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ABSTRACT 

 

 

IMODE INTERACTIVE MOOD DETECTION ENGINE 

 

Applications change their mood from time to time. A memory-intensive application does 

not need to be always memory-intensive from its first instruction to its last. Similarly, it is 

highly usual that a computation-intensive application generates heavy memory traffic at 

certain points of its entire run. Meanwhile, processors are designed to have a fixed resource 

configuration, which is expected to serve all kinds of applications with all kinds of 

program phases. In this study, we propose a new processor, which tracks down instant 

mood changes of running applications and applies immediate processor mode changes 

between in-order and out-of-order modes for either saving power or keeping up with the 

high-performance demands of applications. In our experiments, we observe that the 

proposed processor can really track the mood changes of applications, accurately, and 

achieves 17 percent power savings with only less than 1 percent of performance drop, on 

the average across all simulated benchmarks.  
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ÖZET 

 

 

IMODE İNTERAKTİF MİZAÇ BELİRLEME MOTORU 

 

Uygulamalar çalışma zamanları içerisinde mizaçlarını zaman zaman değiştirirler. Bellek-

yoğunluklu bir uygulama baştan sona bütün komutlarında bellek-yoğunluklu çalışmaz. 

Yine benzer bir şekilde, yüksek hesaplama-yoğunluklu bir uygulamanın çalışma zamanının 

bir döneminde yüksek bellek-yoğunluklu bir trafik oluşturduğunu görürüz. Fakat buna 

rağmen işlemcilerin sabit kaynak dizilimleri ile her türden uygulamaya her türlü çalışma 

fazında hizmet vermeye çalıştığını görmekteyiz. Biz, bu çalışmada uygulamaların anlık 

mizaç değişikliklerini algılayan ve buna göre hızlı bir şekilde işlemcinin modunu yüksek 

performansı yakalayabilmek adına sırasız çalışma ve güç tasarrufu yapabilmek adına sıralı 

çalışma modları arasında değiştirebilen bir işlemci tasarımı sunuyoruz. Yaptığımız 

deneylerde, sunduğumuz işlemcinin gerçekten uygulamaların mizaç değişimlerini doğru 

bir şekilde takip ettiğini gözlemlemekte ve benzetim edilen denek uygulamalarda sadece 

yüzde 1’in altında performans kaybı ile ortalama yüzde 17 güç tasarrufu elde edildiği 

görülmektedir.  
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1. INTRODUCTION 

 

Processors are general-purpose hardware interpreters, which are responsible for running 

various types of applications from games to any type of mission-critical software. For a 

long time, the speed was a processor’s major and only concern when running applications. 

Nowadays, power-related concerns even surpassed all performance-related concerns on 

any processor that can be encountered on any type of system. Obviously, a power-aware 

processor plays an important role in improving the lifetime of many modern technologies 

(e.g. smartphones, laptops). Somewhat less obviously, a power-aware processor also plays 

an important role in the success of a real-time, mission-critical system that explores space 

and other planets. Besides, by 2025, it is predicted that data centers of the world will 

consume one-fifth of Earth’s power, and a power-aware processor may provide enormous 

power savings when it is deployed on data centers in large quantities.  

The well-accepted philosophy on today’s processor design is still ”one-size-fits-all” kind 

of realization with a fixed set of datapath structures and a fixed mode of execution. For 

instance, when an application has a program phase with a low Instruction Level Parallelism 

(ILP) degree runs on a 4-way superscalar, aggressively speculative, out-of-order (OoO) 

processor, most of the processor resources are underutilized and all power saving 

opportunities are lost. On the contrary, when an application, which has a program phase 

with a high ILP degree, runs on a 2-way superscalar in-order (IO) processor, it receives a 

huge performance penalty due to insufficient processor resources. Both of these scenarios 

point out the inefficiency of the current fixed-mode processors. In this study, we propose a 

processor that can track down the instant mood patterns of running applications and apply 

appropriate mode changes (i.e. either from IO to OoO or from OoO to IO) for saving 

power without sacrificing too much processor performance.  

The idea of having heterogeneous cores within a processor is not new. ARM’s power-

aware big.LITTLE architecture is one of the best examples of such realizations, and it 

requires a physical area to keep multiple cores on the same chip. This is also a valid 

approach in almost all heterogeneous architectures that are proposed in the literature, and, 

hence, 2 substantial area increase is inevitable [1, 2, 3, 4, 5]. However, our proposed design 

deviates from this traditional approach. We propose a specialized OoO core that can act 
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either as a traditional OoO core or an IO core whenever it is suitable. As a result, the area 

requirement of our proposed processor is almost identical to the area requirement of a 

traditional OoO processor. 

One of the major advantages of our approach, which we call interactive MOod Detection 

Engine or iMODE, in short, is its minimal cost on thread migration. In a heterogeneous 

core, when a thread is needed to be migrated from one core to another, substantial amount 

of data traffic has to be generated. This also results in substantial amount of power 

dissipation overhead in current state of the art. However, in our design, the source and the 

target cores are physically the same core, and we only change the execution mode of the 

core. Thus, during a thread migration in iMODE, all datapath structures holding 

instructions and processor state can still keep their content, and, no migration cost in terms 

of latency and power is involved. 

To better motivate our study, we would like to show how accurately iMODE tracks down 

the mood of a running application. The x-axis of the chart given in Figure 1.1 represents 

the number of instructions that are executed from the SPEC2006 gobmk benchmark, in 

million-instruction granularity. After one million instructions are executed within a period, 

we calculate the average Instruction Per Cycle (IPC) for that specific period. The y-axis in 

the chart plots those corresponding IPC values for each million-instruction period for three 

distinct designs: OoO, IO and iMODE. In the early execution phase of gobmk benchmark, 

OoO and IO modes go nearly head to head, giving similar IPC values. As a result, the 

iMODE processor switches to and stays in IO mode for more than 290 epochs (290 million 

cycles and around 34 million committed instructions), since there is no performance gain 

running in OoO mode within that long time period. In our current design, each epoch is 

empirically chosen to be one-million cycle long. After executing 34 million instructions, 

the benchmark shifts into a new program phase, where the OoO mode can give a much 

better performance than the IO mode. During that phase change, iMODE processor moves 

into the OoO mode and starts tracking down the IPC of the OoO processor. Note that there 

is a slight performance drop in iMODE processor compared to the original OoO processor 

due to the existence of short trial periods that iMODE tests the performance of the IO 

mode from time to time. 
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 Figure 1.1. Performance trace of gobmk benchmark on OoO, IO, and iMODE 

 

As a result, iMODE gives improvements in three major metrics:  

 Power: As the above example clearly shows, iMODE can stay in IO execution 

mode for long epochs. During the IO mode, structures that are used for 

guaranteeing correct OoO execution (i.e. register renaming mechanism, load queue, 

reorder buffer and physical register files) can be turned off. This makes iMODE a 

very low-power processor as long as the IO execution mode is in action. However, 

when the mood of the running application asks for an OoO mode, the processor 

goes into a performance mode, in which iMODE dissipates a considerably larger 

amount of power. 

