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ABSTRACT 

A STUDY OF ADVANCED ENCRYPTION STANDARD SUBSTITUTION-BOX 

IMPLEMENTATIONS AND POWER-ANALYSIS RESISTANT DESIGNS 

Today, the subject of symmetric-key algorithms has been extensively studied. Throughout 

the years, different ones have been developed, scrutinized and standardized. First wide-

spread algorithm has been the Data Encryption Standard (DES) which was developed in the 

1970s and standardized in 1977 by National Bureau of Standards (NBS). After DES became 

outdated, National Institute of Standards and Technology (NIST) announced a competition 

in 2001 to find a new encryption standard that would fulfill the security requirements of its 

time. At the end of the competition the Rijndael algorithm was selected to be the new 

symmetric-key algorithm standard by the name of Advanced Encryption Standard (AES). 

All the explained processes contribute to constant creation and testing of best algorithms 

mathematically possible. Nonetheless, a chain is as strong as its weakest ring and these 

algorithms are still being decrypted not because of their algorithmic weaknesses but because 

of other factors such as user-related or implementational ones. Though, excluding the glaring 

mistakes, some variables are harder to control. These algorithms are implemented by real 

devices, and real devices spend time and energy to complete the tasks they are given. These 

non-idealities mean that these devices leak information of what is going on inside them via 

electromagnetic emanations, electrical power consumption and timing delays. Therefore, a 

potential attacker can opt to target the non-idealities of the device rather than the algorithm. 

This kind of cryptographic attacks are called side-channel attacks. One of the most popular 

side-channel attacks is the power analysis attack. It relies on the fact that statistical properties 

of a device’s power consumption depend on the operation and the data being operated. For 

AES, these attacks mostly target the substitution-boxes (S-box) because of their interesting 

statistical properties. Thus, this project explores different ways to implement S-boxes of 

AES while attempting to increase their power-analysis resistance in logic gate level. 
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ÖZET 

GELİŞMİŞ ŞİFRELEME STANDARDI İKAME KUTUSU UYGULAMALARI VE 

GÜÇ ANALİZİNE DAYANIKLI DİZAYNLARIN BİR İNCELEMESİ 

Günümüzde simetrik anahtar algoritmaları konusu yoğun olarak incelenmiştir. Yıllar 

boyunca, farklı algoritmalar geliştirilmiş, incelenmiş ve standartlaştırılmıştır. İlk 

yaygınlaşan algoritma, 1970'lerde geliştirilen ve 1977'de Ulusal Standartlar Bürosu (NBS) 

tarafından standartlaştırılan Veri Şifreleme Standardı (DES) olmuştur. DES'in modası 

geçtikten sonra, Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) 2001 yılında, zamanının 

güvenlik gereksinimlerini karşılayacak yeni bir şifreleme standardı bulmak için bir yarışma 

başlattı. Yarışma sonunda Rijndael algoritması, Gelişmiş Şifreleme Standardı (AES) adıyla 

yeni simetrik anahtar algoritması standardı olarak seçildi. Tarif edilen tüm bu süreçler, 

sürekli matematiksel olarak mümkün olan en iyi algoritmaların oluşturulmasına ve test 

edilmesine katkıda bulunuyor. Bununla birlikte, bir zincir en zayıf halkası kadar güçlüdür 

ve bu algoritmalar algoritmik zayıflıkları nedeniyle olmasa da, kullanıcı veya uygulamayla 

ilgili diğer faktörler nedeniyle deşifre edilmektedir. Bariz hatalar hariç, bazı değişkenleri 

kontrol etmek daha zordur. Bu algoritmalar gerçek cihazlar tarafından uygulanır ve gerçek 

cihazlar verdikleri görevleri tamamlamak için zaman ve enerji harcarlar. Bu idealsizlikler, 

bu cihazların içlerinde neler olup bittiğini elektromanyetik yaymalar, elektrik enerjisi 

tüketimi ve zamanlama gecikmeleri vesileleriyle sızdırmasına yol açar. Bu nedenle, 

potansiyel bir saldırgan, algoritmanın yerine cihazın idealsizliklerini hedeflemeyi seçebilir. 

Şifrelemeyle ilgili bu tür saldırılara yan kanal saldırıları denir. En popüler yan kanal 

saldırılarından biri güç analizi saldırısıdır. Bu saldırı, bir cihazın güç tüketimine ait 

istatistiksel özelliklerinin, işleyişine ve işlenen verilere bağlı olmasına dayanır. AES için bu 

saldırılar, ilginç istatistiksel özelliklerinden dolayı çoğunlukla ikame kutularını (S-box) 

hedeflemektedir. Bu nedenle, bu proje AES S-box’ları uygulamak için farklı yollar 

araştırırken, lojik kapıları seviyesinde güç analizi direncini arttırmaya çalışmaktadır. 
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1. INTRODUCTION 

Cryptography (cryptology) in broad terms, is the field of secret writing [1]. The name, 

cryptography, literally means secret writing in Greek [2]. It studies the techniques of hiding 

messages from anyone other than their primary targets. These techniques are named ciphers 

[3] and the study that deals with their analysis and breaching is called cryptanalysis. The 

secret message is called the plaintext and the encrypted or enciphered message is called the 

ciphertext. Similarly, obtaining the plaintext from the ciphertext is called deciphering or 

decrypting. The key can be broadly defined as the secret method that is previously agreed 

upon which describes a specific way to implement the cipher. This method is chosen among 

one of the possible methods that the cipher can be implemented with. In theory, ciphertexts 

encrypted by a key can only be decrypted to meaningful plaintexts by someone else with the 

knowledge of the same key. 

1.1. BRIEF HISTORY OF MODERN CRYPTOGRAPHY 

The classical ciphers that are used throughout the history before modern cryptography are 

generally divided into three major groups [3]. These are concealment ciphers, transposition 

ciphers and substitution ciphers. The concealment ciphers hide the secret message through 

any means and mostly rely on the cipher itself not being discovered. They include ciphers 

such as the puncture cipher and the grille cipher. They just consist of papers with 

intentionally punched holes on them, which are then aligned with another paper with 

seemingly random letters written on it, only to reveal the actual secret message when read 

through the holes [4]. These ciphers are the most primitive ones and do not bear any 

importance in modern cryptography. The ones that have some contemporary correspondence 

are the transposition and especially the substitution ciphers. The transposition ciphers do not 

change the letters of the plaintext but rearrange their positions with a well-defined rule which 

acts as a key [5][6]. The substitution ciphers operate by substituting each letter of the 

plaintext by a different letter, numbers or symbols according to a method determined by a 

key [6][7]. The Caesar cipher is among the most famous examples of simple substitution [8]. 

It basically shifts each letter of the plaintext up or down a fixed number of letters. This fixed 

number becomes the key and shifting the letters of the ciphertext in the opposite direction 
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by as much as this key deciphers the ciphertext. In contrast, the Hill cipher is a polygraphic 

substitution that is applied by modularly multiplying the plaintext with a matrix that can be 

considered as the encryption key [9]. The decryption is accomplished in this case by 

modularly multiplying the ciphertext by the inverse of the matrix used in encryption which 

then becomes the decryption key. What is interesting about the Hill cipher is the fact that it 

is similar to the MixColumns operation of the Advanced Encryption Standard (AES) 

algorithm in that they both utilize matrix multiplications. With these being told, the extent 

of classical ciphers’ relevance is very limited. For the most part, they are already extensively 

cryptanalyzed and easily deciphered without keys. 

Serious mathematical approaches to cryptography began after Claude Elwood Shannon’s 

paper [10] that explores cryptography from an information theoretical point of view. In his 

paper, he reiterated Kerckhoffs’ principle that a cryptosystem’s security should not depend 

on the secrecy of its implementation, but only the secrecy of its key [11][12]. Furthermore, 

based on his analysis of the ciphers that existed at the time, he mentioned two properties, 

diffusion and confusion, that would determine a cryptosystem’s strength. He defined 

diffusion as the dissipation of plaintext’s redundancies throughout the ciphertext. This makes 

it so that the patterns of the language and repetitions are averaged over the ciphertext. 

Meanwhile, confusion is defined in his paper as diminishing of the statistical relationship 

between the key and the ciphertext. As a result, confusion serves to ensure that posterior 

probabilities of keys do not depend on the resulting ciphertext. These and the others 

definitions in Shannon’s paper laid the foundation of modern cryptography [13]. 

Later, the 1970s saw the invention of asymmetric-key algorithms by Whitfield Diffie and 

Martin E. Hellman [14]. Every cryptographic algorithm up to that point has been a 

symmetric-key algorithm in which there is a single key for both encryption and decryption. 

In contrast, asymmetric-key algorithms utilize two distinct keys, one for each of encryption 

and decryption. They have two main areas of application: one is called public-key 

cryptosystems and the other is called the one-way authentication systems. 

In public-key cryptosystems, a party has a publicly available encryption key that any party 

can use to encrypt, but a secret decryption key that only he or she can use to decrypt. Ideally, 

the decryption key cannot be calculated from the encryption key. The motivation behind this 

stems from a need to securely share keys that belong to symmetric-key algorithms. A 
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theoretical key exchange protocol that fulfills this task is presented in Diffie and Hellman’s 

paper [14], later named Diffie-Hellman key exchange protocol [15]. In general, security of 

symmetric-key algorithms can be more well-defined. Therefore, a typical secure 

communication scenario between two parties would involve a key exchange through a public 

key algorithm followed by standard exchange of messages through a symmetric-key 

algorithm. 

As for one-way authentication systems, their purpose is to verify the source of a message. A 

sender encrypts the message using his or her secret encryption key, and this message can be 

decrypted by anyone in possession of the public decryption key. Instead of hiding the 

plaintext from third parties, these systems broadcast the message to everyone and act as 

signature or authentication tools. 

The other cryptologic development in 1970s happened when National Bureau of Standards 

(NBS) declared the symmetric-key algorithm Data Encryption Standard (DES) as a standard 

encryption system of the United States government [16]. Following this standardization by 

a United States institution, DES was cryptanalyzed thoroughly by the international academic 

community. Thanks to this situation, it was able to be established as a secure algorithm for 

its time despite controversies [17]. 

DES has a repetitive and symmetric structure [18]. Its repetitions are called rounds and its 

symmetry exists between its encryption and decryption algorithms. It is a block cipher, 

meaning it is applied to blocks of n-bit plaintexts as opposed to being applied bit by bit to a 

stream of plaintexts. It enciphers a 64-bit plaintext block using a 56-bit key. It has 16 rounds, 

each of which uses a unique round key derived from the primary 56-bit key. Its general 

structure for encryption is visualized in Figure 1.1. 
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Figure 1.1. DES 
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The ⊕ operator in Figure 1.1 corresponds to an XOR operation, the IP and FP blocks 

correspond to the initial and final permutations, and the F block corresponds to the Feistel 

or round function that uses the round keys. The initial and final permutations bear no 

cryptographic importance, but only act as an interface for the 1970s hardware [16]. The 

Feistel function is the most critical block of DES. It contains a substitution-box (S-box) and 

a permutation-box (P-box) connected in series. The S-box is a non-linear transformation 

which is implemented in DES by mapping the input to an output according to a look-up 

table. The P-box is a linear transformation that transposes bits of the input. The S-box and 

P-box equip the algorithm respectively with confusion and diffusion properties mentioned 

in Shannon’s paper [10]. The overall structure of Figure 1.1 that consists of splitting the 

plaintext, applying the round function to one half, XORing the result with the other half and 

swapping the halves for the next round is called the Feistel network [19]. The main advantage 

of the Feistel structure is that decryption can be accomplished using the same encryption 

algorithm given in Figure 1.1 by way of only reversing the order of the round keys and 

swapping the initial permutation with the final permutation. Hence, decryption does not 

require the inverse of the round function, which results in ease of implementation. 

With the millennium approaching, technology was catching up and new cryptanalytical 

methods were being discovered. On that account, National Institute of Standards and 

Technology (NIST), formerly known as NBS, began a selection process for a new 

symmetric-key encryption standard in 1997 [20][21]. This process ended in 2001 with the 

selection of Rijndael algorithm as the Advanced Encryption Standard (AES) [22]. A 

schematic that roughly represents the encryption of AES is given in Figure 1.2 [23]. 
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Figure 1.2. AES 
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The ⊕  operator in Figure 1.2 corresponds to an XOR operation and the SLT block 

corresponds to the round function. The round function is an S-box followed by a P-box and 

an additional linear transformation. Similar to DES, the function of S-box is to provide the 

algorithm with confusion, while the subsequent linear transformations accomplish the same 

with diffusion. The structure of Figure 1.2 that includes successive application of round 

function and XORing of the round key is called a substitution-permutation network (SP-

network) [24]. SP-networks differ from Feistel networks in that they require the inverse of 

the SLT block for decryption. Thus, they require separate operations for decryption. But 

their advantage over Feistel networks is that they apply their round function to the plaintext 

as a whole in each round instead of after multiple rounds, and since the round functions are 

the only parts of each algorithm that support parallelism, SP-networks benefit more from 

parallel computing [25]. 

The following sections will focus on the S-box of AES with relevance to this thesis. Certain 

terms and concepts will be mentioned without being delved into in the interest of explaining 

them in detail further into the text. Most of the discussion will be kept about the work in 

literature on the subject. 

1.2. AES S-BOX 

Contrary to DES, S-box of AES is not just a look-up table in essence, although it can be 

designed as such in practice. The S-box of AES is a finite field arithmetic operation followed 

by an affine transformation [26]. This nature of AES S-box allows a diversity of 

implementations. 

The finite field arithmetic operation in AES S-box is a multiplicative inversion in 𝐺𝐹(2.). 

However, calculating the multiplicative inverse in 𝐺𝐹(2.) without a look-up table is not 

efficient. Therefore, it is implemented in what is called composite (towering) fields [27][28]. 

Different implementations also diverge in their finite field representations. Finite fields are 

similar to vector spaces, in that they can be represented as a linear combination of a set of 

vectors called basis. There are two common finite field bases called the polynomial basis 

and the normal basis. The multiplicative inverse can be calculated in any finite field as long 

as it is isomorphic to AES 𝐺𝐹(2.). This way it can be mapped from and to AES 𝐺𝐹(2.) 
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before and after the calculation of the multiplicative inverse. Having said that, some of the 

S-box implementations in literature is listed below together with the method they employ to 

calculate the multiplicative inverse. 

• A. Rudra et al. [28], S. K. Mathew et al. [29] and J. Wolkerstorfer et al. [30] calculate 

the inverse in 𝐺𝐹((20)1) and use polynomial basis to represent both 𝐺𝐹(20) and 

𝐺𝐹((20)1). 

• Y. S. Jeon et al. [31] base their design on the one presented by J. Wolkerstorfer et al. 

[30]. Their contribution is revamping the design to a resourced shared version for 

both encryption and decryption. 

• A. Hodjat et al. [32] calculate the inverse in 𝐺𝐹((20)1) and use polynomial basis to 

represent both 𝐺𝐹(20) and 𝐺𝐹((20)1). They further try to increase the throughput 

by pipelining the S-box via inserting registers. 

• X. Zhang et al. [33] calculate the inverse in 𝐺𝐹((20)1) and use polynomial basis to 

represent both 𝐺𝐹(20) and 𝐺𝐹((20)1). Instead of the inversion in 𝐺𝐹(20) they try 

to simplify the multiplication in 𝐺𝐹(20) by representing it as 𝐺𝐹((21)1). Finally, 

they look into the options of increasing the throughput by pipelining the S-box via 

inserting registers. 

• R.R. Rach et al. [34] base their study on the same S-box design given in X. Zhang et 

al. [33]. They then apply their own reductions upon that design. 

• S. Nikova et al. [35] calculate the inverse in 𝐺𝐹((20)1) and use normal basis to 

represent both 𝐺𝐹(20) and 𝐺𝐹((20)1). 

• X. Zhang et al. [36], A. Satoh et al. [37][38] and N. Mentens et al. [39] calculate the 

inverse in 𝐺𝐹(((21)1)1) and use polynomial basis to represent 𝐺𝐹(21), 𝐺𝐹((21)1) 

and 𝐺𝐹(((21)1)1). 

• S. Kumar et al. [40] and M. M. Wong et al. [41] calculate the inverse in 

𝐺𝐹(((21)1)1)  and use polynomial basis to represent 𝐺𝐹(21) , 𝐺𝐹((21)1)  and 

𝐺𝐹(((21)1)1). Furthermore, they apply certain reductions that significantly modify 

the operations in 𝐺𝐹(21) and 𝐺𝐹((21)1). 

• M. Mozaffari-Kermani et al. [42] calculate the inverse in 𝐺𝐹(((21)1)1) and use 

normal basis to represent 𝐺𝐹(21), 𝐺𝐹((21)1) and 𝐺𝐹(((21)1)1). Furthermore, they 

apply certain reductions that significantly modify the operations in 𝐺𝐹(21)  and 

𝐺𝐹((21)1). 
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• D. Canright [43][44] calculates the inverse in 𝐺𝐹(((21)1)1) and uses normal basis 

to represent 𝐺𝐹(21) , 𝐺𝐹((21)1)  and 𝐺𝐹(((21)1)1) . Additionally, he conducts a 

comprehensive research of all the possible bases for 𝐺𝐹(((21)1)1) and each of its 

subfields. 

• Y. Nogami et al. [45] calculate the inverse in 𝐺𝐹(((21)1)1). They use a method 

called Mixed Bases (MB) that provides flexibility in the choice of basis for 𝐺𝐹(21), 

𝐺𝐹((21)1) and 𝐺𝐹(((21)1)1). 

• K. Nekado et al. [46] calculate the inverse in 𝐺𝐹((20)1). In addition to using MB 

method of Y. Nogami et al. [45], they introduce a new representation called 

Redundantly Represented Basis (RRB) for 𝐺𝐹(20). 

• R. Ueno et al. [47] calculate the inverse in 𝐺𝐹((20)1)  and use normal basis to 

represent 𝐺𝐹((20)1) . Apart from this, they employ RRB representation of K. 

Nekado et al. [46] to calculate the multiplication in 𝐺𝐹(20)  and their own 

representation dubbed Polynomial Ring Representation (PRR) to calculate the 

multiplicative inverse in 𝐺𝐹(20). 

• M. Mozaffari-Kermani et al. [48] make an extensive comparison of S-box 

implementations in literature up to that point. 

• L. Batina et al. [49] attempt to optimize the number of flip-flops in terms of 

throughput when pipelining the AES S-box. To this end, they make use of the genetic 

algorithm method. 

• A. Dogan et al. [50] put forward introduction of registers between the inner 

operations of AES S-box with the purpose of reducing the dynamic power 

consumption. 

• R. Ueno et al. [51] propose an architecture that unifies encryption and decryption of 

the S-box in an efficient manner. 

• S. Morioka et al. [52] use an architecture named twisted-BDD (Binary Decision 

Diagram) that is based on logical reduction of the loop-up table. 

• K. Rahimunnisa et al. [53] apply logical reduction techniques such as Karnaugh map 

to the standard look-up table. 

• J. Boyar et al. [54][55] calculate the inverse in 𝐺𝐹(((21)1)1) and use normal basis 

to represent 𝐺𝐹(21) , 𝐺𝐹((21)1)  and possibly 𝐺𝐹(((21)1)1) . They then apply a 

logic minimization technique that splits the inversion’s linear and non-linear 
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components. Finally, they attempt to reduce the number of AND gates of the non-

linear part and the number of XOR gates of the linear parts. 

• Z. Wang et al. [56] suggest that the cryptographic security of AES would not 

diminish if AES 𝐺𝐹(2.)  was abandoned entirely in favor of calculating the 

multiplicative inverse natively in a composite field. Nevertheless, the resulting 

algorithm is not AES. 

Comparison of these implementations suggest a general trend that calculating the 

multiplicative inverse in 𝐺𝐹(((21)1)1) results in more compact circuits than calculating it 

in 𝐺𝐹((20)1). The implementation of D. Canright [43] is a very efficient one in that regard. 

However, D. Canright [43] is limited in the choice of basis conversion matrices compared 

to Y. Nogami et al. [45], because their MB method allows a multiplication or inversion in 

𝐺𝐹((22)3) to have its input represented in different basis than its output. It is important to 

have conversion matrices with as few ones as possible, since they are multiplied with the 

input and output of the multiplicative inversion operator. As exceptions, even though K. 

Nekado et al. [46] and R. Ueno et al. [47] find the multiplicative inverse in 𝐺𝐹((20)1), they 

use special representations for 𝐺𝐹(20), therefore they can be said to be more efficient than 

the implementations of D. Canright [43] and Y. Nogami et al. [45]. Additionally, some logic 

minimization techniques such as the one used by J. Boyar et al. [54] are among the most 

efficient implementations. Besides all that, many of the implementations make their own 

trade-offs between critical path delay and total number of gates. Eventually, realization of 

any implementation heavily depends on the process technology and the logic synthesis tools. 

1.3. SIDE-CHANNEL ATTACKS 

Although AES is strong algorithmically, real world implementations have other variables 

such as time and energy to consider. These variables make the system vulnerable from 

alternative angles. One such angle is a non-invasive method called side-channel attacks. The 

most popular side-channel attacks are power analysis, electromagnetic and timing attacks 

[57]. These attacks exploit the statistical relationship of a cryptographic circuit’s operation 

with its power consumption, electromagnetic emanations and execution time in order. This 

thesis focuses on the most popular one among these, power analysis attacks. Most of the 

research is found upon the book on the subject by S. Mangard et al. [58]. With that in mind, 
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a list of papers concerning power analysis and its countermeasures is given below as 

reference. 

• The first appearance of power analysis attacks in literature was in the paper written 

by P. Kocher et al. [59] in 1999. It defines simple power analysis (SPA) as a visual 

inspection of power measurements. Meanwhile, the paper applies differential power 

analysis (DPA) in two steps. In the first step, it targets one of the eight S-boxes in 

the 16th round of DES, then computes one bit of this input for each key hypothesis. 

In the second step, it calculates the difference of mean power measurements for when 

the input bit is one when the input bit is zero for separately each key hypothesis. The 

paper claims for incorrect key hypotheses, the power measurements will be grouped 

randomly and the difference will be very small. 

• P.C. Kocher [60] cryptanalyzes symmetric-key algorithms such as Diffie-Hellman, 

RSA and DSS by showing that encryption time of systems employing these 

algorithms depend on the key. 

• J.F. Dhem et al. [61] applies timing attack on a smart card implementation of RSA 

called CASCADE. 

• P.N. Fahn et al. [62] put forward a new power analysis technique called Inferential 

Power Analysis (IPA). Their technique contains a profiling stage in which the power 

consumption of a cryptographic device is measured while it performs 100s of 

encryptions. Afterwards the statistical characteristics of these measurements are 

characterized. In the next stage, the secret key of a new device of the same type is 

extracted from a single power trace by comparing it to the profile that has been 

created in the previous stage. 

• S. B. Örs et al. [63] experiment with success of differential power analysis on elliptic-

curve cryptosystems implemented on FPGAs. Elliptic-curve cryptography is a 

public-key cryptography variant that is based upon groups formed by the points on 

an elliptic curve defined over a finite field and the lines that intersect them [64]. 

• K. Schramm et al. [65] utilize power analysis to carry out a collision attack on the 

intermediate values of DES. Collision attacks are a method that relies on finding a 

ciphertext for which two distinct plaintexts are encrypted to with the same key [66]. 

This happens when the cipher is not bijective and reduces the possible set of secret 

keys. 
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• D. Agrawal et al. [67] study electromagnetic information leakage of various 

symmetric-key and asymmetric-key implementations. 

• F.X. Standaert et al. [68] try to quantify the information leakage of a device and its 

exploitability by attackers in a widely-applicable way. They then test the 

effectiveness of countermeasures such as masking and noise addition on Hamming 

weight leakage with their newly created metric. This unified benchmark is then 

expanded by F.X. Standaert et al. [69]. 

• S. Chari et al. [70] introduce a very strong approach called template attacks. Their 

method is similar to P.N. Fahn et al. [62], it consists of a characterization and a 

comparison phase. In the characterization phase, power consumption of a device is 

measured while it performs many encryptions for different known values of an 

internal operation. The value of this internal operation should be associated with the 

key. Afterwards, a probability density function, named a template, for each of these 

known values is calculated by assuming Gaussian distribution. During the 

comparison phase, a small number of power measurements are taken from another 

device of the same kind with an unknown key. Finally, the probability of these 

measurements belonging to a template is calculated for every template according to 

maximum likelihood estimation. 

• W. Schindler et al. [71] present what is called the stochastic method. Analogous to 

the method in S. Chari et al. [70] they characterize the power consumption of a device 

prior to mounting an attack. They treat the power consumption as being comprised 

of two parts, namely a data dependent deterministic part and a random noisy part. To 

represent the noisy part, they use a probability density function of a random 

distribution. However, unlike S. Chari et al. [70], they characterize the deterministic 

part as a function of an internal operation’s value. This function is a linear equation 

with the internal operation’s bits as variables. During the characterization phase, this 

linear equation’s coefficients are calculated by solving a system of equations in 

which the coefficients are variables, the bits are coefficients and the equations are 

equal to the power measurements. During an attack on another identical device, 

maximum likelihood estimation is carried out using this device’s power 

measurements and the previously calculated equation and probability density 

function of noise. 
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• B. Gierlichs et al. [72] compare template attacks and stochastic method. They then 

try to make their own improvements on both techniques. In summary, they make a 

crude conclusion that template attacks are more successful if there are a lot of power 

measurements available during the characterization phase, although in situations 

when the number of characterization measurements is low, stochastic method has a 

better accuracy. 

• D. Agrawal et al. [73] describe an attack that exploits a combination of multiple side-

channel leakages, namely power and electromagnetic. 

• K. Tiri et al. [74] draw attention to the fact that models used to simulate the power 

consumption of a device for a designer is very influential in precisely determining its 

power analysis resistance before tape-out. To do so, they compare power 

consumption simulations of different capacitance extraction models against power 

measurements from a real device in the context of power analysis. 

• K.J. Kulikowski et al. [75] show that many gate level power analysis 

countermeasures that balance the power consumption of different transitions, look 

over the propagation delay discrepancy between different transitions. In their paper 

they prove this vulnerability by simulating an attack against a topology that take 

preventative actions against differing propagation delays and another that does not. 

• R. Elbaz et al. [76] examine the cryptosystems where an external memory, as in 

separate from the IC where the processing is done, exists and the communication 

data bus between the processing unit and the memory unit can be compromised. They 

mention workarounds that encrypt the data transferred on these external buses. 

• A. Yu et al. [77], Z.C. Yu et al. [78], S. Guilley [79], F. Gürkaynak et al. [80] and S. 

Moore et al. [81] advocate the adoption of self-timed (asynchronous) circuits in 

tandem with other countermeasures to thwart both power analysis attacks via 

misalignment and timing attacks. 

• K.J. Kulikowski et al. [82] highlight the fact that Return-To-Zero (RTZ) protocols 

reduce the possible set of input transitions, and therefore in implementations where 

power consumption of registers is not the dominant component, make the device less 

resistant to power analysis attacks by diminishing the randomness of the 

combinational parts of the circuit where it is applied. They point out that this even 

eliminates the advantages gained by employing a dual-rail or an asynchronous 

topology. 
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• Z. Toprak et al. [83] argue that the dynamic power consumption of synchronous 

CMOS logic at clock edges is among the main contributors of their vulnerability to 

power analysis attacks. As a solution they propose using Current Mode Logic (CML) 

[84] because of its more static power consumption and add that for high frequencies, 

its average power consumption is comparable to classic CMOS logic. 

• F. Mace et al. [85] state that Dynamic Current Mode Logic (DyCML) [86] exhibit 

the same power analysis resistance characteristics of CML. In addition, contrary to 

CML, DyCML gates work in a precharge-evaluation cycle that overcomes the 

constant current consumption of CML. 

• K. Tiri et al. [87] present a dynamic differential topology called Sense-Amplifier-

Based Logic for power analysis resistance which is based on Sense-Amplifier-Based 

Flip-Flop [88] and similar to Differential Cascode Voltage Switch Logic (DCVSL) 

[89]. Gates built with this topology have two phases: precharge and evaluation. As a 

result of both having RTZ property and being differential, for every input 

combination, exactly one transition happens at the outputs of SABL. 

• K. Tiri et al. [90] progress the SABL topology by proposing a modification to its 

pull-down network by the name of Enhanced Fully-Connected Differential Pull-

Down Network (DPDN) which addresses internal net charge imbalances, uneven 

ground path resistances and switching delay disparity problems of regular SABL 

DPDNs. 

• K. Tiri et al. [91] suggest a way to realize differential and RTZ logic for the purpose 

of power analysis resistance with logic gates found in every standard cell library. 

They accomplish this by using gates that realize monotonic Boolean functions that 

have complementary outputs given complementary inputs. They call this topology 

Wave Dynamic Differential Logic (WDDL). When the input of a WDDL circuit is 

set to all zeros, it propagates through every WDDL gate like a wave to reset all of 

them. Afterwards, a valid input causes a transition in only one output of every WDDL 

gate in the same manner. This mode of operation stems from WDDL’s monotonicity. 

When an input of a monotonic Boolean function transitions from zero to one, its 

output cannot transition from one to zero, and equivalently when one of its inputs 

makes a transition from one to zero, its output cannot transition from zero to one. 

• D. Sokolov et al. [92] explore the effects of having two spacers, such as all zeros and 

all ones instead of one spacer in contrast to RTZ, on power analysis resistance. They 
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test this method on different actualizations of dual-rail logic assembled from ordinary 

logic gates. 

• M. Aigner et al. [93] propose a new single-rail dynamic logic style dubbed 3state 

Dynamic Logic (3sDL) with three different levels and charge sharing scheme with a 

dummy capacitor equal to the output capacitance. The third level acts as a reset value 

during the precharge phase and is ideally right in the middle of VDD and GND. 

Owing to this third level and charge sharing of the output capacitance with the 

dummy capacitor, two capacitances are alternately charged to and discharge from 

half of VDD during evaluation and precharge phases. This assures equal power 

consumption for every input transition without needing differential logic. 

• T. Sundström et al. [94] does an extensive comparison between various logic gate 

topologies including static CMOS, SABL, DCVSL and DyCML. They conclude in 

their analysis that DyCML gives the best security while DCVSL is very effective 

despite its relatively low complexity. 

• P. Corsonello et al. [95] suggest that power should be supplied to the cryptographic 

circuit using a charge pump in order to isolate the external power consumption from 

the internal power consumption and accordingly make the circuit more power-

analysis-resistant. 

