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ABSTRACT 

 

 

DYNAMIC DIFFICULTY ADJUSTMENT OF REHABILITATION TASKS 

THROUGH REAL-TIME EMOTION FEEDBACK AND PERFORMANCE  

 

The decision of proper difficulty level for patients in robot-assisted rehabilitation while 

keeping them engaged is still an open challenge. We develop an adaptive robot-assisted 

rehabilitation therapy to challenge the subjects by changing the difficulty level of the 

rehabilitation task considering their performance (score) (Performance Feedback Based 

Adjustment (PFBA)), their emotions through physiological signals (skin conductance) 

(Physiological Feedback Based Adjustment (PHFBA)), and both performance and emotions 

at the same time (Performance and Physiological Feedback Based Adjustment (PPFBA)). 

The concept is evaluated in 20 healthy subjects performing the tasks with an upper-extremity 

exoskeleton RehabRoby. The system adapts difficulty levels of the tasks by maintaining the 

subject’s performance, and skin conductance at a moderate level to balance the engagement, 

and challenge for each subject. The mean difficulty level distribution showed that PHFBA 

on the average suggests slightly easier difficulty levels (2.62±0.43, mean±std) to the subjects 

than PFBA (5.93±0.88, mean±std) and PPFBA (3.99±0.38, mean±std).  Easier difficulty 

level adjustment resulted in less engaged subjects and correspondingly lower subjects’ skin 

conductance response (SCR) (9.35±8.9, mean±std) and heart rate (HR) (89.27±9.35, 

mean±std) values in PHFBA compared to PFBA and PPFBA. Additionally, easier difficulty 

level adjustment resulted in lower valence value (5.7±0.95, mean±std), arousal (5.45±1.6, 

mean±std) and dominance (5.9±1.5, mean±std) subjective ratings in PHFBA compared to 

PFBA and PPFBA. It was also noted that the difficulty variance of PPFBA (4.97±2.06, 

mean±std) was higher than PFBA (1.48±0.49, mean±std) and PHFBA (3.52±1.41, 

mean±std) which meant that PPFBA offered wider levels to each subject. A wider variety of 

difficulty level suggestions might increase the amazement experienced by the subject, and 

the subject might become more engaged in the rehabilitation task, and consequently, 

Meantemp value in PPFBA (1.33±1.5, mean±std) was lower than the PFBA (2.39±1.78, 

mean±std) and PHFBA (2.03±1.58, mean±std). 
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ÖZET 

 

 

DUYGU DURUMU VE PERFORMANSIN GERÇEK ZAMANLI GERİBİLDİRİMİ 

ARACILIĞIYLA REHABİLİTASYON EGZERSİZLERİNİN ZORLUK 

DÜZEYİNİN DİNAMİK OLARAK AYARLANMASI  

 

Robot destekli rehabilitasyonda hasta motivasyonunu yüksek seviyede tutacak uygun zorluk 

düzeyinin belirlenmesi hala ilerlemeye açık bir araştırma konusudur. Üç farklı geribildirim 

yöntemi ile rehabilitasyon egzersizinin zorluk düzeyini değiştirerek denek motivasyonunu 

yüksek seviyede tutmayı amaçlayan robot destekli bir rehabilitasyon sistemi geliştirilmiştir. 

Yöntemlerden ilkinde deneklerin performansına (skor) göre (Performans Geribildirim 

Tabanlı Ayarlama (PGTA)), ikincisinde fizyolojik sinyaller yoluyla (deri iletkenliği) duygu 

durumuna göre (Fizyolojik Geribildirim Tabanlı Ayarlama (FGTA)), sonuncusunda ise aynı 

anda hem performans hem de duygu durumuna göre (PFGTA) bir değerlendirme 

yapılmaktadır. Konsept bir üst ekstremite eksoskeleton robotu olan RehabRoby üzerinde 

egzersizleri gerçekleştiren 20 sağlıklı denek ile değerlendirildi. Sistem, motivasyon 

durumunu dengelemek ve aynı zamanda kişiye özgü zorlayıcı olabilmek için deneklerin 

performans ve deri iletkenliği değerlerini orta seviyelerde tutacak şekilde egzersiz zorluk 

düzeylerini adapte etmektedir. Ortalama zorluk seviyesi dağılımına bakıldığında FGTA’ da 

deneklere sunulan zorluk seviyelerinin (2.62±0.43, ortalama+standart sapma), PGTA 

(5.93±0.88) ve PFGTA’ ya (3.99±0.38) göre biraz daha kolay olduğu görülmektedir. 

Deneklere daha kolay zorluk seviyesi sunulmasıyla FGTA’ da PGTA ve PFGTA’ ya göre 

daha düşük deri iletkenliği cevabı (9.35±8.9) ve daha düşük kalp atış hızı (89.27±9.35) 

değerleri, buna bağlı olarak da deneklerin daha az motive olduğu gözlemlenmiştir. Ayrıca 

daha kolay zorluk seviyesi ayarının bir sonucu olarak FGTA’ da PGTA ve PFGTA’ ya 

kıyasla daha düşük değerlik (5.7±0.95), uyarılma (5.45±1.6) ve baskınlık (5.9±1.5) öznel 

derecelendirmeleri görülmüştür. PFGTA’ nın zorluk düzeyi varyansının (4.97±2.06), PGTA 

(1.48±0.49) ve FGTA’ ya (3.52±1.41) göre yüksek olduğu görülmektedir. Zorluk düzeyinde 

daha geniş bir aralıktaki çeşitlilik deneğin yaşadığı şaşkınlık durumunu arttırarak daha 

motive bir rehabilitasyon süreci sağlayabilmektedir. Buna bağlı olarak PFGTA’ daki 

Meantemp değeri (1.33±1.5), PGTA (2.39±1.78) ve FGTA’ ya (2.03±1.58) oranla daha düşük 

olarak saptanmıştır. 
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1. INTRODUCTION 

 

This section firstly presents the problem statement. After, the aim, research contribution, and 

the outline of  the dissertation are given, respectively. 

1.1. PROBLEM STATEMENT 

The participation of the patients actively is shown to improve the rehabilitation outcome  [1], 

[2], [3]. Designing rehabilitation tasks that are neither simple nor too difficult are important 

to increase the engagement of the patients [4]. The selection of the difficulty level of the 

rehabilitation and changing this level during the therapy are generally made by the 

experienced therapist in the clinical environments [5]. Robot-assisted rehabilitation systems 

decide the proper difficulty level by looking at the performance of the patients. Robot-

assisted rehabilitation systems have shown to monitor the performance of the patients 

continuously, and adapt the rehabilitation task intensity and difficulty at each session or trial 

to optimally challenge them [6].  

Various approaches had previously been proposed to adjust the difficulty of the 

rehabilitation task considering the patient’s abilities during robot-assisted rehabilitation. A 

well-known approach is the assist-as-needed in where the assistance given to the patients is 

decreased progressively; thus, the task difficulty increases to engage, and challenge these 

patients [7]. The modulation of the assistance is decided considering the active participation 

of the patients, and the performance which is measured using muscle activity or interaction 

forces. The spatiotemporal parameters of the rehabilitation task such as increment of 

reaching positions [6], [8], increment of the complexity of the movement [6], or a decrement 

of time to complete the rehabilitation task [9] had also been modified without changing the 

level of the support given by the robot-assisted rehabilitation system to adjust the difficulty.  

There are little research going on robot-assisted rehabilitation that considers the emotions of 

patients by looking at their physiological signals to adjust the difficulty level of the 

rehabilitation task [10]. The human-in-the-loop approach had previously shown to find the 

suitable challenging level that increases the engagement of the subjects [11]. Motor learning 

and thereby, the training efficiency had also shown to increase when human emotions had 

been used in the closed-loop [12], [13]. The facial expression, electroencephalogram, voice, 
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body gestures or physiological signals had previously been used to understand the emotions 

of the individuals [10], [14], [15], [16], [17] during human-robot interaction.  

We develop an adaptive robot-assisted rehabilitation therapy to challenge the subjects by 

changing the difficulty level of the rehabilitation task considering their performance (score) 

(Performance Feedback Based Adjustment (PFBA)), their emotions through physiological 

signals (skin conductance) (Physiological Feedback Based Adjustment (PHFBA)), and both 

performance and emotions at the same time (Performance and Physiological Feedback Based 

Adjustment (PPFBA)) when they are performing the rehabilitation task using an upper-

extremity exoskeleton RehabRoby.    

1.2. AIM OF THE DISSERTATION 

The aim of this dissertation is first to develop an adaptive robot-assisted rehabilitation 

therapy to challenge the subjects by changing the difficulty level of the rehabilitation task 

considering performance, emotion feedback through physiological signal (skin 

conductance), and both performance and emotion at the same time, and then evaluate the 

adjustment for each feedback by looking at the performance (score), emotions through 

physiological signals (skin conductance, blood volume pulse and skin temperature), and 

subjective ratings (arousal, valence and dominance).  

