Z matrix output, the mechanism concatenates all z matrices and

multiples with the W° weight matrix.

Firstly, there were two pre-trained models published by Google: BERTgase and BERTLaArGE
(Table 3.4). Later, their numbers are increased to 6 (Table 3.5). BERTgase has a similar
model size as OpenAl GPT. BERTgase and BERTLarGE use the same architecture and only

their parameter counts are different.

Table 3.4. BERT pre-trained models (earlier).

Model Layers Hidden layer Attention Total
nodes heads parameters
BERTgase 12 768 12 110M
BERTLarge 24 1024 16 340M
Table 3.5. BERT pre-trained models (now).

Counts Hidden layer Hidden layer Hidden layer Hidden layer
nodes=128 nodes=256 nodes=512 nodes=768

Layers=2 BERTriny

Layers=4 BER Twini BER Tsman

Layers=6

Layers=8 BERTyedium

Layers=10

Layers=12 BERTBgase

53

4. ANALYSIS AND DESIGN

This section gives information about the approaches that we’ve used in the study and the
design of the system. Section 4.1 summarizes BERT, and Section 4.2 describes how BERT
solves some morphological problems of Turkish. Section 4.3 presents the data sets used in
the study. Section 4.4 defines the training procedures, and Section 4.5 lists the training

parameters. Last, Section 4.6 gives some information about our evaluation metrics.

4.1. BERT

Bidirectional Encoder Representations from Transformers (BERT) was proposed by Google
in 2018. First, system generates a context-sensitive language model, called “pre-training
task”. Then, the system can perform a series of NLP tasks, called “fine-tuning task”. Figure
4.1 presents the architecture of BERT. In this thesis, we trained a BERT model that has 110

million parameters, 12 transformer layers with 12 attention heads.

Pre-training Fine-tuning
Traini Next Sentence Liillidl:lge
raming Prediction — \# Model

Data Set

QA

Language Model

Training Fine-tuning

Data Set

Figure 4.1. BERT Architecture.

Pre-training: BERT is an unsupervised deep learning method that builds bidirectional
transformer-based language models based on Contextualized Word Embeddings (CWE). A
language model predicts the probability of a word in a given context. After tokenization of
the input text using the WordPiece algorithm, BERT masks some tokens randomly. The
recommendation is masking 15 percent of the content. Then, the Transformer network
updates the word representation weight matrices during the prediction of each masked token
with a Softmax classifier. The Softmax loss function only counts the predictions of the

masked values and ignores the unmasked words' predictions. This training operation based

54

on masking is named as Masked Language Model (MLM) training. The real success of
BERT comes from the MLM start-of-art idea. In parallel to MLM training, BERT determines
the relationships between the sentences using sentence labels in the training data. This is a
binarized task called Next Sentence Prediction (NSP). Training of MLM and NSP is
called pre-training, and the output model is operable with a simple fine-tuning for many

different NLP tasks.

Replaced with a Not changed Masked

random word

Kis aylarinda doga , Dbirgok bakim ##lardan , uyku ##ya yat #H#mug gibidir
v 4 "'

Kis dona doga , bircok bakim ##lardan , wuyku [MASK] yat ##mis gibidir

Figure 4.2. Token replacement examples.

Instead of always masking, BERT replaces the mask candidate word; 80 percent of the time
with [MASK], 10 percent of the time with a random subword picked from vocabulary, and
the remaining 10 percent of the time lefts as unchanged. This mitigation prevents mismatch

between pre-training and fine-tuning tasks; because [MASK] only performs in pre-training.

The Transformer is a stack of encoders that have multi-head self-attentions, therefore unlike
traditional sequential approaches that only care unidirectional as the previous or next words,
the self-attention evaluates the input as a whole and discovers which parts of the input are
more relevant with the masked word. Because of multi-heads, every attention head
separately computes attention with different weight matrices and then concatenates the

results together.

Traditional word embeddings, also called shallow representations, only focus on lower
layers of the model; hence they cannot capture higher-level information such as long-term
dependencies, negation, or anaphora from scratch data. In BERT, layers are in a chained
stack logic; the input of the lowest layer is directly the embedding, and the output of each
layer is the input of the next layer. On language model training, the transformer layers are

trained all together with massive data; consequently, the lower-levels are more concerned

55

with the syntactic tasks such as connections of words, and the higher-levels are focused on
more semantic relations of the context. In transformers layers, for preventing early

summarization of the data, there are residual connections from inputs to outputs.

Fine-tuning: When the language model is generated, BERT can do a particular NLP task
by using a supplementary data set. During the fine-tuning procedure, the weighs of the BERT
network are slightly modified.

Question Answering is one of the down-stream tasks of fine-tuning. Like pre-training, BERT
again uses transformers for training. In the preparation of MLM, the input is a tokenized text
which has a certain amount of masked subwords, and the output is the prediction of the
masked words. In QA training, the input is a tokenized sequence, which is the union of
question and paragraph, and the output is the prediction of the answer. In fine-tuning, this
time, BERT optimizes the weights to the appropriate values for finding the most trustworthy

answers to the given questions and paragraphs.

In this study, because of its state-of-art solutions and highly accurate results in English and
Chinese benchmarks, we decided to train a Turkish language model then fine-tune it for a
question answering system using BERT and evaluate with a banking sector QA data set, as
seen in Figure 4.1. We have trained a model that can solve the MRQA problem and give
high success rates for Turkish, by taking the examples of the studies made for English so far.
BERT, which is the most used in current MRQA studies and a reference model in similar
studies in other languages, was taken as the basis of this study. The datasets will be detailed

in the 4.3 section.

4.2. WORD SENTENCE DISAMBIGUATION (WSD) IN BERT

In Turkish, many of the difficulties arise from being an agglutinative language and having a
rich but complex morphology, including a comprehensive set of possible suffix tags and
diversity of constituent orders in inverted sentences. Part-of-speech (POS) tagging is a
crucial preprocess for most NLP tasks, which is the process of analyzing the text
morphologically and dividing it into parts. Compared to Turkish, it is easier for

morphologically simpler and limited languages such as English. Morphological

56

disambiguation is the most challenging Turkish language problem that is essential for NLP
applications like Word Sense Disambiguation (WSD), syntactic parsing or spelling
correction. Some rule-based methods partially solve morphological disambiguation for
Turkish, such as Zemberek. ‘Cekoslovakyalilastiramadiklarimizdan misiniz?”’ is one of the

longest word in Turkish and Zemberek output is in Figure 4.3.

cekoslovakyalilastiramadiklarimizdan [Cekoslovakyali:Noun,Prop]
cekoslovakyali:Noun+A3sg|las:Become
—Verb|tir:Caus
— Verb+ama:Unable|dik:PastPart
—Noun+lar:A3pl+imiz:P1pl+dan: Abl

misiniz [mi:Ques]
mi1:Ques+Pres+simiz:A2pl

? [?:Punc]
?:Punc

Figure 4.3. Morphological Disambiguation result of

‘Cekoslovakyalilastiramadiklarimizdan misiniz?’ using Zemberek.

Word embeddings have become famous, as they enable the input text to be converted into a
numerical form and easily inserted into mathematical operations for neural networks. After
major innovations in NLP, state-of-art solutions such as BERT provide Contextualized Word
Embeddings (CWE), which includes semantic vector representations of the words depending
on their context. CWE captures the polysemy, in which although both are the same word,
the embedding vector differentiates in different contexts. The word embeddings of the ‘bank’
should be different for a finance office and a seat in the park. BERT trains a language model,

which is simply a set of CWEs.

For some NLP tasks such as question answering, machine translation or text classification,
Word Sense Disambiguation (WSD) is sufficient rather than fully solving the morphological
disambiguation problem. In modern NLP, Contextualized Word Embeddings solve the Word
Sense Disambiguation problem [29]. In considering all these stated circumstances; BERT is
a solution for MRQA by overcoming Word Sense Disambiguation problem using
Contextualized Word Embeddings. For generating a BERT language model that includes
CWESs, the following approaches are combined;

- A subword-based embedding system: WordPiece.

57

- Masked Language Model (MLM) & Next Sentence Prediction (NSP) trainings.

- Bidirectional Transformers and Self-Attention.