• G.B. Ratanpal et al. [96], D. Mesquita et al. [97] and P. Rakers et al. [98] advocate 

connecting an analog current regulator with feedback to the power supply pins of 

cryptographic circuits in order to desensitize overall power consumption from power 

fluctuations caused by internal operations. This is roughly accomplished by creating 

a current sink for when the current consumption of the circuit is low, so it is kept 

relatively constant. 

• N. Pramstaller et al. [99] and C. Herbst et al. [100] offer a power analysis 

countermeasure called masking that differs from others by mostly being hinged on 

mathematics. In masking, a random value called mask that is most preferably 

independent and uniformly distributed is combined with the sensitive values 

calculated during encryption or decryption. This way, the power consumption of the 

device becomes random and thus independent from these sensitive values. They 

describe this concept algorithmically in their papers. 

• T. Popp et al. [101] and J.Dj. Golic et al. [102] show topologies that apply masking 

on logic gate level. 



16 
 

• K. Schramm et al. [103] present a means to counter higher order power analysis 

attacks by higher order masking. Higher order power analysis aims to eliminate the 

effects of masking by combining the power measurements of two different 

intermediate values masked with the same mask. The paper offers using even more 

masks that are independent from each other to circumvent the attack. 

Power analysis attacks are very popular in the scientific community, because they can totally 

undermine the security of strong algorithms by attacking their weak points, they are non-

invasive and really easy to execute. The SPAs can only unveil the device’s rudimentary 

operation order. The DPAs that try to find the statistical relationships between hypothetical 

measurements and real measurements are able to exploit even the smallest data 

dependencies, yet are fairly limited by the attackers’ ability to guess the working principles 

of the device. The strongest attacks are the DPAs that profile the device exhaustively 

beforehand, such as the template-based attacks. They do not lean on hypothetical models 

and work according to very simple rules of probability theory. 

When it comes to countermeasures, there exist many in the literature with their own 

disadvantages. Architectural level countermeasures such as asynchronous designs are highly 

complex and deviate too much from the most commonplace practices. Cell level masking 

countermeasures are complex in their own right and depend on the randomness of the 

Random Number Generator (RNG) hardware that generates the masks. Cell level hiding 

techniques get easier to implement but less power-analysis-resistant the more they resemble 

static CMOS logic. CML/DyCML is not that similar to static CMOS, have high power 

consumption (static in regards to CML and dynamic in regards to DyCML) and require the 

use of additional resistors and/or capacitors. Dynamic differential logic takes up at least 

twice the area, consumes twice the power and requires clocking the combinational logic parts 

of the circuit. The standard library solutions also suffer from the same consequences that 

Dynamic differential logic suffers except the clock related ones, and they are also the least 

power-analysis-resistant ones. The isolation solutions are truly implementation-independent, 

but they either utilize large capacitors that take up area or analog circuitry that increases 

power consumption. 
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1.4. OBJECTIVE OF THE THESIS 

This thesis initially intends to examine all aspects of various AES S-box implementations 

that are based on finite field arithmetic rather than Boolean reduction or look-up tables. 

Afterwards, these implementations are used as a basis for power analysis resistant designs 

applied at the logic cell level, namely dynamic differential logic. The end goal is to observe 

the impact of S-box implementation and the logic gate style on power analysis resistance at 

once. To do this, numerous variations of a subcircuit of AES that only contains the S-box 

part is built and simulated in an Electronic Design Automation (EDA) program. The 

simulated power consumptions are then processed to resemble power consumption of a real 

device. These simulated and processed measurements are then subjected to correlation-based 

and template-based attacks. As a consequence, it is seen that all the finite field arithmetic 

implementations are equally resistant to power analysis. Therefore, the implementation can 

be chosen according to other criteria. The use of dynamic differential on the other hand 

renders correlation-coefficient based attacks useless and makes the circuit ten to a hundred 

times more resistant to template-based attacks. 

All that being said, the text is structured as follows: 

• Second chapter gives a background on sample statistics and how to estimate certain 

parameters and discriminate parameters of two different populations. 

• Third chapter describes two power analysis attack techniques, correlation-based and 

template-based attack, using the definitions in the previous chapter. 

• Fourth chapter briefly tells about existing countermeasures and presents two dynamic 

differential topologies. 

• Fifth chapter explains the concept of finite fields starting from very primitive 

definitions and arriving at the definitions of normal basis and polynomial basis. 

• Sixth chapter outlines the AES algorithm and specifies the S-box part in detail with 

the help of the definitions in the preceding chapter. 

• Seventh chapter gives information about the whole design process, the simulation 

methodology, the attack procedure and the results. 

• The last chapter summarizes and comments on the findings and gives impressions 

about the outcomes. 
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2. STATISTICAL BACKGROUND 

The whole foundation of power analysis is statistics. The power measurements of a device 

are the samples of the population that comprises every possible value of power it can 

consume. The measurements are a way to depict the probability density of this population. 

This section defines well-known statistical quantities and parameters that would aid in 

describing the power measurements of a device and guessing how well these measurements 

correlate with the operations inside the device. The definitions below can be found in many 

textbooks, but they mainly follow the definitions of the book written by S. Mangard et al. 

[58] 

2.1. NORMAL DISTRIBUTION 

A random variable with normal (Gaussian) distribution is defined by two parameters: mean 

(𝜇) and variance (𝜎1). Probability distribution function (PDF) of normal distribution is given 

in (2.1) in terms of 𝜇 and 𝜎1 and random variable 𝑥. 

 𝑃𝐷𝐹 = 𝑓(𝑥|𝜇, 𝜎1) =
1

√2𝜋𝜎1
𝑒A

(BAC)D
1ED  (2.1) 

 

Since it is not possible to know the mean and variance of an infinite population, it is more 

relevant to talk about sample mean (𝜇̂) and unbiased sample variance (𝑠1) defined as in (2.2) 

and (2.3). 

 𝜇̂ =
1
𝑛I𝑥J

3

JKL

 (2.2) 

 𝑠1 =
1

𝑛 − 1I(𝑥J − 𝜇̂)1
3

JKL

 (2.3) 

 

𝑥J in (2.2) and (2.3) is the 𝑖th sample of the normally distributed random variable 𝑋.  
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Unbiased sample covariance between two sample sets of normally distributed random 

variables 𝑋 and 𝑌 is formulized in (2.4). 

 𝑞Q,R =
1

𝑛 − 1I(𝑥J − 𝜇̂Q)(𝑦J − 𝜇̂R)
3

JKL

 (2.4) 

 

Pearson correlation coefficient between the aforementioned sample sets is given in (2.5). 

 𝑟Q,R = 𝜌(𝑋, 𝑌) =
𝑞Q,R
V𝑠Q1𝑠R1

=
∑ (𝑥J − 𝜇̂Q)(𝑦J − 𝜇̂R)3
JKL

V∑ (𝑥J − 𝜇̂Q)13
JKL V∑ (𝑦J − 𝜇̂R)13

JKL
 (2.5) 

 

2.2. ESTIMATION OF PARAMETERS 

Sample parameters are all estimates of population parameters. Thus, they are random 

variables with specific distributions. 𝜇̂  of 𝑛  variables is normally distributed with the 

following mean (expected value) and variance in (2.6) and (2.7). 

 𝐸(𝜇̂) = 𝜇 (2.6) 

 𝑉𝑎𝑟(𝜇̂) =
𝜎1

𝑛  (2.7) 

 

𝑠1 of 𝑛 variables is a chi-squared distribution with expected value and variance given in 

(2.8) and (2.9). 

 𝐸(𝑠1) = 𝜎1 (2.8) 

 𝑉𝑎𝑟(𝑠1) =
2 × 𝜎0

𝑛 − 1  (2.9) 

 

𝑟Q,R on the other hand, has a complicated distribution by itself. Its Fisher Transformation 

tanhAL`𝑟Q,Ra  though has approximately a normal distribution with expected value and 



20 
 

variance shown in (2.10) and (2.11). Obviously, the expected value of sample correlation 

coefficient 𝑟 is equal to population correlation coefficient 𝜌 as demonstrated in (2.10). 

 𝐸`tanhAL`𝑟Q,Raa = tanhAL`𝜌Q,Ra =
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

 (2.10) 

 𝑉𝑎𝑟`tanhAL`𝑟Q,Raa =
1

𝑛 − 3 (2.11) 

 

2.3. CONFIDENCE INTERVALS 

Confidence intervals are estimates that a particular parameter is within specific limits with a 

certain probability. As an example, consider the nearly normal distribution of tanhAL`𝑟Q,Ra. 

If one were to subtract its mean from itself and divide it by its standard deviation, one would 

get a standard normal distribution with 𝜇 = 0 and 𝜎1 = 1. So 𝑊  in (2.12) is a standard 

normal distribution. 

 𝑊 = g
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h√𝑛 − 3 (2.12) 

 

Now, since the probability of a standard normal variable being inside an interval bounded 

by [−𝑧, 𝑧]  is as given in (2.13), with 𝑧 = ΦAL(1 − 𝛼 2⁄ ) , where Φ  is the cumulative 

distribution function and 𝛼 is the error probability, writing the expression in (2.12) in place 

of 𝑥 in (2.13) results in the equation (2.14) and (2.15). 

 𝑝(−𝑧 ≤ 𝑥 ≤ 𝑧) = 1 − 𝛼 = Φ(𝑧) − Φ(−𝑧) (2.13) 

 𝑝 g−𝑧 ≤ g
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h√𝑛 − 3 ≤ 𝑧h = 1 − 𝛼 (2.14) 

 
𝑝 g
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
𝑧

√𝑛 − 3
≤
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

≤
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

+
𝑧

√𝑛 − 3
h

= 1 − 𝛼 
(2.15) 
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This means 𝜇 = tanhAL`𝜌Q,Ra of tanhAL`𝑟Q,Ra is inside the interval given by (2.16) with a 

probability of 1 − 𝛼. 

 q
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
𝑧

√𝑛 − 3
,
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

+
𝑧

√𝑛 − 3
r (2.16) 

 

2.4. NUMBER OF SAMPLES 

The following expressions describe the number of samples required to estimate the 

parameters 𝜌 and 𝜌s − 𝜌L up to a given accuracy. 

2.4.1. Number of Samples for 𝝆 

Assume that probability of absolute distance between sample correlation coefficient and 

population correlation coefficient being more than a constant is as given in (2.17). 

 𝑝 gt
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

t >
1
2 ln

1 + 𝑐
1 − 𝑐h = 𝛼 (2.17) 

 

Then the following equations in (2.18), (2.19), (2.20) and (2.21) can be derived. 

 𝑝 gt
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

t √𝑛 − 3 >
1
2 ln w

1 + 𝑐
1 − 𝑐x√𝑛 − 3h = 𝛼 (2.18) 

 𝑝 w|𝑊| >
1
2 ln w

1 + 𝑐
1 − 𝑐x√𝑛 − 3x = 𝛼 (2.19) 

 2𝑝 w𝑊 >
1
2 ln w

1 + 𝑐
1 − 𝑐x√𝑛 − 3x = 𝛼 (2.20) 

 𝑝 w𝑊 <
1
2 ln w

1 + 𝑐
1 − 𝑐x√𝑛 − 3x = Φw

1
2 ln w

1 + 𝑐
1 − 𝑐x√𝑛 − 3x = 1 − 𝛼 2⁄  (2.21) 

 

Rewriting (2.21) for 𝑛 provides the expression in (2.22). 
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 𝑛 = 3 + 4
`ΦAL(1 − 𝛼 2⁄ )a1

ln1 1 + 𝑐1 − 𝑐
 (2.22) 

 

Which is the number of samples 𝑛 necessary for the difference between sample correlation 

coefficient and population correlation coefficient to be less than or equal to 𝑐. 

Another important definition is the number of samples necessary to distinguish 𝑟Q,R from 

zero. It can be deduced by either presuming tanhAL`𝜌Q,Ra < 0  and computing 

𝑝`tanhAL`𝑟Q,Ra < 0a or doing the same for tanhAL`𝜌Q,Ra > 0 and 𝑝`tanhAL`𝑟Q,Ra > 0a. 

Deriving it for the former as shown in (2.23), (2.24), (2.25), (2.26) and (2.27) yields the 

expression in (2.28). 

 𝑝 g
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

< 0h = 1 − 𝛼 (2.23) 

 𝑝 g
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

< −
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h = 1 − 𝛼 (2.24) 

 

𝑝 {g
1
2 ln

1 + 𝑟Q,R
1 − 𝑟Q,R

−
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h√𝑛 − 3

< −g
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h√𝑛 − 3| = 1 − 𝛼 

(2.25) 

 Φg−g
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h√𝑛 − 3h = 1 − 𝛼 (2.26) 

 ΦAL(1 − 𝛼) = −g
1
2 ln

1 + 𝜌Q,R
1 − 𝜌Q,R

h√𝑛 − 3 (2.27) 

 𝑛 = 3 + 4
`ΦAL(1 − 𝛼)a1

ln1
1 + 𝜌Q,R
1 − 𝜌Q,R

 (2.28) 
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2.4.2. Number of Samples for 𝝆𝟎 − 𝝆𝟏 

tanhAL(𝑟s) − tanhAL(𝑟L)  (calculated with equal number of samples 𝑛 ) has a normal 

distribution with expected value and variance given in (2.29) and (2.30). 

 𝐸 w
1
2 ln

1 + 𝑟s
1 − 𝑟s

−
1
2 ln

1 + 𝑟L
1 − 𝑟L

x =
1
2 ln

1 + 𝜌s
1 − 𝜌s

−
1
2 ln

1 + 𝜌L
1 − 𝜌L

 (2.29) 

 𝑉𝑎𝑟 w
1
2 ln

1 + 𝑟s
1 − 𝑟s

−
1
2 ln

1 + 𝑟L
1 − 𝑟L

x =
2

𝑛 − 3 (2.30) 

 

This brings one to an important definition in terms of power analysis. How many samples 

are required to distinguish tanhAL(𝑟s) from tanhAL(𝑟L)? By applying the same procedure to 

the assumption tanhAL(𝜌s) − tanhAL(𝜌s) < 0  and finding 𝑝(tanhAL(𝑟s) − tanhAL(𝑟L)) 

one gets the expression in (2.35) through the deduction process demonstrated in (2.31), 

(2.32), (2.33) and (2.34). 

 𝑝 w
1
2 ln

1 + 𝑟s
1 − 𝑟s

−
1
2 ln

1 + 𝑟L
1 − 𝑟L

< 0x = 1 − 𝛼 (2.31) 

 

𝑝{w
1
2 ln

1 + 𝑟s
1 − 𝑟s

−
1
2 ln

1 + 𝑟L
1 − 𝑟L

x − w
1
2 ln

1 + 𝜌s
1 − 𝜌s

−
1
2 ln

1 + 𝜌L
1 − 𝜌L

x

< −w
1
2 ln

1 + 𝜌s
1 − 𝜌s

−
1
2 ln

1 + 𝜌L
1 − 𝜌L

x| = 1 − 𝛼 

(2.32) 

 

𝑝}~w
1
2 ln

1 + 𝑟s
1 − 𝑟s

−
1
2 ln

1 + 𝑟L
1 − 𝑟L

x − w
1
2 ln

1 + 𝜌s
1 − 𝜌s

−
1
2 ln

1 + 𝜌L
1 − 𝜌L

x��
𝑛 − 3
2

< −w
1
2 ln

1 + 𝜌s
1 − 𝜌s

−
1
2 ln

1 + 𝜌L
1 − 𝜌L

x�
𝑛 − 3
2 � = 1 − 𝛼 

(2.33) 

 ΦAL(1 − 𝛼) = −w
1
2 ln

1 + 𝜌s
1 − 𝜌s

−
1
2 ln

1 + 𝜌L
1 − 𝜌L

x�
𝑛 − 3
2  (2.34) 
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 𝑛 = 3 + 8
`ΦAL(1 − 𝛼)a1

�ln 1 + 𝜌s1 − 𝜌s
− ln 1 + 𝜌L1 − 𝜌L

�
1 (2.35) 

 

Φ and ΦAL correspond to cumulative distribution function and its inverse for a standard 

normal distribution, while 𝛼 is the probability of error in every preceding equation. 

2.5. STATISTICAL PROPERTIES OF POWER CONSUMPTION 

Instantaneous power consumption of a circuit can be categorized into separate and 

independent components from the power analysis point of view. There are basically three 

relevant components of power at any specific instant. These are the exploitable part (𝑃�B�), 

operating noise (𝑃��3) and electronic noise (𝑃��3). Exploitable part is defined as any part of 

the power consumption that depends on the targeted operation and data of the attack. 

Operating noise is the power consumption resulting from the remaining irrelevant parts of 

the circuit that run in parallel at that moment. Electronic noise component includes noise 

from every other source, namely parasitic circuit components, faultiness of the measurement 

setup, heat, electromagnetic radiation etc. 

One could assume all these components to be independently and normally distributed. This 

assumption is easily accepted in the case of the parts that constitute noise. The exploitable 

part may also be approximated by a normal distribution as it is demonstrated in Figure 2.1. 

Distribution of S-box’s current consumption at 2 ns, where it represents the current 

consumption of an S-box circuit at a certain instant. While separating power consumption 

into different components, mean of the total power consumption, which amounts to the sum 

of these independent distributions’ means, may be described as a separate constant term 

(𝑃��3��). But since it is constant, it is ineffectual with regard to variance-based analyses, 

hence could be left out of discussion in those cases. This leaves three independent 

distributions with zero means that represent the variance of power consumption at an 

instance between different runs. 
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Figure 2.1. Distribution of S-box’s current consumption at 2 ns 

While making this distinction of different components, another important point is that they 

are not strictly defined in terms of what they are made of. As an example; exploitable part 

can include operating noise and operating noise can include electronic noise in it, but not 

vice versa. So, the grouping is started with incorporating every part that correlates to the 

attacked data and operation and naming it the exploitable part. The rest can be collectively 

categorized as noise or further differentiated into independent parts. 

One universal factor that determines how much information is leaked through power 

consumption is signal-to-noise ratio in which signal is designated as the exploitable 

information. The ratio then becomes the ratio of exploitable parts’ variance to noise variance 

as given by equation (2.36). 

 𝑆𝑁𝑅 = 	
𝑉𝑎𝑟`𝑃�B�a

𝑉𝑎𝑟`𝑃��3 + 𝑃��3a
 (2.36) 
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3. POWER ANALYSIS 

Power analysis is a decryption method for cryptographic circuits that takes advantage of the 

fact that power consumption leaks information about the operation of digital circuits. As a 

result, it is classified as a side-channel attack, meaning that it is not a direct attack on the 

cryptographic algorithm itself. The information digital circuits leak is mainly because of the 

switching that occurs inside them depending on the operations and data they operate on. It 

is obvious that different inputs and different logical functions lead to different logical levels 

at input, output and internal nets. Additionally, real logic gates with propagation delays 

greater than zero introduce glitches to the system. These glitches attribute further 

characteristics to each possible input transition. 

Power analysis attacks, since their discovery, have come to be known by two types in 

literature. These are named simple power analysis and differential power analysis. The 

distinction between them is in the number of power measurements utilized during the attack. 

It can be inferred from the name that simple power analysis uses one or very few power 

measurements and sometimes relies on visual inspection. Usually, this merely gives some 

clues about the general structure of the cryptographic circuit and is ineffective with the 

exception of very primitive AES implementations on software. Differential power analysis 

on the other hand utilizes two measurements at minimum and relies on statistics. 

Appropriately, power analysis attacks of this project all fall into the differential power 

analysis category. 

3.1. CORRELATION COEFFICIENT-BASED ATTACK 

The principle behind correlation coefficient-based attack is creating hypothetical power 

consumptions that depend on a certain intermediate value of the attacked device and 

calculating Pearson correlation coefficients between these and actual power measurements 

from the device. The attack can be classified as a known plaintext or known ciphertext attack, 

meaning that the sole information attacker has is either the plaintext being enciphered or the 

ciphertext after encryption. As an example, here is how a known plaintext attack is carried 

out: 



27 
 

• The power consumption of the device-under-attack is recorded as it enciphers 𝑝 

plaintexts with an unknown key. While doing this, the plaintexts should be as 

uniformly distributed as possible so that the exploitable part of the power 

consumption has larger variance. 

• The plaintexts are put in a 1 × 𝑝 matrix 𝑃, while the measurements are sampled in 

time and inserted into a matrix 𝑀 of size 𝑝 × 𝑡, where the power consumption of 

each plaintext enciphered are in the rows of the matrix 𝑀 and placed in the same 

order as in the matrix 𝑃 (power measurements of 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡� in column 𝑗 of 𝑃 being 

enciphered is in 𝑗th row of 𝑀), while the columns represent samples in time, needless 

to say, ordered chronologically. 

• An intermediate value that is a function of plaintext and key is chosen according to 

certain requirements that will be mentioned later. In the case of AES, the best 

intermediate value for a known plaintext attack is the output of the S-box in the first 

round specified by 𝑆𝑢𝑏(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ⊕ 𝑘𝑒𝑦). 

• For each possible key dubbed key hypothesis, this intermediate value is calculated 

adopting every plaintext in matrix 𝑃 as inputs. This calculation leads to a matrix 

called 𝑉. The size of the matrix is 𝑘 × 𝑝 where the row 𝑖 and column 𝑗 contains the 

intermediate value 𝑓(𝑘𝑒𝑦J, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡�). 

• A number is assigned to each intermediate value according to a certain power 

consumption model. This assignment transforms 𝑉  into hypothetical power 

consumption matrix 𝐻, where each element corresponds to the power consumption 

attributed to that intermediate value. 

• Lastly, Pearson correlation coefficients between each row of 𝐻 and each column of 

𝑀 is calculated according to equation (2.5) to from a matrix 𝐶 of size 𝑘 × 𝑡. The 

(𝑖, 𝑗)��  element of this matrix represents the correlation coefficient between key 

hypothesis 𝑘J at time 𝑡�. 

Visual representations of matrices described above are supplied below in (3.1), (3.2), (3.3), 

(3.4) and (3.5). 

 𝑃 = [𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡L ⋯ 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡�] (3.1) 



28 
 

 𝑀 = �
𝑝𝑜𝑤𝑒𝑟L,L ⋯ 𝑝𝑜𝑤𝑒𝑟L,�

⋮ ⋱ ⋮
𝑝𝑜𝑤𝑒𝑟L,� ⋯ 𝑝𝑜𝑤𝑒𝑟�,�

¡ (3.2) 

 𝑉 = ¢
𝑓(𝑘𝑒𝑦L, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡L) ⋯ 𝑓(𝑘𝑒𝑦L, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡�)

⋮ ⋱ ⋮
𝑓(𝑘𝑒𝑦£, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡L) ⋯ 𝑓(𝑘𝑒𝑦£, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡�)

¤ (3.3) 

 𝐻 = ¥
𝑝𝑜𝑤𝑒𝑟L,L

�¦������J�§� ⋯ 𝑝𝑜𝑤𝑒𝑟L,�
�¦������J�§�

⋮ ⋱ ⋮
𝑝𝑜𝑤𝑒𝑟£,L

�¦������J�§� ⋯ 𝑝𝑜𝑤𝑒𝑟£,�
�¦������J�§�

¨ (3.4) 

 

𝐶 = 𝜌`𝐻J,𝑀�a = ¢
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛L,L ⋯ 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛L,�

⋮ ⋱ ⋮
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛£,L ⋯ 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛£,�

¤

𝑓𝑜𝑟
𝑖 = 1,2, … , 𝑘

𝑎𝑛𝑑
𝑗 = 1,2, … , 𝑡

 (3.5) 

 

The 𝐶 matrix constructed through this procedure contains correlation information between 

every possible key and the power consumption of device-under-attack at every discrete time 

instance. So depending on how accurate the model for hypothetical power consumption 

values is and how many and how uniform the measurements are made, one would expect the 

elements of 𝐶 to be equally small at everywhere except at (𝑖, 𝑗), where the row suggests 

correct key hypothesis and the column is near the moment power consumption has the 

strongest dependency to the intermediate value. 

3.1.1. Hypothetical Power Consumption Models 

Besides signal-to-noise ratio, one of the main designators of correlation coefficient-based 

attacks’ success is how well the hypothetical power consumption values represent the real 

ones. Without the knowledge of a cryptographic device’s netlist, the attacker can just create 

power consumption models based on the AES algorithm or simple guesses. 

For instance, if the attacked device writes the intermediate value on a register with high input 

or output capacitance, any write operation momentarily contributes to a noticeable increase 

in power consumption. This creates a vulnerability point, importance of which depends on 
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how much power is consumed during such a write operation. This kind of vulnerability is 

easily exploited with a correlation coefficient-based attack using primitive power 

consumption models. These include models based on transitions in any bit or all bits of the 

intermediate value. 

AES S-box is random enough that coming up with complicated hypothetical models is not 

possible without the detailed knowledge of the netlist. So, in a typical case, finding the most 

suitable model comes down to trial and error. One could start by testing if the device leaks 

Hamming weight of the intermediate value. If that does not work, the next step could be to 

try whether any bit correlates with the power consumption. Finally, since most SubBytes 

implementations either have low or at least distinct power consumption characteristics for 

the input value of zero, one can create a model that separates that input value from others 

and see if that correlates with the power measurements from the device. From now on, these 

models are going to be called Hamming weight model, bit models and zero-value model. 

3.2. TEMPLATE-BASED ATTACK 

Template-based attacks are a kind of side-channel attack that are established around the idea 

of representing the power consumption of a device by an ideal random distribution for each 

state of the intermediate value, and then attempting to guess the correct key based on which 

state the successive power measurements are more likely to be associated with. 

These representations belonging to different states, are called templates. They are created by 

using a sample device, which should have the same circuit as the attacked device, so that it 

has the same power consumption characteristics. By way of making numerous 

measurements at specific points in time while the sample device encrypts known plaintexts 

with known keys, a data population is created, and approximated by a random distribution 

to form the templates. Afterwards, measurements from the attacked device are compared 

against each template and assigned to the most likely one. Since each template represents a 

key or a set of keys, fitting the measurements to one of the templates equates to finding the 

key or reducing the possible set of correct keys. Similar to correlation coefficient-based 

attacks, template attacks can be known plaintext or known ciphertext attacks depending on 

the intermediate value that is exploited. 
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It was mentioned before that the power consumption of a cryptographic circuit at a certain 

instant between separate runs is well-approximated by a standard normal distribution. 

Therefore, the templates can be created by fitting normal distribution curves to the data 

acquired for each intermediate value state. What is meant by fitting here is actually the 

calculation of mean and covariance matrices (ℳ and Σ) given in (3.6) and (3.7) where 𝑋J is 

the distribution of 𝑖�� point of the subset of points taken from each measurement, 𝜇̂ is the 

sample mean in equation (2.2), 𝑠1  is the sample variance in equation (2.3) and 𝑞  is the 

covariance in equation (2.4). 

 ℳ = [𝜇̂Q­ 𝜇̂QD ⋯ 𝜇̂Q®] (3.6) 

 Σ = ¢
𝑞Q­,Q­ = 𝑠Q­

1 ⋯ 𝑞Q­,Q®
⋮ ⋱ ⋮

𝑞Q®,Q­ ⋯ 𝑞Q®,Q® = 𝑠Q®
1
¤ (3.7) 

 

The intermediate value states are basically the intermediate value itself or functions of it. To 

give an example, for the output of the S-box in the first round as the intermediate value, the 

templates can be based on its Hamming weight, one of its bits or itself as a whole. In the 

case of picking its Hamming weight, one has to create nine distinct templates for nine values 

its Hamming weight take. In order to represent one of the output bits, one needs two create 

two templates. And finally, if the templates are based on the output value itself, there needs 

to be 256 distinct templates. It is obvious that, this decision determines the degree to which 

the subset of possible correct keys can be reduced assuming the attacks is successful. To 

point it out, successfully attributing the measurements from the attacked device to one of the 

two templates that depend on a bit results in eliminating half of the keys as incorrect. 

Meanwhile, a successful pairing with one of the 256 templates associated with the 

hexadecimal value of the output directly reveals the correct key. Yet, it should also be 

acknowledged that creating 256 templates takes way more effort and time than creating only 

two templates. Lastly, while deciding what the templates are going to be based on, it should 

be remembered that the templates only need to be created once, whereas they can be used 

however many times as necessary. 

In the attacking phase, the power measurements of the attacked device are ranked from most 

likely to least likely in terms of which template’s probability distribution function they might 

be sampled from. This ranking is organized in agreement with Bayes’ rule. In terms of 
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Bayes’ rule, the thing being ranked here is the probability of a key or set of keys 

encompassing the correct key, given a set of power measurements acquired from the device 

under attack. This posterior probability can be denoted by 𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J|𝑀) , in which 

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J is the 𝑖�� template and 𝑀 is the set of measurements from the attacked device. 

Writing Bayes’ rule for 𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J|𝑀) gives the expression in (3.8). 

 

𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J|𝑀) =
𝑝(𝑀|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J)𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J)

𝑝(𝑀)

=
𝑝(𝑀|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J)𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J)

∑ 𝑝(𝑀|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒B)𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒B)B

=
𝑝`𝑝𝑜𝑤𝑒𝑟L, 𝑝𝑜𝑤𝑒𝑟1, … , 𝑝𝑜𝑤𝑒𝑟�, … , 𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ja𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J)

∑ 𝑝`𝑝𝑜𝑤𝑒𝑟L, 𝑝𝑜𝑤𝑒𝑟1, … , 𝑝𝑜𝑤𝑒𝑟�, … , 𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒BaB

=
∏ 𝑝`𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ja� 𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J)

∑ `∏ 𝑝`𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ba� a𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒B)B

=
∏ 𝑝`𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ja�

∑ `∏ 𝑝`𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ba� aB
 

(3.8) 

 

Rewriting 𝑝(𝑀|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J) in (3.8) as ∏ 𝑝`𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ja�  is appropriate only when 

𝑝𝑜𝑤𝑒𝑟�, 𝑗�� measurement in 𝑀 is independent from others for every 𝑗. Therefore, it is really 

crucial that the measurements are taken from the attacked device as it encrypts plaintexts as 

randomly as possible. Finally, the simplification in the last step of (3.8) can be made because 

the prior probability of every key is equal. 

If the distribution of measurements is approximated by a normal distribution, 

𝑝`𝑝𝑜𝑤𝑒𝑟�|𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒Ja in (3.8) can be calculated via the multivariate variant of the PDF in 

equation (2.1). This variant is given below in (3.9) where ℵ is a row vector of (𝑥L, 𝑥1, … , 𝑥3) 

that correspond to the points picked out of 𝑗�� power measurement 𝑝𝑜𝑤𝑒𝑟� as displayed in 

(3.10) and the pair ℳ  and Σ  are the mean and covariance matrices of the 𝑖��  template 

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J. 

