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ABSTRACT 

 

 

SURFACE-ENHANCED RAMAN SPECTROSCOPY OF BLOOD COMPONENTS 

WITH THE AIM OF CANCER DIAGNOSIS  

 

Cancer is among the most common diseases in the world. Early detection of cancer is 

critically important to improve prognosis and increase cure rates. Although there are 

screening methods which involve imaging techniques or tumor marker finding in blood, 

faster and cost effective other methods must be developed when the seriousness of the 

disease is considered. Recent years, surface-enhanced Raman spectroscopy (SERS) has 

started to show its potential to be used as an alternative technique in clinics. Among the 

applications of the technique, the use of label-free SERS for cancer screening in blood is 

newly emerging. In this study, SERS analysis on blood serum samples was applied for 

cancer detection using silver nanoparticles (AgNPs) as SERS substrates. For this aim, 

SERS spectra of binary mixtures of blood proteins were acquired first. It was found that 

partial least squares-discriminant analysis (PLS-DA) is better method than principal 

component analysis (PCA) in order to differentiate large proteins. It was shown that using 

different concentrations of AgNPs for SERS study of serum and comparison of the 

acquired spectra provides valuable information about the origins of the blood serum 

spectrum. Addition of three proteins as models (human serum albumin, transferrin, and 

lysozyme) to filtered serum showed that proteins directly affect the spectral shape without 

contributing any SERS bands. Then, discrimination of serum samples of cancer patients 

from healthy individuals and from the patients with chronic diseases were performed using 

partial least squares-discriminant analysis (PLS-DA) on SERS data. Over 90 percent 

diagnostic accuracies were achieved in most of the tests. Moreover, when SERS spectra of 

the blood serum samples obtained from cancer patients before tumor removal and after 

tumor removal were compared it was observed that spectral patterns of serum samples 

after tumor removal were similar to spectral patterns of serum samples of healthy 

individuals. The data in this thesis suggest that SERS study of serum has potential to be 

used as a quick and cost effective tool for cancer detection and its differentiation from 

other chronic diseases in clinics.  
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ÖZET 

 

 

KAN BİLEŞENLERİNİN YÜZEYDE-ZENGİNLEŞTİRİLMİŞ RAMAN 

SPEKTROSKOPİSİ İLE KANSER TANISI AMAÇLI ANALİZİ  

 

Kanser dünyadaki en yaygın hastalıklardan birisidir. Bu nedenle erken kanser tespiti, 

prognozun iyileşmesi ve tedavi oranının artması için oldukça önemlidir. Çeşitli 

görüntüleme teknikleri ve tümör belirteçleri bulunmasına dayalı metotlar halihazırda 

kullanılıyor olsa da hastalığın ciddiyeti göz önüne alındığında daha hızlı ve daha ucuz yeni 

tekniklerin geliştirilmesi gerekmektedir. Son yıllarda, yüzeyde-zenginleştirilmiş Raman 

spektroskopisi (YZRS), alternatif bir teknik olarak klinikte kullanılabilme potansiyeli 

göstermektedir. Bu çalışmada, YZRS ile kan serumu örneklerinin kanser tespiti amaçlı 

analizi gümüş nanopartiküllerin (GNP) YZRS sübstratı olarak kullanılmasıyla 

gerçekleştirildi. Bunun için, ilk olarak, ikili protein karışımlarının YZRS spektrumları 

çalışıldı. Kısmi en küçük karelerin diskriminant analizinin (KEKK-DA) büyük proteinleri 

ayırt edebilmede temel bileşenler analizinden (TBA) daha verimli olduğu görüldü. İlave 

olarak, serumun YZRS spektrumlarının kaynağının neler olduğunu anlamak için farklı 

GNP derişimlerinin kullanılıp elde edilen spektrumların karşılaştırılması gerektiği bulundu. 

Proteinlerin,  serumun YZRS spektrumunu etkilediği ama bunu kendi spektrumlarını 

serum spektrumuna katmadan yaptıkları üç farklı protein kullanılarak gösterildi. Kanser 

hastalarının serumlarının sağlıklı bireylerin serumlarından ve kronik hastalığa sahip 

kişilerin serumlarından ayır edilmesi YZRS verilerine KEKK-DA uygulanarak 

gerçekleştirildi. Testlerin çoğunda yüzde doksan üstü tanısal genel doğruluğa ulaşıldı. İlave 

olarak, kanser hastalarından tümör alımı operasyonu öncesi ve sonrası alınan serumların 

YZRS spektrumları karşılaştırıldığında, tümör alındıktan sonraki spektrumun sağlıklı 

bireylerin serum spektrumlarına tümör alımı öncesi alınan serumların spektrumlarından 

daha çok benzediği gözlendi. Bu tez çalışmasındaki veriler kanser tanısında ve kanserin 

diğer kronik hastalıklardan ayırt edilebilmesinde YZRS’nin çabuk ve daha az maliyetli bir 

yöntem olarak kliniklerde kullanılabilme potansiyeli olduğunu göstermektedir. 
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1. INTRODUCTION 

 

1.1. CANCER AND ITS DIAGNOSIS 

Human body is composed of trillions of cells [1]. In general terms, cells come together and 

form tissues, and tissues form organs. All organs and tissues works in an ordered and 

synchronized fashion in the human body. Cells grow by dividing. One cell divides into two 

cells, two cells become four cells and so on. Cells divide not only for baby growing in 

his/her mother’s womb or during growing of a baby to be a child and an adult, but also to 

replace older damaged cells. Normal cells divide in a controlled way just when they need 

to. Cancerous cells, on the other hand, divide uncontrollably. These cells start to divide and 

keep dividing. The rapidly dividing cells push aside the healthy cells around them, and 

form a small cancer. At first, this small cancer is small to see, and then it begins to grow 

beyond the organ where it started.  

 

Cells divide when their genes tell them to, but if a gene has a mutation, it can tell a cell to 

divide when there is no reason for it to divide. Most cancers start because of mutations in 

several different genes [2]. DNA repair systems in cells tries to recover functionality of the 

genes but can not be always successful in their jobs; therefore proteins may not be 

produced using those genes or produced proteins may become unfunctional. Missing of 

proteins and presence of unfunctional proteins breaks up the harmony inside the cells. 

Other things which can change functionality of  genes other than changing the structure of 

a gene are some epigenetic modifications such as methylation, acetylation, phosphorylation 

and ribosylation [3]. Regional inversions, deletions, and insertions of DNA sequences, and 

some chromosomal rearrangements may be the other causes [4]. 

 

The three major gene classes which are responsible for cancer are oncogenes, tumor 

suppressor genes, and DNA repair genes [5]. In cancerous cells, proto-oncogens become 

oncogens due to the factors mentioned above. Some widely known examples of oncogens 

are the genes called RAS, MYC, and Erk [6]. Tumor suppressor genes check cell dividing 

and proliferation, start DNA repair events in the case of any DNA damage, and trigger 

apoptosis when DNA repair tries are unsuccessful. The most widely known example of 
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them is TP53 gene [7]. Deletions, point mutations, epigenetic silencing, unproper 

separation of chromosomes, and mitotic recombinations make tumor suppressor genes 

functional, leading to carcinogenesis [1, 7]. DNA repair genes attract the proteins which 

repairs damaged DNA sequences [8]. In the case of DNA repair failure, they lead cells to 

apoptosis or necrosis. When these genes are unfunctional, carcinogenesis may occur. One 

of the best known DNA repair genes is BRCA gene [9]. Any mutation in these BRCA gene 

increases the risk of breast cancer. 

 

Genetic disorder and liabilities are not the sole causes of cancer [10]. The use of  tobacco 

and products derived from tobacco, and alcohol, exposure to ionizing radiation, UV 

radiation, air pollution, and chemical carcinogens in environment, dietary habits, viruses 

etc. increases humans’ risk to have cancer disease. 

 

The most prevalent cancer type in the world is lung cancer [11]. For males, lung cancer is 

the most observed and death causing one, followed by prostate cancer and colorectal 

cancer (for incidence) and liver and stomach cancer (for  mortality). For women is breast 

cancer is the most observed and death causing one, followed by colorectal and lung cancer 

(for incidence). In the case of mortality, lung cancer is the second, colorectal is the third 

prevalent one. 

 

Today, cancer diagnosis is achieved using different types of tests and imaging techniques 

[12-15]. After initial evaluation of a clinician, different combinations of test and imaging 

techniques are used for specific symptoms. Tests involve biopsy followed by 

histopathological examination and some blood tests. Imaging techniques are used to locate 

tumor tissue and its size if there any. The general steps and methods for diagnosis are the 

followings:  

 

Biopsy and histopathological evaluation: Biopsy is the removal of a tissue to analyze in 

a laboratory. There are different biopsy techniques specific for different regions of the 

body. In a laboratory, samples are chemically treated and/or sectioned, and examined 

under microscope. Cancer grade can also be determined. With this method, results may be 

available after a few days, and sometimes diagnosis can be done inaccurately. 
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Imaging techniques: Using imaging techniques, clinicians can examine patient’s body, 

locate tumor tissue, and determine its size and stage. Which kind of technique to be used is 

determined by body part to be examined and type of cancer to be detected. Magnetic 

resonance imaging (MRI), computed tomography (CT), x-ray imaging, positron emission 

tomography (PET), ultrasound, colonoscopy, and endoscopy are the major techniques for 

cancer screening and diagnosis. Besides the advantages of each imaging techniques, cost 

(expensive instrumentation) and some resolution limitations can be stated as disadvantages 

of these conventionally used imaging techniques. 

 

Blood tests: Blood samples are taken from patients, and analyzed in a laboratory. 

Composition of the samples based on cell type, cell count are analyzed (for example a 

leukemia cell, a circulating tumor cell can be found among many other cells), and some 

biomolecules which can be clue about the presence of a cancer are screened. Three types of 

blood tests are the followings: 

 

 Complete blood count: This frequently used test counts the amount of different 

types of cells in a blood sample. If the amount of certain types of cells are present 

in very low amount or in a very high amount , or if  abnormal cell are detected, then 

different types of blood cancers can be identified (for example, leukemia, 

lymphoma, and myeloma). Bone morrow biopsy is helpful after this test for further 

confirmation of the diagnosis. 

 

 Blood protein test: Electrophoresis technique is used to separate and examine blood 

proteins. For example, in the case of multiple myeloma, detection of certain 

immunoglobulins may be helpful for diagnosis. Bone morrow biopsy is helpful 

after this test for further confirmation of the diagnosis. 

 

 Tumor marker tests: Tumor markers are specific biomolecules which are produced 

by cancerous cells. If they are detected in blood, it can be helpful for diagnosis of 

different cancer types. Examples are alpha-fetoprotein for liver cancer, prostate 

specific antigen for prostate cancer. The amount of tumor markers can increase in 

some other conditions other than cancer. This restritcs the use of tumor markers for 

a better diagnosis. 
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 Circulating tumor cells: Some cancerous cells from tumor tissues may pass to blood 

stream. Detection of these cells are used for diagnosis. 

 

Althoug some blood tests are very useful for certain cancer types of which specific tumor 

marker and/or protein, markers of many other cancer types are not yet discovered; 

therefore these tests may not be useful in many situations. Cell counting methods are costly 

and time consuming. 

 

As the state of technology evolves in time, researchers all over the world work for yielding 

better efficiency of the conventional methods and techniques, and try to lower their cost for 

community. Meanwhile, different techniques which have been used in different areas (i.e., 

other than clinics) have been tried to be incorpareted into the clinics as an alternative 

method, and one of them is Raman spectroscopy. 

1.2. RAMAN SPECTROSCOPY 

1.2.1. Raman Scattering 

As well known, in the last a few decades of the 19th century and the first decades of the 

20th century, the world welcomed many breakthroughs in the field of physics. One of the 

main contributors to the field was John William Strutt (Lord Rayleigh). He discovered the 

physical explanations of why the sky is blue [16-18]. He observed that molecules in the 

atmosphere scatter the incident sunlight. This type of scattering is now called as Rayleigh 

scattering. Photons in sun light having a size of 400-700 nm (i.e., visible portion of the sun 

light) scatters over very small particles like oxygen and nitrogen molecules (~300 

picometer). Since photons have much bigger size than the molecules (about 1000 times 

more), scattering of photons over molecules cannot be interpreted as a result of actual 

collusions. When photons (i.e., electromagnetic wave) come along and interact with 

molecules, they change the electromagnetic field around these molecules. Protons and 

electrons of the molecules partially separate and form “dipoles”. Since photons oscillate at 

a certain frequency, they also make dipoles start to oscillate at the same frequency. During 

these oscillations, dipoles emit their own photons which have the same frequency of the 

dipole creating incident photons. This means that in Rayleigh scattering, energy of the 
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photons is preserved, and as an analogy to Newtonian mechanics it is called as elastic 

scattering. 

 

Lord Rayleigh analyzed the blue sky phenomenon using James Clerk Maxwell’s equations 

for the electromagnetic field in detail; he found that intensity of scattered radiation varies 

inversely with the fourth power of the wavelength [19, 20]. This meant that shorter blue 

wavelengths of the sun light would be scattered more efficiently than the longer red 

wavelengths of the sun light. Rayleigh also interpreted the color of sea as the reflection of 

the color of the sky. 

 

After three years of Rayleigh’s death, in 1922, another brilliant young scientist, 

Chandrasekhara Venkata Raman, reported that sea was also scattering the light [21]. After 

that Raman started investigating the light scattering phenomenon more intensively with his 

colleagues in Calcutta, India. 

 

In 1923, Arthur Compton showed that scattered X-rays from electrons of a carbon sample 

had longer wavelengths than those targeted onto the sample [22]. In his experiments, both 

electrons and scattering X-rays went separate ways upon collusion while scattering X-rays 

had longer wavelengths (e.g., a ball “A” hits another ball “B”, and incoming ball goes in a 

different direction while losing its energy). Compton thought that this was due to 

conservation of energy and momentum, and photons may be considered as particles. This 

was the first demonstration of inelastic scattering. In 1927, Compton was awarded with the 

Nobel Prize in Physics for this discovery. 

 

Meanwhile Raman was studying on the nature of light scattering on various media such as 

liquids, gases, and crystals, and trying to understand the nature of so called “secondary 

radiations”, and their difference from fluorescence. Findings might be due to fluorescence 

due to impurities in liquid chemicals, therefore they further purified chemicals to avoid 

fluorescence contribution in his experiments. What he found that the secondary radiation 

(the scattering light through liquids upon illumination with sunlight) was polarizing. It was 

very important because most of the fluorescence was unpolarised radiations. On the other 

hand, power of light was not sufficient for obtain higher efficiencies in his experiments; 

therefore this new type of scattering could be observable only on a few liquids. After 

Compton’s findings, he thought that his and his colleague’s findings might be analogous to 
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that of Compton’s. That time, he used optic parts of a telescope to be able to obtain 

stronger sunlight for his studies on scattering, and purified the liquids by repeated 

distillation in vacuum environment. He used around 80 different liquids to prove 

universality of the new type of scattering. Later, he used monochromatic light source for 

further experiments. For each liquid, on spectrograms, he observed additional lines present 

on the right side of the lines occurred due to incident light, meaning that those additional 

lines had longer wavelengths. Findings of these experiments were published in the journal 

Nature having a title “A new type of secondary radiation” on 31st March 1928 [23]. This 

new type of scattering is now called as Raman scattering. C.V. Raman received a Nobel 

Prize in 1930 for his valuable contributions to the field of physics. 

 

Rayleigh and Raman scattering can be explained further on a Jablonski diagram (Figure 

1.1). Scattering can be thought of as a two photon process. During Rayleigh scattering 

process, the molecule which absorbs photon cannot reach an excited electronic, therefore 

the state where the molecule reaches is callrd virtual state. Then, the the energy level of the 

molecule comes back down to the initial ground state while emitting the absorbed energy. 

Therefore the energy of the emitted photon (therefore also its wavelength) is equal to the 

energy of the incident photon. During Raman scattering, the molecule reaches a virtual 

state, and then comes back to a final state which is different than the initial state. 

Therefore, the frequency and the energy of the emitted photon become different than the 

incident photon. If the scattered photon possesses less energy than the incident photon, this 

type of scattering is called Stokes scattering (Figure 1.1). If the inverse happens, then it is 

called anti-Stokes scattering. In a scattering event, Rayleigh scattering comprises more 

than 99.9 percent of total scatterings. The other two comprise extremely small portion 

(~10-7) of scattered photons. Molecules have a stronger tendency to be at ground state 

energy level at room temperature, therefore intensity of Stokes scattering is more intense 

than anti-Stokes scattering. 
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Figure 1.1. Jablonski diagram of energy transitions for absorption, fluorescence, 

phosphorescence, Rayleigh scattering, and Raman scattering (Stokes scattering and Anti-

Stokes scattering). 

 

Stokes and Anti-Stokes scattering are presented in Raman spectrum plots as Raman shift 

values, which are shown in terms of wavenumbers rather than wavelength values. 