A subword-based embedding system: WordPiece is a new generation word segmentation
algorithm that builds a language's subwords, which can be a word, a syllable, or a single
character. The algorithm divides the text into characters and then systematically brings them
together in order to create combinations, which are the candidate subwords. The candidate
subwords are applied one-by-one to the training data, followed by calculating the likelihood
of the system. Which of them most increases the likelihood is put into the vocabulary.
Vocabulary size is a parameter, and the subword selection process is repeated until reaching
the given configuration. Although WordPiece is not a morphologically perfect POS tagger
for Turkish, it is satisfactory for the tokenization of the input sequences. Figure 4.3 shows the
tokenization result of ‘Cekoslovakyalilagtiramadiklarimizdan misiniz?” using WordPiece
algorithm. In the figure, ## indicates the subword is a suffix. For covering the unknown

words that the tokenizer cannot handle, there is also an Out-Of-Vocabulary (OOV) subword.

Cek ##os ##lovak #Hyali ##lastir ##amadi ##Hk
##larimizdan misiniz ?

Figure 4.4. WordPiece Tokenizer result of ‘Cekoslovakyalilastiramadiklarimizdan

misiniz?’.

Masked Language Model (MLM) & Next Sentence Prediction (NSP) trainings: After
tokenization of the input text with the WordPiece algorithm, BERT randomly masks some
tokens, followed by predicting the original value of these masked tokens. While the
prediction of each masked token, the transformers network optimizes the word
representation weight matrices with a Softmax classifier that compares the predicted and the
original tokens. Word representation weight matrices are the base of the Masked Language
Model (MLM). The word representation weight matrices are Contextualized Word
Embeddings (CWE), which have semantical dynamic information for the language and
support polysemy. In parallel to MLM training, BERT determines the relationships between
the sentences using sentence labels in the training data. The Next Sentence Prediction (NSP)

is a binarized task and uses a sigmoid classifier.

58

Bidirectional Transformers and Self-Attention: The transformers network is a stack of
multiple layers. There is a logical hierarchy between the layers; each layer's output is the
input of the next layer. The lower-levels are more concerned with the syntactic tasks such as
connections of words, and the higher-levels are focused on more semantic relations of the
context. Each transformer layer has encoders based on multi-head self-attentions. Unlike
traditional sequential approaches that only care unidirectional as the previous or next words,
the self-attention evaluates the input as a whole and discovers which parts of the input
sequence are more relevant with the masked word. Using multi-heads, every attention head
separately computes attention with different weight matrices and then concatenates them

together for a larger perspective.

Figure 4.5 shows the transformers architecture of BERT pre-training task. The inputs are
two masked sentences labeled as “B is the next sentence of A” or “not”. The output of the

system is a masked language model that also has information about sentence relations.

Masked Sentences
Aand B

—

Bi-directional
Encoder 1

Multi-head 1

Multi-head 12

— s —p-

Bi-directional
Encoder 12

Multi-head 1

Multi-head 12

—

Masked token
prediction

Next sentence
prediction

4.3. DATA SETS

Figure 4.5. BERT pre-training architecture.

The concerning problem of building a question answering system with deep learning
methods is the preparation and adaptation of the training data to the chosen training

procedure. Especially for NLP tasks, the quality of the training data has a significant impact

59

on the system's outcome. Regarding this matter, one of the most time-consuming parts of
this thesis study was the generation and customization of the training data. The training data
can be defined under two main headings: the corpus set used to train the language model,

and the data sets used to fine-tune the system for the QA task.

Language Model Data Sets: Table 4.1 represents the corpus set used in building the
language model. Wikipedia Corpus is the dump of Turkish Wikipedia articles published on
Wikimedia publicly [30]. News Corpus is a vast collection of online Turkish newspapers.
Economy Corpus is the smallest one specific to the banking domain, collected from several

economy blog websites. All corpora are in Turkish.

Table 4.1. Language model data sets.

Name Size Content Information

e o Turkish Wikipedia dump
Wikipedia 456,5 MB | ~4,5 M sentences 922335 pages
Corpus (Tr)

(dump date: 08/2019)

News Corpus

(Tr) 2,5GB ~20 M sentences News articles collection in Turkish
Economy 15,5 MB ~270K sentences Turkish economy blogs from Web
Corpus(Tr)

Fine-tuning Data Sets: Table 4.2 represents the data sets used in fine-tuning the model for
question answering. The Stanford Question Answer Data Set (SQuAD), published in 2016,
is a fundamental resource for MRQA researches. The SQuAD is an array of paragraphs and
their question & answer pairs. It is available in 2 versions: in version 1.1, the answers to each
question are apparent, and in version 2.0, some questions have no answer. In this study,
SQuAD vl.1 is the main format used, and we converted all data sets to this form as described

in 5.2 section.

SQuAD (Tr) is the Turkish translated from of original SQuAD, which is in English. The
SQuAD data set is generated by Stanford University, which contains more than 100,000 real
question-answer pairs created by humans over 536 Wikipedia passages. NewsQA (Tr) is the
Turkish translated from of original NewsQA, which is in English. NewsQA data set is
generated by Microsoft Research, which contains 120K question-answer pairs created by

humans over CNN news articles. Banking Sector QA (Tr) is the data set created by a private

60

Turkish bank's employers, supervised by the authors of this study. The documents used in

the data generation are the tutorials and legislation archives of the bank.

Table 4.2. Fine-tuning data sets.

Name Size | Content Information
490 documents Q&A from paragraphs from
24,42 | 20963 paragraphs Wikipedia articles.
SQUAD (Tr) MB | 45872 questions (Machine translation from English
56117 answers to Turkish)
8379 documents .
19,66 | 8343 paragraphs Q&A from artlcle.s from CNN news.
NewsQA (Tr) . (Machine translation from English
MB | 21270 questions to Turkish)
21270 answers
679 documents
Banking Sector QA 1637 paragraphs Q&A. figgy*documents from the
5MB d banking sector.
(Tr) 17708 questions (in Turkish)
17708 answers

SQuAD and NewsQA datasets are machine translated datasets, and translation process

harms some of the contexts as expected. The cleanup procedure of the dirty data is described

in the 5.1 section. Table 4.3 compares the numbers of the elements before and after the

machine translation operations; nearly half of the data had been lost. In the table, the train

set indicates the data used for training the model, and the development set shows the data

used for validating the model.

Table 4.3. Translation details of Fine-tuning data sets.

Number of Documents Paragraphs Questions Answers
SQuAD (En, Tr)
English (Original)
Train Set 442 18896 87599 87599
Development Set 48 2067 10570 34726
Turkish (Translated)
Train Set 442 18896 40014 40014
Development Set 48 2067 5858 16103
NewsQA (En, Tr)
English (Original)
Train Set 11428 11428 74160 74160
Development Set 638 638 4212 4212
Turkish (Translated)
Train Set 7917 7917 20147 20147

61

Development Set

426

426

1123

1123

Content lengths are critical on the strategy of selecting the training parameters of fine-tuning

tasks. The maximum and average lengths of the paragraphs, questions, and answers are

detailed in Table 4.4 and Table 4.5. The counting procedure is described in section 5.4.

Although the measurement unit of paragraphs and questions is token, the answer length are

character based. An extended open-domain data set is generated from the union of SQuUAD

and NewsQA data sets, named SQuAD (Tr) + NewsQA (Tr). The process is described in

section 5.3.

Table 4.4. Average content lengths of Fine-tuning data sets.
Avragelogs | bt [uon e
SQuAD (Tr)

Train Set 145,45 11,64 14,38

Development Set 152,90 11,74 13,48
NewsQA (Tr)

Train Set 372,17 7,67 14,06

Development Set 364,92 7,61 13,34
SQuAD (Tr) + NewsQA (Tr)

Train Set 212,39 10,31 14,27

Development Set 189,13 11,08 13,47
Banking Sector QA

Train Set 186,87 11,30 36,83

Test Set 186,98 11,30 36,71

Table 4.5. Maximum content lengths of Fine-tuning data sets.

Masimum g | et Queton e
SQuAD (Tr)
Train Set 845 46 169
Development Set 783 36 149
NewsQA (Tr)
Train Set 1074 56 317
Development Set 942 20 162
SQuAD (Tr) + NewsQA (Tr)
Train Set 1074 56 317
Development Set 942 36 162

62

Banking Sector QA
Train Set 784 49 256
Test Set 784 49 256

4.4. TRAINING PROCEDURE

The training procedure can be defined under three main headings: the language model
generation for Turkish, preprocessing of fine-tuning data sets, and fine-tuning the model for

the question answering task.