 

𝑃𝐷𝐹2²��J³§´J§�� = 𝑓(𝑥L, 𝑥1, … , 𝑥3|ℳ, Σ)

=
1

V(2𝜋)3|Σ|
𝑒A

L
1(ℵAℳ)µ¶­(ℵAℳ)· 

(3.9) 



32 
 

 ℵ = [𝑥L 𝑥1 ⋯ 𝑥3] (3.10) 

 

This method of finding 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J that maximizes 𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J|𝑀) is called the maximum 

likelihood estimation. 

3.2.1. Choosing the Points of Interest 

To build templates as indicated in the last section, one has to choose points in each 

measurement data so that sample distributions are accumulated that can then be 

approximated by ideal random distribution functions. There are a lot of choices in this step 

and not a single solution exists. There are a lot of data points to pick from, in addition to the 

freedom of processing this data as seen fit. One could pick a single point from each power 

measurement, or pick multiple points to resembled a multivariate random distribution. 

Moreover, points can be added, integrated, averaged and so on. All of this is done so as to 

reduce the number of data points required to build the templates. Ideally, it would yield better 

results to use as many data points as possible to create the templates. But the same can be 

said about the number of measurements as well. As it stands, picking more data points from 

more measurements extends the template building, and consequently the key extraction 

duration. Ergo, a point of equilibrium ought to be found that includes variables such as time, 

accuracy, number of measurements, number of data points and the way these points are 

combined. 

Combining and processing of the data points would only give better results in the existence 

of a time-axis misalignment or when a higher order differential power analysis is in question. 

For the reasons that will be apparent in the sections to come, these two cases are not a subject 

of this text. Apropos of selecting between a single point and multiple points, even though it 

is unmistakable that more points introduce more overhead, multiple points that are picked at 

fairly apart positions do a better job of exploiting distributed leakages. Having this in mind, 

this project utilizes a multivariate random distribution approach based on five variables. The 

choice of number five here is part arbitrary and part from literature. These five variables are 

certain points in the power measurements that include the point of maximum variance, the 

points that are estimated to correlate best with the correct key and some randomly chosen 

points. 
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3.3. CHOOSING AN INTERMEDIATE VALUE 

First and foremost, an intermediate value has to be easily calculable from plaintext or 

ciphertext, and key. The function that produces it needs to be nonlinear enough so that even 

small changes in its input lead to substantial differences in its output. This generates 

variations in the output regardless of similarities between separate inputs. Therefore, 

intermediate values do not mix-up with each other as much and correlate better with 

hypothetical power consumptions. 

Two best candidates for AES are the S-boxes in the first and the last round. If the attack is 

going to be a known or chosen plaintext type, it is very straight forward to pick and apply it 

to one of the S-boxes in the first round. The first round S-boxes accept 8-bit portions of 

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ⊕ 𝑘𝑒𝑦  as their inputs. Hence by choosing its output, one would have an 

intermediate value that is directly a function of the key and the plaintext. For a known or 

chosen ciphertext attack, one could use 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠AL(𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠AL(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ⊕

𝑘𝑒𝑦�§��	´�²3º)) as an intermediate value. This would additionally require calculation of the 

original key from the last round key. 

For the reasons stated above and simplicity, this project focuses on the S-boxes of AES 

alone. To this end, it seeks to create an imaginary scenario in which the output of the first S-

box is attacked by correlation coefficient-based and template-based attack methods. For this 

purpose, a number of different circuits are created, all of which are equivalent when it comes 

to realizing the S-boxes of AES, and treated as the S-boxes in the first round. 
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4. DESIGNS AGAINST POWER ANALYSIS 

As mentioned before power analysis depends on the correlation between power consumption 

and logical operations within the circuit. The most compelling solutions to breaking up this 

correlation would be to create a circuit that consumes constant or random amount of power 

while performing cryptographic functions. 

Another thing power analysis depends on is alignment of power traces recorded, or more 

generally appropriate matching of the samples that belong to different power traces, while 

the circuit performs different encryptions. It can be seen from the application of power 

analysis attacks from the previous section, that one sample of each power trace is treated as 

if they belong to the same statistical population. This is only accurate if they actually 

coincide with the different instances of exactly the same encryption operation performed. 

Otherwise the sample does not correctly represent one single population, reducing the 

correlation with the correct hypothesis. 

4.1. TIME DOMAIN COUNTERMEASURES 

The best countermeasure to be taken against power analysis in terms of its natural 

randomness and lack of unnecessary overhead is building an asynchronous cryptographic 

circuit. However, it is an entirely separate and substantial subject on its own, contents of 

which lay outside of the scope of this thesis. 

As far as synchronous cryptographic circuits are concerned, one could either change the 

order of operations or insert dummy operations to misalign different instances of encryption 

in time domain. But changing the order of operations is limited to the capabilities of the 

algorithm and inserting additional operations introduces unwanted delays. 

All things considered, since this project solely focuses on S-boxes of AES circuits, the 

discussion is limited to a couple of clock periods. Thus, the countermeasures involving time 

domain is not further explored from here on. 
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4.2. AMPLITUDE DOMAIN COUNTERMEASURES 

In the amplitude domain, the main goal is to make the power consumption of the circuit 

independent of the data being operated on by either making it invariant or random for every 

value of those data. 

One solution is to isolate the circuit from the power supply by the help of a low-pass filter 

that evens out the current fluctuations, a charge pump that feeds the circuit with current 

internally after being charged by the power supply or a current regulator that consumes 

current even when the circuit does not. Nonetheless, the low-pass filters and charge pumps 

use capacitors that take up a lot of area, while the current regulators waste too much power. 

The other mentioned approach, that is the randomizing of power consumption, is called 

masking. Masking is based on secret sharing [104][105], which is a method of sharing a 

secret by splitting it into parts. Each part, called a share, is useless on its own, but when it is 

combined with all the other shares, the secret is revealed. In masking, the intermediate value 

becomes the secret. It can only be revealed by combining the masked intermediate value and 

the mask. The masked intermediate value is acquired by applying the mask to the 

intermediate value via an operation such as XOR or multiplication. As long as the mask is 

uniformly and independently random the masked intermediate value is uncorrelated to the 

intermediate value. Masking, as defined here mathematically, can be implemented in 

software. The way to implement it on custom hardware is often achieved through specially 

designed logic gates that calculate its output depending on the value of the mask. The one 

apparent difficulty of masking approach is the generation of the random mask. It requires an 

addition of an RNG circuit and a whole mask distribution network akin to a clock generator 

and a clock distribution network. Which is why it is out of the scope of this thesis. 

The approach of creating a circuit, power consumption of which is data invariant is called 

hiding. A straightforward way to fulfill this objective on a cell level is to design logic gates 

that consume the same amount of power regardless of its inputs. Two fundamental logic 

styles used for this purpose are the CML and dynamic differential logic. The main 

components of CML are a differential pair and a load. Its logic is provided by the polarity 

of small differential voltages and the differential pair is connected to a current sink that sinks 

a mostly constant amount of current. Ergo, compared to static CMOS logic, it consumes so 
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much less dynamic power. Notwithstanding, its static power consumption is high and even 

though other low power variants such as DyCML exist they require additional capacitors 

and are quite complex. 

All this discussion brings one to the dynamic differential logic. The philosophy behind it is 

to have an equal number of input and output transitions for every possible input combination. 

This is attained by representing each signal with a difference of two signals and sequentially 

setting and resetting every signal. All this is explained below in detail. 

4.2.1. Dynamic Differential 

 

Figure 4.1. A differential AND gate 

Differential (dual-rail) logic gates have complementary inputs and outputs. Which means 

every input and output is treated as a voltage difference between two wires and these two 

wires should always be logical NOT of each other. This modus operandi can be realized 

using DeMorgan’s Theorems to create two complementary gates. An example of a 

differential AND gate is given in Figure 4.1 and (4.1). A differential logic gate topology 

called Differential Cascode Voltage Switch Logic (DCVSL) for the gate in Figure 4.1 is 

shown in Figure 4.2. It uses two complementary pull-down networks, whose outputs are 

controlling each other’s pull-up transistor in a positive feedback configuration. Since the 
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pull-up load only consists of a single transistor instead of a network, DCVSL gates have 

comparable footprint to static CMOS logic gates. Usage of differential logic gates eliminates 

the need for inverters, as inverting a signal can be achieved by just swapping the 

complementary wires. However, DCVSL has increased dynamic power consumption 

compared to static CMOS. 

 
𝑄 = 𝐴 ∧ 𝐵

𝑄¾ = 𝐴 ∧ 𝐵¾¾¾¾¾¾¾ = 𝐴̅ ∨ 𝐵¾  (4.1) 

 

 

 

Figure 4.2. Differential Cascode Voltage Switch Logic for an AND gate 

Differential logic gates have some benefits in terms of power analysis too. For example, an 

output transition from one to zero and zero to one both result in transitions in each of the 
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complementary wires. So, if the complementary wires of the output have equal loads, an 

equal amount of charge will be stored and emptied when an output transition occurs. 

However, number of input transitions may vary for different output transitions causing 

disparities in power consumption. Additionally, amount of total charging and discharging 

that happens at the internal nodes may still create an unbalance. Finally, and most 

importantly, input combinations that result in no output transition will very likely consume 

different amount of energy compared to the ones that do. 

To combat these issues, a system should be created in which there is an equal number of 

input and output transitions for every input and output combination. This can be achieved 

by periodically introducing a reset value for every complementary wire between different 

inputs. That way, even if inputs and/or outputs do not change between two instances, there 

will be a transition from a reset value to a valid value for one of the complementary wires. 

Dynamic logic gates can be used to attain this goal. They work in a precharge-evaluation 

cycle that is controlled by a clock. An example of a dynamic AND gate is given in Figure 

4.3. This example exhibits Domino logic, which is the rationale behind the inverter at the 

output. It is among the various methods used for the purposes of cascading dynamic logic 

gates. The operation of Figure 4.3 can be explained this way: regardless of A and B, Q is set 

to logical low at the falling edge of the clock signal, as M3 is in conduction and M4 is in cut-

off, which signifies the precharge phase. At the rising edge of the clock signal, Q becomes 

𝐴 ∧ 𝐵, thus the evaluation phase begins. 

Every time a dynamic logic gate enters the precharge phase, its output is set to a 

predetermined value. When this is coupled with a dual-rail logic style, at each evaluation 

phase one of the complementary wires of each input and output will transition from the 

precharge value, hence half the external nodes will charge or discharge. If the logic gates are 

designed so that complementary wires of each input are connected to equal number of 

transistors, equal amount of charge transfer will take place externally for every input 

combination. 
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Figure 4.3. A dynamic AND gate 

As an example, dynamic logic of Figure 4.3 combined with DCVSL topology of Figure 4.2 

is demonstrated in Figure 4.4. When the CLK signal is logical low, the circuit enters the 

precharge phase and both Q and its complement become logical low. If it is assumed that A, 

B and their complements are outputs of other dynamic differential gates they become logical 

low as well. Consequently, at the end of a precharge phase, every external port of Figure 4.4 

settles to logical low. This resets the previously stored values and prevents glitches. After 

CLK switches to logical high, driven by other gates, one of the complementary wires for both 

inputs is raised to logical high. This in turn drives one of the complementary outputs high. 

M8 and M9 act as positive feedback charge restoration transistors for when the pull-down 
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network remains disconnected for a long time and their 𝑊 𝐿⁄  ratios are smaller compared to 

M5 and M6. 

 

 

Figure 4.4. A dynamic differential AND gate 

4.2.1.1. Internal Structure 

Albeit, Figure 4.4 still has a problem: an unbalanced internal structure. Assume that at the 

end of a precharge phase internal nodes n1, n2, and n4 are high, while n3 is low. Consider 

that in the next evaluation phase 𝐴 = 1  and 𝐵 = 0 . In this case, n2 and n4 will be 

discharged through M4 and M7. Afterwards M8 will enter conduction mode and keep n1 

high. Since M2 is in cut-off and M1 is in conduction, voltage of n3 will rise through M1 and 

M8 until M1 goes into cut-off. Afterwards, as inputs and outputs are delayed compared to the 

clock signal, when CLK becomes low previous input combination will persist for a while. 

Therefore, n2 will be charged through M6 and voltage of n4 will increase because of M4 

and M6 until M4 stops conducting. The other nodes will remain high throughout the 
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precharge phase. Now presume during the next evaluation phase, A and B are both high. This 

time n1, n3 and n4 will be discharged through M2 and M7. Following this, M8 will go into 

conduction mode and keep n2 high. Summary of internal nodes during this sequence is given 

in Table 4.1. 

Figure 4.4 is designed such that M8 and M9 are identical, just as M5 and M6. Not to mention, 

both inverters at the output are made identical as well. However, n1 only has M1, while n2 

has both M3 and M4 connected to it from the pull-down network. Thus, n1 and n2 do not 

have very similar equivalent capacitances. It is seen from Table 4.1 that for both input 

combinations, one of n1 or n2 transitions from high to low while the other remains high. 

For these reasons, power consumption due to these two nodes for different input 

combinations are as dissimilar as their individual equivalent capacitances. Next, it appears 

in Table 4.1 that charging and discharging events of n3 are input dependent. The only node 

that causes equal power consumption for both input combinations is n4 in Table 4.1, as it 

changes from high to low in each case. These imbalances at nodes n1, n2 and n3 cause 

vulnerabilities against power analysis attacks. 

Table 4.1. Internal nodes of a dynamic differential AND gate during different phases 

 n1 n2 n3 n4 

Precharge High High Low High 

𝐴 = 1 𝐵 = 0 High Low High Low 

Precharge High High High High 

𝐴 = 1 𝐵 = 1 Low High Low Low 

 

4.2.1.2. Sense-Amplifier-Based Logic 

The pull-down network of Figure 4.4 should be designed so that, every node except one of 

n1 or n2 is discharged during an evaluation phase and charged during a precharge phase for 

every input combination. If in addition, n1 and n2 have equal total capacitances, total charge 
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transfer during precharge phases as well as evaluation phases will separately be the same no 

matter what the inputs are. 

One way to create symmetrical n1 and n2 is through insertion of NMOS transistors between 

these nodes and the pull-down network. The purpose of is to disconnect these nodes from 

the pull-down network. Adding two NMOS transistors in this manner forms two cross-

coupled inverters with M8 and M9. This inverter configuration is called a sense-amplifier. 

Logic style of this kind is named Sense-Amplifier Bases Logic (SABL). To give an example, 

dynamic differential gate of Figure 4.4 converted to a SABL gate is demonstrated in Figure 

4.5. 

 

 

Figure 4.5. Sense-Amplifier-Based Logic for an AND gate 

In Figure 4.4, n1 is connected to the drain of M1, meanwhile n2 is connected to the drains 

of M3 and M4. This is bound to create imbalance. Yet in Figure 4.5, n1 and n2 are now 

connected to identical ports of identical elements: input of an inverter, drains of two PMOS 
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transistors and drain of an NMOS transistor. Even though one can devise symmetrical pull-

down networks for many complementary Boolean functions, it is easier to make n1 and n2 

very similar while designing the layout, if the pull-down network is taken out of the equation. 

M12 in Figure 4.5 is an always conducting transistor with a long channel that acts as a 

resistance between nodes n5 and n6. After one of n5 or n6 is connected to ground, it 

provides a discharge path for the other. M12 is utilized for the aim of discharging every node 

except one of n1 and n2 during the evaluation phase. The only time this does not happen is 

when inputs A and B are both low. In that situation the pair M1 and M2 are in cut-off, meaning 

there is no low impedance path between n3 and ground. This can be circumvented by 

rearranging the pull-down network so that during an evaluation phase, every internal node 

is connected to either n4, n5 or n6. 

 

 

Figure 4.6. SABL with fully connected differential pull-down network for an AND gate 
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A suggestion is made in [90] by the name of Fully Connected Differential Pull-Down 

Network. It is a method of transforming two complementary Boolean functions to be more 

interconnected. Given a Boolean function and its complement, expressions in the form of 

𝑥 ∨ 𝑦 are searched recursively and replaced by the equivalent expression (𝑥 ∧ 𝑦¾) ∨ 𝑦. If this 

is done for every logical OR operation until only complementary single literals remain, every 

node of the pull-down network will be connected to one of n4, n5 or n6 for every valid 

input combination. This is demonstrated for the AND gate of Figure 4.5 in Figure 4.6. 

As a result of this transformation, when the inputs A and B are both low in Figure 4.6, n3 

will be discharged, as it is connected to n6 via M3. 

 

 

Figure 4.7. SABL with enhanced fully connected differential pull-down network for an 

AND gate 
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The paper in [90] makes an addition to this and names it Enhanced Fully Connected 

Differential Pull-Down Network. In this addition, it attempts to match the resistances of the 

discharge paths of n5 and n6. To do this, it adds two parallel dummy transistors with 

complementary inputs one of which will always be in conduction. So-called enhanced 

version of the gate in Figure 4.6 is displayed in Figure 4.7. 

Everything described so far holds for the following SABL XNOR gate in Figure 4.8. XNOR 

is one of the Boolean functions that actually has size benefits from being built as a 

differential pull-down network rather than single-ended. 

 

Figure 4.8. SABL with enhanced fully connected differential pull-down network for an 

XNOR gate 
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4.2.1.3. Another Dynamic Differential Topology 

Although every internal node is charged during the precharge phase of the gate in Figure 

4.7, only n1 and n2 are charged by PMOS switches. Hence, the other nodes are affected by 

the inefficiencies of using an NMOS as a logical high switch. These inefficiencies include 

less switching speed compared to a PMOS and inability to conduct beyond logical high 

voltage minus gate threshold voltage. 

 

 

Figure 4.9. An AND gate implemented with ADDT 

A solution to this can be found by way of eliminating the sense-amplifier altogether and 

inserting a PMOS transistor to each internal node as a switch which ties the node to logical 

high voltage. That way, every node is charged individually by a PMOS. However, these 

advantages only affect the precharge phase and since the sense-amplifier is removed 
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discharging of the internal nodes depend on the symmetry of the pull-down network. The 

pull-down network of Figure 4.7 is not suitable for this. Instead, a fully symmetrical AND 

pull-down network is used to create the gate in Figure 4.9. This topology will henceforth be 

called ADDT. 

During the evaluation phase of the gate in Figure 4.9, exactly two of n3, n4, n5 and n6 of 

the pull-down network in addition to either n1 or n2 will be discharged during every input 

combination. Therefore, if n3, n4, n5 and n6 have identical capacitances among 

themselves, furthermore if the same is true for n1 and n2, equal amount of current flow will 

take place for different input combinations. 

 

 

Figure 4.10. An XNOR gate implemented with ADDT 
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The requirement for symmetry may come at a cost of increased size compared to a SABL 

gate for some Boolean functions, while it may reduce the size for others. This is 

demonstrated in Figure 4.10 for an XNOR gate. Besides that, it might be less sound to rely 

on symmetry of the internal structure, as creating identical devices with identical nodes gets 

more impractical with bigger and more complex designs. 
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5. FINITE FIELDS 

The purpose of this section is to give a context for how the S-box of AES is implemented 

using finite field arithmetic. To that effect, it is sought to build a bridge between the 

definition of a group which is just a set of elements, a binary operation and a couple of rules, 

and the definitions of a finite field, extension field, normal basis, polynomial basis and 

eventually the composite fields that are used in all finite field arithmetic implementations of 

AES S-box. The subject matter is taken from the book written by [106]. The definitions of 

the book were summarized, rearranged and proven as seen fit. 

5.1. GROUPS 

A group is defined as an arbitrary set with an operation that maps two elements of that set 

to another element in the same set. If the following rules hold, 𝐺 is a group together with a 

binary operation ∗. 

• ∗ is associative, i.e. ∀𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐). 

• 𝐺 has an identity element 𝒆 such that ∀𝑎 ∈ 𝐺, 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎. 

• ∀𝑎 ∈ 𝐺, there exists an inverse 𝑎AL ∈ 𝐺 such that 𝑎 ∗ 𝑎AL = 𝑎AL ∗ 𝑎 = 𝑒. 

This is enough to call 𝐺 a group. But additionally, if a group 𝐺 satisfies ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 =

𝑏 ∗ 𝑎, then it is called a commutative (abelian) group. 

If ∗ is addition, then the group is called an additive group. If it is multiplication, it is named 

a multiplicative group. If every element of an additive group is a multiple of a particular 

element or every element of a multiplicative group is a power of a particular element, it is 

called a cyclic group and this element is called a generator of the group. Every cyclic group 

is commutative, since an operation between two elements of a cyclic group is basically an 

operation between a number of copies of the same generator element. If 𝑎 is a generator of 

a group 𝐺 then the group can be symbolized by 𝐺 = 〈𝒂〉. A cyclic group can have more than 

one generator. The rest of the discussion will be about multiplicative groups, but they equally 

apply to additive groups. 
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A group is called finite, if it has finitely many elements. The number of elements of a finite 

group is called its order. 

There is a concept called equivalence relation 𝐸 defined between two elements of a set 𝑆. 

It has three properties by the name of reflexivity, symmetry and transitivity described in 

order below. 

• ∀𝑎 ∈ 𝑆, (𝑎, 𝑎) ∈ 𝐸. 

• If (𝑎, 𝑏) ∈ 𝐸, then (𝑏, 𝑎) ∈ 𝐸. 

• If (𝑎, 𝑏), (𝑏, 𝑐) ∈ 𝐸, then (𝑎, 𝑐) ∈ 𝐸. 

Equivalence relation creates disjoint subsets of 𝑆 that are called equivalence classes. An 

equivalence class that includes 𝑎 is designated by [𝒂]. 

The most common example of an equivalence relation is equality (=). Another relevant one 

is congruence. Congruence is equivalence with respect to modulus operation i.e. remainder 

of a division by a quantity. E.g. two numbers 𝑎 and 𝑏 are congruent modulo 𝒏, if 𝑎 ≡

𝑏	𝑚𝑜𝑑	𝑛. 

A group may contain subsets which themselves form a group with respect to the same 

operation. These are called subgroups of the group. The subgroups formed by the identity 

element and the group itself are called trivial subgroups. Every other subgroup is called a 

non-trivial subgroup. 

The subset consisting of powers of an element 𝑎 ∈ 𝐺, where 𝐺 is a multiplicative group, 

forms a cyclic subgroup of 𝐺. Because the fact that a multiplication between any number of 

powers of 𝑎 results in another power of 𝑎 makes the subset a group, and since the subset 

contains every power of 𝑎 it is cyclic. 

The subgroup formed by set of all powers of a fixed element 𝑎 is the group generated by 𝑎, 

and is denoted as 〈𝑎〉. If 𝑎£ = 𝑒, then 𝑘 is the order of 𝑎 and any integer 𝑚 such that 𝑎2 =

𝑒, is a multiple of 𝑘 . If 𝑎 is instead a subset 𝑆 of 𝐺 , then subgroup generated by finite 

products of powers of elements of 𝑆 is signified by 〈𝑆〉. 

For a subgroup 𝐻 of 𝐺, assume an equivalence relation such as (𝑎, 𝑏) ∈ 𝐸, where 𝑎 = 𝑏 ∗ 𝑐, 

∀𝑎, 𝑏 ∈ 𝐺 and ∀𝑐 ∈ 𝐻. This equivalence relation is called left congruence 𝑚𝑜𝑑𝑢𝑙𝑜	𝐻 and 
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the equivalence classes it partitions 𝐺 into are called left cosets of 𝐺 modulo 𝐻. They are 

designated by 𝒂 ∗ 𝑯 = {𝑎 ∗ ℎ: ℎ ∈ 𝐻} . Right cosets would be defined exactly the same 

except for the order of operations. Consequently, right and left cosets created by a subgroup 

of a commutative group would be equal. 

Number of elements in each left (right) coset of a group modulo one of its subgroups is equal 

to the order of that subgroup. The reasoning behind this is as follows, cosets are equivalence 

classes defined by the equivalence relation 𝑅(𝑎, 𝑏) → 𝑏 = 𝑎 ∗ ℎ for 𝑏, 𝑎 ∈ 𝐺, ℎ ∈ 𝐻, where 

𝐻 is a subgroup of 𝐺. Each element of a coset is found by applying this equivalence relation 

to each element ℎ of 𝐻 for an element 𝑎 ∈ 𝐺. Therefore, each 𝑎 ∈ 𝐺 can be used to create 

the coset that it belongs in, and the number of elements of that coset is equal to however 

many ℎ ∈ 𝐻 there exists. Applying the equivalence relation between elements of 𝐻 results 

in another element of 𝐻, hence creating the coset that is equal to 𝐻 itself. 

Every subgroup of a cyclic group is cyclic. Let 𝐻 be a subgroup of a cyclic multiplicative 

group generated by 𝑎, i.e. 〈𝑎〉. Since if 𝑎3 ∈ 𝐻, then 𝑎A3 ∈ 𝐻, for 𝐻 is a multiplicative 

group. This means 𝐻 has at least one positive power of 𝑎. Let 𝑥 be the least positive integer 

such that 𝑎B ∈ 𝐻 and let 𝑎¦ ∈ 𝐻. If 𝑦 were not divisible by 𝑥 then it would be 𝑦 = 𝑘𝑥 + 𝑟 

where 𝑟 < 𝑥 is the remainder. In that case, 𝑎¦(𝑎AB)£ = 𝑎´  and 𝐻 being a multiplicative 

group, 𝑎´ ∈ 𝐻. But as 𝑥 is the least positive integer exponent of powers of 𝑎 that are in 𝐻, 𝑟 

has to be zero. Therefore, every element of 𝐻 can be written as powers of 𝑎B and 𝐻 = 〈𝑎B〉. 

Hence 𝐻 is cyclic. 

Let 𝑥 = gcd(𝑚, 𝑘) where 𝑚 is the order of 〈𝑎〉 and 𝑘 is an integer. The order of 〈𝑎£〉 is the 

least positive integer 𝑛 such that 𝑎£3 = 𝑒. For 𝑎£3 to be equal to 𝑒, 𝑘𝑛 should be a multiple 

of 𝑚. As 𝑘 is a multiple of 𝑥, 𝑘𝑛 would be a multiple of 𝑚 only if 𝑛 were a multiple of 2
B

. 

The least such 𝑛 is 2
B

. This implies that for an integer 𝑘 and a cyclic group 〈𝑎〉 of order 𝑚, 

𝑎£ generates a subgroup of order 2
ÓÔÕ(2,£)

. 

Let 𝑥 be a divisor of the order 𝑚 of 〈𝑎〉. There exists only one subgroup of order 𝑥 in 〈𝑎〉. 

This subgroup is generated by 𝑎2 B⁄ . Let 〈𝑎£〉 be another subgroup of 〈𝑎〉 with order 𝑥. This 

means 𝑥 = 2
ÓÔÕ(£,2)

 and gcd(𝑘,𝑚) = 2
B

. Accordingly, 𝑘 is a multiple of 2
B

 and 𝑎£ ∈ 〈𝑎2 B⁄ 〉. 
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Thus 〈𝑎£〉 is a subgroup of 〈𝑎2 B⁄ 〉. But since both 〈𝑎£〉 and 〈𝑎2 B⁄ 〉 have the same order, 

they are identical. 

For a divisor 𝑥 of order 𝑚 of 〈𝑎〉, there are 𝜙(𝑥) elements that generate the subgroup of 

order 𝑥. The expression 𝜙(𝑥) is called Euler’s function of 𝑥, which is the number of integers 

𝑛 where 1 ≤ 𝑛 ≤ 𝑥 that are relatively prime (coprime) to 𝑥. Given an integer 𝑘, for 𝑎£ to 

generate the subgroup of 〈𝑎〉 with order 𝑥, gcd(𝑚, 𝑘) should be equal to 2
B

. This indicates 

that the number of elements generating previously mentioned subgroup is the number of 

integers 𝑘 such that 1 ≤ 𝑘 ≤ 𝑚 and gcd(𝑘,𝑚) = 2
B

 or equivalently number of integers 𝑘 =

𝑦2
B

 where 1 ≤ 𝑦 ≤ 𝑥 and gcd(𝑦, 𝑥) = 1. This is equal to 𝜙(𝑥). 

A cyclic multiplicative group 〈𝑎〉 of order 𝑚 has 𝜙(𝑚) elements that are generators of the 

whole group. Which means there are 𝜙(𝑚) integers 𝑖 that satisfy 〈𝑎J〉 = 〈𝑎〉. This is implied 

in the previous passage when 𝑥 = 𝑚 and the third to last passage when gcd(𝑚, 𝑛) = 1. 

A mapping 𝑓: 𝐺 → 𝐻 of a group 𝐺 into a group 𝐻 is called a homomorphism of 𝐺 into 𝐻 

if 𝑓(𝑎 ∗ 𝑏) = 𝑓(𝑎) ∙ 𝑓(𝑏) holds ∀𝑎, 𝑏 ∈ 𝐺, where ∗ is the operator of 𝐺 and ∙ is the operator 

of 𝐻. The kernel of homomorphism 𝑓 is the set 𝐤𝐞𝐫 𝒇 = {𝑎 ∈ 𝐺: 𝑓(𝑎) = 𝑒}, where 𝑒 is the 

identity element of 𝐻. 

A subgroup 𝐻 of 𝐺 is called a normal subgroup if ∀𝑎 ∈ 𝐺 and ∀𝑏 ∈ 𝐻, 𝑎 × 𝑏 × 𝑎AL = 𝑏. 

Every subgroup of a commutative group is a normal subgroup since 𝑎 × 𝑏 × 𝑎AL =

𝑎 × 𝑎AL × 𝑏 = 𝑏. 

Consider an operation for a subgroup 𝐻 of 𝐺 such as (𝑎 ∗ 𝐻) ∗ (𝑏 ∗ 𝐻) = (𝑎 ∗ 𝑏) ∗ 𝐻. If 𝐻 

is a normal subgroup of 𝐺, the cosets of 𝐺	𝑚𝑜𝑑𝑢𝑙𝑜	𝐻 form a group under the operation 

described in the last statement. This group is called a factor (quotient) group of 𝐺 modulo 

𝐻 and is expressed by 𝑮/𝑯. 