1.3. RESEARCH CONTRIBUTION OF THE DISSERTATION 

All in all, research on robot-assisted systems that are capable of not only detecting the 

patient’s performance but also inferring patient’s internal state, and then dynamically 

adjusting the difficulty level of the rehabilitation task to better suit the patients' feelings and 

performance have gained momentum in the recent years. We develop a dynamic difficulty 

adjustment mechanism for upper limb exoskeleton RehabRoby that can dynamically find the 

suitable challenge level while keeping the patients engaged throughout the entire duration of 

the rehabilitation task with this dissertation. Such an adjustment mechanism can be used for 

other robot-assisted rehabilitation systems within the limits of device capabilities, and can 

easily be integrated into other rehabilitation tasks. The main contributions of this dissertation 

are: 1) augmenting a robotic rehabilitation system that can provide dynamic difficulty 
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adjustment mechanism to potentially enhance engagement in a subject, and 2) testing how 

this augmented system works, and how one can explore the impact of different dynamic 

difficulty adjustment algorithms using this augmented system using physiological signals, 

performance and survey ratings. We believe that such a comparison will pave the way for 

an optimal approach to robot-assisted rehabilitation.  

1.4. OUTLINE OF THE DISSERTATION   

The introduction of the thesis is given in Section 1. The literature review of the upper limb 

robot-assisted rehabilitation systems, difficulty level adjustment methods used for 

rehabilitation purposes, and physiological sensory feedback types are presented in Section 

2. The methodology of the study is explained in Section 3. The details of the mechanical 

design, electrical design, and control architecture of RehabRoby are given in Section 3.1. 

The physiological data collection, feature extraction, and feature selection are presented in 

Section 3.2. The rehabilitation task called fruit picker game, which has been used to evaluate 

the proposed adjustment mechanism, is described in Section 3.3. The dynamic difficulty 

adjustment mechanism details are presented in Section 3.4. In Section 4 experimental set-

up, the subjects and the experimental procedure are provided. The results of the experiments 

and discussion are given in Section 5. The conclusions of the proposed study are presented 

in Section 6. In Section 7, the limitations and future work of the study are provided. 
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2. BACKGROUND 

 

In this section background information about robotic devices for rehabilitation, difficulty 

level adjustment methods for rehabilitation games, and physiological sensory feedback is 

presented. 

2.1. ROBOTIC DEVICES FOR UPPER LIMB REHABILITATION 

Use of robotic devices for upper limb rehabilitation has shown to improve the movements 

of the patients [18], [19]. Various robotic systems have been developed to only assist 

shoulder movement [20] or elbow movement [21], [22] or both should and elbow movement 

movements [23], [24], [25], [26], [27], [28], [29], [30] and [31] or shoulder, elbow and 

forearm movements [32], [33], [34]. Additionally, robotics devices have been developed to 

provide assistance to movements of shoulder, elbow, forearm and wrist together [35], [36], 

[37], and whole arm [38], [39], [40]. A survey on robot-assisted upper limb rehabilitation 

systems has been given in [41].  

The developed robotic devices can be grouped as end-effector based or exoskeleton based 

considering their mechanical design. Patient’s extremity is contacted to the robotic device 

only at its most distal part in the end-effector based robotic device. This makes the structure 

of the robotic device simpler, and as a result, less complicated control algorithms are needed 

to control the robotic device. However, it is hard to segregate definite movements of a 

specific joint because end-effector based devices produce combined joint movements.  The 

end-effector-based systems consist of serial manipulators such as MIT-Manus [42] (Figure 

2.1), ACRE [43], and parallel manipulators such as CRAMER [44], and cable-driven robots 

such as NeReBot [30] (Figure 2.2), MACARM [45], RehabExos [34], MEMOS [29], 

PLEMO [46], ARM Guide [24] and ARC-MIME [23]. MIT- MANUS [42] is one of the 

well-known end-effector based robotic devices which can provide assistance to shoulder and 

elbow movement in a horizontal plane, and patients can do repetitive reaching exercises 

(Figure 2.1). Another end-effector based robotic device NeReBot [30] provides assistance 

for flexion and extension, pronation and supination, adduction and abduction, circular 

movements of shoulder and elbow exercises (Figure 2.2). ARM Guide [24] uses graphical 



5 
 

feedback of the hand position to provide feedback on the amount of motor assistance (Figure 

2.3).  

 

 

 

 

Figure 2.1. MIT-MANUS [42] 

 

 

 

 

Figure 2.2. NeReBot [30] 
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Figure 2.3. ARM Guide [24] 

 

It is also possible to control the movements of each joint separately in exoskeleton based 

robotic devices. Note that the mechanical design of an exoskeleton based devices is more 

complicated than an end-effector based devices. There is a need to adjust the lengths of each 

link of the related joint considering the length of the related link of the user arm in the 

exoskeleton based device to avoid patient injury. Additionally, the position of the center 

rotation of the human body joints can change significantly during movement (especially the 

shoulder joint movement [20]). IntelliArm [47] (Figure 2.4) are one of the exoskeleton based 

devices that have a higher number of degrees of freedom. ARMin V is one of the well-known 

exoskeleton robotic devices that has been widely used in hospitals (Figure 2.5) [48]. 

Some of the end-effector based robotic devices are integrated with the wrist mechanism to 

increase the movement capabilities of the robotic devices. MIME-RiceWrist device [49] and 

MIME (end-effector based device) [50] are integrated with a parallel wrist mechanism 

(Figure 2.6).  
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Figure 2.4. IntelliArm [47] 

 

 

 

 

Figure 2.5. ARMin V [48] 
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Figure 2.6. MIME-RiceWrist [49]  

 

ArmeoSpring system (Hocoma AG), BONES [26] (Figure 2.7), 6 degrees of 

freedom Gentle/S [32] (Figure 2.8), 9 degrees of freedom Gentle/G [51], HEnRiE [52] are 

the other exoskeleton based robotic devices developed for upper limb rehabilitation. 

Dampace [27] (Figure 2.9), L-Exos [33], RUPERT IV [36], and ARMOR [39] are also well-

known exoskeleton robot-assisted rehabilitation systems. Gentle/S [32] is an exoskeleton 

based robotic device that uses virtual reality and haptic interface as feedback, and patients 

can practice hand to mouth and reaching movements with this robot.  

End-effector based and exoskeleton based approach have also been combined in some of the 

robotic devices. REHAROB [31], iPAM [53] and UMH [54] (Figure 2.10) are examples of 

these robotic devices.  The patient executes the exercises slowly with constant velocity, and 

passive assistance is given to the patient when using REHAROB [31].  

We have developed an exoskeleton based upper limb robotic device, which is called 

RehabRoby [55], [56] in Yeditepe University Robotics Research Laboratory (Figure 2.11). 

The details of RehabRoby will be given in Chapter 3.  
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Figure 2.7. ArmeoPower (Hocoma AG) 

 

 

 

 

Figure 2.8. Gentle/S [32] 
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Figure 2.9. Dampace [27] 

 

 

 

 

Figure 2.10. UMH [54] 
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Figure 2.11. Robot-assisted rehabilitation system RehabRoby 

 

2.2. DIFFICULTY LEVEL ADJUSTMENT FOR REHABILITATION THERAPY 

GAMES 

Engagement and positive feelings of patients have shown to increase the outcome of the 

rehabilitation  [2], [12], [13]. Games have been used to increase the engagement of the 

patients by encouraging them to get involved in the rehabilitation program [57], [58]. The 

patients' range of movements have previously been increased/decreased to raise the 

engagement of the patients when games are used in their rehabilitation [59]. The subjects' 

attention has shown to be longer than traditional and tracking exercises when games are used 

that resulted in engagement increment [60].   
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Various, principles have been extracted for an effective game design to increase user’s 

engagement, and motivation such as reward, optimal challenge, feedback, etc. [61]. 

Challenging level of rehabilitation task in terms of games has been a good indicator for motor 

learning of the patients [62]. Additionally, it has been noticed that the learning rate of a 

motor task has been maximum when the difficulty level of the rehabilitation game is selected 

in such a way that it positively challenges the subject [63]. Thus, it is important to define the 

best challenging level of the rehabilitation task for each subject during the therapy. 

Subjects can be kept at the upper limit of their ability by manipulating difficulty level in 

different ways (for example, making things faster if speed is the critical component) in games 

to avoid boredom and frustration. It is also possible that the subject may find the 

rehabilitation game difficult (his/her lacks of ability), then he/she can become frustrated and 

quit the rehabilitation task [64]. Likewise, the subject may find the game easy, and he/she 

can get bored and not interested in completing the rehabilitation task [64]. The performance 

(score), and the success rate of the subject can be used to understand if the defined difficulty 

level for the rehabilitation is appropriate for that subject. 

A rehabilitation game difficulty level should balance the defined challenges with the skills 

of the subject to keep their engagement level high according to the flow theory [64]. Various 

offline difficulty level adjustment techniques proposed for rehabilitation games are used in 

upper limb robotic rehabilitation systems [65].  The difficulty levels are initially predefined 

at the beginning of the rehabilitation task and presented to the subject. Then, the challenges 

are presented with increasing difficulty to establish a correspondence with the subject’s skill 

evolution. Subjects access new difficulty levels when their skills improve. For example, the 

distance to reach the goal points is gradually enlarged to increase the difficulty level of the 

rehabilitation task. The same difficulty increment level has generally been used for all 

subjects that which do not take into account subjects’ performance. However, it is important 

to maintain a suitable rehabilitation game difficulty level for each subject, considering the 

subjects’ game performance and abilities. 