Language Model Generation: For training a language model, a corpus and vocabulary file
is required. The corpus list, which is used in the pre-training, is detailed in the Table 4.1.
Subwords are built base on the corpora using the WordPiece algorithm. The system puts the
subwords to the vocabulary file, which most increased the likelihood of the training. 32000
subwords sized vocabulary file is used, recommended by BERT. WordPiece algorithm built
approximately 30000 of these subwords from the corpora. Then, we manually added 2000
items as abbreviations and words that are most commonly used in the economy and banking
domains, but not already present in the vocabulary file. BERT tokenize corpus using
WordPiece tokenizer. The pre-training input sequence has two parts, which may be
consecutive sentences or randomly selected pairs from the documents. Using these sentence
pairs and their label, Next Sentence Prediction (NSP) training learns the relations of the
sentences as they are pertinent or not. BERT masks some of the tokens of the input. The
prediction process of these masked tokens updates some weight vectors called word
representations that are the building blocks of the language model. Technical details of

BERT isin 3.2.1 and 4.1 sections.

Preprocessing of Fine-tuning Data Sets: The data sets, which are used in the fine-tuning,
is detailed in the Table 4.2. SQuAD and NewsQA data sets have been converted from
English to Turkish by machine translation. Naturally, some data mismatches occurred during
the process. Hence, the translated data sets had to be controlled and cleaned. BERT
automatically supports the SQuAD data set format. According to the SQuAD, we
reformatted NewsQA (Tr) and Banking Sector QA data sets. Also, a new data set is

63

generated: the extension of SQUAD (Tr) and NewsQA (Tr) data sets. The implementation

details of the processes are in Section 5.

Fine-tuning: In this study, fine-tuning has two phases. In the first phase, the system
increases its question-answering skills in an open-domain, meaning as general purpose. The
second phase is the customization of the model in a closed-domain. In other words, using
SQuAD (Tr) and NewsQA (Tr) datasets system firstly trains the language model, which is
the output of pre-training. Then, using the Banking Sector QA data set, system fine-tunes
the model in accordance with the content or question and answer patterns of the banking

industry. The MRQA training steps are illustrated in Figure 4.6.

Turkish language

model parameters
Phase 1 Phase 2
ase Updated model ase

parameters MROA
BERT fine-tuning » BERT fine-tuning _>mod21
for open domain for closed domain
Banking sector
) 20

Figure 4.6. Fine-tuning phases.

4.5. TRAINING PARAMETERS

In the pre-training task, the maximum sequence length shapes the input vector size of the
Transformer network, and high values are needed to learn positional embeddings in long
sequences. On calculating the number of word pieces to mask, BERT selects the minimum
of maximum predictions per sequence and masked LM probability multiplied by token size.
Do lower case and do whole word mask parameters belong to tokenization and masking. In
the NLP benchmarks, the published cased and whole word masked language models have
higher accuracies, notably for Asian languages such as Chinese or Arabic. The current study
is Turkish specific, and vocabulary file is wide enough to already have most of the words.

Consequently, subword or whole word masking tokenizers give similar results.

In the fine-tuning task, the input sequence of the Transformers is the union of the question

and the paragraph; the output is the answer. The maximum query length is the number of

64

question tokens located in the input sequence, and BERT ignores the rest if a longer text. In
the input sequence, a certain number of tokens left for the paragraph. If the paragraph is
longer than its capacity, BERT splits the paragraph into chunks by a sliding window
approach. For every turn to calculate the start point of the next chunk, the document stride
parameter is added to the last pointer in the paragraph. On predicting the answer process, the
selected span from the paragraph can be as long as the maximum answer length parameter.

It is a character-based parameter, although all other parameters are token-based.

4.6. EVALUATION METRICS

Similar to other machine reading comprehension and SQuAD studies, Exact Match (EM)
and F-Score will be used as the evaluation metrics. Exact match counts the prediction only
if it is same as the real answer, the F-Score counts the predictions that are overlapping with

the real answer. EM is stiffer than F-Score.

65

S. IMPLEMENTATION

In the study, although we didn’t directly change the BERT codes, this section gives
information about some implementations we have done for the preparation of the data.
Section 5.1 summarizes the translation process of the data sets. Section 5.2 describes the
formatting procedures of the data sets. Section 5.3 presents how to generate the extended
data set used in the study. Section 5.4 defines the procedures of the collecting statistics of
the data sets, and Section 5.5 gives information about how to build a vocabulary file used in

BERT training. The BERT codes are present in Google’s GitHub repository [26].

5.1. TRANSLATING DATA SETS

We translated SQuAD and NewsQA data sets from English to Turkish using paid Google
Translate API (v3), served by Google Cloud Platform. Due to the Google Translate API's
multi-process prevention protections, operations had been done sequentially; paragraphs,
questions, and answers had been converted one by one. Translation of every data set to
Turkish nearly took two days. When using the API, it is essential to manually set the source
language to English. For unique names, API overwise detects incorrect languages such as

German or Spanish and causes erroneous translations.

Since some parts of the post-translation data become contrary to the MRQA rules, a rework
is done:

1. The answers, which are no longer present in paragraphs, are deleted.

2. Since some answers are deleted in the previous step, we remove the questions that
have no answers. Approximately 50 percent of the data has been lost after machine
translation.

3. In some of the MRQA data sets, the 'start point' is marked where the answers begin
in the paragraph. Since the location of these marks would have changed as a result
of translation, they are recalculated. If the answer appears in more than one place in

the paragraph, we manually check and mark the correct index.

66

5.2. FORMATTING THE DATA SETS

The format of the SQuAD dataset is the most minimal in the QA datasets and only contains
the required fields for MRQA studies. BERT official codes natively support the SQuAD
files for the MRQA task. An example of SQUAD v1.1 data set is in Figure 5.1. SQuAD file
form is simple, as seen in Figure 5.2. Data field includes the documents, there are
paragraphs and a title in every data, there are questions in every paragraph, there are
answers of every question, and every answer has a text and an answer _start field which
points the starting location of the text in the paragraph (indexOf function and zero-index

included).

Super_Bowl_50

The Stanford Question Answering Dataset

Super Bowl 50 was an American football game to determine the champion of the
National Football League (NFL) for the 2015 season. The American Football
Conference (AFC) champion Denver Broncos defeated the National Football
Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super
Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the
San Francisco Bay Area at Santa Clara, California. As this was the 50th Super
Bowl, the league emphasized the "golden anniversary" with various gold-themed
initiatives, as well as temporarily suspending the tradition of naming each Super
Bowl game with Roman numerals (under which the game would have been
known as "Super Bowl L"), so that the logo could prominently feature the Arabic
numerals 50.

Which NFL team represented the AFC at Super Bowl 50?
Ground Truth Answers: Denver Broncos Denver Broncos Denver
Broncos

Which NFL team represented the NFC at Super Bowl 507
Ground Truth Answers: Carolina Panthers Carolina Panthers Carolina
Panthers

Where did Super Bowl 50 take place?
Ground Truth Answers: Santa Clara, California Levi's Stadium Levi's
Stadium in the San Francisco Bay Area at Santa Clara, California.

Which NFL team won Super Bowl 507
Ground Truth Answers: Denver Broncos Denver Broncos Denver
Broncos

What color was used to emphasize the 50th anniversary of the Super
Bowl?
Ground Truth Answers: gold gold gold

Figure 5.1. A SQuAD data set example.

67

version -

data[0]
| title I Super_Bowl_50 |

paragraphs[0]
|context I Super Bowl 50 was an American fo...

gas[0]
question | Which NFL team represented the A...
id 56be4db0acb8001400a502ec
answers[0]

answer_start | 177

text Denver Broncos

Figure 5.2. SQuAD file format example.

The NewsQA data set has some additional fields for other NLP tasks; question tokens,
answer spans, and context tokens. An example of the NewsQA data set is in Figure 5.3.
Since the context tokens have hundreds of items, for fitting the captured image to this page,
we manually deleted other question and context tokens. These tokens and spans are not
necessary for the MRQA task and pruned from the NewsQA (Tr) data set. The rest of the

fields are easily converted to the SQuAD form, as they are logically in the same manner.

68

|oontext | (CNN) -- What could be more powe...

gas[0] contextytokens[0] context_tokens[1]
id ./enn/stories/6e8382e61be49c936e...
question | What will be nominated?
qid 849240180c584171bc56c0c92c5di5fd

question_tokens[0] detected\answers[0]

Itext | three different videos |

char_spans[0] token_spans[0]

Figure 5.3. NewsQA file format example.

5.3. GENERATING THE EXTENDED DATA SET

After SQUAD and NewsQA data sets were converted to the same format as described in 5.2
section, we combined them. To increase the success of training, we also shuffled the

elements of the result data set for randomness.