The kernel of homomorphism 𝑓: 𝐺 → 𝐻 is a normal subgroup of 𝐺 since it maps 𝐺 to the 

identity element of 𝐻 , which means ∀𝑎 ∈ 𝐺 , 𝑒 × 𝑎 × 𝑒AL = 𝑎 . Furthermore, 𝐻  is 

isomorphic to 𝐺/ ker 𝑓 . Conversely, if 𝐷  is a normal subgroup of 𝐺 , 𝑔: 𝐺 → 𝐺/𝐷  is a 

homomorphism with ker 𝑔 = 𝐷. 
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5.2. RINGS AND FIELDS 

A ring is a set 𝑅  together with two binary operations ×,+  is defined with following 

properties 

• 𝑅 is a commutative group with respect to +. Therefore, properties of a commutative 

group must apply to 𝑅 and +. 

• × is associative, i.e. (𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐). 

• × is distributive over +, i.e. 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐. 

+  and ×  in these definitions are not necessarily identical to ordinary addition and 

multiplication between numbers. For following definitions 𝟎 signifies the identity element 

of addition. – sign will be used to represent additive inverse, which means ∀𝑎, 𝑏 ∈ 𝑅, 𝑎 −

𝑏 = 0. 

• A ring, for which × is commutative and has an identity element 𝑒 ≠ 0 and has no 

zero divisors (that is 𝑎 × 𝑏 = 0  suggests either 𝑎 = 0  or 𝑏 = 0 ), is called an 

integral domain. 

• A ring is called a division ring if non-zero elements of it form a group under 

multiplication. 

• A commutative division ring is called a field. 

A subring is defined in an analogous manner to a subgroup; in that it is a subset of a ring 

which itself is a ring. Similarly, an ideal is the counterpart of normal subgroup for rings. If 

for a subring 𝐽 of a ring 𝑅, ∀𝑎 ∈ 𝑅 and ∀𝑏 ∈ 𝐽, 𝑎 × 𝑏 ∈ 𝐽 then 𝐽 is an ideal of 𝑅. If every 

element of an ideal 𝐽 of 𝑅 can be generated by an element 𝑎 ∈ 𝑅 it is called a principal ideal 

and is represented by 𝐽 = (𝒂) = {𝑟𝑎: 𝑟 ∈ 𝑅}. 

As ideals are normal subgroups of the additive group of 𝑅, they can divide 𝑅 into disjoint 

cosets called residue classes. Residue class that 𝑎 ∈ 𝑅 belongs is written as [𝑎] = 𝑎 + 𝐽 

(what cosets of 𝐺 modulo 𝐻 𝑎 ∗ 𝐻 would be if ∗ were + and 𝐻 were 𝐽). Elements 𝑎, 𝑏 ∈ 𝑅 

are called congruent modulo 𝐽 (𝑎 ≡ 𝑏	𝑚𝑜𝑑	𝐽) if they are in the same residue class modulo 𝐽. 

Comparable to factor groups, there is a definition called residue class (factor) ring. A 

residue class ring is a ring formed by the residue classes of ring 𝑅 modulo ideal 𝐽 together 
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with the operations (𝑎 + 𝐽) + (𝑏 + 𝐽) = (𝑎 + 𝑏) + 𝐽  and (𝑎 + 𝐽)(𝑏 + 𝐽) = 𝑎𝑏 + 𝐽 

expressed as 𝑹/𝑱. 

Let the elements of a finite integral domain R be 𝑎L, … , 𝑎3. If a non-zero element 𝑏 ∈ 𝑅 were 

to be multiplied with every element of 𝑅, one would acquire 𝑛 distinct results. Distinctness 

of these multiplications is shown by pointing out if 𝑏 × 𝑎J = 𝑏 × 𝑎�, then 𝑎J = 𝑎�. But since 

𝑎L, … , 𝑎3  are distinct, 𝑏 × 𝑎L, … , 𝑏 × 𝑎3  have to be distinct. None of 𝑏 × 𝑎L, … , 𝑏 × 𝑎3 

would equal 0 except 𝑏 × 0 since there are no zero divisors. One of the multiplications 

would be 𝑏 × 𝑎J = 𝑒. Which means 𝑎J is the multiplicative inverse of 𝑏. These conditions 

would hold ∀𝑏 ∈ 𝑅 and make 𝑅 a field. This proves that every finite integral domain is a 

field. 

The ring of residue classes of integers modulo a prime number ℤ/(𝑝) is an integral domain 

with finite order. The explanation is in the following statements. It has an identity element 

[1] . As there are no [𝑎], [𝑏] ∈ 𝑍/(𝑝)  that divide the prime number 𝑝  and [𝑎] × [𝑏] =

[𝑎 × 𝑏] = 0 only if [𝑎 × 𝑏] is a multiple of 𝑝, there are no zero divisors of 𝑍/(𝑝). Lastly, it 

is commutative. As a result of these facts, it is a field. 

Homomorphism for rings is defined as 𝑓: 𝑅 → 𝑆, if ∀𝑎, 𝑏 ∈ 𝑅 , 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏) 

and 𝑓(𝑎 × 𝑏) = 𝑓(𝑎) × 𝑓(𝑏) hold. For such 𝑓, ker 𝑓 is an ideal of 𝑅 and 𝑆 is isomorphic to 

the factor ring 𝑅/ ker 𝑓 . Moreover, for an ideal 𝐽 , the mapping 𝑔: 𝑅 → 𝑅/𝐽  is a 

homomorphism with ker 𝑔 = 𝐽. 

Let 𝓕𝒑 = {0,1, … , 𝑝 − 1}  be a set of integers for a prime 𝑝  and 𝑔: ℤ/(𝑝) → ℱ�  be a 

homomorphism such that 𝑔([𝑎]) = 𝑎 for [𝑎] ∈ ℤ/(𝑝) and 𝑎 ∈ ℱ� . An ℱ�  defined in such 

manner is a finite field and is dubbed the Galois field of order 𝑝. 

For a ring 𝑅 there exists a positive integer 𝑛 such that ∀𝑎 ∈ 𝑅, 𝑎 × 𝑛 = 0. The least such 𝑛 

is called the characteristic of 𝑅. If no positive integer of that sort exists 𝑅 is said to have 0 

characteristic. 

An integral domain 𝑅  with positive characteristic must have prime characteristic. If the 

characteristic 𝑛 were not a prime it could be written as a multiplication of two numbers such 

as 𝑛 = 𝑎 × 𝑏 , so (𝑎 × 𝑏) × 𝑒 = 0 . This means either (𝑎 × 𝑒) = 0  or (𝑏 × 𝑒) = 0  as an 

integral domain has no zero divisors. This implies ∀𝑐 ∈ 𝑅, one of 𝑎 × 𝑐 = 0 or 𝑏 × 𝑐 = 0 
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must be true. This invalidates 𝑛 being the characteristic, since it is not the least positive 

integer that fits the definition. A finite field is an integral domain, and for it has finitely many 

elements, one would eventually reach zero by counting consecutively through integer 

multiples of identity, thence establishing the existence of a positive characteristic. This 

means a finite field has prime characteristic. 

If 𝑅 is a commutative ring, ∀𝑎, 𝑏 ∈ 𝑅, (𝑎 + 𝑏)�® = 𝑎�® + 𝑏�®. This is because coefficients 

of (𝑎 + 𝑏)�  are binomial coefficients `�Ja  for 𝑖 = 1,2, … , 𝑝  and knowing that binomial 

coefficients are integers and `�Ja  has 𝑝  in its numerator which for 𝑖 ≠ 1, 𝑝  cannot be 

cancelled out with any term in the denominator for they are all less than 𝑝, `�Ja is a multiple 

of 𝑝  for 𝑖 ≠ 1, 𝑝 . Consequently, every term except 𝑎�  and 𝑏�  becomes zero. If 𝑛 = 2 , 

(𝑎 + 𝑏)�D = ((𝑎 + 𝑏)�)� = (𝑎� + 𝑏�)� = 𝑎�D + 𝑏�D, and by induction it holds ∀𝑛 ∈ ℤë. 

An integral domain is said to be a principal ideal domain, if every ideal of it is principal. 

For a principal ideal domain 𝑅, residue class ring 𝑅/(𝑎) is a field if and only if 𝑎 is prime. 

5.3. POLYNOMIALS 

Polynomials are expressions in the form of 𝑎s + 𝑎L𝑥 +⋯+ 𝑎3𝑥3 , where 𝑎J  are called 

coefficients and 𝑥  is a variable. If coefficients 𝑎s, 𝑎L, … , 𝑎3 ∈ 𝑅 , then it is called a 

polynomial over 𝑹 and the variable is called an indeterminate over 𝑅. Substituting 𝑏 ∈ 𝑅 

in place of the indeterminate of a polynomial over 𝑅 would result in another 𝑐 ∈ 𝑅. 

The ring formed by polynomials over 𝑅  with two operations polynomial addition and 

multiplication is called the polynomial ring over 𝑅. It is represented as 𝑹[𝒙]. 

If the coefficient of the indeterminate with the greatest exponent that is the leading 

coefficient of a polynomial is the identity element, that polynomial is called a monic 

polynomial. The greatest exponent is called the degree of the polynomial (symbolized by 

deg	(𝑓)  for a polynomial 𝑓 ). A polynomial with zero degree is called a constant 

polynomial. 
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For a field 𝐹, a polynomial 𝑔 ∈ 𝐹[𝑥] divides 𝑓 ∈ 𝐹[𝑥] or 𝑓 is divisible by 𝑔, if there exists 

a polynomial ℎ ∈ 𝐹[𝑥] such that 𝑓 = 𝑔 × ℎ. Otherwise the division of 𝑓 by 𝑔 gives 𝑓 =

𝑔 × ℎ + 𝑟, where 𝑑𝑒𝑔(𝑟) < 𝑑𝑒𝑔(𝑔). 

𝐹[𝑥] is a principal ideal domain where every ideal is generated by a uniquely determined 

monic polynomial. As a proof consider the polynomial of the least degree of an ideal 𝐽. If it 

is divided by its leading coefficient one gets the monic polynomial 𝑔 ∈ 𝐽. ∀𝑓 ∈ 𝐽, if one 

divides 𝑓  by 𝑔  the result would be 𝑓 = 𝑎 × 𝑔 + 𝑟  for 𝑎, 𝑟 ∈ 𝐹[𝑥] . Since 𝑎𝑔 ∈ 𝐽 , 𝑓 −

𝑎 × 𝑔 = 𝑟 ∈ 𝐽 , 𝑑𝑒𝑔(𝑟) < 𝑑𝑒𝑔(𝑔)  and 𝑔  is a member of 𝐽  with the least degree, 𝑟 = 0 . 

Therefore any 𝑓 ∈ 𝐽 of any ideal 𝐽 of 𝐹[𝑥] can be written as (𝑔) = {𝑎 × 𝑔: 𝑎 ∈ 𝐹[𝑥]} for a 

unique monic polynomial 𝑔. 

For 𝑓L, … , 𝑓3 ∈ 𝐹[𝑥], there exists a unique monic polynomial 𝑔 that divides each 𝑓L, … , 𝑓3 

and any other polynomial that also divides each 𝑓L, … , 𝑓3, divides 𝑔. Such 𝑔 is called the 

greatest common divisor of 𝑓L, … , 𝑓3. If 𝑔 = 1, 𝑓L, … , 𝑓3 are called relatively prime. 

A non-constant polynomial 𝑓 ∈ 𝐹[𝑥] is said to be irreducible (prime) over F if it only has 

constant polynomial divisors. 

Any 𝑓 ∈ 𝐹[𝑥] can be uniquely written as 𝑐 × 𝑝L
£­ × …× 𝑝3

£®, where 𝑐 ∈ 𝐹, 𝑘J ∈ ℤë and 𝑝J 

are irreducible polynomials over 𝐹. This decomposition is called prime factorization of 𝑓. 

The residue class ring 𝐹[𝑥]/(𝑓) for 𝑓 ∈ 𝐹[𝑥] is a field if and only if 𝑓 is irreducible over 𝐹. 

Because 𝐹[𝑥] is a principal ideal domain and a residue class ring 𝑅/(𝑎) of a principal ideal 

domain 𝑅 is a field only if 𝑎 is a prime. The structure of 𝐹[𝑥]/(𝑓) is such that it consists of 

residue classes {𝑔 + (𝑓): 𝑔 ∈ 𝐹[𝑥]}, where each residue class can be represented by a unique 

{𝑟 ∈ 𝐹[𝑥]: 𝑑𝑒𝑔(𝑟) < 𝑑𝑒𝑔(𝑓)}, that is the remainder of the division of 𝑔 by 𝑓. If 𝐹 = ℱ� and 

𝑑𝑒𝑔(𝑓) = 𝑛 then the elements of ℱ�[𝑥]/(𝑓) are 𝑝3 polynomials of degree < 𝑛. 

An element 𝑎 ∈ 𝐹 is said to be a root (zero) of a polynomial	𝑓 ∈ 𝐹[𝑥], if 𝑓(𝑎) where 𝑎 is 

substituted for the indeterminate 𝑥, equals zero. If 𝑎 ∈ 𝐹 is a root of 𝑓 ∈ 𝐹[𝑥], 𝑓 is divisible 

by (𝑥 − 𝑎)£ , where 𝑘  is the greatest integer the divisibility holds for and is called the 

multiplicity of 𝑎. The roots with 𝑘 = 1 are called simple roots, whereas the roots with 𝑘 >

1 are called multiple roots. Let {𝑎L, 𝑎1, … , 𝑎3} ∈ 𝐹 be roots of a polynomial 	𝑓 ∈ 𝐹[𝑥] with 
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multiplicities {𝑘L, 𝑘1, … , 𝑘3} ∈ ℤ . Then 𝑓  is divisible by (𝑥 − 𝑎L)£­ × (𝑥 − 𝑎1)£D × …×

(𝑥 − 𝑎3)£®. 

A root 𝑎 ∈ 𝐹 of 𝑓 ∈ 𝐹[𝑥] is a multiple root if and only if it is both a root of 𝑓 and ºí
ºB

. 

If 𝑓 ∈ 𝐹[𝑥] is an irreducible polynomial of degree 𝑛 ≥ 2, it has no root in 𝐹. Otherwise for 

a root 𝑎 ∈ 𝐹, (𝑥 − 𝑎) divides 𝑓. Thus, it is not irreducible. 

5.4. MORE ON FIELDS 

A subset of a field that is itself a field is called a subfield. If the subfield is not equal to the 

field that it is a subfield of, then it is named a proper subfield. A field is thought of as an 

extension field of its proper subfields. 

A subfield of ℱ� has to contain 0 and 1 for it to be a field. It also has to contain every other 

element of ℱ� because considering a subfield of ℱ� that contains 0 and 1, adding an arbitrary 

number of 1s together must result in another member of ℱ� for that subfield to be a subfield 

of ℱ�. This is a consequence of closure property of a subfield under addition. Therefore ℱ� 

does not possess proper subfields. A field possessing no proper subfields is dubbed a prime 

subfield. 

Let 𝐾 be a subfield and 𝑀 a subset of 𝐹. In this case the field that is the intersection of every 

field containing both 𝐾 and 𝑀, in other words smallest field consisting of both 𝐾 and 𝑀 is 

called the extension field of 𝐾 attained by adjoining the elements of 𝑀 and is denoted by 

𝑲(𝑴). If 𝑀 consists of a single element 𝜃, then 𝐾(𝜃) is a simple extension with 𝜃 being its 

defining element. 

If there exists a polynomial 𝑎s + 𝑎L𝜃 + 𝑎1𝜃1 + ⋯+ 𝑎3𝜃3 = 0 where 𝜃 ∈ 𝐹, 𝑎J ∈ 𝐾 and 

not all 𝑎J = 0 for 𝐾 a subfield of 𝐹 and 𝑖 = 1,2, … , 𝑛, 𝜃 is said to be algebraic over 𝐾. 

Consider an ideal of 𝐾[𝑥] such that 𝐽 = {𝑓 ∈ 𝐾[𝑥]: 𝑓(𝜃) = 0} in which 𝜃 is algebraic over 

𝐾. 𝐽 is the principal ideal (𝑔), where 𝑔 is the monic polynomial of the least degree that 

satisfies 𝑔(𝜃) = 0. Such a uniquely defined 𝑔 is called the minimal polynomial of 𝜃 over 
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𝐾. 𝑔 that is described this way is irreducible in 𝐾 and any 𝑓 ∈ 𝐾[𝑥] for which 𝑓(𝜃) = 0 is 

a multiple of 𝑔. 

An extension field 𝐿 of 𝐾 can be thought as a vector space over 𝐾. There are a couple of 

reasons for this comparison. First reason is that the elements of 𝐿 form an abelian group 

under addition. Additionally, there are certain distributive and associative laws for 

multiplication by scalars, namely (𝑎 + 𝑏)(𝛼 + 𝛽) = 𝑎𝛼 + 𝑎𝛽 + 𝑏𝛼 + 𝑏𝛽  and 𝑎(𝑏𝛼) =

(𝑎𝑏)𝛼 where 𝑎𝛼, 𝑎𝛽, 𝑏𝛼, 𝑏𝛽, 𝑎𝑏𝛼 ∈ 𝐿, ∀𝑎, 𝑏 ∈ 𝐾 and ∀𝛼, 𝛽 ∈ 𝐿. 

If the extension field 𝐿 of 𝐾 described above has finite number of dimensions it is called a 

finite extension and the number of dimensions of the vector space is then called the degree 

of 𝐿 over 𝐾 and is represented by [𝑳:𝑲]. 

If an extension field 𝐿  over 𝐾  has a degree 𝑛 , then ∀𝜃 ∈ 𝐿 , {1, 𝜃, 𝜃1, … , 𝜃3}  a set of 𝑛 

different elements at most, must be linearly dependent since 𝐿 acts as a vector space over 𝐾. 

Thus, every finite extension of a field is algebraic over that field. 

Let 𝑔 be the minimal polynomial of 𝜃 over 𝐾 of degree 𝑛. Furthermore, let 𝜏: 𝐾[𝑥] → 𝐾(𝜃) 

be a mapping from 𝐾[𝑥]  to 𝐾(𝜃) . 𝜏  is a homomorphism considering 𝐾(𝜃)  is set of 

polynomials in 𝜃 over 𝐾, so it maps 𝑥 to 𝜃 and ker 𝜏 = {𝑓(𝑥) ∈ 𝐾[𝑥]: 𝑓(𝜃) = 0} = (𝑔). 

This leads to the fact that 𝐾(𝜃) is isomorphic to 𝐾[𝑥]/(𝑔), or equivalently 𝜑:𝐾[𝑥]/(𝑔) →

𝐾(𝜃)  is an isomorphism because 𝜗:𝐾[𝑥] → 𝐾[𝑥]/(𝑔)  is also a homomorphism with 

ker 𝜗 = (𝑔). 

In conjunction with the definition of 𝑔  above, 𝑛  elements {1, 𝜃, 𝜃1, … , 𝜃3}  are linearly 

independent hence they form a basis for the extension 𝐾(𝜃) over 𝐾. 

Let 𝑔 be an irreducible polynomial over 𝐾 , and 𝐿 = 𝐾[𝑥]/(𝑔). Every element of 𝐿 is a 

residue class in the form of [𝑓] = 𝑓 + (𝑔). Since 𝑓 is a polynomial in 𝐾[𝑥], its residue class 

can be written as [𝑓] = [𝑎s + 𝑎L𝑥 + 𝑎1𝑥1 + ⋯+ 𝑎2𝑥2] = [𝑎s] + [𝑎L][𝑥] + [𝑎1][𝑥]1 +

⋯+ [𝑎2][𝑥]2 . Furthermore, as for an 𝑎 ∈ 𝐾 , [𝑎] → 𝑎  is an isomorphism and 𝐾  is a 

subfield of 𝐿, the equation takes the form 𝑎s + 𝑎L[𝑥] + 𝑎1[𝑥]1 + ⋯+ 𝑎2[𝑥]2. This means 

every element of 𝐿 may be thought as a polynomial in [𝑥] over 𝐾, so 𝐿 is a simple extension 

of 𝐾  with the defining element [𝑥] . Lastly, if 𝑔 = 𝑏s + 𝑏L𝑥 + 𝑏1𝑥1 + ⋯+ 𝑏3𝑥3 , then 

𝑔([𝑥]) = 𝑏s + 𝑏L[𝑥] + 𝑏1[𝑥]1 + ⋯+ 𝑏3[𝑥]3 = [𝑏s + 𝑏L𝑥 + 𝑏1𝑥1 + ⋯+ 𝑏3𝑥3] = [𝑔] =
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[0] = 0. Therefore [𝑥] is a root of 𝑔 and the following deduction can be made. For an 

irreducible polynomial over a finite field, there exists a simple extension of that field with 

the root of the polynomial as a defining element. 

Let 𝛼 and 𝛽 be roots of an irreducible polynomial 𝑓 over 𝐾. Then, simple extensions 𝐾(𝛼) 

and 𝐾(𝛽) are isomorphic where 𝐾(𝛼) → 𝐾(𝛽) is equivalent to 𝛼 → 𝛽. 

Let 𝑓 be a polynomial of 𝑛th degree over a field 𝐾. If 𝑓 can be written as linear products in 

𝑥  as 𝑎(𝑥 − 𝛼L)(𝑥 − 𝛼1)… (𝑥 − 𝛼3)  where 𝑎  is the leading coefficient of 𝑓  and 

𝛼L, 𝛼1, … , 𝛼3 ∈ 𝐹  are 𝑛  roots of 𝑓 , additionally if 𝐹  is a field obtained by adjoining 

𝛼L, 𝛼1, … , 𝛼3  to 𝐾 , 𝐹  is called the splitting field of 𝑓  over 𝐾 . 𝐹  is the extension field 

𝐾(𝛼L, 𝛼1, … , 𝛼3) and there is no subfield of 𝐹 that can split 𝑓. One can speak of the splitting 

field of any polynomial over any field. A polynomial 𝑓 over a field 𝐾 can be reduced until 

it is irreducible, then the irreducible parts can be split with adding elements that are not part 

of 𝐾. Ultimately, the smallest field that contains every root of 𝑓 is the splitting field of 𝑓 

over 𝐾. Different splitting fields of 𝑓 over 𝐾 are isomorphic under an isomorphism that 

maps the roots of 𝑓 that are not elements of 𝐾 to each other. 

A finite field has 𝑝3 elements where 𝑝 is a prime and 𝑛 is an integer. Since a finite field has 

a prime characteristic, a prime subfield with that many elements and because it can be 

represented as a vector space over its prime subfield with integer number of dimensions it 

has 𝑝3 elements, 𝑝 being its characteristic and 𝑛 being its degree over its prime subfield. 

For a finite field 𝐹 of 𝑞 elements, ∀𝑎 ∈ 𝐹, 𝑎ø = 𝑎. If 𝑎 = 0, then 𝑎ø = 0. For other cases, 

as nonzero elements of 𝐹 form a multiplicative group of order 𝑞 − 1, 𝑎øAL = 1 and 𝑎ø = 𝑎. 

Let 𝐹 be a finite field with 𝑞 elements and 𝐾 be its subfield. The polynomial 𝑥ø − 𝑥 over 𝐾 

factors in 𝐹 as ∏ (𝑥 − 𝑎)§∈ù , so 𝐹 is the splitting field of 𝑥ø − 𝑥 over 𝐾. Since 𝑥ø − 𝑥 and 

𝑞𝑥øAL − 1 has no common roots which in turn means 𝑥ø − 𝑥 has no repeating roots, and 𝐹 

is a finite field with 𝑞 elements and all 𝑞 elements of 𝐹 satisfy 𝑥ø − 𝑥, the smallest finite 

field that factors 𝑥ø − 𝑥 as such is 𝐹. Any finite field with 𝑞 elements is isomorphic to the 

splitting field of 𝑥ø − 𝑥 over 𝐹�, the finite field with 𝑝 elements where 𝑝 is a prime, hence 

𝑞 is a power of prime 𝑝. 
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Let 𝐹 be the splitting field of 𝑥ø − 𝑥 over 𝐹�. 𝑆 = {𝑎 ∈ 𝐹: 𝑎ø − 𝑎 = 0} is a subfield of 𝐹 as 

0,1 ∈ 𝑆  and furthermore, ∀𝑎, 𝑏 ∈ 𝑆 , (𝑎 − 𝑏)ø = 𝑎ø − 𝑏ø = 𝑎 − 𝑏  and (𝑎𝑏AL)ø =

𝑎ø(𝑏AL)ø = 𝑎𝑏AL where 𝑏 ≠ 0, so 𝑎 − 𝑏, 𝑎𝑏AL ∈ 𝑆. A finite field defined as such must split 

𝐹�[𝑥] = 𝑥ø − 𝑥, since it contains all of its roots. Therefore, 𝑆 = 𝐹 and it has 𝑞 elements 

because ∀𝑎 ∈ 𝐹, 𝑎ø = 𝑎. The finite field or equivalently Galois field with 𝑞 elements is 

shown by 𝐹ø. 

𝐹ø where 𝑞 = 𝑝3, 𝑝 being a prime and 𝑛 being an integer, only has subfields that have 𝑝2 

elements, where 𝑚 is a divisor of 𝑛. If an extension field over a finite field with 𝑝2 elements 

has a degree 𝑘, it has (𝑝2)£ elements. Since every finite field that has 𝑝3 elements for 𝑛 >

1 is an extension field and vice versa, every finite field only has subfields with the described 

number of elements. 

If 𝑚 is a divisor of 𝑛, 𝑝2 − 1 divides 𝑝3 − 1. Because for 𝑛 = 𝑘 ×𝑚, 𝑝3 − 1 = 𝑝£2 −

1 = (𝑝2 − 1)`𝑝(£AL)2 + 𝑝(£A1)2 +⋯+ 𝑝(£A£)2a . Then 𝑥�úAL − 1  divides 𝑥�®AL − 1 

for the same reason. This means 𝑥�ú − 𝑥  divides 𝑥�® − 𝑥 . Therefore 𝑥�® − 𝑥  contains 

every root of 𝑥�ú − 𝑥 and the splitting field of 𝑥�® − 𝑥 has a subfield that is the splitting 

field of 𝑥�ú − 𝑥. 

For a finite group 𝐹ø, multiplicative group formed by the non-zero elements of 𝐹ø (𝐹ø∗) is 

cyclic. Let the order of this group be 𝑚 = 𝑞 − 1 = 𝑝L­́𝑝1D́ … 𝑝3®́  where 𝑝J  are prime 

numbers and 𝑟J ∈ ℤë. Let 𝑎J be an element of 𝐹ø∗ that is not a root of 𝑥
ú
ûü − 1, and 𝑏J = 𝑎J

ú

ûü
ýü

 

be a set for 𝑖 = 1,2, … , 𝑛. 𝑏J
�ü
ýü
= 𝑎J2 = 1, so, the order of 𝑏J is a divisor of 𝑝J

´ü, but since 𝑝J 

is a prime number, it has to be a power of 𝑝J. Additionally, because 𝑎J is not a root of 𝑥
ú
ûü −

1, which means 𝑎J is an element of a group that is bigger than 𝐹ú
ûü
ëL

∗ , hence 𝑎
ú
ûü ≠ 1, the order 

of 𝑏J is 𝑝J
´ü. In accordance with these definitions, the order of the element 𝑏 = 𝑏L𝑏1 …𝑏3 is 

𝑚. If it were not so, then its order would be a divisor of 𝑚, namely 2
�ü

. This would mean 

𝑏
ú
ûü = 𝑏L

ú
ûü𝑏1

ú
ûü … 𝑏3

ú
ûü = 1. However, considering 𝑝�

´þ  divides 2
�ü

 for 𝑖 ≠ 𝑗 , 𝑏J

ú
ûü = 1 for 𝑖 ≠ 𝑗 . 

Therefore, every term in 𝑏
ú
ûü is 1 except 𝑏J

ú
ûü. Yet 𝑏J

ú
ûü has to be equal to 1 as well for 𝑏

ú
ûü = 1, 
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and this is impossible because 2
�ü
= 𝑝L­́𝑝1D́ … 𝑝J

´üAL …𝑝3®́ is not a multiple of 𝑝J
´ü, the order 

of the element 𝑏J . These prove that there is an element 𝑏 ∈ 𝐹ø∗ with order 𝑚, that is the 

generator of the cyclic group 𝐹ø∗. 

A generator of 𝐹ø∗  is called a primitive element of 𝐹ø , and 𝐹ø  has 𝜙(𝑞 − 1)  primitive 

elements. 

If 𝐹§ is a finite extension of a finite field 𝐹ø, then 𝐹§ is a simple algebraic extension of 𝐹ø 

with any primitive element of 𝐹§ as the defining element. Let 𝛼 be a primitive element of 𝐹§. 

Since 𝐹ø(𝛼) contains zero and every power of 𝛼, 𝐹§ = 𝐹ø(𝛼). 

If 𝐹§ is an extension of 𝐹ø of order 𝑞3, then its degree over 𝐹ø is 𝑛, and since 𝐹§ = 𝐹ø(𝛼) for 

some primitive element 𝛼 of 𝐹§ , there exists an irreducible polynomial 𝐹ø[𝑥] of degree 𝑛 

that is the minimal polynomial of 𝛼. 

Let 𝑓 ∈ 𝐹ø[𝑥] be irreducible and 𝛼 ∈ 𝐹ø® be a root of 𝑓. In this case for a 𝑔 ∈ 𝐹ø[𝑥], 𝑔(𝛼) =

0 if and only if 𝑓 divides 𝑔. If 𝑓 is divided by its leading coefficient, it becomes a monic 

polynomial that is the minimal polynomial of 𝛼. The rest follows from the properties of the 

minimal polynomial. 

An irreducible polynomial 𝑓 of degree 𝑚 over 𝐹ø divides 𝑥ø® − 𝑥 if and only if 𝑚 divides 

𝑛. Because if 𝑓 divides 𝑥ø® − 𝑥, for 𝛼 a root of 𝑓, 𝛼ø® = 𝛼. So 𝐹ø(𝛼) is a subfield of 𝐹ø®, 

and as ÿ𝐹ø(𝛼): 𝐹ø! = 𝑚, 𝐹øú = 𝐹ø(𝛼) and 𝑚 divides 𝑛. Starting from the assumption that 

𝑚 divides 𝑛 would imply 𝐹øú is a subfield of 𝐹ø®, and if 𝛼 is a root of 𝑓 in the splitting field 

of 𝑓  over 𝐹ø , then ÿ𝐹ø(𝛼): 𝐹ø! = 𝑚 , 𝐹ø(𝛼) = 𝐹øú  and 𝛼 ∈ 𝐹ø® , ergo 𝛼ø® = 𝛼 . 

Consequently, if 𝛼 is a root of 𝑥ø® − 𝑥, it has to be divisible by 𝑓. 