A reinforcement learning approach (Q-learning algorithm) has previously been used to 

dynamically model the subject skills and match the game difficulty during the use of a 

robotic rehabilitation system [66]. Q-learning algorithm has modified game parameter (i.e., 

fall down velocity and the appearing frequency of an object). This algorithm evaluates the 

skills of subjects by looking at their performance. The evolutionary algorithm has also been 
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proposed to modify the game parameters (i.e., distance from the player and speed) 

dynamically during the use of a robot-assisted rehabilitation system [67]. An adaptive game 

technique, which is used to adjust the difficulty dynamically considering the patient’s 

abilities and performance, has shown to increase the movement amplitude of patients [68]. 

An intelligent game engine, which has been based on a search Bayesian model established 

on patient’s performance (i.e., the hit ratio), has been proposed for home rehabilitation [69]. 

Furthermore, the level of therapy difficulty has generally been adjusted using the increase 

by one level - decrease by one method by looking at the patients’ performance [70]. Increase 

by one level - decrease by one method has been used for the I-TRAVLE robotic system to 

adjust the difficulty level of the rehabilitation game [71]. We use a partially ordered set 

master (POSM) algorithm of difficulty level adjustment of RehabRoby in this dissertation. 

The details of the POSM algorithm will be given in Chapter 3.  

2.3. PHYSIOLOGICAL SENSORY FEEDBACK 

Various physiological sensors have previously been used to understand the emotions and 

feelings of people. Skin Conductance (SC) has commonly been used to serve as an indication 

of affect and emotion in psychology and related disciplines [72]. SC has also been used in 

controlled experiments to measure arousal while subjects experienced a variety of emotions 

such as stress, excitement, boredom, and anger [73]. Additionally, SC measurements have 

been used to differentiate anger and fear emotions [74]. A linear relationship between skin 

conductance response (SCR) and the emotional feature of arousal has been found [75]. The 

emotion strain has shown to be changed based on the number of SCR [76], [77]. The stress 

level of people has also been detected using SC when people are performing various tasks 

[76]. Furthermore, the SC value has shown to increase when the difficulty level of the task 

changed from low to medium [78]. Heart rate (HR) is the other physiological sensors 

commonly used to understand the feeling of the subjects. HR is extracted from the Blood 

Volume Pulse (BVP) physiological sensor.  An increment in arousal and valence has been 

noticed when HR has shown to increase [79]. HR has also shown to have a positive 

correlation with valence [72]. Heart Rate Variability (HRV) signal has also been shown to 

understand the feelings of the people [80].  Skin Temperature (ST) is the other commonly 

used physiological sensor that has shown to fall when stress, excitement, tension, or other 

sensations arise [81]. An increase in ST has been noticed when people watch film clips that 
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have a happy effect in itself [82]. Thus, in this dissertation, we extract various features from 

the raw SC, BVP, and ST physiological signals to understand the feelings of the subjects 

when they are performing the rehabilitation task with RehabRoby. Mean and standard 

deviation methods are generally used to extraction features from ST. Power spectral density 

calculation, filtering, and peak detection are the other commonly used methods used to 

extract features from BVP. SC is generally characterized by the amplitude, and SCR [83]. A 

list of commonly used features is available in [84]. The details of the features used in this 

dissertation are given in Chapter 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

3. METHODOLOGY 

 

The control architecture of the proposed difficulty adjustment system with RehabRoby is 

given in Figure 3.1. RehabRoby is designed to provide assistance to the upper limb 

movements of the subjects (Figure 2.11) [55], [56], [85], [86]. RehabRoby is an exoskeleton-

based robot. Physiological signals of the subjects are measured using biofeedback sensors 

during the execution of the tasks with RehabRoby (Figure 3.1). The distinctive features from 

these biofeedback signals and performance of the subjects are then used as a feedback to 

partially ordered set master (POSM) algorithm to dynamically change the difficulty level of 

the task for each subject (Figure 3.1). 

3.1. REHABROBY 

In this section, firstly the mechanical and electrical components of RehabRoby are briefly 

explained. Next, the control architecture of RehabRoby is presented. 

3.1.1.   Mechanical and Electrical Components of RehabRoby 

RehabRoby is an exoskeleton-based upper limb  robotic device developed in Robotics 

Research Laboratory in Yeditepe University [55], [85], [87], [88], [89]. It is possible to make 

the following movements with RehabRoby, i) abduction and adduction of shoulder rotation 

(θ1), ii) shoulder flexion and extension elevation (θ2), iii) internal and external rotation of 

shoulder (θ3), iv) elbow flexion and extension (θ4), v) lower arm elbow pronation and 

supination (θ5), and vi) wrist flexion/extension (θ6) (Figure 3.2). The range of motion, torque 

values, velocities and accelerations of joints (θ1, θ2, θ3, θ4, θ5, θ6) for RehabRoby have been 

taken from [90].  Specific brushed DC motors were selected for each joint of RehabRoby. 

The details of motor selections of RehabRoby have previously been presented in [87] and 

[88]. RehabRoby can provide assistance to one movement (shoulder flexion/extension 

elevation) or any mixtures of more than one movement.  
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Figure 3.1. The general control architecture of the proposed system  

 

The link lengths of RehabRoby has been selected as L1:400 mm (vertical length of the first 

link), L2: 261-401 mm (upper arm length - the distance between shoulder and elbow joints), 

and L3: 205-302 mm (forearm length) (Figure 3.3).  L1, L2, and L3 values are decided using 

a report that provides arm lengths of people in Turkey [91]. It is possible to change the L1, 

L2, and L3 for patients with different arm lengths and heights. RehabRoby can be easily 

attached to patients affected arm (left/right).  

A thermoplastic arm splint has been involved in the design of the RehabRoby (Figure 3.4).  

Patients applied force (elbow flexion and elbow extension) is measured using Kistler 

(9313AA1; Kistler France, Les Ulis, France) force sensors (Figure 3.4-middle and right). An 

emergency button has been included to stop the RehabRoby immediately. The emergency 

button can be used by therapists. It is also possible to disable each joint of RehabRoby using 

buttons (Figure 3.4-left). A counterweight mechanism is integrated into RehabRoby to 

reduce the gravity effect (Figure 2.11). Thus, patients can easily flex his/her shoulder. 
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Figure 3.2. Joint angles of RehabRoby 

 

 

 

Figure 3.3. Arm lengths of RehabRoby 
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Figure 3.4. Arm splint and force sensors of RehabRoby 

 

Humusoft Mf624 model data acquisition board is used for the communication between the 

software and hardware of RehabRoby. The encoders of the DC motors are used to measure 

the position. A sampling rate of 500Hz is used while recording the force and encoder data 

from the sensors. The electrical design details of RehabRoby is given in our previously 

published papers ([87], [88]).  

3.1.2.   Control Architecture of RehabRoby 

A robust position controller with an admittance filter is developed for RehabRoby (Figure 

3.5) [85], [87], [88]. The subjects’ applied force is measured, and applied torque is calculated 

using Jacobian. Later, the torque is then given as an input to the admittance filter [92]. The 

characteristics of motion RehabRoby is defined using admittance filter. The output of the 

admittance filter is the reference motion that is defined for the position controller. 
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Figure 3.5. Robust position controller of RehabRoby with admittance filter 

 

The applied torque is found using the admittance filter equation as: 

 

τa = Mdq̈r + Bdq̇r + Kdqr                                                        (3.1) 

 

where, τa is the torque applied by the patient. Desired values of inertia, stiffness and 

viscosity matrices are defined as Md, Kd and Bd, respectively. Desired joint angle, angular 

velocity, and angular acceleration are also defined as qr, q̇r and q̈r, respectively. The 

dynamic equation of a robotic system is known as  τ = M(q)q̈ + V(q, q̇) + b(q̇) + G(q) +

τext  and the definition of each parameter in this dynamic equation is given in Table 3.1. The 

details of how M(q) and b(q̇) are defined given in [85], [87] and [88].  

  

Table 3.1. Definition of each parameter of the dynamic equation 

 

Parameter Definition  

τ Joint torque  

M(q) Inertia tensor 

q Joint  position  

q̇ Joint velocity  

q̈ Joint acceleration  

V(q, q̇) Coriolis and centrifugal  

b(q̇) Friction  

G(q) Gravity  

τext Torque (unknown external effects) 
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All Coriolis, centrifugal, friction and gravity forces, parameter variations and unknown 

external effects are included in the disturbance vector d′. Then, the dynamic equation of 

RehabRoby becomes τ = M̅q̈ + Bvq̇ + d′. Bv is the viscous friction coefficient. State-space 

model of the dynamic equation is written as: 

 

 ẋi(t) = Aixi(t) + Biui(t) + Eiudi(t)                                       (3.2) 

 

 yi(t) = Cixi(t) + vi(t)                                                    (3.3) 

 

ẋi(t) consists of qi(t) (joint angle) and q̇i(t) (joint velocity) where i is the joint index from 

1 to 6. The control input is selected as ui(t). The equivalent disturbance is described as 

udi(t). The measured output of the system is yi(t). Finally, the measurement noise is shown 

as vi(t). The matrices in Equation (3.2) and (3.3) are defined as Ai = [
0 1

0 −
Bvi

M̅i

], Bi = [
0

Ktri

M̅i

], 

Ei = [
0

−
1

M̅i

], and Ci =  [1 0]. The details of how Ai,  Bi,  Ci and  Ei matrices can be found 

in [85], [87] and [88]. Motor torque constant and the gear ratio of the actuator are multiplied 

to find Ktri. ui(t) = −Kixi(t) + ri(t) is selected where Ki is the state-feedback gain matrix. 

ri(t) includes the summation of the multiplication of proportional gain with the reference 

joint angle (kpiqri(t)), compensating signals to eliminate the disturbance (idi(t)) and 

feedforward compensating signal (ici(t)).  When all these definitions are included in 

Equation (3.2), then the state-feedback equation becomes as: 

 

ẋi(t) = (Ai−BiKi)xi(t) + Biri(t) + Eiudi(t)                                 (3.4) 

 

Equation (3.4) can be represented as a general second order system. The control gains for 

the state-feedback control can be found by defining anticipated damping ratio and natural 

frequency values [85], [87], [88].  The discrete state space model is described in Equation 
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(3.5) and (3.6). The equivalent disturbances are estimated using a discrete linear Kalman 

filter (LKF) method [92]. 