Wavenumber of a Raman shift value is found using the following equation: 

 

 𝑅𝑎𝑚𝑎𝑛 𝑠ℎ𝑖𝑓𝑡 (𝑐𝑚−1) = (
1

𝜆𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑙𝑖𝑔ℎ𝑡
−

1

𝜆𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡
) 𝑥107 (1.1) 
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According to the equation, wavenumber values for stokes scattering are positive values, 

because their wavelengths are longer than the incident light. On the other hand, for Anti-

Stokes scattering, wavenumber values are negative. Figure 1.2 shows a typical Raman 

spectrum plot. The intensity values of the Raman bands are shown in arbitrary units. To be 

able to obtain spectrum of both types of scattering, notch filters must be used on the 

instrument (it removes only Rayleigh scattering). If edge filters are used, only Stokes shifts 

can be obtained. For the study of biological structures, Stokes shifts are generally used for 

Raman spectrum plots. 

 

 

 

Figure 1.2. Raman spectrum of a LiNbO3 single crystal [24].  

 

Raman spectroscopy is a extremely useful tool for various types of researches, because 

Raman bands give information on many levels about the analytes (Figure 1.3).  Chemical 

bonds possess different vibrational modes and vibrational energy levels, and each scatters 

the light with different energies. Therefore, in a Raman spectrum, each bond of the 

molecule demostrates itself as a distinct Raman band. Since different molecules possess 

different types of bonds and different combination of types of bonds, their Raman spectra 

become unique to them, providing a “fingerprint” information for molecules. Frequency 

changes of Raman bands are useful for assessment of stress and strain on samples. The use 

of polarises Raman is useful for symmetry and orientation of crystals. The change of the 

Stokes shifts Anti-Stokes shifts 
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width of a Raman band may give hints about deformation of analyte. Quantitative analyses 

can also be perfomed using intensity changes of Raman bands. 

 

 

 

Figure 1.3. Information obtained from a Raman spectrum. 

1.2.2. Basic Theory of Raman Scattering 

Electric field is a vector quantity having an amplitude part and a phase part can be defined 

as in Equation 1.2 

 

 𝐸⃗ = 𝐸0 𝑐𝑜𝑠(2𝜋 𝜈0𝑡) (1.2) 

 

where 𝐸0 is amplitude of the wave, 𝜈0 is the frequency of the incident light beam. When an 

electric field is applied to a molecule, it will try to push the plus charges towards its 

direction and the electron cloud goes to the opposite direction of that electric field [25]. 

This creates a dipole configuration. Dipole moment is defined as the product of the charge  

𝑞 and the separation distance 𝑑 between these two charge centers. 
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 𝜇 = 𝑞x𝑑 (1.3) 

 

Dipole moment 𝜇 for the molecule is also proportional to the applied electric field 𝐸⃗ . 

Therefore, Equation 1.3 can be written as Equation 1.4 

 

 𝜇 = 𝛼𝐸 (1.4) 

 

where 𝛼 defines polarizability of a bond.in the presence of an electric field. By combining 

Equation 1.2 with 1.4, we find 

 

 𝜇 = 𝛼𝐸0 𝑐𝑜𝑠(2𝜋 𝜈0𝑡) (1.5) 

 

In the absence of an electric field, a molecule vibrates at its own vibrational frequencies. 

On the other hand, in the presence of an electric field, oscillations of the induced dipole 

moment are amplitude modulated at the frequency 𝜈𝑣𝑖𝑏 of the molecular vibration, which 

depends on polarisability changes of the molecular bonds (Figure 1.4).  

 

Polarisability changes as a function of the distance 𝑟 between the vibrating atomic nuclei. 

Therefore, polarisability can be also written as 

 

 𝛼 = 𝛼0 +
𝜕𝛼

𝜕𝑟
(𝑟 − 𝑟𝑒𝑞) (1.6) 

 

where 𝛼0 is the polarisability when distance between nuclei at equilibrium was at the 

equilibrium distance 𝑟𝑒𝑞. Distance 𝑟 is the distance between nuclei at any time (which 

means that it is time dependent). Hence, the change of the internuclei distance can be 

written as 

 

 𝑟 − 𝑟𝑒𝑞 = 𝑟𝑚 𝑐𝑜𝑠(2𝜋 𝜈𝑣𝑖𝑏𝑡) (1.7) 

 

where 𝑟𝑚 is the maximum distance between nuclei relative to equilibrium position. By 

combining Equation 1.6 with 1.7, we find 

 

 𝛼 = 𝛼0 +
𝜕𝛼

𝜕𝑟
𝑟𝑚 𝑐𝑜𝑠(2𝜋 𝜈𝑣𝑖𝑏𝑡) (1.8) 
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When Equation 1.8 and 1.5 is combined and rewritten using trigonometric rule 

𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑏 =
1

2
[𝑐𝑜𝑠(𝑎 + 𝑏) + 𝑐𝑜𝑠(𝑎 − 𝑏)], we find 

 

 

𝜇 = 𝛼𝐸0 𝑐𝑜𝑠(2𝜋 𝜈0𝑡) + (
𝐸0

2
) 𝑟𝑚 (

𝜕𝛼

𝜕𝑟
) 𝑐𝑜𝑠[2𝜋(𝜈0 − 𝜈𝑣𝑖𝑏)𝑡]

+ (
𝐸0

2
) 𝑟𝑚 (

𝜕𝛼

𝜕𝑟
) 𝑐𝑜𝑠[2𝜋(𝜈0 + 𝜈𝑣𝑖𝑏)𝑡] 

(1.9) 

 

where first part of the Equation 1.9 is of Rayleigh scattering, and the second part 

corresponds to Stokes scattering, and the third part correspond to and anti-Stokes Raman 

scattering. According to the equation, Raman scattering occurs when polarizability changes 

as a function of r (distance between nuclei) and (𝜕𝛼/ 𝜕𝑟) has a non-zero value during a 

vibration. 

 

 

 

Figure 1.4. (a) When molecule does not vibrate, oscillation frequency 𝜈0 of the induced 

dipole is equal to the frequency of the incident light; (b) When molecule vibrates with a 

frequency 𝜈𝑣𝑖𝑏, the electric dipole is modulated by the molecule, and total induced electric 

dipole is resolvable into three frequency components. 
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1.2.3. Raman Instrument 

A Raman instrument (Figure 5 and 6) consists of lasers as excitation sources (Figure 6), 

beam steers (mirrors) for adjustment of laser path, filters appropriate for each laser 

wavelengths for Rayleigh scattering removal, slit for removing unwanted light and 

intensifying the Raman scattering, grating, CCD detector, microscope, and a stage for 

sample handling. 

 

 

 

Figure 1.5. Components of a Raman instrument. 

 

The choice of laser wavelength depends on the sample to be analyzed. 244 nm lasers are 

generally used for biological studies because some molecules such as DNA, protein, and 

some amino acids absorbs UV light. 325 nm lasers for studies on wide band gap 

semiconductors. 488 nm, 514 nm, 633 nm and 785 nm lasers are used for various fields 

such as catalysis, semiconductor studies, and researches on polymers, minerals and 

biological structures. 830 nm laser is mainly used for biological studies. Near infrared 

(NIR) lasers (785 and 830 nm) are better for biological researches because 

photodegradation of samples and fluorescence issues can be avoided. 
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Figure 1.6. Lasers of a Raman instrument 

1.2.4. Plasmonics 

Plasmon word comes from unification of the Greek word “plasma” and “mons”. Plasma 

means molded or shaped, and mons means a mountain or body. In physics, the model of a 

conductor is an array of metallic ions surrounded by a sea of electrons, which is called 

“free electron gas”. Plasmon is a quasi-particle that can be described by a collection of 

interacting particles and conduction electrons make up the free electron gas [26]. In other 

terms, electron gas around nanoparticles oscillates collectively and a plasmon phenomenon 

occurs around them. When these plasmons occurs at the interface between metal and 

dielectric surface, it is called “surface plasmons” [27]. There are two types of surface 

plasmons: propagating ones and non-propagating ones. The latter one is called “localized 

surface plasmon” (LSP) and occurs around nanometer sized noble metals due to 

confinement of plasmons  [28]. The wavelengths of light is much larger than the size of a 

nanoparticle. When light interacts with a nanoparticle, the external electric field of light 

creates a distortion in the electron cloud that makes up surface plasmons. If nanoparticles 

are excited at a resonant frequency, the absorption of light and the response of the 

nanoparticles become very strong, and this time it is called “localized surface plasmon 

resonance” (LSPR) (Figure 1.7). The light wavelength at which LSPR occurs depends on 

Back side of the Raman instrument 

Green laser (514 nm) 

NIR laser (830 nm) 
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size and shape of nanoparticles, aggregation state of nanoparticles, and refractive index of 

the environment surrounding the nanoparticles (Figure 1.8) [29, 30]. 

 

 

 

Figure 1.7. Illustration of localized surface plasmon resonance. 

 

 

 

Figure 1.8. (a) The UV-Vis spectra of AgNPs with different sizes. (b) The change of the 

UV-Vis spectrum of colloidal 50 nm sized AgNPs during their aggregation process. (c) 

The effects of surrounding medium of 50 nm sized AgNPs on their UV-Vis spectrum [30]. 

a) b) 

c) 
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1.2.5. Surface-Enhanced Raman Scattering 

Surface-enhanced Raman scattering (SERS) can be defined as the much more enhanced 

Raman scattering from molecules when they are either adsorbed on or be in close vicinity 

of noble metal nanoparticles such as gold nanoparticles (AuNP) and silver nanoparticles 

(AgNP) [31]. This type of enhanced Raman scattering was found firstly in 1974 by 

Fleischmann et al. while studying Raman scattering of pyridine on roughened silver 

electrode surfaces [32]. Three years later, in 1977, Van Duyne and his graduate student 

Jeanmaire found that the reason for 105-106 times enhanced Raman signals might not only 

be surface roughness, and stated that there must have been other things which caused 

enhanced Raman scattering, and electric field enhancement could be the reason for this 

phenomenon [33]. In the same year, a separate group of Albrecht and Creighton reported 

“Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode” [34]. They 

proposed that enhanced Raman signal was due to a charge transfer between surface and 

adsorbed pyridine molecules, resulting in  resonance Raman scattering. This finding is now 

accepted as “chemical enhancement theory of SERS”. After these findings, Van Duyne 

met and discussed with physicists, learned from them more about surface plasmons, and 

developed “electromagnetic field enhancement theory of SERS” [35]. Later, other reports 

on this new type of scattering further revealed the effects of surface plasmons [36-39]. 

Today, both chemical enhancement theory and electromagnetic theory are accepted as the 

contributors of SERS theory. 

 

As it was discussed in the previous section that a localized surface plasmon resonance 

occurs on noble metal nanoparticle surfaces in the presence of an electromagnetic field. 

When Raman scattering molecules come nearby of these nanoparticles, their induced 

dipole moments increase, therefore the amount of Raman scattering from that molecule 

increase. The highest enhancements occurs when molecules are present between adjacent 

nanoparticles due to a “hot spot” formation between adjacent nanoparticles (i.e., when the 

distance between nanoparticles is  less than 4 nanometer) [40, 41]. Generally, in a SERS 

experiment, more than 25 percent of total enhancement (in many cases more than 50 per- 

cent) are obtained from the molecules in the hot spots, although total surface area of the 

hot spots are  less one percent of the total surface of the nanoparticles interacting with a 
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light source [42, 43]. This extreme intensity increase in hot spots even makes single 

molecule detection possible [44-46]. 

 

The major parameters in a SERS experiment  are laser wavelength, SERS substrate type 

(i.e., colloidal AgNPs, AuNPs or solid substrates), size,  shape, and surface chemistry of 

nanoparticles, and aggregation status of nanoparticles. All these parameters are 

interconnected. Intensity of the SERS bands may differ with the wavelength of laser. Some 

laser wavelengths may be more suitable for some molecules. Especially, fluorescence may 

be a problem with visible wavelengths while dealing with biological molecules. The use of 

a near infrared (NIR) laser overcomes this problem. Size and shape of nanoparticles effect 

surface plasmon formation. Surface chemistry defines interaction of the molecules with 

nanoparticle surface. For example, positively charged molecules can interact better with a 

negatively charged nanoparticle than negatively charged molecules. In addition, the 

molecules possessing certain functional groups such as amines and thiols can bind easily to 

noble metal nanoparticle surfaces. Molecule orientation on the nanoparticle surface also 

effects the shape of obtained spectra, because the Raman scattering of the chemical bonds 

which are the nearest to the nanoparticle surface is more enhanced. Aggregation status of 

nanoparticles is directly linked to hot spot formation. More aggregated colloidal 

nanoparticles may produce more hot spots, hence produce higher SERS signals. On the 

other hand, direction of accumulation of nanoparticles during aggregation should be 

perpendicular to impinging laser [47]. Direction of hot spot formation and chaotic nature of 

aggregation can be resolved by using solid SERS substrates. On the other hand, production 

of these type of substrates are costly and time consuming. In addition, since they are 

contaminated within an experiment, they are not reusable. As seen, there are always trade-

offs among different options, therefore a SERS experimenter must chose a proper laser 

wavelength and substrate for his/her “specific experiment”. 

 

During last two decades, surface-enhanced Raman scattering has been used for various 

types of studies. In literature, lots of articles are reported about SERS studies on detection, 

identification, imaging of biological molecules [48-57], microorganisms [58-64], viruses 

[65-69], cells [70-76], and tissues [77-84]. Providing fingerprint of molecules with much 

more enhanced Raman scattering, SERS technique will be continue to be a valuable tool 

for biological studies, and even for clinics for routine analysis. 
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1.2.6. A Review of Current Literature on Label-Free Cancer Detection Based on 

Blood plasma and Serum SERS 

First report about the use of label-free SERS for cancer detection was of Feng et al [85].. 

They collected plasma samples of 43 Nasopharyngeal cancer patients and of 33 healthy 

volunteers. Concentrated hydroxylamine reduced AgNPs (H-AgNPs) were mixed with 

plasma samples at a 1:1 proportion. After two hours of incubation at four °C, a drop of the 

mixture was spotted on an aluminum plate and spectra were collected using a 785 nm laser. 

Principal component analysis (PCA) and linear discriminant analysis (LDA) were used for 

analysis of the acquired spectra. Sensitivity of the diagnostic analysis was 90.7 percent, 

with a specificity of 100 percent. Overall accuracy was 95.4 percent. Spectral patterns of 

two groups were also compared. Intensity values of the SERS peaks at 725, 1330, 1445 

and 1580 cm-1 were higher in the SERS spectra of cancer plasma samples. On the other 

hand, intensity values of 494, 589, 638, 813, 1004 and 1134 cm-1 were higher in the SERS 

spectra of healthy plasma samples. 

 

Feng et al. studied gastric cancer detection using SERS and evaluated effects of the 

polarized laser light on detection [86]. SERS spectra of plasma samples of 32 gastric 

cancer patients and of 33 healthy individuals were acquired using concentrated H-AgNPs 

as SERS substrates and a 785 nm laser. Before acquisition plasma and AgNP colloid 

mixture waited for two hours. Principal component analysis (PCA) and linear discriminant 

analysis (LDA) were used for analysis of the acquired spectra. One hundred percent 

diagnostic sensitivity and 97 percent specificity were achieved when left-handed circularly 

polarized laser was used. Sensitivity and specificity values were less than these values 

when non-polarized laser, linear-polarized laser, right-handed circularly polarized laser 

were used. Although authors did not give a satisfactory explanation for this results. They 

concluded that the differences of the chiral properties of the molecules in plasma samples 

were shown up well with left-handed circularly polarized laser. 

 

Lin et al. studied colorectal cancer detection [87]. SERS spectra of serum samples of 38 

colorectal cancer patients and of 45 healthy individuals were acquired using citrate reduced 

AuNPs (cit-Aunp) as SERS substrates and a 785 nm laser. Before acquisition serum and 

AuNP colloid mixture waited for two hours. Two different analyses for discrimination 
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purposes were performed. First, ratio of the SERS intensity of 725 cm-1 and 638 cm-1 bands 

for each spectrum were compared. They stated that 725 cm-1 band was stemming from 

adenine and 638 cm-1 band was stemming from tyrosine  A sensitivity of 68.4 percent and 

a specificity of 95.6 percent were attained. After that, using PCA-LDA analysis for the 

entire spectra a sensitivity of 97.4 percent and a specificity of 100 percent were attained. 

 

Duo Lin et al. studied differentiation of different stages of nasopharyngeal cancer [88]. 

They used citrate reduced AuNPs as SERS substrates. After simple mixing with plasma of 

60 healthy people, 25 nasopharyngeal cancer (at T1 stage), and 75 nasopharyngeal cancer 

patients (T2-T4 stage), they collected their SERS spectra and analyzed using PCA-LDA. 