Let 𝑓 be an irreducible polynomial over 𝐹ø of degree 𝑚, then 𝑓 splits in 𝐹øú with roots in 

the form of "𝛼, 𝛼ø, 𝛼øD, … , 𝛼øú¶­#. Take 𝑓(𝑥) = 𝐹ø[𝑥] = 𝑎s + 𝑎L𝑥 +⋯+ 𝑎2𝑥2 . In this 

case 𝑓ø(𝑥) = (𝑎s + 𝑎L𝑥 +⋯+ 𝑎2𝑥2)ø. Furthermore, as 𝑞 is a power of a prime which is 

equal to the characteristic of 𝐹ø, ∀𝑎 ∈ 𝐹ø, 𝑞𝑎 = 0. Also considering in (𝑢 + 𝑣)ø, every term 

has a binomial coefficient `øJ a that is a multiple of 𝑞, except the first and the last one for 

which the coefficient is equal to one, suggests 𝑓ø(𝑥) = (𝑎s + 𝑎L𝑥 +⋯+ 𝑎2𝑥2)ø = 𝑎s
ø +
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𝑎L
ø𝑥ø + ⋯+ 𝑎2

ø 𝑥2ø. Lastly, because ∀𝑎 ∈ 𝐹ø, 𝑎ø = 𝑎, it holds that 𝑓ø(𝑥) = 𝑎s + 𝑎L𝑥ø +

⋯+ 𝑎2𝑥2ø = 𝑓(𝑥ø). Therefore, if 𝑓(𝛼) = 0, then 𝑓(𝛼ø) = 𝑓ø(𝛼) = 0. 

Irreducible polynomials of the same degree over the same finite field has isomorphic 

splitting fields. 

∀𝛼 ∈ 𝐹øú, the 𝑛 distinct elements 𝛼, 𝛼ø, 𝛼øD, … , 𝛼ø®¶­ ∈ 𝐹øú are named conjugates of 𝛼 

with respect to 𝐹ø. The number 𝑛 is the degree of the minimal polynomial of 𝛼 over 𝐹ø and 

it is a divisor of 𝑚. The conjugates of 𝛼 ∈ 𝐹øú
∗  each have the same order, because 𝐹øú

∗  is 

cyclic and the order 𝑥 of 𝛼 is a divisor of 𝑞2 − 1, so 𝑞£ being a divisor of 𝑞2 where 0 <

𝑘 < 𝑚, the order of 𝛼ø% is B
ÓÔÕ	(B,ø%)

= 𝑥. 

For 𝛼 ∈ 𝐹øú , the trace of 𝛼  over 𝐹ø  is defined as: 𝑇𝑟ù'ú ù'⁄ (𝛼) = 𝛼 + 𝛼ø + 𝛼øD + ⋯+

𝛼øú¶­. Following this definition, discriminant of 𝛼L, 𝛼1, … , 𝛼2 ∈ 𝐹øú is given below in 

(5.1). 

 Δù'ú ù'⁄ (𝛼L, 𝛼1, … , 𝛼2) = )
𝑇𝑟ù'ú ù'⁄ (𝛼L𝛼L) ⋯ 𝑇𝑟ù'ú ù'⁄ (𝛼L𝛼2)

⋮ ⋱ ⋮
𝑇𝑟ù'ú ù'⁄ (𝛼2𝛼L) ⋯ 𝑇𝑟ù'ú ù'⁄ (𝛼2𝛼2)

) (5.1) 

 

{𝛼L, 𝛼1, … , 𝛼2} is a base of 𝐹øú over 𝐹ø, if and only if Δù'ú ù'⁄ (𝛼L, 𝛼1, … , 𝛼2) ≠ 0. A finite 

field 𝐹øú  has many unique bases over 𝐹ø . Nevertheless, certain two types of them have 

special importance on account of being used widely. These are the polynomial basis 

{1, 𝛼, 𝛼1, … , 𝛼2AL} and the normal basis "𝛼, 𝛼ø, 𝛼øD, … , 𝛼øú¶­#. Of course, in both cases, 

the degree of the minimal polynomial of 𝛼 should be 𝑚. 
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6. ADVANCED ENCRYPTION STANDARD 

Advanced Encryption Standard is a symmetrical-key cryptographic algorithm. It has 128-

bit, 192-bit and 256-bit variants. The names of these variants indicate key lengths. 128-bit 

variant has 10 rounds, whereas 192-bit and 256-bit variants have 12 and 14 rounds 

respectively. 

There are five main operations performed. These are called KeyExpansion, 

AddRoundKey, SubBytes, ShiftRows and MixColumns. The latter four are 

performed on what is called a state matrix. State matrix is initially formed by splitting the 

plaintext into its bytes and putting it in a 4-by-𝑥 matrix. The value of 𝑥 depends on the 

variant. The key as well is put into a matrix of same size. The state matrix progressively gets 

modified by previously mentioned four operations, meanwhile the key matrix is updated 

every round by KeyExpansion operation. AddRoundKey is an element-wise XOR 

operation between the key matrix and the state matrix. SubBytes is a substitution operation 

applied to each byte separately. ShiftRows and MixColumns can be jointly thought as 

permutation operations applied to the matrix as a whole. Having described the operations, 

below is how they are implemented: 

• KeyExpansion derives as many keys as there are rounds in addition to the original 

key. 

• AddRoundKey is executed with the original key and plaintext as its inputs. 

• SubBytes, ShiftRows, MixColumns and AddRoundKey are applied to the 

state matrix in written order for 9, 11 or 13 times utilizing another key each round. 

• One last round of SubBytes, ShiftRows and AddRoundKey sequence is run 

to obtain the ciphertext. 

6.1. SUBBYTES 

The SubBytes operation bears great importance both for AES algorithm and power 

analysis. The importance stems from its non-linearity. While this aids to inconvenience 
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attacks based on mathematical methods that focus on the algorithm itself, it inadvertently 

makes side-channel attacks based on power consumption easier. 

This non-linearity is accomplished via a multiplicative inversion in a finite field followed by 

matrix multiplication and bit inversion. The multiplicative inversion is done in a Galois field 

of order 2.  (also shown by 𝐺𝐹(2.)) modulo the irreducible polynomial 𝑥. + 𝑥0 + 𝑥* +

𝑥 + 1. 

SubBytes is applied to the plaintext byte-wise. For that reason, a byte of plaintext is 

thought of as an element in 𝐺𝐹(2.). This works because 𝐺𝐹(2.) has 2. elements and it can 

be represented as a vector space over 𝐺𝐹(2) which has two elements: zero and one. 

6.1.1. Multiplicative Inversion in 𝑮𝑭(𝟐𝟖) 

A straightforward inversion in 𝐺𝐹(2.)  is difficult. Instead, the inversion or the whole 

substitution can be done using a look-up table. The case of calculating the whole SubBytes 

by a look-up table would be the fastest case in terms of delay time of the digital circuitry. 

But it would also require two different 2.-byte look-up tables, one for each of encryption 

and decryption. It would also be unsuitable for pipelining and necessitate the use of 

additional tables for each parallel SubBytes operation. The instantaneous power 

consumption would be high, which would make it particularly vulnerable to power analysis 

attacks. The case where a look-up table is used just for inversion would only require a single 

2.-byte look-up table and the logic circuit for the affine transformations. However, it would 

be just as vulnerable to power analysis attacks because of the similar instantaneous power 

consumption. 

Another method is to calculate the inversion in the isomorphic fields such as the extension 

field 𝐺𝐹((20)1) of 𝐺𝐹(20) instead of 𝐺𝐹(2.), which is an extension over 𝐺𝐹(2). Finding 

the inverse in 𝐺𝐹((20)1) is easier owing to the polynomials (elements of the field) being 

first-degree modulo a second-degree irreducible polynomial over 𝐺𝐹(20) . In order to 

demonstrate, let 𝐴 = 𝑎L𝑥 + 𝑎s  be an element of 𝐺𝐹((20)1), and 𝐴AL = 𝑎L+𝑥 + 𝑎s+  be its 

inverse. It holds that 𝐴 × 𝐴AL = 1, which corresponds to the expression in (6.1). 

 (𝑎L𝑥 + 𝑎s)(𝑎L+𝑥 + 𝑎s+ ) = 1 (6.1) 
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The multiplication is done modulo the irreducible polynomial 𝑥1 + 𝑏L𝑥 + 𝑏s. Hence, the 

right-hand side of the multiplication in (6.1) equals the remainder of 𝑎L𝑎L+𝑥1 +

(𝑎L𝑎s+ + 𝑎s𝑎L+ )𝑥 + 𝑎s𝑎s+  divided by 𝑥1 + 𝑏L𝑥 + 𝑏s, which is given by (6.2). 

 
(𝑎L𝑎s+ + 𝑎s𝑎L+ − 𝑎L𝑎L+𝑏L)𝑥 + 𝑎s𝑎s+ − 𝑎L𝑎L+𝑏s

= (𝑎L𝑎s+ + 𝑎s𝑎L+ + 𝑎L𝑎L+𝑏L)𝑥 + 𝑎s𝑎s+ + 𝑎L𝑎L+𝑏s 
(6.2) 

 

as additive inverse (negative) of an element in 𝐺𝐹(23) is equal to itself for 𝑛 ∈ ℤë. This is 

because the characteristic of these Galois fields is equal to two. All in all, left-hand side of 

(6.1) equals (6.2) and 𝑎L+  and 𝑎s+  is deduced as in (6.3) where 𝛼 is given in (6.4). 

 
(𝑎L𝑎s+ + 𝑎s𝑎L+ + 𝑎L𝑎L+𝑏L)𝑥 + 𝑎s𝑎s+ + 𝑎L𝑎L+𝑏s = 1
(𝑎L𝑎s+ + 𝑎s𝑎L+ + 𝑎L𝑎L+𝑏L) = 0 𝑎s𝑎s+ + 𝑎L𝑎L+𝑏s = 1

𝑎L+ = 𝛼AL𝑎L 𝑎s+ = 𝛼AL(𝑎s + 𝑎L𝑏L)
 (6.3) 

 𝛼 = 𝑎s1 + 𝑎L𝑎s𝑏L + 𝑎L1𝑏s (6.4) 

 

where 𝑎L, 𝑎s, 𝑎L+ , 𝑎s+ , 𝑏L, 𝑏s ∈ 𝐺𝐹(20) . Therefore, the inversion in 𝐺𝐹(2.)  is reduced to 

inversion, multiplication and addition in 𝐺𝐹(20). 

Addition in 𝐺𝐹(23)  such that 𝑛 ∈ ℤë , is just addition of polynomials with binary 

coefficients (coefficients in 𝐺𝐹(2)). It can be realized in a digital circuit by bit-wise logical 

XOR of coefficients of indeterminates with the same exponent. When it comes to the 

inversion and multiplication in 𝐺𝐹(20), they can be accomplished by either 16-byte look-

up tables, simplification of the Boolean functions that are directly derived from 

multiplication and inversion in 𝐺𝐹(20), or a reduction process identical to what has been 

done for 𝐺𝐹(2.), i.e. calculating the multiplication and multiplicative inverse in 𝐺𝐹((21)1). 

The last method is completely analogous to the corresponding method of the inversion in 

𝐺𝐹((20)1). As a result, the multiplication 𝐶 × 𝐶AL = 1 for 𝐶 = 𝑐L𝑥 + 𝑐s  and its inverse 

𝐶AL = 𝑐L+𝑥 + 𝑐s+  in 𝐺𝐹((21)1) modulo 𝑥1 + 𝑑L𝑥 + 𝑑s is equal to the expression in (6.5). 

 (𝑐L𝑐s+ + 𝑐s𝑐L+ + 𝑐L𝑐L+𝑑L)𝑥 + 𝑐s𝑐s+ + 𝑐L𝑐L+𝑑s (6.5) 

 

Moreover, the coefficients of the multiplicative inverse 𝐶AL can be found as 𝑐L+ = 𝛽AL𝑐L and 

𝑐s+ = 𝛽AL(𝑐s + 𝑐L𝑑L), where 𝛽 = 𝑐s1 + 𝑐L𝑐s𝑑L + 𝑐L1𝑑s and 𝑐L, 𝑐s, 𝑐L+ , 𝑐s+ , 𝑑L, 𝑑s ∈ 𝐺𝐹(21). 
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It follows henceforth that the inversion and multiplication in 𝐺𝐹(21) is achieved exactly in 

the same manner. The only irreducible polynomial over 𝐺𝐹(2) of second degree is 𝑥1 + 𝑥 +

1. Therefore, operations in 𝐺𝐹(21) are carried out modulo 𝑥1 + 𝑥 + 1. This leads to the 

following expressions for the inverse and multiplication in 𝐺𝐹(21). If 𝐸 = 𝑒L𝑥 + 𝑒s is an 

element of 𝐺𝐹(21) and 𝐸AL = 𝑒L+𝑥 + 𝑒s+  is its inverse, then 𝑒L+  and 𝑒s+  can be found as in 

(6.6). 

 

𝐸 × 𝐸AL = (𝑒L𝑥 + 𝑒s)(𝑒L+𝑥 + 𝑒s+) = (𝑒L𝑒s+ + 𝑒s𝑒L+ + 𝑒L𝑒L+)𝑥 + 𝑒s𝑒s+ + 𝑒L𝑒L+

= 1 

𝑒L+ = (𝑒s1 + 𝑒L𝑒s + 𝑒L1)AL𝑒L = (𝑒s + 𝑒L𝑒s + 𝑒L)𝑒L = 𝑒L𝑒s + 𝑒L1𝑒s + 𝑒L1

= 𝑒L 

𝑒s+ = (𝑒s1 + 𝑒L𝑒s + 𝑒L1)AL(𝑒s + 𝑒L) = (𝑒s + 𝑒L𝑒s + 𝑒L)(𝑒s + 𝑒L)

= 𝑒s1 + 𝑒L𝑒s1 + 𝑒L𝑒s + 𝑒L𝑒s + 𝑒L1𝑒s + 𝑒L1 = 𝑒s + 𝑒L 

(6.6) 

 

for 𝑒L, 𝑒s, 𝑒L+ , 𝑒s+ ∈ 𝐺𝐹(2) = {0,1}. The simplifications in (6.6) are due to the identities 𝑒1 =

𝑒AL = 𝑒 and 𝑒 + 𝑒 = 0 for 𝑒 ∈ 𝐺𝐹(2). 

In 𝐺𝐹(2) , operations can easily be implemented by simple logic gates. Addition and 

multiplication in 𝐺𝐹(2) are basically logical XOR and logical AND. Through the reduction 

steps explained in the previous passages, multiplicative inverse of an element in 𝐺𝐹(2.) can 

be calculated from bottom-up by doing the arithmetic in 𝐺𝐹(2) and hierarchically going all 

the way up to 𝐺𝐹(((21)1)1). 

All the previous discussion was made for polynomial bases. This leaves the choice of which 

root of an irreducible polynomial defined over a finite field being extended to use, while 

constructing a simple extension. There are two choices for roots of irreducible polynomials 

of second degree for each of 𝐺𝐹(21), 𝐺𝐹((21)1) and 𝐺𝐹(((21)1)1). Another option is to 

use normal basis to represent 𝐺𝐹(21), 𝐺𝐹((21)1) and 𝐺𝐹(((21)1)1), which uses every root 

of an irreducible polynomial as a basis for an extension. 

Everything calculated so far for polynomial bases can be done for normal bases as well. In 

accordance with the previous derivations, let 𝐴 = 𝑎L𝑥L + 𝑎s𝑥s  and its inverse 𝐴AL =

𝑎L+𝑥L + 𝑎s+ 𝑥s be elements of 𝐺𝐹((20)1) with 𝑥L, 𝑥s ∈ 𝐺𝐹((20)1) being two roots of 𝑥1 +
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𝑏L𝑥 + 𝑏s , where 𝑥s = 𝑥L1
- , 𝑥L = 𝑥s1

- , 𝑏L = 𝑥L + 𝑥s  and 𝑏s = 𝑥L𝑥s . The multiplication 

𝐴 × 𝐴AL = 1 turns into the equality in (6.7). 

 

(𝑎L𝑥L + 𝑎s𝑥s)(𝑎L+𝑥L + 𝑎s+ 𝑥s)

= (𝑎L𝑎L+ )𝑥L1 + (𝑎L𝑎s+ + 𝑎s𝑎L+ )𝑥L𝑥s + (𝑎s𝑎s+ )𝑥s1

= (𝑎L𝑎L+𝑏L + 𝛼)𝑥L + (𝑎s𝑎s+ 𝑏L + 𝛼)𝑥s = 1 

(6.7) 

 

where 𝛼 = (𝑎L + 𝑎s)(𝑎L+ + 𝑎s+ )𝑏LAL𝑏s. Because 1 = 𝑏LAL(𝑥L + 𝑥s), one can solve equation 

(6.7) for 𝑎L+  and 𝑎s+  in terms of 𝑎L, 𝑎s, 𝑏L, and 𝑏s as given below in (6.8). 

 

(𝑎L𝑎L+𝑏L + 𝛼)𝑥L + (𝑎s𝑎s+ 𝑏L + 𝛼)𝑥s 	= 𝑏LAL𝑥L + 𝑏LAL𝑥s
(𝑎L𝑎L+𝑏L + 𝛼) = 𝑏LAL (𝑎s𝑎s+ 𝑏L + 𝛼) = 𝑏LAL

𝑎L+ = 𝛽AL𝑎s 𝑎s+ = 𝛽AL𝑎L
𝛽 = 𝑎L𝑎s𝑏L1 + (𝑎L + 𝑎s)1𝑏s

 (6.8) 

 

where 𝑎L, 𝑎s, 𝑎L+ , 𝑎s+ , 𝑏L, 𝑏s ∈ 𝐺𝐹(20). This reduces inversion in 𝐺𝐹(2.)  to operations in 

𝐺𝐹(20) . Corresponding equations for 𝐺𝐹((21)1)  and 𝐺𝐹(21)  are provided in (6.9) for 

𝐺𝐹((21)1) and (6.10) for 𝐺𝐹(21) after the simplifications for 𝐺𝐹(2) are applied as before. 

 

𝐶 = 𝑐L𝑦L + 𝑐s𝑦s 𝐶AL = 𝑐L+𝑦L + 𝑐s+𝑦s
(𝐶 × 𝐶AL)	𝑚𝑜𝑑	(𝑦1 + 𝑑L𝑦 + 𝑑s) = (𝑐L𝑐L+𝑑L + 𝛾)𝑦L + (𝑐s𝑐s+𝑑L + 𝛾)𝑦s

𝛾 = (𝑐L + 𝑐s)(𝑐L+ + 𝑐s+ )𝑑LAL𝑑s
𝑐L+ = 𝛿AL𝑐s 𝑐s+ = 𝛿AL𝑐L
𝛿 = 𝑐L𝑐s𝑑L1 + (𝑐L + 𝑐s)1𝑑s

𝑦s = 𝑦L1
D 𝑦L = 𝑦s1

D 𝑑L = 𝑦L + 𝑦s 𝑑s = 𝑦L𝑦s
𝐶, 𝐶AL, 𝑦L, 𝑦s ∈ 𝐺𝐹((21)1) 𝑐L, 𝑐s, 𝑐L+ , 𝑐s+ , 𝑑L, 𝑑s ∈ 𝐺𝐹(21)

 (6.9) 

 

𝐸 = 𝑒L𝑧L + 𝑒s𝑧s 𝐸AL = 𝑒L+𝑧L + 𝑒s+𝑧s 

(𝐸 × 𝐸AL)	𝑚𝑜𝑑	(𝑧1 + 𝑧 + 1)

= (𝑒L𝑒s+ + 𝑒s𝑒L+ + 𝑒s𝑒s+)𝑧L + (𝑒L𝑒L+ + 𝑒L𝑒s+ + 𝑒s𝑒L+)𝑧s 

𝑒L+ = 𝑒s 𝑒s+ = 𝑒L 

𝑧s = 𝑧L1 𝑧L = 𝑧s1 1 = 𝑧L + 𝑧s 1 = 𝑧L𝑧s 

𝐸, 𝐸AL, 𝑧L, 𝑧s ∈ 𝐺𝐹(21) 𝑒L, 𝑒s, 𝑒L+ , 𝑒s+ ∈ 𝐺𝐹(2) 

(6.10) 

 

The isomorphic fields 𝐺𝐹(((21)1)1) or 𝐺𝐹((20)1) used to represent 𝐺𝐹(2.) by one of the 

methods explained here are called composite fields or tower fields in the literature. 
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6.1.2. Variations on Logical Functions for SubBytes  

Different variations mainly have differences in what basis is used at each level of field 

extension for the inversion in 𝐺𝐹(2.) and how many levels are utilized. What is meant by 

levels of extension is how many reductions as explained in the previous subsection are made 

until the finite field arithmetic operations are actualized with simple logical gates. 

If the multiplicative inversion will not be done in 𝐺𝐹(2.) modulo the irreducible polynomial 

𝑥. + 𝑥0 + 𝑥* + 𝑥 + 1, the element of 𝐺𝐹(2.) to be inverted should be mapped to the new 

isomorphic field, inverted in that field and then mapped back to the original field in order to 

conform to the standard of finding the inverse in the original finite field the AES algorithm 

is designed for. Thereupon, depending on the new isomorphic field the inverse will be found 

in, two conversion matrices should be employed before and after the inversion. The choice 

of isomorphic field is also affected by these matrices. As conversion matrices are applied via 

matrix multiplication, matrices with more zeroes are preferable in order to reduce the logic 

gates necessary for the multiplication. 

Five different SubBytes implementations are considered in this thesis. They vary in their 

aforementioned properties. They are based on five different academic papers on the subject. 

For the purposes of this text, they are named after one of the authors’ names from the 

corresponding paper that they are mainly adapted from. Five of them will be called 

Wolkerstorfer [30], Boyar [54], Canright [43], Nogami [45] and Nekado [46]. 

All of them except Boyar share a common structure. The structure is as such: 

1. The input of SubBytes is converted from the original field to a new field by 

multiplying a mapping matrix 𝑇 of size (8 × 8) modulo 2 from left with the input 

written as a column matrix where the elements of the column matrix are the 

coefficients of the polynomial which is an element of 𝐺𝐹(2.). The coefficients are 

ordered in the column matrix such that, as they are written from top to bottom, the 

exponent of the indeterminate that the coefficient belongs to goes from greatest to 

least. 

2. Multiplicative inverse is found in the new field 
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3. The inverse is converted back to the original field by multiplying it modulo 2 from 

left with a mapping matrix that is the matrix inverse of 𝑇 modulo 2 

4. The affine transformation is applied by multiplying the inverse in the original field 

with 𝐴 matrix from left and adding 𝐵 column matrix to the product modulo 2. 𝐴 and 

𝐵 matrices are shown below in (6.11). 

 𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
1
1
0
0
0
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.11) 

 

The whole process can be represented by the expression in (6.12). 

 𝑂𝑢𝑡𝑝𝑢𝑡7²89¦��� = 𝐴 × 𝑇AL × `𝑇 × 𝐼𝑛𝑝𝑢𝑡7²89¦���a
AL + 𝐵 (6.12) 

 

The multiplicative inverse of `𝑇 × 𝐼𝑛𝑝𝑢𝑡7²89¦���a is calculated in 𝐺𝐹(2.). Multiplications, 

addition and multiplicative inverse of 𝑇 in (6.12) are calculated modulo 2, meaning that the 

remainder after division of every element of the resultant matrices by two is taken as the 

final result. Under these circumstances, multiplications with constant matrices in (6.12) can 

be realized with XOR gates only, whereas the addition of 𝐵 matrix is equivalent to merely 

applying logical NOT to certain bits. 

The input and the output are both column matrices that describe polynomials of the form 

𝐶 = 𝑐;𝑥; + 𝑐<𝑥< + 𝑐=𝑥= + 𝑐0𝑥0 + 𝑐*𝑥* + 𝑐1𝑥1 + 𝑐L𝑥 + 𝑐s  for 𝐶 ∈ 𝐺𝐹(2.) . 𝐶  is 

represented in column matrix form as in (6.13). 

 𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑐;
𝑐<
𝑐=
𝑐0
𝑐*
𝑐1
𝑐L
𝑐s⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.13) 
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6.1.3. Wolkerstorfer 

This SubBytes implementation calculates the multiplicative inverse in 𝐺𝐹((20)1). It uses 

polynomial bases for both 𝐺𝐹((20)1)  and 𝐺𝐹(20) . 𝐺𝐹(20)  is defined with the basis 

{𝑥s*, 𝑥s1, 𝑥s, 1} in which 𝑥s, the defining element, is a root of the irreducible polynomial 𝑥0 +

𝑥 + 1 over 𝐺𝐹(2). 𝐺𝐹((20)1) is defined with the basis {𝑦s, 1} in which 𝑦s is a root of the 

irreducible polynomial 𝑦1 + 𝑦 + 𝑥s* + 𝑥s1 + 𝑥s over 𝐺𝐹(20). 

The matrix that converts the original 𝐺𝐹(2.) to 𝐺𝐹((20)1) (𝑇) and its inverse (𝑇AL) are 

given by (6.14). 

 

𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 1 1 1 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑇AL =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
 (6.14) 

 

An element 𝐷 ∈ 𝐺𝐹((20)1) is represented as 𝐷 = 𝑑L𝑦s + 𝑑s  for which 𝑑L, 𝑑s ∈ 𝐺𝐹(20). 

𝑑L  and 𝑑s  can be written as 𝑑L = 𝑑L*𝑥s* + 𝑑L1𝑥s1 + 𝑑LL𝑥s + 𝑑Ls  and 𝑑s = 𝑑s*𝑥s* +

𝑑s1𝑥s1 + 𝑑sL𝑥s + 𝑑ss in which 𝑑L*, 𝑑L1, 𝑑LL, 𝑑Ls, 𝑑s*, 𝑑s1, 𝑑sL, 𝑑ss ∈ 𝐺𝐹(2). All in all, the 

column matrix representation of an element 𝐷 transforms into the expression in (6.15). 

 𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑L*
𝑑L1
𝑑LL
𝑑Ls
𝑑s*
𝑑s1
𝑑sL
𝑑ss⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.15) 
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Next, Boolean functions of multiplication and multiplicative inversion in 𝐺𝐹(20) are needed 

to fulfill equation (6.3) of finding the multiplicative inverse in 𝐺𝐹((20)1). These functions 

are given in terms of summation and multiplication of two elements in 𝐺𝐹(2) , which 

correspond to XOR and AND operations. 

Product 𝑃 of two elements 𝐸, 𝐹 ∈ 𝐺𝐹(20) is given by (6.16). 

 

𝐸 = ¥

𝑒*
𝑒1
𝑒L
𝑒s

¨ 𝐹 = ¥

𝑓*
𝑓1
𝑓L
𝑓s

¨ 𝑃 = ¥

𝑝*
𝑝1
𝑝L
𝑝s

¨

𝛼 = 𝑒s + 𝑒* 𝛽 = 𝑒1 + 𝑒*
𝑝s = 𝑒s𝑓s + 𝑒*𝑓L + 𝑒1𝑓1 + 𝑒L𝑓* 𝑝L = 𝑒L𝑓s + 𝛼𝑓L + 𝛽𝑓1 + (𝑒L + 𝑒1)𝑓*
𝑝1 = 𝑒1𝑓s + 𝑒L𝑓L + 𝛼𝑓1 + 𝛽𝑓* 𝑝* = 𝑒*𝑓s + 𝑒1𝑓L + 𝑒L𝑓1 + 𝛼𝑓*

 

 

(6.16) 

 

There are two special multiplications that are more convenient to implement on their own. 

They are multiplication of an element by itself (squaring) and multiplication by a constant, 

namely 𝑅 = 𝑥s* + 𝑥s1 + 𝑥s  for a root 𝑥s ∈ 𝐺𝐹(20)  of 𝑥0 + 𝑥 + 1  over 𝐺𝐹(2) . Let 

𝐸, 𝑆, 𝑄, 𝑅 ∈ 𝐺𝐹(20) be given as (6.17). 

 𝐸 = ¥

𝑒*
𝑒1
𝑒L
𝑒s

¨ 𝑆 = ¥

𝑠*
𝑠1
𝑠L
𝑠s

¨ 𝑄 = ¥

𝑞*
𝑞1
𝑞L
𝑞s

¨ 𝑅 = ¥

1
1
1
0

¨ (6.17) 

 

Then 𝑆 = 𝐸1 is given by (6.18). 

 𝑠s = 𝑒s + 𝑒1 𝑠L = 𝑒1 𝑠1 = 𝑒L + 𝑒* 𝑠* = 𝑒* (6.18) 

 

Subsequently, elements 𝑞s, 𝑞L, 𝑞1 and 𝑞* of 𝑄 = 𝑅 × 𝐸 are computed as in (6.19). 

 𝛼 = 𝑒s + 𝑒L 𝛽 = 𝑒1 + 𝑒*
𝑞s = 𝑒L + 𝛽 𝑞L = 𝛼 𝑞1 = 𝛼 + 𝑒1 𝑞* = 𝛼 + 𝛽 (6.19) 

 

The multiplicative inverse 𝐸AL of 𝐸 ∈ 𝐺𝐹(20) is given by (6.20). 
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𝐸 = ¥

𝑒*
𝑒1
𝑒L
𝑒s

¨ 𝐸AL =

⎣
⎢
⎢
⎡𝑒*
+

𝑒1+
𝑒L+
𝑒s+ ⎦
⎥
⎥
⎤

𝛼 = 𝑒L + 𝑒1 + 𝑒* + 𝑒L𝑒1𝑒*
𝑒s+ = 𝛼 + 𝑒s + 𝑒s𝑒1 + 𝑒L𝑒1 + 𝑒s𝑒L𝑒1

𝑒L+ = 𝑒s𝑒L + 𝑒s𝑒1 + 𝑒L𝑒1 + 𝑒* + 𝑒L𝑒* + 𝑒s𝑒L𝑒*
𝑒1+ = 𝑒s𝑒L + 𝑒1 + 𝑒s𝑒1 + 𝑒* + 𝑒s𝑒* + 𝑒s𝑒1𝑒*

𝑒*+ = 𝛼 + 𝑒s𝑒* + 𝑒L𝑒* + 𝑒1𝑒*

 (6.20) 

 

6.1.4. Boyar 

This SubBytes implementation expands 𝐺𝐹(2.)  to 𝐺𝐹(((21)1)1) . It uses the basis 

{𝑥s1, 𝑥s}  for a root 𝑥s  of the irreducible polynomial 𝑥1 + 𝑥 + 1  over 𝐺𝐹(2)  to define 

𝐺𝐹(21). Then it uses {𝑦s0, 𝑦s} in which 𝑦s is a root of the irreducible polynomial 𝑦1 + 𝑦 +

𝑥s over 𝐺𝐹(21) to define 𝐺𝐹((21)1). J. Boyar et al. [54] do not further specify which basis 

or irreducible polynomial is used to represent 𝐺𝐹(((21)1)1). 