 

xi(k + 1) = (Aki−BkiKi)xi(k) + Bkiri(k)                                   (3.5) 

 

yi(k) = Ckixi(k) + vi(k)                                                (3.6) 

 

where Aki−BkiKi = (I + Ts [

0 1 0

−
Ktrikpi

M̅i
−

Bvi

M̅i
−

Ktrikdi

M̅i
−

1

M̅i

0 0 0

]) ,   BkiTs,  Cki = [1   0   0] 

and Ts is the sampling time, and kdi is the derivative gain. The position controller with 

disturbance estimator is shown in Figure 3.6.  

 

 

 

Figure 3.6. Robust position controller of RehabRoby 

 

 



22 
 

3.1.3.   Adaptive Admittance Controller of Rehabroby  

The admittance control with an inner robust position control loop, which is used as the low-

level controller of RehabRoby is shown in Figure 3.5. Each force axes has independent 

parameters (Gain, I (inertia), b (damping)) that are needed to be calculated. The forces that 

are applied by the subject, which are measured using Force Sensor 1 (FS1) and Force Sensor 

2 (FS2), are converted into torque values (one for each force sensor) using the robot Jacobian 

matrix. The torque values are then passed through an admittance filter, which is used to 

define the characteristics of the motion of RehabRoby against the applied forces, to generate 

the reference motion for the position controller. The applied force/torque is the input and 

reference position is the output of the admittance filter. Subjects are asked to perform 90o 

elbow flexion and extension movement three times continuously while RehabRoby is kept 

passive to determine the proper admittance filter parameters (I and b), and the gain (Gain) 

for each subject.  

A suitable adaptive control scheme, which adapts the admittance parameters dynamically, 

has previously been obtained with a trained frequency domain classifier using adaptive 

boosting algorithm [93]. Furthermore, a method has been proposed to achieve an optimal 

variable control scheme by combining human decision making process emulated using an 

on-line fuzzy inference system (FIS) with a fuzzy model reference learning (FMRL) 

controller [94]. FRML controller has also been used to adapt the FIS according to the 

minimum jerk trajectory model. The heuristically created FIS assists both rapid movements 

of the human and the accurate positioning during lower velocities by determining the desired 

damping of the admittance controller. An FMRL controller adapts the FIS for optimal 

cooperation towards the minimum jerk trajectory model. Online Fast Fourier transform 

(FFT) of the manipulator end-effector forces are used to detect oscillations that disturb the 

haptic experience. 

The algorithm (Algorithm 3.1), which is used to find the suitable parameters in the 

admittance filter, was executed for 15 subjects using MATLAB/Simulink. The details of the 

experimental procedure can be found in [86] and [87]. The results for the each subject are 

given in Table 3.2. The mean values of the admittance parameters calculated for 15 subjects 

(Table 3.2) were used for the proposed system in this dissertation. 
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Algorithm 3.1. Algorithm for finding suitable admittance filter parameters 

 

• Each subject performs 90o elbow flexion and extension movement 3 times while 

RehabRoby is passive. The actual angular position 𝑥[𝑛], and applied torque 𝜏[𝑛] during 

this passive motion are recorded. 

• The parameter Gain is used to scale the measured torque data during real-time 

experiments and found as Gain=6/max{𝜏[𝑛]}, where max{𝜏[𝑛]} is the maximum value 

of the measured torque data during passive motion. A threshold is applied to the 

measured torque data during real-time experiments because of the noise in the 

measurement data. This value is chosen as 2 Nm, which is one third of the maximum 

applicable torque value (6 Nm). 

• We are interested in the velocity characteristics of the reference motion. The slopes of 

𝑥[𝑛] and �̂�[𝑛] are defined as 𝑚[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1] and �̂�[𝑛] = �̂�[𝑛] − �̂�[𝑛 − 1], 

respectively. �̂�[𝑛] is the reference angular position calculated using the modified 

admittance parameters. 𝑚[𝑛] and �̂�[𝑛] are the backward differences between the 

adjacent elements of 𝑥[𝑛] and �̂�[𝑛]. 

• Set j = 0, set b0, I0 to their default values, and set Titerations = 2000 

• WHILE 𝑗 ≤ 𝑇𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  

       (Step 1) 𝑓𝑠𝑢𝑚 = ∑ (𝑚[𝑛] − �̂�[𝑛])2𝑁−1
𝑛=0   

       (Step 2) {𝑏𝑗+1,  𝐼𝑗+1} = arg min
𝑏,𝐼

𝑓𝑠𝑢𝑚 

       j = j + 1 

  END WHILE  

  where N is the number of samples.  

• Above in Step 2, optimization is performed using the fminsearch function of 

MATLAB. For the one motion region, Figure 3.7 shows that the sum of the square 

differences 𝑓𝑠𝑢𝑚 converge to minimum while the iteration number increases. The final 

values of the parameters b and I are obtained by taking the mean of the parameter values 

calculated in each of three active motion regions. 
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Figure 3.7. Sum of the square differences at each iteration 

 

Table 3.2. Calculated admittance parameters for each subject 

(I1, b1 and Gain1  for  FS1, I2, b2 and Gain2 for FS2) 

 

Subject I1 b1 Gain1 I2 b2 Gain2 

S1 1.25 6.00 0.73 0.68 6.00 1.62 

S2 1.35 10.67 0.89 0.84 6.00 1.21 

S3 1.73 6.00 1.55 0.81 6.00 1.02 

S4 1.50 10.67 1.15 0.92 6.00 0.80 

S5 1.10 6.00 0.80 0.60 6.00 2.19 

S6 1.07 6.31 1.19 0.78 6.00 1.32 

S7 1.13 6.64 1.13 0.60 6.00 1.07 

S8 1.75 6.10 0.98 1.30 6.00 0.95 

S9 1.40 6.00 1.22 0.67 6.51 1.13 

S10 1.44 6.00 1.16 0.65 6.00 0.78 

S11 1.13 6.00 0.95 0.60 6.00 1.09 

S12 1.01 6.00 0.90 0.83 6.00 0.71 

S13 1.54 6.00 1.54 1.07 6.00 1.75 

S14 1.26 6.00 1.37 1.85 6.00 1.50 

S15 0.60 6.00 1.02 0.60 6.00 0.92 

Mean 1.28 6.69 1.10 0.85 6.03 1.20 
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3.2. PHYSIOLOGICAL MEASUREMENTS   

The details of the physiological measurements used in the dynamic difficulty adjustment mechanism 

are presented in this chapter. 

3.2.1.   Physiological Data Collection 

Lightweight and wearable biofeedback sensors from Thought  Technology [95]  are used to 

record the physiological data from the subjects in this dissertation. Skin conductance (SC), 

blood volume pulse (BVP), and skin temperature (ST) biofeedback sensors from Thought  

Technology [95] are selected. The sensor placement on the fingers is shown in Figure 3.8. 

The BVP sensor is positioned on the middle finger. SC sensors ,  on the index and ring 

fingers. ST sensor is positioned on the thumb finger. The physiological signals from these 

biofeedback sensors are sampled at 100 Hz using Procomp Infiniti Encoder.  

   

 

 

Figure 3.8. Placement of biofeedback sensors on the subject  

 

3.2.2.   Feature from Physiological Data 

There is a need to extract the feature from the raw SC, BVP, and ST raw signals. Mean and 

the first derivative of the raw signals are generally used as the features of the raw signal [83]. 

However, the mean and first derivative may not be enough for some raw data; thus, some 
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other methods such as filtering, peak detection are also used for feature extraction [83]. A 

list of features that are generally used is given in [84]. Furthermore, the previously proposed 

signal processing methods used to calculate the features from the raw physiological raw data 

can be found in [96] and [97].  Normalization and dimension reduction are also used to 

extract the features. Since features display changeability, thus, normalization can be used to 

reduce the effect of this changeability. Various normalization methods have been proposed 

to derive the features, and a detailed survey about these methods are presented in [79] and 

[83]. In this dissertation, the normalization method in where the mean value of baseline is 

subtracted from the feature vector, and the result is divided by the maximum absolute value 

of subtraction from feature vector from the mean value of baseline is used [79]. 