 Cost of Thread Migration: One of the important features of heterogeneous cores is 

thread migration. These processors allow a running thread to migrate to a suitable 

core so that they either save power or keep an application’s performance at its peak. 

However, thread migration takes a considerable amount of time, especially when 

the source and target cores are physically away from each other. The state of the 
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source core should be transferred to the target core, and larger state data means 

higher migration latency and higher power cost. In computer architecture research, 

data transfer is one of the major challenges, which should be minimized at all costs. 

For this exact reason Intel moved from separate physical and architectural register 

structures in Pentium III to a combined register file that holds both physical and 

architectural registers in one structure in Pentium 4. In iMODE design, we follow 

the same strategy, and we make both source and target core the same core. Thus, 

during a thread migration all datapath structures holding instructions and processor 

state can still keep their content, and, no migration cost in terms of latency and 

power is involved. 

 Area: This is one of the strongest fields of the iMODE design. Processors with 

heterogeneous cores physically hold multiple cores on the same chip. When there 

are multiple active threads utilized to each of these heterogeneous cores, there 

seems to be no problem. However, when only one core is active and the rest of the 

cores are passive at certain times [1], the area efficiency of the processor is 

immediately questioned. iMODE is actually an OoO processor, which sometimes 

acts as an IO processor. Therefore, its area requirement is almost identical to a 

traditional OoO processor. 
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2. BACKGROUND 

2.1. IN-ORDER AND OUT-OF-ORDER PROCESSORS 

Instructions are fetched and executed in compiler-generated program order in IO 

processors. On the other hand, in OoO processors, while instructions are fetched and 

decoded in program order, they are executed in arbitrary order. This enables OoO 

processors not to stall every time they encounter an instruction that is not ready for 

execution. In IO processors, all in-flight instructions wait for the execution of the oldest 

instruction, and if that instruction stalls, the whole processor pipeline stalls. OoO 

processors, on the other hand, avoid this problem by introducing an OoO scheduler that 

can select a ready instruction ignoring its program order. In this new selection mechanism, 

even the youngest instruction can have a chance for execution before the rest of the older 

instructions as long as it has no data dependency. In an n-way superscalar processor, n 

instructions can be fetched, decoded, scheduled and executed in a given clock cycle. The 

number of instructions that can be executed in parallel is directly proportional to a term, 

which is known as the Instruction Level Parallelism (ILP). When the ILP degree is high, it 

means that there are a number of instructions present in the Instruction Queue (IQ) that are 

ready for execution. The main purpose of OoO processors is to extract this ILP hidden in 

instruction streams and achieve better performance figures compared to IO processors. The 

biggest handicap of this case is there can be data, control and structural hazards among 

instructions that reside in the IQ. The performance gap between an IO and OoO mode 

processor shrinks when the number of these pipeline hazards increase within a processor. 

In such a case, running an OoO processor becomes meaningless, since an IO processor can 

achieve a similar performance trend. However, when those pipeline hazards rarely exist, 

the OoO processor can easily provide two to three-fold speedup compared to an IO 

processor, and, typically, this type of a performance improvement is too large to be ignored 

by any kind of application scenarios. 

When looking from the structural hazard point of view, both IO and OoO processors can 

experience structural hazards due to insufficient number of functional units. However, 

from the data hazard point of view, OoO processors exploit the possibility of executing 

independent instructions in parallel, and, hence, they perform better compared to IO 
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processors. Today, OoO processors meet the demands of high performance applications. 

However, as mentioned in Chapter 1, OoO processors spend more power to achieve higher 

performance figures, while IO processors could be more power efficient. 

 

Figure2.1. Example datapath figure from an OoO processor 

 

Nowadays, modern processors aiming high performance almost always use OoO 

superscalar architectures. A typical OoO processor contains seven fundamental pipeline 

stages as shown in Figure 2.1. Although, an IO processor has nearly identical 

implementation stages, some of the stages might be simplified or even excluded (such as 

commitment stage, at the end). 

 Fetch Stage: The mechanism responsible for receiving instructions from the 

instruction cache or instruction memory. According to the superscalar width (say, 

n) of the processor, the number of instructions, which can be fetched in a single 

clock cycle, can change from 1 to n. Fetch stage is the first stage of the in-order 

front-end of a superscalar processor, and all instruction are fetched in program 

order. Instructions are inserted into a queue structure, which is known as the Fetch 

Queue (FQ). The size of the FQ is usually selected as twice the size of the 

superscalar width, so that, in a single clock cycle, half of the queue is updated with 

incoming instructions, meanwhile the instructions from the other half are read by 

the next pipeline stage, which is known as the Decode stage. In the next clock 

cycle, partitions of the FQ are exchanged, and the half that is drained by the decode 

stage is updated by new incoming instructions by the fetch stage, meanwhile the 

other half is consumed by the decode stage. This exchange process continues as 
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long as the processor is up and running. As shown in the Figure, this stage is 

usually divided into two sub-stages to reduce the clock cycle time, and, hence, to 

reduce the clock frequency. 

 Decode Stage: In this instruction interpretation stage, which is represented as the 

box labeled D1 in the Figure, various critical information from the opcode to source 

and destination registers and to immediate data values of each instruction are 

decoded. The first stage of the register renaming process also takes place within 

this stage. The physical register mappings of the source registers of the decoded 

instruction are looked up from a structure, which is known as the Rename Table 

(RT). Intel uses the Register Alias Table (RAT) name for the same structure. Since 

an n-way superscalar processor can decode up to n instructions within a single 

clock cycle, the decode stage also utilizes a circuitry named Dependency Checking 

Logic (DCL). In the DCL logic, there are comparators for detecting match 

conditions among destination registers of older instructions and source registers of 

younger instructions. When the DCL logic detects a match between a destination 

register of instruction I and a source register of instruction J, the processor learns 

that there is a Read After Write (RAW) data dependency between instruction I and 

instruction J. 

 Dispatch Stage: This stage is responsible for inserting decoded instructions into a 

structure, which is known as the Instruction Dispatch Buffer (IDB) in OoO 

processors. This structure is formerly named as the Instruction Queue (IQ) in IO 

processors, and this name is also still widely used in OoO processors. Normally, in 

IO processors when all of the source registers of an instruction become valid and 

the instruction is among the oldest n instructions within the IQ, then it can be sent 

to its corresponding functional unit. As a result, if an instruction, which is from the 

set of the oldest n instructions, is not ready, the IO processor stalls at the dispatch 

stage. Unlike IO processors, in OoO processors a ready instruction can be sent to its 

functional unit in an arbitrary order for extracting ILP among instructions that 

reside in the IQ. Some researchers also call IQ as the Instruction Window Buffer 

(IWB), since degree of ILP extraction is actually limited by the window size of the 

IQ. 