Accuracy for differentation of T1 stage samples from control samples was 83.5 percent and 

for differentiation of T2-T4 stage samples from control samples was 93.3 percent. Sixty 

three percent accuracy was obtained when T1 samples were differentiated from T2-T4 

samples. 

 

Xiaozhou Li et al. collected SERS spectra of 23 healthy people and 22 esophageal cancer 

patient before operation and three months after operation [89]. SERS spectra were acquired 

after direct mixing serum samples with citrate reduced AgNPs. Both PCA and hierarchical 

cluster analysis (HCA) were used for discrimination of the collected spectra. Seventy 

seven percent accuracy of discrimination was obtained with HCA analysis. The use of 

PCA resulted in 89.6 percent accuracy. They also observed that spectra of the post-

operative serum samples more similar to that of control group than pre-operative serum 

samples. They concluded that SERS could also be used efficiecy of cancer treatment. 

 

Some other serum or plasma based SERS studies have been also reported in literature such 

as discrimination of prostate cancer [90], myeloma [91], cervical cancer [92], breast cancer 

[93, 94]. 

 

Bonifacio et al. analyzed SERS spectra of blood plasma and serum using both AuNP and 

AgNP colloids [95]. In their study, they acquired SERS specta of the samples while they 

are in liquid from. They showed that the use of Li-heparin containing collection tubes for 

plasma SERS studies results in more reproducible spectra than the use of EDTA or citrate 

containing collection tubes. The presence of protein parts suppressed the SERS signal of 

other metabolites and cause less repoducible spectra; therefore they stated that the use of 
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filtered serum would be more appropriate. There different laser wavelengths (785 nm, 633 

nm, and 514 nm) were compared for maximum signal intesity and spectral reproducibility, 

and found that 785 nm was the best for serum SERS studies. Moreover, they compared 

SERS spectra of uric acid and hypoxanthine with serum spectra, and demonstrated that 

some SERS bands of serum spectra could be due to uric acid and hypoxanthine.  
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2. AIM OF THE STUDY 
 

 

Utilization of label-free SERS of blood serum for cancer diagnosis is newly growing and 

promising approach. If this is achieved, different types of cancers can be diagnosed by 

simply using a few microliters of serum and SERS substrate, and a Raman instrument 

(either with a benchtop one or a hand held one). In order to realize this, several points must 

have been understood first. Blood serum is a extremely complex liquid consisting of 

various types of proteins and biomolecules. Therefore a stepwise study have been needed  

to understand the origins of the SERS bands before cancer diagnosis and identification 

studies using SERS. For this aim,  

 

 SERS study of some blood proteins had to be performed to understand SERS 

spectra of proteins. As a model, SERS spectra of binary mixtures of different blood 

proteins were analyzed. The effects of protein size on the final shape of the SERS 

spectra of the mixtures.were discussed and discrimination of each protein in the 

mixtures were tried using different statistical methods. 

 SERS spectrum of filtered and unfltered blood serum were compared. The effects 

of addition of proteins to filtered serum on its SERS spectra were demonstrated. 

 The effects of concentration of SERS substrate (AgNP colloid) on serum SERS 

spectra were analyzed and the effects of certain molecules on  serum SERS spectra 

were studied. 

 SERS spectra of some purines and purine derivatives and their mixtures were 

studied to obtain deeper understanding about serum SERS spectra. 

 

After these studies, discrimination of serum samples of cancer patients from samples 

collected from healthy donors and patients with chronic diseases was performed. 

 

Lastly, the effects of tumor removal from cancer patients on the SERS spectra of their 

serum was demonstrated. 
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3. MATERIALS AND METHODS 

 

3.1. CHEMICALS AND MATERIALS 

Human serum albumin, hemoglobin, apotransferrin, immunoglobulin G, immunoglobulin 

A, cytochrome c, lysozyme, fibrinogen, silver nitrate, sodium hydroxide,  sodium citrate,  

methanol, arginine proline, serine, valine, histidine, tryptophan, tyrosine, phenylalanine, 

urea, mannose, thymine, cytosine ,guanine, xanthine, hypoxanthine, adenine, uric acid, 

commercial human serum, sodium phophate dibasic, sodium phophate monobasic, boric 

acid, phosphate buffered saline (PBS) were purchased from Sigma-Aldrich (Germany). 

Hydroxylamine hydrochloride and Amicon 3 kDa 15 ml centrifugal filtration tubes was 

purchased from Merck (Germany). Aqueous solutions were prepared using double 

distilled, deionized water from Millipore DirectQ-ultraviolet (UV) system. 

3.2. SILVER NANOPARTICLE SYNTHESIS 

Citrate reduced silver nanoparticles (AgNPs) were synthesized using Lee-Miesel method 

[96]. One hundred and eighty mg of silver nitrate was added into one liter of distilled water 

and stirred until boiling. Then, 20 ml of one percent (w/v) trisodium citrate solution added 

dropwise, and kept boiling for another one and half hour. After cooling, loss of water due 

to evaporation was compensated by adding water to make it one liter of colloidal AgNP 

suspension. 

 

Hydroxylamine reduced AgNPs were synthesized using Leopold-Lend method [97].Ten ml 

of hydroxylamine hydrochloride (1.5x10-2 M) and sodium hydroxide (3x10-2 M) mixture 

was added to 90 ml of silver nitrate solution (1.11x10-3 M) and stirred for 15 min. The 

synthesized colloidal nanoparticles were characterized with dynamic light scattering (DLS) 

(Zetasizer Nano ZS, Malvern) and UV-Visible spectroscopy (Lambda 25, Perkin Elmer). 

Citrate reduced ones had an average size of 30 nm and hydroxylamine reduced ones had an 

average size of 50 nm. In order to concentrate the suspensions, they were centrifuged at 
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5500 rpm for 30 minutes, whole water on the top of the precipitated was removed, and 

appropriate amount of water was added to obtain a specific concentration. 

3.3. SAMPLE PREPARATION 

3.3.1. Preparation of Protein Mixtures for SERS Study of Binary Mixtures of 

Proteins 

Protein solutions were prepared in the concentration of two μM. Then, a volume of 100 μl 

binary mixtures of protein solutions was prepared by mixing a specific concentration of 

proteins, such as 1.2 μM hemoglobin and 0.8 μM cytochrome c (the total protein 

concentration for all the protein mixtures was kept constant at two μM). Then, the prepared 

solutions were mixed with 100 μl of 16 times concetrated hydroxylamine reduced AgNP 

colloidal suspension (16x) (final concentrations of protein mixtures and AgNP colloidal 

suspensions was one μM and 8x, respectively). 

3.3.2. Preparation of Solutions 

For evaluation of the effects of the addition of various molecules to serum, appropriate 

amount of the chemicals was weighed so that final concentrations of the chemicals were 

one mM both in water and in commercial human serum. 

 

For evaluation of the effects of the addition of proteins to filtered commercial human 

serum, appropriate amount of protein powders were weighed and added into serum. 

 

For the SERS study of binary mixtures of purines and purine derivatives, appropriate 

amount of their powder was weighed and added to either phosphate or borate buffer to 

prepare solutions with 200 μM concentrations. 
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3.3.3. Preparation of Blood Serum Samples 

In order to prepare filtered human serum, commercial human serum was filtered with 3 

kDa 15 ml Amicon filters by centrifugation at 4000 rpm for one hour. 

 

Protein extraction from commercial human serum was achived by methanol extraction. 

Fifty μl of serum samples mixed with different amounts of ice cold methanol (50 μl, 100 

μl, 150 μl, 200 μl, 250 μl, and 300 μl). Mixtures were vortexed for one minute and 

incubated at -20 oC for 30 minutes. Then they were centrifuged at 11000 rpm at +4 oC for 

30 minutes. Supernatants were pipetted and put into different microcentrifuge tubes, and 

air dried in a cabin. After drying, 50 μl of distilled water was added into tubes and 

vortexed. 

 

Blood samples of cancer patients, patients with chronic diseases, and healthy individuals 

were obtained from Sakarya University Training and Research Hospital. Human samples 

collection was approved by the Yeditepe University Human Ethical Committee. Of healthy 

individuals, eighteen person was male and 12 was female donors (mean age: 54.9, standard 

deviation: 11.2, median age: 56). The list of chronic disease parients and their information 

are provided in Table 3.1. The list of cancer patients and their information can be seen in 

Table 3.2. After collection, blood samples was kept at the room temperature for about 45 

minutes in serum collection tubes, then centrifuged at 2000 g for 10 minutes. Supernatant 

part of the samples was then transfered to clean DNAse, RNAse free 1.5 ml 

microcentrifuge tubes. Samples were kept at -80 oC freezer until used. 

 

Table 3.1. The list of chronic disease patients. 

 

Patient Age Gender Chronic disease 

P1 38 M kidney stone 

P2 48 M diabetes 

P3 63 M hypertension 

P4 38 F stomach related 

P5 42 F bronchitis, heart related problems 

P6 55 F hypertension, respiratory distress 
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P7 55 F hypertension 

P8 55 F diabetes, hypertension, atherosclerosis 

P9 55 F kidney stone, diabetes 

P10 60 F osteoporosis 

P11 63 F bile stone 

P12 66 F diabetes, hypertension, osteoporosis 

P13 66 F sinuses, osteoporosis 

P14 75 F arthritis 

P15 80 F arthritis 

Mean age 57.3 
  

± SD 12.4 
  

Median age 55 
   

Table 3.2. The list of cancer patients. Blood samples after tumor removal were obtained 

from the patients with star symbol. 

 

Patient Age Gender Cancer Type 

Days passed 

after tumor 

removal for 

second blood 

take 

P1 55 M Abdominal cancer 
 

P2* 46 F Breast cancer 123 

P3 57 F Breast cancer 
 

P4 73 F Breast cancer 
 

P5 60 M Colon cancer 
 

P6 61 M Colon cancer 
 

P7* 66 M Colon cancer 14 

P8* 71 M Colon cancer 58 

P9 72 M Colon cancer 
 

P10 82 M Colon cancer 
 

P11* 56 M Fibrosis 98 

P12* 66 M Gastric cancer 21 

P13 71 M Gastric cancer 
 

P14 56 F Gastrointestinal cancer 
 

P15* 60 F Liver cancer 17 

P16 63 M Small intestinal cancer 
 

P17 65 M Anorectal cancer 
 

P18 43 F Rectal cancer 
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P19 51 F Rectal cancer 
 

P20* 58 F Rectal cancer 73 

P21* 41 M Rectal cancer 13 

P22* 56 M Rectal cancer 118 

P23 59 M Rectal cancer 
 

P24* 64 M Rectal cancer 28 

P25* 65 M Rectal cancer 28 

P26* 66 M Rectal cancer 90 

P27* 72 M Rectal cancer 61 

P28* 73 M Rectal cancer 16 

P29 77 M Rectal cancer 
 

P30 87 M Rectal cancer 
 

Mean age 63.1 
   

± SD 10.6 
   

Median age 63.5 
   

3.4. SERS EXPERIMENTAL SETUP 

All prepared samples were mixed with appropriate amount of AgNP colloids and mixtures 

spotted on CaF2 slides. SERS spectra of the samples were acquired using a Renishaw inVia 

Reflex Raman spectrometer. Spectrometer was equipped with 830 nm laser. An 50x 

objective was used. The system was automatically calibrated against a silicon wafer peak 

at 520 cm-1 each time before experiments. Laser power was 1.5-3 mW. Exposure time was 

10 seconds. 

3.5. SERS DATA PROCESSING 

The spectra were smoothed, baseline corrected, and normalized using Wire 4.0 (Raman 

spectrometer’s software). Multivariate data analysis was performed using SPSS 20.0 

(IBM) and PLS-Toolbox (Eigenvector Research Inc.).  
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4. RESULTS AND DISCUSSION 

 

4.1. CHARACTERIZATION OF SILVER NANOPARTICLES 

As stated in the materials and methods section, AgNPs were synthesized using two 

different reducing agents, hydroxylamine hydrochloride and citrate, namely. UV-Visible 

spectroscopy is widely used for determination of the size of noble metal nanoparticles 

(NPs) such as gold [98] and silver [99]. The peak values of the absorption spectra of the 

AgNPs give information about the most abundant NP size (i.e., average size) in a colloidal 

AgNP suspension [100]. Figure 4.1 shows UV-Vis spectrum of the hydroxylamine 

hydrochloride reduced AgNPs. Absorption maximum of the spectrum was 415 nm, 

corresponding to an average size of 44 nm. Zeta potential of the AgNPs was -27 mV. 

 

 

 

Figure 4.1. UV-Visible spectrum of the hydroxylamine hydrochloride reduced AgNPs. 

 

Since the aim of the second part of the thesis study was about the evaluation of the SERS 

technique for label free cancer detection and its possible use in a clinical environment, the 

stability of the SERS substrates (i.e., AgNPs) for a time period was crucial. Therefore, UV-

Vis spectra of the citrate reduced AgNPs were acquired once in a week over seven months 

and results were shown in Figure 4.2. As seen in the figure, all UV-Vis spectra were 

similar and their standard deviation was extremely small implying that AgNP colloid was 
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stable over seven months. The maximum absorbance was at 405 nm, corresponding to an 

average size of 30 nm. 

 

 

 

Figure 4.2. UV/Visible spectra of the citrate reduced AgNPs for seven months (a total of 

29 spectra).  

 

Zeta potentials of the citrate reduced AgNP were also acquired once in a week over seven 

months (Figure 4.3). Zeta potential of the AgNPs was stable around -40 mV for that time 

period. 

 

 

 

Figure 4.3. Zeta potential of the citrate reduced AgNP colloid over seven months. Standard 

deviations are of three different measurements. 
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4.2. INFLUENCE OF PROTEIN SIZE ON SURFACE-ENHANCED RAMAN 

SCATTTERING SPECTRA IN BINARY PROTEIN MIXTURES 

Proteins possess complex structure and have either globular or elongated (fibrous) shape. 

As they contain various types of zwitterionic amino acids, their overall charges change 

according to the pH of the surrounding environment. The pH where they carry zero net 

charge is called isoelectric point (pI). Below their isoelectric point, proteins are basic in 

nature and possess positive charge, whereas above this point, they are acidic and possess 

negative charge. The surface charges (zeta potential) of the proteins used in this study were 

measured in pure water (pH 6.9) using Zetasizer and are presented in Table 4.1. While 

apotransferrin, human serum albumin (HSA), fibrinogen, hemoglobin, and 

immunoglobulin A (IgA) are negatively charged, lysozyme, cytochrome c, and 

immunoglobulin G (IgG) are positively charged at pH 6.9. The other important point in the 

table is that hydrodynamic radius of the protein increases as the molecular weight of the 

protein increases. The seven proteins, which obey this trend, are globular proteins, and the 

only protein that does not obey is fibrinogen.  It is a fibrous protein and has a length of 

47.5 nm [101]. Since DLS technique assumes the particles in suspensions as spheres, real 

physical dimensions of fibrinogen are not similar to its hydrodynamic radius due to its 

elongated structure. On the other hand, its hydrodynamic radius was found as 15.68 nm, 

which is consistent with previous studies [101-103]. 

 

Table 4.1. Physicochemical properties of the proteins. 

 

Protein 
MW 

(kDa) 

Hydrodynamic 

radius (nm) 

Isoelectric 

point (pI) 

Zeta 

potential 

(mV) 

Property 

Hemoglobin 64.5 3.90 6.8 -10.4 Acidic 

HSA 66.5 4.40 4.7-5.2 -28.9 Acidic 

Apotransferrin 76-81 7.91 5.9 -16.9 Acidic 

IgA 150-350 16.25 4.63-6.85 -27.2 Acidic 

Fibrinogen 340 15.68 5.8-6.1 -9.53 Acidic 

Cytochrome c 12.3 2.01 10.5 +22.5 Basic 

Lysozyme 14.3 2.15 11.4 +25.9 Basic 

IgG 150 12.66 5.5-9.5 +14.5 Basic 
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The choice of a substrate is a very important step for the quality and reproducibility of the 

SERS spectra. In most of SERS studies, AgNPs or gold nanoparticles (AuNPs) are used 

due to simple preparation, low cost, and high sensitivity [104-106]. Since Raman cross 

sections of many molecules (especially of biologically relevant ones) are small, many 

times anomalous signals stemming from the molecular remnants of the colloid synthesis or 

molecules coating the nanoparticle surface interfere and appear on the acquired spectra 

[107, 108]. When the low intensity of the SERS spectra of proteins is considered, these 

anomalous signals can make the interpretation of the protein spectra harder. The citrate 

reduced AgNPs are the most widely used substrates in our laboratories and in the SERS 

community. Another prevalently used colloidal AgNP type is the hydroxylamine reduced 

one. Figure 4.4 shows SERS spectra of both colloidal AgNP types. Before acquisition of 

these spectra, colloidal AgNP suspensions were centrifuged and all the aqueous 

supernatants on the top of the muddy AgNP precipitates were removed for further 

elimination of species causing anomalous signals. As seen in the figure, SERS spectrum of 

the citrate reduced AgNPs possess many citrate bands. On the other hand, the only band in 

the SERS spectrum of hydroxylamine reduced AgNPs is around 1050 cm-1 which is 

attributed to nitrate ions (for AgNP synthesis, silver nitrate is used as silver source). 