5.4. COLLECTING DATA SET STATISTICS

For selecting the correct parameter values of BERT, it is necessary to know the lengths of
the contents in the data set. Paragraph and question content lengths are measured by token,
and the answer length is measured by characters. It is easy to count the length of a text in
character units, but the token unit requires some additional operations. The tokenizer used
by BERT is the WordPiece algorithm, and the first and foremost part of the tokenizer is the
vocabulary file. WordPiece divides the text into pieces using this vocabulary file. The
tokenizer output of different vocabulary files is also different. For these reasons, the
vocabulary file must be created before tokenizing the paragraph and the questions of the data

set. The steps of creating the Vocabulary file is described in next section.

69

5.5. CREATING THE VOCABULARY FILE

BERT has a rule: in the corpus file, every line should contain only one sentence. Using
Zemberek tokenizer, the raw corpus files are converted as one sentence per line. To create
the vocabulary file for Turkish, we used the codes in the [31] repository. The most important
two variables are the corpus and minimum count parameter. Two variables are
interdependent; the vocabulary file always be different when the content of the corpus is
changed or when the minimum count parameter is changed. The algorithm extracts subwords
from the corpus and counts their occurrences. WordPiece puts the subwords to the
vocabulary file, which are occurred in the corpora more than the given minimum count
parameter. BERT recommends the vocabulary file size as 32K subwords. We trained the
system with various sized vocabulary files by changing the minimum count parameter. Other

parameters were used with their default values, and for each time, five iterations were done.

70

6. TEST AND EVALUATION

This section gives the details of our experiments in the study. Section 6.1 presents the pre-
training and Section 6.2 presents the fine-tuning training steps and their test results in details.
Section 6.3 analyzes the errors in the results. Section 6.4 compares the model with previous
Turkish QA solutions. Section 6.5 compares the SQuAD data set evaluation results of the
model with the BERT models of other languages, which are already trained for a QA system
using translated SQuAD data set. Last, Section 6.6 compares the results of the pre-training

BERT models that supports Turkish.

For splitting the banking sector QA data set to training and test sets, we used k-fold cross-
validation. 80 percent of the data is selected for training and 20 percent of the data is selected
for testing. The process is repeated five times; as a result, every question or answer is at once

in the test set. The average score of these 5 experiments is accepted as the final accuracy.

6.1. PRE-TRAINING EXPERIMENTS

In this study, we used three different corpus set, as described in the 4.3 section. At the
beginning of the study, we did not have all the corpus set together. Therefore, the corpuses
have been added to the system when they were available. Figure 6.1 shows the experiments

of the pre-training process.

ID W, D W,
Corpus We Corpus We
Vocabulary size 30736 —» Vocabulary size 32000
Train steps 3M Train steps IM+ 1M
Learning rate le-4 Learning rate 2e-5
D N, ID Ny D Ns
Corpus N¢ Corpus Nc Corpus N¢
Vocabulary size 32000 —» Vocabulary size 32000 ——» Vocabulary size 32000
Train steps 500K Train steps 500K Train steps 500K
Learning rate 3e-5 Learning rate 3e-5 Learning rate 3e-5
ID E¢
Corpus Ec
Vocabulary size 32000
Train steps 500K
Learning rate 3e-5

Figure 6.1. Pre-training experiments.

71

Wi: Firstly, we trained the system using Wikipedia corpus, which is medium-sized data.
Three million training steps were applied with a low learning rate (1e-4). The vocabulary
file had 30736 subwords generated using Wikipedia corpus. Evaluation data of W1 model is
the Wikipedia corpus data. It took 10 days on a TPU server.

W:: Then, we extended the vocabulary file to 32000 subwords by manually adding
economy/finance domain common words such as ATM, OTP, IBAN, arbitaj. The output of
the W1 was fine-tuned two million more training steps with a medium learning rate (2e-5).

Evaluation data of W> model is the Wikipedia corpus data. It took 5 days on a TPU server.

Ni: When the News Corpus was available, it has been added to the system. News corpus is
larger than Wikipedia. The output of the W> was fine-tuned five hundred training steps with
a high learning rate (3e-5). Evaluation data of N3 model is the News corpus data. It took 2

days on a TPU server.

Na: The output of the N3 was fine-tuned five hundred training steps with a high learning rate

(3e-5). Evaluation data of N4 model is the News corpus data. It took 2 days on a TPU server.

Ns: The output of the N4 was fine-tuned five hundred training steps with a high learning rate

(3e-5). Evaluation data of Ns model is News corpus data. It took 2 days on a TPU server.

Es: Then, to observe the effect of the economy data in the corpus, an economy corpus had
been crawled from Web. When the Economy Corpus was available, it has been added to the
system. Economy corpus is very smaller than the other corpuses. The output of the Ns was
fine-tuned five hundred training steps with a high learning rate (3e-5). Evaluation data of Es

model is the Economy corpus data. It took 1 day on a TPU server.

It is an experimental result to use low learning rates for initial trainings and higher learning
rates for fine-tunings. The BERT configuration values are in Table 6.1. During fine-tuning
a present model, it is forbidden to change the vocabulary size. Therefore, in W although the
vocabulary size 30736, it was set to 32000 in the configuration. All the experiments had been
done on a paid Google Cloud TPU (Tensor Processing Unit) server - v2. It is possible to

train shorter sequence lengths on GPU, but 512 requires a TPU hardware.

Table 6.1. BERT parameters and values used in the experiments.

72

Parameter Parameter value
BERT configuration BASE
attention_probs_dropout_prob 0.1
hidden_act Gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer range 0.02
intermediate_size 3072
max_position_embeddings 512
num_attention heads 12
num_hidden_layers 12
type vocab_size 2
vocab_size 32000
max_seq_length 512
do lower case False
max_predictions_per_seq 75
masked Im_prob 0.15
dupe factor 5

The evaluation results of Wi, W2, N3, N4, N5 and E¢ are in Table 6.2. BERT takes the

evaluation data of both masked LM and next sentence prediction from the corpus that already

used in the training. For W and W», the test data is from the Wikipedia corpus. For N3, N4

and N, the test data is from the News corpus. For Eg, the test data is from the Economy

corpus. Predictably, comparing the test results of different corpus is an invalid test. If the

corpus is larger, its accuracy will be lower.

Table 6.2. Evaluation results of different corpus sets.

Training ID Masked LM accuracy Next sentence accuracy
Wi 81.22% 100.00%

W2 76.92% 99.50%

N; 72.42% 98.25%

Ny 71.67% 96.63%

N 74.43% 98.88%

Es 100.00% 100.00%

In the experiments, it is seen that;

73

- Although both W and W, are evaluated using Wikipedia corpus, there is a loss on
Wo result. Economy words, added to the vocabulary, have a negative effect on the
results. The reason is, the evaluation data is from Wikipedia, which is a general
purpose corpus.

- Compared with W», the accuracy of N3 is lower. The reason is, the News Corpus is
larger.

- More training steps have a positive effect for N5 and Na.

- The accuracy of Es is the highest. The reason is, the Economy Corpus is the smallest

corpus.

The language model accuracies are not directly consistent with the MRQA task accuracies.

The evaluation results of these models on MRQA task are listed in Section 6.2.

In the experiments, different vocabulary sizes had been tested. Figure 6.2 shows the
vocabulary sizes for different minimum occurrence threshold values. For Wikipedia corpus,
if minimum occurrence is set to 100, the generated vocabulary size is 96593 and if it is set
to 500, the generated vocabulary size is 40786. In the tests, W training scenario had been
repeated with different vocabulary sizes as seen in the Figure 6.3. It is validated that, 30-

32K is optimal for the vocabulary size.

700000 1

500000 1

300000 A
200000 1

Vocabulary File Size

100000 1
30000 1

1050 100 200 300 400 500 600
Min Occurrence Threshold

Figure 6.2. Minimum occurrence threshold parameter and vocabulary sizes.

74

Masked LM Accuracy (%)
~J ~J
[=] [$4]
—

f

30 100 250 500 700
Vocabulary File Size (K)

Figure 6.3. Vocabulary file size and results.

In the experiments, different max _seq length values had been used. As proposed by BERT,
512 has given better results compared with 64, 128, 256 and 512.

80.0 1
77.5 1
75.0 1
72.5 1
70.0 4
67.5 1
65.0 1
62.5 4
60.0

Masked LM Accuracy (%)

64 128 256 384 512
Maximum Sequence Length

Figure 6.4. Maximum sequence length parameter and results.

