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ABSTRACT

EXPLICIT CONSTRUCTION OF LOCAL CLASS FIELD THEORY VIA
LUBIN-TATE FORMAL GROUPS

Class field theory constitutes a subsection in algebraic number theory which, in particular,
investigates Abelian extensions of global fields. On the other hand, local class field theory
was introduced by Helmut Hasse and studies the Abelian extensions of local fields with
respect to the objects related to the ground field. It was later developed by various important
mathematicians such as Schmidt, Chevalley, Nakayama, Artin, Kato and others. There are
several approches to local class field theory: Hasse approach, cohomological approach, the
explicit methods of Neukirch and Hazewinkel and others. Similar to the theory of complex
multiplication on elliptic curves, in their paper in 1965, Lubin and Tate showed that the main
theorems in local class field theory can be proved via formal groups over local fields. Using
the Lubin-Tate formal groups, they found an explicit way of generating Abelian extensions

of local fields. Here, we will study Lubin-Tate theory in detail.
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OZET

LUBIN-TATE FORMEL GRUPLARI ARACILIGIYLA YEREL SINIF CiSiM
KURAMININ APACIK iNSASI

Sinif cisim kurami, cebirsel say1 kuraminin, global cisimlerin Abelyen genislemelerini de
0zel olarak inceleyen bir dalidir. Diger yandan, yerel sinif cisim kurami: Helmut Hasse
tarafindan ortaya atilmistir ve yerel cisimlerin Abelyen genislemelerini, taban cisim ile iligkili
nesneler yoniinden incelemektedir. Bu kuram daha sonra Schmidt, Chevalley, Nakayama,
Artin, Kato gibi ¢esitli 6nemli matematikg¢iler tarafindan gelistirilmistir ve genellestirilmistir.
Yerel smif cisim kuraminin insasi i¢in bir¢cok yaklasim bulunmaktadir: Hasse yaklagimi,
kohomolojik yaklasim, Neukirch ve Hazewinkel’in apagik yontemleri vb. Eliptik egrilerdeki
karmasik ¢arpim teorisine benzer sekilde, 1965°te yayinlanan makalelerinde, Lubin ve Tate,
yerel cisimler iizerindeki formel gruplarin, yerel sinif cisim kuramindaki temel teoremlerin
kanitlanmasi i¢in kullanilabilecegini gosterdiler. Lubin-Tate formel gruplarini kullanarak,
yerel cisimlerin Abelyen genislemelerini iiretmek i¢in apagik bir yol buldular. Bu tezde

Lubin-Tate kuramini detayl1 bir sekilde inceleyecegiz.
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1. INTRODUCTION

Class field theory can be described as one of the most influential achivements of algebraic
number theory in the 20th century. The term “class field”, coined by Weber, refers to an
Abelian field extension satisfying a technical property that is related to ideal class groups.
The aim of class field theory is to describe the Galois groups of Abelian extensions of a
global field K based on our knowledge of K itself (more specifically, the arithmetic of K
which is the study of the ideals of K, the quotient rings determined by the ideals of K, the
ideal class groups etc.). The Kronecker-Weber theorem is an early result stating that, if K is
a finite Abelian extension Q, then it is contained in a cyclotomic field Q(¢,,) for some m.
Artin, Weber, Tagaki and Hilbert were among the mathematicians who developed class field

theory [1].

Local class field theory was introduced by Helmut Hasse and studies the abelian extensions
of local fields with respect to the objects related to the ground field as in the global case. It
was later developed and generalized by various mathematicians such as Schmidt, Chevalley,
Nakayama, Artin, Kato and others. In this theory, the Galois group of k®’, the maximal
Abelian extension of a local field k can be described via the local Artin map which is an
injective homomorphism from k* to Gal(k*? /k). For example, for a finite Abelian extension
L of k, the local Artin map induces the isomorphism k* /N, ,(L*) = Gal(L/k). There are
several approches to local class field theory: Hasse approach, the cohomological approach,

the explicit methods of Neukirch and Hazewinkel [2] and others.

Suggested by the theory of complex multiplication on elliptic curves, in their paper [3] in
1965, Lubin and Tate showed that, using the so-called Lubin-Tate formal groups over local
fields one can construct k? and the local Artin map explicitly. In this thesis, we will study

Lubin-Tate theory in detail.
This thesis consists of five chapters:

After discussing infinite Galois theory and profinite groups in the first chapter, we give basic

theory of local fields in the second chapter.

In the third chapter we introduce formal power series over arbitrary rings and study their



properties.
The fourth chapter explains the formal groups and particularly Lubin-Tate formal groups.

In the final chapter, we define special (totally ramified) extensions of a local field k via
Lubin-Tate formal groups and use these extensions to construct k., which is actually a maximal
totally ramified extension in k*’. Then we define a homomorphism p,: k* — Gal(k*?/k)
and using this homomorphism, we prove that k*® = k,,k,, here the field k,,,. is the maximal

unramified extension of k. Also we prove that p, is actually the local Artin map of k.

We claim no originality in this thesis.



2. PRELIMINARIES

In this chapter, we will review Infinite Galois Theory and Profinite Groups very briefly and
state the important theorems without proofs, which will be used in the text frequently. The

main references for this chapter are Chapter 1 of [4], Chapter 6 of [5], Chapter 3 of [6] and
[7].

2.1. INFINITE GALOIS THEORY

Definition 2.1.1. A field extension R /K is called Galois extension if'it is algebraic, seperable

and normal.

Definition 2.1.2. Let R /K be any Galois extension (infinite or finite). We can endow Gal(R/K)
with a so-called Krull topology. This makes Gal(R/K) a topological group. In this topology,
for any 0 € Gal(R/K), the cosets aGal(R/E) are taken as a basis of neighborhoods of o,

where E /K runs over all (finite) Galois extensions of K contained in R.

Theorem 2.1.1. Let R/K be a Galois extension. The Galois group Gal(R/K) is Hausdorff

and compact in Krull topology.

There is a fundamental theorem (in Galois theory) which holds for the infinite case via Krull

topology and is an extension of the fundamental theorem for the finite case:

Theorem 2.1.2. Let R/K be a Galois extension. The map

E & Gal(R/E) (2.1)

is a bijection between

the subextensions E the closed subgroups Gal(R/E) 2.2)
o , .
of R/K of Gal(R/K)



that restricts to a bijection

the finite subextensions E the open subgroups Gal(R/E) 2.3)
Crd . .
of R/K of Gal(R/K)
Also, in Gal(R/K), assume H is a closed subgroup. Then H is normal iff the corresponding

subextension is a Galois extension.

2.2. PROFINITE GROUPS

Definition 2.2.1. Let P be a set. Denote a relation by the symbol < on this set. This relation
is called a partial order if it satisfies the following for all e, f,g € P: e < e; this is called
reflexivity. e < f and f < e implies e = f; this is called anti-symmetry. e < fand f < g
implies e < g; this is called transitivity. The set P together with a partial order < is often

called a poset.

Definition 2.2.2. If a poset (I, <) has the following property, then it is called a directed
poset: Take e, f € I. Then 3 g € [ satisfyinge < gand f < g.

Definition 2.2.3. Let (I, <) be a directed poset and assume that there is a group H; for every
i € I and homomorphisms ¢;; : g; — o; for all i,j € I with i < j satisfying the conditions
below:

(1) t;; is the identity on H; forall i € I,

(11) tik = tij o tjk forall i S] < k.
The maps t;;’s are called transition maps. The set ((H;);e;, (t;})i<j, i jer) 18 called an inverse

system of groups.

The inverse (projective) limit of this inverse system is defined as
lim H, = { (90w €| [Hilty(gp=goi<jandijerf, (2.4)
i€l i€l

if it exists.

Remark. 1f H;’s are topological groups and t;;’s are continuous homomorphisms, then the



inverse limit m H; can be thought of as a topological group through embedding into [] H;.
i€l i€l

Example 1. Let G,, = Z/nZ for n € N. Define a partial order < on N: r < n if r|n. Define

frn t Z/MZ - ZJTZ, (2.5)
a - a (modr). (2.6)
So we have
lim G, = { (@) nens € HZ/nZ la, = a, (mod7), rlnandr,neNt.  (2.7)
neN neN

An equivalent definition of the inverse limit can be given as follows: Let Y be a topological
group and ((X;);ep, (0ij)i<j, i jer) an inverse system over a directed poset (1, <), where X;’s are
topological groups, and ¥; : Y — X; continuous group homomorphisms for i € I. The maps
Y;’s are called compatible if ;;1); = ¥;, i < j. A topological group X along with compatible
continuous homomorphisms g; : X — X; is called an inverse limit (of the inverse system) if

the following is satisfied, which is called the universal property:

If Z denotes a topological group and { ¥; : Z — X; } is a set of compatible continuous
homomorphisms, there is a unique continuous homomorphism : Z — X such that g;3p = ),

foralli € I.

AN

Y‘ o (2.8)

L

o

>

Theorem 2.2.1. Let
(1,)

be a directed poset and ((X;)ie1, (0i})i<j, i,jer) an inverse system over I, where X; s are topological
groups. Then there is an inverse limit of this inverse system and the limit is unique in
the following manner: If (X,0;) and (Y, ;) are two inverse limits of the inverse system
((XDien (01))i<j, ijer), then there is a unique homeomorphism y : X — Y such that Y = o;
fori €l

Definition 2.2.4. A topological group that is Hausdorft, compact and has a neighborhood



basis of the identity, which consists of normal subgroups, is called a profinite group.
We have the following theorems about the profinite groups:

Theorem 2.2.2. If G is a profinite group and N runs over the normal open subgroups of G,
then

—

G =limG/N, (2.9)
N

the transition maps being natural projections. Conversely, let ((G;)ier, (fij)i<j, i,jer) be an

inverse system, where G; s are finite groups. Then lin G; is a profinite group.
i€l
Theorem 2.2.3. Let G be a topological compact group and {H; | i € 1} a family of normal
closed subgroups of finite index such that
(i) For every finite subset | of 1, there exists i € I such that H; © N H;,
jeJ
(ii) N H; = 1.
i€l

Then G = lin G /H; as topological groups.

i€l
By using Krull topology, it can be proved that Galois groups are profinite groups and we
can write them in the form of inverse limits. Let R/K be a Galois extension. According
to Theorem 2.1.2, Gal(R/K) is a Hausdorff space and compact group and by definition, its
basis of open neighbourhoods of 164(z/k is given by Gal(R/E), where E runs over the finite

Galois subextensions of R/K, all of which are open normal subgroups and they are the only

such subgroups. So,

Gal(R/K) = lim Gal(R/K)/Gal(R/E) = lim Gal(E/K). (2.10)
E/K is f;te Galois E/K is f;te Galois
Example 2. We have
Gal (F,/F,) = lim Gal(F/F,). 2.11)

neN



3. BASIC THEORY OF LOCAL FIELDS

In this chapter, the theory of local fields will be discussed briefly, which will be necessary
in the following chapters and we will not give any proofs here. The main references for this

chapter are Chapters 1, 2, and 3 of [8], Chapter 2 of [9], [10], [11], [12], [13] and [14].

3.1. VALUATIONS ON A FIELD

Definition 3.1.1. Let k be a field. A mapping v : k£ = R U {+o0} satisfying the following
conditions is called a valuation on the field k:

(1) If x # 0, then v(x) € R. We set v(0) = +oo.
(i) For x,y € k,
v(x +y) > min{v(x), v(y)}. (3.1)
(ii1)) Forx,y € k,
v(xy) = v(x) + v(y). (3.2)
We denote a field k with the valuation v shortly as (k, v).

Remark. By (iii) above, v defines a homomorphism

v:k* — R,

where R* denotes the additive group of R.

