
IMODE INTERACTIVE MOOD DETECTION ENGINE

by

Muhammed Emin Savaş

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Engineering

Yeditepe University

2019

iii

ACKNOWLEDGEMENTS

I am heartily thankful to my supervisor, Assoc. Professor Gürhan Küçük, whose

encouragement, guidance and support from the initial to the final level enabled me to write

this thesis report.

I am also thankful to İsa Ahmet Güney for his helps.

Lastly, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the project.

iv

ABSTRACT

IMODE INTERACTIVE MOOD DETECTION ENGINE

Applications change their mood from time to time. A memory-intensive application does

not need to be always memory-intensive from its first instruction to its last. Similarly, it is

highly usual that a computation-intensive application generates heavy memory traffic at

certain points of its entire run. Meanwhile, processors are designed to have a fixed resource

configuration, which is expected to serve all kinds of applications with all kinds of

program phases. In this study, we propose a new processor, which tracks down instant

mood changes of running applications and applies immediate processor mode changes

between in-order and out-of-order modes for either saving power or keeping up with the

high-performance demands of applications. In our experiments, we observe that the

proposed processor can really track the mood changes of applications, accurately, and

achieves 17 percent power savings with only less than 1 percent of performance drop, on

the average across all simulated benchmarks.

v

ÖZET

IMODE İNTERAKTİF MİZAÇ BELİRLEME MOTORU

Uygulamalar çalışma zamanları içerisinde mizaçlarını zaman zaman değiştirirler. Bellek-

yoğunluklu bir uygulama baştan sona bütün komutlarında bellek-yoğunluklu çalışmaz.

Yine benzer bir şekilde, yüksek hesaplama-yoğunluklu bir uygulamanın çalışma zamanının

bir döneminde yüksek bellek-yoğunluklu bir trafik oluşturduğunu görürüz. Fakat buna

rağmen işlemcilerin sabit kaynak dizilimleri ile her türden uygulamaya her türlü çalışma

fazında hizmet vermeye çalıştığını görmekteyiz. Biz, bu çalışmada uygulamaların anlık

mizaç değişikliklerini algılayan ve buna göre hızlı bir şekilde işlemcinin modunu yüksek

performansı yakalayabilmek adına sırasız çalışma ve güç tasarrufu yapabilmek adına sıralı

çalışma modları arasında değiştirebilen bir işlemci tasarımı sunuyoruz. Yaptığımız

deneylerde, sunduğumuz işlemcinin gerçekten uygulamaların mizaç değişimlerini doğru

bir şekilde takip ettiğini gözlemlemekte ve benzetim edilen denek uygulamalarda sadece

yüzde 1’in altında performans kaybı ile ortalama yüzde 17 güç tasarrufu elde edildiği

görülmektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF SYMBOLS/ABBREVIATIONS .. x

1. INTRODUCTION .. 1

2. BACKGROUND .. 5

2.1. IN-ORDER AND OUT-OF-ORDER PROCESSORS ... 5

2.2. RELATED WORK ... 10

3. DESIGN AND IMPLEMENTATION ... 12

3.1. DECISION MECHANISM ... 12

3.1.1. Epochs .. 13

3.1.2. Decision Points .. 14

3.1.3. Decision Algorithm .. 16

3.1.4. Decision Postponing Algorithm... 18

3.2. ENFORCEMENT MECHANISM .. 19

3.3. OTHER HARDWARE COMPONENTS ... 21

4. EXPERIMENTAL METHODOLOGY ... 23

5. RESULTS AND DISCUSSION... 26

5.1. PERFORMANCE THRESHOLDS .. 27

5.2. TRIAL DURATION LENGTH .. 33

5.3. DECISION POSTPONING .. 34

6. CONCLUSION .. 38

REFERENCES .. 39

vii

LIST OF FIGURES

Figure 1.1. Performance trace of gobmk benchmark on OoO, IO, and iMODE 3

Figure 2.1. Example datapath figure from an OoO processor ... 6

Figure 3.1. Epoch illustration .. 14

Figure 3.2. Example execution showing modes and phases .. 16

Figure 5.1. IPC loss of iMODE compared to OoO core with various thresholds 27

Figure 5.2. Power savings of iMODE compared to traditional OoO core with various

threshold pairs. Numbers in the legends represent perf-loss-thresh (plt) and perf-gain-

thresh (pgt) values, respectively. ... 28

Figure 5.3. Efficiency gain of iMODE compared to traditional OoO core with various

threshold pairs according to the energy-delay product. Numbers in the legends represent

perf-loss-thresh (plt) and perf-gain-thresh (pgt) values, respectively. 29

Figure 5.4. Efficiency gain of iMODE compared to traditional OoO core with various

threshold pairs according to the energy-delay-square product. Numbers in the legends

represent perf-loss-thresh (plt) and perf-gain-thresh (pgt) values, respectively. 30

Figure 5.5. IPC loss for all of the benchmarks when plt = 10 and pgt = 30. 31

Figure 5.6. Power savings for all of the benchmark when plt = 10 and pgt = 30. 31

Figure 5.7. Comparison between different trial durations in terms of throughput, energy

cost, and efficiency. Baseline duration length is 10K cycles. ... 33

viii

Figure 5.8. Efficiency gain of iMODE with different PE values compared to baseline

traditional OoO results. Numbers in the legends represent pel (PElow), pem (PEmedium), and

peh (PEhigh) values, respectively. .. 35

Figure 5.9. Performance of iMODE when decision postponing is utilized, compared to the

baseline configuration. Trial duration is 10K cycles. ... 36

ix

LIST OF TABLES

Table 4.1. Specifications of the simulated processor ... 23

Table 4.2. Parameters for postpone threshold .. 25

Table 4.3. Parameters for postponed number of epochs .. 25

Table 4.4. Classification of benchmarks .. 25

Table 5.1. Parameters for postponed number of epochs for different experiments 35

x

LIST OF SYMBOLS/ABBREVIATIONS

CPU Central processing unit

ILP Instruction level parallelism

iMODE Interactive mood detection engine

IO In-order

IQ Issue queue

IPC Instruction per cycle

ISA Instruction set architecture

IWB Instruction window buffer

LQ Load queue

MLP Memory level parallelism

OoO Out-of-order

OS Operating system

PE Postponed number of epochs

PT Postpone threshold

RF Register file

ROB Re-order buffer

SMT Simultaneous multi-threaded

SQ Store queue

TLP Thread level parallelism

QoS Quality of service

1

1. INTRODUCTION

Processors are general-purpose hardware interpreters, which are responsible for running

various types of applications from games to any type of mission-critical software. For a

long time, the speed was a processor’s major and only concern when running applications.

Nowadays, power-related concerns even surpassed all performance-related concerns on

any processor that can be encountered on any type of system. Obviously, a power-aware

processor plays an important role in improving the lifetime of many modern technologies

(e.g. smartphones, laptops). Somewhat less obviously, a power-aware processor also plays

an important role in the success of a real-time, mission-critical system that explores space

and other planets. Besides, by 2025, it is predicted that data centers of the world will

consume one-fifth of Earth’s power, and a power-aware processor may provide enormous

power savings when it is deployed on data centers in large quantities.

The well-accepted philosophy on today’s processor design is still ”one-size-fits-all” kind

of realization with a fixed set of datapath structures and a fixed mode of execution. For

instance, when an application has a program phase with a low Instruction Level Parallelism

(ILP) degree runs on a 4-way superscalar, aggressively speculative, out-of-order (OoO)

processor, most of the processor resources are underutilized and all power saving

opportunities are lost. On the contrary, when an application, which has a program phase

with a high ILP degree, runs on a 2-way superscalar in-order (IO) processor, it receives a

huge performance penalty due to insufficient processor resources. Both of these scenarios

point out the inefficiency of the current fixed-mode processors. In this study, we propose a

processor that can track down the instant mood patterns of running applications and apply

appropriate mode changes (i.e. either from IO to OoO or from OoO to IO) for saving

power without sacrificing too much processor performance.