In the experiments, the effects of the number of training steps had been measured. In Figure
6.5, MLM is the Masked LM accuracy and NSP is the next sentence prediction accuracy. It

is seen that, using one million or more training steps gives better results.

75

100
8().
S
= 601
Q
e
-
g 401
201/ —— MLM
f —+— NSP
0 500 1000 1500 2000 2500 3000
Number of Training Steps (K)

Figure 6.5. Number of training steps and results.

6.2. FINE-TUNING EXPERIMENTS

The pre-training experiments have 6 output models, as detailed in Section 6.1: W1, W2, N3,
N4, Ns, Es. In order to find the pre-training model, which gives the highest Exact Match
(EM) and F-Scores for fine-tuning the Banking Sector QA Dataset (DSg), all pre-training
models had been experienced. Figure 6.6 shows the results of the fine-tuning DSg with all
the pre-training models. The numbers in the legend are the subscripts of the pre-training
models. N5 and Es have the highest F1-Scores but, the Exact Match result of Es is lower.
Therefore, for further experiments, Ns had been used. As expected, W1 had the worst result

in the set.

a0
79 ® o
78 ®
g o
- 77 4
Qo
b
3
@ 76 A 1
= 2
75 1 ® 3
® 4
74 ® 5
® 6
73 T T T T T
48 49 50 51 52 53
Exact Match (%)

Figure 6.6. The pre-training models and their fine-tuning results.

76

Cased model accuracy is 2-3 percent higher than the uncased model for Turkish. Therefore,

the cased model had been used for all experiments.

Longer maximum sequence lengths had a positive effect on training. Increasing the
maximum sequence length (64 to 128, 128 to 256, 256 to 384 and 384 to 512) raised the
masked LM accuracy ~3 percent for each step (Figure 6.7). Therefore, for further
experiments, 512 has been used. But the attention is quadratic to the sequence length. Hence,

increasing the sequence length took more training time.

a0
®
L
76 A
°
5 74 -
O
e
) 72 64
128
256
7 -
e ® 384
® 512
fﬁ T T T
46 43 50 52 54
Exact Match (%)

Figure 6.7. Different max_seq length parameters and results.

To determine the success of the system, we examined different training parameters. When
choosing these parameters, we based on our computations of the paragraph, question, and
answer lengths in the data sets. We decided on some values and analyzed all their
combinations. The best and worst parameter values for the Banking Sector QA data set are
in Table 6.3. Figure 6.8 presents different combinations and accuracy results in terms of EM
and F-Score. In (a) and (b) subfigures, 64 - 512 are the token counts, and in (c) 30 - 128 are

the character length.

Table 6.3. Best and worst parameter values for the Banking Sector QA data set.

Maximum . Maximum
sequence Document Maximum answer
l(elng th stride query length length EM F-Score
(token) (token) (token) (character)
512 256 64 64 54,09 79,01
128 64 64 30 44,38 70,11

77

a0 a0
79 o 7
=} P 79 3
o ° .
R NI
s o ° o o
78 5 78 4
2 e * % g™ e ° %
o # of tokens ®e & e ¢
128 o N # of tokens ° L]
"1 o 256 7 64
® 384 [] 128
® 512 ® 256
76 T T 76 T T
51 52 53 54 55 51 52 53 54 55
Exact Match (%) Exact Match (%)
(a) doc_stride (b) max_query_length
a0
g
o ¢
g b ok
g
gF= ® Qe
@
=
of chars L
4 30
® 64
[] 128
76 T T T
51 52 53 54 55

Exact Match (%)

(c) max_answer_length

Figure 6.8. Different parameters and results.

Multiple data sets are available for training; NewsQA (Tr), SQuAD (Tr), and Banking Sector

QA (Tr) data sets. The main goal is achieving a high score for the evaluation of the Banking
Sector QA data set. The SQuAD (Tr) and NewsQA (Tr) are open-domain and large data sets.

We think that doing fine-tuning more than one phase as: first, fine-tuning with open-domain

data sets and then fine-tuning with the Banking Sector QA data set will increase the success

of the system. Because of multiple open-domain data sets (SQuAD and NewsQA), different

training scenarios are possible, as seen in Table 6.4 and Figure 6.9.

Table 6.4. Different phase combinations of the data sets.

Choice Phase 1 Data Set Phase 2 Data Set Phase 3 Data Set
(Fine-tuning) (Fine-tuning) (Fine-tuning)
1 SQUAD (Tr) Bankmg(Tsf)ctor QA]
2 NewsQA (Tr) Bankmg(Tsf)ctor QA]
3 SQuUAD (Tr) NewsQA (Tr) Banklng(Tsf)ctor QA

78

4 NewsQA (Tr) SQUAD (Tr) Bankmg(Tsf)ctor QA
SQUAD + NewsQA Banking Sector QA
5 ']
union data set (Tr)

Figure 6.9. Training scenarios of fine-tuning data sets.

For finding the scenario which has the highest accuracy, we studied several different data
set combinations. In Figure 6.10;

- DSs indicates SQuAD Data Set,

- DSk indicates NewsQA Data Set,

- DSgindicates SQUAD + NewsQA Data Sets (extended union data set),

79

- DSg indicates Banking Sector QA Data Set.

In the figure, every row has multiple data sets. For the training process, there is a chain logic.
Using the given data set, the output of every training box is the input of the next one. Every
model is evaluated with the last data set item of the chain. For example, M5 is first trained

with DSs and then fine-tuned with DSg and evaluated using the DSg data set.

In the experiments, it is seen that;

- Fine-tuning with the SQuAD (Tr) data set, before training of the NewsQA4 (Tr) data
set, has a positive effect on the NewsQA (Tr) data set evaluation results (Figure 6.11
- a).

- Fine-tuning with the NewsQA (Tr) data set, before training of the SQuAD (Tr) data
set, has a negative effect on the SQuAD (Tr) data set evaluation results (Figure 6.11
- b).

- Fine-tuning with SQuAD (Tr) + NewsQA (Tr) (Extended) data set, before training of
the Banking Sector QA data set, has a positive effect on the Banking Sector QA4 data

set evaluation results (Figure 6.11 - c).

Data Sets Models

£

o
EE
o
&
o
&

g
g
|
\

\
=

Figure 6.10. Different training scenarios and data sets.

80

62 71
°
- 60 _ 6
172} 172}
" 58 & 67
scenario scenario
1 2
e 7 ® 4
56 : . : 65 :
12 44 16 18 50 54 56 58
Exact Match (%) Exact Match (%)
(1) NewsQA (2) SQUAD
(7) SQUAD > NewsQA (4) NewsQA > SQUAD
(a) NewsQA (Tr) (b) SQuUAD (Tr)
82
70
80
gee g e 8
o A= L]
8 5 78 .
b & scenario
& 66 [3
e 5
76
. ® 6
scenario ° &
9 [] 10
: : 7 : ,
54 56 50 52 54 56
Exact Match (%) Exact Match (%)
(3) Banking Sector QA
(¢) SQuAD (Tr) + NewsQA (Tr) (5) SQUAD - Banking Sector QA
(6) NewsQA - SQuAD -> Banking Sector QA
(8) SQuAD - NewsQA -> Banking Sector QA
(10) SQUAD + NewsQA -> Banking Sector QA
(d) Banking Sector QA (Tr)

Figure 6.11. Different scenarios and data set evaluation results.

Five epochs count was ideal for training MRQA with BERT. Two epochs were insufficient,

and 10 epochs were not notably different than 5 epochs.

6.3. ERROR TYPES IN QUESTIONS & ANSWERS

To evaluate the system's real-world performance, we asked the team, who prepared the
questions, to think freely during the process. When writing the items, we wanted them not
to abide by any question patterns and write different forms of questions if possible.
Therefore, there were many kinds of question types in both training and test data sets. The
system gives correct answers to majority of common question types with a form or questions

that have distinct answers in the text. When we analyze the results, we observed that Exact

81

Matches (EM) remained quite low compared to F-Scores. For this reason, we found the
results with an EM of 0; 572 out of 17708 answers or 3.2 percent. Table 6.5 lists the error
types of wrong answered questions and Table 6.6 gives some examples of these errors. The
errors can be categorized as:

1- Multiple possible answers: Some questions may have more than one correct answer. In
Table 6.6 for Error ID = 1, both the real and the predicted answer can be considered as
correct. 30 percent of the samples, which have zero EM in the test set, are in this category.
2- Questions requiring interpretation: In order to answer some questions, it is mandatory
to know about the whole subject. These questions require interpretation, and it is not easy to
identify their answers. They are the most challenging types of questions, and no solution has
yet been found for such questions in other languages, including English. In Table 6.6 for
Error ID = 2, the predicted answer is the direct but incorrect answer of the question.