Remark. Let v be a valuation on a field k. By Definition 3.1.1, the following properties are

easy to show:

v(£1) =0, (3.3)
v(—x) = v(x), 3.4)
v(x) <v(y) = v(x+y)=vx), (3.5

where x,y € k.



Example 3. The mapping v : k - R U {400} defined as:

0 if x+#0,
v(x) = (3.6)

4o if x=0,
is a valuation on k and called trivial valuation.

Example 4. Take a prime number p. Every non-zero rational number x can be written in a
unique way as x = p°y, where e is an integer, y is a rational number whose numerator and

denominator are not divisible by p. We define a mapping v, on Q by

) 400 ifx =0, 3.7)
v,(x) = :
g e if x # 0 and x = p®y.

The mapping can be shown to be a valuation, which is called the p-adic valuation of Q.

Example 5. Let k be a field, k(X) the field of all rational functions in an indeterminate X
with coefficients in k. Every f € k(X) can be written uniquely: f = X®g, here e is an integer
and g € k(X), which is not divisible by X. Now we define a valuation v on k(X) such that
v(X) = 1 as in the Example 4.

Example 6. Let k be a field, G < R* (the additive group), and y € R*. Suppose v : k —

n
G U {+0} is a surjective valuation. For f = Y. a;X' € k[X], define the mapping
i=0
w: k[X] » RY U {+x},
by the rule

+00 if =0,
w(f) = " (3.8)

émn {v(a;) + iy} otherwise.
<isn

Consider the map

W : k(X) > R* U {+o)},

defined by

w <§) =w(f) —w(9), 3.9)



where f, g € k[X] \ {0}. Then W is a valuation that extends v.

Let v be a valuation on a field k. Introduce

O,={x€k]| v(x) =0}, (3.10)
pe.={x€k| v(x) >0}, and (3.11)
K = Oy /Px- (3.12)

Here, Oy, (called the valuation ring) and p,, (called the maximal ideal) become a subring of
k and a maximal ideal of Oy, respectively so that k; (called the residue field) is a field. In

addition, define the unit group U, of the valuation ring O, by

U, ={x €0, |v(x) =0} (3.13)

Remark. Note: the maximal ideal p,, in O, is unique since p;, = O, \ Uy. In other words, O,

is a local ring.

Definition 3.1.2. Let k be a field. A map on k,

|-]: k » R, (3.14)

is called an absolute value if it satisfies the following properties:

() |x]| =0 & x=0,
(i) |x| =0,
(iii) [xy| = |x| - [yl,

(iv) x +yl < |x[ + [yl,
forall x,y € k.

Definition 3.1.3. Let k be a field and |-| an absolute value on k. If || satisfies the condition

lx +y| <max{lx|,|yl}, VxyE€k, (3.15)

then it is called non-archimedean.

In the following theorem, a correspondence between the non-archimedean absolute values
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and valutions is provided. So if we have a valution, we can define a topology on our field

just like in the metric spaces.

Theorem 3.1.1. Let k be field, | - | a non-archimedean absolute value on k, s € R, s > 0.
The map
ve: k=  RU{+o}, (3.16)
—slog|x] x#0,
x e (3.17)
400 x =0,

is a valuation on k. Also, if sand s' € R, s, s' > 0 and s # s', then v is equivalent to vy

(refer to definition 3.1.5). Conversely, if v is a valuation on k and |l € R, | > 1, then the map

-1 k - R (3.18)

[7P® x #0,
X (3.19)
0 x =0,
is an absolute value on k. Also, if landl' € R, [, I' > 1 and l # U, then | - |, is equivalent

tO | * |ll

According to Theorem 3.1.1, we can use valuations and absolute values interchangeably and

in this thesis we’ll study and describe our theorems in terms of valuations.

Definition 3.1.4. A topological ring k which is a field, where, in addition, the inverse mapping

a ~ a~! is continuous on k\{0}, is called a topological field.

Now we can define a topology on k. If, for each x € k and ¢ € R, we take the family of
open balls B(x,a) = {y | v(x —y) > a and y € k }, we define a Hausdorff topology on k.
This topology is called v-topology on k. Now k is a topological field in that topology. By

definition, Oy, is a closed set and p,, is an open set in k.

Definition 3.1.5. If two valuations defined on the same field k produce the same topology,

they are called equivalent valutions.

Remark. Equivalently, two valuations v and u on k are equivalent if there exist an ¢ € R,
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such that
v(x) =a-u(x), Vx € k. (3.20)

In this case, we write v ~ .

Remark. The valuation ring, the maximal ideal and the residue field as well as the unit group

of equivalent valuations are the same.

In terms of valuations, the limit of a sequence (x,,) € k can be defined as follows:

lim x, =x & hm v(x, —x) = +oo. (3.21)
n-+oco n-+

Similarly, a sequence (x,,) € k is called a Cauchy sequence in the v-topology if,
v(xX, — X)) = +0asn, m - +oo, (3.22)

Definition 3.1.6. A valuation v on a field k is called complete if every Cauchy sequence in

v-topology is convergent.

Since every valuation corresponds to a non-archimedean absolute value, in k:

o]

E = lim X, © v(x,) > +0asn — +oo, (3.23)
1,—>+oo
n=1

Definition 3.1.7. Let k be a field. A valuation v on k is called discrete if v(k*) is a discrete
subgroup of R*. That means, v(k*) is equal to ZB for some real number § = 0. When

B =1,ie. v(k*) = Z, we say the valuation is normalized.

Let k' be an extension field of k and v’ be a valuation on k'. It can be shown that v’| is
also a valuation on k and it’s called a restriction of v’ to the subfield k. Conversely, if v is

valuation on k, any valuation v’ of k' satisfying v'|, = v, is called an extension of v to k'.
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Let v'|, = v. The following hold:

Op = {x' €K | v'(x") = 0}, (3.24)
pe = (X €K | v/ (x) > 0}, (3.25)
K = Ot [P, (3.26)
Or = O Nk, (3.27)
P =P Nk =pp NO,. (3.28)
Since,
K = Ok/Pre = O/ (Prr N Ox) = (O + pi) /i S Opr [Ppr = Ky, (3.29)

we can embed k;, of v into ks of v’ naturally.

Let
ey = [V (k™) : v(k*)] and fir ) = [Kpr * K] (3.30)

Here [v' (k™) : v(k™)] is the group index and [k, : K] is the degree of Ky /ic,.. Then ey
is called the ramification index and fj/ is called the residue degree of v'/v.
We have the following central theorem in the valuation theory:

Theorem 3.1.2. Let v be a complete valuation on k and k' an algebraic extension of k. Then
v can be uniquely extended to a valuation v' on k' satisfying v'|, = v. If k' [k is a finite

extension, then v' is also complete and we have the following:
1
v'(x") = - V(Nyr e (x)), VX' € K/, (3.31)

where n = [k’ : k] is the extension degree and Ny is the norm map of k' [k.

Corollary 3.1.2.1. Let k' /k, v and v' be as in Theorem 3.1.2 and o an automorphism of k'

over k. Then we have the following:

v'(o(x") =v'(x"), vx' €k,
(3.32)
0(Ox) = O, a(Pr) = Per-

This implies that g is a homeomorphism of k' in v'-topology. Also, o induces an automorphism
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o' of the residue field k.

Let v be a valuation on k. It can be shown that there is a field k" such that k © k" and an
extension v’ of v which is complete and also k is dense in k' with respect to v'-topology of
k'. This field k' is called the completion of k since it is unique (up to isomorphism). As
k is dense in k', any x’ in k' can be described as the limit of a sequence (x,,) in k in the

v'-topology. So,

x' = 1111—{23 X, (3.33)
and then the following hold:
V() = lim v'(x,) = lim v(x,), (3.34)
v' (k™) = v(k>), (3.35)
Ky = Ky, (3.36)
ek = furpre = 1. (3.37)

Example 7. Let k' be an extension field of k and v’ an extension of v on k to the extension
field k' : v'|, = v. Suppose v’ is complete. Denote the topological closure of k in k' in
v'-topology by k . Then, we know from the theory of the topological fields that k is a subfield

of k" and (k, %) with = v’|,, which is a completion of (k, v).

3.2. COMPLETE FIELDS

Definition 3.2.1. Let v be a valuation on a field k. If v is complete and normalized, then k

is called a complete field.

Let v be a normalized valuation on a field k and (k’, v") the completion of (k, v). Note that

v'(k"™) =v'(k*) = Z and (k',v") is a complete field.

Example 8. Let v, be the p-adic valuation on the field Q. Then v, is a normalized valuation
(thatis, v,(p) = 1). The completion of Q with respect to v, is the complete field (Q,, v,,) of
p-adic numbers. Its valuation ring Z, is called the ring of p-adic integers and the maximal
ideal of this ring is pZ,; it can be shown that the residue field of Q,, is the finite field of IF,,

of p elements.
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Example 9. Let F be a field and assume T is an indeterminate. Let F((T)) be the set of all

formal Laurent series:

+00
Z a,T", a, €F, i €L. (3.38)
Define a mapping v by
4+ ifx =0,
v(x) = (3.39)

+00
n=i

i ifx#0, x=) _a,T" a;#0.

It can be shown that F((T)) is the completion of the field with the valuation which were
described in Example 5. The valuation ring F[[T]] is the all (integral) power series in T over
F (i.e. i = 0 in the Laurent series expansion) and the maximal ideal is TF[[T]]. Here, the

residue field of the valuation is isomorphic to F.

Let (k, v) be a complete field. As v(k™) = Z, there is an element 1, in k satisfying v(m,) =
1. Such elements are called prime elements or uniformizers of k. Since p, = {x € k |

v(x) = 1}, we see that p, = (1) = 0. For any integer n > 0 define,

Pt = (al) = 10, = {x € k | v(x) > n}. (3.40)

These are the all ideals of O, and the sequence

{0} c - cpi cp Cpp =0y (3.41)

describes the ideal structure of 0. So Oy is a PID, i.e. a principal ideal domain. In addition
to this, v(x) = niff v(x) > n — 1 for any n € Z. So all the ideals are open and closed at
the same time and they form a neighborhood base of 0 in the v-topology of k. Generally, let
a be an O, -submodule of k not equal to 0 or k. The set {v(x) | x € a,x # 0} is bounded
below (otherwise we can generate all elements of k since a is an O,-submodule of k). If n is

the minimum of integers in the set, then

a={x€klvx)=n}=mn0. (3.42)

Such O, -submodules of k are called ideals of k.

Now we consider the multiplicative group k™ of k. Let x € k*. Since x # 0, v(x) = n € Z.
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We see that v(xm,; ™) = 0 which implies x = umy;, for some u € U,. Then
X =UXx <m >. (3.43)
Define the following subgroups:
Uy =Up, Uy =1+p;={x €0, | x =1modpy}, (3.44)

forn > 1.
Let k;f and k;{ denote the additive and the multiplicative groups of k. The following sequences

of subgroups of k* and isomorphisms exist:

Up/ Uy = ki, Up/Upyq = K, (3.46)

forn > 1.
Similarly, the groups U,,’s, n = 0 are open in k™ and constitute a neighborhood base of 1 in

the v-topology of k™.

We continue assuming that (k, v) is a complete field. Let A be a complete set of representatives
of the residue field k;. If, for each n € Z, we fix an element m,, in k such that v(m,) = n,
then we can express every element of k in the form of a special infinite sum as explained

below:

Theorem 3.2.1. (i) Each x in k can be expressed (uniquely) as follows:

+00

X = Z a,m,, (3.47)

n=i

witha, €EA. Ifx #0,a; # 0, and a;, = 0 for all s < i, then v(x) = i.
(ii) Let
X = Z a,m, and y = Z b,m,, a, b, € A. (3.48)

Then for any integer i, v(x —y) = iiffa, = b, Vn < i.