The idea of having heterogeneous cores within a processor is not new. ARM’s power-

aware big.LITTLE architecture is one of the best examples of such realizations, and it

requires a physical area to keep multiple cores on the same chip. This is also a valid

approach in almost all heterogeneous architectures that are proposed in the literature, and,

hence, 2 substantial area increase is inevitable [1, 2, 3, 4, 5]. However, our proposed design

deviates from this traditional approach. We propose a specialized OoO core that can act

2

either as a traditional OoO core or an IO core whenever it is suitable. As a result, the area

requirement of our proposed processor is almost identical to the area requirement of a

traditional OoO processor.

One of the major advantages of our approach, which we call interactive MOod Detection

Engine or iMODE, in short, is its minimal cost on thread migration. In a heterogeneous

core, when a thread is needed to be migrated from one core to another, substantial amount

of data traffic has to be generated. This also results in substantial amount of power

dissipation overhead in current state of the art. However, in our design, the source and the

target cores are physically the same core, and we only change the execution mode of the

core. Thus, during a thread migration in iMODE, all datapath structures holding

instructions and processor state can still keep their content, and, no migration cost in terms

of latency and power is involved.

To better motivate our study, we would like to show how accurately iMODE tracks down

the mood of a running application. The x-axis of the chart given in Figure 1.1 represents

the number of instructions that are executed from the SPEC2006 gobmk benchmark, in

million-instruction granularity. After one million instructions are executed within a period,

we calculate the average Instruction Per Cycle (IPC) for that specific period. The y-axis in

the chart plots those corresponding IPC values for each million-instruction period for three

distinct designs: OoO, IO and iMODE. In the early execution phase of gobmk benchmark,

OoO and IO modes go nearly head to head, giving similar IPC values. As a result, the

iMODE processor switches to and stays in IO mode for more than 290 epochs (290 million

cycles and around 34 million committed instructions), since there is no performance gain

running in OoO mode within that long time period. In our current design, each epoch is

empirically chosen to be one-million cycle long. After executing 34 million instructions,

the benchmark shifts into a new program phase, where the OoO mode can give a much

better performance than the IO mode. During that phase change, iMODE processor moves

into the OoO mode and starts tracking down the IPC of the OoO processor. Note that there

is a slight performance drop in iMODE processor compared to the original OoO processor

due to the existence of short trial periods that iMODE tests the performance of the IO

mode from time to time.

3

 Figure 1.1. Performance trace of gobmk benchmark on OoO, IO, and iMODE

As a result, iMODE gives improvements in three major metrics:

 Power: As the above example clearly shows, iMODE can stay in IO execution

mode for long epochs. During the IO mode, structures that are used for

guaranteeing correct OoO execution (i.e. register renaming mechanism, load queue,

reorder buffer and physical register files) can be turned off. This makes iMODE a

very low-power processor as long as the IO execution mode is in action. However,

when the mood of the running application asks for an OoO mode, the processor

goes into a performance mode, in which iMODE dissipates a considerably larger

amount of power.

 Cost of Thread Migration: One of the important features of heterogeneous cores is

thread migration. These processors allow a running thread to migrate to a suitable

core so that they either save power or keep an application’s performance at its peak.

However, thread migration takes a considerable amount of time, especially when

the source and target cores are physically away from each other. The state of the

4

source core should be transferred to the target core, and larger state data means

higher migration latency and higher power cost. In computer architecture research,

data transfer is one of the major challenges, which should be minimized at all costs.

For this exact reason Intel moved from separate physical and architectural register

structures in Pentium III to a combined register file that holds both physical and

architectural registers in one structure in Pentium 4. In iMODE design, we follow

the same strategy, and we make both source and target core the same core. Thus,

during a thread migration all datapath structures holding instructions and processor

state can still keep their content, and, no migration cost in terms of latency and

power is involved.

 Area: This is one of the strongest fields of the iMODE design. Processors with

heterogeneous cores physically hold multiple cores on the same chip. When there

are multiple active threads utilized to each of these heterogeneous cores, there

seems to be no problem. However, when only one core is active and the rest of the

cores are passive at certain times [1], the area efficiency of the processor is

immediately questioned. iMODE is actually an OoO processor, which sometimes

acts as an IO processor. Therefore, its area requirement is almost identical to a

traditional OoO processor.

5

2. BACKGROUND

2.1. IN-ORDER AND OUT-OF-ORDER PROCESSORS

Instructions are fetched and executed in compiler-generated program order in IO

processors. On the other hand, in OoO processors, while instructions are fetched and

decoded in program order, they are executed in arbitrary order. This enables OoO

processors not to stall every time they encounter an instruction that is not ready for

execution. In IO processors, all in-flight instructions wait for the execution of the oldest

instruction, and if that instruction stalls, the whole processor pipeline stalls. OoO

processors, on the other hand, avoid this problem by introducing an OoO scheduler that

can select a ready instruction ignoring its program order. In this new selection mechanism,

even the youngest instruction can have a chance for execution before the rest of the older

instructions as long as it has no data dependency. In an n-way superscalar processor, n

instructions can be fetched, decoded, scheduled and executed in a given clock cycle. The

number of instructions that can be executed in parallel is directly proportional to a term,

which is known as the Instruction Level Parallelism (ILP). When the ILP degree is high, it

means that there are a number of instructions present in the Instruction Queue (IQ) that are

ready for execution. The main purpose of OoO processors is to extract this ILP hidden in

instruction streams and achieve better performance figures compared to IO processors. The

biggest handicap of this case is there can be data, control and structural hazards among

instructions that reside in the IQ. The performance gap between an IO and OoO mode

processor shrinks when the number of these pipeline hazards increase within a processor.

In such a case, running an OoO processor becomes meaningless, since an IO processor can

achieve a similar performance trend. However, when those pipeline hazards rarely exist,

the OoO processor can easily provide two to three-fold speedup compared to an IO

processor, and, typically, this type of a performance improvement is too large to be ignored

by any kind of application scenarios.

When looking from the structural hazard point of view, both IO and OoO processors can

experience structural hazards due to insufficient number of functional units. However,

from the data hazard point of view, OoO processors exploit the possibility of executing

independent instructions in parallel, and, hence, they perform better compared to IO

6

processors. Today, OoO processors meet the demands of high performance applications.

However, as mentioned in Chapter 1, OoO processors spend more power to achieve higher

performance figures, while IO processors could be more power efficient.

Figure2.1. Example datapath figure from an OoO processor

Nowadays, modern processors aiming high performance almost always use OoO

superscalar architectures. A typical OoO processor contains seven fundamental pipeline

stages as shown in Figure 2.1. Although, an IO processor has nearly identical

implementation stages, some of the stages might be simplified or even excluded (such as

commitment stage, at the end).

 Fetch Stage: The mechanism responsible for receiving instructions from the

instruction cache or instruction memory. According to the superscalar width (say,

n) of the processor, the number of instructions, which can be fetched in a single

clock cycle, can change from 1 to n. Fetch stage is the first stage of the in-order

front-end of a superscalar processor, and all instruction are fetched in program

order. Instructions are inserted into a queue structure, which is known as the Fetch

Queue (FQ). The size of the FQ is usually selected as twice the size of the

superscalar width, so that, in a single clock cycle, half of the queue is updated with

incoming instructions, meanwhile the instructions from the other half are read by

the next pipeline stage, which is known as the Decode stage. In the next clock

cycle, partitions of the FQ are exchanged, and the half that is drained by the decode

stage is updated by new incoming instructions by the fetch stage, meanwhile the

other half is consumed by the decode stage. This exchange process continues as

7

long as the processor is up and running. As shown in the Figure, this stage is

usually divided into two sub-stages to reduce the clock cycle time, and, hence, to

reduce the clock frequency.