Therefore, hydroxylamine reduced colloidal AgNPs were used for SERS study of proteins.  

 

 

 

Figure 4.4. SERS spectra of (a) citrate reduced AgNPs and (b) hydroxylamine reduced 

AgNPs. 

 

The other important point for protein-SERS is the concentration of AgNPs. In order to 

obtain good quality, reproducible spectra from proteins, concentrated AgNP colloids 

should be used. This necessity was demonstrated in previous reports published in literature 

a) b) 
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[109-112]. Sizes of proteins are in nanometer scale; therefore proteins can be thought of as 

nanostructures. Upon mixing with AgNPs, they coat the NPs and they fill the voids among 

the AgNPs in the aggregates, which might have a quenching effect on surface plasmon 

formation. This might be a negative contributing factor to the quality of the SERS spectra 

of proteins. Therefore, an increased number of AgNPs in the experiment increases the 

probability of proteins in the close proximitiy to AgNP surfaces in the aggregates.  

 

Zeta potential of the AgNP colloid was measured as -27 mV, which means that it would 

interact better with positively charged proteins than negatively charged ones. The pH of the 

AgNP colloid and protein mixture was found as 7.01 which was not significantly different 

from the pH of the water (6.90) used to dissolve proteins. Therefore, zeta potentials of the 

proteins did not change much, and their degree of interaction with AgNPs remained more 

or less the same. The negatively charged proteins formed small aggregates due to weak 

interactions with AgNPs, while positively charged ones formed larger aggregates due to 

stronger interactions. This phenomenon was shown in previous reports by our group [109, 

110]. Since acquired SERS spectra of negatively charged proteins from dried deposited 

area of a sessile droplet are poor, to facilitate further accumulation of proteins and AgNPs 

in a more confined area, the droplets dried in suspended position. A report of our group in 

previous years showed that with this method, quality and reproducibility of the protein 

SERS spectra increases [110]. In addition, intensity of the spectra varies within deposited 

area [113], and for quantitative analysis using droplet deposition technique, all spectra for 

all samples have to be acquired from same regions. In this study, all spectra were acquired 

from the middle regions of the deposited areas. A representative image of the spectra 

acquired area is demonstrated in Figure 4.5. Ten SERS spectra of each protein and their 

standard deviations are shown in Figure 4.6. Each protein has its distinct spectral shape. 

 

PCA (principal component analysis) is widely used for large Raman datasets having 

multiple dimensions [114-117]. In this method, a number of variables are reduced while 

retaining most of the variance. Differentiation and classification of large datasets using the 

extracted principal components provide further analysis of the data. Figure 4.7 shows the 

differentiation of the eight different proteins used in this study using PCA. First, the three 

principal components explained 89 percent of the total variance among proteins. 

Cytochrome c and hemoglobin were well separated from the others. They contain the heme 



31 

 

 

group, and the contribution of this group to their SERS spectra gives these two proteins 

their distinct fingerprint spectral properties. The clusters of the other five proteins 

(fibrinogen, HSA, lysozyme, apotransferrin, and IgG) were also differentiated. On the 

other hand, PCA scores of IgA were widely spread. The intragroup variability might have 

been the reason for this. PCA is not a supervised method, and both variability within the 

groupings and variability between the groupings contribute to the variance, and sharp 

spectral features affect variance. The intragroup variances (i.e., variance among the ten 

spectra of each mixture) here resulted in the wide distribution of the IgA scores on the plot. 

 

 

 

Figure 4.5. A part of the deposition area of 0.4 μM Cyt c-0.6 μM Hb and AgNP mixture. 

SERS spectra were acquired from the encircled area. Scale bar represents 200 μm. 

 

After proving that each protein was well distinguished by PCA, the next study was the 

analysis of the samples containing binary mixtures of proteins for size effects on SERS 

spectra. As stated in the introduction section, there are only three reports about SERS study 

of the protein mixtures, and two of them are from our group. In one of earlier study by our 

group, proteins were separated using convective assembly method and detected with SERS 

[111]. In the other study, protein-melting temperatures were used to be able to detect each 

protein in ternary mixtures using SERS [112]. In that work, concentrations of the proteins 

were the same (50 μg/ml) and citrate reduced silver nanoparticles were used for SERS 

analysis. In order to show dissimilarity between spectra acquired at different temperatures, 

two-dimensional Euclidian distance plots were constructed. 
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Figure 4.6. Ten SERS spectra of each protein and their standard deviations (in black). 

 

In another report, Zhen et al. used a heat-induced SERS sensing method for detection of 

binary mixtures of proteins [118]. They classified proteins into groups as proteins with and 

without chromophores. Total concentration of the proteins in each mixture was 10 μM, and 

the AgNPs were citrate reduced ones. The studied proteins were small or midsized 

compared to the protein sizes used in this study. 
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Figure 4.7. PCA plot of SERS spectra of eight proteins. 

 

In addition, in their work, the investigations were only based on spectral differences, and 

there was no multivariate analysis. SERS spectra of proteins are usually weak compared 

with other smaller molecules and the major contributions to the spectra come from three 

aromatic ring containing amino acids, namely, tyrosine, tryptophan, and phenylalanine. 

The spectra become even weaker as the size of the protein increases. Mixing more than one 

proteins also further complicates interpretation of the SERS spectra. Therefore, 

multivariate analysis and data reduction approaches can be helpful for thorough 

interpretation of the collected data sets. 

 

Figure 4.8 (a) shows the spectra of lysozyme (Lys) and apotransferrin (apoTrf) mixtures 

with different relative concentrations, and Figure 4.8 (b) shows the plot of the peak 

intensities of 758 cm-1 (Trp), [50] 1002 cm-1 (Phe), [50] and 1240 cm-1 (Amide III) [119] at 

increased concentration of the Lys in the mixture. Note that each spectrum was average of 

10 spectra collected at different locations on the droplet area. As seen in Figure 4.8 (b), as 

the concentration of the Lys increases relative to apoTrf, the intensities of the three peaks 

increase. The intensities of the other bands also increase, but, for comparison, only 

intensity of three peaks was plotted. Lys was positively charged and apoTrf was negatively 

charged in AgNP-proteins mixture; therefore Lys would make stronger interactions with 

negatively charged AgNPs than apoTrf does, and the bands originating from Lys in the 
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SERS spectra would dominate in the presence of Lys in the mixture. On the other hand, the 

results presented on Figure 4.8 (a) show that at relatively higher apoTrf concentrations, 

spectra resembled to the spectrum of only apoTrf rather than of only Lys, which tells us 

that interactions due to charges are not the only determinant in the SERS of proteins. It is 

strongly possible that apoTrf has stronger binding affinity to the AgNP surface though the 

functional groups such as -COO, -SH, and -OH groups on the protein surface. Proteins are 

nanometer-sized, and they can form a few nanometer thick coatings on the metallic NPs. 

Since apoTrf coated the AgNPs at its relatively higher concentrations, Lys could not 

approach to the surface of the AgNPs. Therefore, the collected spectra resemble more to 

that of only apoTrf. 

 

 

 

Figure 4.8. (a) SERS spectra for mixtures of Lys and apoTrf with different relative 

concentrations. (b) Peak intensities at 758, 1002, and 1240 cm-1. (c) PCA analysis of SERS 

spectra of the mixtures. (d) PCA analysis of the mixed spectra data sets constructed using 

weighted sums of the spectra of individual proteins. 

a) b) 

c) d) 
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Multivariate analysis of the spectra further verified the concentration-dependent 

contribution to the SERS spectra of the mixtures. PCA scores plotted for each mixture are 

shown in Figure 4.8 (c). First principal component (PC1) represented 80 percent of the 

explained variance, and PC2 of 20 percent. Both PC1 and PC2 contributed to the 

discrimination of each mixture. Since the scores of each mixture were located in the 

positive part of the scores plot with respect to PC1, scores of mixtures having higher Lys 

concentration and scores of mixtures having higher apoTrf concentration were located in 

the opposite parts (positive and negative part) of the plot with respect to PC2. In addition, 

scores of 0.6 μM Lys-0.4 μM apoTrf and 0.8 μM Lys-0.2 μM apoTrf  were overlapped, 

and scores of one μM apoTrf and 0.2 μM Lys-0.8 μM apoTrf were also mixed, meaning, in 

these two sets, spectra closely resembled each other. Normally, at the two extremes in the 

plot with respect to PC2, the scores of one μM apoTrf and one μM Lys should have located 

due to the least similarity, but in our findings this was not the case. The scores of one μM 

Lys were closer to the scores of the mixtures having relatively higher concentrations of 

apoTrf than any other mixture containing less amounts of apoTrf. With a close inspection 

of the spectra on Figure 4.8 (a), the reason was found for this interesting situation to be the 

band centered around 1050 cm-1, which is attributed to nitrate ions. As the remnants of the 

colloid synthesis, nitrate ions also co-adsorb on the surface of AgNPs along with proteins. 

On the other hand, protein composition of the mixture may change quantity of nitrate 

adsorption; therefore the intensity of the peak at 1050 cm-1 may change in different protein 

compositions. Similar findings were also reported by Zhou et al. [118] In their study, 

binary mixtures of myoglobin (Mb) and apomyoglobin with relatively different 

concentrations did not change the intensity of the nitrate peak. On the other hand, intensity 

of the peak varied with binary mixtures of cytochrome c and HSA. To confirm the effect of 

the 1050 cm-1 peak on the distribution of the scores, mixed spectra data sets were 

constructed using weighted sums of the spectra of individual proteins (Figure 4.8 (d)). 

Binary mixtures of Lys and apoTrf in different amounts were well separated, and scores of 

the only Lys and only apoTrf were in the extremes with respect to PC2. 

  

The other binary mixture was of Cyt c and Mb. Figure 4.9 (a) shows the spectra of Cyt c 

and Hb mixtures with different relative concentrations, and Figure 4.9 (b) shows intensities 

of the peaks at 756 (ν15B1g) [120], 1125 (ν22A2g) [121], and 1370 (ν4) [122]. Both proteins 

possess heme group. On the other hand, since Cyt c is positively and Hb is negatively 
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charged in the mixture with AgNPs, Cyt c makes stronger interactions with AgNPs than 

Hb. Therefore, the peaks of heme group became more intense when it is in the structure of 

Cyt c. In addition, intensity of the peaks increased and spectra resembled more to the 

spectrum of Cyt c, as the concentration of Cyt c in the mixture increased. 

 

 

 

Figure 4.9. (a) SERS spectra for mixtures of Cyt c and Hb with different relative 

concentrations. (b) Peak intensities at 756, 1125, and 1370 cm-1. (c) PCA analysis of SERS 

spectra of the mixtures. (d) PCA analysis of the mixed spectra data sets constructed using 

weighted sums of the spectra of individual proteins. 

 

Regarding the PCA scores plot of the mixtures, it was observed that each cluster 

representing different mixtures was well discriminated as seen in Figure 4.9 (c). PC1 

described 96 percent of the observed variance, and PC2 of 2 percent. Each mixture was 

located in the positive part of the scores plot with respect to PC1. The mixtures containing 

only individual proteins resided at the both extremes with respect to PC2. The mixtures 

c) 

a) b) 

d) 
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containing relatively higher amount of Cyt c were positioned in the positive side along PC2 

axis, whereas the mixtures containing higher amount of Hb were positioned in the negative 

side. Mixed spectra data sets were also constructed using weighted sums of the spectra of 

individual proteins as shown in Figure 4.9 (d). Each mixture was successfully 

differentiated. When both PCA plots were compared, it was obvious that distribution 

patterns of the mixtures according to their content on both plots were more or less similar. 

Therefore, it could be stated that PCA was a useful tool for proper discrimination of the 

mixtures of Cyt c and Hb with respect to their relative concentrations in the mixture. 

 

Thus far, the studies for binary mixtures of small and midsized proteins and the 

implications of these patterns on PCA of the mixtures were demonstrated. First, mixtures 

of Lys and apoTrf were analyzed. Both SERS spectra analysis and PCA revealed that 

spectra of the mixtures were dominated by the protein having relatively higher 

concentration, and intensity of the characteristic peaks of Lys gradually increased as its 

concentration is increased. On the PCA plot, due to close similarity of the spectra and due 

to effects of nitrate peak on variance, some mixtures of two proteins could not be 

differentiated efficiently. On the other hand, PCA results of the other protein mixtures (Cyt 

c and Hb) were quite good. Clusters of each mixture were located in different positions and 

the order of the clusters with respect to PC2 was the same with increase in or decrease in 

the concentrations of both proteins. Those four proteins were small or midsized, and in 

order to test identification and discrimination ability of SERS analysis and efficiency of 

PCA with larger proteins, the study was preceded with binary mixtures of HSA-Fb and 

IgG-IgA. 

 

HSA has a hydrodynamic radius of four nm; on the other hand Fb is an elongated protein 

having length of 45 nm, much larger than HSA. In addition, both of them are negatively 

charged in the mixture with AgNPs. When the diameter of the AgNPs is considered (50 

nm), in similar concentrations of both proteins and when concentration of Fb is higher, Fb 

surrounds the AgNPs due to its huge size and HSA cannot find enough room to come near 

AgNPs. Therefore, prior to the experiment, it was assumed that spectral patterns were the 

dominance of the peaks of Fb when the concentrations of the proteins were close and when 

the concentration of Fb was higher than that of HSA. The results verified my assumptions. 

As demonstrated in Figure 4.10 (a), in three out of four different HSA-Fb mixtures (spectra 
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of the individual proteins are omitted), spectra were dominated by the bands of Fb, and 

spectra were similar to the spectrum of Fb. Intensity of the peaks at 760 cm-1 (Trp), 1002 

cm-1 (Phe), and 1449 cm1 (CH2) [50] with respect to the HSA concentration presented a 

bell shaped curve (Figure 4.10 (b)) and maximum intensity was of the mixture containing 

0.6 μM HSA. A possible reason for this situation might have been the change of 

aggregation status of AgNPs. While Fb contributed more to the spectra of the mixtures, 

HSA at 0.6 μM might have changed aggregation status of the AgNPs and more hot spots 

were created, and this led to intensity increase of Fb bands. That is to say, change in the 

aggregation status of AgNPs at 0.6 μM HSA concentration made a synergistic contribution 

to the SERS bands of Fb. 

 

 

 

Figure 4.10. (a) SERS spectra for mixtures of HSA and Fb with different relative 

concentrations. (b) Peak intensities at 760, 1002, and 1449 cm-1. (c) PCA analysis of SERS 

spectra of the mixtures. (d) PCA analysis of the mixed spectra data sets constructed using 

weighted sums of the spectra of individual proteins. 

a) b) 

c) d) 
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PCA scores plot of the mixtures are presented in Figure 4.10 (c). The only differentiated 

clusters were of 1μM HSA, and of the mixture of 0.8 μM HSA and 0.2 μM Fb. Due to 

close similarity of the spectra, scores of the all the other mixtures overlapped. Results 

showed that PCA was incapable of differentiation when small sized and much bigger sized 

proteins were mixed. On the other hand, the PCA plot constructed by using mixed spectra 

data sets formed by using weighted sums of the spectra of individual proteins showed 

differentiation of all of the mixtures (Figure 4.10 (d)). This also demonstrates that spectra 

of individual HSA and Fb were quite dissimilar according to algorithms of PCA.  

 

The final binary mixture was of IgG and IgA. They are larger proteins than the other 

proteins used in the study except Fb. As shown in Figure 4.11 (a), the spectra of some 

mixtures contained intense nitrate peak, and some of them did not, and this made PCA 

plots more complicated (Figure 4.11 (c)). Although PCA differentiated IgA and IgG, due 

to spectral similarity, the mixtures of IgG and IgA could not be differentiated efficiently. 

The PCA plot in Figure 4.11 (d) constructed by using mixed spectra data sets formed by 

using weighted sums of the spectra of them was also complicated and hard to interpret. The 

intensity of the peaks at 760, 1002, and 1449 cm-1 presented bell shaped variation (Figure 

4.11 (b)). The reason for this might have been the same reason for HSA-Fb mixtures, that 

is, the change in the aggregation status of the AgNPs. The results showed that the PCA 

could not efficiently differentiate the binary mixtures of larger proteins under the 

experimental conditions used in this study. The presence or absence of an intense nitrate 

peak in spectrum of each mixture contributed to the total variance and this directly affected 

the outcomes of PCA. 