In the paper written by J. Boyar et al. [54], SubBytes is classified into two different parts 

called linear and non-linear. Linearity is decided here by the existence of logical AND 

operation. Afterwards, the linear and non-linear sections are subjected to heuristic reduction 

methods described in the paper, which aims to group and cancel the similar parts for the 

linear sections and reduce number of AND gates for the non-linear sections. Nonetheless, 

this project does not resort to the reductions applied to the linear sections in favor of 

automated ad hoc reductions during logic synthesis. 

It is evident at a first glance that (6.12) roughly has a non-linear multiplicative inversion part 

preceded and succeeded by linear parts that are matrix multiplications. It is in fact what is 

discovered in the paper written by J. Boyar et al. [54] with a little difference regarding where 

the different parts start and end. 

In conclusion, this implementation brings about SubBytes by means of the following 

equation in (6.21). 

 𝑂𝑢𝑡𝑝𝑢𝑡7²89¦��� = 𝐾 × 𝐹`𝑈 × 𝐼𝑛𝑝𝑢𝑡7²89¦���a (6.21) 
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𝐾 and 𝑈 in (6.21) are 8-by-18 and 22-by-8 matrices, while 𝐹 is a non-linear function with 

22-bit input and 18-bit output. They are given by (6.22), (6.23) and (6.24), which leads to 

the set of operations in (6.25) for output computed with respect to the input. 

 

𝐾

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(6.22) 

 𝑈 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.23) 

 𝐹J3�²� =

⎣
⎢
⎢
⎢
⎡
𝑦s
𝑦L
⋮
𝑦1s
𝑦1L⎦

⎥
⎥
⎥
⎤

𝐹�²��²� =

⎣
⎢
⎢
⎢
⎡
𝑧s
𝑧L
⋮
𝑧L<
𝑧L;⎦
⎥
⎥
⎥
⎤
 (6.24) 
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𝑡1 = 𝑦L1 × 𝑦L= 𝑡* = 𝑦* × 𝑦< 𝑡0 = 𝑡* + 𝑡1
𝑡= = 𝑦0 × 𝑦s 𝑡< = 𝑡= + 𝑡1 𝑡; = 𝑦L* × 𝑦L<
𝑡. = 𝑦= × 𝑦L 𝑡? = 𝑡. + 𝑡; 𝑡Ls = 𝑦1 × 𝑦;
𝑡LL = 𝑡Ls + 𝑡; 𝑡L1 = 𝑦? × 𝑦LL 𝑡L* = 𝑦L0 × 𝑦L;
𝑡L0 = 𝑡L* + 𝑡L1 𝑡L= = 𝑦. × 𝑦Ls 𝑡L< = 𝑡L= + 𝑡L1
𝑡L; = 𝑡0 + 𝑡L0 𝑡L. = 𝑡< + 𝑡L< 𝑡L? = 𝑡? + 𝑡L0
𝑡1s = 𝑡LL + 𝑡L< 𝑡1L = 𝑡L; + 𝑦1s 𝑡11 = 𝑡L. + 𝑦L?
𝑡1* = 𝑡L? + 𝑦1L 𝑡10 = 𝑡1s + 𝑦L.

𝑡1= = 𝑡1L + 𝑡11 𝑡1< = 𝑡1L × 𝑡1* 𝑡1; = 𝑡10 + 𝑡1<
𝑡1. = 𝑡1= × 𝑡1; 𝑡1? = 𝑡1. + 𝑡11 𝑡*s = 𝑡1* + 𝑡10
𝑡*L = 𝑡11 + 𝑡1< 𝑡*1 = 𝑡*L × 𝑡*s 𝑡** = 𝑡*1 + 𝑡10
𝑡*0 = 𝑡1* + 𝑡** 𝑡*= = 𝑡1; + 𝑡** 𝑡*< = 𝑡10 × 𝑡*=
𝑡*; = 𝑡*< + 𝑡*0 𝑡*. = 𝑡1; + 𝑡*< 𝑡*? = 𝑡1? × 𝑡*.
𝑡0s = 𝑡1= + 𝑡*?

𝑡0L = 𝑡0s + 𝑡*; 𝑡01 = 𝑡1? + 𝑡** 𝑡0* = 𝑡1? + 𝑡0s
𝑡00 = 𝑡** + 𝑡*; 𝑡0= = 𝑡01 + 𝑡0L 𝑧s = 𝑡00 × 𝑦L=
𝑧L = 𝑡*; × 𝑦< 𝑧1 = 𝑡** × 𝑦s 𝑧* = 𝑡0* × 𝑦L<
𝑧0 = 𝑡0s × 𝑦L 𝑧= = 𝑡1? × 𝑦; 𝑧< = 𝑡01 × 𝑦LL
𝑧; = 𝑡0= × 𝑦L; 𝑧. = 𝑡0L × 𝑦Ls 𝑧? = 𝑡00 × 𝑦L1
𝑧Ls = 𝑡*; × 𝑦* 𝑧LL = 𝑡** × 𝑦0 𝑧L1 = 𝑡0* × 𝑦L*
𝑧L* = 𝑡0s × 𝑦= 𝑧L0 = 𝑡1? × 𝑦1 𝑧L= = 𝑡01 × 𝑦?
𝑧L< = 𝑡0= × 𝑦L0 𝑧L; = 𝑡0L × 𝑦.

 (6.25) 

 

In (6.25), 𝑡1=  through 𝑡0s  coincides to the part where the multiplicative inverse in 

𝐺𝐹((21)1) is calculated. 

6.1.5. Canright 

This SubBytes implementation finds the multiplicative inverse in 𝐺𝐹(((21)1)1). 𝐺𝐹(21) 

is defined using the basis {𝑥s1, 𝑥s} with 𝑥s being a root of the irreducible polynomial 𝑥1 +

𝑥 + 1 over 𝐺𝐹(2). Then, 𝐺𝐹((21)1) uses the basis {𝑦s0, 𝑦s}, in which 𝑦s  is a root of the 

irreducible polynomial 𝑥1 + 𝑥 + 𝑥s1  over 𝐺𝐹(21) . Lastly, to get 𝐺𝐹(((21)1)1)  from 

𝐺𝐹((21)1), it uses the basis {𝑧sL<, 𝑧s}, where 𝑧s is a root of the irreducible polynomial 𝑥1 +

𝑥 + 𝑥s𝑦s over 𝐺𝐹((21)1). 

The matrices that map an element of 𝐺𝐹(2.) to 𝐺𝐹(((21)1)1) (𝑇) and vice versa (𝑇AL) are 

presented in (6.26). 
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𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑇AL =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
 (6.26) 

 

After the conversion, an element 𝐷 ∈ 𝐺𝐹(((21)1)1) is represented as in (6.27). 

 

𝐷 = 𝑑L𝑧sL< + 𝑑s𝑧s
𝑑L = 𝑑LL𝑦s0 + 𝑑Ls𝑦s 𝑑s = 𝑑sL𝑦s0 + 𝑑ss𝑦s

𝑑LL = 𝑑LLL𝑥s1 + 𝑑LLs𝑥s 𝑑Ls = 𝑑LsL𝑥s1 + 𝑑Lss𝑥s
𝑑sL = 𝑑sLL𝑥s1 + 𝑑sLs𝑥s 𝑑ss = 𝑑ssL𝑥s1 + 𝑑sss𝑥s

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑LLL
𝑑LLs
𝑑LsL
𝑑Lss
𝑑sLL
𝑑sLs
𝑑ssL
𝑑sss⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.27) 

 

Since the implementation uses normal bases to find the multiplicative inverse at every level, 

the rest follows from (6.8), (6.9) and (6.10), in which the irreducible polynomials are adopted 

as the ones specified for this implementation. 

There are a couple of additional functions to be explicitly defined, which are derived from 

multiplication algorithms in (6.8), (6.9) and (6.10). They aid in simplifying the calculation 

of the multiplicative inverse. The first one is squaring and scaling by 𝑥s𝑦s in 𝐺𝐹((21)1) 

which is used in (6.8). For an element 𝐸 = 𝑒L𝑦s0 + 𝑒s𝑦s in 𝐺𝐹((21)1), squared and scaled 

output is defined as in (6.28). 
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 (𝑒L + 𝑒s)AL𝑦s0 + (𝑒s × 𝑥s1)AL𝑦s (6.28) 

 

The second one is scaling by 𝑥s1 in 𝐺𝐹(21) to be used in (6.9) (inversion). Since squaring in 

𝐺𝐹(21) is the same as multiplicative inversion, which is just switching the coefficients of 

𝑥s1 and 𝑥s, it does not require additional logic. After all, scaling an element 𝐹 = 𝑓L𝑥s1 + 𝑓s𝑥s 

by 𝑥s1 in 𝐺𝐹(21) is reduced to (6.29). 

 𝑓s𝑥s1 + (𝑓L + 𝑓s)𝑥s (6.29) 

 

The last one is multiplication followed by scaling by 𝑥s1  found in (6.9) (multiplication). 

Applying this operation to elements 𝐺 = 𝑔L𝑥s1 + 𝑔s𝑥s  and 𝐻 = ℎL𝑥s1 + ℎs𝑥s  in 𝐺𝐹(21) 

results in (6.30). 

 `(𝑔L + 𝑔s)(ℎL + ℎs) + 𝛼a𝑥s1 + (𝑔LℎL + 𝛼)𝑥s
𝛼 = 𝑔sℎs

 (6.30) 

 

6.1.6. Nogami 

Y. Nogami et al. [45] point out that in finite fields, multiplication is more easily implemented 

using normal basis, although inversion is more easily implemented using polynomial basis. 

As a starting point, Y. Nogami et al. [45] use the irreducible polynomial 𝑥1 + 𝑥 + 1 over 

𝐺𝐹(2), 𝑥1 + 𝑥 + 𝑥s over 𝐺𝐹(21) and 𝑥1 + 𝑥 + 𝑥s1𝑦s over 𝐺𝐹((21)1), in which 𝑥s is a root 

of 𝑥1 + 𝑥 + 1, 𝑦s is a root of 𝑥1 + 𝑥 + 𝑥s and 𝑧s is a root of 𝑥1 + 𝑥 + 𝑥s1𝑦s. Eventually, 

𝐺𝐹(21) is defined over 𝐺𝐹(2) with the basis {𝑥s1, 𝑥s}, 𝐺𝐹((21)1) is defined over 𝐺𝐹(21) 

with the basis {𝑦s, 1}, and 𝐺𝐹(((21)1)1) is defined over 𝐺𝐹((21)1) with the basis {𝑧sL<, 𝑧s}. 

In order to reduce the number of ones contained in the matrices of (6.12), Y. Nogami et al. 

[45] rearrange the multiplicative inversion in 𝐺𝐹(((21)1)1) of (6.8) for normal basis to give 

an output in polynomial basis. To demonstrate, (6.8) is rewritten for an element 𝐷 =

𝑑L𝑧sL< + 𝑑s𝑧s in 𝐺𝐹(((21)1)1) of Nogami as (6.31). 

 𝐷AL = 𝛼AL(𝑑s𝑧sL< + 𝑑L𝑧s)
𝛼 = 𝑑L𝑑s + (𝑑L + 𝑑s)1𝑥s1𝑦s

 (6.31) 
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And since 𝑧sL< = 𝑧s + 1, (6.31) becomes (6.32). 

 𝐷AL = 𝛼AL`(𝑑L + 𝑑s)𝑧s + 𝑑sa (6.32) 

 

Hence the output of (6.31) is converted into polynomial basis in (6.32) with the addition of 

an extra XOR gate. It is seen as a worthy trade in favor of reducing the complexity of 

conversion matrix multiplications. This changing of basis during an operation is called the 

Mixed Bases (MB) approach by Y. Nogami et al. [45]. Subsequently, the conversion 

matrices are provided in (6.33). 

 

𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 1 0 1 0 1 0
0 1 0 0 0 1 1 1
1 0 1 1 0 0 0 1
1 1 0 1 0 1 0 0
0 1 0 1 0 1 0 0
0 0 1 1 1 1 0 0
1 0 0 0 1 0 1 0
1 0 1 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑇AL =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 1 1 1 1 1
0 0 1 0 0 1 0 1
1 1 0 1 1 1 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 0 1 1
1 1 0 0 0 1 0 1
0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
 (6.33) 

 

Y. Nogami et al. [45] then apply this approach of changing the basis at the output of a 

function to 𝐺𝐹((21)1) multiplication and multiplicative inversion. The need to do this stems 

from the simplicity of multiplication in polynomial basis and multiplicative inversion in 

normal basis compared to other bases. But, looking at (6.32) one could see multiplications 

followed by inversion and vice versa. For that reason, if one wishes to implement a 

multiplication in polynomial basis that is followed by an inversion in normal basis and the 

other way around, basis changes similar to the one in (6.32) should be employed. 

The inversion in (6.32) is followed by two parallel multiplications. So, taking (6.9) and 

making the same adjustments to it that are done to (6.31) results in the following equations 

in (6.34). 
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𝐸 = 𝑒L𝑦s0 + 𝑒s𝑦s 𝐸 ∈ 𝐺𝐹((21)1)

𝐸AL = 𝛿AL(𝑒s𝑦s0 + 𝑒L𝑦s) = 𝛿AL`(𝑒s + 𝑒L)𝑦s + 𝑒sa
𝛿 = 𝑒L𝑒s + (𝑒L + 𝑒s)1𝑥s

 (6.34) 

 

Note that, the identity 𝑦s0 = 𝑦s + 1 is used to derive the polynomial basis form of 𝐸AL 

(6.34). The redundancy of an additional XOR gate introduced in (6.34) is outweighed by the 

simpler structure of finding the multiplicative inverse in normal basis. 

There is a multiplication 𝑑L𝑑s and a scaling by 𝑥s1𝑦s in 𝛼 of (6.32) before the inversion. If 

those multiplications are done in polynomial basis, they should be converted to normal basis 

before being operated by (6.34). These modifications to multiplication in (6.5) are shown 

below in (6.35) and (6.36). 

 

𝐹 = 𝑓L𝑦s + 𝑓s 𝐺 = 𝑔L𝑦s + 𝑔s 𝐹, 𝐺 ∈ 𝐺𝐹((21)1) 

𝐹 × 𝐺 = (𝑓L𝑔s + 𝑓s𝑔L + 𝑓L𝑔L)𝑦s + 𝑓s𝑔s + 𝑓L𝑔L𝑥s
= (𝑓s𝑔s + 𝑓L𝑔L𝑥s)𝑦s0

+ `(𝑓s + 𝑓L)(𝑔s + 𝑔L) + 𝑓L𝑔L𝑥sa𝑦s 

(6.35) 

 
𝐹 × 𝑥s1𝑦s = 𝑓L𝑥s1𝑥s𝑦s0 + `(𝑓s + 𝑓L)𝑥s1 + 𝑓L𝑥s1𝑥sa𝑦s

= 𝑓L𝑦s0 + (𝑓s𝑥s1 + 𝑓L𝑥s)𝑦s 
(6.36) 

 

Notice that, the identities 𝑦s0 = 𝑦s + 1 and 𝑥s* = 1 are made use of in deriving (6.35) and 

(6.36). A trade off similar to the one in (6.34) exists in (6.35) and (6.36) as well. 

Finally, squaring in 𝐺𝐹((21)1) polynomial basis, squaring in 𝐺𝐹(21) normal basis, scaling 

by 𝑥s  in 𝐺𝐹(21) normal basis and scaling by 𝑥s1  in 𝐺𝐹(21) normal basis can be reduced 

further from their respective multiplication algorithms ((6.5) and (6.10)). Scaling by 𝑥s1 in 

𝐺𝐹(21) normal basis and squaring in 𝐺𝐹(21) normal basis is exactly the same as Canright. 

The remaining two are given by (6.37) and (6.38). 

 
𝑃 = 𝑝L𝑦s + 𝑝s 𝑃 ∈ 𝐺𝐹((21)1)

𝑃1 = 𝑝L1𝑦s + 𝑝s1 + 𝑝L1𝑥s
 (6.37) 

 𝑄 = 𝑞L𝑥s1 + 𝑞s𝑥s 𝑄 ∈ 𝐺𝐹(21)
(𝑓L + 𝑓s)𝑥s1 + 𝑓L𝑥s

 (6.38) 
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6.1.7. Nekado 

This implementation of SubBytes finds the multiplicative inverse in 𝐺𝐹((20)1) similar to 

Wolkerstorfer. The difference in the paper of K. Nekado et al. [46] arises from its innovative 

approach while representing 𝐺𝐹(20). It makes this approach based on an interesting fact 

about the roots of the polynomial 𝑥0 + 𝑥* + 𝑥1 + 𝑥 + 1 which is irreducible over 𝐺𝐹(2). If 

𝑥s is assumed to be one of its roots, then the following derivation (6.40) about 𝑥s= can be 

made from (6.39). 

 𝑥s0 + 𝑥s* + 𝑥s1 + 𝑥s + 1 = 0 (6.39) 

 
(𝑥s + 1)(𝑥s0 + 𝑥s* + 𝑥s1 + 𝑥s + 1) = 𝑥s= + 1 = 0

𝑥s= = 1
 (6.40) 

 

Which means order of the multiplicative subgroup formed by the powers of 𝑥s is five. What 

is interesting about this is, those five elements include every root of 𝑥0 + 𝑥* + 𝑥1 + 𝑥 + 1 

and 𝑥ss = 1 , namely, "𝑥s1
@ , 𝑥s1

D, 𝑥s1, 𝑥s, 1# . But since it also includes five powers of 𝑥s , 

"𝑥s1
@ , 𝑥s1

D, 𝑥s1, 𝑥s, 1# = {𝑥s0, 𝑥s*, 𝑥s1, 𝑥s, 1} . This is also true because, 𝑥s1
D = 𝑥s0  and 𝑥s1

@ =

𝑥s. = 𝑥s=𝑥s* = 𝑥s*. Furthermore, as two and five are coprime, roots of 𝑥0 + 𝑥* + 𝑥1 + 𝑥 + 1, 

"𝑥s1
@ , 𝑥s1

D, 𝑥s1, 𝑥s# are all generators of the same group, "𝑥s1
@ , 𝑥s1

D, 𝑥s1, 𝑥s, 1#. As a conclusion 

of all these factors, the normal basis and the four polynomial bases that can be composed 

from the roots of 𝑥0 + 𝑥* + 𝑥1 + 𝑥 + 1 and 1 are the `=0a combinations of the five elements, 

{𝑥s0, 𝑥s*, 𝑥s1, 𝑥s, 1}. This is explained by the equations (6.41), (6.42), (6.43), (6.44) and (6.45) 

below. 

 

 
𝑁𝑜𝑟𝑚𝑎𝑙	𝑏𝑎𝑠𝑖𝑠 

"𝑥s, 𝑥s1, 𝑥s1
D = 𝑥s0, 𝑥s1

@ = 𝑥s. = 𝑥s*# = {𝑥s0, 𝑥s*, 𝑥s1, 𝑥s} 
(6.41) 

 
𝐹𝑖𝑟𝑠𝑡	𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙	𝑏𝑎𝑠𝑖𝑠 

{𝑥s*, 𝑥s1, 𝑥s, 1} 
(6.42) 
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𝑆𝑒𝑐𝑜𝑛𝑑	𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙	𝑏𝑎𝑠𝑖𝑠 

{(𝑥s1)* = 𝑥s< = 𝑥s, (𝑥s1)1 = 𝑥s0, 𝑥s1, 1} = {𝑥s0, 𝑥s1, 𝑥s, 1} 
(6.43) 

 

𝑇ℎ𝑖𝑟𝑑	𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙	𝑏𝑎𝑠𝑖𝑠 

A`𝑥s1
Da
*
= 𝑥sL1 = 𝑥s1, `𝑥s1

Da
1
= 𝑥s. = 𝑥s*, 𝑥s1

D = 𝑥s0, 1B = {𝑥s0, 𝑥s*, 𝑥s1, 1} 
(6.44) 

 

𝐹𝑜𝑢𝑟𝑡ℎ	𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙	𝑏𝑎𝑠𝑖𝑠 

A`𝑥s1
@a
*
= 𝑥s10 = 𝑥s0, `𝑥s1

@a
1
= 𝑥sL< = 𝑥s, 𝑥s1

@ = 𝑥s. = 𝑥s*, 1B

= {𝑥s0, 𝑥s*, 𝑥s, 1} 

(6.45) 

 

K. Nekado et al. [46], make a case for redundantly using all of {𝑥s0, 𝑥s*, 𝑥s1, 𝑥s, 1} to represent 

the elements in 𝐺𝐹(20) rather than constraining oneself with any of the five bases shown 

above. They call this representation (or basis) the Redundantly Represented Basis (RRB). 

Rationale behind this redundancy is explained by the ensuing arguments: 

• Elements of 𝐺𝐹(20) are not uniquely defined in RRB. For example, 𝑥s0 + 𝑥s1 is the 

same as 𝑥s* + 𝑥s + 1 because of (6.39). However, this becomes advantageous when 

every element can be represented by five-bit numbers with Hamming weights being 

equal to two or less. 

• Any of the five standard bases can be easily converted to and from the RRB. 

Converting from any of the other basis to RRB is done via representing the missing 

bit by zero. To explain it further, let 𝐷 ∈ 𝐺𝐹(20) be represented in normal basis as 

𝑑*𝑥s. + 𝑑1𝑥s0 + 𝑑L𝑥s1 + 𝑑s𝑥s = 𝑑1𝑥s0 + 𝑑*𝑥s* + 𝑑L𝑥s1 + 𝑑s𝑥s  where 

𝑑1, 𝑑*, 𝑑L, 𝑑s ∈ 𝐺𝐹(2). This element can be turned into a binary number with four 

bits as (𝑑1 𝑑* 𝑑L 𝑑s)1. 𝐷 is equal to 𝑑1𝑥s0 + 𝑑*𝑥s* + 𝑑L𝑥s1 + 𝑑s𝑥s in RRB as 

well. But when it comes to representing it in binary, one should also include the 

coefficient of 1  which is equal to zero. As a result, it becomes 

(𝑑1 𝑑* 𝑑L 𝑑s 0)1. As for converting from RRB to one of the other bases, it is 

simply accomplished through getting rid of the extra bit by distributing it over other 

bits. To give an example, let 𝐷 ∈ 𝐺𝐹(20) be represented by RRB as 𝑑0𝑥s0 + 𝑑*𝑥s* +

𝑑1𝑥s1 + 𝑑L𝑥s + 𝑑s . It can be converted to say the first polynomial basis 
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{𝑥s*, 𝑥s1, 𝑥s, 1} as (𝑑* + 𝑑0)𝑥s* + (𝑑1 + 𝑑0)𝑥s1 + (𝑑L + 𝑑0)𝑥s + (𝑑s + 𝑑0) using the 

equality 𝑥s0 = 𝑥s* + 𝑥s1 + 𝑥s + 1 in accordance with (6.39). 

• This flexibility of RRB provides freedom in choosing the matrices 𝑇 and 𝑇AL that 

convert the AES 𝐺𝐹(2.) to 𝐺𝐹((20)1) and vice versa. Thereupon, these matrices 

can be optimized to contain as many zeros as possible to make the conversions more 

efficient when it comes to the number of logic gates necessary. 

• Another advantage of RRB is the ease of squaring and multiplication by constants 

𝑥s0, 𝑥s*, 𝑥s1, 𝑥s and 1. Both of these operations can theoretically be performed with 

no delay, because they just correspond to rearranging of wires. To demonstrate, let 

𝐷 ∈ 𝐺𝐹(20)  be represented by RRB as 𝑑0𝑥s0 + 𝑑*𝑥s* + 𝑑1𝑥s1 + 𝑑L𝑥s + 𝑑s , then 

𝐷1 = (𝑑0𝑥s0 + 𝑑*𝑥s* + 𝑑1𝑥s1 + 𝑑L𝑥s + 𝑑s)1 = 𝑑01(𝑥s0)1 + 𝑑*1(𝑥s*)1 + 𝑑11(𝑥s1)1 +

𝑑L1𝑥s1 + 𝑑s1 = 𝑑0𝑥s. + 𝑑*𝑥s< + 𝑑1𝑥s0 + 𝑑L𝑥s1 + 𝑑s = 𝑑1𝑥s0 + 𝑑0𝑥s* + 𝑑L𝑥s1 +

𝑑*𝑥s + 𝑑s . Similarly, if 𝐷  is multiplied by a constant 𝑥s1 , it would be 𝐷 × 𝑥s1 =

(𝑑0𝑥s0 + 𝑑*𝑥s* + 𝑑1𝑥s1 + 𝑑L𝑥s + 𝑑s) × 𝑥s1 = 𝑑0𝑥s< + 𝑑*𝑥s= + 𝑑1𝑥s0 + 𝑑L𝑥s* +

𝑑s𝑥s1 = 𝑑1𝑥s0 + 𝑑L𝑥s* + 𝑑s𝑥s1 + 𝑑0𝑥s + 𝑑*. 

• Lastly, the RRB algorithms for multiplication and inversion in 𝐺𝐹(20), equations of 

which are given in (6.46), (6.47) and (6.48), are comparable to other bases in terms 

of critical path delay. 

 

𝐷 = 𝑑0𝑥s0 + 𝑑*𝑥s* + 𝑑1𝑥s1 + 𝑑L𝑥s + 𝑑s
𝐸 = 𝑒0𝑥s0 + 𝑒*𝑥s* + 𝑒1𝑥s1 + 𝑒L𝑥s + 𝑒s
𝐹 = 𝑓0𝑥s0 + 𝑓*𝑥s* + 𝑓1𝑥s1 + 𝑓L𝑥s + 𝑓s

𝐷, 𝐸, 𝐹 ∈ 𝐺𝐹(20)

 (6.46) 
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𝐷 × 𝐸 = (𝑑*𝑒L +	𝑑1𝑒1 +	𝑑s𝑒0 +	𝑑L𝑒* +	𝑑0𝑒s)𝑥s0

+ (𝑑1𝑒L +	𝑑L𝑒1 +	𝑑0𝑒0 +	𝑑s𝑒* +	𝑑*𝑒s)𝑥s*

+ (𝑑L𝑒L +	𝑑s𝑒1 +	𝑑*𝑒0 +	𝑑0𝑒* +	𝑑1𝑒s)𝑥s1

+ (𝑑s𝑒L +	𝑑0𝑒1 +	𝑑1𝑒0 +	𝑑*𝑒* +	𝑑L𝑒s)𝑥s
+ (𝑑0𝑒L +	𝑑*𝑒1 +	𝑑L𝑒0 +	𝑑1𝑒* +	𝑑s𝑒s)

= `(𝑑L + 𝑑*)(𝑒L + 𝑒*) + (𝑑s + 𝑑0)(𝑒s + 𝑒0)a𝑥s0

+ `(𝑑L + 𝑑1)(𝑒L + 𝑒1) + (𝑑s + 𝑑*)(𝑒s + 𝑒*)a𝑥s*

+ `(𝑑s + 𝑑1)(𝑒s + 𝑒1) + (𝑑* + 𝑑0)(𝑒* + 𝑒0)a𝑥s1

+ `(𝑑s + 𝑑L)(𝑒s + 𝑒L) + (𝑑1 + 𝑑0)(𝑒1 + 𝑒0)a𝑥s

+ `(𝑑L + 𝑑0)(𝑒L + 𝑒0) + (𝑑1 + 𝑑*)(𝑒1 + 𝑒*)a 

(6.47) 

 

𝐹AL = (𝐹 × 𝐹0)AL𝐹0

= `(𝑓0𝑥s0 + 𝑓*𝑥s* + 𝑓1𝑥s1 + 𝑓L𝑥s + 𝑓s)(𝑓L𝑥s0 + 𝑓1𝑥s*

+ 𝑓*𝑥s1 + 𝑓0𝑥s + 𝑓s)a
1(𝑓L𝑥s0 + 𝑓1𝑥s* + 𝑓*𝑥s1 + 𝑓0𝑥s + 𝑓s)

= `𝑓s + 𝑓L + (𝑓s + 𝑓0)(𝑓s + 𝑓*)(𝑓1 + 𝑓*)a𝑥s0

+ `𝑓s + 𝑓1 + (𝑓s + 𝑓*)(𝑓s + 𝑓L)(𝑓L + 𝑓0)a𝑥s*

+ `𝑓s + 𝑓* + (𝑓s + 𝑓1)(𝑓s + 𝑓0)(𝑓L + 𝑓0)a𝑥s1

+ `𝑓s + 𝑓0 + (𝑓s + 𝑓L)(𝑓s + 𝑓1)(𝑓1 + 𝑓*)a𝑥s

+ �(𝑓s + 𝑓L)(𝑓s + 𝑓0)(𝑓1 + 𝑓*)¾¾¾¾¾¾¾¾¾¾¾

+ (𝑓s + 𝑓1)(𝑓s + 𝑓*)(𝑓L + 𝑓0)¾¾¾¾¾¾¾¾¾¾¾� 

(6.48) 

 

Through the transformation 𝐹AL = (𝐹 × 𝐹0)AL𝐹0 in (6.48), the multiplicative inversion in 

𝐺𝐹(20) is turned into a multiplicative inversion in 𝐺𝐹(21) and a multiplication in 𝐺𝐹(20). 

The reason 𝐹= ∈ 𝐺𝐹(21)  is because 20 − 1 = (21 − 1)(21 + 1)  and (21 + 1) = 5  is a 

prime. Moreover, according to the definitions made in the Finite Fields chapter, ∀𝐹 ∈

{𝐺𝐹(20) ∖ 𝐺𝐹(21)} − {0}, 𝐹 generates a multiplicative group of order 𝑚 that is a multiple 

of 5  defined in the region 20 − 1 = 15 ≥ 𝑚 ≥ 5 = (21 + 1)  and 𝐹=  generates a 

multiplicative group of order 𝑘 = 2
ÓÔÕ(2,=)

. In conclusion, since gcd(𝑚, 5) = 5 , any 

multiplicative group, 𝐹=  generates must be between (21 − 1) = 3 ≥ 𝑘 ≥ 1 = =
ÓÔÕ(=,=)

. In 

fact, this method can be used to reduce the inversion in 𝐺𝐹(213) to an inversion in 𝐺𝐹(23) 
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by rewriting 𝐹AL , ∀𝐹 ∈ 𝐺𝐹(23)  as `𝐹 × 𝐹1®a
AL
𝐹1® . After all is said and done, the 

multiplicative inversion in 𝐺𝐹(21) is equivalent to a squaring, while the multiplication in 

𝐺𝐹(20) is already given in (6.47). 