 Decode Stage: In this instruction interpretation stage, which is represented as the

box labeled D1 in the Figure, various critical information from the opcode to source

and destination registers and to immediate data values of each instruction are

decoded. The first stage of the register renaming process also takes place within

this stage. The physical register mappings of the source registers of the decoded

instruction are looked up from a structure, which is known as the Rename Table

(RT). Intel uses the Register Alias Table (RAT) name for the same structure. Since

an n-way superscalar processor can decode up to n instructions within a single

clock cycle, the decode stage also utilizes a circuitry named Dependency Checking

Logic (DCL). In the DCL logic, there are comparators for detecting match

conditions among destination registers of older instructions and source registers of

younger instructions. When the DCL logic detects a match between a destination

register of instruction I and a source register of instruction J, the processor learns

that there is a Read After Write (RAW) data dependency between instruction I and

instruction J.

 Dispatch Stage: This stage is responsible for inserting decoded instructions into a

structure, which is known as the Instruction Dispatch Buffer (IDB) in OoO

processors. This structure is formerly named as the Instruction Queue (IQ) in IO

processors, and this name is also still widely used in OoO processors. Normally, in

IO processors when all of the source registers of an instruction become valid and

the instruction is among the oldest n instructions within the IQ, then it can be sent

to its corresponding functional unit. As a result, if an instruction, which is from the

set of the oldest n instructions, is not ready, the IO processor stalls at the dispatch

stage. Unlike IO processors, in OoO processors a ready instruction can be sent to its

functional unit in an arbitrary order for extracting ILP among instructions that

reside in the IQ. Some researchers also call IQ as the Instruction Window Buffer

(IWB), since degree of ILP extraction is actually limited by the window size of the

IQ.

There are two control circuitry that are directly related to OoO instruction

scheduling in the dispatch stage: 1) the wake-up and 2) the selection Logic. First

8

one checks the true dependencies between instructions, and is responsible for

waking up the instructions that become ready for execution. When two source

registers of an instruction becomes valid, the instruction becomes ready and it is

woken up by the wake-up circuitry. The selection logic is responsible for selecting

and issuing (transferring an instruction for execution) n ready instructions in an n-

way superscalar processor.

Again in this stage, all instructions are inserted into a circular-queue structure

known as Re-Order Buffer (ROB). Moreover, all load and store instructions are

written into the Load Queue (LQ) and the Store Queue (SQ) according to their

program order. In some architectures these queue structures are combined into a

single structure, which is known as the Load/Store Queue (LSQ).

Finally, the last part of the register renaming algorithm, where new physical

register mapping is set for each instruction with a destination register, is also run in

this stage.

 Execute Stage: This stage is responsible for executing ready instructions, and

forwarding their results back to awaiting instructions in the IQ. Generally, there are

multiple functional units for serving multiple instructions in parallel. The bypass

(or forwarding) circuitry is responsible for transferring results of functional units to

the inputs of all functional units in case there is a possibility of back-to-back

execution of dependent instructions.

 Memory Stage: This is a stage with a non-deterministic latency. When there is a

store instruction, the data of the store instruction is immediately written to the LSQ

structure, and data is also forwarded to the first level cache. The lower level caches

and the memory is updated depending on the write mode of the cache levels. When

the cache is a write-through mode cache, it immediately transfers the written data to

the lower level memory structures. However, this mode generates enormous

amount of cache traffic and dissipates enormous amount of power. On a write-

through cache, though, an extra dirty bit is attached to each cache line. When there

is a store instruction, the dirty bit of the corresponding cache line is set to indicate

that the data in that cache line is not synchronized with the memory. The data

transfer is realized only when that cache line is evicted from the cache and its dirty

bit is set.

9

In OoO processors, the LSQ structure is accessed when there is a possibility of a

load bypass. The load bypass can occur, when a younger load instruction accesses

memory before an earlier load instruction. The LSQ holds address information for

each memory instruction, and, therefore, such controls are viable. Since, there is no

possibility for a load bypass in IO processors, there is no need for keeping the

complete LSQ structure in those processors.

Another important feature of the LSQ structure is known as store data forwarding.

When the address of a younger load instruction overlaps with the address of an

older store instruction, the load instruction can receive its data from the data field

of the store instruction within the LSQ. This kind of a data forwarding is the fastest

memory operation, and it may take as fast as a single clock cycle. Today, even the

fastest first level cache access can be at least 3 or 4 cycles long.

 Writeback Stage: This is the stage where the speculative results are written to

speculative physical register files. At this stage, the ready bit of the corresponding

instruction within the ROB is also set to indicate that this instruction already

completed its execution and is ready for exiting the pipeline. In OoO processors,

the writeback stage cannot be the last stage of execution, since the OoO completion

makes implementation of the precise interrupt mechanism quite complicated.

Therefore, and extra in-order backend stage for completion is usually takes place.

On the other hand, in IO processors, the in-order execution and in-order writeback

makes the use of ROB totally meaningless.

 Retirement (or Commitment) Stage: This last stage utilizes a circular queue

structure known as the Re-Order Buffer (ROB). The head of the ROB holds the

oldest instruction within the processor, meanwhile, the tail of the ROB holds the

youngest instruction. The retirement stage, enables completion of instructions in

program order. When an instruction reaches the head of the ROB and when it’s

ready for retirement bit is set by the writeback stage, then, the instruction becomes

free to exit the processor. During the exit, the speculative data value stored in a

corresponding PRF entry is transferred to its corresponding precise Architectural

Register File (ARF), and the Rename Table is updated to indicate this update. The

old physical register mapping of the instruction is also deallocated, again, in this

stage.

10

In an n-way superscalar processor, n number of oldest instructions, which reside in

the head of the ROB, can retire at the same cycle.

2.2. RELATED WORK

There is much prior work in the literature which strives for either better energy/power

efficiency or die area efficiency. A straightforward solution to reduce energy consumption

of the processor is to dynamically disable processor resources according to runtime needs

of workloads [13, 15, 16, 19]. Additionally, some prior work proposed dynamic migration

among out-of-order high performance cores and in-order low energy cores based on the

nature and demands of running applications [1, 14, 22]. Another research direction is

storing certain instructions in simpler datapath structures, achieving similar performance

with less power and area compared to expensive out-of-order resources (or exploiting these

leftover resources for higher performance) [17, 18, 20, 21, 24, 26].

A popular approach is to use a heterogeneous configuration in multicore processors, i.e.

processors which contain both high-performance power-hungry cores and low-

performance power-saving cores together in one chip [6, 12, 25]. One particular approach

is to achieve heterogeneity among cores not by design, but dynamically by sharing

resources among cores [8, 9]. Taking this approach one step further, some prior research

proposed a reconfigurable architecture that enables the formation of wider-issue out-of-

order cores by fusion of neighboring small cores [10, 11].

Lukefahr et al. propose a heterogeneous core architecture composed of a high-performance

core (big Engine) and an energy efficient core (small Engine) sharing most resources such

as L1 caches and the branch prediction unit. In their design, there is only one Engine active

at a time, and the execution switches dynamically between Engines to adapt to application

characteristics. The proposed architecture collects a few runtime statistics on the active

core and tries to accurately predict the performance of the inactive core for the migration

decision [1].