There are two control circuitry that are directly related to OoO instruction 

scheduling in the dispatch stage: 1) the wake-up and 2) the selection Logic. First 
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one checks the true dependencies between instructions, and is responsible for 

waking up the instructions that become ready for execution. When two source 

registers of an instruction becomes valid, the instruction becomes ready and it is 

woken up by the wake-up circuitry. The selection logic is responsible for selecting 

and issuing (transferring an instruction for execution) n ready instructions in an n-

way superscalar processor. 

Again in this stage, all instructions are inserted into a circular-queue structure 

known as Re-Order Buffer (ROB). Moreover, all load and store instructions are 

written into the Load Queue (LQ) and the Store Queue (SQ) according to their 

program order. In some architectures these queue structures are combined into a 

single structure, which is known as the Load/Store Queue (LSQ). 

Finally, the last part of the register renaming algorithm, where new physical 

register mapping is set for each instruction with a destination register, is also run in 

this stage. 

 Execute Stage: This stage is responsible for executing ready instructions, and 

forwarding their results back to awaiting instructions in the IQ. Generally, there are 

multiple functional units for serving multiple instructions in parallel. The bypass 

(or forwarding) circuitry is responsible for transferring results of functional units to 

the inputs of all functional units in case there is a possibility of back-to-back 

execution of dependent instructions. 

 Memory Stage: This is a stage with a non-deterministic latency. When there is a 

store instruction, the data of the store instruction is immediately written to the LSQ 

structure, and data is also forwarded to the first level cache. The lower level caches 

and the memory is updated depending on the write mode of the cache levels. When 

the cache is a write-through mode cache, it immediately transfers the written data to 

the lower level memory structures. However, this mode generates enormous 

amount of cache traffic and dissipates enormous amount of power. On a write-

through cache, though, an extra dirty bit is attached to each cache line. When there 

is a store instruction, the dirty bit of the corresponding cache line is set to indicate 

that the data in that cache line is not synchronized with the memory. The data 

transfer is realized only when that cache line is evicted from the cache and its dirty 

bit is set. 
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In OoO processors, the LSQ structure is accessed when there is a possibility of a 

load bypass. The load bypass can occur, when a younger load instruction accesses 

memory before an earlier load instruction. The LSQ holds address information for 

each memory instruction, and, therefore, such controls are viable. Since, there is no 

possibility for a load bypass in IO processors, there is no need for keeping the 

complete LSQ structure in those processors. 

Another important feature of the LSQ structure is known as store data forwarding. 

When the address of a younger load instruction overlaps with the address of an 

older store instruction, the load instruction can receive its data from the data field 

of the store instruction within the LSQ. This kind of a data forwarding is the fastest 

memory operation, and it may take as fast as a single clock cycle. Today, even the 

fastest first level cache access can be at least 3 or 4 cycles long. 

 Writeback Stage: This is the stage where the speculative results are written to 

speculative physical register files. At this stage, the ready bit of the corresponding 

instruction within the ROB is also set to indicate that this instruction already 

completed its execution and is ready for exiting the pipeline. In OoO processors, 

the writeback stage cannot be the last stage of execution, since the OoO completion 

makes implementation of the precise interrupt mechanism quite complicated. 

Therefore, and extra in-order backend stage for completion is usually takes place. 

On the other hand, in IO processors, the in-order execution and in-order writeback 

makes the use of ROB totally meaningless. 

 Retirement (or Commitment) Stage: This last stage utilizes a circular queue 

structure known as the Re-Order Buffer (ROB). The head of the ROB holds the 

oldest instruction within the processor, meanwhile, the tail of the ROB holds the 

youngest instruction. The retirement stage, enables completion of instructions in 

program order. When an instruction reaches the head of the ROB and when it’s 

ready for retirement bit is set by the writeback stage, then, the instruction becomes 

free to exit the processor. During the exit, the speculative data value stored in a 

corresponding PRF entry is transferred to its corresponding precise Architectural 

Register File (ARF), and the Rename Table is updated to indicate this update. The 

old physical register mapping of the instruction is also deallocated, again, in this 

stage. 
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In an n-way superscalar processor, n number of oldest instructions, which reside in 

the head of the ROB, can retire at the same cycle. 

2.2. RELATED WORK 

There is much prior work in the literature which strives for either better energy/power 

efficiency or die area efficiency. A straightforward solution to reduce energy consumption 

of the processor is to dynamically disable processor resources according to runtime needs 

of workloads [13, 15, 16, 19]. Additionally, some prior work proposed dynamic migration 

among out-of-order high performance cores and in-order low energy cores based on the 

nature and demands of running applications [1, 14, 22]. Another research direction is 

storing certain instructions in simpler datapath structures, achieving similar performance 

with less power and area compared to expensive out-of-order resources (or exploiting these 

leftover resources for higher performance) [17, 18, 20, 21, 24, 26]. 

A popular approach is to use a heterogeneous configuration in multicore processors, i.e. 

processors which contain both high-performance power-hungry cores and low-

performance power-saving cores together in one chip [6, 12, 25]. One particular approach 

is to achieve heterogeneity among cores not by design, but dynamically by sharing 

resources among cores [8, 9]. Taking this approach one step further, some prior research 

proposed a reconfigurable architecture that enables the formation of wider-issue out-of-

order cores by fusion of neighboring small cores [10, 11]. 

Lukefahr et al. propose a heterogeneous core architecture composed of a high-performance 

core (big Engine) and an energy efficient core (small Engine) sharing most resources such 

as L1 caches and the branch prediction unit. In their design, there is only one Engine active 

at a time, and the execution switches dynamically between Engines to adapt to application 

characteristics. The proposed architecture collects a few runtime statistics on the active 

core and tries to accurately predict the performance of the inactive core for the migration 

decision [1]. 

Afram et al. propose FlexCore, a multi-clustered architecture with two narrow cores, which 

can fuse into a wide OoO core whenever it is needed. The OoO core can also turn into a 

Simultaneous Multi-Threaded (SMT) core if there is enough TLP among running threads. 
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Again, various runtime statistics are collected to make accurate predictions for the mode 

switch operation. Cores in FlexCore can also turn into a low-power IO mode [4]. 

Finally, Khubaib et al. propose an architecture which uses a large OoO core as a base to 

run single-threaded programs. The processor switches to IO SMT core mode to accelerate 

parallel threads. When the number of active threads exceeds a certain threshold, their 

technique reconfigures the core into a highly-threaded IO SMT core, which exploits 

Thread Level Parallelism (TLP) and provides high throughput by hiding long latency 

operations of individual threads [22]. 
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3. DESIGN AND IMPLEMENTATION 

 

We know that the design of the OoO processors is based on the exploitation of the 

instructions which can be executed in parallel, and the more instructions that can be run 

independently, the higher the ILP. However, applications do not perform with high ILP 

from their beginning until their completion. The high rate of true data dependencies, 

memory latencies, and input/output operations are the main reasons for ILP drops. 