Example 10. If we consider Q,, then we can take A = {0,1,...,p — 1} and m = p. Then
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every p-adic integer can be written (uniquely) as follows:

+0o

x = Z a,p", a, €A (3.49)

n=0
3.3. FINITE EXTENSIONS OF COMPLETE FIELDS

Let (k, v) be a complete field.

Definition 3.3.1. If a complete field (k’, v") is an extension of a complete field (k, v) such

that v'|, ~ v, then k' is called a complete extension of k.

Let u = v'|,. Then ey, is the ramification index of k’/k (an extension of complete fields)
an fir , denotes the residue degree of k' /k, respectively. Since u = av, a > 0and u(k™) =
av(k™) = aZ,

ey = [V'(K) s u()] = [Z.: aZ] = a. (3.50)

Now we see that v'|, = ey, v and ey, < +00. But this may not be true for fir ... If (k", v"

is a complete extension of (k’, v"), then

€x"/k = €k’ " €x' ko (3.51)

and

fier e = T et Ji jiee (3.52)

Lemma 3.3.1. Let (k',v") be a complete extension of a complete field (k, v). If fi1 . is finite,

then k' [k is a finite extension and the following holds:

[k, : k] = ekl/k . ﬁ(’/k' (3.53)

We can calculate the value of v'(x") via the following fundamental result:

Theorem 3.3.2. Let (k, v) be a complete field and k' a finite extension of k. Then there exists

a unique normalized valuation v' on k' such that v'|, ~ v, (k',v") is a complete extension
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of (k,v),
[k': k] = €' Ik 'ﬁc’/k' (3.54)
and

1
v'(x") = K/k V(N (), Vx' € K. (3.55)

3.4. LOCAL FIELDS

In this section we will discuss local fields and their properties. Local fields are one of the

fundamental objects in this thesis.
Definition 3.4.1. If a complete field (k, v) has a finite residue field, it is called a local field.

Example 11. The p-adic number field Q,, is a local field since
Ko, = Lp/PL, = F,. (3.56)

Example 12. Let [F, be a finite field where g = p™. Let F((X)) be the field of formal Laurent
series in X with coefficients in IF;, and v be the valuation given in Example 9. Then F((X))

is a local field since kp(x) = F[[X]]/XF,[[X]] = F,.

Definition 3.4.2. If the residue field k; of a local field k is a field of characteristic p, then
the local field k is called a p-field.

The following therom completely characterizes the topology of local fields.

Theorem 3.4.1. Let (k,v) be a local field. Then k is a non-discrete, totally disconnected,
locally compact field in its v-topology. The valuation ring O, and ideals py of O, n = 1,
are open, compact subgroups of the additive group of field k and they form a neighborhood

base of 0 in k. Furthermore O, is the (unique) maximal compact subring in k.

Take a prime element ;, of a local field (k, v). We know that p} = m;}0,, n = 0. So the
map

X P IEx, x €0, (3.57)

induces an 0,-module isomorphism O, /p,, = pir/prt! forn = 0. The index [0, : pE] = q",
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n = 0, because k, = F, and [0y : p] = q. According to Theorem 3.4.1, O, is compact
and the intersection of all pj; for n > 0 is 0; so we see that by Definition 2.2.4 and Theorem
2.2.3,

0, = liilok/pﬁ. (3.58)

That is, the additive group of O, constitutes a profinite group (actually a pro-p-group). Here,

the transition maps which are used in the inverse limit are O, /py' = O, /py forallm > n > 0.
Local fields can be classified by the following the theorem:

Theorem 3.4.2. (Classification theorem) Let k be a local field.

(i) Case 1 - k has char 0: Then k = L, where L is a finite extension of Q,.

(ii) Case 2 - k has char p: Then k is isomorphic to K((X)), the field of Laurent series (over
a finite field K of characteristic p).

Lemma 3.4.3. Let k be alocal field, f (X) € Oy [X] and a € Oy, satisfying |f(oc)| < |f’(a) |2.
Then there exists 8 € O, such that f(f) = 0 and

f(@)
f'(@)

1B —al < . (3.59)

The lemma above is called Hensel’s Lemma. There exists a proof, that is based on this
lemma, for the existence of Teichmiiller representatives, i.c. the elements of the set 4, in

the theorem below.
Let (k,v) be alocal field, V, = {x € k | x7 ' =1}and A, =V U {0} ={x € k| x? = x}.

Theorem 3.4.4. A, is complete set of representatives of k. in O, and contains 0. V, is the set
of all (q — 1)th roots of unity in k, and the canonical ring homomorphism O, = k; induces
the isomorphism of multiplicative groups Vi, = ki. So V, is a cyclic group and it is of order

q-—1
Teichmiiller representatives can be used to show the existence of the following isomorphism:
Theorem 3.4.5. Let k be a local field. Then O = ki X (1 +p,) = ki X U;.

The multiplicative structure of k™ can be described as below:
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Theorem 3.4.6. Let (k, v) be a local field. The group k™ is a totally disconnected and locally
compact Abelian group, which is also non-discrete, in the v-topology of k. The unit group
Uy (= Uy) and its subgroups U, = 1 + pg,n = 1 are compact, open subgroups of k™, they
form a neighborhood base of 1 in k™. Furthermore, Uy, is the (unique) maximal compact

subgroup of k*.

It can be shown that the compact group U, is the inverse limit of U, /U,,’s (finite Abelian

groups) with respect to the transition maps U, /U,,, = U, /U, form =n = 0:

Uy = 1lim Uy /U, (3.60)

3.5. FINITE EXTENSIONS OF LOCAL FIELDS

Let (k,v) be a local field and k, = O, /p, = [, its residue field. Let k' be any finite
extension over k. By Theorem 3.1.2, we can extend v to a unique normalized valuation v’ on
k's.t. v'|, ~ v. Then (k',v") is a complete extension of (k, v). So, if k' /k a finite extension,

we always get a local field (k', v").

Definition 3.5.1. Let k’/k be a finite extnsion of local fields and put n = [k : k] = ey -
fir k- Then, k' /k is called an unramified extension if e/, = 1 and f;/, = nand itis called

a totally ramified extension if e, ,, = n and fi. = 1.

Take prime elements m; and ), of k and k', respectively. So v(m,) = v'(my) = 1. We

know that,
Cr/k = v’ (1), fk'/k = v(Nk’/k(T[k’))' (3.61)

Then we see that

* The extension k'/k is unramified iff a prime 7, also becomes a prime in k',

* The extension k'/k is totally ramified iff Ny, (7)) is a prime element of k when 77,/
is a prime element of k'.

Let k'/k be any finite extension of local fields, n = [k : k] = ey - fir/ and K, = F,
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Ky = Iy for the residue fields with ¢" = q’¥'re. Let
A=y ek |y" =y}, ko =k(A}), kS ko Sk (3.62)

For k,, we have the following:

Lemma 3.5.1. The field k, is a splitting field of x3' — x over k and k,/k is an unramified

cyclic extension with degree [kq : k] = fir k.

Using the Lemma 3.5.1 we can show the following isomorphism:
Gal(ko/k) = Gal(ky, /Ky). (3.63)

We also have the following important result about the unramified extensions of local fields:

Theorem 3.5.2. Let (k,v) be a local field and k), = Oy /v, = F, its residue field. For each
integer n > 1, there exits an unramified extension k' [k with degree [k' : k] = n. Here k' is
unique over k (up to an isomorphism). The extension field k' is a splitting field of XT" — X
over k, and it is also a cyclic extension and of degree n over k. Let k. be the residue field
of the local field (k',v"). Then each element of o of Gal(k'/k) induces an automorphism o'

of Ky /Ky, and the map o » ¢’ defines an isomorphism

Gal(k'/k) = Gal(ky /ky). (3.64)

The generator ¢ of the cyclic group Gal(k’/k) in Theorem 3.5.2, which corresponds to the
automorphism w = w?,Vw € k., is called the Frobenius automorphism of the unramified

extension of k' /k and it is uniquely characterized by the following property:

@ (y) = y9 mod py, (3.65)

forall y € Oy.

Theorem 3.5.3. The splitting field ky of x? —x over k in Lemma 3.5.1 is the unique maximal

unramified extension over k in k'. The extension k' [k, is a totally ramified extension and

[k ko] = exrps ko * k] = frrpie (3.66)
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The field k is called the inertia field of k' /k.

3.6. INFINITE EXTENSIONS OF LOCAL FIELDS

In this section the infinite extensions of local fields will be discussed. Let (k, v) be a local
field and k;, = Oy/p, = F, its residue field. Denote a fixed algebraic closure of k by k¢

and let 1 be the unique extension of v to k*. Denote the completion of (k®9, y) by (k<%, [1).

If F is any intermediate field of k and k%9, then we have:

k € F c ks c ko, (3.67)
We have discussed that the closure F of F in k%% is a subfield of k% Let

ur = tlp pF = Al (3.68)

Then y is the uniquely determined extension of v to the algebraic extension F over k. Also
(F, uz) is the completion of (F, ) as described in Example 7. In case of infinite extensions,

similar to finite extensions, we have the following definitions:

O : the valuation ring of g, (3.69)
pr : the maximal ideal of u, (3.70)
Kr = Og/pr : the residue field of . (3.71)

Also let O, pr, and kg be defined similarly for uz. Since fz/r = 1, the injection O < Of
induces:

Kp = Kz (3.72)

Lemma 3.6.1. Let L be an extension of F in k*9 (assume the extension is finite) and denote
the closure of L in k9 by L. Then
LF = L. (3.73)

IfL/F is seperable, then we have that LN F = F.
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3.7. UNRAMIFIED AND TOTALLY RAMIFIED EXTENSIONS

Let k ©€ F € k*9 be as in Section 3.6

Definition 3.7.1. Then the extension F /k is called an unramified extension if every finite
extension k" over kin F, k € k' < F is unramified; that is e,s,, = 1. Itis evident that, if

F /k is unramified and also we have k € F' € F, then F'/k is also unramified.
We have the following lemma to characterize the unramified extensions:

Lemma 3.7.1. Let k € F € k. Then F/k is unramified if and only if up(= ulg) is a

normalized valuation on F, i.e. uW(F*) = Z.

There exists a unique unramified extension k.. over k in k*¢ with degree n for n > 1. This
field is the splitting field of X7" — X over k in k®9. If we take the union k,,, of all k7., n > 1,

then we get a subfield of k¢:

k,, = U k. (3.74)

nx1

Let K = k,,. It can be shown that K is the unique maximal unramified extension over k
in k9. Similar to finite case, the following theorem can be given for the Galois group of the

maximal unramified extension.

Theorem 3.7.2. The field ky is an algebraic closure of k), of k. Each 0 € Gal(K /k) induces

an automorphism o' of ki /Ky, and the map o = o' defines a natural isomorphism

Gal(K/k) = Gal(ky/ky). (3.75)

Since K, = g, the map w — w?, w € kg defines an automorphism of ky over k. Let ¢
denote the corresponding element in Gal(K /k) under Gal(K /k) = Gal(xg/k;). This is the

unique element in Gal(K /k) satisfying

@(a) = a?mod pg, forall a € Oy. (3.76)

This automorphism is called the Frobenius automorphism of K /k. It is usually denoted by

@,- We see that ¢, induces on each kj;,., n = 1, the Frobenius automorphism ¢,, of k;.,./k
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(Theorem 3.5.2). We know that Gal(k!,./k) is the cyclic group of order n and it is generated
by ¢,,, so the map a mod n » @3, a € Z defines an isomorphism Z/nZ = Gal(kj},./k).

We know that Z = m Z./nZ. 1t can be shown that the following diagram commutes:

Z/mZ ——> Gal(k™/k)

l l (3.77)

Z/nZ — Gal(k™ /k)

Taken together, Z = Gal(K /k) = lln Gal(k}l./k).