Afram et al. propose FlexCore, a multi-clustered architecture with two narrow cores, which

can fuse into a wide OoO core whenever it is needed. The OoO core can also turn into a

Simultaneous Multi-Threaded (SMT) core if there is enough TLP among running threads.

11

Again, various runtime statistics are collected to make accurate predictions for the mode

switch operation. Cores in FlexCore can also turn into a low-power IO mode [4].

Finally, Khubaib et al. propose an architecture which uses a large OoO core as a base to

run single-threaded programs. The processor switches to IO SMT core mode to accelerate

parallel threads. When the number of active threads exceeds a certain threshold, their

technique reconfigures the core into a highly-threaded IO SMT core, which exploits

Thread Level Parallelism (TLP) and provides high throughput by hiding long latency

operations of individual threads [22].

12

3. DESIGN AND IMPLEMENTATION

We know that the design of the OoO processors is based on the exploitation of the

instructions which can be executed in parallel, and the more instructions that can be run

independently, the higher the ILP. However, applications do not perform with high ILP

from their beginning until their completion. The high rate of true data dependencies,

memory latencies, and input/output operations are the main reasons for ILP drops.

Whenever an application enters a low ILP phase, the processor cannot take advantage of

the complex and power-consuming OoO logic. The heart of the iMODE processor based

upon this observation. In such phases where ILP is low, running in OoO mode would result

in unnecessary power consumption. To solve this problem and save power, our iMODE

processor can switch between OoO and IO execution modes without losing too much

performance. In this study, we assume that a 5 percent performance drop is the maximum

level tolerable for the general purpose processor users.

Switching between the two execution modes contains two main mechanisms in our

iMODE processors. The first mechanism is the Decision, and the second mechanism is the

Enforcement. In the decision mechanism, we decide whether to stay or not to stay in

current mode while in the Enforcement Mechanism we are implementing necessary

changes on the processor. These mechanisms are discussed in the following sections in

detail.

3.1. DECISION MECHANISM

A useful decision mechanism should successfully determine the suitable time to switch

OoO mode to avoid intolerable performance loss or to switch IO mode to save power

without losing too much performance. To be able to implement such a decision mechanism

one should have some indicators that show what is going on right now and/or what would

happen if the processor switch to the other execution mode. Such indicators would be

branch misprediction rate, cache miss rate, ILP rate, and memory-level parallelism (MLP).

Nevertheless, these indicators produce not direct information to switch but indirect and

imperfect information to predict whether the decision mechanism should switch. Instead of

using indirect indicators iMODE exploits the direct result by switching and trying the

13

opposite execution mode via executing it in a small duration and collects one performance

statistics. A major advantage of trying the intended mode by actually switching to it is its

simplicity. By using this approach, iMODE is freed to implement any prediction circuitry

which collects some statistics to make complex calculations. Another advantage is the

precision of the accumulated result. Using the prediction would give us a result from the

past of the execution while in our direct switch gives us the actual results of the alternative

mode. Actually, in our direct approach, we are sampling the opposite execution mode by

actually switching to it. In this approach, our sampling frequency and switch cost should be

negligible in terms of performance.

Throughout this section, both design and implementation will be explained. We use Gem5

simulator to test our iMODE processor [7]. It simulates the passing of time as a series of

discrete events, in other words, it is a trace-driven simulator. It is also designed in detail to

be able to rearranged, extended, and parameterize its components. It supports multiple

Instruction Set Architectures (ISAs) including ARM, ALPHA, MIPS, Power, SPARC, and

x86. x86 ISA is chosen for this study since it is widely used for the general-purpose

processors. Additionally, Gem5 ISA structure allows developers to simulate compiled code

according to supported ISA on the Gem5 directly.

3.1.1. Epochs

In this study, the execution of the benchmarks are divided into epochs which is a constant

duration in the number of cycles shown in Figure 3.1. To be able to catch when the switch

decision should occur, the cpu source code of the simulator is modified. Since the

simulator is trace-driven it is not guaranteed that it will execute the cycle function of the

cpu in every cycle simulated. To solve that Algorithm 3.1 is used since it immediately find

if the given length of the epoch is caught or passed when the execution reached the cycle

function of the cpu. In this point, our proposed design should decide if a mode switch

should occur or not. 1K cycles for epoch duration is an empirical result which gives us

good results in our experiments.

14

Figure 3.1. Epoch illustration

Algorithm 3.1. Epoch incrementing algorithm

As we mentioned above, iMODE processor have two execution modes, namely OoO and

IO. In addition to the execution modes iMODE also have two different durations which are

main duration and trial duration. While the execution modes affect the way of the

execution principles execution durations determine the length of the execution modes.

3.1.2. Decision Points

Except for the first epoch, every single epoch consists of two execution durations. Starting

with the first epoch point which is the end of the first millions of cycles, iMODE will try

the opposite execution mode in trial duration. As a result, we can say that every epoch

15

starts with trial duration and continues with a main duration. Again, the exceptional case is

the first epoch which has not a trial duration. Ultimately, we can say that every epoch ends

with a main duration. At the beginning of each epoch, our iMODE tries the opposite

execution mode for a shorter trial duration and reach the decision point. In the decision

point iMODE have two major sources of information, which are the IPC of previous main

duration and the IPC of the trial duration. This is the essence of our iMODE, by looking

this two information, iMODE decides to stay in the tried-execution-mode or to switch back

to execution mode of the previous main duration.

iMODE processor aggressively tries the opposite execution mode at the start of every

epoch to assure it is executing in the right mode. Periodically checking the opposite

duration hurts the performance especially if the general trend of the execution is OoO

mode. In the end, iMODE processor trading off a tolerable amount of performance drop

with saving power.

In order to clarify better, Figure 3.2 illustrates an example run iMODE which shows

execution durations and execution modes. In this study, when called nth epoch, it is meant

the number of cycles from n million to n + 1M cycles. As seen in the figure, every epoch

lasts for one million cycles and at the end of a million cycles one epoch ends and another

one starts. From 1 million cycles to 2 million cycles, the first epoch is labeled as ”Epoch”

in Figure 3.2. The first dashed line labeled as ”Epoch Start” shows the end of the second

epoch and start of the third epoch as an example while the second dashed line labeled as

”Decision Point” represents an example decision point for iMODE processor in the third

epoch. As mentioned above, every epoch has two duration which are trial and main

durations. An example of a trial duration and a main duration labeled in the first epoch.

Last but not least is the execution modes shown in orange and green boxes represents OoO

and IO modes respectively.

As it is seen, the zeroth epoch which is the only epoch which has not a trial duration started

in OoO mode and executed until the first epoch starts. iMODE immediately tries the

opposite execution mode (IO mode) throughout the trial duration of the first epoch. After

the end of the trial duration in the first epoch, iMODE decides whether to stay in the IO

mode or switch back to OoO mode. In this example, iMODE decided to go back to OoO

mode. every end of a trial duration is a decision point for the iMODE processor. After a

switch-back decision to OoO mode, a main duration is executed in OoO for the first epoch.

16

Trying the IO mode in trial durations and switching back to OoO pattern continues until

the sixth epoch. At the end of the main duration of the fifth epoch executed in OoO,

iMODE processor tries the IO mode in throughout the trial duration of the sixth epoch, but

this time decides to stay in IO mode and completes the main duration of the sixth epoch in

IO mode. After this point we can see that main execution mode becomes IO mode and

iMODE tries OoO mode in seventh, eighth, and ninth epochs in trial durations.