The list of extracted features from the SC, BVP, and ST raw data are given in Table 3.3. The 

first feature heart rate (HR) is calculated from the BVP data. Mean (MeanIBI) and standard 

deviation (StdIBI) of inter-beat intervals are found from the BVP raw data. Mean BVP 

(Meanbvp), the first derivative of the BVP (Derivbvp) and the variance of the BVP (Varbvp) 

have been obtained from the BVP sensor. Then, Heart Rate Variability (HRV) signal [98] 

has been found [99], and the Fourier transform of this signal is found to find the frequency 

intervals [100]. 0-0:05 Hz interval, 0:05-0:15 Hz interval and 0:15-0:4 Hz interval which 

correspond to very low frequency (VLF), low frequency (LF) and high frequency (HF) 

interval, respectively. LF/HF ratio has also been selected as one of the features [99], [101]. 

The ratio of total frequencies (VLF+LF) to HF has also been calculated as one of the features 

of the BVP sensor. The BVP total power (BVPtp) is divided by VLF total power to find the 

percentage ratio of the very low frequency (perVLF). The percentage ratio of the low 

frequency (perLF), and high frequency (perHF) are also obtained using the same procedure as 

in (perVLF). Low frequency norm (LFnorm), and high frequency norm (HFnorm) has also been 

calculated [102]. Skin conductance response (SCR) is obtained as the total number of 

temporary increases in the skin conductivity signal [103]. The details of how SCR been 

found are explained in [102].  Mean conductance (Meansc), the variance of the conductance 

(Varsc), and mean the first derivative of skin conductance (Derivsc) are also calculated as 

features from SC sensor. Finally, mean temperature (Meantemp), the first derivative of the 

temperature (Derivtemp) and the variance of the temperature (Vartemp) have been obtained 

from the ST sensor.  The details of calculation methods for each feature had been given in 

[102]. 
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Table 3.3. Biofeedback sensors and features 

 

Physiological Indices 

Physiological signals Features derived Label used 

Blood volume pulse 

sensor 

Heart rate HR 

Mean IBI MeanIBI 

Standard deviation of IBI StdIBI 

Mean BVP Meanbvp 

Variance of BVP Varbvp 

First derivative of BVP Derivbvp 

Very low frequency VLF 

Low frequency LF 

High frequency HF 

BVP total power BVPtp 

Ratio of low frequency to high frequency LF/HF 

Ratio of frequencies (VLF+LF)/HF 

Percentage ratio of the very low frequency PerVLF 

Percentage ratio of the low frequency PerLF 

Percentage ratio of the high frequency PerHF 

Low frequency norm LFnorm 

High frequency norm HFnorm 

Skin conductance 

sensor 

Mean skin conductance Meansc 

Skin conductance response SCR 

First derivative of skin conductance Derivsc 

Variance of skin conductance Varsc 

Temperature 

Mean temperature Meantemp 

Variance of temperature Vartemp 

First derivative of temperature Derivtemp 

 

 

3.3. REHABILITATION TASK – FRUIT PICKER GAME   

A single player fruit picker game, which provides elbow flexion/extension game with 

various difficulty levels is selected as the rehabilitation task in this dissertation. The fruit 

picker game contains a basket, fruits, and rocks (Figure 3.9). Various parameters of the fruit 

picker game such as basket speed, basket size, level time (sec), fruit number, fruit speed, 

rock number, rock speed, spawn wait time (sec), wave wait time (sec) are manipulated 

systematically to produce different difficulty levels. The score of the subjects is also shown 

to the subjects during the execution of this game to motivate them. 

 



28 
 

 

 

Figure 3.9. Fruit picker game 

 

The subjects who participate in the experiments are asked to collect the fruits when these 

fruits are falling uninterruptedly. The subjects are also asked not to collect the rocks (Figure 

3.9). The aim is to collect as many fruits as possible and escape from the rocks by moving 

the basket from left to right and right to left. The subjects earn 10 points when they collect 

fruit, and they lose 20 points when they collect rock. This fruit picker game forces subjects 

to accomplish elbow flexion/ extension movements with the RehabRoby. The subject is 

required to move the basket to the left for elbow flexion, and he/she is required to move the 

basket to the right for elbow extension. The fruit picker game mimics elbow 

flexion/extension exercises which are often needed in patients with cerebral palsy, stroke, or 

traumatic brain injury. The game performance score of the subject is also shown to the 

subjects during the execution of the game to motivate them. Every subject starts the game at 

90o elbow extension. The basket is kept on the right side at the beginning.  Subjects have a 

chance to move their elbow from 0o to 90o, which is suitable for human anatomy. The game 

is developed using the Unity game engine [104]. The details of the fruit picker game can be 

found in our previous publications [105]. 



29 
 

A pilot study [105] had been first conducted to choose the difficulty levels for the 

experiments. The difficulty level had been increased from Level 1 (L1) to Level 7 (L7). 

Level 1 was easy (under-challenged), Level 4 was the medium (challenged), and Level 7 

was the difficult (over-challenged) (Figure 3.11). Selection of adjustment game parameters 

depended on the objective of the rehabilitation program. The goal of the rehabilitation 

program with RehabRoby was to improve the interval between the appearance/dispersion of 

targets. The falling rates of fruits and rocks had been increased to make the game 

challenging, and subjects had been required to move in a broader range to collect fruits and 

to avoid rocks. Additionally, rock number and rock speed had been raised to increase the 

difficulty level of the game. Fruit number, fruit speed, and basket size were kept the same 

for all seven difficulty levels. 31 unimpaired subjects (8 female and 23 male), 23-36 years 

of age, participated. Initially, the subjects had been given some practice opportunity to 

familiarize them with the RehabRoby. Later, three arbitrarily selected difficulty levels of the 

game had been given to the subjects. The duration of each game was 60 seconds. The 

subjects did not know the difficulty level of the game. Then, subjects were asked to complete 

a self-assessment manikin (SAM) survey after each game (Figure 3.10). SAM has a 9-point 

scale. 1 represented the lowest valence (”unpleasant”), arousal (”inactive”) and dominance 

(”helpless”), and 9 represented the highest valence (”very happy”), arousal (”excited”) and 

dominance (”in control everything”) in SAM.  

 

 

 

Figure 3.10. Self-assessment manikin (SAM) (arousal (top), valence (middle), and 

dominance (bottom)) 
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Figure 3.11. Difficulty levels of the fruit picker game 
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The mean and standard deviations of the subject scores for each of the difficulty levels are 

shown in Figure 3.12. It was noticed that the subjects were generally pleased when their 

valence score was above the average. It was also observed that the level of arousal had 

increased when the difficulty level of the game increased. Similarly, as the difficulty level 

increased the subjects tended to lose their control on the game, which could be seen from 

the decrement of the dominance rating.  

 

 

 

Figure 3.12. SAM ratings for difficulty levels 

 

3.4. DYNAMIC DIFFICULTY ADJUSTMENT MECHANISM FOR REHABROBY 

This chapter presents the details of the developed dynamic difficulty adjustment mechanism 

for RehabRoby. 

3.4.1.   Partially Ordered Set Master (POSM) Algorithm 

In this study, a partially ordered set master (POSM) algorithm is used for difficulty level 

adjustment of the fruit picker game during the performance of the rehabilitation task with 

RehabRoby. POSM algorithm predicts the difficulty level by learning from the observations. 
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POSM has three main advantages compared to other approaches: 

• POSM requires no offline training and no background knowledge about the behavior 

of the subject is needed, 

• The algorithm can be easily ported between games and game genres, 

• There are theoretical guarantees on the maximum number of mistakes POSM makes 

before learning the appropriate setting. 

The input to the dynamic difficulty adjustment algorithm is the user’s performance (e.g., 

score), and physiological data that represents the feelings of the subject. Initially, the master 

predicts a difficulty setting and the subject performs the task with the defined difficulty 

setting for a specific period of time. Later, one of the following feedbacks is received:   

• “Under-challenged” if the predicted difficulty setting is not difficult enough for the 

subject.  

• “Challenged” if the predicted difficulty setting is for the subject. 

• “Over-challenged” if the predicted difficulty setting is above the capability of the 

subject.  

The difficulty of the task is changed frequently to determine the proper difficulty level for 

each subject. POSM algorithm predicts proper difficulty level from a fixed partly ordered 

set of all potential levels. The order is such that ∀i, j ∈ K if i is more challenging than j. The 

settings can be: 

• +1 if the difficulty level is under-challenged, 

• 0 if it is challenged, 

• -1 if it is over-challenged.   

POSM algorithm keeps the belief wt about the correctness of each difficulty setting. Later, 

this algorithm keeps on updating the level when the task is found to be under-challenged or 

over-challenged. The steps of POSM algorithm are given in Algorithm 3.2 [106]. 
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Algorithm 3.2. Steps of POSM algorithm  

 

 

 

 

Belief for all difficulty levels that are difficult than the current level at the current time step 

is collected by At. Belief for all difficulty levels that are easier than the current level is 

collected by Bt. k represents the difficulty level. The following actions are taken by looking 

at the observation output. The details of how the POSM algorithm is used for RehabRoby is 

given in our previously published paper [107]. 

• If the observation output is under-challenged, then it means that the difficulty level 

must be increased, and the belief of the proposed level as well as all levels are easier 

than the proposed one are updated.  