In addition to the adoption of RRB for the reasons above, K. Nekado et al. [46] make use of 

the Mixed Bases in the paper of Y. Nogami et al. [45] and after calculating the multiplicative 

inverse in normal basis, it converts the output to polynomial basis. Employment of RRB and 

MB this way opens up many options for the conversion matrices. 

An extensive search is made in this project to find possible 𝑇 and 𝐴 × 𝑇AL candidates that 

have the least number of ones in any row and in total. In doing so, every representation 

mentioned so far has been considered for both the input and the output of the multiplicative 

inversion. It was finally decided on to use the matrices in (6.49). 

 

𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 1 0
1 0 1 1 0 0 1 0
0 0 1 1 1 0 0 0
0 0 1 1 0 0 0 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑇AL =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 1 1 0 0 0
1 1 0 1 1 1 0 0
0 1 1 1 1 0 0 0
0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 0
0 1 1 0 1 0 1 0
1 1 0 1 0 0 0 0
0 1 0 0 1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
 (6.49) 

 

𝑇 converts an element in 𝐺𝐹(2.) to an element 𝑄 = (𝑞L*𝑥s0 + 𝑞L1𝑥s* + 𝑞LL𝑥s + 𝑞Ls)𝑦sL< +

(𝑞s*𝑥s0 + 𝑞s1𝑥s1 + 𝑞sL𝑥s + 𝑞ss)𝑦s ∈ 𝐺𝐹((20)1) . (𝑞L*𝑥s0 + 𝑞L1𝑥s* + 𝑞LL𝑥s + 𝑞Ls)  and 

(𝑞s*𝑥s0 + 𝑞s1𝑥s1 + 𝑞sL𝑥s + 𝑞ss) are then converted to RRB as (𝑞L*𝑥s0 + 𝑞L1𝑥s* + 𝑞L0𝑥s1 +

𝑞LL𝑥s + 𝑞Ls) and (𝑞s*𝑥s0 + 𝑞s0𝑥s* + 𝑞s1𝑥s1 + 𝑞sL𝑥s + 𝑞ss) in which 𝑞L0 = 𝑞s0 = 0. After 

the multiplicative inverse of 𝑄 is calculated as 𝑄AL = (𝑞L0+ 𝑥s0 + 𝑞L*+ 𝑥s* + 𝑞L1+ 𝑥s1 + 𝑞LL+ 𝑥s +

𝑞Ls+ )𝑦s + (𝑞s0+ 𝑥s0 + 𝑞s*+ 𝑥s* + 𝑞s1+ 𝑥s1 + 𝑞sL+ 𝑥s + 𝑞ss+ ) ∈ 𝐺𝐹((20)1) it is converted from RRB 

form to `(𝑞L0+ + 𝑞L1+ )𝑥s0 + (𝑞L*+ + 𝑞L1+ )𝑥s* + (𝑞LL+ + 𝑞L1+ )𝑥s + 𝑞Ls+ + 𝑞L1+ a𝑦s + `(𝑞s0+ +

𝑞s*+ )𝑥s0 + (𝑞s1+ + 𝑞s*+ )𝑥s1 + (𝑞sL+ + 𝑞s*+ )𝑥s + 𝑞ss+ + 𝑞s*+ a . 𝑦s  appearing in the preceding 
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equations is chosen to be a root of the irreducible polynomial 𝑦1 + 𝑦 + 𝑥s0 over 𝐺𝐹(20). 

Ultimately, this representation was converted back into 𝐺𝐹(2.	) with 𝑇AL to carry out the 

rest of the SubBytes operation. 
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7. DESIGN FLOW 

After laying out the finite arithmetic models of five implementations, the main goal is to 

simulate virtual power analysis attacks on circuits based on these implementations using 

different logic gate topologies. 

As a first step towards this goal, SABL and ADDT topologies are applied to a few of the 

most frequently used Boolean functions, creating custom logic gates that are then compared 

against standard cell libraries. 

7.1. DESIGN OF CUSTOM GATES 

Starting point for designing both SABL and ADDT was the XH018 D_CELLS digital 

standard cell library of X-FAB. The devices belonging to this library have 0.18-micron 

drawn gate length and 1.8-Volt DC supply voltage rating. They are described as standard 

speed and power among other libraries present in the XH018 technology. 

Being the most frequently used ones, some timing, voltage, load and size characteristics of 

NAND (NA2X1), NOR (NO2X1) and XNOR (EN2X1) gates in D_CELLS library are listed 

in Table 7.1 and Table 7.2. These characteristics are used as a basis for the corresponding 

SABL and ADDT gates. 

Table 7.1. Timing, voltage and load characteristics of D_CELLS 

 𝑇EFG 𝑇EGF 𝑉HùF 𝑉HùG 𝐶J3 𝐶�²� 𝐼§³I 

NA2X1 169	𝑝𝑠	 133	𝑝𝑠	 53	𝑚𝑉	 73	𝑚𝑉	 5.9	𝑓𝐹	 8.32	𝑓𝐹	 1.41	𝜇𝐴 

NO2X1 290	𝑝𝑠	 84	𝑝𝑠	 59	𝑚𝑉	 63	𝑚𝑉	 6.69	𝑓𝐹	 7.38	𝑓𝐹	 1.47	𝜇𝐴 

EN2X1 307	𝑝𝑠	 228	𝑝𝑠	 34	𝑚𝑉	 46	𝑚𝑉	 10.17	𝑓𝐹	 8.07	𝑓𝐹	 2.45	𝜇𝐴 
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Table 7.2. Transistor sizes of D_CELLS 

 𝑊EMN 𝐿EMN 𝑊EON 𝐿EON 

NA2X1 0.8	𝜇𝑚 180	𝑛𝑚 1	𝜇𝑚 180	𝑛𝑚 

NO2X1 0.66	𝜇𝑚 180	𝑛𝑚 1.4	𝜇𝑚 180	𝑛𝑚 

EN2X1 (nand2) 0.4	𝜇𝑚 180	𝑛𝑚 0.5	𝜇𝑚 180	𝑛𝑚 

EN2X1 (o2na2) 0.78	𝜇𝑚 180	𝑛𝑚 1.44	𝜇𝑚 180	𝑛𝑚 

 

The columns of Table 7.1 and Table 7.2 can be described as such: 

• 𝑇EFG is propagation delay during a low to high transition. 

• 𝑇EGF is propagation delay during a high to low transition. 

• 𝑉HùF is input feedthrough during a low to high transition. 

• 𝑉HùG is input feedthrough during a high to low transition. 

• 𝐶J3 is total input capacitance. 

• 𝐶�²� is open circuit output capacitance. 

• 𝑊EMN is the channel width of the devices contained in the pull-down network. 

• 𝐿EMN is the channel length of the devices contained in the pull-down network. 

• 𝑊EON is the channel width of the devices contained in the pull-up network. 

• 𝐿EON is the channel length of the devices contained in the pull-up network. 

• 𝐼§³I is the average current drawn from the supply. 

• These parameters are calculated by averaging the results of every possible input 

transition. 

• The transition threshold voltage for propagation delays is taken as 0.9	𝑉. 

• The measurements are made with an output load of 25	𝑓𝐹. 

• EN2X1 is defined as 𝐴⨁𝐵 = (𝐴 ∧ 𝐵¾¾¾¾¾¾¾) ∧ (𝐴 ∨ 𝐵)¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾. It consists of two logic gates that 

realize Boolean functions (𝐴 ∧ 𝐵¾¾¾¾¾¾¾) (nand2) and 𝐶 ∧ (𝐴 ∨ 𝐵)¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ (o2na2). Its configured 

such that the output of nand2 is connected to 𝐶 input of o2na2. 
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7.1.1. Schematic 

Two gates are designed for each topology, a NAND and an XNOR gate. Six different 

Boolean functions (AND, NAND, OR, NOR, XOR and XNOR) can be obtained via 

permutating the inputs and outputs of these two gates. Switching the inputs of the NAND 

gate creates an OR gate, while switching the outputs of each gate results in its inversion. 

The processes by which schematic device sizes are determined through are summarized 

below. 

• The output inverters that are common in all four gates are taken from the NOT 

(INX1) gate of D_CELLS for compatibility with the standard cells. 

• The PMOS transistors that are driven by the CLK signal in all four gates are 

equivalent in size to the PMOS of INX1, since the size of that PMOS is suitable for 

charging a node by itself. Moreover, symmetry between the nodes that they charge 

is another concern. So, they have to match in size with each other for a given gate. 

• Every NMOS in the pull-down network of a gate must be identical with each other 

because of symmetry. Only exception to this could be the NMOS driven by the CLK 

signal. The effect of pull-down network on switching speed and input capacitance is 

given in Figure 7.1 and Figure 7.2. 

• The sense-amplifiers of SABL gates can be formed by using minimum-size 

transistors. PMOS transistors of the sense-amplifiers are not used to charge nodes 

but to keep them at VDD voltage, so they can be designed to be small. Additionally, 

since the sense-amplifiers are the last link of a discharge chain, size of their NMOS 

transistors contributes the least in terms of the gate’s switching speed. This is 

demonstrated for comparison against the pull-down network in Figure 7.3 and Figure 

7.4. Lastly, small size of the sense-amplifiers somewhat increases the clock 

feedthrough as shown in Figure 7.5. 

Following these guidelines, initial schematics for four gates were created. Consecutively, 

device sizes were readjusted during the design of the layout. This continued iteratively until 

target specifications are met with minimum possible size and within the layout limitations. 
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Figure 7.1. SABL NAND non-inverting output for PDN widths 420nm-1660nm 

 

 

Figure 7.2. SABL NAND input capacitance for PDN widths 420nm-1660nm 
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Figure 7.3. SABL NAND non-inverting output for PDN widths 420nm-820nm 

 

 

Figure 7.4. SABL NAND non-inverting output for sense-amp widths 420nm-820nm 
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Figure 7.5. SABL NAND n1 node for sense-amp widths 420nm-820nm 

7.1.2. Layout 

As a starting point, the height of the custom gates is chosen to be 4.88	𝜇𝑚 in compliance 

with the standard library cells. Similarly, the heights of N+ Implant and P+ Implant layers 

are set as 1.86	𝜇𝑚 and 2.4	𝜇𝑚, which is the same as they are for the standard library cells. 

These heights correspond to a maximum N+ Active layer height of 1.08	𝜇𝑚 and P+ Active 

layer height of 1.62	𝜇𝑚. These in turn represent maximum channel widths if the Polysilicon 

layer is drawn as a rectangle that intersects the Active layer vertically, meaning transistors 

are lined up horizontally. This kind of transistor placement is the most meaningful one as 

the circuit design consists of rows with fixed height in which cells of same height and 

different widths are placed side by side and uninterrupted N+ and P+ implant layers run 

horizontally. 

The second course of action was to look for Eulerian paths in the schematic. For SABL, 

there is an Eulerian path that starts from one output and ends at its complement, which goes 

through every one of six PMOS transistors in the gate, while there does not exist one for 
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ADDT. The longest Eulerian paths of PMOS transistors in ADDT gates contain two of them. 

When it comes to Eulerian paths that include NMOS transistors, the longest one contains 

eight transistors for SABL NAND and SABL XNOR, seven for ADDT XNOR and nine for 

ADDT NAND. But all these NMOS Eulerian paths include pull-down transistor of only one 

output inverter, which makes an uninterrupted N+ Active layer between two outputs 

impossible, unlike the SABL P+ Active layer. 

It is apparent that there are longer Eulerian paths of NMOS transistors than of PMOS 

transistors. The same relation is true for the number of NMOS and PMOS transistors, so 

NMOS transistors determine the size of the layout for the most part. There are two main 

ways to design the layouts in this case. The first way is to place every PMOS at the top and 

every NMOS at the bottom as regular. But this puts an upper limit to the width of a PMOS 

channel at around 1.62	𝜇𝑚 and NMOS channel at around 1.08	𝜇𝑚. While 1.62	𝜇𝑚 PMOS 

channel width is enough, 1.08	𝜇𝑚 channel width for an NMOS might limit the overall speed 

of the gate as it is shown in Figure 7.1. 

The other way is to reserve a section in the layout where its full height is utilized as N+ 

Implantation layer, therefore giving a lot of room for NMOS transistors placed in any 

orientation. This does not increase the total width of the layout compared to the first way of 

regular placement in the case of SABL NAND, SABL XNOR and ADDT XNOR. Because 

for these gates, the layout width is dominated by NMOS transistors and there is not one 

Eulerian path that covers them all, which results in even longer NMOS sequences. However, 

this way of placement would be greatly disadvantageous in terms of size for ADDT NAND. 

That is because of ADDT NAND’s comparatively greater number of PMOS transistors and 

the presence of an Eulerian path that contains almost every NMOS transistor of it, which 

makes possible a regular placement, where PMOS and NMOS transistors placed tightly takes 

approximately equal amount of horizontal space. Using instead the second way of placement 

would leave a lot of empty space and produce a considerably bigger layout in comparison to 

other three custom gates. The downside of this, as it was mentioned, is a reduction in 

switching speed. Yet, the fact that there are more XNOR/XOR gates than 

NAND/AND/NOR/OR gates for all five SubBytes implementations as shown in Table 7.9 

lessens the negative consequences of this design choice for ADDT NAND. 



92 
 

Lastly, it is decided that the pull-down transistors of the output inverters are to be left out of 

the Eulerian paths. Including only one of them in the path does not really decrease the width 

of the layout, not to mention it results in a small negative effect on symmetry. 

Everything explained so far leads to the layouts and device sizes given in Table 7.3, Table 

7.4, Table 7.5, Table 7.6, Figure 7.6, Figure 7.7, Figure 7.8 and Figure 7.9. 
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Table 7.3. SABL NAND Sizes 

Pull-Down 

Network of 

Figure 4.7 

 M1 M2 M3 M4 M13 M14 

W	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	
 

Charge and 

Discharge 

Switches of 

Figure 4.7 

 M5 M6 M7 M12 

W	 1.68	𝜇𝑚	 1.68	𝜇𝑚	 1.66	𝜇𝑚	 220	𝑛𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 1	𝜇𝑚	
 

Sense-

Amplifier of 

Figure 4.7 

 M8 M9 M10 M11 

W	 420	𝑛𝑚	 420	𝑛𝑚	 420	𝑛𝑚	 420	𝑛𝑚	

L	 180	𝑛𝑚	 180	𝑛𝑚	 180	𝑛𝑚	 180	𝑛𝑚	
 

Inverters of 

Figure 4.7 

 
Inverter Pull-Up 

Transistor 

Inverter Pull-Down 

Transistor 

W	 1.68	𝜇𝑚	 660	𝑛𝑚	

L	 185	𝑛𝑚	 180	𝑛𝑚	
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Table 7.4. SABL XNOR Sizes 

Pull-Down 

Network of 

Figure 4.8 

 M1 M2 M3 M4 M13 M14 

W	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	
 

Charge and 

Discharge 

Switches of 

Figure 4.8 

 M5 M6 M7 M12 

W	 1.68	𝜇𝑚	 1.68	𝜇𝑚	 1.6	𝜇𝑚	 220	𝑛𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 180	𝑛𝑚	 1	𝜇𝑚	
 

Sense-

Amplifier of 

Figure 4.8 

 M8 M9 M10 M11 

W	 420	𝑛𝑚	 420	𝑛𝑚	 420	𝑛𝑚	 420	𝑛𝑚	

L	 180	𝑛𝑚	 180	𝑛𝑚	 180	𝑛𝑚	 180	𝑛𝑚	
 

Inverters of 

Figure 4.8 

 
Inverter Pull-Up 

Transistor 

Inverter Pull-Down 

Transistor 

W	 1.68	𝜇𝑚	 660	𝑛𝑚	

L	 185	𝑛𝑚	 180	𝑛𝑚	
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Table 7.5. ADDT NAND Sizes 

Pull-Down Network of 

Figure 4.9 

 M1 M2 M3 M4 

W	 1.14	𝜇𝑚	 1.14	𝜇𝑚	 1.14	𝜇𝑚	 1.14	𝜇𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	

 

 M5 M6 M7 M8 

W 1.14	𝜇𝑚 1.14	𝜇𝑚 1.14	𝜇𝑚 1.14	𝜇𝑚 

L 185	𝑛𝑚 185	𝑛𝑚 185	𝑛𝑚 185	𝑛𝑚 
 

Charge and Discharge 

Switches of Figure 4.9 

 M9 M10 M11 M12 

W	 1.49	𝜇𝑚	 1.49	𝜇𝑚	 1.49	𝜇𝑚	 1.49	𝜇𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	

 

 M13 M14 M15 M16 

W	 1.49	𝜇𝑚 1.49	𝜇𝑚 1.49	𝜇𝑚 1.49	𝜇𝑚 

L 185	𝑛𝑚 185	𝑛𝑚 185	𝑛𝑚 185	𝑛𝑚 
 

Inverters of Figure 4.9 

 
Inverter Pull-Up 

Transistor 

Inverter Pull-Down 

Transistor 

W	 1.68	𝜇𝑚	 660	𝑛𝑚	

L	 185	𝑛𝑚	 180	𝑛𝑚	
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Table 7.6. ADDT XNOR Sizes 

Pull-Down 

Network of 

Figure 4.10 

 M1 M2 M3 M4 M5 M6 

W	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	 1.66	𝜇𝑚	

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	
 

Charge and 

Discharge 

Switches of 

Figure 4.10 

 M7 M8 M9 M10 M11 M12 

W	 1.68	𝜇𝑚	 1.68	𝜇𝑚	 1.68	𝜇𝑚	 1.68	𝜇𝑚	 1.68	𝜇𝑚 1.68	𝜇𝑚 

L	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚	 185	𝑛𝑚 185	𝑛𝑚 
 

Inverters of 

Figure 4.10 

 
Inverter Pull-Up 

Transistor 

Inverter Pull-Down 

Transistor 

W	 1.68	𝜇𝑚	 660	𝑛𝑚	

L	 185	𝑛𝑚	 180	𝑛𝑚	
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Figure 7.6. SABL NAND 

 

 

Figure 7.7. SABL XNOR 
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Figure 7.8. ADDT NAND 

 

 

Figure 7.9. ADDT XNOR 

A few remarks about the layouts: 

• Minimum channel width of the Sense-amplifier transistors is limited by the minimum 

contact size, so they are 420	𝑛𝑚  wide ( 𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑐𝑜𝑛𝑡𝑎𝑐𝑡	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 +
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𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑐𝑜𝑛𝑡𝑎𝑐𝑡	𝑡𝑜	𝑎𝑐𝑡𝑖𝑣𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 2 = 220	𝑛𝑚 + 100	𝑛𝑚 × 2 =

420		𝑛𝑚). Increasing the distance between contacts to allow minimum channel width 

of 220	𝑛𝑚 instead, would require a larger area in this case. 

• The transistors with 185	𝑛𝑚 channel lengths are the ones with non-rectangular gate 

areas. The gates are drawn this way to squeeze more transistors horizontally. The 

extra channel length caused by this irregular shape is negligible, but the increased 

channel width somewhat makes difference. Nevertheless, increasing the size of these 

transistors mainly serves to pass the Layout Versus Schematic verifications. 

For the sake of comparison, several parameters that belong to the newly created gates are 

measured and summed up below in Table 7.7. 

Table 7.7. Timing, voltage and load characteristics of SABL and ADDT 

 𝑇EQ 𝑇EE 𝑉7ùQ 𝑉7ùE 𝐶J3 𝐶�²� 𝐼§³I 

SABL NAND 237	𝑝𝑠	 293	𝑝𝑠	 19	𝑚𝑉	 30	𝑚𝑉	 13.49	𝑓𝐹	 11.2	𝑓𝐹	 5.91	𝜇𝐴 

SABL XNOR 278	𝑝𝑠	 229	𝑝𝑠	 20	𝑚𝑉	 31	𝑚𝑉	 13.45	𝑓𝐹	 11.23	𝑓𝐹	 5.91	𝜇𝐴 

ADDT NAND 256	𝑝𝑠	 178	𝑝𝑠	 28	𝑚𝑉	 38	𝑚𝑉	 11.94	𝑓𝐹	 11.12	𝑓𝐹	 6.09	𝜇𝐴 

ADDT XNOR 234	𝑝𝑠 185	𝑝𝑠 29	𝑚𝑉 37	𝑚𝑉 12.83	𝑓𝐹 11.12	𝑓𝐹 5.97	𝜇𝐴 

 

Timing and voltage characteristics in Table 7.7 have been chosen as to better represent the 

dynamic differential topology and still relate to static CMOS gates as much as possible. 

These differing characteristics are explained below. 

• 𝑇EQ is average low-to-high propagation delay during evaluation phase. 

• 𝑇EE is average high-to-low propagation delay during precharge phase. 

• 𝑉7ùQ  is the feedthrough of sense-amplifiers to the output of the inverters during 

evaluation phase. 

• 𝑉7ùE  is the feedthrough of sense-amplifiers to the output of the inverters during 

precharge phase. 
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7.2. DIGITAL DESIGN 

During the digital design phase, four different semi-custom design methods using four 

different set of logic gates are adopted to build eleven circuits in total from five 

implementations (Wolkerstorfer, Boyar, Canright, Nogami and Nekado). These four 

methods are listed below. 

• In the first design all five implementations are built using a restricted set of 

D_CELLS standard cell library. The set only contains standard power, standard 

speed and two-input NAND, AND, NOR, OR, XNOR, XOR and NOT (single input) 

gates to conform with the previously built custom SABL and ADDT gates. These 

five circuits are examined in contrast to each other, taking into consideration in order 

of importance: their power analysis resistance, size and power consumption 

attributes. Based on this examination, two (Canright and Nekado) out of five 

implementations are picked for three further designs. 

• The second design utilizes the same library but does not restraint what type of logic 

gates are used during the synthesis step. Motivation behind this is to observe the 

impact of reductions that are possible through full usage of a standard library on the 

effectiveness of power analysis attacks. Because this would be the typical case when 

it comes to designing ASICs based on standard cell libraries. 

• The last two designs (third and fourth designs) make use of the same netlist as the 

first one, since the custom SABL and ADDT gates are based on the gates used in the 

first design. On that grounds, the synthesis step is skipped. The third design is made 

with SABL gates and the fourth one is made with ADDT gates. 

The summary of the circuits created during the digital design by pairing five 

implementations and four designs is given in Table 7.8. Later in the text, the naming 

convention in Table 7.8 will be used instead of explicitly specifying the design and the 

implementation.  
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Table 7.8. Circuits created with each design and implementation 

 Wolkerstorfer Boyar Canright Nogami Nekado 

First Design 

(Subset of 

D_CELLS) 

Wolkerstorfer_1 Boyar_1 Canright_1 Nogami_1 Nekado_1 

Second Design 

(D_CELLS) 
- - Canright_2 - Nekado_2 

Third Design 

(SABL) 
- - Canright_3 - Nekado_3 

Fourth Design 

(ADDT) 
- - Canright_4 - Nekado_4 

 

7.2.1. Algorithmic and Behavioral Description 

As a first step, five preceding implementations are developed algorithmically in MATLAB 

and verified for correct mapping of 8-bit inputs to 8-bit outputs as in the AES SubBytes 

operation. 

After previous implementations are proven to operate properly, their behavioral descriptions 

are written in Verilog and tested in Xilinx Vivado Design Suite software. 

7.2.2. Logic Synthesis 

Netlists are synthesized in Cadence Genus Synthesis Solution software using Verilog 

behavioral descriptions of the previous step. Two different netlists are synthesized for four 

designs. One of the netlists is used by design number one, three and four, while the other is 

used in design number two. 

Each circuit is designed to perform one SubBytes operation during a clock cycle. Clock 

period for the first and the second designs is determined according to this criterion with a 
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comfortable margin. The third and the fourth designs are assumed to work properly with the 

same clock period, since decision of the prior designs’ clock period already takes into 

account the disparities between custom logic gates and the standard library cells. Not to 

mention, custom logic gates of the last two designs are created with the aim of having similar 

timing characteristics with the cells in the first designs, even though their typical load 

capacitances will vary. On that account, the synthesis results of the first design are taken as 

they are for the third and fourth designs with only difference being name of the logic gates 

in the netlists. 

A few properties for the synthesis tool to work, concerning the input drivers, output loads 

and clock imperfections are set to inconsequential values. These are given as such: 

• 20 MHz clock frequency 

• 300 picoseconds of rising and falling edge clock slew. 

• 500 picoseconds of delay between the rising edge of the clock and the arrival of a 

settled input from an external block. 

• 500 picoseconds of delay between the settling of the output and the rising edge of 

the next clock cycle, which won’t matter as the clock period is determined so that the 

output settles way earlier. 

• The input is set to be driven by a standard speed, standard power and two-input, 

inverting multiplexer cell called MU2IX1. If the designed SubBytes is to be used 

in a cryptographic circuit that has both encryption and decryption capabilities, 

multiplicative inversion is usually shared between these operations. In those cases, 

the input to SubBytes is usually a multiplexer. In other cases, it may be a D flip-

flop. 

• Each output is set to drive an external load of 25 femtofarads. Through simulation 

and available timing library data, input loads of standard power, standard speed cells 

of the D_CELLS library are found to be around 5 femtofarads. This led to the 

somewhat arbitrary choice of 25-femtofarad output load for synthesis. 

The second design employs two iterations of synthesis. Both synthesis iterations use more 

or less the same settings. Iteration number two is performed after the design goes through 

one place and route iteration. It uses the created layout as a reference and makes additional 
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post-place-and-route optimizations to the netlist. The other designs only go through 

synthesis once. 

Besides creating layouts, the Verilog netlist files are also used in Cadence Virtuoso 

Schematic Editor to create schematics. 

The logic cell and timing statistics of the first design is given below in Table 7.12. The same 

gate numbers apply to the third and fourth designs with the exception of NOT gates, since 

NOT gates are not needed in differential designs. The second design contains plethora of 

cells and their list is omitted for the sake of brevity. Still, to give some information, total 

gate counts of Canright_2 and Nekado_2 are 112 and 130, while their estimated delays are 

20113	𝑝𝑠 and 14396	𝑝𝑠. 

Table 7.9. Gate statistics for the first, third and fourth designs 

 Boyar Canright Nekado Nogami Wolkerstorfer 

XNOR 78 64 56 63 61 

XOR 30 34 50 42 41 

NAND 22 13 34 25 37 

AND 5 9 8 6 22 

NOR 11 15 6 14 10 

OR 6 7 7 4 3 

NOT 7 5 9 13 7 

Total 159 147 170 167 181 

Estimated Delay 10768	𝑝𝑠 13682	𝑝𝑠	 10251	𝑝𝑠	 12676	𝑝𝑠	 12067	𝑝𝑠	

 

7.2.3. Place and Route 

Place and route stage follows three different paths, one for the first design, one for the second 

design and one for the rest. Just as in the synthesis step, the second design goes through two 

iterations, whereas it is performed a single time for the others. These tasks are accomplished 

with the help of Cadence Innovus Implementation System software. 
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With that in mind, place and route steps of different designs are described in the succeeding 

subsections. 

7.2.3.1. First Design 

• First course of action is floorplanning. Since the netlist and the physical properties 

of the cells in the netlist are known, how much total area the circuit will take up is 

practically known as well. What is left to decide is the core aspect ratio, core 

utilization ratio and core to I/O boundary distance. Core is where the cells are placed. 

Thus, its aspect ratio and utilization ratio are bound by its routability. These 

properties are kept at software’s defaults which are around 1 for aspect ratio and 0.7 

for utilization ratio. Core to I/O boundary is set to 15 micrometers in order to fit the 

power and ground rings in between and reserve some space for input and output pins. 

• Next thing in line is power routing. This includes placing power rings around the 

core and stripes over it so as to create a mesh on top of the circuit that distributes 

power evenly in the interest of reducing IR drops and electromigration. The rings are 

made of metal-6 layer on the sides and metal-5 layer on the top and bottom. The 

widths of the rings’ metal lines are set to 2 micrometers. The distance between the 

GND and VDD rings are set to 1 micrometer. The distance of rings to the core is set 

to 2 micrometers. The vertical stripes are made of 4 equally-spaced 2-micrometer-

wide metal-6 lines and the horizontal stripes are made of 4 equally-spaced 2-

micrometer-wide metal-5 lines. VDD and GND stripes run in parallel 1 micrometer 

apart from each other. The last part of power routing is connecting cells to the power 

grid. This is also done automatically by the software tool through creating horizontal 

metal-1 lines that are set apart by the constant height of one cell inside the core area. 

Later on, cells are going to be placed between these lines. 

• After power routing, the cells are placed in agreement with the netlist. Which means 

the cells that are connected are attempted to be placed in close proximity. But since 

cells cannot be too packed together as this would cause congestion issues during 

routing, the spaces are filled by filler cells to maintain continuity of n-well and 

implant layers. 
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• Following the placement, cells are routed. Routing is limited between metal-1 and 

metal-4 layers. The top two layers are reserved for power routing. 

• Lastly, floating metal layers are placed everywhere around the circuit to attain a 

certain amount of metal density and uniformity. This is called metal filling. 

• After the design is completed, a series of verifications are performed. These include 

DRC, connectivity, antenna violations and metal density verifications. 

7.2.3.2. Second Design 

The first iteration of place and route for the second design follows the same path with a few 

minor differences. These are listed below. 

• The core aspect ratio is between 0.8 and 0.9 as default. 

• It suffices to have two power stripes instead of four, since the design is smaller. 

• Filler cells are not placed, since the placement of logic cells will be modified in the 

ensuing synthesis step. 

• Since the second design will go through another synthesis and place and route after 

this one, metal filling step is skipped. It takes place after place and route of a design 

is finalized.  

• During verification, metal density check is skipped and the design is exported in DEF 

format to be used in the second synthesis iteration 

Fewer steps are performed in the second iteration. Because the design is imported from the 

second synthesis iteration as already placed. This placement occurs during the first place and 

route iteration and is further modified in the second synthesis iteration. In conjunction with 

these, the floorplanning, power routing and placement steps are mostly skipped. The 

differences between this iteration and preceding iteration of place and route are listed below. 

• The only thing done in terms of power routing and placement is to place the filler 

cells according to the modified logic cells, and re-route the power connection of cells. 

• As this is the final placement of cells, the interconnections between them are 

conclusively routed. 

• Then, metal fill is added to complete the layout. 
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• Every verification in the first iteration is performed again with the addition of metal 

density verification. 