Whenever an application enters a low ILP phase, the processor cannot take advantage of 

the complex and power-consuming OoO logic. The heart of the iMODE processor based 

upon this observation. In such phases where ILP is low, running in OoO mode would result 

in unnecessary power consumption. To solve this problem and save power, our iMODE 

processor can switch between OoO and IO execution modes without losing too much 

performance. In this study, we assume that a 5 percent performance drop is the maximum 

level tolerable for the general purpose processor users. 

Switching between the two execution modes contains two main mechanisms in our 

iMODE processors. The first mechanism is the Decision, and the second mechanism is the 

Enforcement. In the decision mechanism, we decide whether to stay or not to stay in 

current mode while in the Enforcement Mechanism we are implementing necessary 

changes on the processor. These mechanisms are discussed in the following sections in 

detail. 

3.1. DECISION MECHANISM 

A useful decision mechanism should successfully determine the suitable time to switch 

OoO mode to avoid intolerable performance loss or to switch IO mode to save power 

without losing too much performance. To be able to implement such a decision mechanism 

one should have some indicators that show what is going on right now and/or what would 

happen if the processor switch to the other execution mode. Such indicators would be 

branch misprediction rate, cache miss rate, ILP rate, and memory-level parallelism (MLP). 

Nevertheless, these indicators produce not direct information to switch but indirect and 

imperfect information to predict whether the decision mechanism should switch. Instead of 

using indirect indicators iMODE exploits the direct result by switching and trying the 
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opposite execution mode via executing it in a small duration and collects one performance 

statistics. A major advantage of trying the intended mode by actually switching to it is its 

simplicity. By using this approach, iMODE is freed to implement any prediction circuitry 

which collects some statistics to make complex calculations. Another advantage is the 

precision of the accumulated result. Using the prediction would give us a result from the 

past of the execution while in our direct switch gives us the actual results of the alternative 

mode. Actually, in our direct approach, we are sampling the opposite execution mode by 

actually switching to it. In this approach, our sampling frequency and switch cost should be 

negligible in terms of performance. 

Throughout this section, both design and implementation will be explained. We use Gem5 

simulator to test our iMODE processor [7]. It simulates the passing of time as a series of 

discrete events, in other words, it is a trace-driven simulator. It is also designed in detail to 

be able to rearranged, extended, and parameterize its components. It supports multiple 

Instruction Set Architectures (ISAs) including ARM, ALPHA, MIPS, Power, SPARC, and 

x86. x86 ISA is chosen for this study since it is widely used for the general-purpose 

processors. Additionally, Gem5 ISA structure allows developers to simulate compiled code 

according to supported ISA on the Gem5 directly. 

3.1.1. Epochs 

In this study, the execution of the benchmarks are divided into epochs which is a constant 

duration in the number of cycles shown in Figure 3.1. To be able to catch when the switch 

decision should occur, the cpu source code of the simulator is modified. Since the 

simulator is trace-driven it is not guaranteed that it will execute the cycle function of the 

cpu in every cycle simulated. To solve that Algorithm 3.1 is used since it immediately find 

if the given length of the epoch is caught or passed when the execution reached the cycle 

function of the cpu. In this point, our proposed design should decide if a mode switch 

should occur or not. 1K cycles for epoch duration is an empirical result which gives us 

good results in our experiments. 
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Figure 3.1. Epoch illustration 

 

Algorithm 3.1. Epoch incrementing algorithm 

 

 

As we mentioned above, iMODE processor have two execution modes, namely OoO and 

IO. In addition to the execution modes iMODE also have two different durations which are 

main duration and trial duration. While the execution modes affect the way of the 

execution principles execution durations determine the length of the execution modes. 

3.1.2. Decision Points 

Except for the first epoch, every single epoch consists of two execution durations. Starting 

with the first epoch point which is the end of the first millions of cycles, iMODE will try 

the opposite execution mode in trial duration. As a result, we can say that every epoch 
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starts with trial duration and continues with a main duration. Again, the exceptional case is 

the first epoch which has not a trial duration. Ultimately, we can say that every epoch ends 

with a main duration. At the beginning of each epoch, our iMODE tries the opposite 

execution mode for a shorter trial duration and reach the decision point. In the decision 

point iMODE have two major sources of information, which are the IPC of previous main 

duration and the IPC of the trial duration. This is the essence of our iMODE, by looking 

this two information, iMODE decides to stay in the tried-execution-mode or to switch back 

to execution mode of the previous main duration. 

iMODE processor aggressively tries the opposite execution mode at the start of every 

epoch to assure it is executing in the right mode. Periodically checking the opposite 

duration hurts the performance especially if the general trend of the execution is OoO 

mode. In the end, iMODE processor trading off a tolerable amount of performance drop 

with saving power. 

In order to clarify better, Figure 3.2 illustrates an example run iMODE which shows 

execution durations and execution modes. In this study, when called nth epoch, it is meant 

the number of cycles from n million to n + 1M cycles. As seen in the figure, every epoch 

lasts for one million cycles and at the end of a million cycles one epoch ends and another 

one starts. From 1 million cycles to 2 million cycles, the first epoch is labeled as ”Epoch” 

in Figure 3.2. The first dashed line labeled as ”Epoch Start” shows the end of the second 

epoch and start of the third epoch as an example while the second dashed line labeled as 

”Decision Point” represents an example decision point for iMODE processor in the third 

epoch. As mentioned above, every epoch has two duration which are trial and main 

durations. An example of a trial duration and a main duration labeled in the first epoch. 

Last but not least is the execution modes shown in orange and green boxes represents OoO 

and IO modes respectively. 

As it is seen, the zeroth epoch which is the only epoch which has not a trial duration started 

in OoO mode and executed until the first epoch starts. iMODE immediately tries the 

opposite execution mode (IO mode) throughout the trial duration of the first epoch. After 

the end of the trial duration in the first epoch, iMODE decides whether to stay in the IO 

mode or switch back to OoO mode. In this example, iMODE decided to go back to OoO 

mode. every end of a trial duration is a decision point for the iMODE processor. After a 

switch-back decision to OoO mode, a main duration is executed in OoO for the first epoch. 
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Trying the IO mode in trial durations and switching back to OoO pattern continues until 

the sixth epoch. At the end of the main duration of the fifth epoch executed in OoO, 

iMODE processor tries the IO mode in throughout the trial duration of the sixth epoch, but 

this time decides to stay in IO mode and completes the main duration of the sixth epoch in 

IO mode. After this point we can see that main execution mode becomes IO mode and 

iMODE tries OoO mode in seventh, eighth, and ninth epochs in trial durations. 