Definition 3.7.2. Let F be an algebraic extension of k in k*9: k € F € k. The extension
F /k is called a totally ramified extension if every k' suchthat k C k' C F, [k’ : k] < oo, is
a totally ramified extension; that is, fir/, = 1. In general F /k is totally ramified if and only

ifF Nk, = k.

Let k be a local field. Assume that the cardinality of its residue field is g which is a power of
a prime p. Let V,, be multipl. group of all roots of unity in k%9 with order prime to p. For

n = 1, let V, denote the subgroup of all (q™ — 1)th roots of unity in k%9, Then,

Vo= W K =k, K = k(). (3.78)

nz1

By Theorem 3.4.4, the ring homomorphism Oy — kj induces V,, = kg. So if ¢, (n) =
n? mod pg then @, (1) =n9 mod pg forn € V.

We conclude this section with the following important lemma about totally ramified extensions:

Lemma 3.7.3. Let T be Galois over k, containing k.., P an element of Gal(T /k) satisfying
Ylk,, = @i Denote the fixed field of Y in T by F. Then

Fk, =T, Fnky, =k Gal(T/F) = Gal(k,,/k). (3.79)
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Fk, =T
F / \ ks (3.80)
\ /

Fnk, =k

Particularly, F is a maximal totally ramified extension over k in T.

3.8. THE NORM GROUPS

Here we will present the norm groups of algebraic extensions. They will be used later on in

the text.

Let k be a local field. Consider any algebraic extension F /k (k € F € k®?). Let Uy denote
the unit group of F:
Up = Ker(ug : F* » R"). (3.81)

Define
NCE/) = [\ Nepelk™), NUGE/K) = (| MW (3:82)
144 k'

where k € k' € F, [k’ : k] < +oo. The groups N(F/k) and NU(F /k) are called the

norm group and the unit norm group of F /k, respectively. If F /k is finite, we have
N(F/k) = N (F*), NU(F/k) = Ng;(Ug). (3.83)
The group N(F /k) is a closed subgroup in k*, NU(F /k) is a compact subgroup of U, and
NU(F/k) = N(F/k) nU,. (3.84)
Note that, if k € F € F' € k%9, then
N(F'/k) € N(F/k), NU(F'/k) € NU(F/k). (3.85)

Theorem 3.8.1. Let F /k be an algebraic extension. Assume also it is unramified. Then we
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have

NU(F k) = U,. (3.86)

Also, if the extension F [k is infinite,
N(F/k) = U,. (3.87)
Particularly, if F is k,,, in this case we have the following:
N(kyr/k) = NU (kyr/K) = U. (3.88)

Theorem 3.8.2. Let k be a local field and T [k an algebraic extension, where k € T € k9,
Then T/k is totally ramified iff N(T/k) contains a prime in k.

3.9. THE DIFFERENT

Consider the finite extension of local fields k' /k and assume also this extension is separable.

It is known that the trace map Ty : k" — k is continuous [15] and Tys /, (Oy+) S Oy. Define:
A={x" €K' | T/ (x'Op) € O} (3.89)

Since we assumed k'/k is separable so there is an'y € k' such that T, (y) # 0. This implies
T (k") = k, also A is an Oy/-submodule of k" which is not equal to k. The inclucion
Ty /k(Oyr) E O implies that O,y € A and A # 0. So m is an ideal of k" and Dy, = m™" is
a non-zero ideal of Oy (recall the definition of an ideal). We call Dy, the different of the

extension k' /k.

Lemma 3.9.1. There is an element § € Oy such that 1,§, ...,E""* form a free basis of the
Oy-module Oy, that is,
Ot = 0, D 0§ D -+ B 0" (3.90)

Particularly, O = O, [€].
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Theorem 3.9.2. Let k' /k be a totally ramified finite extension and n' a prime in k'. Then
Ok' = Ok[ﬂ']. (391)

Theorem 3.9.3. Let a« € Oy be as in Lemma 3.9.1 and f(X) the minimal polynomial of
a € k. Then

Dyrji = f(@)Oy. (3.92)

Here f'(X) denotes the formal derivative of f (X).

3.10. THE RAMIFICATION THEORY OF LOCAL FIELDS

Let k' /k be a finite Galois extension of local fields and put G = Gal(k’/k). Take an element
& € G. Then by 3.32,

f(okl) = Ok" E(pk') - pk" nz= 1. (393)
This implies ¢ induces the following automorphisms:
&n 2 Opr [Pt = Oy JpRH. (3.94)

Themap : & & &, isahomomorphism of G into Aut(O, /p}), the group of automorphisms
of O/ /pt. Denote Ker 9 as G,; i.e.,

G,={6€G|&(x")=x"modp} forall x' € Oy} (3.95)

The subgroup G, is a normal in G and G,,, € G, where n > 0. If £ # 1, then there exists
an x' € Oy such that £(x") # x', s0 E(x') — x' & pji* for sufficiently large n. This means

that G,,, = 1 for m > n and we have the following sequence of normal subgroups of G:
1=.=G,<..€G S G =0aG. (3.96)

These groups are usually called (in lower numbering) the ramification groups of the extension

k'/k. We will need two theorems about the ramifications groups.
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Theorem 3.10.1. Let k, be the inertia field of k' /k. Then the following hold:

Gy = Gal(k'/ko), G/Gy = Gal(ko/k) = Gal(ky:/k). (3.97)

By this theorem, G /G, is a cyclic, |G| = ey i Also [G 2 Go] = fyr k.

Theorem 3.10.2. There exists an injective homomorphism
W Gp/Gpyq = Up/Unys, (3.98)

where n > 0 and U, is the subgroups of the unit group of k' as described in 3.45.

Now let k be a p-field. Then by the equations in 3.46,
U /Uy = Ky (3.99)

and

Up/Unsqy =K, 121, (3.100)

So, if we consider the theorem above, the following easily follow:

(1) G,/G, iscyclicand [Gy : G,] |1 (@' — 1),
(i1) G,/Gp,q 1s Abelian of type (p, ..., D), [Gn : Gpia] | '

(ii1) [G, : G,] is prime to p and | G, | is a power of p.
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4. FORMAL POWER SERIES

In this chapter, we will discuss formal power series and then we will introduce power series

over Og. The main references for this chapter are [8], [15], [16] and [17].

4.1. BASIC DEFINITIONS

Let R be a commutative ring with identity 1 # 0. In this chapter,
S =R[[Xy, -, X ]] 4.1)
denotes the commutative ring of all power series

p— — il iZ i -1 i
f - f(XerZ' "'IXn—lan) — z a; . i, .. ,in_l,inxl XZ Xnn—lxnn; Qi iy o inevin €ER,
i
4.2)
where X;, X,, ..., X,,_1, X,, are indeterminates and i = (i, iy, ..., i_1, I, ) ranges over all n-tuples

of non-negative integers.

Let f, g € Sand d = 0 an integer. Then, if the power series f — g does not have any terms
of total degree < d, we write

f = g mod deg d. (4.3)

Let g4, ..., gn be power series in R[[Y;, ..., Y;,]] such that g; = O mod deg 1 for 1 < i < n.
For any f(X;, ..., X,) in S, we can substitute g; for X;, 1 < i < n and we get a well-defined

power series

f(gl(ylf ""Ym)J ""gn(le ""Ym))J (44)

inT = R[[Y,...,Y]]. This is because we take ‘0 mod deg 1’ power series, so we do not
encounter such power series that contain constant terms and the problem of convergence does

not come up. We denote such a power series by f © (g4, ..-, gn)-

We can get interesting algebraic structures by using formal power series. As an example, let
X be an indeterminate. Consider the ideal M of R[[X]], generated by X; i.e.,, M = (X) =
X-R[[X]]. The set M consists of all f = 0 mod deg 1. Consider the preceeding discussion and
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take n = m = 1; then the power series f o g is well-defined and it belongs to M. In particular
we get a monoid with the multiplication defined by f o g. The power series e(X) = X is the
identity element of this monoid: X o f = fo X = f.

If there exist f, g € M such that f o g = g o f = X, then we can define the inverses and

write

f=9"g=rf" (4.5)

The following lemma is a well-known fact about formal power series:

Lemma 4.1.1. Let f(X) =Y. a,X™ a, € R. Then f is invertible in M iff a, is invertible

n=1
in R.

Let k be a local field, k¢ a fixed algebraic closure of k, k%@ the completion of k¢ and Kialg

the residue field of k4. Take
f= Z a, . ,inXil e X, a;, . i, € O (4.6)
i

and let g4, ..., g, be power series in O [[V3, ..., Yin]] satisfying that the constant terms of

91, --» gn are contained in p;5r. Consider

JRY OIS ) SN SRR A RN N SR ALY (4.7

i

We see that the formal power series converges in Oz [[Y3, ..., Y]] since the constant term
in it constitute a convergent series (because its terms belong to p;ar, the powers of the terms
increase as n goes to infinity, so the valuation of the difference between the consecutive
partial sums increases indefinitely, which proves that it is a Cauchy sequence). Particularly

if we took any ay, ..., @, € piag, then f(ay, ..., a,) would be well-defined.

4.2. POWER SERIES OVER 0O

Let k be a local field and K denote k,,, i.e. the maximal unramified extension of the local

field k in k%9, Also denote the Frobenius automorphism of k by ¢,: ¢, € Gal(K/k) and let
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@, be the natural extension of ¢, to K. In this section we will call both of them ¢ if there is

no risk of confusion. Recall that ¢ induces the automorphism w — w? on the residue field

IR

Kk = kg = Og/Pr,

a? = @(a) = a? mod pg for all @ € Ok. (4.8)

We will prove a lemma for the endomorphisms below:

@ —1:0r - Og, (4.9)
av (p—1)(a) =9¢(@)—a (4.10)
@ —1:Ug - Ug, 4.11)
Em 7 = p(9)/8. (4.12)

Lemma 4.2.1. Let O be the additive group of Og, Ug the group of units in K. The sequences

below are exact:

15U, »Ug TS5 Up > 1 (4.13)
p—1
00,20 —0g~0 (4.14)

Proof. The exactness of the first sequence will be proved. The proof of the other case is
similar. Recall that k; = Ky is algebraically closed. So the maps kg — kg defined by

w - w9 — wand w » w? ! are both surjective. So
(¢ = DO0g +pg =0, UZ™ (1+pg) = Ug. (4.15)

Let £ € Ugz. We will use the induction to define a sequence of elements {1,,},s0 € Ug
satisfying
n+1

¢ =0t mod PR, My = Npyy mod pEtY, foralln > 0. (4.16)

There exists 17, € Ug such that & = n¢ ™" mod pg by the equation 4.15. Now we suppose that
we found a sequence of elements, 14,14, ..., 7, n = 0 satistfying the congruences in 4.16.

Take a prime 7, in k. As K /k is unramified, ,, is also a prime in K and K. So, we can write

pr = mOg. By the congruence in 4.16,

& =1+ anl*!, a€ 0. (4.17)
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We know by 4.16, there exists an element f € O such that a = (¢ — 1)(f) mod pg.
Let

M1 = Ma(1 + B (4.18)

We see that 7,,,, € Ug and 1, = 1,4, mod p}**. We also know that ¢ (1) = m, then the

following holds:
-1 -1 —Bmi*?
Muer =00 (L +@(B)m™™) <1 + W) (4.19)
=nn L+ eBmE™){L + [(=Bmp™) (1 +yrH)]} (4.20)
=18 (1 + (9(B) — B)mt*) mod pi*? (4.21)
=nn (1 + anPtt) mod pit? (4.22)
= ¢ mod p}*2. (4.23)

where y € O (we used the fact that 1 + p%“ 1s a multiplicative group). Now we showed
the existence of the sequence {1, },s0. Since K is complete, then n = lim,,_,, ,, exits in Ug

. o-1 . ..
and satisfies n®~* = &. Hence we proved that Uz — Uy is surjective.