Figure 3.2. Example execution showing modes and phases

3.1.3. Decision Algorithm

At the end of each trial duration, iMODE processor decides to stay in the current tried-

mode or switch back to the opposite execution mode. At the decision point iMODE

processor have two different statistics. First one is previous epoch’s main duration IPC and

second is current epoch’s trial duration IPC. Also, at decision point two threshold values

are used which are perf-loss-thresh and perf-gain-thresh values. These threshold values are

adjustable by the operating system in accordance with the performance need of the

execution. iMODE processor calculates the performance difference between previous

epoch’s main duration IPC with current epoch’s trial duration IPC. If the trial duration

17

executed in IO mode then it can be said there is a performance loss and if the trial mode

executed in OoO mode there is a performance gain.

Performance losses determine should the execution switch back to OoO mode or not while

performance gains determine should the execution switch back to IO mode or not. At

decision points, as mentioned above, there are two threshold values, first one, perf-loss

thresh determines the maximum performance loss iMODE can tolerate when trying the IO

mode, while the second one, perf-gain-thresh, determines how much the execution needs

the performance. If these threshold values and execution changes are perceived in the

perspective of OoO mode, they can be understood easily. To sum up, if performance loss is

too high then go back to OoO mode and if the performance gain is too high then stay in the

OoO mode since execution needs performance immediately.

Algorithm 3.2. Decision algorithm

Algorithm 3.2 shows how iMODE decides when reached to the decision points. To clarify

the algorithm, Several cases can be considered. Also, Figure 3.2 can help visualize the

example cases. For example, let’s assume perf-loss-thresh is 10, perf-gain-thresh is 20, and

execution is on the decision point of epoch 5. Note that, for the fifth epoch. Current

18

epoch’s trial duration is executed in IO mode. Previous epoch’s main duration is executed

in OoO mode. In this case iMODE should calculate a perf loss using the IPC from the trial

duration and IPC from the main duration. After the end of the trial duration in epoch 5, it is

seen that execution mode is switch back to OoO mode which means calculated

performance loss is above 10 percent. iMODE tried the opposition mode which is IO mode

and decided that IO mode causes to drop performance above the tolerated threshold and

switched back to OoO mode. Looking at next epoch, in epoch 6, iMODE again tries the IO

mode in the trial duration of the epoch 6. At the decision point of the epoch 6, the perf loss

is calculated using the epoch 5’s main duration IPC and epoch 6’s trial duration IPC.

However, this time calculated perf loss is under perf-loss-thresh and thus, execution stayed

at IO mode. It means that at this time iMODE decides that it can tolerate the performance

loss due to IO mode and save power efficiently.

3.1.4. Decision Postponing Algorithm

Despite that it is a small percentage of execution time, iMODE spends its time in alternate

execution mode at the start of every epoch until the decision points. By this aggressive

approach, iMODE always tries to find the efficient execution mode in a power sawing

oriented way. This situation leads to performance losses particularly when the mood of the

Algorithm 3.3. Decision postponing algorithm

19

application wants OoO mode. To overcome this problem iMODE postpones the

unconditional switches at the start of every epoch. In other words, the epoch interventions

are deactivated during this time and iMODE runs on OoO mode without any interrupts.

The idea behind this strategy is that if the calculated perf loss is very different from the

perf-loss thresh value then it can be considered that the unconditional switches at the

beginning of the epochs could be delayed for several epochs to not lose performance due to

trials. Algorithm 3.3 shows the postponing algorithm where PT stands for the postponed

threshold and PE stands for the postponed number of epochs.

3.2. ENFORCEMENT MECHANISM

Switching IO and OoO modes between each other should be as smooth as possible. At this

point the enforcement mechanism is engaged in iMODE processor and implements the

necessary changes in the hardware. Although our proposed design largely uses the

traditional OoO layout, some of the components need to be changed or may be shut down

when switching to the IO mode. One of the main differences between datapath structures

of OoO and IO processors is the Issue Queue (IQ). In the IO processors, IQ is not different

from traditional queue structure where elements are entering from the tail and exiting from

the head of the queue. While the head of the IQ, points the oldest instruction, tail of the IQ

points the newest instruction according to the program order. In IO processors, according

to machine width of the processor, n a number of ready instructions are scheduled from the

head of the IQ. Readiness is determined according to the source operands of the

instruction, if all of the source operands become valid for the instruction, it is considered to

be ready. On the other hand, in OoO processors instruction scheduling is much more

complex compared to the IO processors. Since program order is not important in OoO

instruction scheduling, any instruction which becomes ready can be scheduled

independently from the age of the instruction. Also, ready instructions may reside

anywhere in the queue which is held as fetched instructions. As a result, this structure

cannot be called traditional queue anymore since it becomes more like buffers in OoO

processors. Usually, this mechanism is called as Instruction Dispatch Buffer (IDB) in OoO

processors. In IDBs, any instruction can become ready and ready instructions could be

anywhere in the buffer. For this reason, such as instruction selection logic and wake-up

20

mechanisms are used which make the OoO instruction scheduling more complex compared

to IO instruction scheduling.

When execution switches to the IO mode from the OoO, instructions must schedule in

program order. For this reason, in iMODE processor, the enforcement mechanism blocks

the instruction scheduling until the instruction pipeline drains and become empty. Due to

some long-latency instructions, such as floating point division and square root instructions,

waiting for draining the pipeline can last long number of cycles. Especially the

nondeterministic memory instructions in the IQ leads draining operation become

unbounded. To overcome this issue, iMODE enforcement mechanism bound the draining

operation to five thousand cycles (an empirical duration which gives us good feedback in

our experiments). After this duration, whether or not the pipeline becomes empty,

everything in it flushed by the enforcement mechanism. After the pipeline become empty,

OoO instruction scheduling is deactivated and simpler IO instruction scheduling is

activated. As soon as the IO scheduling is activated, instructions are started to dispatch into

IQ in program order.

Going to OoO from the IO mode is much more simple. Due to the fact that the native

execution mode in iMODE processor is OoO, switching to IO mode requires certain

mechanisms to be shut down or modified. On the other hand, switching back to native

execution mode is simpler since no modification is required. When switching to OoO

mode, activating the OoO instruction scheduler is enough. Thus, switching to OoO mode

has no significant delay.

To sum up, after every switch event occurred, new execution mode is marked and

according to the new execution mode enforcement mechanism gets involved and enforce

the necessary changes in the iMODE processor. If the new mode is OoO, only the

instruction scheduling mechanisms should be switched, no need to do any further action,

see line 7 in Algorithm 3.4. However, if the new execution mode is IO, then some other

controls and actions should be done. See Algorithm 3.4, when the new mode is IO, after

deactivating the OoO instruction scheduling, iMODE marks the current time to understand

when the switch is started, and set the is in transition register to be able to do further

actions. Hence, if the processor is in the transition state, iMODE will be waiting for the

pipeline to be drained or forced to flush all of the instructions, see line 11 in Algorithm 3.4.

If the forced flush cycles tolerance time in cycles is not done yet, enforcement mechanism

21

is constantly checking the number of instructions in the ROB to understand whether the

pipeline is drained, see line 13 in Algorithm 3.4. After a pipeline drain or a forced flush,

in_transition bit is resetted to false again.

Algorithm 3.4. Enforcement algorithm

3.3. OTHER HARDWARE COMPONENTS

Applications run on execution phases which are suitable for IO execution in return of

tolerable performance loss, in such a phase, iMODE aims to save power by switching the

22

execution mode to IO. As mentioned in the previous section, the instruction scheduling

mechanism could be modified with the intent to save power. Indeed, the major power

saving achieved by shutting down the wake-up and selection logic runs in OoO mode with

the much more simpler IO instruction scheduling which dispatches the first n instructions

from the head of the IQ.