 

Figure 3.2. Example execution showing modes and phases 

 

3.1.3. Decision Algorithm 

At the end of each trial duration, iMODE processor decides to stay in the current tried-

mode or switch back to the opposite execution mode. At the decision point iMODE 

processor have two different statistics. First one is previous epoch’s main duration IPC and 

second is current epoch’s trial duration IPC. Also, at decision point two threshold values 

are used which are perf-loss-thresh and perf-gain-thresh values. These threshold values are 

adjustable by the operating system in accordance with the performance need of the 

execution. iMODE processor calculates the performance difference between previous 

epoch’s main duration IPC with current epoch’s trial duration IPC. If the trial duration 
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executed in IO mode then it can be said there is a performance loss and if the trial mode 

executed in OoO mode there is a performance gain. 

Performance losses determine should the execution switch back to OoO mode or not while 

performance gains determine should the execution switch back to IO mode or not. At 

decision points, as mentioned above, there are two threshold values, first one, perf-loss 

thresh determines the maximum performance loss iMODE can tolerate when trying the IO 

mode, while the second one, perf-gain-thresh, determines how much the execution needs 

the performance. If these threshold values and execution changes are perceived in the 

perspective of OoO mode, they can be understood easily. To sum up, if performance loss is 

too high then go back to OoO mode and if the performance gain is too high then stay in the 

OoO mode since execution needs performance immediately. 

Algorithm 3.2. Decision algorithm 

 

 

Algorithm 3.2 shows how iMODE decides when reached to the decision points. To clarify 

the algorithm, Several cases can be considered. Also, Figure 3.2 can help visualize the 

example cases. For example, let’s assume perf-loss-thresh is 10, perf-gain-thresh is 20, and 

execution is on the decision point of epoch 5. Note that, for the fifth epoch. Current 
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epoch’s trial duration is executed in IO mode. Previous epoch’s main duration is executed 

in OoO mode. In this case iMODE should calculate a perf loss using the IPC from the trial 

duration and IPC from the main duration. After the end of the trial duration in epoch 5, it is 

seen that execution mode is switch back to OoO mode which means calculated 

performance loss is above 10 percent. iMODE tried the opposition mode which is IO mode 

and decided that IO mode causes to drop performance above the tolerated threshold and 

switched back to OoO mode. Looking at next epoch, in epoch 6, iMODE again tries the IO 

mode in the trial duration of the epoch 6. At the decision point of the epoch 6, the perf loss 

is calculated using the epoch 5’s main duration IPC and epoch 6’s trial duration IPC. 

However, this time calculated perf loss is under perf-loss-thresh and thus, execution stayed 

at IO mode. It means that at this time iMODE decides that it can tolerate the performance 

loss due to IO mode and save power efficiently. 

3.1.4. Decision Postponing Algorithm 

Despite that it is a small percentage of execution time, iMODE spends its time in alternate 

execution mode at the start of every epoch until the decision points. By this aggressive 

approach, iMODE always tries to find the efficient execution mode in a power sawing 

oriented way. This situation leads to performance losses particularly when the mood of the 

Algorithm 3.3. Decision postponing algorithm 
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application wants OoO mode. To overcome this problem iMODE postpones the 

unconditional switches at the start of every epoch. In other words, the epoch interventions 

are deactivated during this time and iMODE runs on OoO mode without any interrupts. 

The idea behind this strategy is that if the calculated perf loss is very different from the 

perf-loss thresh value then it can be considered that the unconditional switches at the 

beginning of the epochs could be delayed for several epochs to not lose performance due to 

trials. Algorithm 3.3 shows the postponing algorithm where PT stands for the postponed 

threshold and PE stands for the postponed number of epochs. 

3.2. ENFORCEMENT MECHANISM 

Switching IO and OoO modes between each other should be as smooth as possible. At this 

point the enforcement mechanism is engaged in iMODE processor and implements the 

necessary changes in the hardware. Although our proposed design largely uses the 

traditional OoO layout, some of the components need to be changed or may be shut down 

when switching to the IO mode. One of the main differences between datapath structures 

of OoO and IO processors is the Issue Queue (IQ). In the IO processors, IQ is not different 

from traditional queue structure where elements are entering from the tail and exiting from 

the head of the queue. While the head of the IQ, points the oldest instruction, tail of the IQ 

points the newest instruction according to the program order. In IO processors, according 

to machine width of the processor, n a number of ready instructions are scheduled from the 

head of the IQ. Readiness is determined according to the source operands of the 

instruction, if all of the source operands become valid for the instruction, it is considered to 

be ready. On the other hand, in OoO processors instruction scheduling is much more 

complex compared to the IO processors. Since program order is not important in OoO 

instruction scheduling, any instruction which becomes ready can be scheduled 

independently from the age of the instruction. Also, ready instructions may reside 

anywhere in the queue which is held as fetched instructions. As a result, this structure 

cannot be called traditional queue anymore since it becomes more like buffers in OoO 

processors. Usually, this mechanism is called as Instruction Dispatch Buffer (IDB) in OoO 

processors. In IDBs, any instruction can become ready and ready instructions could be 

anywhere in the buffer. For this reason, such as instruction selection logic and wake-up 
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mechanisms are used which make the OoO instruction scheduling more complex compared 

to IO instruction scheduling. 

When execution switches to the IO mode from the OoO, instructions must schedule in 

program order. For this reason, in iMODE processor, the enforcement mechanism blocks 

the instruction scheduling until the instruction pipeline drains and become empty. Due to 

some long-latency instructions, such as floating point division and square root instructions, 

waiting for draining the pipeline can last long number of cycles. Especially the 

nondeterministic memory instructions in the IQ leads draining operation become 

unbounded. To overcome this issue, iMODE enforcement mechanism bound the draining 

operation to five thousand cycles (an empirical duration which gives us good feedback in 

our experiments). After this duration, whether or not the pipeline becomes empty, 

everything in it flushed by the enforcement mechanism. After the pipeline become empty, 

OoO instruction scheduling is deactivated and simpler IO instruction scheduling is 

activated. As soon as the IO scheduling is activated, instructions are started to dispatch into 

IQ in program order. 

Going to OoO from the IO mode is much more simple. Due to the fact that the native 

execution mode in iMODE processor is OoO, switching to IO mode requires certain 

mechanisms to be shut down or modified. On the other hand, switching back to native 

execution mode is simpler since no modification is required. When switching to OoO 

mode, activating the OoO instruction scheduler is enough. Thus, switching to OoO mode 

has no significant delay. 

To sum up, after every switch event occurred, new execution mode is marked and 

according to the new execution mode enforcement mechanism gets involved and enforce 

the necessary changes in the iMODE processor. If the new mode is OoO, only the 

instruction scheduling mechanisms should be switched, no need to do any further action, 

see line 7 in Algorithm 3.4. However, if the new execution mode is IO, then some other 

controls and actions should be done. See Algorithm 3.4, when the new mode is IO, after 

deactivating the OoO instruction scheduling, iMODE marks the current time to understand 

when the switch is started, and set the is in transition register to be able to do further 

actions. Hence, if the processor is in the transition state, iMODE will be waiting for the 

pipeline to be drained or forced to flush all of the instructions, see line 11 in Algorithm 3.4. 