Consider the kernel of Ug LN Uz and observe that U is in the kernel. Suppose & €
ker ¢ —1, €971 = 1. We know that the set Az = {0} UV, is a complete set of representatives
for kg in 0. Take a prime element 1, as above. Then & can be expressed (in a unique way)

as follows:

&= Z a,ny, a, €A={0}UVl,. (4.24)

n=0
Now we apply ¢ to £ and we get & = @(§) = ZZ’:O ¢(a,)my. But by the uniqueness of the
representation, a,, = ¢(a,) = an, forallm > 0. So a,, = 0 or a,, is an element of the cyclic

group V, of order ¢ — 1. Now we see that £ € k N Uz = Uj, and the exactness is proved. [

From now on, for the power series

FeXa) = D ay, XX, @, €0g, (4.25)

1

f? will mean

£ Xa) = ) (e, I X (426)
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Now we will prove a fundamental theorem in this section.

Theorem 4.2.2. Let w; and 1, be primes in K, f, and f, power series in Og[[X]] satisfying

the following conditions:
fiX) =m, X, ,(X) =m,X mod deg 2, fi(X)=f,(X)=X? mod pg, (4.27)
where q is the order of k. Let
L(Xy, o, X)) = a0 X, + -+ a,. X, @ € Op, (4.28)
be a linear form in X4, ..., X, satisfying
T L(X, X5 ooy X1, X)) = ML (X, X oo, X1, Xo)- (4.29)
Then there is a unique F = F(X4, ..., X;n) in Og[[ X1, ..., X;n]] such that

F=L moddeg 2, fiocF =F%of,. (4.30)

Proof. We proceed by induction on n. We inductively construct a sequence (F,) satisfying

the following conditions:
fieE,=F/of, F,.,=FE, moddegn+1 foralln > 1. (4.31)
Let F; = L. Because of our assumptions on f, f, and L,
fioF, = F? o f, mod deg 2. (4.32)

Assume that n > 1 and we have found a polynomial F, ot total degree < n in Og[X4, ..., X;n]
satisfying
fioE,=FEf of,moddeg n+ 1. (4.33)

Let H,,, be a homogeneous polynomial, which is of degree n + 1 and also a member of
Oz[[Xy, .-, X ]] and let
Foiy = By + Hpyg. (4.34)
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So F,,; is a polynomial of total degree < n + 1 in Og[X}, ..., X;,,] satisfying
F,,1 = E, moddegn + 1. (4.35)

The existence of F' depends on the existence a particular unique H,,,; such that F,,,; above
satisfies

fioE, .1 =E¥% of, moddeg n+ 2. (4.36)

Let G,,1 = f; © E, — EY o f,. By the congruence 4.33, G,.; = 0 mod deg n + 1. Since
fi = m,X and also f, = m,X mod deg 2,

fieByyr = fi(Fy + Hyyy) = fio Fy + mHyy mod degn + 2, (4.37)
Eliof,=Flof,+Hl i of,=F of,+n}'HY  moddegn + 2. (4.38)
So the congruence 4.36 is equivalent to the following congruence:

Gpy + T Hy g — 3P HY,, = 0 mod deg n + 2. (4.39)

But, since f; = f, = X9 mod pg and a®? = a? mod pg for @ € O, if we consider the

definition of G,,,,, we will see that
Gpiq = E,(Xy, o, X,)T — EF (XY, ..., X)) = 0 mod pg. (4.40)

Now consider a monomial X’ = Xil e X ofdegree n+1 in Og[X;, ..., X;,]. The coefficient
of X" in G,,,, should be an element of the form —m, 3, f € O¢. Let a be the coefficient of X*
n+1

in H,,,,. Then the coefficient of the same X' in m, H,,,, — n¥**HY, | is mya — n3**a?. Since

G,+1 = 0 mod deg n + 1, the congruence 4.39 holds if and only if a satisfy the following:
—m B +ma—nytta? =0, (4.41)

for every monomial X! of degree n + 1. Lety = my'n*tt. We see that ug(y) = n > 1.

Then the equation above for a can be written as

a—ya?=p, (4.42)
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where f§ and y are known quantities. Since puz(y) = 1, this implies that the following series

is convergent in O and satisfies the equality 4.42:
a=pB+yB?+ypY + ... (4.43)
To prove the uniqueness of the solution, assume that a; and a, are two solutions, then
a, —a, =y(af —af). (4.44)
On the other hand,

pr(as — az) = pg(o(a, — ay)) = ,u,?(aip - a;p): (4.45)

so that uz(a; — a,) = +0o0. That means a@; = a,. So we proved there exists a unique H, 4
satisfying the congruence 4.39 and F, , ; satisfying the congruence 4.36. Starting from F; = L,

we can construct a sequence of polynomials F, in Oz[[X, ..., X;,,]] such that deg F,, < n and
fioE,=FE/of,, FE,.;,=F,moddegn+1foralln > 1. (4.46)

The second congruence tells us that F,, converges to a power series F in Og[[X4, ..., X;,]] such
that F = F, moddegn + 1 forall n > 1. So we see that this power series F satisfies the
following:

F=F =Lmoddeg2, fioF =F%of, (4.47)

Now we prove the uniqueness of F. Let F' be any power series satisfying the above-mentioned
conditions. Then, for n > 1, let F,, represent the the sum which is composed of the terms of
degree < n in the power series F' and let F,,;, = F, + H,,, ;. Since F' = L mod deg 2, we see

F/ = L = F,. But we proved that H,,,; isunique so F, = F, foralln < 1. Then F' = F. [

Remark. Inthe proof above, we implicitly used the continuity property of formal power series

composition. For the proof, refer to [17].
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5. FORMAL GROUPS

In this chapter, we will discuss formal groups and then we will introduce the Lubin-Tate
formal groups which will be the main tool in the following chapters. The main references for

this chapter are [8], [15], [6] and [3].

5.1. BASIC DEFINITIONS

Definition 5.1.1. Let R be a commutative ring with 1 # 0 and X, Y, and Z indeterminates. A
power series F(X,Y) in R[[X, Y]] is called a formal group over R if it satisfies the following

conditions:

F1.F(X,Y) = X + Y mod deg 2,
F2. F(F(X,Y),Z) = F(X,F(Y, 7)),

F3.F(X,Y) = F(Y, X).

By F1, F(0,0) = 0, so we do not encounter any convergence issues in F2.

LetY = Z = 01in F1 and F2. So we see that
F(X,0) = Xmoddeg 2, F(F(X,0),0) =F(X,0). (5.1

First equivalence in 5.1 tells us that f(X) := F(X,0) has an inverse f ™' in M = XR[[X]]
(consider the first coefficient: 1-X). So if we apply f~* to the second equality in 5.1, we get
F(X,0) = X. Similarly, we also get F(0,Y) =Y. Then,

i,j 21

Note that this implies F(X,Y) has no terms like X3 or Y2, etc.

There exists a unique power series

LX) = —X + z bXi b, €R, (5.3)

i=2
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such that
F(X,iz(X)) = 0. (5.4)

For f,g € M = XR[[X]] define a binary operation +, on M:

f+rg =F(fX), g(X)). (5.5)

Note that the addition f +5 g belongs to M and the following proposition easily follows from

the formal group axioms and the equation 5.4.

Proposition 5.1.1. The set M becomes an Abelian group with respect to the addition f +5 g
and the inverse of f is ip(f).

We denote this group by M.

Let G(X,Y) be another formal group over R and let f(X) be a power series in M = XR[[X]]
such that

fEEXY)) =G6(fX), f(Y)). (5.6)

We call such f a homomorphism from F to G and write f : F — G. In particular, if f has
an inverse f ' in M, then we can easily see that f ' is a homomorphism from G to F. In
this case we say f is an isomorphism and we write f : F = G. From now on, we will write
f o F = G o f instead of the equation 5.6.

Let F(X, ..., X;n) be any power series in R[[ X4, ..., X;,]] and f € M = XR[[X]] invertible in
M. We define a power series F/ (X, ..., X,,) in R[[X}, ..., X,,]] by

FI(Xy, o, Xp) = foFof™t = f(FUf (X)) oo, fTHXm)D). (5.7)

We see that if F(X,Y) is a formal group over R, then G = F/ is also a formal group and
f:F=aG.
We put

Homg(F,G) :== {f | f is a homomorphism from F to G}. (5.8)

and in particular we set

Endg(F) == Homg(F, F). (5.9

Example 13. If F(X,Y) = X +Y + XY, then f(T) = (1 + T)? — 1 is an endomorphism
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where p is a prime number.
Concerning the set Homg(F, G), we have the followng lemma:

Lemma 5.1.2. Homg(F, G) is a subgroup of the Abelian group M; and Endg(F) is a ring
with respect to the addition f +g g and the multiplication f o g defined by the power series

composition where f,g € Homg(F, G).

Proof. Let f,g € Homg(F,G) and h = f +, g. Then,

hoF=foF+,goF=Gof+;G0o9=G(Gof,Gog). (5.10)

Using the formal group axioms, we get

G(Gof,Gog)=GGU(X),9(X)),G(f(Y) g(Y))) (5.11)
=G((f +¢ 9)X), (f +¢ 9)(V)) (5.12)
=Goh (5.13)

So Homg(F, G) is closed under addition. Consider the following equality:

G(G(X,Y),G(ig(X),ig(Y)) = G(G(X,ig(X)), G(Y,ig(Y)) = G(0,0) = 0.  (5.14)

This tells us that G o i; = i; o G (by the formal group axioms). So,

ig(f)eF=igofeF=igoGof=Goigef =0Gois(f) (5.15)

Now it has been shown that i;(f) € Homg(F, G). Clearly 0 € Homg(F, G). We have proved
that Homg(F, G) is a subgroup of M.

For the second part of the lemma, we will show that the distributive law holds in Endg(F),
since the rest easily follows from the axioms and the definitions.

Let f € Endgz(F) and g, h € M. Then,

fe(gtrh)=fFE@GX), (X)) =FFGEX),f(h(X))=feg+pfeoh (516

]
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5.2. LUBIN-TATE FORMAL GROUPS F;(X,Y)

Let k be a local field, k, = O/p, = [, its residue field. Here, the same notation will be
used as in the section 4.2. For a prime my of K, Fr, denotes the family of all power series

f(X) in R[[X]] satisfying
f(X) =nmgX moddeg 2, f(X)=X?mod pg. (5.17)

For example, the polynomial mgX + X9 belongs to F,_. Also, we see that if f € F_, then

f? € Fyp(ng)- The union of the sets F, for all prime 7z’s of K is denoted by

F = U E, . (5.18)

Tk is a prime in K

Theorem 5.2.1. For each f € F,, there exists a unique formal group Fs(X,Y) over R such
that f € Homg(F;, qu)): foF = Ff(p o f. Here, F; s are called Lubin-Tate formal groups.

Proof. Takem; = m, =m, f; = f, = f,L(X,Y) = X + Y and m = 2 in Theorem 4.2.2.