3- Conditional answer: The answer to some questions depends on the state. There are cases
when the general answer is not valid, or on the contrary, the answer is only correct in certain
situations. In Table 6.6 for Error ID = 3, the answer is correct except a type of customer
who has a given brand's cell phone.

4- Questions requiring a list of elements: The answer to some questions consists of a list.
Instead of giving a general answer to such questions, it is sometimes necessary to return the
detailed list. In Table 6.6 for Error ID = 4, the hours in the answer is crucial.

5- Answers with syntax variations: Because of being an agglutinative language and having
a comprehensive set of possible suffix tags, it isn't easy to generate the exact match of the
real answer. In Table 6.6 for Error ID = 5, “it is” is the correct for the answer but causes a
zero EM.

6- Incorrect question: After the team prepared the questions, no corrections were made to
the written questions in order to practice the real-world. For this reason, some items in the
data set have spelling mistakes, grammatical errors, or typos.

7- Incorrect answers: The system could not answer 25 percent of the questions properly.
The reason for this is that, some questions are in an uncommon form which the system hasn't
seen in the training set, and some questions or answers are cut by the system because they

are longer than the given maximum length parameters.

82

Table 6.5. Description of wrong answers with zero EM (3.2%)).

Error ID | Description Counts Percentage
1 Multiple possible answers 180 31.46%

2 Questions requiring interpretation 85 14.86%

3 Conditional answers 80 13.98%

4 Questions requiring a list of 5 0.8%

elements

5 Answers with syntax variations 34 5.94%

6 Incorrect question 49 8.56%

7 Incorrect answers 139 24.30%
31,46 Total 572 100%

Table 6.6. Examples for error types 1-5.

Error ID Question Real answer Predicted answer
1 What’s IBAN? Used for transferring | International Bank Account
money. Number
How is the credit card | You should fill the .
2 . I From our website.
objection made? form and fax.
Does the application
3 support all phone Only except X brand | supports
models?
4 When is the job 00:00, 01:00, 02:00 | in the night
executed?
5 Isitp o§s1ble to pay the possible it is possible
tax online?

6.4. COMPARISON WITH OTHER TURKISH QA SYSTEMS

The output model of this study has been compared with earlier QA systems developed for
Turkish. Some of the existing systems are only trained for specific closed-domains, while
some have yielded results in open-domains. Open-domain models find answers to different
types of questions in a wide range of domains, rather than particular question types or a
closed-domain. Some of the previous systems support only a small set of specific question
types. Also, evaluation metrics of the published results are different; MRR, Precision, or EM
with F-Score. In the light of all these circumstances, it is impossible to compare the results
directly. Table 6.7 lists the accuracies of the systems. The model of this study had been tested
in both open and closed-domains. In the open-domain, we trained the system for general
purposes with the extended dataset, a combination of SQuAD (Tr) and NewsQA (Tr) data

sets. In the closed-domain, we fine-tuned the open-domain model using the Banking Sector

83

QA (Tr) data set in order to enhance the performance in the banking field. Even if the metrics
are different, we have noticed that the current system's output is either equal or higher in

terms of skills and success rates compared to other systems.

In the table, TREC-9, TREC-10, SQuAD (Tr), and NewsQA (Tr) are data sets translated to
Turkish. MRR is Mean Reciprocal Rank, which considers the rank of the first correct answer
in the list of possible answers. The specific questions in the second row are: who, where,
when, and what. Specific factoid questions in the third row are Author, Capital, Date of
Birth, Date of Death, Language of Country, Place of Birth, Place of Death.

(*) is Phase 1: Fine-tuning the model using merged SQuAD (Tr) and NewsQA (Tr) data sets.
(**) is Phase 2: Fine-tuning the model, which is already trained with Step 1, using Banking
Sector QA (Tr) data set.

Table 6.7. Comparison of Turkish QA Systems.

Study Data set Domain | Metric Results
BayBilmisg TREC-9 and TREC-10 Open MRR 0,313
Automatic QA for 0.79
Turkish with Only Specific Questions Closed Precision (Avera 5
Pattern Matching £
A Factoid QA
System Using . . .
Answer Pattern Only Specific Factoid Questions Closed MRR 0,73
Matching

SQuAD (Tr) and NewsQA (Tr) * Open EM 33,26

F-Score 67,07
Current Study EM 5708
1 kok s
Banking Sector QA (Tr) Closed F-Score 79.01

6.5. COMPARISON WITH OTHER BERT LANGUAGE MODELS

To figure out our QA data sets, our model has been compared with the BERT models of
other languages. The SQuAD is the best known MRQA data set. In this study, we translated
SQuAD into Turkish and included in the training. A similar translation has also been done
for Arabic, and Arabic Reading Comprehension Dataset (ARCD) is available. There are
several QA data sets prepared for Chinese. Harbin Institute of Technology's joint laboratory
has created the CMRC 2018 machine reading comprehension data set. CMRC 2018

resembles SQuUAD format; the system extracts answers from chapters for the given question.

84

Delta Research Institute in Taiwan has built the DRCD data set. DRCD resembles SQuAD
format, and it is in Traditional Chinese. Harbin Institute of Technology's Xunfei Joint
Laboratory has released the CJRC machine reading comprehension data set for the judicial
field. Table 6.8 list the results of some QA models based on BERT in English, Arabic and
Chinese. Although some BERT models have developed for French, Persian, and Korean,
these models do not yet have a success rate published for the question-answering task. In the
results, it has been seen that our model’s performance is better than the Arabic model, which
is also trained with machine-translated SQuAD data set. Compared with Google’s Chinese
model, although our model has worse results than DRCD, it is mostly better than CMRC and
CJRC data set performances. The main reason for the SQuAD results score differences
between English and other languages might be the SQuAD data set's official language is
English. There is a data loss for both the counts of the examples and their semantical

meanings during the machine translation process to other languages.

In the table, SQUAD (Tr) and NewsQA (Tr) are data sets translated to Turkish. mBERT is
the multilingual and BERT-Chinese is the Chinese models, published by Google. ARCD
(Arabic Reading Comprehension Dataset) is the Arabic SQuAD data set that is already
translated from the original English SQuAD. (*) is Phase 1: Fine-tuning the model using
merged SQuAD (Tr) and NewsQA (Tr) data sets.

Table 6.8. Comparison of BERT models with other languages.

Data sets .
Language | Model Training Evaluation Domain | EM | F-Score
. BERT SQuAD
English | o ole Model) | (En - Original) | SQUAP 8508 1 91,83
mBERT ARCD ARCD 34,2 61,3
Arabic
AraBERT ARCD ARCD 30,6 62,7
CMRC CMRC 18,6 433
Chinese BERT-Chinese | DRCD DRCD Open 82,2 89,2
CIRC CIRC 55,1 75,2
SQuAD (Tr) SQuAD (Tr) 57,60 68,34
Current NewsQA (Tr) | NewsQA (Tr) 48,01 59,86
Tul’kish St d SQuAD (Tr) +
e NewsQA (Tr) | SQUAD (Tr) + 5526 | 67,07
% ews) NewsQA (Tr) * ’ ’

85

6.6. COMPARISON WITH OTHER BERT TURKISH MODELS

Apart from our model, two more models are available in Turkish. One of them is mBERT,
the multilingual model that Google published for all languages. The other is BERTurk [32],
which has been specially trained for Turkish. We compared the success of our model with
mBERT and BERTurk in Turkish. Table 6.9 lists the results of the models. In the results, it
has been seen that our model’s performance is better than the mBERT model and a bit worse
(~2 percent) than BERTurk. The number and size of the corpora used in the training of
BERTurk is larger than ours. This might be the reason of the 2 percent differences in the

accuracies.

In the table, SQUAD (Tr) and NewsQA (Tr) are data sets translated to Turkish. mBERT is
the multilingual model published by Google. (*) is Phase 1: Fine-tuning the model using
merged SQuAD (Tr) and NewsQA (Tr) data sets. (**) is Phase 2: Fine-tuning the model,
which is already trained with Step 1, using Banking Sector QA (Tr) data set.

Table 6.9. Comparison of Turkish base models.