 

The proteins investigated as large sized were IgG, IgA, and Fb and as medium sized was 

HSA in this study. In addition to the size, the molecular flexibility of the protein might 

have an effect on their effective interaction with the AgNPs. When the nature of the 

protein-AgNP interactions is considered, unless the interaction is covalent though -SH or   

-NH2 moieties on the protein surface, the larger and more rigid protein molecules may not 

adhere to the AgNP surfaces though the weaker ionic interactions. 
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Figure 4.11. (a) SERS spectra for mixtures of IgG and IgA with different relative 

concentrations. (b) Peak intensities at 760, 1002, and 1449 cm-1. (c) PCA analysis of SERS 

spectra of the mixtures. (d) PCA analysis of the mixed spectra data sets constructed using 

weighted sums of the spectra of individual proteins. 

 

In addition, the interaction kinetics may play a role for the stronger interactions of larger 

proteins. A slower interaction due to slower diffusion of proteins to the AgNP surface 

because of their larger size may not provide enough time for the protein molecules to 

orient themselves on the AgNP surface for a proper attachment during the drying process 

of a suspension droplet. 

 

After PCA analysis of the SERS spectra of the binary mixtures of proteins, a different 

multivariate analysis method, Partial least squares-discriminant analysis (PLS-DA) was 

applied for differentiation of the spectra. PLS-DA is a supervised analysis method which 

tries to find latent variables (which are like principal components (PCs) in PCA)) with a 

c) d) 

a) b) 



41 

 

 

maximum covariance with Y-variables [123]. In this study, X-variables were the SERS 

spectra of proteins and Y-variables were the class assignments of each spectrum. A total of 

60 protein SERS spectra (10 for each protein) was analyzed using PLS-DA. Leave-one-out 

cross validation was used for validation of class assignments. Root mean square errors of 

cross validations (RMSECV) were calculated as a function of found latent variables and 

demostrated in  Figure 4.12. Since 10 latent variables correspondent to a minimum  in the 

RMSECV, this number of latent variables were used to create PLS-DA model. 

 

 

 

Figure 4.12. Plot of RMSECV results for different latent variable numbers. 

 

Using PLS-DA model with 10 latent variables, classification of each protein was done 

separately. Classification results are shown in Figure 4.13. Dashed red line in each panel 

shows threshold values for classification. Table 2 shows confusion table results for the 

cross validation model. All proteins were classified correctly; therefore average sensitivity 

and average specificity were 100 percent. 
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Figure 4.13. Cross-validated PLS-DA classification results of the SERS spectra of 8 

proteins. The horizontal dashed red line is the threshold for classification membership for 

each protein. 

 

Table 4.2. Confusion table results for the PLS-DA cross validation model. 

 

  Actual 

  Lys Apotrf Cyt c Hb HSA Fb IgG IgA 

P
re

d
ic

te
d

 

Lys 10 0 0 0 0 0 0 0 

Apotrf 0 10 0 0 0 0 0 0 

Cyt c 0 0 10 0 0 0 0 0 

Hb 0 0 0 10 0 0 0 0 

HSA 0 0 0 0 10 0 0 0 

Fb 0 0 0 0 0 10 0 0 

IgG 0 0 0 0 0 0 10 0 

IgA 0 0 0 0 0 0 0 10 
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Since eight different proteins had distinct spectral patterns, good PLS-DA classification 

results were not surprising. Next step was to see performance of PLS-DA method for 

binary mixtures of proteins. First protein couple was Lys and apoTrf mixture. RMSECV 

values were calculated as a function of found latent variables and demostrated in Figure 

4.14. Since 16 latent variables correspondent to a minimum  in the RMSECV, this number 

of latent variables were used to create PLS-DA model. 

 

 

 

Figure 4.14. RMSECV results of Lys and apoTrf mixtures as a function of the number of 

latent variable numbers. 

 

Classification results are shown in Figure 4.15. Table 4.3 shows confusion table results for 

the cross validation model. As seen in Table 4.4, average sensitivity, average specificity, 

and average accuracy of PLS-DA results were higher than 90 percent. Compared to PCA, 

PLS-DA was better for discrimination of binary mixtures of Lys and apoTrf. 
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Figure 4.15. Cross-validated PLS-DA classification results of the SERS spectra of (a) Lys 

(one μM), (b) Lys (0.8 μM)+apoTrf (0.2 μM), (c) Lys (0.6 μM)+apoTrf (0.4 μM), (d) Lys 

(0.4 μM)+apoTrf (0.6 μM), (e) Lys (0.2 μM)+apoTrf (0.8 μM), (f) apoTrf (one μM) 

proteins. The horizontal dashed red line is the threshold for classification membership for 

each protein. 

 

Table 4.3. Confusion table results for the PLS-DA cross validation model of Lys and 

apoTrf mixtures. (1) Lys (one μM), (2) Lys (0.8 μM)+apoTrf (0.2 μM), (3) Lys (0.6 

μM)+apoTrf (0.4 μM), (4) Lys (0.4 μM)+apoTrf (0.6 μM), (5) Lys (0.2 μM)+apoTrf (0.8 μM), (6) 

apoTrf (one μM). 

 

 

 

 

 

 

 

 

  Actual 

  1 2 3 4 5 6 

P
re

d
ic

te
d

 

1 10 1 0 0 0 0 

2 0 8 0 0 0 0 

3 0 0 9 0 0 0 

4 0 0 1 9 1 0 

5 0 1 0 1 9 0 

6 0 0 0 0 0 10 

a) b) 

c) d) 

e) f) 
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Table 4.4. Sensitivity and specificity results for classification of Lys and apoTrf mixtures. 

 

Class Sensitivity (%) Specificity (%) Accuracy (%) 

Lys (1 μM) 100 98 98 

Lys (0.8 μM)+apoTrf (0.2 μM) 80 100 97 

Lys (0.6 μM)+apoTrf (0.4 μM) 90 100 98 

Lys (0.4 μM)+apoTrf (0.6 μM) 90 96 95 

Lys (0.2 μM)+apoTrf (0.8 μM) 90 96 95 

apoTrf (1 μM) 100 100 100 

Average 92 98 97 
 

The other binary protein mixtures were of Cyt c and Hb. RMSECV values were calculated 

as a function of found latent variables and demostrated in Figure 4.16. Since 15 latent 

variables correspondent to a minimum  in the RMSECV, this number of latent variables 

were used to create PLS-DA model. 

 

 

 

Figure 4.16. RMSECV results of Cyt c and Hb mixtures as a function of the number of 

latent variable numbers. 
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Classification results are shown in Figure 4.17. Table 4.5 shows confusion table results for 

the cross validation model. As seen in Table 4.6, average sensitivity was 80 percent, 

average specificity was 96 percent, and average accuracy of PLS-DA was 93 percent.  

 

 

 

Figure 4.17. Cross-validated PLS-DA classification results of the SERS spectra of (a) Cyt 

c (one μM), (b) Cyt c (0.8 μM)+Hb (0.2 μM), (c) Cyt c (0.6 μM)+Hb (0.4 μM), (d) Cyt c 

(0.4 μM)+Hb (0.6 μM), (e) Cyt c (0.2 μM)+Hb (0.8 μM), (f) Hb (one μM) proteins. The 

horizontal dashed red line is the threshold for classification membership for each protein. 

 

Table 4.5. Confusion table results for the PLS-DA cross validation model of Cyt c and Hb 

mixtures. (1) Cyt c (one μM), (2) Cyt c (0.8 μM)+Hb (0.2 μM), (3) Cyt c (0.6 μM)+Hb 

(0.4 μM), (4) Cyt c (0.4 μM) Hb (0.6 μM), (5) Cyt c (0.2 μM)+Hb (0.8 μM), (6) Hb (one 

μM). 

 

 

 

 

 

 

 

  Actual 

  1 2 3 4 5 6 

P
re

d
ic

te
d

 

1 10 0 0 0 0 0 

2 0 9 1 0 0 0 

3 0 0 9 0 0 0 

4 0 1 0 6 1 0 

5 0 0 0 3 6 2 

6 0 0 0 1 3 8 

a) b) 

c) d) 

e) f) 
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Table 4.6. Sensitivity and specificity results for classification of Cyt c and Hb mixtures. 

 

Class Sensitivity (%) Specificity (%) Accuracy (%) 

Cyt c (1 μM) 100 100 100 

Cyt c (0.8 μM)+Hb (0.2 μM) 90 98 97 

Cyt c (0.6 μM)+Hb (0.4 μM) 90 100 98 

Cyt c (0.4 μM) Hb (0.6 μM) 60 96 90 

Cyt c (0.2 μM)+Hb (0.8 μM) 60 90 85 

Hb (1 μM) 80 92 90 

Average 80 96 93 

 

The other binary protein mixtures were of HSA and Fb. RMSECV values were calculated 

as a function of found latent variables and demostrated in Figure 4.18. Since 15 latent 

variables correspondent to a minimum  in the RMSECV, this number of latent variables 

were used to create PLS-DA model. 

 

 

 

Figure 4.18. RMSECV results of HSA and Fb mixtures as a function of the number of 

latent variable numbers. 
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Classification results are shown in Figure 4.19. Table 4.7 shows confusion table results for 

the cross validation model. As seen in Table 4.8, average sensitivity was 82 percent, 

average specificity was 96 percent, and average accuracy of PLS-DA was 94 percent. 

Compared to PCA, PLS-DA was a lot better for discrimination of binary mixtures of HSA 

and Fb. 

 

 

 

Figure 4.19. Cross-validated PLS-DA classification results of the SERS spectra of (a) HSA 

(1 μM), (b) HSA (0.8 μM)+Fb (0.2 μM), (c) HSA (0.6 μM)+Fb (0.4 μM), (d) HSA (0.4 

μM)+Fb (0.6 μM), (e) HSA (0.2 μM)+Fb (0.8 μM), (f) Fb (1 μM) proteins. The horizontal 

dashed red line is the threshold for classification membership for each protein. 

 

Table 4.7. Confusion table results for the PLS-DA cross validation model of HSA and Fb 

mixtures. (1) HSA (one μM), (2) HSA (0.8 μM)+Fb (0.2 μM), (3) HSA (0.6 μM)+Fb (0.4 

μM), (4) HSA (0.4 μM)+Fb (0.6 μM), (5) HSA (0.2 μM)+Fb (0.8 μM), (6) Fb (one μM). 

 

 

 

 

 

 

 

 

  Actual 

  1 2 3 4 5 6 

P
re

d
ic

te
d

 

1 10 0 0 0 0 0 

2 0 9 0 0 0 0 

3 0 1 8 0 2 0 

4 0 0 1 8 3 0 

5 0 0 1 2 4 0 

6 0 0 0 0 1 10 

a) b) 

c) d) 

e) f) 



49 

 

 

Table 4.8. Sensitivity and specificity results for classification of HSA and Fb mixtures. 

 

Class Sensitivity (%) Specificity (%) Accuracy (%) 

HSA (1 μM) 100 100 100 

HSA (0.8 μM)+Fb (0.2 μM) 90 100 98 

HSA (0.6 μM)+Fb (0.4 μM) 80 94 92 

HSA (0.4 μM) Fb (0.6 μM) 80 92 90 

HSA (0.2 μM)+Fb (0.8 μM) 40 94 85 

Fb (1 μM) 100 98 98 

Average 82 96 94 
 

The last binary protein mixtures were of IgG and IgA. RMSECV values were calculated as 

a function of found latent variables and demostrated in Figure 4.20. Since 16 latent 

variables correspondent to a minimum  in the RMSECV, this number of latent variables 

were used to create PLS-DA model. 

 

 

 

Figure 4.20. RMSECV results of IgG and IgA mixtures as a function of the number of 

latent variable numbers. 
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Classification results are shown in Figure 4.21. Table 4.9 shows confusion table results for 

the cross validation model. As seen in Table 4.10, average sensitivity was 82 percent, 

average specificity was 96 percent, and average accuracy of PLS-DA was 94 percent. 

Compared to PCA, PLS-DA was a lot better for discrimination of binary mixtures of IgG 

and IgA. 

 

 

 

Figure 4.21. Cross-validated PLS-DA classification results of the SERS spectra of (a) IgG 

(one μM), (b) IgG (0.8 μM)+ IgA (0.2 μM), (c) IgG (0.6 μM)+ IgA (0.4 μM), (d) IgG (0.4 

μM)+ IgA (0.6 μM), (e) IgG (0.2 μM)+ IgA (0.8 μM), (f) IgA (one μM) proteins. The 

horizontal dashed red line is the threshold for classification membership for each protein. 

 

Table 4.9. Confusion table results for the PLS-DA cross validation model of IgG and IgA 

mixtures. (1) IgG (one μM), (2) IgG (0.8 μM)+IgA (0.2 μM), (3) IgG (0.6 μM)+IgA (0.4 

μM), (4) IgG (0.4 μM)+IgA (0.6 μM), (5) IgG (0.2 μM)+IgA (0.8 μM), (6) IgA (one μM). 

 

 

 

 

 

 

 

  Actual 

  1 2 3 4 5 6 

P
re

d
ic

te
d

 

1 10 0 0 0 0 0 

2 0 8 1 0 2 0 

3 0 2 7 3 0 0 

4 0 0 2 7 0 0 

5 0 0 0 0 7 0 

6 0 0 0 0 1 10 

a) b) 

c) d) 

e) f) 
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Table 4.10. Sensitivity and specificity results for classification of IgG and IgA mixtures. 

 

Class Sensitivity (%) Specificity (%) Accuracy (%) 

IgG (1 μM) 100 100 100 

IgG (0.8 μM)+IgA (0.2 μM) 80 94 92 

IgG (0.6 μM)+IgA (0.4 μM) 70 90 87 

IgG (0.4 μM)+IgA (0.6 μM) 70 96 92 

IgG (0.2 μM)+IgA (0.8 μM) 70 100 95 

IgA (1 μM) 100 98 98 

Average 82 96 94 
 

As the all PLS-DA results were analyzed, it was observed that PLS-DA performance for 

discrimination of binary mixtures of proteins was better than PCA. 

4.3. LABEL-FREE SURFACE-ENHANCED RAMAN SCATTERING FOR  

CANCER DETECTION  

4.3.1. Reproducibility of the SERS Spectra of Filtered and Unfiltered Serum 

It is well known that reproducibility is the most fundamental issue in a SERS experiment. 

High protein content of serum prevents AgNP aggregation and causes low intensity signals 

[124]. Uneven distribution of AgNP aggregates in a dried droplet decreases 

reproducibility. Therefore sufficient amount of AgNPs must be used to obtain reproducible 

and quality SERS signals of serum. In order to investigate the effects of AgNP 

concentration on serum SERS spectrum, 64x, 32x, 16x, 8x, 4x, 2x, and 1x AgNP colloids 

were mixed with whole (unfiltered) commercial serum and ten spectra were acquired from 

the middle region of three dried droplets for each AgNP concentration. Results are shown 

in Figure 4.22 and 4.23. Please note that final AgNP concentrations were decreased by a 

factor of two due to serum mixing (i.e., 64x to 32x, and so forth) and these final 

concentration values are mentioned starting from this part of the report. The use of final 

32x and 16x AgNP colloids resulted in obtaining reproducible spectra. On the other hand, 

intensity of the SERS spectra dropped a bit with the latter one due to AgNP concentration 

decrease. With 8x AgNP colloid, intensity of the spectra decreased further and intensity 

differences among the spectra collected from different dried droplets were observed. On 

the other hand, spectral patterns were the same in all spectra. Starting with 4x 
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concentration, further AgNP concentration decreases (i.e., 4x to 0.5x) lowered the intensity 

and reproducibility of the collected spectra significantly, and increased the noise of the 

spectra. Further confirmation of the protein effects on the SERS spectra of serum was 

provided by doing the same procedures for filtered serum. Serum was filtered with 

membrane with three kDa cut-off. As seen in Figure 4.24 and 4.25, from 32x AgNP to 0.5x 

AgNP concentration, intensity of the acquired spectra decreased by 50 percent only and 

spectra did not become noisy.  

 

 

 

Figure 4.22. Raw SERS spectra of three dried droplets of whole serum samples with 

different AgNP concentrations (32x, 16x, 8x). 
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Figure 4.23. Raw SERS spectra of three dried droplets of whole serum samples with 

different AgNP concentrations (4x, 2x, 1x, 0.5x). 
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Figure 4.24. Raw SERS spectra of three dried droplets of filtered serum samples with 

different AgNP concentrations (32x, 16x, 8x). 

 

Reproducibility experiments showed that 32x and 8x AgNP concentrations could be used 

for whole serum-SERS studies. In order to reach a final decision, intensity distributions 

within the dried droplets of the mixtures with the two AgNP concentrations were analyzed 

(Figure 4.26). Deposits had a doughnut shape due to protein content swept to the 

peripheries during drying. 600 μm X 600 μm regions in the middle region of the droplets 

were mapped with 5 μm step sizes and intensity distribution of 638 cm-1 peak was shown 

as heat maps. It is seen in the figure that intensity distributions were fairly uniform for the 

mixtures containing 32x and 8x AgNP colloid. 
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Figure 4.25. Raw SERS spectra of three dried droplets of filtered serum samples with 

different AgNP concentrations (4x, 2x, 1x, 0.5x). 
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Figure 4.26. Mapping the middle of dried droplets of mixtures of protein and (a) 32x 

AgNP, (b) 8x AgNP. Heat map of the intensity of 638 cm-1. 