Then there exists a unique power series F (X, Y) in R[[X, Y]] such that
F(X,Y) = X + Y mod deg 2, (5.19)

foF =F%of. (5.20)
We verify that F; satisfies the formal group axioms F2 and F3.
Associativity:

Let
FX,Y,Z)=F(F(X,)Y),2), (5.21)

E(X,Y,Z) = F(X,F(Y,2)). (5.22)

By the equations 5.19 and 5.20, we get

EX,Y,2)=FX,Y)+Z=X+Y + Zmod deg 2, (5.23)
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foR =F(fFX.V)),f(2) =FF*(FX),f(Y)), f(2) =F o f. (5.24)

By the similar argument,
E,(X,Y,Z)=X+Y +Zmoddeg2, foFE =F’of. (5.25)

Now, if we take L(X,Y,Z) = X + Y + Z, the uniqueness part of Theorem 4.2.2 implies

F, = F,; that is the associative property for formal groups holds:

F(F(X,Y),Z) = F(X,F(Y,2)). (5.26)

Commutativity:

To prove the commutativity, let G(X,Y) = F(Y, X). Then we see,
GX,Y)=X+Ymoddeg?2, foG=0G?0f. (5.27)

Since F(X,Y) is unique by the Theorem 4.2.2, we obtain F = G; thatis F(X,Y) = F(Y, X).
We have proved that F(X,Y) is a formal grup (over R). It can be easily shown that F?® is a
formal group (over R). Write Fy for F. So Fs is the unique formal group over R satisfying
foF = Ff(p o f, meaning that f € Homg (F;, Ff(p). [

Remark. Observe that the equality f o F; = F o f implies f¢ o F? = (F’)? o f. But it
means that

F}"o = Fry, where f? € F,p). (5.28)

Let f € F and a € Oy of k. If we apply Theorem 4.2.2 for L(X) = aX, we see there is a

unique power series Y (X) in R[[X]], which satisfies the following conditions:
Y(X)=aXmoddeg2, foyp=9yY?of. (5.29)

We denote this power series Y (X) by [a];.

Theorem 5.2.2. For each a € Oy, [a]; € Endg(Ff). Moreover the map a v [a] is injective



and it is a ring homomorphism:
$f t O = Endg(Ff).
Proof. Lety := [a];. Consider the following equations:
fopoF =pPofoF=y?oFfof=(poF)?of,

foFop=Fofop=F op?of=(Fop)?of,
YoF=FoY=a(X+Y)moddeg2.

So, by 5.31, 5.32 and 5.33 together with the uniqueness in Theorem 4.2.2,

Yo F; =F;o1, thatis, ¥ = [a]; € Endg(F}).

Let a,b € O,. Along the similar lines,

f o ([als +r [P]f) = f o Fe([alf, [b]f)
=FY(f o [al;. f ° [b]y)
= F?([alf o f,[b]7 ° )
= (lalf +£ [P])? o f.

Also we have

[als +£ [P]f = [a + b]f = (a + b)X mod deg 2.
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
(5.36)
(5.37)
(5.38)

(5.39)

Hence we see [a]f +¢ [b]; = [a + b];. Similarly we get [a]; o [b]; = [ab];. So we

have proved that a ~ [a]; defines a ring homomorphism ¢, : O, — Endg(F;). This

homomorphism is injective because a depends on [a]; = aX mod deg 2.

]

Take two primes w and 7’ in K and let f € F,, f' € F,.. Recall thatw’ = n€, & € U(K). By
Lemma 4.2.1, 3n € U(K) satistying § = n®~*. Let L(X) = nX. Then n'L(X) = nL?(X).

So, applying Theorem 4.2.2 for f; = f', f, = f, my =n', m, = mn, L(X) = nX, we can



41
conclude that, in Og[[X]], 3!6(X) such that
0(X) =nXmoddeg2, f'of=0%0f. (5.40)

Also, since n € U(K), 6(X) is invertible in M = XOg[[X]].

Theorem 5.2.3. The power series 0(X) has the following properties:
(i) 0:F=F,ie, P}B = F,

(ii) [a]? = [a]y for a € Oy.

Proof. To prove (i) consider the following relationships:

f’o@oFf=9‘pofoF}=9(poFf(pof=(Hof})qoof, (5.41)
floFpo@=Flof o0 =F.00%cf=(F00)?of, (5.42)
BoF =Fo60=n(X+Y)moddeg 2. (5.43)

If we use the uniqueness property in Theorem 4.2.2 with L(X,Y) = n(X +Y), we see that
§oF =Fyo0,ie, Ff = Fp. (5.44)
This concludes the proof for (i). The proof for (ii) is similar. O

Theorem 5.2.3 tells us that formal groups F;’s over Og are isomorphic to each other for all

power series f in the family F.

Example 14. Let k = Q, and © = p. Then, f(X) = (1 + X)? — 1 € F,. One can directly
show that F(X,Y) = F; = X + Y + XY. For any a € Z, define

. a\,,, (a\ ala—1)-(a—m+1)
1+x) _z(m>x , <m>_ =D (5.45)

m=0

It can be shown (7‘:1) € Z,. We claim that

[al, = (1 +X)*—1. (5.46)
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To prove this, note that (1 + X)* — 1 = aX + ... and recall that |, = id,. Also,

fo(+X)—-1D)=0Q+X)*-1=((1+X)*=1)of (5.47)

holds when a is an integer, which (by continuity) implies that it holds for all a € Z,,.
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6. THE MAIN THEOREMS

The main references for this chapter are [8], [15], [9] and [2].

Let k be a local field. Fix an algebraic closure k% of k. Let k% denote the maximal Abelian
subextension in k¢ over k, which is the compositum of all finite Abelian extension over k.

Abelian local class field theory for k [2] states that a unique group homomorphism exists:
Arty : k* > Gal(k®? /k), (6.1)

which is called the local Artin map of k characterized by two properties below:

(i) For a prime w € k, Art,(m)|,,, = @, Where @y is the Frobenius automorphism of

k.

(i1) For each finite Abelian extension k' over k, Art,(N(k'/k)) l,.= 1.
In this chapter, we have three objectives:

(1) Fora fixed primeelementm € k, we will construct a maximal totally ramified extension

k,./k in ka®,
(ii) We will define a map p,, : k* - Gal(k®? /k).

(iii) We will show that this map p is the local Artin map and we will prove k** = k_k,,,

using the local Artin map .

6.1. 0,-MODULES W/

In this section, we keep the same terminology and assumptions as in the section 3.6 and as in
the sections of the Chapter 5. For a local field k, we will define an O,-module structure on

m := pay and using these modules, we will construct certain finite Galois extensions of k.

As before, let K denote the completion of k,,.(= K) and let Fr(X,Y) be the formal group

over R = Og foran f € F. For a, f € pga and for any a € Oy, define

a+yp=F(apB) aya=]|a]s(a). (6.2)
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Here we see that Fr(a, B) and [a];(a) € Og. Also, since F;(X,Y) = 0 mod deg 1 and
[a](X) = 0 mod deg 1 by definition, we get

a+;B, a;a€pag (6.3)

for a, f € pia, a € Oy.

The set pgai; can be seen to be an Abelian group, the operation of which is the adition +,
defined above. In this group, the inverse of an element «a is ir(a) (consider the equation
5.4). It can be shown that the operations in 6.2 defines an 0,-module structure on p;ar. For

example:

Since we know that [a] o F; = F; o [a] (the equality 5.34),

a -y (a+5p) = [al(Fp(a, B)) = Fe([alg(a), [al(B)) = (a @) +f (a -y ). (64

The other module axioms can be proved similarly. If we define this O;-module structure on

Pratg» We denote pia by my.

Now, for any integer n = 1, a fixed f and a € m; we define:
p"*ta={a,alaep™t} (6.5)

W ={a € m; | p™*' - a = 0}. (6.6)

Forn = —1, W/"’s constitute a nested sequence of Oy-submodules of m:

=wlcwpc..cwWprc...cW, (6.7)
where -
W, = U W, 6.8)
nz-1

Now take ' in F. By Theorem 5.2.3, we know that there exists an invertible 8 (X) € XR[[X]]

satisfying P}g = Fyr and [a]? = [a]; (a € Ok). We can show that 8 defines an O-module
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isomorphism:
0 :mp=mg, (6.9)

It is clear that 6 (a) € m; where a € m, since 8 = 0 mod deg 1. Also observe that

0(a +¢ B) = 0(F(a,B)) = Fr(6(a),8(B)) = 0(a) +5 6(B) (6.10)

The other properties of the isomorphism can be proved similarly. The power series 6 also

induces the following O,-module isomorphisms:

e W= f’7, 0" : Wy =Wp, n=-1. (6.11)

Now we will explicitly describe the elements of W;"’s.

Lemma 6.1.1. Define

ﬁ — f‘l’i' gi = ﬁ °fi—1 0 eee °f0' g_l(X) =X (612)
for f € Fandi = 0. Then

Wt={a eml| gy(a) =0}, for n=-1 (6.13)

Proof. The lemma is true for n = —1 since W' = {0} and g_,(X) = X. Now letn > 0

and take f’ and 6 as above. Then we know that f' e 8 = 8 o f. We have the following:

i+1 i+1

flof? =09 of, f/=69"0f00"% >0, (6.14)

i+1

gn=Jnofa10 o fg =69 0g,°07, n=0. (6.15)

The last two equations imply that if the lemma is true for f, then it also true for f'. To see
this, let § € W} and consider 6~'(8) = a. Then

i+1

Gn(B) =6°"0g,0071(B) =6 0 g,(a) = 0. (6.16)
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Let m,, € k. We know that K /k is an unramified extension so 1, € K. Hence
fX)=mX+X1€F. (6.17)

Observe that my, € O, f = m, X moddeg 2 and f o f = f¥ o f. By the equation in 5.29, this

implies
f=lmdy fi=f gGn=Ffoof =[my (6.18)
n+1 many
Since pp*t = 0, !, we have the following:
Wit ={aems|pp*tsa=0}={a€m]|g,(a) =0} (6.19)
Now we have proved that the lemma is valid for f(X). So it is valid for any f € F. U

Take an integer m = 1 and consider k' := k;}*. (the unique unramified extension of degree m

over k in k%9),

Take a prime ;s in k’. Then the polynomial f(X) = m X + X? € Oy/[[X]] and it is also a

member of F. Since k' /k is a complete extension, the following hold:

F(X,Y) € Ou[[X, Y]], [al;(X) € Ou[[X]], for a € O, (6.20)

Forn = 0, define

ha(X) = T8 + [gnoa O]9 (6.21)
Then we see that
In = fn °gn-1 = f<Pn °gn-1 = hn(X)gn—l(X) (6.22)
and
In(X) = hpy(X)hy_ 1 (X) - ho (X)X, (6.23)

Now we will study the properties of h,(X) and g, (X).

Lemma 6.1.2. The following hold for h,,(X) and g,(X):
(i) The polynomial h,,(X) is a monic separable irreducible polynomial of degree (q—1)q"
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in O [X] and it is also irreducible in K[X].

(ii) The polynomial g, (X) is a monic separable polynomial of degree q"** in O} [X]. The
set Wi consists of all roots of gn(X) in k®9. The order of Wi is equal to q"* and

hence the extension k'(W;")/k’ is a finite Galois extension over k'.

(iii) Forn = 0, let h,(ay) = 0, where a, € k*9. Then following hold:
Ca €W a €W (¢ —1)g" = [k (ap) : k'] and

s = N(—ap) € N(k'(a)/k").