Actually, there are other datapath structures that can either be modified to run on a limited

way or completely shut down when running in IO mode. For instance, following the

methodology of Khubabib et al., Load Queue (LQ) could be completely shut down since

executing the load instructions speculatively could not be done in IO mode of iMODE

processor [22]. Moreover, Re-Order Buffer (ROB) could be completely turned off when

switching to IO mode. Since the execution in IO mode flows in program order, the IO

mode of iMODE does not need a re-ordering mechanism. Also, note that turning off ROB

is safe considering the OoO to IO transition stage. In iMODE before the switch operation

to IO, all of the pipeline is waited to be drained which means there will be no instruction in

the ROB before iMODE execute in OoO mode. In this point, ROB circuitry could be turn

off and head and tail pointers could be reseted. Until the execution switches back to OoO

mode, ROB could stay turned off and ready to be opened and reused again. Last but not

least, the same strategies could be applied to register file and register renaming

mechanisms.

As mentioned before, threshold pairs can be adjusted by the OS according to the

performance goal of the system. For the general purpose systems, the energy-delay product

is the most acceptable criteria. Hence, we use energy-delay product to find out which

thresholds are the best in saving power efficiently.

23

4. EXPERIMENTAL METHODOLOGY

We used 16 benchmarks from spec2006 to evaluate our proposed design. All of the

experiments are simulated in Gem5 using the x86 ISA [7, 23]. Each benchmark is

simulated for 100M instructions. The configuration parameters used in experiments are

given in Table 4.1. Empirically obtained PT values are given in Table 4.2 and PE values

are given in Table 4.3.

Table 4.1. Specifications of the simulated processor

CPU Components Specifications

L1 I- and D-Caches
16 Kb, 4-Way, 64-byte line size,

2 cycle latency

L2 Caches
128Kb, 8-way, 64-byte line size,

20 cycle latency

CPU Frequency 2 GHz

Pipeline

4-way issue, 192 entry ROB,

64 entry IQ, 32 entry LQ, 32 entry SQ,

256 int and 256 FP registers

Spec2006 benchmarks are divided into two groups according to their utilization of OoO

execution mode. For the classification, we first collect the base OoO and IO performances

of the benchmarks one by one. If a benchmark results 40 percent more throughput

compared to its IO execution mode performance, marked as a high-utility benchmark,

otherwise, it is marked as low-utility. As anticipated, high-utility benchmarks are more

OoO dependent, as a result, they do not tolerate executing in IO mode, whereas, the low-

utility ones embrace the IO mode since they already cannot utilize the OoO execution

mode. Classification aims to show the significance of the power savings of the low-utility

benchmarks compared to high-utility ones.

In our simulation regions, 16 benchmarks are classified as shown in Table 4.4. To evaluate

the iMODE, three metrics are used. Throughput, power saving, and energy efficiency. For

energy efficiency Equation (4.1) and Equation (4.2) is used. In the equation, energy and

24

delay parameters are calculated as percentage values found by accepting the full-OoO

simulations are the baseline values for iMODE. Hence, the desired efficiency value should

be less than one, meaning that the energy cost per IPC is less than the traditional OoO

execution. In here Equation (4.3) are also provided. This is because in literature, all three

of these equations are used. The difference is that the effect of the delay parameter. In

general purpose processors energy-delay is the most common criteria to evaluate the

efficiency of the system. The second equation, energy-delay square is used as a criteria for

evaluation of workloads and the third equation delay-cube is used from servers and data

centers. Compared to energy-delay equation, other two equations increase the penalty of

the delay by squaring and cubing the effect of delay. Hence, when the performance drop

tolerance is decreased, delay square and delay cube are used.

Last but not least, we assumed the power saving of iMODE as 2x which is an extremely

pessimistic value for iMODE compared to 4x and 6x power savings from the literature [1,

22]. As a result, we assume that iMODE dissipates half of the energy dissipated by

traditional OoO core. Equation (4.4) shows the calculation for power consumptions. By

using ratio of the power consumptions for two desired experiment, the power savings are

calculated as percentage values.

 = (4.1)

 = 2

(4.2)

 = 3

(4.3)

 =

(4.4)

Table 4.2. Parameters for postpone threshold

25

PThigh 80%

PTmed 50%

PTlow 30%

Table 4.3. Parameters for postponed number of epochs

PEhigh 80%

PEmed 50%

PElow 30%

Table 4.4. Classification of benchmarks

CPU Components Specifications

L1 I- and D-Caches
16 Kb, 4-Way, 64-byte line size,

2 cycle latency

L2 Caches
128Kb, 8-way, 64-byte line size,

20 cycle latency

CPU Frequency 2 GHz

Pipeline

4-way issue, 192 entry ROB,

64 entry IQ, 32 entry LQ, 32 entry SQ,

256 int and 256 FP registers

26

5. RESULTS AND DISCUSSION

In this chapter, iMODE is compared with the traditional OoO processor. Each section

evaluates the iMODE for different aspects which are the effects of perf-loss-thresh and

perfgain- thresh, the effect of the length of the trial duration, and lastly, the effect of the

decision postponing algorithm.

Since the proposed design of iMODE is explained in previous chapters, from this point, we

can compare iMODE with the proposed design of Lukefahr et al., titled Composite Cores

[1], in the perspective of disadvantages and design problems:

 For their proposed design they need much more space. Despite they use a mutual

front-end, big and little cores have very different back-end architectures. Hence,

they have to have separate two cores within their design. On the other hand,

iMODE needs only one OoO core with slightly modified structures.

 In iMODE, during IO mode of execution, we shut off all of the unnecessary

structures to save both dynamic and static power, however, in Composite Cores,

after they migrate from one core to another, the old core probably waits in idle

mode (in the paper they do not mention what happens to the old core). As a result,

by waiting idle, they save from only dynamic power since there is no transistor

activity in the idle core.

 Another design problem is to assume a very optimistic 80-cycle latency for the

main memory.

 They also present 1000 cycles for their decision point epoch. However, this

duration is very short for the mood change of an application. From our

experiments, we see that the transition from one mode to another may not be

instantaneous. On top of that, their proposed architecture has a register transfer

overhead in each migration.

 They try to predict the performance of the other core by using some indirect

indicators. One of the indicators is the ILP calculated using the ready instructions in

the IQ. However, during our experiments, we noticed that calculating ILP solely

using the instructions from IQ yields spurious ILP score since IQ holds all

instructions including speculative ones, as well. Unfortunately, the instructions in

27

the mispredicted path are squashed and they have no effect on the commit IPC. To

obtain a more accurate ILP estimate, we suggest that ILP among committed

instructions can be collected. In fact, again in our experiments, we inserted an extra

buffer to the end of the ROB to hold n number of instructions to calculate their ILP.

Yet, we may not obtain perfectly healthy results since the micro ops of the x86

architecture hide the true ILP between the committed instructions.

The results presented in Chapter 5.1 and 5.2 show the effects of changing threshold values

and trial duration lengths, whereas the results presented in Chapter 5.3 demonstrate the

benefits of applying decision postponing. All results are evaluated in terms of throughput,

power consumption, and energy efficiency (via energy-delay product [27]). While

obtaining the energy consumption for different configurations, a similar but more

pessimistic approach [22].

5.1. PERFORMANCE THRESHOLDS

In Chapter 3, in Figure 3.4, we mentioned that iMODE is using two different thresholds to

be able to decide switch back or stay in an execution mode. These thresholds, namely perf-

loss-thresh and perf-gain-thresh have critical effect on the performance of the proposed

design. Note that, perf-loss-thresh is used to set a threshold for when to switch back after

IO is tested, and perf-gain-thresh is used to measure how much the application needs for

OoO, performance mode, after OoO mode is tested. Hence, decreasing the perf-loss-thresh

value leads iMODE to switch more easily and frequently to the OoO mode since tolerance

for the performance loss is decreased. Increasing the perf-gain-thresh leads iMODE to stay

in IO mode more frequently since the perf-gain-thresh is high and switching back to OoO

mode becomes harder. Thresholds can be adjusted by the OS if there are certain QoS

concerns. Moreover, system can have certain performance goals or power saving goals to

meet which iMODE can help to achieve.