• If the observation output is over-challenged, then it means that the difficulty level 

must be decreased, and the belief of the proposed level as well as all levels are 

difficult than the proposed one are updated. 
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3.4.2.   Difficulty Level Adjustment in POSM 

POSM algorithm uses three feedbacks, which are score, physiological signal, and score and 

physiological signal together for difficulty level adjustment of the rehabilitation task. 

Observations from these three feedbacks are evaluated to find the new difficulty level of the 

rehabilitation task.  

3.4.2.1.   Performance Feedback Based Adjustment (PFBA) 

The difficulty adjustment is based solely on the subject’s performance (score) in 

performance feedback based adjustment (PFBA) mechanism. POSM algorithm decides the 

difficulty level considering the score change rate in a given period. Two threshold levels are 

defined that are high threshold level (50%), and low threshold level (20%). The PFBA tries 

to keep the performance percentage between 20% and 50%. These ranges are chosen as 

initial best estimate but can be changed at any time considering the requirements of the 

rehabilitation program, and the capabilities of the patients. For example, if the patient is low-

functioning, then the performance cannot be a high value, on the other hand, if the patient is 

high-functioning, the performance can be high to keep the patient engaged. Maintaining 

performance rate at 50% had previously been shown as an optimal balance between 

engagement and challenging [4], [108], [109].  

The performance feedback based adjustment (PFBA) is shown in Figure 3.13. If the 

performance score rate (Pi) is higher than the high threshold level (50%) (Pi ≥ 50%), then the 

observation result is +1 which means the difficulty level is easy (under-challenging) for the 

subject. If the Pi is lower than the low threshold level (20%) (Pi ≤ 20%), then the observation 

result becomes -1 which means the difficulty level is hard (over challenging) for the subject. 

If the subject’s performance is between 20% and 50%, then the observation result is 0, which 

means that the current difficulty level is appropriate for the subject. The observation result 

obtained from one of these three conditions is used for finding the new difficulty level (Lnew) 

by the POSM algorithm. 
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Figure 3.13. Performance feedback based adjustment (PFBA) mechanism 

 

3.4.2.2.   Physiological Feedback Based Adjustment (PHFBA) 

It is important to integrate the human in the loop using physiological signals. Thus, 

physiological signal Meansc is used as a feedback to the POSM algorithm in physiological 

feedback based adjustment (PFBA) mechanism to adjust the difficulty level. Meansc feature 

is selected as a new feedback in the closed loop decision-making mechanism since it gives 

a relatively fast, and significant information about the subject in terms of challenged, 

overwhelmed, or bored [73]. 

The overall architecture, which includes the real-time feedback of the score and the Meansc 

feature is given in Figure 3.14. The main controller which runs on MATLAB coordinates 

the signal flow and time synchronization of the integrated real-time system and also updates 

the difficulty level. Biofeedback data acquisition and processing software (BDAPS) 

developed with C++, records, and processes physiological data that comes from the 

biofeedback sensors. In every 10 seconds, Meansc is calculated by BDAPS with the start 

signal from the main controller. The communication between BDAPS and the main 

controller is provided through files. Low-level control of RehabRoby is implemented in 

Simulink where the position data is transmitted to the main controller in real-time. The main 

controller updates the position value of the fruit picker game at every 50 milliseconds. The 
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main controller and the fruit picker game communicate through a virtual serial port. The 

main controller decides the new difficulty level at every 10 seconds evaluating the score 

and/or the Meansc feature using the POSM algorithm. 

Two threshold levels, which are high threshold level (70%), and low threshold level (30%) 

are defined. These threshold values are decided by looking at the Meansc value ranges that 

subjects are overwhelmed or bored from our previous experiments. Note that if Meansc is 

too high, the subject may be overwhelmed because the subject may found the task more 

demanding [78] and if Meansc is too low, then the subject may get bored.  

    

 

 

Figure 3.14. Integration of real-time feedback of both the score and the physiological 

signal to the RehabRoby 

 

The physiological feedback based adjustment (PHFBA) mechanism is shown in Figure 3.15. 

If the Meansc increase rate is higher than the high threshold value (MSCi ≥ 70%), which 

means the difficulty level is over-challenging for the subject,  then the observation result is 

-1. Note that MSCi is the current Meansc increase rate. If the Meansc increase rate is lower 
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than the low threshold level (MSCi ≤ 30%), then the observation result becomes +1, which 

means the difficulty level is easy for the subject. If the Meansc  increase rate is between 30% 

and 70%, then the observation result is 0, which means that the current difficulty level is 

appropriate for the subject. The observation result obtained from one of these three 

conditions is used for finding the new difficulty level (Lnew) by the POSM algorithm. 

 

 
 

 

Figure 3.15. Physiological feedback based adjustment (PHFBA) mechanism 

 

3.4.2.3.   Performance and Physiological Feedback Based Adjustment (PPFBA) 

Finally, POSM algorithm uses both performance (score rate) and physiological signal 

(Meansc increase rate) (PPFBA) as feedback to find the appropriate difficulty level of the 

rehabilitation task. Estimated difficulty regions for score and Meansc parameters are given 

in Figure 3.16. A new rule set is defined by comparing the differences (△SH, △SL, △SCH, 

△SCL) between the corresponding threshold and calculated values of score rate and Meansc 

increase rate (Table 3.4). Green cross marks are the representations for any values of the 

score rate and Meansc increase rate (Figure 3.16). Red  cross marks shows the example values 

of the score rate and Meansc increase rate for the condition in which the score rate result is 

easy (under-challenging), and Meansc increase rate result is hard (over-challenging). If the 

difference between the score rate value and the high threshold (△SH∗) is greater than the 

difference between the Meansc increase rate value, and the high threshold (△SCH∗), then the 
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observation result becomes +1, in the opposite case, the observation result becomes -1. The 

observation result is 0 in case of equality. 

 

Table 3.4. Rules to define observation value in POSM 

 

 
Meansc 

Easy Medium Hard 

Score 

Easy Observation: +1 

If ∆SH ≥ ∆SCL 

     Observation: +1 

Else      

     Observation: 0 

If ∆S*H > ∆SC*H 

     Observation: +1 

Else if ∆S*H < ∆SC*H 

     Observation: -1 

Else 

     Observation: 0 

Medium 

If ∆SH > ∆SCL 

     Observation: 0 

Else 

     Observation: +1 

Observation: 0 

If ∆SL > ∆SCH 

     Observation: 0 

Else 

     Observation: -1 

Hard 

If ∆SL > ∆SCL 

     Observation: -1 

Else if ∆SL < ∆SCL 

     Observation: +1 

Else 

     Observation: 0 

If ∆SL ≥ ∆SCH 

     Observation: -1 

Else 

     Observation: 0 

Observation: -1 

 

 

 

 

 

Figure 3.16. Difficulty regions for score and Meansc according to the threshold levels 
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4. EXPERIMENTS 

 

This section presents the subjects, experimental procedure as well as the measures used in 

the analysis.  

4.1. SUBJECTS 

Twenty subjects (9 female and 11 male) took part in the experiments. The ages of the subject 

were in the range of 21-27. Nineteen subjects were right-handed. One subject was left 

handed. The subjects who participated in the experiments are healthy. Additionally, all 

subjects had no background of any diseases that can affect the results of the experiments. 

Five of the subjects had experience with robot-assisted rehabilitation systems, and 11 

subjects had computer games experience.   

4.2. EXPERIMENTAL PROCEDURE 

The experimental set-up is given in Figure 4.1. Subjects were asked to complete five 

experimental trials (Figure 4.2). Each trial was different from each other because the 

difficulty level was changed considering the performance (score) and the physiological 

signal (Meansc) of the subjects. Subjects did not know at which difficulty level he/she was 

doing the rehabilitation task in all trials. 

Initially, the subjects were asked to be less tense. Then, the subjects were asked to close their 

eyes for 3 minutes to obtain baseline data from the biofeedback sensors. Later, subjects filled 

the self-assessment manikin (SAM) survey that was displayed on the screen (Figure 3.10).  

After subjects completed the SAM survey, a 2 minutes break was given to the subjects. Later, 

subjects performed a practice trial to get familiar with RehabRoby, and the fruit picker game. 

Physiological signals from BVP, SC, and ST sensors (Figure 3.8) were collected during the 

practice trial. Then, subjects were asked to complete the SAM, and a 2 minutes break was 

given to the subjects. Then, subjects did the same rehabilitation task 5 times. Another trial 

started automatically after 2 minutes break when a trial was over and the SAM survey 
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completed by the subjects. The duration of the rehabilitation task was 3 minutes. The order 

of the trials was shown in Figure 4.2.  

 

 

 

Figure 4.1. Experimental set-up 

  

 

 

Figure 4.2. The order of the trials 

 

 

There were three groups, as mentioned in Section 3.4.2. The evaluation of the proposed 

feedback adjustment that is PFBA, PHFBA, and PPFBA was done using a crossover study. 

The following list demonstrates the number of subjects in each PFBA, PHFBA, and PPFBA. 

Additionally, the list provided information on how the crossover study had been designed: 
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• 7 subjects (3 female and 4 male), 7 subjects (2 female and 5 male) and 6 subjects (4 

female and 2 male) were asked to complete the experiment using PFBA, PHFBA, 

and PPFBA, respectively in the first week of the experiments.  

• 8 subjects (4 female and 4 male), 6 subjects (4 female and 2 male) and 6 subjects (1 

female and 5 male) were asked to complete the experiment using PFBA, PHFBA, 

and PPFBA, respectively in the second week of the experiments.  