Proof. By definition, g, = f, © fu_1© - ° f,. So,

n+1

In(X) = a, X + -+ X" = X9 "'mod p’, where a,, = m1te+ e, (6.24)

ho(X) = 9" + (ay_, X + -+ + X741 = X@ D" mod p'. (6.25)

From the equations above, we see that g,,(X) and h,(X) are monic polynomials in Oy[X]
of degrees q"*! and (q — 1)q", respectively. Since m*" is a prime in K (remember that
automorphisms do not change the valution of an element), the polynomial h,, (X) is Eisenstein
in O¢z[X]. This implies that h, (X) is irreducible in K[X]. Now suppose that k has char p so

that q is a power of p. Note that

dh n-1
d_; = (q - 1)(1?1:}Xq_2 F o, Auoq = gltettem (626)

Here % denotes formal derivative. Since (¢ — 1)alZ; # 0, h,(X) is separable. Also,

since h,,(X) is irreducible, h;(X) # h;(X) for i # j. Hence g,(X) = hy(X)hp_1 === ho (X)X
is a separable polynomial. We know that if @ € W}, then g,(a) = 0 (clearly a € k9,
Conversely, assume that g, (a) = 0, where @ € k*9. Then by the equation 6.24, i(a) > 0,
so @ € m N k%9, This means that W;* consists of the set of all roots of g,,(X), which is
a separable polynomial, in k9. The order of Wi is q™** and k' (W) /k' is a finite Galois
extension. Now we have proved (i) and (ii). For the first part of (iii), consider h;(X) # h;(X)
fori # j. If ¢y € W/*™", then it would be a root of some h;(X), 0 < i < n—1 or 0 which is
a contradiction. The second part of (ii1) is the consequence of the fact that the constant term

in h,(X) is ¥ . O
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Lemma 6.1.3. Let f € F € Oz[[X]]. Then the following hold:

(i) Fix an element ay € W* \ W/*™* for n = 0. Then W}* = Oy s a, and the map
$riamayag (6.27)
induces the following isomorphism:

O /Pit = W, (6.28)
(i) Pl f WS =W for0<i<n.

Proof. Since |W/|is g™** and |W/*™*| is q™, there exists an a, such that a, € W/ \ W2

It is clear that &, is an O-module homomorphism. Also, by definition, p;** - @, = 0 and

Pk r @y # 0. The kernel contains p;** but not py; i.e., it is equal to pi** for every n = 0.
Since we know that [0, : pp*t] = q™*1,
Ok/p;(H-l = Van and Van = Ok f (V4 (629)

Now we have proved (i). For (i1), let = be a prime in k. So

ay EWP\W/ = nlpag e Wt ap & WL (6.30)

So if we apply (1),
P f Wi =m' s O pag = Oyt pag = W/ (6.31)
Hence the proof is complete. ]

Let f € F. We define
End(W}") := the endomorphisms ring of the O,-module W}",

Aut(W/") = the group of all automorphisms of the O-module W;".
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Consider the following map:

$a s W > W/, (6.32)

B a-B=lalsB) (6.33)

where a € 0. Since W;* is and Oy-submodule, ¢, is an endomorphism. If we take b € Uy,
then &, becomoes invertible since [b~"]; = [b];*. So the map a = &, defines the following

homomorphisms for the ring End(W;") and the group Aut(W;"):
a : O » End(W/"), (6.34)
B : Uy = Aut(W™). (6.35)
Theorem 6.1.4. The homomorphisms a and  induce the following isomoprhisms.
Ok /p"™*' = End(W/), (6.36)
Up/Upyy = Aut(W), (6.37)

wheren = 0.

Proof. Take a € W/*\ W/~ Then we know that W/* = O, -y a by Lemma 6.1.3. We show
that the homomorphism « is surjective. Take ¢ € End(W/"). So {(a) = b ‘¢ a for some

b € Oy. Let c € W*. By the module axioms,

(c)=¢d-ra)=dfé(a)=d-s(b-fa)=b-r(d-fa)=Dbc. (6.38)

That means § = &,. So the homomorphism « is surjective. Since p™** - W/* = 0 and p™ -,
Wit = Wf0 # 0, the kernel of @ is p™**; hence we proved that O, /p"*" = End(W}"). Since
the unit group of 0, /p™*?! is isomorphic to U, /U,,4,, it follows that Uy /U,,4, = Aut(W/").

O
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6.2. EXTENSIONS L"/K
In this section, we will study the extension K W/ K and define a natural homomorphism
from U to Gal(I?(an)/I?).

Lemma 6.2.1. The extension R(Wf")/R is a finite Galois extension over K and independent

of f in the family F.

Proof. Take f(X) = X + X7, where wis a prime in k' = kj;.. By Lemma 6.1.2, k' (W") /k'
is a finite Galois extension. As k' € K, K W/ K is also a finite Galois. Since K is complete
by definition and K W/ K is a finite extension, K (W) is also complete in k9. Take any

power series f' € F and let 8(X) be the power series as in Theorem 5.2.3. Then,

W) = W,

0~ (Wi = Wi (6.39)
The power series 8(X) € Oz[[X]] and K (W*) is complete, so
Wi =0(W) < R(Wf"). (6.40)

This implies that
K c KW € Kwp). (6.41)

Since 8(X) is invertible and 9‘1(1/!/}’,‘) = W*, similarly we get K W) < K W7n). So
I?(Wf”) = I?(Wf’,‘ . (6.42)

[
We denote the field K (W/") by L™.

Theorem 6.2.2. There exists a homomorphism

Y™ U, > Gal(Z"/R) (6.43)
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where n = 0, satisfying that for u € Uy,

y"w)(a) =u-ra (6.44)

= [u]s(a) (6.45)

for every f € F and for every a« € W;'. The homomorphism y™ induces the following
isomorphism:

Uy /Upsq = Gal(L'/K). (6.46)

So, I"/K is an Abelian extension with degree (q — 1)q.

Proof. Let f(X) = X + X7 and take h,(X) and «, as in the Lemma 6.1.2. We know that
h,(X) is irreducible in K[X]. Also its degree is (¢ — 1)g™. So,

(@ —1Dq" = [K(ap) : K] < [L" : K]. (6.47)

Take any o in Gal(L"/K). Recall that ¢ is continuous and F(X,Y) and [a]((X) are power
series in Og[[X]] for a € O. Then the following hold:

o(Fs(a, B)) = Fy(a(a),a(B)) = a(a) +7 a(B), (6.48)

o(a-ra)=o([a]s(a)) = [a]s(c(a)) =a rao(a) (6.49)

for a, B € W/* and a € O,. Observe that, by the equation 6.49, a(a@) € W for a« € W,
i Yy q f f

n+1

since W' = {@ € m; | p"* -, @ = 0}. So o induces an automorphism ¢’ of W;* and the

following homomorphism can be defined:

Gal(L"/K) - Aut(WD), (6.50)

oo (6.51)

This homomorphism is injective because any element of Gal(L"/K) is defined by its actions

on the elements of W;*. By Theorem 6.1.4, |Aut(W;*)| = [U, : Up4q] = (@ — 1)q", s0

[I": K] < (¢ — Dq™ (6.52)
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Combining this with the equation 4.93, we get
I = K(ay), [I": K] = (q—1q" Gal(I"/K) = Aut(W/). (6.53)
Set y™ to be the composition of the mappings below:
Uy = Up/Unyy = Aut(W) = Gal(L"/K). (6.54)

Note that y™(u)(a) = [u]s(a) = u -y a forallu € Uy, a € W',

Now, let f' be another power series in F and 6(X) the power series as in Theorem 5.2.3.
Recall that W} = 0(W;"). Leta’ € W} and a’ = 6(a), where a € W;". Then the following
holds:

u-pa =ulp(a)=0e°[ulpe07(0(a) = 0([ul() = 0" W(a)- (655

where u € U,,. On the other hand, recall that 8(X) € Og[[X]] and y™(u) € Gal(L"/K). So,

by the continuity of automorphisms, we have the following for f' € F, a’ € W1

u-pa =60F"w(a)=y"w@@)=y"w(a). (6.56)

]

Let L be the union of L™’s forn > —1. So L = E(Wf) forany f € F.

Theorem 6.2.3. L/K is an Abelian extension and there exists a homoemorphism
Y : U, = Gal(L/K). (6.57)
Moreover, this homeomorphism induces y™ : Uy, — Gal(L"/K) for every n = 0.

Proof. The following diagram commutes:

U/Upy, — Gal(L™/K)
\Lnatural projection \Lrestriction (6 5 8)
U/Unyy — Gal(L"/K)
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So, we see that
v U = lim U /Upyy = yLnGal(Z"/l?) = Gal(L/K), (6.59)

forn = 0. O]

6.3. THE EXTENSIONS L" AND k'™

In this section, we will construct certain Abelian extensions of a local field k (and its finite

unramified extension fields) and then study the properties of those Abelian extensions.

Denote the valuation ring of the unramified extension k;;. of degree m over k by O} for

m > 1. If we take a prime element w € k™%, we know that it is also prime in K = k,,, and K.

Let F, be the set of power series in Og[[X]] as defined in 5.17. We define
Fr =F, n OF[[X]]. (6.60)
Then f(X) = X + X1 € F*. We put
F™ := the union of F* for € kI, (6.61)

F* = the union of F™ form > 1. (6.62)

Lemma 6.3.1. Form > 1andn = 0:

(i) If f € Fy", then ky, . (W;*) is independent of f in Fy".

(i) If f € F®, then K(W}") is independent of f in F*.

Proof. (i) Let f(X) = nX + X9, where m € kI’ and f' € F*. If we put m; = m and
n =¢ = lasin5.40, then 8(X) € O¢'[[X]]. Recall that kj;.(W;") is finite Galois by 6.1.2.

So, it is complete. Then, similar to Lemma 6.2.1,

= (W) S KIL(WP). (6.63)
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This implies
ku- (W) € k- (W), (6.64)

Since 6(X)™* € O*[[X]], we also have kL (W) S kit (W/F). So k(W) = ki (W] for
any f' € F.

(i) Let f € F*. So f € F* forsome m = 1 and 7w € ky;.. Put E = K(W/") = Kk (W/").
Recall that k. (W/") /ky; is finite Galois. Then E /K is a finite Galois. By Lemma 3.6.1,

-~

E=ER=KWM=I", K=EnKk. (6.65)

Now we take another power series f' € F*. Put E' = K(W/}). Then E'/K is also a finite
Galois extension and E’ = L" since K W) = K (Wf7). LetM = EE'. Then again by Lemma
3.6.1,

KWH=E=MnE=MnI*=MnE=E=KWM. (6.66)

So we proved the theorem. [

Since k3, (W;*) and K (W}") are independnt of f, the following extensions are well-defined:
kz™ =ky. (W, feEF:, n=-1, (6.67)

I"=KW"), fEF?, n=-1 (6.68)

Theorem 6.3.2. Letm > 1, n > 0, and  a prime element in k.. Then the following hold:
The field L™ is the closure of L™ in k®9. Also,

["=KL", K=KnL" Gal(LI"/K) = Gal(L"/K). (6.69)

The field L is equal to KkJ*", k. = K N kM and k'™ is a maximal totally ramified

extension over ky;. in L and

Gal(L"/k™) = Gal(L*/k™™) x Gal(L"/K) = Gal(K/k™) x Gal(k™™/k™).  (6.70)
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Kkpn = L

K / \
\ /

Knkmn = km

kmn (6.71)

The field extensions L™ [k, L /K, k'™ [k and k" [k} are Abelian and
[L": K] = [kz"" « kyz] = (@ — Dq", [kz"" : k] = m(q — 1)q™ (6.72)

Proof. We know that L™ /K and k7" /k™. are finite Galois extensions, " = KL" and K =
K N L™ by Lemma 6.3.1. This implies Gal(L"/K) = Gal(L"/K). Since we know [L" : K] =
(q — 1)@" by the equation 6.53, [L" : K] = (q — 1)q™.