Data sets
. Model Domain | EM | F-Score
Training Evaluation
BERTurk 57,43 69,36
SQuAD (Tr) and SQuAD (Tr) and
NewsQA (Tr) * NewsQA (Tr) * Current Study Open 55,26 67,07
mBERT 54,52 | 65,74
. . BERTurk 55,89 | 80,87
?ﬁ‘;liﬂg Sector QA ?ﬁ‘;liﬂg Sector QA I cyrrent Study Closed | 54,09 | 79,01
mBERT 50,74 | 77,03

86

7. CONCLUSION

In this thesis, we trained a question-answering system using deep learning methods. The
output model of the study has been trained and tested both in open and closed-domains. Used
deep learning method builds a language model consists of contextual word representations

and tackles with polysemy. Our most important findings are;

In Turkish question answering systems, deep learning models give better results in both open
and closed-domains. Compared with traditional approaches, deep learning methods have
constant improvement in the skills of answering a wide range of questions. Statistical or rule-
based purposes have succeeded only in a limited subject or predefined question types. This

inference is not only specific to NLP, and also valid for other artificial intelligence problems.

The data sets used in the training of the system have an important role in the performance
of the system. The corpora used in the pre-training directly affects the quality of the generated
language model. The QA datasets used in the fine-tuning directly affect the system's ability
to question-answering. Considering the comparison of our training model with BERTurk,
the only difference is that BERTurk has been pre-trained with a larger corpus. The
performance of the language model also increased its QA success rates. For this reason, it is

important to pay attention to preparation of the data.

The fine-tuning datasets we translated into Turkish contributed to success. Even though we
used automatic machine translation and the process caused a loss in the data sets, the SQUAD
and NewsQA datasets have a tremendous effect on the system's performance for QA task. A
similar approach can be applied to other languages that suffer from massive data shortages

for applying deep learning methods.

Data sets prepared for English can be translated into any language using machine translation,
and open-domain QA systems can be trained using these translated data sets. These general-
purpose models can be fine-tuned with a proper data set for a closed-domain system later
on, if needed. Although the creation of QA data sets is time-consuming and requires human

resources, it is still an inevitable requirement to build a successful system. In recent years,

87

the researches on the NLP domain have considerably increased the number of modern

approaches, such as the BERT method used in this thesis.

To summarize, in this study, we proposed an MRQA system for Turkish in the banking
domain. To the question, the system generates the best answer, which is the most correct and
the shortest span in a given text. Applying the BERT deep learning technique, we trained a
language model for Turkish using massive corpus collections followed by a fine-tuning
process for the MRQA task using large QA datasets. To enhance the MRQA skills of the
systems, we also translated some open-domain QA datasets from English to Turkish. At the
end of the experiments, it is seen that the system's accuracy is higher than other QA solutions
for Turkish. Additionally, the proposed method is not specific to Turkish and applicable for

numerous NLP tasks of other limited languages.

It will be important that future research investigates the performance problems of BERT.
Although state-of-art scores are announced using the BERT model, it is still slow in
performance and requires TPU hardware for better results. Some newer models are recently
become available such as; ELECTRA, T5, or GPT-3. It may be useful to have the same

experiments with these methods and compare their evaluation results with BERT.

88

REFERENCES

1.

10.

Rajpurkar P, Zhang J, Lopyrev K, Liang P. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250. 2016;2383-92.

Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018.

Amasyali MF, Diri B. Bir soru cevaplama sistemi: Baybilmis. Tiirkiye Bilisim Vakfi
Bilgisayar Bilimleri ve Miihendisligi Dergisi. 2005;1(1):1-1.

Biricik G, Solmaz S, Ozdemir E, Amasyal1 MF. A Turkish Automatic Question
Answering System with Question Multiplexing: Ben Bilirim. International Journal

of Research in Information Technology (IJRIT). 2013;1(6):46-51.

Celebi E, Giinel B, Sen B. Automatic question answering for Turkish with pattern

parsing. 2011 International Symposium on Innovations in Intelligent Systems and

Applications. 2011:389-93.

Er NP, Cicekli I. A factoid question answering system using answer pattern matching.
Proceedings of the Sixth International Joint Conference on Natural Language

Processing. 2013:854-8.

Zheng Z. AnswerBus question answering system. Proceedings of the Second

International Conference on Human Language Technology Research. 2002:399-404.

Akin AA, Akin MD. Zemberek, an open source nlp framework for Turkic languages.
Structure. 2007;10:1-5.

Eryigit G, Oflazer K. Statistical dependency parsing for turkish. /7/th Conference of
the European Chapter of the Association for Computational Linguistics. 2006.

Oflazer K, Say B, Hakkani-Tiir DZ, Tiir G. Building a Turkish Treebank. Treebanks.
2003:261-77.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

&9

Derici C, Celik K, Kutbay E, Aydin Y, Giingér T, Ozgiir A, et al. Question analysis
for a closed domain question answering system. International Conference on

Intelligent Text Processing and Computational Linguistics. 2015:468-82.

Sahin M, Sulubacak U, Eryigit G. Redefinition of Turkish morphology using flag
diacritics. Proceedings of The Tenth Symposium on Natural Language Processing

(SNLP-2013), Phuket, Thailand, October. 2013.

Trischler A, Wang T, Yuan X, Harris J, Sordoni A, Bachman P, et al. Newsqa: A
machine comprehension dataset. arXiv preprint arXiv:1611.09830. 2016.

Yang Z, Qi P, Zhang S, Bengio Y, Cohen WW, Salakhutdinov R, et al. Hotpotqa: A
dataset for diverse, explainable multi-hop question answering. arXiv preprint

arXiv:1809.09600. 2018.

Seo M, Kembhavi A, Farhadi A, Hajishirzi H. Bidirectional attention flow for machine

comprehension. arXiv preprint arXiv:1611.01603. 2016.

Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. Deep
contextualized word representations. arXiv preprint arXiv:1802.05365. 2018.

Radford A, Salimans T. Improving language understanding by generative pre-training.

2018.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention

is all you need. Advances in neural information processing systems. 2017:5998-6008.

Fisch A, Talmor A, Jia R, Seo M, Choi E, Chen D. MRQA 2019 shared task:
Evaluating generalization in reading comprehension. arXiv preprint

arXiv:1910.09753. 2019.

Antoun W, Baly F, Hajj H. AraBERT: Transformer-based model for Arabic language
understanding. arXiv preprint arXiv:2003.00104. 2020.

Cui Y, Che W, Liu T, Qin B, Yang Z, Wang S, et al. Pre-training with whole word
masking for chinese bert. arXiv preprint arXiv:1906.08101. 2019.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

90

Martin L, Muller B, Suédrez PJO, Dupont Y, Romary L, de la Clergerie EV, et al.
Camembert: a tasty french language model. arXiv preprint arXiv:1911.03894. 2019.

Korean BERT pre-trained cased (KoBERT) Github page 2020 [cited 2020 1 June].
Available from: https://github.com/SKTBrain/KoBERT.

Farahani M, Gharachorloo M, Farahani M, Manthouri M. ParsBERT: Transformer-
based Model for Persian Language Understanding. arXiv preprint arXiv:2005.12515.
2020.

Wu'Y, Schuster M, Chen Z, Le Q v., Norouzi M, Macherey W, et al. Google's neural
machine translation system: Bridging the gap between human and machine

translation. arXiv preprint arXiv:1609.08144. 2016.

Hui J., NLP - BERT & Transformer Medium homepage 2020 [cited 2020 1 June].
Available from: https://medium.com/@jonathan_hui/nlp-bert-transformer-
710ac3971524.

Google BERT Github page 2020 [cited 2020 1 June]. Available from:
https://github.com/google-research/bert.

Wiedemann G, Remus S, Chawla A, Biemann C. Does BERT make any sense?
Interpretable word sense disambiguation with contextualized embeddings. arXiv

preprint arXiv:1909.10430. 2019.

Wikimedia homepage [cited 2020 1 June]. Available from:
https://dumps.wikimedia.org/backup-index.html.

Vocabulary builder for BERT Github page 2020 [cited 2020 1 June]. Available from:
https://github.com/kwonmha/bert-vocab-builder.

Schweter S. BERTurk - BERT models for Turkish: Zenodo; [cited 2020 1 June].
Available from: https://doi.org/10.5281/zenodo.3770924.

92

APPENDIX A: BANKING SECTOR QA EXAMPLES

You should take permission from the author to use or copy these data sets.

Table A.1. Example document 1.