If the forced flush cycles tolerance time in cycles is not done yet, enforcement mechanism 
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is constantly checking the number of instructions in the ROB to understand whether the 

pipeline is drained, see line 13 in Algorithm 3.4. After a pipeline drain or a forced flush, 

in_transition bit is resetted to false again. 

Algorithm 3.4. Enforcement algorithm 

 

 

 

3.3. OTHER HARDWARE COMPONENTS 

Applications run on execution phases which are suitable for IO execution in return of 

tolerable performance loss, in such a phase, iMODE aims to save power by switching the 
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execution mode to IO. As mentioned in the previous section, the instruction scheduling 

mechanism could be modified with the intent to save power. Indeed, the major power 

saving achieved by shutting down the wake-up and selection logic runs in OoO mode with 

the much more simpler IO instruction scheduling which dispatches the first n instructions 

from the head of the IQ. 

Actually, there are other datapath structures that can either be modified to run on a limited 

way or completely shut down when running in IO mode. For instance, following the 

methodology of Khubabib et al., Load Queue (LQ) could be completely shut down since 

executing the load instructions speculatively could not be done in IO mode of iMODE 

processor [22]. Moreover, Re-Order Buffer (ROB) could be completely turned off when 

switching to IO mode. Since the execution in IO mode flows in program order, the IO 

mode of iMODE does not need a re-ordering mechanism. Also, note that turning off ROB 

is safe considering the OoO to IO transition stage. In iMODE before the switch operation 

to IO, all of the pipeline is waited to be drained which means there will be no instruction in 

the ROB before iMODE execute in OoO mode. In this point, ROB circuitry could be turn 

off and head and tail pointers could be reseted. Until the execution switches back to OoO 

mode, ROB could stay turned off and ready to be opened and reused again. Last but not 

least, the same strategies could be applied to register file and register renaming 

mechanisms. 

As mentioned before, threshold pairs can be adjusted by the OS according to the 

performance goal of the system. For the general purpose systems, the energy-delay product 

is the most acceptable criteria. Hence, we use energy-delay product to find out which 

thresholds are the best in saving power efficiently. 
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4. EXPERIMENTAL METHODOLOGY 

 

We used 16 benchmarks from spec2006 to evaluate our proposed design. All of the 

experiments are simulated in Gem5 using the x86 ISA [7, 23]. Each benchmark is 

simulated for 100M instructions. The configuration parameters used in experiments are 

given in Table 4.1. Empirically obtained PT values are given in Table 4.2 and PE values 

are given in Table 4.3. 

Table 4.1. Specifications of the simulated processor  

 

CPU Components Specifications 

L1 I- and D-Caches 
16 Kb, 4-Way, 64-byte line size, 

2 cycle latency 

L2 Caches 
128Kb, 8-way, 64-byte line size, 

20 cycle latency 

CPU Frequency 2 GHz 

Pipeline 

4-way issue, 192 entry ROB, 

64 entry IQ, 32 entry LQ, 32 entry SQ, 

256 int and 256 FP registers 

 

Spec2006 benchmarks are divided into two groups according to their utilization of OoO 

execution mode. For the classification, we first collect the base OoO and IO performances 

of the benchmarks one by one. If a benchmark results 40 percent more throughput 

compared to its IO execution mode performance, marked as a high-utility benchmark, 

otherwise, it is marked as low-utility. As anticipated, high-utility benchmarks are more 

OoO dependent, as a result, they do not tolerate executing in IO mode, whereas, the low-

utility ones embrace the IO mode since they already cannot utilize the OoO execution 

mode. Classification aims to show the significance of the power savings of the low-utility 

benchmarks compared to high-utility ones. 

In our simulation regions, 16 benchmarks are classified as shown in Table 4.4. To evaluate 

the iMODE, three metrics are used. Throughput, power saving, and energy efficiency. For 

energy efficiency Equation (4.1) and Equation (4.2) is used. In the equation, energy and 
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delay parameters are calculated as percentage values found by accepting the full-OoO 

simulations are the baseline values for iMODE. Hence, the desired efficiency value should 

be less than one, meaning that the energy cost per IPC is less than the traditional OoO 

execution. In here Equation (4.3) are also provided. This is because in literature, all three 

of these equations are used. The difference is that the effect of the delay parameter. In 

general purpose processors energy-delay is the most common criteria to evaluate the 

efficiency of the system. The second equation, energy-delay square is used as a criteria for 

evaluation of workloads and the third equation delay-cube is used from servers and data 

centers. Compared to energy-delay equation, other two equations increase the penalty of 

the delay by squaring and cubing the effect of delay. Hence, when the performance drop 

tolerance is decreased, delay square and delay cube are used.  

Last but not least, we assumed the power saving of iMODE as 2x which is an extremely 

pessimistic value for iMODE compared to 4x and 6x power savings from the literature [1, 

22]. As a result, we assume that iMODE dissipates half of the energy dissipated by 

traditional OoO core. Equation (4.4) shows the calculation for power consumptions. By 

using ratio of  the power consumptions for two desired experiment, the power savings are 

calculated as percentage values.  

 

            =               (4.1) 

            =               2 

 
(4.2) 

            =               3 

 

(4.3) 

 

                   =                               

                                   

(4.4) 

 

 

 

Table 4.2. Parameters for postpone threshold 
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PThigh 80% 

PTmed 50% 

PTlow 30% 

 

 

Table 4.3. Parameters for postponed number of epochs 

 

PEhigh 80% 

PEmed 50% 

PElow 30% 

 

 

Table 4.4. Classification of benchmarks 

 

CPU Components Specifications 

L1 I- and D-Caches 
16 Kb, 4-Way, 64-byte line size, 

2 cycle latency 

L2 Caches 
128Kb, 8-way, 64-byte line size, 

20 cycle latency 

CPU Frequency 2 GHz 

Pipeline 

4-way issue, 192 entry ROB, 

64 entry IQ, 32 entry LQ, 32 entry SQ, 

256 int and 256 FP registers 
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5. RESULTS AND DISCUSSION 

 

In this chapter, iMODE is compared with the traditional OoO processor. Each section 

evaluates the iMODE for different aspects which are the effects of perf-loss-thresh and 

perfgain- thresh, the effect of the length of the trial duration, and lastly, the effect of the 

decision postponing algorithm. 

Since the proposed design of iMODE is explained in previous chapters, from this point, we 

can compare iMODE with the proposed design of Lukefahr et al., titled Composite Cores 

[1], in the perspective of disadvantages and design problems: 

 For their proposed design they need much more space. Despite they use a mutual 

front-end, big and little cores have very different back-end architectures. Hence, 

they have to have separate two cores within their design. On the other hand, 

iMODE needs only one OoO core with slightly modified structures. 

 In iMODE, during IO mode of execution, we shut off all of the unnecessary 

structures to save both dynamic and static power, however, in Composite Cores, 

after they migrate from one core to another, the old core probably waits in idle 

mode (in the paper they do not mention what happens to the old core). As a result, 

by waiting idle, they save from only dynamic power since there is no transistor 

activity in the idle core. 