IPC lost caused by iMODE under different thresholds pairs are shown in Figure 5.1. As

can be guessed, IPC loss in high-utility benchmarks is higher than low-utility benchmarks

since they are more performance demanding applications. As a result, the IPC to loss due

to trial durations is more striking to high-utility benchmarks. However, low-utility

28

benchmarks are much more resistant to IPC loss since they already do not need high

performance and they utilize the iMODE according to the power saving aspect.

The results also show that IPC loss decreases when the perf-loss-thresh increases, see the

difference between the first two configurations. We can understand why it is happening

using a small example, iMODE tries the IO mode and calculates a performance-loss value.

Figure 5.1. IPC loss of iMODE compared to traditional OoO core with various threshold

pairs. Numbers in the legends represent perf-loss-thresh (plt) and perf-gain-thresh (pgt)

values, respectively.

If this value is greater than 5 percent, it switches back to OoO mode, in the second

configuration, perf-loss-thresh is increased to 10 percent which makes harder to switch

back to OoO mode. This situation results in lower IPC loss due to decreasing IO mode

execution. When we look at to 2., 3., 4., and 5. configuration, we can see that perf-gain

thresh is increasing and IPC loss is increasing. We can also understand this situation using

a small example. iMODE calculates a performance-gain value when tries to OoO mode in

a trial duration. And then, if this performance-gain value is higher than perf-gain-thresh we

29

understand that application is in need of higher performance, hence, we decide to stay in

OoO mode. If this performance-gain value is less than 10 percent, iMODE decides to

switch back to IO mode. When perf-gain-thresh is increased, switching back to IO mode

becomes easier. In other words, iMODE’s power-saving motivation is increased, thus IPC

loss is increased.

Figure 5.2 shows power savings in percent according to different threshold pairs. We can

see that threshold pairs which result in high IPC losses usually gives high power savings.

This is because the iMODE utilizes the IO execution mode more when the perf-gain-thresh

is higher. Figure 5.2 also show that in low-utility benchmarks, power savings are much

more compared to high-utility benchmarks. The reason behind these results is simple, the

more iMODE utilizes IO execution, the more it will save power while losing performance.

The exceptional case occurs in high-utility benchmarks, iMODE processor spends even

more power to run these benchmarks. For these benchmarks, the IPC difference is so high

that switching to IO mode hurts the performance so much that in the end, iMODE spends

even much more power compared to baseline OoO execution. Figure 5.3 shows the

comparison for the efficiency gain values of the different threshold pairs.

30

Figure 5.2. Power savings of iMODE compared to traditional OoO core with various

threshold pairs. Numbers in the legends represent perf-loss-thresh (plt) and perf-gain-

thresh (pgt) values, respectively.

iMODE processor has the highest efficiency gain in low-utility benchmarks since it can

utilize the IO mode by not losing too much IPC. However, iMODE processor has negative

efficiency gain for high-utility benchmarks. This is because iMODE either loses an

unacceptable amount of IPC or leads an unacceptable slow-down while losing some IPC.

As a result, iMODE uses energy approximately 13 percent percent more efficiently than

traditional OoO processor.

Figure 5.3. Efficiency gain of iMODE compared to traditional OoO core with various

threshold pairs according to the energy-delay product. Numbers in the legends represent

perf-loss-thresh (plt) and perf-gain-thresh (pgt) values, respectively.

When we use energy-delay-square product (shown in Equation (4.2)), we immediately see

that efficiency values are decreased, as seen in Figure 5.4. This is not a surprise since

energy-delay-square product formula gives the delay, in other words IPC loss, much more

significance.

31

However, despite using much more harsh efficiency formula in terms of IPC loss

tolerance, we can see that iMODE is still efficient compared to traditional OoO processors

on the average. Similar to energy-delay product results, most efficient threshold pair is the

10 percent and 30 percent for perf-loss-thresh and perf-gain-thresh respectively.

Figure 5.4. Efficiency gain of iMODE compared to traditional OoO core with various

threshold pairs according to the energy-delay-square product. Numbers in the legends

represent perf-loss-thresh (plt) and perf-gain-thresh (pgt) values, respectively.

Increasing the perf-gain-thresh value from 30 to 40 has no difference in any metric. The

reason behind that is the benchmarks did not respond to the perf-gain-thresh value from 30

percent to 40 percent, calculated performance-gain value is either smaller than 30 or

greater than 40 in the simulated interval. From now on, we evaluate the iMODE processor

using the 10 percent perf-loss-thresh and 30 percent for the perf-gain-thresh.

The individual throughput loss and power savings for all benchmarks when the selected

threshold pair is utilized (perf-loss-thresh is 10 percent and perf-gain-thresh is 30 percent)

are presented in Figures 5.5 and 5.6, respectively.

32

Figure 5.5. IPC Loss for all of the benchmarks when plt = 10 and pgt = 30

Figure 5.6. Power savings for all of the benchmarks when plt = 10 and pgt = 30

0

0,2

0,4

0,6

0,8

1

1,2

1,4

IPC Loss

OoO iMODE

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Power Savings Compared to OoO

33

5.2. TRIAL DURATION LENGTH

The IPC loss in high-utility benchmarks caused by trial durations which mainly executed

in IO mode. Since high utility benchmarks are utilizing OoO mode greatly, trying the IO

mode for a trial duration length hurts performance. To be able to observe its effect, we

evaluate iMODE for three different trial duration length.

In Figure 5.7, we can see the iMODE results in terms of IPC loss, power savings, and

energy efficiency. In these experiments, we accept 10K cycles length trial duration as a

basis and compared it with 50K and 200K cycles length of trial durations. Our preliminary

experiments showed us using a shorter trial duration than 10K cannot provide sufficient

information to determine the current mood of the application accurately.

The results show that extending the trial duration leads to an increase in both IPC loss and

power savings. This is an expected result especially for the high-utility benchmarks since

their main durations are mostly OoO, and their trial durations are mostly IO. They were

already suffering trial duration IPC losses, hence, extending the trial duration length caused

more than 10 percent IPC loss for high utility benchmarks. For this reason, 200K cycles

trial duration is not acceptable for iMODE since it causes a harsh decline in IPC loss. To

consider 50K cycles length, IPC loss for baseline 10K is acceptable, however, both the

littleness of power saving and loss in energy efficiency 50K is also not better than 10K

cycles length of the trial duration.

34

Figure 5.7. Comparison between different trial durations in terms of throughput, energy

cost, and efficiency. Baseline duration length is 10K cycles.

5.3. DECISION POSTPONING

Delaying the decision points is a way to reduce the ratio of trial durations to the main

duration. If the iMODE is confident selecting any mode, either OoO or IO, delaying the

decision points save us from trying the opposition mode unconditionally. Thus increases

either the energy efficiency or decreases the IPC loss according to the type of the

application. When OoO mode selected in decision point depending on a confidence level

we postpone the next decision point by a number of epochs to stay in the OoO mode. This

strategy is applicable to IO mode as well but currently wiMODE applies it to the OoO

mode only. This is because our main goal is to hold IPC losses at a certain level rather than

35

increase the efficiency level. Although it is a future research direction, in the presented

results iMODE makes postponing only if the main duration is OoO. Applying it to IO

mode also have a side effect that if a bad decision is made high IPC losses are potential

risk for iMODE. On the other hand, bad decisions do not comprise a risk to OoO mode

since it only leads to missing potential power savings, but not losing IPC losses.