• 5 subjects (2 female and 3 male) completed the experiment using PFBA, seven 

subjects (3 female and 4 male) completed the experiment using PHFBA, and eight 

subjects (4 female and 4 male) completed the experiment using PPFBA. 

As a result, the following orders had been completed in the experiment. It could be noticed 

all order combinations had been performed by the subjects. The subjects in each group were 

assigned randomly. 

• 4 subjects (2 female and 2 male) completed the experiment in PFBA-PHFBA - 

PPFBA order. 

• 3 subjects (1 female and 2 male) completed the experiment in PFBA-PPFBA - 

PHFBA order. 

• 4 subjects (2 female and 2 male) completed the experiment in PHFBA-PFBA- 

PPFBA order. 

• 3 subjects (3 male) completed the experiment in PHFBA-PPFBA-PFBA order. 

• 4 subjects (2 female and 2 male) completed the experiment in PPFBA-PFBA- 

PHFBA order. 

• 2 subjects (2 female) completed the experiment in PPFBA - PHFBA - PFBA order. 

4.3. ETHICS STATEMENT 

The approval of the Institutional Review Board of Sabancı University had been taken to 

conduct the experiments. Subjects were asked to sign the consent form.  
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5. RESULTS AND DISCUSSION 

 

We had first analyzed the difficulty level changes when Performance Feedback Based 

Adjustment (PFBA), Physiological Feedback Based Adjustment (PHFBA) and Performance 

and Physiological Feedback Based Adjustment (PPFBA) methods were used. All subjects 

played the rehabilitation task for 3 minutes and the game difficulty level was updated at 

every 10 seconds based on PFBA or PHFBA or PPFBA concept (Figure 4.2). The mean 

difficulty level over all the steps performed by all subjects averaged over all five different 

trials was found. We found the mean and variance of the difficulty level selections at 

consecutive 18 steps performed by all the 20 subjects averaged over a total of 100 trials and 

performed by randomly selected one of the subjects (subject-4) averaged over a total of 5 

trials. Figure 5.1 and 5.2 show the mean difficulty levels over each step proposed by PFBA, 

PHFBA and PPFBA for all subjects and subject-4 respectively. Figure 5.3 and 5.4 show the 

variance (or variability) of the difficulty levels at each step over 5 different trials for all 

subjects and subject-4 respectively.  

The mean difficulty level distribution showed that PHFBA on the average suggests slightly 

easier difficulty levels (all subjects: 2.62±0.43, subject-4: 2.3±0.52) than PFBA (all subjects: 

5.93±0.88, subject-4: 5.91±1.07) and PPFBA (all subjects: 3.99±0.38, subject-4: 4.23±0.9) 

(Figure 5.1 and 5.2).  The difficulty variance of PPFBA (all subjects: 4.97±2.06) was higher 

than PFBA (all subjects: 1.48±0.49) and PHFBA (all subjects: 3.52±1.41) for all subjects 

which meant that PPFBA offered difficulty levels in a wider range when all subjects were 

examined together. (Figure 5.3). Difficulty level selections in a wider variety may provide 

more engagement due to the experienced surprise [107]. It was also noted that the variance 

of the difficulty levels was lower in PFBA (subject-4: 0.55±0.6) for both all subjects and 

subject-4 (Figure 5.3 and 5.4) than PHFBA(subject-4: 3.4±2.1) and PPFBA(subject-4: 

2.16±1.13). 

We then had analysed the the performance (score) rate and mean skin conductance (Meansc) 

increase rate for each adaptation method (PFBA, PHFBA and PPFBA). We looked at the 

mean values averaged over five different trials for all subjects and an arbitrary subject 

(subject-4).  
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Figure 5.1. The mean of the selected difficulty levels at each step of rehabilitation task play 

averaged over the 100 trials of 20 subjects 

 

 

 

Figure 5.2. The mean of the selected difficulty levels at each step of rehabilitation task play 

averaged over the 5 trials of subject-4 

 

 



44 
 

 

 

Figure 5.3. The variance of the selected difficulty levels at each step of rehabilitation task 

play for all the subjects 

 

 

 

Figure 5.4. The variance of the selected difficulty levels at each step of rehabilitation task 

play for subject-4 
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The score rate was calculated as ((score in period)/Maxscore)*100. The maximum score 

(Maxscore) a subject could have in a task period was 200. The mean performance (score) rate 

performed by all the 20 subjects averaged over a total of 100 trials for each adaptation 

method is given in Figure 5.5. In Figure 5.6 the mean score rate of subject-4 averaged over 

5 trials for each adaptation method is given. As seen from the Figure 5.5 and 5.6 the mean 

score rate in PFBA (all subjects: 65.45±12.75, subject-4: 69.62±17.85) was higher than 

PHFBA (all subjects: 42.04±6.39, subject-4: 50.06±9.17) and PPFBA (all subjects: 

44.06±5.45, subject-4: 32.21±6.86) for both all subjects and subject-4. It was also noted that 

the mean score rate in PPFBA was slightly higher than PHFBA when all subject were 

examined together. When we looked at the mean score rate of subject-4, the values in 

PHFBA were slightly higher than PPFBA. 

 

 

 

Figure 5.5. The mean of the score rate values at each step of rehabilitation task play 

averaged over the 100 trials of 20 subjects in PFBA, PHFBA and PPFBA 

 

The mean skin conductance (Meansc) increase rate was calculated as the increase rate 

according to the baseline using ((Meansc in period)-(mean(baseline)))/mean(baseline)*100. 

Figure 5.7 shows the mean of Meansc increase rate at consecutive 18 steps performed by all 

the 20 subjects averaged over a total of 100 trials for each adaptation method. The mean of 
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Meansc increase rate for 5 trials of subject-4 is shown in Figure 5.8. As seen from Figure 5.7, 

the mean of Meansc increase rate in PHFBA (all subjects: 93.57±9.8) was lower than PFBA 

(all subjects: 105.77±6.25) and PPFBA (all subjects: 107.78±4.86) for all subjects. The mean 

of Meansc increase rate in PPFBA (95.07±11.34) was slightly higher than PFBA 

(69.72±5.92) and PHFBA (79.83±11.69) for subject-4 (Figure 5.8). 

 

 

 

Figure 5.6. The mean of the score rate values at each step of rehabilitation task play 

averaged over the 5 trials of subject-4 in PFBA, PHFBA and PPFBA 

 

We had looked at the distinctive features from skin conductance (SC), blood volume pulse 

(BVP) and skin temperature (ST) that had significant differences when the difficult levels 

had been changed using PFBA, PHFBA, and PPFBA. We had evaluated the skin 

conductance response (SCR), heart rate (HR), and mean temperature (Meantemp). These 

values were evaluated to understand how the internal state of the subjects change and how 

subjects feel when these three different feedbacks were used.  

We had noticed a low SCR response in PHFBA (9.35±8.9, mean±std) compared to PFBA 

(14.23±11.5, mean±std) and PPFBA (13.19±10.53, mean±std) (Figure 5.9). Additionally, 

the SCR values were distributed in a wider range in  PFBA and PPFBA compared to PHFBA 

(Figure 5.10). The values of SCR in PHFBA were distributed in lower values, which might  
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Figure 5.7. The mean of the Meansc increase rate values at each step of rehabilitation task 

play averaged over the 100 trials of 20 subjects in PFBA, PHFBA and PPFBA 

 

 

 

 

Figure 5.8. The mean of the Meansc increase rate values at each step of rehabilitation task 

play averaged over the 5 trials of subject-4 in PFBA, PHFBA and PPFBA 
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be because of subjects played less challenging difficulty level rehabilitation tasks  (Figure 

5.1), and they were not happy and amused. It had previously shown that SCR values were 

increased when the subjects were happy and amused [110], [111], [112].  SCR had shown 

to exhibits a decrease during relaxation and a sharp increase in response to novel stimuli 

[113]. Thus, subjects were calm and had positive emotions in PPFBA compared to PFBA 

and PHFBA because the difficulty level was appropriately challenging. 

 

 

 

Figure 5.9. Boxplots with median values of SCR for all trials in PFBA, PHFBA, and 

PPFBA 

 

We had noticed a low HR response in PHFBA (89.27±9.35, mean±std) compared to PFBA 

(91.86±8.73, mean±std) and PPFBA (94.44±8.18, mean±std) (Figure 5.11). Additionally, 

the HR values distribution were given in Figure 5.12. The values of HR in PPFBA were 

distributed in a wider range, which might be because of a wider difficulty challenging level 

rehabilitation tasks in PPFBA (Figure 5.3). It had previously shown that HR values were 

increased when the subjects were happy and amused [112], [114]. Additionally, the subjects 

had shown to prepare action when HR increased, and they were more relaxed when HR 

decreased [115]. HR had also been found to increase for a number of negative emotions such 

as anger, anxiety, as well as for some positive emotions such as joy, happiness [76]. The 



49 
 

subject had been happier when they performed the rehabilitation task using PFBA and 

PPFBA.   