 Another design problem is to assume a very optimistic 80-cycle latency for the 

main memory. 

 They also present 1000 cycles for their decision point epoch. However, this 

duration is very short for the mood change of an application. From our 

experiments, we see that the transition from one mode to another may not be 

instantaneous. On top of that, their proposed architecture has a register transfer 

overhead in each migration. 

 They try to predict the performance of the other core by using some indirect 

indicators. One of the indicators is the ILP calculated using the ready instructions in 

the IQ. However, during our experiments, we noticed that calculating ILP solely 

using the instructions from IQ yields spurious ILP score since IQ holds all 

instructions including speculative ones, as well. Unfortunately, the instructions in 
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the mispredicted path are squashed and they have no effect on the commit IPC. To 

obtain a more accurate ILP estimate, we suggest that ILP among committed 

instructions can be collected. In fact, again in our experiments, we inserted an extra 

buffer to the end of the ROB to hold n number of instructions to calculate their ILP. 

Yet, we may not obtain perfectly healthy results since the micro ops of the x86 

architecture hide the true ILP between the committed instructions. 

The results presented in Chapter 5.1 and 5.2 show the effects of changing threshold values 

and trial duration lengths, whereas the results presented in Chapter 5.3 demonstrate the 

benefits of applying decision postponing. All results are evaluated in terms of throughput, 

power consumption, and energy efficiency (via energy-delay product [27]). While 

obtaining the energy consumption for different configurations, a similar but more 

pessimistic approach [22]. 

5.1. PERFORMANCE THRESHOLDS 

In Chapter 3, in Figure 3.4, we mentioned that iMODE is using two different thresholds to 

be able to decide switch back or stay in an execution mode. These thresholds, namely perf-

loss-thresh and perf-gain-thresh have critical effect on the performance of the proposed 

design. Note that, perf-loss-thresh is used to set a threshold for when to switch back after 

IO is tested, and perf-gain-thresh is used to measure how much the application needs for 

OoO, performance mode, after OoO mode is tested. Hence, decreasing the perf-loss-thresh 

value leads iMODE to switch more easily and frequently to the OoO mode since tolerance 

for the performance loss is decreased. Increasing the perf-gain-thresh leads iMODE to stay 

in IO mode more frequently since the perf-gain-thresh is high and switching back to OoO 

mode becomes harder. Thresholds can be adjusted by the OS if there are certain QoS 

concerns. Moreover, system can have certain performance goals or power saving goals to 

meet which iMODE can help to achieve.  

IPC lost caused by iMODE under different thresholds pairs are shown in Figure 5.1. As 

can be guessed, IPC loss in high-utility benchmarks is higher than low-utility benchmarks 

since they are more performance demanding applications. As a result, the IPC to loss due 

to trial durations is more striking to high-utility benchmarks. However, low-utility 
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benchmarks are much more resistant to IPC loss since they already do not need high 

performance and they utilize the iMODE according to the power saving aspect. 

The results also show that IPC loss decreases when the perf-loss-thresh increases, see the 

difference between the first two configurations. We can understand why it is happening 

using a small example, iMODE tries the IO mode and calculates a performance-loss value.  

 

 

Figure 5.1. IPC loss of iMODE compared to traditional OoO core with various threshold 

pairs. Numbers in the legends represent perf-loss-thresh (plt) and perf-gain-thresh (pgt) 

values, respectively. 

 

If this value is greater than 5 percent, it switches back to OoO mode, in the second 

configuration, perf-loss-thresh is increased to 10 percent which makes harder to switch 

back to OoO mode. This situation results in lower IPC loss due to decreasing IO mode 

execution. When we look at to 2., 3., 4., and 5. configuration, we can see that perf-gain 

thresh is increasing and IPC loss is increasing. We can also understand this situation using 

a small example. iMODE calculates a performance-gain value when tries to OoO mode in 

a trial duration. And then, if this performance-gain value is higher than perf-gain-thresh we 
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understand that application is in need of higher performance, hence, we decide to stay in 

OoO mode. If this performance-gain value is less than 10 percent, iMODE decides to 

switch back to IO mode. When perf-gain-thresh is increased, switching back to IO mode 

becomes easier. In other words, iMODE’s power-saving motivation is increased, thus IPC 

loss is increased. 

Figure 5.2 shows power savings in percent according to different threshold pairs. We can 

see that threshold pairs which result in high IPC losses usually gives high power savings. 

This is because the iMODE utilizes the IO execution mode more when the perf-gain-thresh 

is higher. Figure 5.2 also show that in low-utility benchmarks, power savings are much 

more compared to high-utility benchmarks. The reason behind these results is simple, the 

more iMODE utilizes IO execution, the more it will save power while losing performance. 

The exceptional case occurs in high-utility benchmarks, iMODE processor spends even 

more power to run these benchmarks. For these benchmarks, the IPC difference is so high 

that switching to IO mode hurts the performance so much that in the end, iMODE spends 

even much more power compared to baseline OoO execution. Figure 5.3 shows the 

comparison for the efficiency gain values of the different threshold pairs. 

 

 



30 

 

 

Figure 5.2. Power savings of iMODE compared to traditional OoO core with various 

threshold pairs. Numbers in the legends represent perf-loss-thresh (plt) and perf-gain-

thresh (pgt) values, respectively. 

iMODE processor has the highest efficiency gain in low-utility benchmarks since it can 

utilize the IO mode by not losing too much IPC. However, iMODE processor has negative 

efficiency gain for high-utility benchmarks. This is because iMODE either loses an 

unacceptable amount of IPC or leads an unacceptable slow-down while losing some IPC. 

As a result, iMODE uses energy approximately 13 percent percent more efficiently than 

traditional OoO processor. 

 

Figure 5.3. Efficiency gain of iMODE compared to traditional OoO core with various 

threshold pairs according to the energy-delay product. Numbers in the legends represent 

perf-loss-thresh (plt) and perf-gain-thresh (pgt) values, respectively. 

 

When we use energy-delay-square product (shown in Equation (4.2)), we immediately see 

that efficiency values are decreased, as seen in Figure 5.4. This is not a surprise since 

energy-delay-square product formula gives the delay, in other words IPC loss, much more 

significance.  
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However, despite using much more harsh efficiency formula in terms of IPC loss 

tolerance, we can see that iMODE is still efficient compared to traditional OoO processors 

on the average. Similar to energy-delay product results, most efficient threshold pair is the 

10 percent and 30 percent for perf-loss-thresh and perf-gain-thresh respectively. 

 

Figure 5.4. Efficiency gain of iMODE compared to traditional OoO core with various 

threshold pairs according to the energy-delay-square product. Numbers in the legends 

represent perf-loss-thresh (plt) and perf-gain-thresh (pgt) values, respectively. 