In the section which performance thresholds are discussed, five suitable threshold pairs are

used in our experiments and after this point in evaluating iMODE we use 10 percent for

perfloss- thresh and 30 percent is used for perf-gain-thresh. In decision postponing

algorithm, we use Postpone Threshold (PT) and Postponed number of Epochs (PE) to

delay the decision points. We can say that performance-loss value after tried IO execution

could not be 100 percent, because it means iMODE is not committing any instructions, or

in other words, it is stalling. For the purpose of getting preliminary results and have an

insight whether the decision algorithm has a positive effect on energy efficiency, we divide

the minimum 30 percent and maximum 100 percent performance-loss interval into three

regions as seen in Table 4.2. After that, we choose 3 different PE values to evaluate. These

values are shown in Table 5.1. To understand and observe the effects of PT and PE values,

we choose traditional OoO execution as the baseline results for the iMODE and

experiment with three different PE values. Results are shown in Figure 5.8, we can see that

for the low-utility benchmarks there is no difference in terms of energy efficiency, except

for 0.05 and 0.2 decreases on second and third experiments, respectively. On the other

hand, as for the high-utility benchmarks, we can see that there was no efficiency gain in

experiment one and two but for experiment three there is a clear increase in efficiency

gain. This is because our postpone algorithm is for designed OoO execution only. After

these results, we choose experiment three’s PE values for the evaluation of decision

postponing.

36

 Figure 5.8. Efficiency gain of iMODE with different PE values compared to

baseline traditional OoO results. Numbers in the legends represent pel (PElow), pem

(PEmedium), and peh (PEhigh) values, respectively.

Table 5.1. Parameters for postponed number of epochs for different experiments

 Exp1 Exp2 Exp2

PEhigh 4 8 16

PEmedium 2 4 8

PElow 1 2 4

In Figure 5.9, we can see the performance of iMODE in three evaluation criteria when the

decision postponing algorithm is applied. The results show that delaying the decision

points increased the performance of iMODE in all fronts, except a very little IPC loss in

low-utility benchmarks (0.02 percent) and power saving in high-utility benchmarks (-0.3

percent). However, efficiency is improved both low and high-utility benchmarks. When

considered all of the benchmarks, postponing the decision point reduces the IPC loss by

0.6 percent, increases the power saving by 1.3 percent, and increases the efficiency gain by

2.1 percent. As a result, the iMODE processor reduces power consumption by 17 percent

37

on average for the cost of a 0.8 percent drop in throughput. It also increases efficiency by

16.3 percent compared to a traditional OoO core with a similar datapath configuration.

Figure 5.9. Performance of iMODE when decision postponing is utilized, compared to the

baseline configuration. Trial duration is 10K cycles.

38

6. CONCLUSION

In this study, we focus on the design and implementation of iMODE processor that can

alternate its execution mode seamlessly between OoO and IO modes. Mode switching

decisions are made after running applications and collecting performance statistics in both

modes. The decision algorithm is run periodically, and at the end of each epoch, an

enforcement mechanism accomplishes the mode-switch decision. We allow the pipeline to

drain after a mode switch decision, but to alleviate large performance penalties, which can

occur at the end of these mode switching decisions, we flush the processor pipeline after

five thousand cycles. We also integrate a confidence mechanism for postponing trial

modes when the OoO mode has a considerable performance advantage over the IO mode.

In our experiments, we show that the iMODE processor can really track the mood changes

of applications, in an accurate manner. iMODE achieves 17 percent power savings with

only less than 1 percent of performance drop on the average across all simulated

benchmarks, while achieving peak power savings and efficiency gain figures of 47 percent

and 48 percent, respectively.

39

REFERENCES

1. Lukefahr A, Padmanabha S, Das R, Sleiman FM, Dreslinski R, Wenisch TF, Mahlke

S. Composite cores: pushing heterogeneity into a core. Proceedings of the 2012 45th

Annual IEEE/ACM International Symposium on; 2012: Microarchitecture.

2. Kumar R, Farkas KI, Jouppi NP, Ranganathan P, Tullsen DM. Single-ISA

heterogeneous multi-Core architectures:the potential for processor power reduction.

Proceedings 36th Annual IEEE/ACM International Symposium on;

2003:Microarchitecture.

3. Annavaram M, Grochowski E, Shen J. Mitigating Amdahls Law through EPI

throttling. Proceedings of the 32nd Annual International Symposium on;

2005:Computer Architecture.

4. Afram F, Ghose K. FlexCore: A reconfigurable processor supporting flexible,

dynamic morphing. Proceedings of the 2015 IEEE 22nd International Conference on;

2015:High Performance Computing (HiPC).

5. Greenhalgh P. Big.LITTLE processing with ARM Cortex-A15 and Cortex-A7:

Improving energy efficiency in high-performance mobile platforms. White Paper,

ARM; 2001.

6. Kumar R, Tullsen DM, Ranganathan P, Jouppi NP, Farkas KI. Single-ISA

heterogeneous multi-core architectures for multithreaded workload performance.

Proceedings 31st Annual International Symposium on; 2004:Computer Architecture.

7. Binkert N, Beckman B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower

DR, Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood

DA. The gem5 simulator. SIGARCH Computer Architecture News. 2011;39:1-7.

8. Homayoun H, Kontorinis V, Shayan A, Lin TW, Tullsen DM. Dynamically

heterogeneous cores through 3D resource pooling. IEEE International Symposium on

High-Performance Computer Architecture; 2012:IEEE.

40

9. Kumar R, Jouppi NP, Tullsen DM. Conjoined-core chip multiprocessing. Proceedings

of the 37th Annual IEEE/ACM International Symposium on; 2014:Microarchitecture.

10. Kim C, Sethumadhavan S, Govindan MS, Ranganathan N, Gulati D, Burger D,

Keckler SW. Composable lightweight processors. 40th Annual IEEE/ACM

International Symposium on; 2007:Microarchitecture.

11. Ipek E, Kirman M, Kirman N, Martinez JF. Core fusion: accommodating software

diversity in chip multiprocessors. SIGARCH Computer Architecture News.

2007;35:186-197.

12. Annavaram M, Grochowski E, Shen J. Mitigating Amdahl’s Law through EPI

throttling. SIGARCH Computer Architecture News. 2005;33:298-309.

13. Bahar RI, Manne S. Power and energy reduction via pipeline balancing. Proceedings

of the 28th Annual International Symposium on; 2001:Computer Architecture.

14. Ghiasi S, Casmira J, Grunwald D. Using IPC variation in workloads with externally

specified rates to reduce power consumption. In Workshop on Complexity Effective

Design; 2000.

15. Albonesi DH, Balasubramonian R, Dropsbo SG, Dwarkadas S, Friedman EG, Huang

MC, Kursun V, MAgklis G, Scott ML, Semeraro G, Bose P, Buyuktosunoglu A, Cook

PW, Schuster SE. Dynamically tuning processor resources with adaptive processing.

Computer. 2003;36:49-58.

16. Manne S, Klauser A, Grunwald D. Pipeline gating: speculation control for energy

reduction. Proceedings of the 25th Annual International Symposium on;

1998:Computer Architecture.

17. Srinivasan ST et al, Rajwar R, Akkary H, Gandhi A, Upton M. Continual flow

pipelines. Proceedings of the 11th International Conference on; 2004:Architectural

Support for Programming Languages and Operating Systems.

18. Lebeck AR, Koppanalil J, Li T, Patwardhan J, Rotenber E. A large, fast instruction

window for tolerating cache misses. Proceedings 29th Annual International

Symposium on; 2002:Computer Architecture.