 

Apart from the reproducibility evaluations of the spectra of samples obtained by simple 

mixing of AgNP colloid with unfiltered and filtered serum, SERS spectra of the serum 

samples obtained after extraction of proteins with methanol were also acquired and 

compared to that of unfiltered and filtered serum. Figure 4.27 shows the effects of serum to 

methanol ratio (v/v) for extraction on the final shape of the SERS spectra of serum. Final 

AgNP colloid concentrations in the dried droplets were 16x. SERS intensity of the 

spectrum of the sample obtained with 1:1 serum to methanol extraction was low because of 

the protein presence. On the other hand, SERS spectral patterns of the other samples were 

about the same. 

 

In Figure 4.28, SERS spectra of whole serum, filtered serum, and serum after methanol 

extraction (1:4 serum to methanol ratio) were compared. Although they have common 

bands, spectral patterns were different due to ingredient loss after filtration and methanol 

extraction. Filtration is expensive (price of a 0.5 ml filters with three kDa cut-off is around 

5€) and methanol extraction brings additional procedures. Therefore, simple mixing of 

serum with AgNPs and drying on a CaF2 slide for SERS acquisition was preferred as the 

method for discrimination of serum samples of cancer patients from that of healthy people. 

a) b) 
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Figure 4.27. SERS spectra of serum after methanol extraction with different serum to 

methanol ratios (v/v). 

 

 

 

Figure 4.28. Comparison of the SERS spectra of whole serum, filtered serum, and serum 

after methanol extraction. 
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4.3.2. On the Origins of Serum SERS Spectra 

When I checked the published articles about SERS pectra of blood serum, I realized that 

SERS band assignments for both serum and plasma mostly rely on earlier Raman spectra 

reports of tumor tissues and biological molecules. On the other hand, it is well-known 

among SERS community that Raman spectra and SERS spectra of biological structures are 

different. Therefore, band assignment for SERS spectra of any material of interest should 

be done by SERS acquisition of the molecules in that material. Thus far, only one article 

has discussed weight of the bands of two molecules (i.e., uric acid and hypoxanthine) on 

serum SERS spectra [95]. In order to fill this gap, SERS spectra of some molecules 

reported in literature which are thought to have influence on spectral shape of serum were 

acquired first (Figure 4.29). In addition, SERS spectra of some purine derivatives such as 

adenine, xanthine, and guanine were also obtained. Final concentration of the molecules 

was one mM after mixing with 64x AgNP, which is much higher value than their 

physiological concentrations in serum. It is clearly seen in Figure 4.29 that only tyrosine, 

tryptophan, and phenylalanine could be able to change spectral shape among amino acids 

samples. Histidine could make partial contribution but most of the bands were still of the 

citrate molecules on the surface of AgNPs. Urea and mannose could not make any 

significant change on the spectral shape. For urea, the only difference was the emergence 

of band around 1000 cm-1. On the other hand, nucleobases (adenine, thymine, cytosine, and 

guanine) completely showed their SERS bands, along with purine derivatives xanthine and 

hypoxanthine. Considering these results, it was inferred that if a molecule at this high 

concentration could not show its SERS bands when it was mixed with AgNPs, then, it was 

very unlikely that it could contribute to spectral shape of serum. In order to prove this, the 

same molecules were spiked into commercial human serum at the same concentration (one 

mM) and their spectra were acquired (Figure 4.30). This time, none of the amino acids 

could make any change on the spectral shape of whole serum. Urea and mannose also 

could not make contributions as expected. In most of the articles, mannose has been 

reported as the reason for 1095 cm-1 and 1135 cm-1 bands, but it was shown here that it was 

not probable. Among nucleobases, cytosine and guanine added some bands to the serum 

spectra, and which means that they could contribute to the serum spectrum if their 

concentration in blood changes significantly. Effects of the xanthine presence were more 
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evident than cytosine and guanine. Lastly, it can be said that hypoxanthine and adenine 

completely changes spectral shape of serum. 

 

 

 

Figure 4.29. SERS spectra of some molecules found in blood serum and SERS spectrum of 

AgNP. 
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Figure 4.30. SERS spectra of whole serum after spiking some  molecules found in blood 

serum. Star symbol indicates the bands contributed to the serum SERS spectrum by the 

spiked metabolites. 
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According to the Serum Metabolome Database (http://www.serummetabolome.ca/) and a 

related article [125], there are at least 4651 small molecule metabolites in serum. 

Regarding proteins, as of 2014, plasma levels of more than one hundred proteins have been 

estimated [126]. As the numbers are considered, it is obvious that many metabolites and 

proteins possessing affinity to the silver compete with each other to interact with AgNP 

surface after serum and AgNP colloid mixing. At low AgNP concentrations, molecules 

possessing higher affinity bind to AgNP surface. Other molecules gain opportunity to bind 

as the AgNP concentration is increased. Therefore, at each AgNP concentration, the 

number and type of molecules under impinging laser changes, resulting in different 

spectral outcomes. Monitoring changes in spectral shape can be extremely useful to be able 

to elucidate the origins of SERS spectra of complex biofluids. Comparing intensity and 

patterns of the SERS bands at different AgNP concentrations, better band assignments can 

be done. To the best of our knowledge, this kind of approach to this matter will be the first 

time in literature. Figure 4.31 shows SERS spectra of whole serum (WS) and filtered 

serum (FS) at four different AgNP concentrations. Uric acid and hypoxanthine spectra 

were also added to the figure because they have some common bands with serum. At first 

glance, it was seen that there were dramatic pattern differences among spectra collected 

using different AgNP concentrations. For example, intensity of the band at 638 cm-1 

increased but intensity of the 725 cm-1 band decreased with each two fold AgNP 

concentration increase for both WS and FS. Along with the increase in 638 cm-1 peak, 

intensity of 495 cm-1, 530 cm-1, 1134 cm-1 and 1204 cm-1 bands increased slightly. On the 

contrary, intensity of 1330 cm-1 and 1452 cm-1 decreased. Comparing these changes to the 

spectra of uric acid and hypoxanthine, it could be said that uric acid features replaced 

hypoxanthine features with AgNP concentration increase. On the other hand, differences in 

other bands between serum and these two purine derivatives (1008 cm-1, 1370 cm-1, 1670 

cm-1) let us conclude that they were major determinants but not the only determinants in 

the final shape of the serum spectrum. Moreover, the width of 638 cm-1 band was different 

in uric acid spectrum than serum spectra, and this revealed the effects of some unknown 

molecules to the spectral shape. We can attribute 725 cm-1 band in serum spectrum to 

hypoxanthine, because of the presence of a shoulder centered at 744 cm-1. Hypoxanthine 

has ketonic and enolic forms. At low pH values, it is in ketonic form, and therefore, only 

725 cm-1 peak can be observed. On the other hand, at high pH values, hypoxanthine gets 
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enolic form and only 744 cm-1 is observable. At physiological pH values, both forms 

coexist, and we see both bands.  

 

 

 

Figure 4.31. Comparison of the SERS spectra of uric acid (Ur), hypoxanthine (Hx), and 

whole serum (WS) and filtered serum (FS) with different AgNP concentrations. 

 

Further examination of Figure 4.31 shows the spectral differences between WS and FS. 

Differences in the ratio of 495 cm-1 and 530 cm-1 bands, intensity of 1008 cm-1 band, and 

shape of 1250-1500 cm-1 and 1500-1750 cm-1 regions can be seen at first sight. In addition, 

1008 cm-1 band was shifted to 1001 cm-1. These differences show the importance of 

proteins on the final shape of whole serum spectrum. Proteins create molecular crowding 

on AgNP surface and can cause orientation changes of molecules on AgNP surface. 
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In addition some proteins bind to AgNP surface and increase the level of competition for 

AgNPs. 

 

The effects of proteins on serum SERS spectra were studied further by using three different 

model proteins (Figure 4.32). Human serum albumin (HSA) is the most abundant protein 

and transferrin (Trf) is the third abundant protein in blood serum. Lysozyme (Lys) has 

overall positive charge at physiological pH (pI:11.3), therefore it was chosen to be a model 

for positively charged proteins in serum. Total protein concentration in serum is in the 

range of 60-85 mg/ml. In order to mimic this concentration value and to be able to monitor 

spectral changes due to protein concentration change, proteins were spiked at a maximum 

of 40 mg/ml concentration to filtered serum (Please note that this value lowers to 20 mg/ml 

upon mixing with 64x AgNPs as shown in the figure). When the spiked protein 

concentrations were 1 mg/ml, spectra were similar to FS. A five-fold increase in protein 

concentrations resulted in significant spectral changes. On the other hand, there were some 

small differences among HSA, Trf, and Lys spiked serum spectra reflecting effects of 

protein type. After a further four-fold increase, spectra of protein spiked filtered serum 

samples became extremely similar to spectrum of whole serum acquired using 32x AgNP 

(final concentration) regardless of protein type. 

4.3.3. SERS Study of Purines and Purine Derivatives 

In the previous section, it was stated that purines and purine derivatives had effects on the 

final shape of the SERS spectrum of serum. Therefore, in this section, more detailed 

analysis was performed on the SERS spectra of purines and purine derivatives. When 

Figure 4.31 is reviewed, it is observed that serum spectrum has features of uric acid 

spectrum. Therefore, uric acid was the first molecule to study. Powder form of uric acid 

was dissolved in one molar of NaOH to make a stock solution and diluted in phosphate 

buffered saline (PBS). pH of the solution was adjusted with HCl. PBS is widely used 

buffer for cell culture applications. Its osmolarity is the same with osmolarity of the human 

body. Therefore, to mimic aqueous part of serum (i.e., water plus some ions in serum), 

PBS was wanted to be used for SERS studies of purines and purine derivatives. On the 

other hand, SERS spectrum of dried droplet of uric acid (350 μM -average concentration of 

uric acid in human serum-) could not be acquired at physiological pH. 
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Figure 4.32. Changes in SERS spectrum of free serum (FS) when different concentrations 

of human serum albumin (HSA), transferrin, and lysozyme (Lys) are spiked. Pr denotes 

protein. FS+Pr (1 mg/ml) denotes free serum containing protein at 1 mg/ml concentration 

after mixing with AgNP colloid. Final concentration of AgNP colloid in the mixtures is 

32x. 

 

The reasons for this could be uric acid solubility and its poor interaction with AgNPs or 

phosphate buffer or saline in the buffer. The use of phosphate buffer without saline did not 

resulted in acquisition of an informative, quality spectrum. Therefore, it was concluded 

that phosphate buffer was not a suitable buffer for SERS study of dried droplets of uric 
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acid. Pure water was also used to dilute stock uric acid solution, and HCl was used to 

adjust pH. That time, again, good quality spectrum could not be obtained. Then, the 

experiment was continued with acquisition of SERS spectrum of uric acid from droplets 

without any drying procedure. Figure 4.33 shows that saline was required to obtain a 

quality spectrum of uric acid when pH was 12. Salt triggers nanoparticle aggregation 

leading to formation of hot spots (the more the hot spots are present in laser illuminated 

area, the stronger the SERS signals are acquired). SERS spectra of uric acid in PBS at 

different pH values were also acquired. It was observed that SERS spectrum of uric acid 

became weaker as the pH lowers (Figure 4.34). As a consequence, it was concluded that 

phosphate buffer was not a suitable buffer for SERS study of liquid droplets of uric acid at 

physiological pH. 

 

 

 

Figure 4.33. SERS spectra of uric acid in phosphate buffer (pH 12, without NaCl) with and 

without NaCl. 

 

Instead of PBS buffer, borate buffer at pH 8.4 was used. The results can be seen in Figure 

4.35. With the addition of NaCl, intense spectrum of uric acid could be obtained. In order 

to understand borate buffer interferance to the spectra, SERS spectra of borate buffer at 

different concentrations were acquired (Figure 4.36). There was not any spectral 

difference, meaning, there was not any borate buffer interferance. Next time, NaCl was 
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added in order to be sure about buffer interferance issue. Addition of NaCl did not cause 

any signals stemming from borate buffer (Figure 4.37). 

 

 

 

Figure 4.34. SERS spectra of uric acid in PBS at different pH values. 

 

 

 

Figure 4.35. SERS spectra of uric acid in 10 mM borate buffer (pH 8.5) with and without 

NaCl. 
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Figure 4.36. SERS spectra of borate buffer at different borate concentrations. 

 

 

 

Figure 4.37. SERS spectra of AgNPs in the presence of one percent NaCl and 50 mM 

borate buffer plus one percent NaCl. 
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After uric acid study, SERS spectra some blood purines and purine derivatives were 

examined (Figure 4.38-47). SERS spectra of these molecules were studied at two different 

AgNP concentration in order to understand the effects of AgNP concentration on their 

SERS spectra. In addition SERS spectra of binary mixtures of these molecules were also 

studied in order to understand molecule’s relative SERS spectral dominance in the 

presence of the other molecule, and to understand the effect of AgNP concentration on this 

issue. When the figures are examined, it is seen that the spectra of single molecules are 

slightly changed due to AgNP concentration. This could be explained as orientation 

difference of molecules on silver surfaces due to AgNP concentration difference. SERS 

spectra of adenine and guanine mixture were dominated by adenine at two AgNP 

concentrations (Figure 4.38). Slight differences can be explained by either orientation 

difference and competition of both molecules for silver surface. 

 

 

 

Figure 4.38. SERS spectra of adenine, guanine and their mixtures at 8x and 32x AgNP 

concentrations. 

 

SERS spectra of adenine and hypoxanthine mixture were dominated by adenine at two 

AgNP concentrations (Figure 4.39). Slight differences can be explained by either 

orientation difference and competition of both molecules for silver surface. 
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Figure 4.39. SERS spectra of adenine, hypoxanthine and their mixtures at 8x and 32x 

AgNP concentrations. 

 

SERS spectra of adenine and uric acid mixture were dominated by adenine at two AgNP 

concentrations (Figure 4.40). Slight differences can be explained by either orientation 

difference and competition of both molecules for silver surface. The similar phenomenon 

occurred with adenine and xanthine mixture. SERS spectra of adenine and xanthine 

mixture were dominated by adenine at two AgNP concentrations (Figure 4.41). Slight 

differences can be explained by either orientation difference and competition of both 

molecules for silver surface. 

 

SERS spectra of guanine and uric acid mixture at two AgNP concentrations were different  

(Figure 4.42). With 8x AgNP, spectrum was more guanine like. When AgNP concetration 

was increaed, spectrum became a mixture of the spectra of each two molecules. Guanine 

interacts better than uric acid with AgNPs. At low AgNP concentration, silver surface was 

mostly covered by guanine. When AgNP concentration was increaased, uric acid could 

cover the extra nanoparticle surface. SERS spectra of guanine and xanthine mixture was a 

mixture of the SERS spectra of each molecules at two AgNP concentrations (Figure 4.43). 

Slight differences can be explained by either orientation difference and competition of both 

molecules for silver surface. 
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Figure 4.40. SERS spectra of adenine, uric acid and their mixtures at 8x and 32x AgNP 

concentrations. 

 

 

 

Figure 4.41. SERS spectra of adenine, xanthine and their mixtures at 8x and 32x AgNP 

concentrations. 

 

 



71 

 

 

 

 

Figure 4.42. SERS spectra of uric acid, guanine and their mixtures at 8x and 32x AgNP 

concentrations. 

 

 

 

Figure 4.43. SERS spectra of guanine, xanthine and their mixtures at 8x and 32x AgNP 

concentrations. 
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SERS spectra of guanine and hypoxanthine mixture at two AgNP concentrations were 

similar  (Figure 4.44). Both spectra contained SERS bands of both molecules. 

  

SERS spectra of hypoxanthine and uric acid mixture at two AgNP concentrations were 

different  (Figure 4.45). With 8x AgNP, spectrum was more hypoxanthine like. When 

AgNP concetration was increased, spectrum became a mixture of the spectra of each two 

molecules. Hypoxanthine interacts better than uric acid with AgNPs.  

 

 

 

Figure 4.44. SERS spectra of guanine, hypoxanthine and their mixtures at 8x and 32x 

AgNP concentrations. 

 

SERS spectra of xanthine and hypoxanthine mixture at two AgNP concentrations were 

similar  (Figure 4.46). Spectral shape contained SERS bands of both molecules. Slight 

differences can be explained by either orientation difference and competition of both 

molecules for silver surface. 

 

SERS spectra of xanthine and uric acid mixture at two AgNP concentrations were different  

(Figure 4.47). With 8x AgNP, spectrum was more xanthine like. When AgNP concetration 

was increased, spectrum became a mixture of the spectra of each two molecules. Xanthine 

interacts better than uric acid with AgNPs. 
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Figure 4.45. SERS spectra of uric acid, hypoxanthine and their mixtures at 8x and 32x 

AgNP concentrations. 