 

Increasing the perf-gain-thresh value from 30 to 40 has no difference in any metric. The 

reason behind that is the benchmarks did not respond to the perf-gain-thresh value from 30 

percent to 40 percent, calculated performance-gain value is either smaller than 30 or 

greater than 40 in the simulated interval. From now on, we evaluate the iMODE processor 

using the 10 percent perf-loss-thresh and 30 percent for the perf-gain-thresh. 

The individual throughput loss and power savings for all benchmarks when the selected 

threshold pair is utilized (perf-loss-thresh is 10 percent and perf-gain-thresh is 30 percent) 

are presented in Figures 5.5 and 5.6, respectively. 
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Figure 5.5. IPC Loss for all of the benchmarks when plt = 10 and pgt = 30 

 

 

Figure 5.6. Power savings for all of the benchmarks when plt = 10 and pgt = 30 
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5.2. TRIAL DURATION LENGTH 

The IPC loss in high-utility benchmarks caused by trial durations which mainly executed 

in IO mode. Since high utility benchmarks are utilizing OoO mode greatly, trying the IO 

mode for a trial duration length hurts performance. To be able to observe its effect, we 

evaluate iMODE for three different trial duration length. 

In Figure 5.7, we can see the iMODE results in terms of IPC loss, power savings, and 

energy efficiency. In these experiments, we accept 10K cycles length trial duration as a 

basis and compared it with 50K and 200K cycles length of trial durations. Our preliminary 

experiments showed us using a shorter trial duration than 10K cannot provide sufficient 

information to determine the current mood of the application accurately. 

The results show that extending the trial duration leads to an increase in both IPC loss and 

power savings. This is an expected result especially for the high-utility benchmarks since 

their main durations are mostly OoO, and their trial durations are mostly IO. They were 

already suffering trial duration IPC losses, hence, extending the trial duration length caused 

more than 10 percent IPC loss for high utility benchmarks. For this reason, 200K cycles 

trial duration is not acceptable for iMODE since it causes a harsh decline in IPC loss. To 

consider 50K cycles length, IPC loss for baseline 10K is acceptable, however, both the 

littleness of power saving and loss in energy efficiency 50K is also not better than 10K 

cycles length of the trial duration. 
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Figure 5.7. Comparison between different trial durations in terms of throughput, energy 

cost, and efficiency. Baseline duration length is 10K cycles. 

 

5.3. DECISION POSTPONING 

Delaying the decision points is a way to reduce the ratio of trial durations to the main 

duration. If the iMODE is confident selecting any mode, either OoO or IO, delaying the 

decision points save us from trying the opposition mode unconditionally. Thus increases 

either the energy efficiency or decreases the IPC loss according to the type of the 

application. When OoO mode selected in decision point depending on a confidence level 

we postpone the next decision point by a number of epochs to stay in the OoO mode. This 

strategy is applicable to IO mode as well but currently wiMODE applies it to the OoO 

mode only. This is because our main goal is to hold IPC losses at a certain level rather than 
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increase the efficiency level. Although it is a future research direction, in the presented 

results iMODE makes postponing only if the main duration is OoO. Applying it to IO 

mode also have a side effect that if a bad decision is made high IPC losses are potential 

risk for iMODE. On the other hand, bad decisions do not comprise a risk to OoO mode 

since it only leads to missing potential power savings, but not losing IPC losses. 

In the section which performance thresholds are discussed, five suitable threshold pairs are 

used in our experiments and after this point in evaluating iMODE we use 10 percent for 

perfloss- thresh and 30 percent is used for perf-gain-thresh. In decision postponing 

algorithm, we use Postpone Threshold (PT) and Postponed number of Epochs (PE) to 

delay the decision points. We can say that performance-loss value after tried IO execution 

could not be 100 percent, because it means iMODE is not committing any instructions, or 

in other words, it is stalling. For the purpose of getting preliminary results and have an 

insight whether the decision algorithm has a positive effect on energy efficiency, we divide 

the minimum 30 percent and maximum 100 percent performance-loss interval into three 

regions as seen in Table 4.2. After that, we choose 3 different PE values to evaluate. These 

values are shown in Table 5.1. To understand and observe the effects of PT and PE values, 

we choose traditional OoO execution as the baseline results for the iMODE and 

experiment with three different PE values. Results are shown in Figure 5.8, we can see that 

for the low-utility benchmarks there is no difference in terms of energy efficiency, except 

for 0.05 and 0.2 decreases on second and third experiments, respectively. On the other 

hand, as for the high-utility benchmarks, we can see that there was no efficiency gain in 

experiment one and two but for experiment three there is a clear increase in efficiency 

gain. This is because our postpone algorithm is for designed OoO execution only. After 

these results, we choose experiment three’s PE values for the evaluation of decision 

postponing. 
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 Figure 5.8. Efficiency gain of iMODE with different PE values compared to 

baseline traditional OoO results. Numbers in the legends represent pel (PElow), pem 

(PEmedium), and peh (PEhigh) values, respectively. 

 

Table 5.1. Parameters for postponed number of epochs for different experiments 

 

 Exp1 Exp2 Exp2 

PEhigh 4 8 16 

PEmedium 2 4 8 

PElow 1 2 4 

 

In Figure 5.9, we can see the performance of iMODE in three evaluation criteria when the 

decision postponing algorithm is applied. The results show that delaying the decision 

points increased the performance of iMODE in all fronts, except a very little IPC loss in 

low-utility benchmarks (0.02 percent) and power saving in high-utility benchmarks (-0.3 

percent). However, efficiency is improved both low and high-utility benchmarks. When 

considered all of the benchmarks, postponing the decision point reduces the IPC loss by 

0.6 percent, increases the power saving by 1.3 percent, and increases the efficiency gain by 

2.1 percent. As a result, the iMODE processor reduces power consumption by 17 percent 
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on average for the cost of a 0.8 percent drop in throughput. It also increases efficiency by 

16.3 percent compared to a traditional OoO core with a similar datapath configuration. 

 

 

Figure 5.9. Performance of iMODE when decision postponing is utilized, compared to the 

baseline configuration. Trial duration is 10K cycles.  
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6. CONCLUSION 

 

In this study, we focus on the design and implementation of iMODE processor that can 

alternate its execution mode seamlessly between OoO and IO modes. Mode switching 

decisions are made after running applications and collecting performance statistics in both 

modes. The decision algorithm is run periodically, and at the end of each epoch, an 

enforcement mechanism accomplishes the mode-switch decision. We allow the pipeline to 

drain after a mode switch decision, but to alleviate large performance penalties, which can 

occur at the end of these mode switching decisions, we flush the processor pipeline after 

five thousand cycles. We also integrate a confidence mechanism for postponing trial 

modes when the OoO mode has a considerable performance advantage over the IO mode. 

In our experiments, we show that the iMODE processor can really track the mood changes 

of applications, in an accurate manner. iMODE achieves 17 percent power savings with 

only less than 1 percent of performance drop on the average across all simulated 

benchmarks, while achieving peak power savings and efficiency gain figures of 47 percent 

and 48 percent, respectively. 
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