 

 

 

Figure 5.10. Histogram of SCR for all trials in PFBA, PHFBA, and PPFBA 

 

 

 

 

Figure 5.11. Boxplots with median values of HR for all trials in PFBA, PHFBA, and 

PPFBA 
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Figure 5.12. Histogram of HR for all trials in PFBA, PHFBA, and PPFBA 

 

We had noticed low Meantemp in PPFBA (1.33±1.47, mean±std) compared to PFBA 

(2.39±1.78, mean±std) and PHFBA (2.03±1.58, mean±std) (Figure 5.13). Additionally, the 

values of Meantemp in PPFBA were distributed in lower values compared to PFBA and 

PHFBA (Figure 5.14). It had previously shown that Meantemp values were decreased when 

subjects were more engaged in the game [116], [117] and during appropriate challenging 

rehabilitation tasks [107], [118], then we could say the selection of the difficulty levels in 

PPFBA was appropriately challenging for the subjects than the ones in PFBA and PHFBA. 

The Meantemp in PFBA was the highest compared to PPFBA and PHFBA, which might be 

because subjects were asked to perform the rehabilitation game task with over-challenging 

difficulty levels (Figure 5.1). 

Finally, we had quantified the task engagement and the feeling of the subjects via SAM 

survey on arousal, valence, and dominance ratings. We calculated the normalized arousal 

and valence values by taking the mean value divided by the standard deviation for all five 

trials for each algorithm (PFBA, PHFBA, and PPFBA). Figure 5.15 showed the normalized 

valence–arousal ratings on the plane [119]. The execution of the rehabilitation game task 

using PFBA, PHFBA, and PPFBA appeared to be associated with an increase in arousal and 

valence when compared to the subjects’ baseline. We found no significant difference 

between PFBA, PHFBA, and PPFBA in all subjective ratings. This might be because it was 

not easy for the subjects to rate their real feelings. However, we noticed a higher arousal and 
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valence values in PFBA and PPFBA compared to PHFBA, which might be because of the 

subjects performed the task with less challenging difficulty levels in PHFBA (Figure 5.1). 

Note also that the psychological literature indicates that positive valence signals engaged 

subjects to complete the task [120], [121]. Thus we could say the subjects in all PFBA, 

PHFBA, and PPFBA were engaged to complete the task; however with different ratings. 

 

 

 

Figure 5.13. Boxplots with median values of Meantemp for all trials in PFBA, PHFBA, and 

PPFBA 

 

 

 

Figure 5.14. Histogram of Meantemp for all trials in PFBA, PHFBA, and PPFBA  



52 
 

 

 

Figure 5.15. Valence and arousal reports for each session are overlaid on Russell’s 

circumplex model (normalized arousal- valence rating)  

 

We had also looked at the arousal, valence, and dominance ratings in each PFBA, PHFBA, 

and PPFBA separately.  The arousal ratings were (6.05±1.66, mean±std), (5.45±1.6, 

mean±std), and (5.85±2.17, mean±std) in PFBA, PHFBA, and PPFBA, respectively (Figure 

5.16). It could be noticed that subjects were more aroused in PFBA and PPFBA compared 

to PHFBA, which might be because subjects performed the task with less challenging 

difficulty levels in PHFBA.  

The valence ratings were (6.95±0.86, mean±std), (5.70±0.95, mean±std), and (6.20±0.93, 

mean±std) in PFBA, PHFBA, and PPFBA, respectively (Figure 5.17). It could be noticed 

that subjects had higher valence values in PFBA and PPFBA compared to PHFBA, which 

might be because subjects performed the task with less challenging difficulty levels in 

PHFBA. 

We had also looked at the dominance ratings that evaluated the feelings of the subjects about 

how much they were able to control the rehabilitation task with various difficulty levels. The 

dominance ratings were (7.00±1, mean±std), (5.9±1.5, mean±std), and (6.10±1.3, mean±std) 

in PFBA, PHFBA, and PPFBA, respectively (Figure 5.18). Subjects felt more control over 

the game in PFBA when the game was more challenging (Figure 5.1).  
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Figure 5.16. Boxplots with median values of arousal ratings for all trials in PFBA, PHFBA, 

and PPFBA 

 

 

 

 

Figure 5.17. Boxplots with median values of valence ratings for all trials in PFBA, 

PHFBA, and PPFBA 
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Figure 5.18. Boxplots with median values of dominance ratings for all trials in PFBA, 

PHFBA, and PPFBA 
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6. CONCLUSIONS 

 

The dynamic difficulty adjustment to enhance the engagement of the subjects during 

rehabilitation therapy has become the focus of many studies. The aim of this study was to 

compare the engagement of subjects when the difficulty adjustment mechanism uses three 

feedbacks, which are score (PFBA), physiological signal (PHFBA), and score and 

physiological signal together (PPFBA) for difficulty level, in robot-assisted rehabilitation.  

Both objective measures, such as physiological signals, and performance (score) and 

subjective measures, such as survey reports were used for the comparison.  

A particular strength of the present findings is that they come from a within-subjects design; 

that is, it is the same participants who played the game with PFBA, PHFBA, and PPFBA, 

and are not influenced by factors occur in between-subjects designs, such as age, gender, 

skill level, etc. Another novel aspect of the present study is that it takes not only objective 

measures into account but also the subjective states of the subjects. Since the ultimate aim 

is to use a robot-assisted rehabilitation system that adjusts itself to the changing needs of the 

individuals, it is important that the subjects do not perceive the tasks as difficult (over-

challenging) or under-challenging.  

The three feedback based dynamic difficulty adjustment during rehabilitation task with 

RehabRoby is evaluated in 20 healthy subjects. The mean difficulty level distribution 

showed that PHFBA on the average suggests slightly easier difficulty levels (2.62±0.43, 

mean±std) to the subjects than PFBA (5.93±0.88, mean±std) and PPFBA (3.99±0.38, 

mean±std).  Easier difficulty level adjustment resulted in less engaged subjects and 

correspondingly lower subjects’s skin conductance response (SCR) (9.35±8.9, mean±std) 

and heart rate (HR) (89.27±9.35, mean±std) values in PHFBA compared to PFBA and 

PPFBA. Additionally, easier difficulty level adjustment resulted in lower valence value 

(5.7±0.95, mean±std), arousal (5.45±1.6, mean±std) and dominance (5.9±1.5, mean±std) 

subjective ratings in PHFBA compared to PFBA and PPFBA.  Subjects experienced a better 

range of difficulty levels in PFBA and PPFBA that may help them to become more engaged, 

and therefore, they were amused and happy. It was also noted that the difficulty variance of 

PPFBA (4.97±2.06, mean±std) was higher than PFBA (1.48±0.49, mean±std) and PHFBA 

(3.52±1.41, mean±std) which meant that PPFBA offered wider levels to each subject. A 
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wider variety of difficulty level suggestions might increase the amazement experienced by 

the subject, and the subject might become more engaged in the rehabilitation task, and 

consequently, Meantemp value in PPFBA (1.33±1.5, mean±std) was lower than the PFBA 

(2.39±1.78, mean±std) and PHFBA (2.03±1.58, mean±std). 
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7. LIMITATIONS AND FUTURE WORK 

 

The results from the presented study, while encouraging, should be treated with caution 

because of the inherent limitations. 

One of the limitations is that the experiments are conducted only with healthy subjects. This 

study is the first step to evaluate the proposed three feedback based difficulty level 

adjustment, safety, and usability. We are aware that manual dexterity, physiological signal 

response to affect changes, and the appropriateness and level of games are all potentially 

different for target clinical populations, i.e., people with upper limb sensorimotor 

impairment (for example, caused by stroke or cerebral palsy (CP)). Stroke patients may have 

different physiological responses than healthy subjects [122], [123] and thus the intensity of 

the chosen physiological features and perhaps the physiological features themselves may 

need to be reassessed when these difficulty adjustment algorithms are implemented for the 

patient population. Thus it is advised to use caution in interpreting the generalizability of the 

results obtained for the healthy subjects. We believe that this study provides a basis for 

further exploring the role of dynamical difficulty adjustment algorithms in robot-assisted 

rehabilitation of stroke patients. 

Another limitation is there is a need to design experiments to observe motor learning because 

confounding factors such as general sensory acuity decrease (e.g., the vision of older 

persons), and communication and cognitive impairment are the issues that need to be 

considered when evaluating the proposed system with patients. Note also that this is a 

preliminary study to explore how the difficulty adjustment in a rehabilitation task can 

increase engagement when three different feedbacks from the subjects are used. Once 

demonstrated that such an approach works, future tasks will embed force field, distortion, 

etc. to align the training with therapeutic goals. In this dissertation, the goal was not to 

improve mobility or strength, rather explore whether engagement could be improved. 

The mean of the skin conductance signal (Meansc) was used as real-time physiological 

feedback in this study. Different features obtained from the physiological signals such as 

heart rate (HR) and skin conductance ratio (SCR) can be used together in the adaptation 

mechanism by designing proper experimental setup to achieve a more accurate emotion 

state. 
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The rehabilitation task designed for this study includes only elbow flexion/extension 

movement. Rehabilitation tasks that enable combined joint movements such as elbow 

flexion/extension together with shoulder abduction/adduction may be designed in further 

studies to provide more complex movements in the therapy. 

Biomechanical measurements (e.g., EMG) may be integrated into the designed difficulty 

level adaptation mechanism, and the relationship between the physiological signals and the 

biomechanical measurements may be examined in further studies. 
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APPENDIX A: PROCOMP INFINITI ENCODER 
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