7.2.3.3. Third and Fourth Designs 

The main difference between last two design flows and the first one is routing. As it was 

made clear in the dynamic differential gates section, balancing capacitances of the 

complementary outputs is a big factor in power analysis resistance. Also mentioned is the 

fact that the output capacitances are dominated by metal lines connecting outputs to other 

cells. Therefore, complementary outputs should be connected to metal lines with equal areas. 

The most straightforward way of accomplishing this is to run the metal lines belonging to 

complementary nets in parallel. Any other method would be too complicated to be 

accomplished by automated tools. Yet, creating the metal lines manually would be too 

difficult as well for a large netlist. For these reasons, the first mentioned method of running 

metal lines in parallel is adopted in the last two designs. 

Using the first design flow as a reference again, a list of differences between the last two 

design flows and the first are given below. 

• The core utilization ratio is set to 0.3, since higher ratios are tested and found to be 

unroutable by the routing tool as a result of congestion. 

• Before placement, complementary wires are defined as differential pairs. Primary 

reason for this is to make Cadence Innovus skip routing those nets. Cadence Innovus’ 

routing tool lacks space-aware routing capabilities. Hence, the routing of nets except 

those that belong to input, output and clock are going to be carried out in Cadence 

Virtuoso Space-Based Router (VSR), which is a part of Virtuoso Layout Suite. 

• After the cells are placed and the aforementioned nets are routed, a DRC verification 

is performed as a last step in Cadence Innovus. The designs are then exported to 

Cadence Virtuoso. 

• In Cadence Virtuoso Layout Suite, complementary nets are designated as differential 

pairs that are to be routed in parallel with the minimum distance allowed by foundry 

constraints. Then routing is proceeded in VSR as explained before. 
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• Routing in VSR is performed a couple of times. The tool fails to route every net 

without DRC and connectivity issues in one try. The first time, it is performed on all 

nets. Then the remaining faulty nets are rerouted until the violations are eliminated. 

Sometimes, when the tool is not able to route a few remaining nets, they are manually 

routed without adhering to differential pair rules if necessary. 

7.2.3.4. Finalizing the Layout 

After the layouts are designed, they are exported to Cadence Virtuoso, where they and the 

schematics are going to be brought together for a post-layout simulation. Here, one last DRC 

check and a Layout-vs-Schematic check is performed. Afterwards, parasitic extraction of 

resistances and capacitances for each layout is executed through Cadence Quantus 

Extraction Solution. Parasitic resistances are extracted using a mix of square counting and 

resistance mesh technique where more accurate extraction of resistances between contacts 

is necessary. During square counting, maximum fracture length is not restricted. 

When the extractions are completed, new layouts are created, adding the extracted parasitic 

components to the original layouts. These final layouts form the basis for succeeding post-

layout simulations. 

7.2.4. Post-Layout Simulation 

Series connection of AddRoundKey trailed by SubBytes has two inputs (key and 

plaintext) and one output (ciphertext), all of which are 8-bit numbers. Even though 

AddRoundKey consists of only eight XOR gates which carry out a bit-wise XOR operation 

between key and plaintext, it is still included in the simulations. However, it should be noted 

this increases the number of input combinations from 2. to 2L<, which is very significant. 

All things considered, the final layouts for each design is simulated for every input 

combination (65536 times). 

The simulations were 60	𝑛𝑠 long, which included a 10	𝑛𝑠 initial period during which clock 

signal was low. This is succeeded by a low-to-high transition of clock which initiates the 

evaluation phase and a high-to-low transition 25	𝑛𝑠 later which initiates the precharge phase 
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that lasts 25	𝑛𝑠. All in all, the supply current is measured 65536 times during a single 

evaluation and precharge cycle. In order to save simulation time and space, parasitic 

elements that are negligible below 50	𝑀𝐻𝑧 are ignored and the results are retrieved starting 

from 10	𝑛𝑠 mark with a 10	𝑝𝑠 step size, which amounts to 5001 data points per supply 

current measurement. 

7.2.4.1. Criteria for Assessment of Resistance 

What determines the resistance of a cryptographic circuit against power analysis attacks as 

well as any other attack, is the number of tries necessary along with time it takes to perform 

a try to extract the key. For example, considering a brute-force attack on 128-bit variant of 

AES, it takes a maximum of 2L1. and an average of 2L1; encryptions to find the key, so 

however long it takes can be calculated by multiplying the number of encryptions with the 

average time it takes to perform an encryption. 

On this basis, every implementation and every design in this project is compared with one 

another according to how many power measurements it takes to extract the key or otherwise 

how much the attack reduces the subset of keys in which the correct key exists. In doing so, 

various power-analysis techniques are experimented with. 

Nonetheless, it should be recognized that, while power measurements from a real device is 

attempted to be mimicked in this project, they are far from accurately representing reality. 

The real goal in this attempt is to see how random/systematic noise and frequency-limiting 

affects the success of a power analysis attack. Eventually, the circuits are compared relative 

to each other. 

7.2.4.2. Theoretical Estimations 

The supply current measurements obtained from simulations are quite deterministic and 

precise. This means 65536 results the complete population. One can draw some conclusions 

from these results alone, without the need to imitate a real case scenario. In order to do this, 

the effect of noise on the correlation between hypothetical power consumption and real 

power consumption should be formulized. Let 𝑃���  be total instantaneous power 
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consumption. According to what was established in Section 1.5, 𝑃���  can be written as 

𝑃��� = 𝑃�B� + 𝑃��3� + 𝑃��3� + 𝑃��3�� = 𝑃�B� + 𝑃3�J�� + 𝑃��3��. This leads to the following 

expression given in (7.1) for 𝜌`𝐻�,𝑀�a, the correlation between the 𝑗𝑡ℎ column of 𝐻 matrix 

which represents the hypothetical power consumption values for 𝑗𝑡ℎ key and the 𝑗𝑡ℎ column 

of 𝑀 matrix which corresponds to the total power consumption at 𝑗𝑡ℎ moment in (7.1). 

 

𝜌`𝐻�,𝑀�a = 𝜌`𝐻�, 𝑃���,�a = 𝜌`𝐻�, 𝑃�B�,� + 𝑃3�J��,� + 𝑃��3��,�a

= 𝜌`𝐻�, 𝑃�B�,� + 𝑃3�J��,�a =
𝐶𝑜𝑣`𝐻�, 𝑃�B�,� + 𝑃3�J��,�a

R𝑉𝑎𝑟`𝐻�a𝑉𝑎𝑟`𝑃�B�,� + 𝑃3�J��,�a

=
𝐸 �𝐻�`𝑃�B�,� + 𝑃3�J��,�a� − 𝐸`𝐻�a𝐸`𝑃�B�,� + 𝑃3�J��,�a

R𝑉𝑎𝑟`𝐻�a �𝑉𝑎𝑟`𝑃�B�,�a + 𝑉𝑎𝑟`𝑃3�J��,�a�

=
𝐸`𝐻�𝑃�B�,�a + 𝐸`𝐻�𝑃3�J��,�a − 𝐸`𝐻�a𝐸`𝑃�B�,�a − 𝐸`𝐻�a𝐸`𝑃3�J��,�a

R𝑉𝑎𝑟`𝐻�a𝑉𝑎𝑟`𝑃�B�,�a�1 +
𝑉𝑎𝑟`𝑃3�J��,�a
𝑉𝑎𝑟`𝑃�B�,�a

=

𝐸`𝐻�𝑃�B�,�a − 𝐸`𝐻�a𝐸`𝑃�B�,�a

R𝑉𝑎𝑟`𝐻�a𝑉𝑎𝑟`𝑃�B�,�a

R1 + 1
𝑆𝑁𝑅

=
𝜌`𝐻�, 𝑃�B�,�a

R1 + 1
𝑆𝑁𝑅

 

(7.1) 

 

The simplifications in (7.1) can be attributed to the fact that 𝑃��3��,�  does not affect the 

correlation and the assumption that 𝑃3�J��,�  is independent from both 𝐻�  and 𝑃�B�,� 

( 𝐶𝑜𝑣`𝑃�B�,�, 𝑃3�J��,�a = 0  and 𝐶𝑜𝑣`𝐻�, 𝑃3�J��,�a = 0 ) which leads to the following 

equalities in (7.2) and (7.3). 

 

𝑉𝑎𝑟`𝑃�B�,� + 𝑃3�J��,�a

= 𝑉𝑎𝑟`𝑃�B�,�a + 𝑉𝑎𝑟`𝑃3�J��,�a + 2𝐶𝑜𝑣`𝑃�B�,�, 𝑃3�J��,�a

= 𝑉𝑎𝑟`𝑃�B�,�a + 𝑉𝑎𝑟`𝑃3�J��,�a 

(7.2) 

 𝐸`𝐻�𝑃�B�,�a = 𝐸`𝐻�a𝐸`𝑃3�J��,�a + 𝐶𝑜𝑣`𝐻�, 𝑃3�J��,�a = 𝐸`𝐻�a𝐸`𝑃3�J��,�a (7.3) 

 

This assumption is fair, considering how 𝑃3�J��,� is defined in the beginning chapter. 
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The approximation 𝜌`𝐻�, 𝑃���,�a for the correct key and the spurious key with the highest 

𝜌`𝐻�, 𝑃�B�,�a can then be used for 𝜌s and 𝜌L in (2.35) to generate an 𝑛 as (7.4) which is an 

estimate for the number of measurements required to distinguish the correct key from the 

spurious keys with a probability 1 − 𝛼. 

 
𝑛 = 3 + 8

`ΦAL(1 − 𝛼)a1

gln
1 + 𝜌`𝐻��´´���, 𝑃���,�a
1 − 𝜌`𝐻��´´���, 𝑃���,�a

− ln
1 + 𝜌`𝐻��²´J�²�, 𝑃���,�a
1 − 𝜌`𝐻��²´J�²�, 𝑃���,�a

h
1 

(7.4) 

 

After (7.4) is deducted, it is tested on Canright_1 (Canright with a restricted subset of 

D_CELLS) for different hypothetical power consumption models with 𝛼 = 10A= . The 

results of this analysis are presented in Table 7.10. 

If 𝜌`𝐻��²´J�²�, 𝑃���,�a is greater than 𝜌`𝐻��´´���, 𝑃���,�a, that model is completely ineffective 

as the attacker will always be wrong when the number of measurements are large enough. 

Because this invalidates the other models, the analysis is repeated this time for every 

implementation using only zero-value model. The outcomes are compiled in Table 7.11. 
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Table 7.10. Correlation coefficients and number of measurements estimate for Canright_1 

*for 𝛼 = 10A= 𝝆`𝑯𝒄𝒐𝒓𝒓𝒆𝒄𝒕,𝑷𝒕𝒐𝒕,𝒋a 𝝆`𝑯𝒔𝒑𝒖𝒓𝒊𝒐𝒖𝒔,𝑷𝒕𝒐𝒕,𝒋a 𝒏* 

Zero-value 0.0558 0.0407 120966 

Hamming weight 0.0264 0.0467 N/A 

Bit 0 0.0306 0.0445 N/A 

Bit 1 0.0164 0.0384 N/A 

Bit 2 0.0080 0.0116 N/A 

Bit 3 0.0106 0.0152 N/A 

Bit 4 0.0179 0.0462 N/A 

Bit 5 0.0125 0.0434 N/A 

Bit 6 0.0223 0.0440 N/A 

Bit 7 0.0402 0.0580 N/A 
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Table 7.11. Correlation coefficients and number of measurements estimate for zero-value 

*for 𝛼 = 10A= and zero-value 

model 
𝝆`𝑯𝒄𝒐𝒓𝒓𝒆𝒄𝒕,𝑷𝒕𝒐𝒕,𝒋a* 𝝆`𝑯𝒔𝒑𝒖𝒓𝒊𝒐𝒖𝒔,𝑷𝒕𝒐𝒕,𝒋a* 𝒏* 

Boyar_1 0.0716 0.0422 31817 

Canright_1 0.0558 0.0407 120953 

Nekado_1 0.0734 0.0407 25648 

Nogami_1 0.0684 0.0457 53241 

Wolkerstorfer_1 0.0575 0.0490 382339 

Canright_2 0.0537 0.0358 86445 

Canright_3 0.0016 0.0039 N/A 

Canright_4 0.0154 0.0095 807950 

Nekado_2 0.0755 0.0501 42679 

Nekado_3 0.0038 0.0066 N/A 

Nekado_4 0.0042 0.0023 7117245 
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7.2.4.3. Preprocessing of the Results 

As it was mentioned before, the simulations produce deterministic results. For this reason, 

they were processed to resemble power measurements from a real device before applying 

mock power analysis attacks. 

It is said that, because of all the capacitive effects that are present in an integrated circuit, it 

is only possible to accurately observe the changes in power consumption which occur 

between different clock cycles and not during a single clock cycle. Besides parasitic effects, 

it makes sense that the voltage supplied to the circuit is intended to be stable and high 

frequency components are undesirable. This means the supply current measurements of a 

real circuit would be heavily filtered. 

Additionally, as it is mentioned, the components in a circuit other than the one being attacked 

run in parallel and act as noise. While imitating the effects of these irrelevant switching 

activities, they are thought to have similar timing characteristics that are shared between 

many clocked digital circuits, which is having high activity for a short time a few moments 

after the clock edge and mostly settling down for the rest of the clock cycle. The way this 

kind of noise is implemented in this project was to take the average of the supply current for 

every input combination (all 65536 of them), fit a curve to these data points in order to 

acquire the supply current’s general shape and use this shape as mean of a normally 

distributed noise. The curve is a Fourier series with eight terms, fitted using non-linear least 

squares regression method. Lastly, it is assumed arbitrarily that the attacked device uses the 

128-bit variant of AES algorithm, so this random noise is added to the current consumption 

of 16 S-boxes that use the 16-byte key to be decrypted. 

In consequence, the mock power measurements are designed to contain three periods of 

successive AddRoundKey and SubBytes operations. The key being attacked is used 

during the middle one of these periods. The rest are there as dummies to make the mixing 

effect that filtering has between adjacent clock periods more meaningful, hence are discarded 

to save memory. 
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7.2.4.4. Results of Correlation Coefficient-Based Attack 

In order to perform a correlation coefficient-based attack, a random 16-byte key is 

designated and mock power measurements as a result of encrypting uniformly distributed 

random 16-byte plaintexts with this key are created as explained in the last chapter. The 

plaintexts form the 𝑃 matrix while the middle portions of these mock power measurements 

form the 𝑀 matrix of the correlation coefficient attack. The 𝑉 matrix is the result of an 

AddRoundKey operation (XOR) on the key coupled with each plaintext followed by a 

SubBytes operation on the output of the AddRoundKey operation. The 𝐻  matrix is 

calculated by assigning values to the elements of 𝑉 matrix according to a hypothetical power 

consumption model. Finally, Pearson’s correlation coefficient between each row of 𝐻 and 

each column of 𝑃 is calculated to get to the 𝐶 matrix. 

 

 

Figure 7.10. Current consumption of Wolkerstorfer_1 for 10000 runs 
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As an example, 10000 power measurements are created for Wolkerstorfer implementation 

built according to the first design (Wolkerstorfer_1) with key in (7.5). These current 

consumption values are plotted altogether in Figure 7.10. The next step is to pick a byte of 

key to guess, as the attack is applied to one S-box at a time. The byte at column one and row 

one (22 in hexadecimal) is arbitrarily chosen for this purpose. If hypothetical power 

consumption matrix is based on zero-value model, this would result in the correlation 

coefficient matrix 𝐶, rows of which are plotted in Figure 7.11. 

 ¥

22 39 𝐴1 5𝐵
3𝐶 43 7𝐶 98
𝐵5 𝐴𝐴 10 3𝐸
66 𝐶0 𝐵𝐸 42

¨ (7.5) 

 

 

 

Figure 7.11. Correlation coefficients of Wolkerstorfer_1 for zero-value model 
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There are 256 traces in Figure 7.11. Each of which belong to a key hypothesis from zero to 

255, and they represent that key hypothesis’ correlation with the power measurements at 

every instant. For the purpose of guessing the correct key, the maximum of each trace is 

calculated and plotted as in Figure 7.12, where the x-axis represents the key hypothesis and 

the y-axis represents the maximum absolute correlation coefficient for each trace along the 

duration of 50	𝑛𝑠. Guesses are made by sorting the keys with respect to their y-values in 

Figure 7.12 and going from top to bottom until the correct key is found. In this case, the 

hypothesis that generates the maximum correlation coefficient (34 in decimal, 22 in 

hexadecimal) matches the correct key. Thus, the correct key is guessed in one try. 

 

 

Figure 7.12. Maximum correlation coefficients of Wolkerstorfer_1 for zero-value model 

Since it is assumed that the internal knowledge of the circuits is unknown to the attacker, the 

hypothetical power consumption models available are chosen to be zero-value, Hamming 

weight and bit models. A comparison between these models for Nekado_1 is given in Table 
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7.12. The way correlations and average guesses in Table 7.12 are calculated is by performing 

attacks on 32 different S-boxes using 10000 power measurements. 

Table 7.12. Comparison of different hypothetical power consumption models 

*for 10000 

measurements 

Average number of guesses 

until the correct key is 

found* 

Average correlation coefficient 

for the correct key hypothesis* 

Zero-value 1.47 0.0704 

Hamming weight 163.75 0.0192 

Bit 0 108.53 0.0234 

Bit 1 142.88 0.0196 

Bit 2 130.97 0.0213 

Bit 3 160.53 0.0158 

Bit 4 68.09 0.0298 

Bit 5 120.16 0.0247 

Bit 6 192.00 0.0133 

Bit 7 70.94 0.0302 

 

The table shows that zero-value model performs so much better than the other models. The 

only models other than zero-value model that show signs of significance are bit 4 and bit 7 

models. The strength of zero-value model arises from the fact that during encryptions, the 
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circuits are initialized by setting plaintext, key and clock (if exists) to zero. Consequently, 

every encryption starts from the same initial state and in the presence of static CMOS gates, 

this initial state corresponds to encrypting plaintext 00 with key 00 and outputs a ciphertext 

of 63 in hexadecimal (99 in decimal). In this context, encrypting a plaintext with an equal 

key after that initial stage results in a very low power consumption. This is because 

AddRoundKey operation between equal plaintext-key pairs result in 00, as it is simply an 

XOR operation, and the output of SubBytes for the input value of 00 is 63 in hexadecimal. 

The reason Hamming weight and bit models are so much worse as shown in Figure 7.12 is 

the S-box algorithm itself. Finite field arithmetic operations inside the S-box lead to an 

output that is mostly independent from the input and internal values. These models would 

work better if the transitions of the output bits were more dominant in overall power 

consumption, which means if the output capacitances were much greater than the 

input/output capacitors of the internal logic gates. This could be the case on a grander scale 

when a complete AES circuit is in question. In those cases, the output of an S-box could be 

connected to a large register or a data bus, which would affect the overall power consumption 

during output transitions. But this is not the case for the circuits in this project. Therefore, 

zero-value model will be the main focus while comparing power analysis resistance of these 

circuits. 

After deciding on zero-value model, correlation coefficient attacks with different number of 

power measurements were performed on each circuit to test their resistance. The first 

comparison is done among five circuits built as stated in the first design using five different 

implementations (Wolkerstorfer_1, Boyar_1, Canright_1, Nogami_1 and Nekado_1). The 

number of measurements was logarithmically swept between 10 and 100000. In addition to 

this, attacks were performed on 32 different S-boxes and the mean results were calculated 

as in the comparison of hypothetical power consumption models before. All in all, final 

outcomes are summarized in Figure 7.13 and Figure 7.14. 

Following the examination of different implementations, Nekado and Canright were picked 

out of this group for the purpose of comparing different designs. The same analyses were 

carried out as before. The outcomes were given in Figure 7.15 and Figure 7.16 for Canright, 

and Figure 7.17 and Figure 7.18 for Nekado. 
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Figure 7.13. Comparison of key guesses between different implementations 

 

 

Figure 7.14. Comparison of correlation coefficients between different implementations 
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Figure 7.15. Comparison of key guesses between different designs for Canright 

 

 

Figure 7.16. Comparison of correlation coefficients between different designs for Canright 
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Figure 7.17. Comparison of key guesses between different designs for Nekado 

 

 

Figure 7.18. Comparison of correlation coefficients between different designs for Nekado 
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7.2.4.5. Results of Template-Based Attack 

Before the attack is administered, 256 templates are built for 256 different output values of 

the series connection of AddRoundKey followed by SubBytes operation. To this end, 

mock power measurements of a theoretical sample device with known plaintext and known 

key were created as described in the previous sections and categorized by their output values 

such that there are equal number of them for every output value. This number has an 

influence on the effectiveness of the attack, which will be discussed later. Thereafter, the 

templates were built by picking five points at the same location of every measurement 

belonging to each output value. The selection process of these points is described in the third 

chapter. The covariance and mean matrices of the five points were then calculated for each 

template to define a multivariate normal distribution that resembles their distribution through 

different measurements. The completion of this last step brings about 256 covariance and 

mean matrices, which concludes the template building phase. 

The attacking phase of the template-based attack begins by creating mock power 

measurements just like the correlation coefficient-based attack. But this time, only five 

designated points are taken out of the 5001 that compose each measurement and the rest are 

eliminated. Eventually, 𝑝(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J|𝑀) in equation (3.8) is calculated for every template 

through the usage of these five points. These posterior probabilities, each of which belongs 

to an individual template, serve as that template’s probability of being the correct one. Since 

there is a bijection from the set of 256 templates to the set of 256 keys, this in turn is 

equivalent to guessing the probability of correctness for every key. 

Take for instance, a template-based attack on Boyar_1 (Boyar with a limited set of 

D_CELLS gates). As a first step, 256 templates are created for the output of Boyar_1. Each 

template consists of a mean and a covariance matrix. For this example, each matrix is 

calculated with 10000 measurements (preprocessed as described before) made while the 

device encrypts uniformly distributed random plaintexts and keys. It is important to note that 

while the plaintexts and keys for this process are randomly generated, XOR of one specific 

byte in each plaintext and key has the same output throughout every measurement. This one 

byte corresponds to the one S-box out of 16 that the templates are being built for. All in all, 

five points are taken out of each measurement at indices 3416, 4912, 1285, 2096 and 343 for 

the calculation of the aforementioned matrices. To demonstrate what they look like, the mean 
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and covariance matrices for the output value E5 in hexadecimal is displayed in (7.6) and 

(7.7). 

 ℳ = [3.318 2.127 2.038 2.082 2.129] × 10A* (7.6) 

 Σ =

⎣
⎢
⎢
⎢
⎡
0.3846 0.2203 0.1970 0.2209 0.2045
0.2203 0.1397 0.1289 0.1346 0.1342
0.1970 0.1289 0.1311 0.1276 0.1363
0.2209 0.1346 0.1276 0.1348 0.1325
0.2045 0.1342 0.1363 0.1325 0.1423⎦

⎥
⎥
⎥
⎤
× 10A< (7.7) 

 

 

 

Figure 7.19. Current consumption of Boyar_1 for 100 runs 

During the attacking phase, 100 measurements were created for Boyar_1 while it encrypts 

uniformly distributed random known plaintexts with the key in (7.8). These measurements 

plotted in Figure 7.19 are now thought to belong to the attacked device. Five points at exactly 

the same indices as the ones used to create the templates, are separated from the rest. The 
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equation in (3.8) is then applied to this data set of five variables and 100 samples. While 

doing this, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒J  in equation (3.8) is designated by targeting the first byte (53 in 

hexadecimal) of the key. What is acquired as a result is the probability of each key being the 

correct one, which is given as a graph in Figure 7.20. 

 ¥

53 𝐸𝐷 𝐸4 6𝐶
96 8𝐹 𝐴7 𝐹3
𝐸5 63 65 5𝐶
04 86 𝐸2 𝐸𝐶

¨ (7.8) 

 

 

 

Figure 7.20. Key probabilities of Boyar_1 via 10000-measurement-strong templates 

As proven in Figure 7.20, the attack guesses the probability of the correct key (83 in decimal, 

53 in hexadecimal) to be really high (98 percent) compared to the other candidates. Thus, 

the correct key is extracted successfully with confidence. 
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Next, in keeping with the analyses involved in the correlation-based attack, the template-

based attack is applied to each implementation’s first design (Wolkerstorfer_1, Boyar_1, 

Canright_1, Nogami_1 and Nekado_1) repeatedly. For this purpose, three separate set of 

templates were created for each circuit. One involving 1000 measurements, another 

involving 10000 measurements and a last one involving 100000 per template. Subsequently, 

the circuits were attacked while the number of measurements of the attacked device was 

swept logarithmically from 10 up to the number used in the template building phase. Testing 

with more measurements than that would somewhat defeat the objective of the attack, which 

is taking advantage of a long preparation to shorten the attack. In each case, the results were 

averaged over 32 attacks. They are given in Figure 7.21, Figure 7.22, Figure 7.23, Figure 

7.24, Figure 7.25 and Figure 7.26. 

 

Figure 7.21. Comparison of key guesses between different implementations 
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Figure 7.22. Comparison of correct key probabilities between different implementations 

 

 

Figure 7.23. Comparison of key guesses between different implementations 
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Figure 7.24. Comparison of correct key probabilities between different implementations 

 

 

Figure 7.25. Comparison of key guesses between different implementations 
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Figure 7.26. Comparison of correct key probabilities between different implementations 

Now the comparison is made between different designs, by taking Canright and Nekado 

implementations as a basis. The same analyses were applied to these circuits as well and the 

outcomes are listed in Figure 7.27, Figure 7.28, Figure 7.29, Figure 7.30, Figure 7.31, Figure 

7.32, Figure 7.33, Figure 7.34, Figure 7.35, Figure 7.36, Figure 7.37 and Figure 7.38. 
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Figure 7.27. Comparison of key guesses between different designs of Nekado 

 

 

Figure 7.28. Comparison of correct key probabilities between different designs of Nekado 
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Figure 7.29. Comparison of key guesses between different designs of Nekado 

 

 

Figure 7.30. Comparison of correct key probabilities between different designs of Nekado 



131 
 

 

Figure 7.31. Comparison of key guesses between different designs of Nekado 

 

 

Figure 7.32. Comparison of correct key probabilities between different designs of Nekado 
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Figure 7.33. Comparison of key guesses between different designs of Canright 

 

 

Figure 7.34. Comparison of correct key probabilities between different designs of Canright 
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Figure 7.35. Comparison of key guesses between different designs of Canright 

 

 

Figure 7.36. Comparison of correct key probabilities between different designs of Canright 
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Figure 7.37. Comparison of key guesses between different designs of Canright 

 

 

Figure 7.38. Comparison of correct key probabilities between different designs of Canright 
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8. CONCLUSION 

The simulated attacks show that dynamic differential gates clearly improve power analysis 

resistance to the point where the correct key cannot be statistically discerned from the false 

ones in the case of the correlation coefficient-based method. Yet, the template-based attacks 

eventually reveal the key. 

As perceived in Table 7.12, the RRB method results in the shortest critical path for Nekado, 

Canright optimizes the gate count, Boyar is well optimized all-around thanks to its 

employment of great Boolean reduction techniques and Wolkerstorfer is the worse one 

among the five that are examined. Despite all that, the implementation does not make any 

considerable impact in terms of power analysis resistance when talking about finite field 

arithmetic implementations, and any miniscule impact that it makes is incidental. 

The success of correlation-based attack depends on the hypothetical models which are 

completely situational. In this project, the initial value of the inputs of the circuits was always 

zero during each simulated encryption, for which the power consumption was recorded. 

Consequently, the circuits that follow the first and second design flows virtually consume 

no power when encrypting the zero input. This makes them very vulnerable against 

correlation coefficient-based attacks utilizing zero value model. Since the output capacitance 

of the circuits is not that high, the Hamming weight and bit models do not yield good results. 

However, by chance, some of the output bits belonging to some of the circuits correlate with 

the power consumption. This can be observed in Table 7.12 for Wolkerstorfer_1. Creating a 

model that considers those bits jointly may increase the correlation, but it is not guaranteed. 

While creating complex hypothetical power consumption models, one should also determine 

what number to assign for each intermediate value. Yet, for an intermediate value with two 

possibilities this number is irrelevant. So, in a way, in the absence of knowledge, more 

complex models will likely give worse results and the attacker is left with no choice but to 

use primitive models. In this context, this thesis proves that zero value model is the only 

reliable model that can be made to work in most cases. 

One unexpected finding of the thesis is that the third design is susceptible to zero value 

model. On closer inspection, it is seen that, this is caused by the ADDT NAND, AND, NOR 

and OR gates. To understand the reason, one could inspect the ADDT AND gate in Figure 
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7.8. The argument holds just as equally even when the inputs and outputs are permutated. 

During an evaluation phase when only one of the inputs is high and the other one is low, 

there is only one discharge path to the ground through either M5 and M6 or M7 and M8. 

Contrarily, during an evaluation phase when both of the inputs are high or low, there exist 

two discharge paths to the ground through all these four transistors. Obviously, the case 

when both inputs are high or low evaluates faster than the case when one of the inputs is 

high and the other one is low, on account of n1 or n2 discharging faster in the first case. 

This fact points out to a propagation delay related insecurity in ADDT 

NAND/AND/NOR/OR. 

Furthermore, to makes things worse, no matter how it is implemented finite field 

arithmetically, the internal calculations of the multiplicative inversion part of SubBytes 

are made up of additions and multiplications of zero by zero. This means the internal logic 

values are all zeros if they are noninverted or all ones if they are inverted. To connect the 

dots, this corresponds to all inputs of each gate of Canright_4 and Nekado_4 being either 

one or zero. The ADDT XNOR and XOR are well-balanced internally and do not have this 

insecurity. The Table 7.12 indicates that there are 98 XNOR/XOR gates and 44 

NAND/AND/NOR/OR gates in Canright_4, meanwhile there are 106 XNOR/XOR gates 

and 55 NAND/AND/NOR/OR gates in Nekado_4. Evidently, this ratio among 

NAND/AND/NOR/OR and XNOR/XOR is enough to cause distinct power consumption 

characteristics as shown in Figure 8.1, where the average power consumption that belongs 

to zero input and the average power consumption that belongs every other input are plotted 

separately for Nekado_4. 

Despite this vulnerability, ADDT performs well in template-based attacks. These attacks 

also show that increasing the number of measurements used during the profiling phase may 

reduce the performance of the attack. The jump discontinuities encountered during the attack 

being performed on Canright are collectively another interesting matter that remains 

unexplained. 
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Figure 8.1. The distinctness of power consumption for zero input 
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