Example Document | 1
. Miisterilerimiz ATM'lerden islem yaparken giivenlik agisindan nelere

Title . .
dikkat etmeli?
Kart sifrenizi Bankamiz ¢alisanlar1 dahil kimsenin 6grenmesine izin
vermeyiniz. Sifrenizi belirlerken dogum tarihiniz, telefon numaraniz,
kart numaraniz gibi kolay elde edilebilecek bilgilere dayanarak

Context olusturmayniz. islemleriniz sirasinda yardim tekliflerini kabul
etmeyiniz. Kartinizi ATM'den geri almadan, ATM'nin yanindan
ayrilmayiniz. Kartimizi kaybetmeniz/¢aldirmaniz durumunda ya da diger
her tiirlii soru ve sorunlariniz i¢in vakit kaybetmeden 0850 200 0 666
TEB Telefon Subesi'ni arayiniz.

Question-1 Kart kaybedilirse ne yapilmalidir?

Answer-1 0850 200 0 666 TEB Telefon Subesi'ni arayiniz

Question-2 Sifre belirlerken nelere dikkat etmeliyiz?

Answer-2 dogum tarihiniz, telefon numaraniz, kart numaraniz gibi kolay elde
edilebilecek bilgilere dayanarak olusturmayimniz

Question-3 Islem sirasinda yardim almal miy1z?

Answer-3 yardim tekliflerini kabul etmeyiniz

Table A.2. Example document 2.

Example Document | 2

Title IBAN (ULUSLARARASI BANKA HESAP NUMARASI)

Avrupa Birligi diizenlemeleri ¢ergevesinde, tilkeler arasinda
gerceklestirilen para transferlerinin hizi ile kalitesini artirmak ve
maliyetlerini diislirmek amaciyla International Bank Account Number-
IBAN ad1 verilen Uluslararasi banka hesap numarasi standardi
gelistirilmistir. IBAN 26 haneden olugmaktadir. Halk Bankasi IBAN
numaralar1 harf igerebilmektedir. TR38 0003 2000 1250 0000 0111 01.
Miisterilerimiz hesaplarina ait IBAN numaralarmi IVR {izerinden
Ogrenebiliyor ve sistem otomatik olarak bu bilgiyi SMS olarak
gonderiyor. Pusulada hesap islemleri altina eklenen "IBAN Bilgisini
SMS Gonder" meniisii ile miisterilerimize IBAN bilgisini SMS olarak
Context gonderebiliyoruz. Islemler Inbound aramalarda yapilabilecek, giivenlik
seviyesi 1. Dlizey+SMS OTP (SMS OTP telefonundan ariyorsa SMS
OTP tuslamayacak) olacak sekilde diizenlendi. Miisterinin cep
telefonlarini listeleyecegiz, se¢im kismindan kayitl hangi telefonuna
isterse gonderebilecegiz. Cep telefonuna yapilan gonderimlerde sube
kodu, hesap no, IBAN bilgileri olacaktir. IBAN olusan tiim hesap tiirleri
iizerinden menii agilacak ve IBAN bilgisi gonderilebilecektir. Yapilan
islemler irtibat gozleme kayit atacaktir. Menii Bireysel, Ticari, Tiizel
miisterilerimiz i¢in agilabilecektir. IBAN Bilgilerinin SMS'le
Gonderilmesi Hesap islemleri iizerinden IBAN Bilgisini SMS Gonder
meniisiinden iglem yapiyoruz. Onay alarak islemi tamamliyoruz.

93

Question-1 Menii kimler icin agilabilecektir?

Answer-1 Bireysel, Ticari, Tiizel miisterilerimiz i¢in

Question-2 Miisterilere IBAN bilgisini nasil génderiyoruz?

Answer-2 SMS olarak

Question-3 Miisteriler IBAN numaralarini nereden 0grenebilir?

Answer-3 IVR iizerinde

Question-4 IBAN ka¢ haneden olugmaktadir?

Answer-4 26

Question-5 IBAN neden gelistirilmigtir?
Avrupa Birligi diizenlemeleri ¢ergevesinde, iilkeler arasinda

Answer-5 gerceklestirilen para transferlerinin hizi ile kalitesini artirmak ve
maliyetlerini diisiirmek amaciyla

Question-6 Cep telefonuna yapilan génderimlerde ne olacaktir?

Answer-6 sube kodu, hesap no, IBAN bilgileri

Question-7 IBAN nedir?

Answer-7 International Bank Account Number

Table A.3. Example document 3.

Example Document

3

Title

TICARI KMH / Hesap Isletim Ucreti igin KMH Kullanimi

Yiiriitme durdurma kararina gore gercek kisi bireysel miisterilerden
hesap isletim {icreti alinmamaktadir. Ancak ticari misteriler bu
kapsam disindadir; dolayisiyla hesap isletim iicreti alinmaya devam
etmektedir. Kmh hesaplarindan hesap igletim iicreti alinmasina dair
kosullar asagida belirtilmistir. KOBI, KOBI (+), Tarim ve Isletme
iskollar1 i¢in gegerli olmak iizere, Hesap bakiyesi yeterli ise KMH
limitlerinden tahsilat yapilmamaktadir. KMH limiti ve art1 bakiye
kullanilarak tahsilat yapilabilmektedir. Sadece KMH limiti

Context kullanilarak tahsilat yapilabilmektedir. KMH limitinden kismi
tahsilat yapilabilmektedir. KMH limitinden fazla tahsilat ve limit
asimi1 yapilmamaktadir. Kredi durumu ' Izleme ' ve ' Normal '
haricinde olan misterilerin KMH limitlerinden tahsilat
yapilmamaktadir. Gergek kisi miisterilerin KMH limitlerinden
tahsilat yapilmamaktadir. Ticari miisterilerde hesap igletim ticreti
ile ilgili herhangi bir muafiyet tanimlanamamaktadir. Konu ile ilgili
mesaj (sikayet) kaydi acilmamalidir.

Question-1 KMH limitinden kismi tahsilat yapilabilir mi?

Answer-1 yapilabilmektedir

. Kmh hesaplarindan hesap isletim {icreti alinmasina dair kosullar

Question-2 C ..
nerede belirtilmigtir?

Answer-2 asagida

Question-3 Gergek kisi bireysel miisterilerden hesap isletim ticreti alinmakta
midir?

Answer-3 alinmamaktadir

Question-4 Kimlerden hesap licreti alinmamaktadir?

Answer-4 gercek kisi bireysel miisterilerden

Question-5 KMH limitinden fazla tahsilat yapilabilir mi?

Answer-5 yapilmamaktadir

94

Question-6 Hesap bakiyesi yeterli ise KMH limitlerinden tahsilat yapilir mi?
Answer-6 yapilmamaktadir

Question-7 Gergek kisi miisterilerin KMH limitlerinden tahsilat yapilir m1?
Answer-7 yapilmamaktadir

Question-8 Sadece KMH limiti kullanarak tahsilat yapilabilir mi?
Answer-8 yapilabilmektedir

Question-9 KMH limiti ve art1 bakiye kullanarak tahsilat yapilabilir mi?
Answer-9 yapilabilmektedir

Question-10 Hesap bakiyesi yeterli ise ne olur?

Answer-10 KMH limitlerinden tahsilat yapilmamaktadir

Question-11 Hesap bakiyesi yeterli ise nereden tahsilat yapilmamaktadir?
Answer-11 KMH limitlerinden

Question-12

Ticari miisterilerde hesap isletim {icreti ile ilgili muafiyet
tanimlanabilir mi?

Answer-12

Tanimlanamamaktadir

Question-13

Kredi durumu ' izleme ' ve ' Normal ' haricinde olan miisterilerin
KMH limitlerinden tahsilat yapilir mi1?

Answer-13 yapilmamaktadir

Question-14 Kimler kapsam digidir?

Answer-14 ticari miisteriler

Question-15 Gergek kisi miisterilerin neyinden tahsilat yapilmamaktadir?
Answer-15 KMH limitlerinden

Question-16 KMH limitinden fazla limit agimi yapilabilir mi?
Answer-16 yapilmamaktadir

Question-17 Ticari miisterilerden hesap isletim {icreti alintyor mu?
Answer-17 alinmaya devam etmektedir

Question-18 Neye dair kosullar agagida belirtilmistir?

Answer-18 Kmbh hesaplarindan hesap isletim {icreti alinmasina dair
Question-19 Koni ile ilgili sikayet kayd: acilmali midir?

Answer-19 acilmamalidir

Question-20

Kredi durumu ' izleme ' ve ' Normal ' haricinde olan miisterilerin
neyinden tahsilat yapilmamaktadir?

Answer-20

limitlerinden