 

 

 

Figure 4.46. SERS spectra of xanthine, hypoxanthine and their mixtures at 8x and 32x 

AgNP concentrations. 
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Figure 4.47. SERS spectra of xanthine, uric acid and their mixtures at 8x and 32x AgNP 

concentrations. 

4.3.4. Discrimination of Cancer and Chronic Diseases Using SERS 

In the section 4.3.1, it was shown that use of three different AgNP concentrations gave 

reproducible spectra. On the other hand, in this section, only two AgNP concentrations 

(32x and 8x) were used because this was sufficient to show the power of SERS for 

discrimination of cancer group and chronic diseases group and control group. General 

workflow of this section was like this: After acquisition of the SERS spectra, average 

spectra of the three groups with their standard deviations were compared. Difference 

spectra which were obtained subtracting the average control group spectrum from the 

average cancer group spectrum and chronic disease group spectrum were analyzed. Some 

SERS bands, of which intensities among three groups may differ, were compared to add 

depth to the investigation. Then, PLS-DA was performed as multivariate analysis of the 

collected spectra for classification discrimination of three groups. Finally, permutation 

tests were performed to be sure that there were not any over-fitting during PLS-DA 

analysis. 
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Firstly, SERS spectra of serum samples of 30 cancer patients, 15 patients with chronic 

disease, and 30 healthy people (as control group) were acquired using 32 times 

concentrated AgNP colloid (Figure 4.48). 

 

 

 

Figure 4.48. Average SERS spectra of serum samples of cancer and chronic disease 

afflicted patients and healthy subjects obtained using 32x AgNP. Shaded areas around the 

spectra represent the standard deviations. Bottom two spectra are the difference spectra 

(Can-Cntrl: Cancer-Control, Chrn-Control: Chronic-Control). 

 

Average spectra had similar features with commercial WS spectra presented in Figure 

4.31. Spectra of the control group and chronic disease group were similar to the WS 

spectrum obtained using 32x AgNP, whereas spectrum of the cancer group was similar to 
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the WS spectrum obtained using 4x AgNP. It was evident from eight times less AgNP 

concentration that relative concentrations of the metabolites possessing higher affinity to 

AgNP surface and of the metabolites possessing larger Raman cross section were higher in 

the serum of cancer patients. By observing the bands at 725 cm-1, 1330 cm-1, and 1452   

cm-1 in the difference spectra of cancer and control groups, it could be said that one of 

these metabolites was hypoxanthine. On the other hand, the decrease in the intensities of 

the bands at 495 cm-1, 638 cm-1, and 830 cm-1 showed the decrease in uric acid 

concentration relative to the other metabolites in the case of cancer disease. Difference 

between chronic disease group and control group was small and barely discernible by 

naked eye at many band positions. Standard deviation of the control group spectra was 

very low and barely discernible, and so was for chronic disease group. On the other hand, 

standard deviation of the cancer group spectrum was high. This means that for healthy 

people and for the chronic diseases studied in this thesis, relative concentrations of the 

metabolites having impact on serum SERS spectrum was about the same, but for cancer 

patients, relative concentrations of the serum constituents were quite variable. Detailed 

comparison of SERS spectra of the three groups was performed by statistical analysis on 

the intensity values of the eight different SERS bands (Figure 4.49). Firstly, Shapiro-Wilk 

test was applied to check for normality, and found that intensity distributions of the eight 

bands of cancer group were not normally distributed. Therefore, Kruskal-Wallis test and 

Dunn’s post hoc test with Bonferroni correction were applied to check whether differences 

in intensity distributions of the three groups were statistically significant. For the all eight 

SERS bands, the differences between cancer group and chronic disease group and the 

differences between cancer group and control group were statistically significant (p< 0.05). 

On the other hand, the differences between chronic disease group and control group were 

not statistically significant. Of course, since only eight SERS bands does not totally 

represent whole spectrum, these results did not mean that there was not any difference 

between the SERS spectra of the control group and the chronic disease group.  

 

Multivariate analyses tools detect subtle differences and variations among spectra, and 

therefore very useful for discrimination purposes. PLS-DA analysis of SERS spectra of 

cancer patients and control patients was performed with leave-one-out cross validation, and 

scores plot were drawn (Figure 4.50). In the figure, y-axis was named as “Y CV Predicted” 

which means PLS-DA scores of each spectrum after cross validation. 



77 

 

 

 

 

Figure 4.49. Box plots of the intensity values of the eight SERS bands (* p<0.05, ** 

p<0.01, *** p<0.001, n.s.: not significant). The lines and the squares within each box 

represent median and mean, respectively. Whiskers represent the 1.5 fold interquartile 

range. 

 

The horizontal red dashed line is the threshold for classification membership for each 

spectrum. As seen in the figure, three spectra of the cancer group were below the threshold 

line meaning that they were classified in the control group after PLS-DA analysis. In the 

case of control group, two spectra were above the threshold line meaning that they were 

classified in the cancer group. As a result, 27 out of 30 spectra were correctly classified as 

cancer. This means 90 percent sensitivity. Twenty eight out of 30 spectra were correctly 
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classified as cancer achieving 93 percent specificity. Overall diagnostic accuracy was 92 

percent. All found classification values were shown in the table below the figure (Table 

4.11). 

 

 

 

Figure 4.50. PLS-DA scores plot of cancer and control group (32x AgNP). 

 

Table 4.11. Classification results of SERS spectra of the cancer and the control group 

obtained using 32x AgNP.  

 

 
Cancer vs. Control 

Sensitivity 90% (27/30) 

Specificity 93% (28/30) 

Accuracy 92% (55/60) 

 

Receiver operating characteristic curve, i.e. ROC curve, analysis is a method to quantify 

accuracy of diagnostic tests, in which different true positive rate (sensitivity) vs. false 

positive rate (1-specificity) values are calculated and plotted using more than one threshold 

(cut-off) values for separation of two groups. The area under the curve (AUC) defines the 

validity of diagnostic tests. When AUC is equal to one, diagnostic test is perfect and totally 

differentiates two groups (i.e., diseased and healthy). As the AUC value decreases, 
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discriminative ability of the test decreases. AUC=0.5 value shows a complete overlap 

between two groups, and means failure of the test. In our case, ROC curve for PLS-DA 

analysis was found as 0.9789 (Figure 4.51) which means nearly perfect separation of 

cancer and control groups. 

 

 

 

Figure 4.51. ROC curve for cancer and control group (32x AgNP). 

 

As seen Figure 4.50, PLS-DA analysis discriminated well the two group. On the other 

hand, like many multivariate analysis methods, PLS-DA may also suffer from overfitting. 

Briefly, in the case of overfitting, PLS-DA model finds a way to separate two classes very 

well, but it fails to predict the class of external dataset or fails when class labels (i.e., 

cancer or control) of each X values (i.e., SERS spectra) are shuffled. Since, there is not any 

external dataset to predict their class using the PLS-model in this thesis. The second 

approach was performed. It is called permutation test. In this test, class labels of all spectra 

are shuffled and permuted. New PLS-DA analyses are done for each case, and R2 values of 

values of all PLS-DA regressions and Q2 values (i.e., R2 after cross validation) of all PLS-

DA regressions are used for the permutation test plot. Calculated R2 and Q2 values are 

centered and standardized automatically by the used program (PLS toolbox (Eigenvector 

Research, Inc.)) so that their Y values in the plot mean their standard deviations. Figure 

4.52 shows permutation test results for cancer group vs. control group. One hundred 
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permutation tests were done to create this plot. In the plot, R2 and Q2 values for original 

class memberships (non-permuted y-block) are demonstrated on the far right side of the 

plot. X axis is the similarity of the permuted classes to the non-permuted class in terms of 

correlation coefficient. The further away the R2 and Q2 values (in terms of standard 

deviation) of models created using permuted classes along y-axis, the more unlikely it is 

the non-permuted (original) model is overfit. In Figure 4.52, it is seen that R2 and Q2 

values of the original PLS-model are away from the permuted ones. This means that 

created PLS-model was not overfit and could “indeed” discriminate cancer and control 

group with 92 percent accuracy. 

 

 

 

Figure 4.52. Permutation test of cancer vs. control groups (32x AgNP). 

 

In order to obtain better diagnostic accuracy values, genetic algorithms were performed. In 

this method, subset of the variables which are more helpful for better and more accurate 

regression model are identified. Using variable subsets, an initial population is set. Each 

individuals of the population are treated as chromosomes, and offspring of the next 

generation is produced by applying crossing overs and mutations among individuals. Then, 

PLS-DA analysis is performed using each progeny and their related RMSECV (root mean 

square error of cross validation, i.e., Q2) are calculated. After that, the individuals that 

result in greater RMSECV values than the median RMSECV value are discarded, and 
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process continues with producing new offspring for the next generation. After a defined 

number of generations, selection process stops, and the individual (of the last generation) 

with lowest RMSECV is selected create PLS-DA model for discrimination of cancer group 

and control group. 

 

Since instruments’ spectral resolution is 0.816 cm-1, a SERS spectrum between 400 cm-1 

and 1800 cm-1 means 1715 variables in this Raman shift range. Before genetic algorithm 

calculations, adjacent variables are grouped and these group blocks are used for creation of 

individuals of initial population. The number of adjacent variables in a group is named as 

“window size”. For genetic algorithm calculations of SERS spectra of cancer and control 

groups, a window size of 25 was used. 

 

 The following figure (Figure 4.53) shows the 34 different models produced at the end of 

genetic algorithm calculations using SERS spectra of cancer and control groups. The 

model with the lowest RMSECV value (shown with an arrow in the figure) was used 

discrimination of two groups. The model had 550 variables, meaning 550 different Raman 

shift values. Since window size was 25, there were 22 blocks of variables each containing 

25 Raman shift values.  

 

The chosen 550 variables highlighted in grey shaded areas are shown in Figure 4.54. Using 

the SERS intensity data of each group at these Raman shift values, new PLS-DA analysis 

was performed and the results are shown in Figure 4.55. Only one spectra of the cancer 

group was above the threshold and all spectra of the control group were below the 

threshold. A sensitivity of 97 percent, a selectivity of 100 percent, and an overall accuracy 

of 98 percent was achieved (Table 4.12). As compared to the previous results, application 

of genetic algorithms for PLS-DA analysis gave better diagnostic values. Furthermore, 

better performance was also observed in ROC curve analysis (Figure 4.56). AUC was 

0.9989 which was higher than the previous result. 
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Figure 4.53. Frequency of window usage in models generated using genetic algorithms. 

Arrow indicates the RMSECV value. 

 

 

 

Figure 4.54. Shaded regions are the chosen shift regions with genetic algorithms (GA) for 

cancer vs. control study with 32x AgNP. 
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Figure 4.55. PLS-DA scores plot of cancer and control group (32x AgNP, with genetic 

algorithms (GA)). 

 

Table 4.12. Classification results of SERS spectra of the cancer and the control group 

obtained using 32x AgNP (with GA) 

 

 
Cancer vs. Control 

Sensitivity 97% (29/30) 

Specificity 100% (30/30) 

Accuracy 98% (59/60) 

 

Permutation test was also applied to investigate any overfitting in the PLS-DA model 

(Figure 4.57). R2 and Q2 values of the original PLS-model were away from the permuted 

ones. Therefore, it could be stated that created PLS-DA model could discriminate SERS 

spectra of cancer patients and healthy subjects. 
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Figure 4.56. ROC curve for cancer and control group (32x AgNP, with GA). 

 

 

 

Figure 4.57. Permutation test of cancer vs. control groups (32x AgNP, with GA). 
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The use of 32x AgNP colloid for discrimination of the cancer group and the control group 

gave good results. The next group couples to differentiate were the chronic disease group 

and the cancer group. As seen in Figure 4.48, spectral patterns of the average spectrum of 

chronic disease group were quite similar to that of control group. Therefore, it would be 

expected that discrimination of the two groups would give the similar results with the 

discrimination of the cancer and the control group. Figure 4.58 shows the PLS-DA results 

of the differentiation attempt. One spectrum of the chronic diseases group was below the 

discrimination threshold, and four spectra of the cancer group was the above the threshold. 

As seen in the Table 4.13, diagnostic ability of the PLS-DA analysis was resulted in a 

sensitivity of 93 percent, a specificity of 87 percent with an overall accuracy of 89 percent. 

These values were slightly lower than the values for discrimination of the cancer and the 

control group, giving the hope that the control group and the chronic disease group could 

also be discriminated using PLS-DA analysis although there was spectral resemblance 

between the two groups. 

 

 

 

Figure 4.58. PLS-DA scores plot of chronic and cancer groups (32x AgNP). 
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Table 4.13. Classification results of SERS spectra of the chronic and the cancer group 

obtained using 32x AgNP.  

 

 
Chronic vs. Cancer 

Sensitivity 93% (14/15) 

Specificity 87% (26/30) 

Accuracy 89% (40/45) 

 

Next step was the ROC curve analysis (Figure 4.59). AUC value was found as 0.98 which 

meant near perfect difference between two groups. Permutation test was also performed 

doing 100 different permutations on class labels (Figure 4.60). Original class was well-

above from the others along y-axis, meaning that there was not overfitting during PLS-DA 

analysis. Therefore, found sensitivity, specificity, and accuracy values were valid. 

 

 

 

Figure 4.59. ROC curve for chronic and cancer group (32x AgNP). 
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Figure 4.60. Permutation test of chronic vs. cancer groups (32x AgNP). 

 

GA analysis was performed to search a better diagnostic differentiation between the two 

groups. Four hundred Raman bands were found by GA analysis. Chosen bands are shown 

as gray background in Figure 4.61. PLS-DA analysis after GA gave better results than 

without GA (Figure 4.62). One spectrum out of 15 spectra of the chronic disease group 

was below the discrimination threshold and one out of 30 spectra of the cancer group was 

above the threshold. The diagnostic sensitivity and specificity for discrimination of the 

cancer group from the chronic disease group were 93 percent and 97 percent, respectively 

(Table 4.14). Accuracy was 96 percent, which was seven percent higher than without the 

use of GA. 

 

The area under ROC curve was 0.9956, showing that SERS spectra of serum can be used 

for differentiation of cancer and chronic diseases with high diagnostic accuracy (Figure 

4.63). R2 and Q2 values of the original class were significantly different than the permuted 

ones as shown in Figure 4.64. Both AUC value and permutation test demonstrated that 

SERS spectra of the chronic disease group well discriminated from the SERS spectra of the 

cancer group. 
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Figure 4.61. Shaded regions are the chosen shift regions with genetic algorithms (GA) for 

chronic vs. cancer study with 32x AgNP. 

 

 

 

Figure 4.62. PLS-DA scores plot of chronic and cancer groups (32x AgNP, with GA). 
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Table 4.14. Classification results of SERS spectra of the chronic and the cancer group 

obtained using 32x AgNP (GA). 

 

 
Chronic vs. Cancer 

Sensitivity 93% (14/15) 

Specificity 97% (29/30) 

Accuracy 96% (43/45) 

 

 

 

Figure 4.63. ROC curve for chronic and cancer group (32x AgNP, with GA). 

 

Next couple to differentiate was the chronic disease group and the control group. Due close 

similarity of the spectra of the two groups, performance of PLS-DA was not as good as the 

previous analyses (Figure 4.65). Eight spectra of the chronic disease group were below the 

threshold, and nine spectra of the control group were above the threshold. The obtained 

sensitivity of the diagnostic analysis was 47 percent, specificity was 70 percent, and 

accuracy was 62 percent (Table 4.15). Area under the ROC curve found as 0.6745 (Figure 

4.66). Since an AUC of 0.5 means that discrimination relies on pure chance (as the case of 

a coin flipping), diagnostic ability of the PLS-DA model was not good. This situation was 
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also demonstrated by performing a permutation test (Figure 4.67). R2 and Q2 values of the 

non-permuted class were not separated from the permuted ones. 

 

 

 

Figure 4.64. Permutation test of chronic vs. cancer groups (32x AgNP, with GA). 

 

 

 

Figure 4.65. PLS-DA scores plot of chronic and control groups (32x AgNP). 
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Table 4.15. Classification results of SERS spectra of the chronic and the control group 

obtained using 32x AgNP. 

 

 
Chronic vs. Control 

Sensitivity 47% (7/15) 

Specificity 70% (21/30) 

Accuracy 62% (28/45) 

 

 

 

Figure 4.66. ROC curve for chronic and control group (32x AgNP). 

 

The use of 240 Raman shift variables defined by GA (Figure 4.68) for PLS-DA resulted in 

a better discrimination by PLS-DA. Eleven spectra of the chronic disease group and 25 

spectra of the control group were correctly classified (Figure 4.69). The acquired 

sensitivity was 73 percent, the specificity was 83 percent, and the accuracy was 80 percent 

(Table 4.16). The AUC value was also increased by 12 percent reaching the value of 

0.7978 (Figure 4.70). R2 and Q2 values of the non-permuted class were slightly above the 

R2 and Q2 values of the permuted ones (Figure 4.71). 
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Figure 4.67. Permutation test of chronic vs. control groups (32x AgNP). 

 

 

 

Figure 4.68. Shaded regions are the chosen shift regions with genetic algorithms (GA) for 

chronic vs. control study with 32x AgNP. 
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Figure 4.69. PLS-DA scores plot of chronic and control groups (32x AgNP, with GA). 

 

Table 4.16. Classification results of SERS spectra of the chronic and the control group 

obtained using 32x AgNP (GA). 

 

 
Chronic vs. Control 

Sensitivity 73% (11/15) 

Specificity 83% (25/30) 

Accuracy 80% (36/45) 

 

The use of 32x AgNP colloidal suspension was gave very good accuracies for 

discrimination of cancer group from control group and chronic diseases group. On the 

other hand, the chronic disease group could not be differentiated from the control group. 

Even after GA application, accuracy of the PLS-DA model was 80 percent. One reason for 

this might have been the concentration of AgNP colloid. With the use of 32x AgNP 

colloid, molecules with lesser affinity to silver surface but higher Raman scattering ability 

may dominate the spectrum. By decreasing the the AgNP concentration, the other 

molecules which possess higher affinity to silver surface but less Raman scattering ability 

may have more chance to contribute the spectral shape of serum. Therefore, the same 

studies discussed so far were also performed using 8x AgNP colloid. The acquired average 
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SERS spectra of serum samples of 30 cancer patients, 15 patients with chronic disease, and 

30 healthy people (as control group) are shown in the Figure 4.72. 

 

 

 

Figure 4.70. ROC curve for chronic and control group (32x AgNP, with GA). 

 

 

 

Figure 4.71. Permutation test of chronic vs. control groups (32x AgNP, with GA). 



95 

 

 

As happened with the use of 32x AgNP, average spectra of the three groups had similar 

features with commercial WS spectra presented in Figure 1. Spectra of the control group 

and chronic disease group were similar to the WS spectrum obtained using 8x AgNP, 

whereas spectrum of the cancer group was similar to the WS spectrum obtained using 4x 

AgNP. The bands at 725 cm-1, 1330 cm-1, and 1452   cm-1 in the difference spectra of 

cancer and control groups could be attributed to hypoxanthine. On the other hand, the 

decrease in the intensities of the bands at 495 cm-1, 638 cm-1, and 830 cm-1 showed the 

decrease in uric acid concentration relative to the other metabolites in the case of cancer 

disease. Standard deviations of the control group spectra and chronic disease group spectra 

were very On the other hand, standard deviation of the cancer group spectrum was high. 

This meant that for healthy people and for the chronic diseases studied in this thesis, 

relative concentrations of the metabolites having impact on serum SERS spectrum were 

about the same, but for cancer patients, they were quite variable. Comparison of the 

difference spectra of cancer group and control group obtained using 32x AgNP and 8x 

AgNP are provided in Figure 4.73. If uric acid and hypoxanthine had been the only 

determinants of serum spectrum, two difference spectra would have been the same. On the 

other hand, although intensities of 725 cm-1 and 638 cm-1 bands were the same for both 

difference spectra, there were differences at many Raman shift positions. This proved that 

hypoxanthine and uric acid were not the sole determinant of the spectral differences 

between the cancer group and the control group. The use of different AgNP colloid 

concentrations and comparing the acquired spectra revealed the effects of some other 

molecules present in serum. Bands in the difference spectrum of chronic disease group and 

control group in Figure 4.72 were more prominent than the difference spectra obtained 

with 32x AgNP. Comparison of the difference spectra of chronic disease group and control 

group obtained using 32x AgNP and 8x AgNP are provided in Figure 4.73. Two spectra 

were totally different and hence revealing the effects of other molecules. The weight of 

638 cm-1 band of uric acid and 725 cm-1 band of hypoxanthine on the difference spectrum 

was more when 8x AgNP was used.  
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Figure 4.72. Average SERS spectra of serum samples of cancer and chronic disease 

afflicted patients and healthy subjects obtained using 8x AgNP. Shaded areas around the 

spectra represent the standard deviations. Bottom two spectra are the difference spectra 

(Can-Cntrl: Cancer-Control, Chrn-Control: Chronic-Control).  
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Figure 4.73. The difference spectra of cancer group and control group obtained using 32x 

AgNP and 8x AgNP. 

 

 

 

Figure 4.74. The difference spectra of chronic disease group and control group obtained 

using 32x AgNP and 8x AgNP. 
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Regarding PLS-DA scores, five of 30 spectra of the cancer group were below the threshold 

and 3 of the control group were above the threshold (Figure 4.75). Based on these results, 

prediction sensitivity was 83 percent, specificity was 90 percent, and accuracy was 87 per-

cent (Table 4.17). Performance of PLS-DA model was also evaluated using ROC curve 

analysis and permutation test. An AUC value of 0.9278 was obtained (Figure 4.76). R2 and 

Q2 values of the permuted classes were a few standard deviations away from the original 

ones (Figure 4.77). One thing to note that compared to Figure 4.52, distance between the 

original values and the permuted values were more, which means that the model obtained 

using 8x was better than using 32x regarding the over-fitting issue was concerned. 

 

 

 

Figure 4.75. PLS-DA scores plot of cancer and control group (8x AgNP). 

 

Table 4.17. Classification results of SERS spectra of the cancer and the control group 

obtained using 8x AgNP. 

 

 
Cancer vs. Control 

Sensitivity 83% (25/30) 

Specificity 90% (27/30) 

Accuracy 87% (52/60) 
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Figure 4.76. ROC curve for cancer and control group (8x AgNP). 

 

 

 

Figure 4.77. Permutation test of cancer vs. control groups (8x AgNP). 
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GA was also performed to increase diagnostic performance of PLS-DA. Selected 275 

Raman shift values were shown in Figure 4.78 below.  

 

 

 

Figure 4.78. Shaded regions are the chosen shift regions with genetic algorithms (GA) for 

cancer vs. control study with 8x AgNP. 

 

Based on the selected Raman bands, PLS-DA was performed. One out of 30 spectra of 

cancer group was below the threshold line whereas all 30 spectra of the control group were 

classified correctly (Figure 4.79). This gave a diagnostic sensitivity of 97 percent, a 

specificity of 100 percent, and an accuracy of 98 percent (Table 4.18). The AUC value was 

0.9989 (Figure 4.80), which was near perfection. R2 and Q2 values of the permuted classes 

were a few standard deviations away from the original ones (Figure 4.81). Although 

accuracy values were the same with obtained using 32x AgNP, permutation test results 

were better. 
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Figure 4.79. PLS-DA scores plot of cancer and control group (8x AgNP, with genetic 

algorithms (GA)). 

 

Table 4.18. Classification results of SERS spectra of the cancer and the control group 

obtained using 8x AgNP (GA). 

 

 
Cancer vs. Control 

Sensitivity 97% (29/30) 

Specificity 100% (30/30) 

Accuracy 98% (59/60) 

 

The next discrimination was between the chronic disease group and the cancer group. As 

shown in Figure 4.82, three spectra of the chronic disease group were below the threshold 

line and four spectra of the cancer group were above the threshold line, yielding a 

sensitivity of 80 percent, specificity of 87 percent, and an accuracy of 84 percent (Table 

4.19). The AUC was 0.94, meaning that PLS-DA model was good at separating two groups 

(Figure 4.83). R2 and Q2 values of the permuted classes were a few standard deviations 

away from the original ones (Figure 4.84). 
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Figure 4.80. ROC curve for cancer and control group (8x AgNP, with GA). 

 

 

 

Figure 4.81. Permutation test of cancer vs. control groups (8x AgNP, with GA). 
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Figure 4.82. PLS-DA scores plot of chronic and cancer groups (8x AgNP). 

 

Table 4.19. Classification results of SERS spectra of the chronic and the cancer group 

obtained using 8x AgNP. 

 

 
Chronic vs. Cancer 

Sensitivity 80% (12/15) 

Specificity 87% (26/30) 

Accuracy 84% (38/45) 

 

By application of GA, 465 Raman shift values were found as better separator of two 

groups rather than whole 1715 values (Figure 4.85). As a result of the subsequent 

application of PLS-DA, all spectra of the chronic disease group were discriminated from 

the cancer group, but three spectra of the latter group were identified as of the former 

group (Figure 4.86). As a result, a diagnostic sensitivity of 100 percent, a specificity of 90 

percent, and an accuracy of 93 percent were reached (Table 4.20). AUC was 0.9667 

(Figure 4.87), and R2 and Q2 values of the permuted classes were a few standard deviations 

away from the original ones (Figure 4.88). 
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Figure 4.83. ROC curve for chronic and cancer group (8x AgNP). 

 

 

 

Figure 4.84. Permutation test of chronic vs. cancer groups (8x AgNP). 
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Figure 4.85. Shaded regions are the chosen shift regions with genetic algorithms (GA) for 

chronic vs. cancer study with 8x AgNP. 

 

 

 

Figure 4.86. PLS-DA scores plot of chronic and cancer group (8x AgNP, with GA). 
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Table 4.20. Classification results of SERS spectra of the chronic and the cancer group 

obtained using 8x AgNP (GA). 

 

 
Chronic vs. Cancer 

Sensitivity 100% (15/15) 

Specificity 90% (27/30) 

Accuracy 93% (42/45) 

 

 

 

Figure 4.87. ROC curve for chronic and cancer group (8x AgNP, with GA). 

 

The last PLS-DA was performed for discrimination of the chronic disease group and the 

control group. As seen in Figure 4.89, six spectra of the chronic disease group were below 

the threshold line and eight spectra of the control group were above the threshold line. 

Therefore, a sensitivity of 60 percent, a specificity of 73 percent, and an accuracy of 69 

per-cent were obtained (Table 4.21). Although sensitivity was similar to the value obtained 

using 32x AgNP, sensitivity was 17 percent higher. Accuracy was also six percent higher. 

The area under ROC curve was 0.70 (Figure 4.90). Regarding permutation test, R2 and Q2 

values of the permuted classes were fairly above the original ones (Figure 4.91).  
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Figure 4.88. Permutation test of chronic vs. cancer groups (8x AgNP, with GA). 

 

 

 

Figure 4.89. PLS-DA scores plot of chronic and control groups (8x AgNP). 
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Table 4.21. Classification results of SERS spectra of the chronic and the control group 

obtained using 8x AgNP.  

 

 
Chronic vs. Control 

Sensitivity 60% (9/15) 

Specificity 73% (22/30) 

Accuracy 69% (31/45) 

 

 

 

Figure 4.90. ROC curve for chronic and control group (8x AgNP). 

 

Four hundred and fifty Raman shift variable were found by applying GA (Figure 4.92). 

Using only these variables, PLS-DA performance for discrimination of two groups 

increased significantly. The results shown above were better than the results obtained using 

32x AgNP. Two spectra of the chronic disease group were below the threshold line and 

two spectra of the control group were above the threshold line (Figure 4.93). A diagnostic 

sensitivity of 87 percent, a specificity of 93 percent, and an overall accuracy of 91 percent 

were achieved (Table 4.22). The use of the only important Raman bands and ignoring the 

other parts of the spectra, accuracy of the PLS-DA model (Figure 4.93) increased by 22 

percent (Table 4.22), which enabled discrimination of the SERS spectra of serum samples 

of the people with chronic diseases and of the healthy people. The area under ROC curve 
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was 0.9378 (Figure 4.94). Regarding permutation test, R2 and Q2 values of the permuted 

classes were above the original ones (Figure 4.95). 

 

 

 

Figure 4.91. Permutation test of chronic vs. control groups (8x AgNP). 

 

 

 

Figure 4.92. Shaded regions are the chosen shift regions with genetic algorithms (GA) for 

chronic vs. control study with 8x AgNP. 
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Figure 4.93. PLS-DA scores plot of chronic and control group (8x AgNP, with GA). 

 

Table 4.22. Classification results of SERS spectra of the chronic and the control group 

obtained using 8x AgNP (GA). 

 

 
Chronic vs. Control 

Sensitivity 87% (13/15) 

Specificity 93% (28/30) 

Accuracy 91% (41/45) 

 

Lastly, SERS spectra of serum samples (of 14 patients) collected before and after tumor 

removal were compared using 32x AgNP colloid. The difference of the mean spectra 

showed that SERS spectrum of serum after tumor removal started to resemble that of 

healthy individuals. This finding demonstrated that SERS could be used for monitoring 

blood composition change after tumor removal. On the other hand, since only 14 serum 

couples (e.g., serum samples collected before and after tumor removal), standard 

deviations were high and PLS-DA could not be used for statistical analysis. 
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Figure 4.94. ROC curve for chronic and control group (8x AgNP, with GA). 

 

 

 

Figure 4.95. Permutation test of chronic vs. control groups (8x AgNP, with GA). 
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Figure 4.96. SERS spectra of serum samples of cancer patients before and after tumor 

removal. Shaded areas around the spectra represent the standard deviations. 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

In this thesis, a deeper understanding of SERS spectrum of blood serum and discrimination 

of serum samples of cancer patients from serum samples of chronic diseases patients and 

healthy individuals were aimed. One original research article was published as outcome 

that can be found in reference [127]. The study had many levels because blood serum is 

extremely complex consisting of various type of proteins and biomolecules. First level of 

the study was protein-SERS. It was important to gain information about the SERS spectra 

of proteins, especially protein mixtures. As a model, SERS spectra of binary mixtures of 

eight different proteins were examined. Observation of the effects of different 

concetrations of proteins in mixtures showed that differentiation of proteins depends both 

protein size and which statistical method is used. PCA was useful for discrimination of 

small proteins but not so useful for larger  proteins. On the other hand, PLS-DA presented 

better discrimination abilities. Of course, blood serum contains many other proteins; 

therefore one can not conclude that PLS-DA is totally useful for SERS study of blood 

serum proteins. Different statistical methods may be needed when the number of protein 

type is increased. Nevertheless, findings provided information about the SERS spectra of 

proteins and their mixtures for the other levels in this thesis study. 

 

Understanding of the origins of blood serum spectra was the other level. Different spectral 

patterns were observed when different AgNP concentrations were used. This information 

gave information about which molecules may effects the spectral pattern of the serum 

SERS spectra. It was understood that uric acid and hypoxanthine contributions are 

significant but not the only determinants. Many other molecules could contribute to the 

spectra; therefore some other molecules were spiked into serum and its effects on serum-

SERS spectra were observed. Since serum is very complex and many molecules can have 

similar SERS bands, exact origins of serum SERS spectrum remains as a big challenge. An 

interesting finding was that proteins were effecting the overall shape of the serum spectra 

while never contributing their own SERS spectra. Presence of proteins may change 

orientation some molecules and this may cause change the serum spectra. More detailed 

analysis are needed in this topic to fully explore the interaction of blood molecules with 

AgNP surface. 
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Since uric acid and hypoxanthine were the known molecules, in the next level, SERS 

spectra of purines and purine derivatives and their binary mixtures were inverstigated. It 

was observed that PBS can not be used as model buffer to understand the interactions of  

uric acid and AgNP in blood serum. The primary buffer system in the body is  carbonate-

bicarbonate buffer, on the other hand, pH of that buffer changes upon carbondioxide 

dissolution in water, damaging the stability of the buffer during experiments. HEPES and 

Tris buffers can interact with AgNP surface. Borate buffer at pH 8.4 was chosen as a 

sutable buffer for the study because it did not make any interferance on SERS spectra. This 

time pH was 8.4 but “non-interferance” property of the buffer compensated one pH 

difference. SERS spectra of binary mixtures of purines and purine derivatives showed that 

interaction of biomolecules with AgNP surface in the presence of other molecules is very 

complex in nature. Further studies on this topic is needed. 

 

Label-free SERS technique provides fast and low cost analysis. Label-free discrimination 

of serum of cancer patients from serum of other individuals could provide technique’s 

potential use in clinics in the near future. For the next level in thesis study, SERS spectra 

of serum of cancer patients, patients with chronic diseases, and healthy individuals were 

collected using two different AgNP concentrations. PLS-DA was used for discrimination 

and classification of the spectra. Over than 80-90 percent accuricies were obtained for 

discrimination of cancer group from control group, and cancer group fron chronic disease 

group. On the other hand, accuracy for discrimination of chronic disease group from 

control group was less than 70 percent. The use of genetic algorithms with PLS-DA 

resulted in higher accuracy values (82 percent with 32x AgNP, and 91 percent with 8x 

AgNP). Results were satisfactory, on the other hand, the amount of serum samples were 

low to preform a more realistic study. In order to be 100 percent sure about the usefullness 

of the label-free SERS for this type of studies, sample sizes for each class (i.e, samples 

sizes of  serum samples for each cancer type, for each chronic disease type, and for healthy 

controls) have to be increased. 
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