Since L™ = KkJ*™ and k. € K N kJP™ € k™™, we see that
(@ —1Dq" = [L" : K] = [kz"" : K 0 kz""] < [kg™ « Kz . (6.73)
Let f(X) = nX + X9, where m a prime element of k]}», h,, and «,, as in Lemma 6.1.2. So,
Wi = 0y -y ao = {[a](ap)]a € Oy} (6.74)
Since f(X) € O'[[X]], then so is [a] ;. Hence
W7 € kyr (). (6.75)
We know a, € W;". This implies that
kg™ = k(W) = k(@) (6.76)

By Lemma 6.1.3:
(q = Dq" = [k : kyy] = [k (o) * kil (6.77)

In the view of the inequality 6.73, we get k)~ = K N k™ and this means that k™" is a

maximal totally ramified extension over k. in L" (recall Definition 3.7.2). Now we have

Gal(I"/K) = Gal(L"/K) = Gal(k™"/k™), (6.78)
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the extensions L /K and k™" /k; are Abelian. Take m = 1 as a special case. We know that
k1" /k is Abelian. Since L" is the compositum of K and k1" and K /k is Abelian, L™ /k is also
Abelian. Then it immediately follows that k" /k is Abelian. The claims about the extension

degrees are obvious. [

Consider the isomorphism in 6.78. The maps between Galois groups are obtained using
restrictions (e.g., we restrict L™ to L™). So in the view of Theorem 6.2.2, we can define the
following maps similarly:

y" U, - Gal(L*/K) (6.79)
forn = 0. For each f € F*, u € U, and « € W}, this map has the following form:
yrW(a) = [u]g(a), (6.80)
and also it induces the following isomorphism:
U /Upyq = Gal(LM/K). (6.81)
Take a prime element 7 € k;};.. Then we can define the following map:
v Uy, - Gal(kp™" ko (6.82)

form = 1. Similarly, for each f € F", u € Uy and @ € W}", this map has the following

form:

Ve (W)(@) = [u]r(a), (6.83)

and also it induces the following isomorphism:
U /Upyq = Gal(kP™ k). (6.84)

Corollary 6.3.2.1. Let 0 < t < n. The isomorphism U, /U, ., = Gal(kJ*"*/kI) induces
the following map:
Urp1/Unsr = Vi (Upyq) = Gal(kz ™ /k7). (6.85)

Proof. Foru € Uy, ¥y (u)|,me = yz(u) (Recall that k7** S k™). So, we have the following
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equivalences:
UEU & V(W) =1 & YWy =1 & yr(w) € Gal(ky™"/kz").  (6.86)

So we see that Uyy1/Unis = Vg (Uper) = Gal(kg ™ /kg"). ]

Theorem 6.3.3. Let w be a prime in k], m > 1 and n = 0. Then the following hold:
(i) The extension kj*"/k]. is a finite Abelian extension and also totally ramified. In

additon, T € N (k™" k™).

(i) Let f € F7* and ay € Wy, a, & Wf"_l. Then «y is a prime in kJ*™ and also k'™ =
kTt (ay) and O™" = O™[a,], where O™™ and O™ are the valuation rings of kp*™ and

k%, respectively.

Proof. (1) We know that K N k™ = k%, so kI /k; is totally ramified. Previously we
proved that ¢™ () € N(kI*"/k].) and k;*™ /k is Abelian. Since it is Abelian, we can extend

the automorphism ¢ to an automorphism @ in kJ*" /k. Consider the following equalities:

P(01(%) ** 0(g-1)qn (%)) = 01(P(X)) *+* G(g-1)qn (P (X)) (6.87)

where x € k™", This implies that (N (k™" /k™)) = @(N (k™ /k™)) = N(k™"/k™m).
Som € N(k™™/k™m).

(i) Let f(X) = mX + X9 and f' any power series in F*. Take a’ € WA\WH™L. Put ay =
0~ 1(a"), where 6(X) is as in 5.40. Since 6(X) induces an isomorphism between W and W',
we see that ay € W/\W/*™*. So, by Lemma 6.1.2, h,(a,) = 0 and also @™ () = N(—ay).
Since ¢™(m) is a prime in kI, and k'™ /k] is a totally ramified extension, a, is a prime in
k™™ (recall the equation 3.55). We know that 8(X) € O/*[[X]] and 8(X) = X mod deg 2. So
0(a,) = a' is a prime in k*™ (consider the expansion of 8(a,)). Then by Theorem 3.9.2,

omn = O™[q'] and k™" = k™ (a"). u

Corollary 6.3.3.1. Let f € F* and a« € WHM\W/*™*. Then the following hold:

(i) The complete set of conjugates of a over k). is

C={B1BeW W (6.88)
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(ii) If 0 < i < n, then the complete set of conjugates of a over k™" is
a+, Wt ={a+,p 1B W} (6.89)

Proof. (i) We know kI = kI’ (a) by Theorem 6.3.3. By the isomorphism in 6.84, all
conjugates of « are given by the elements u -y &, where u € U,. In the view of the fact that
Wt = Oy - @ and I/I/fn‘1 = Pi 'r @, hence the corollary is proved (recall that U, = Oy \py).
(i1) Consider the isomorphism in 6.85. By this isomorphism, the complete set of conjugates

of a over k™! is given by the set

{u-ralu€ Uyl (6.90)

which is also equal to
A+p*) ra=a+, (@™, a). (6.91)
Asp™t - a = WL the result follows. N

Example 15. Consider the Example 14. Let:

k=Q, m=p fX)=1+X)P—-1€F, FXY)=1+X)(1+Y)—1 (692

n+1

We also showed that [a], = (1 4+ X)* — 1,a € Z,. Since [p™*'],(X) = 1+ X)? —1,

n+1

W ={a—1]a”" =1). (6.93)

So k™ = Q,(W/") is the cyclotomic field of p™*'th roots of unity over Q, = k. Let
u€EUg,andf=a—-1¢€ W;*. Then,

Yo WB) = [ul;(B) =1 +p)" -1 (6.94)

We also have the following isomorphisms:

Uq,/Uns1 = Zy/(1 +p""'Ly) = Gal(Q,(Wf)/Qy). (6.95)
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6.4. ABELIAN EXTENSIONS L AND k, OVER k

Recall that an—1 C W/, f € F. So for a prime 7 € ky; and m = 1, we have the following:

km = kMol g MmO C ... C kM C k49, (6.96)
k,=K=L'cl’cl'c..cLc k™9, (6.97)
Define
e = U fem, (6.98)
n=-1
= U I, (6.99)
nz-—1
Then we have
ke = k(W) (6.100)
for f € 7",
L = ky (W) (6.101)

for f € F”. In the view of the previous theorems in this chapter, we can make the following
series of observations:

(1) Since L"/k is Abelian forn = —1,sois L /k.

(i1) According to Theorem 6.3.2), we have:

L=k, k™™, k™ =k, 0 k">, (6.102)

(ii1)) The extension k;»* /kjp. is a maximal totally ramified extension over kJ. in L.

(iv) If we consider (ii),

Gal(L/k™) = Gal(L/k™*)xGal(L/k,,) = Gal(k,,/k™)xGal(k™* /k™). (6.103)

We state the following theorem (its proof is very similar to Theorem 6.2.3):



60

Theorem 6.4.1. There exist homeomorphisms

Yy U, = Gal(L/ky,), (6.104)

Vet U = Gal(kM* /K1), (6.105)
which also induce the homomorphisms y™ and vy} in 6.79 and 6.82, respectively.

Now take m = 1, w € k = k. and denote k1 by k. Then we have the following:

L=kyk, k=ky,nk,. (6.106)

The extension k., is a maximal totally ramifed over k in L and

Gal(L/k) = Gal(L/k,) x Gal(L/k,,) = Gal(k,,./k) X Gal(k,/k). (6.107)
ky k=1L
. / \ A 6,108
k,,Nk,=k
Also we have:
Ve * U = Gal(k,/k), (6.109)

which is a homeomorphism.

Lemma 6.4.2. Let g = h o [n];, where g,h € O[[X]], m € k and f € F}. Then forn = 0,
g =0 mod py & h=0 mod py. (6.110)

Proof. (<) If we assume h = 0 mod pg, then the coefficients in the composition h o [rr]
is equivalent to 0 mod py. (=) Use induction on n. The proposition is true for n = 0, since
h € O,[[X]]. So assume g = 0 mod p}, n = 1. This implies that g = 0 mod p}? ! and
g = n"1g,, where g; € O[[X]]. By the induction assumption, h = 0 mod p}~*, h =
n" *hy, where hy; € O[[X]]. So g; = hy o [r];. On the other hand, since g = 0 mod py,
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this implies that g; = 0 mod pj. Observe that [7]r = f(X) = X? mod p,. So we have
hi(X?) = hy o [n]f = g, = 0 mod py. (6.111)
This implies that h;(X) = 0 mod p,,. Finally h = 7" *h; = 0 mod p} which completes the
proof. [
Remark. Note that the lemma holds for h, g € Og[[X]], where K = k,,.. Also observe that

g=0 mod p;y & h=0 mod p}impliesg=0 < h=0.
k k

Now we fix aprime win k and m > 1. Let k' = kJ. and ¢’ = ;. Recall that ¢’ = ¢/*.
Let ' be a prime in k'. We know that 7 is also prime in k', so we have ' = ma, where
a € Uy Let

u = Ny (@) € Uy (6.112)

Lemma 6.4.3. Let f € F7, f' € FI' and 0(X) as in 5.40. Then we have:

!

0? =6 o [u],. (6.113)

Proof. Define g,,_, and g,,_, for f and f’, respectively, as in Lemma 6.1.1. Then the
following holds:
1060 =0%0g, 1. (6.114)

Put a = Ny (') = n™u. Then g,,,_; = aX mod deg 2. Also, since f' € F", we have

f'®" = f'. By the equation 6.15,

f'ogm-1=Gm-1°f". (6.115)
In the view of the uniqueness part of the equation 5.29, we conclude that

G- = laly = [a]f. (6.116)

This implies
Gm-1°0=0¢[a];=00[u];o[n™],. (6.117)
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Since f € F;, we have f = [r]; and g,,_, = [T™];. So,
09 o [m™]; = 6 o [u]; o [1™]}. (6.118)
Since 8¢ o [1™]; = 0 o [u]; o [k™]; = (6% — (8 o [u];)) © [T™], by Lemma 6.4.2,
0% =0 o [u],. (6.119)

]

Theorem 6.4.4. Let m and ' be primes in k such that ' = nu, where u € U, . Then

k= kT

n

Proof. Apply Lemma 6.4.3 withm = 1, ¢ = ¢"and n’ = un. Take a' € W7 Then

a' = 6(a), where a € W/". By the preceding lemma,

0% (a) = 0([u] (). (6.120)

Since u € U,4q, [u]; is the identity automorphism, so 8%(a) = 6(a). We know that
k.. Nkr = k,sowe can extend ¢ to L" = k,,,.kZ over k. Call that automorphism ¢*. Since

a € Wi C kz, we see that
()¢ =0 (a) = 6°(a) = 6(a), (6.121)
where a' = 6(a) € L" = k,,,(W'). So a’ € k. Then we obtain
k' = k(W) € kr. (6.122)

Since u™! € U,,, and T = u~'n’, similarly we obtain kj < k.. Hence k!, = k. O

For brevity, the following theorem will be provided without proof. Its proof is based on the

norm operator of Coleman. Refer to [8] for the complete proof.

Theorem 6.4.5. Let mw be a prime in k. Then

Nk =<7 > XUy, n > —1, (6.123)
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and

Nk, /k)=<m>. (6.124)

If F is totally ramified over k, containing k,, then

NEF/k)=<m>. (6.125)

6.5. HOMOMORPHISM p, AND PROOF OF L, = k%

Recall that L = k,,,.(W;) and L/k is an Abelian extension. So
k €L c k. (6.126)

We denote L by L, when k is varied. Since we know that Gal(L/k,) = Gal(k,,/k) form € k,

there exists a unique automorphism A, € Gal(L/k) such that
/17l'|kur = (pk al’ld A‘T[lkn = 1. (6127)

We showed that < ¢, > is dense in Gal(k,,./k), so < A, > is dense in Gal(L/k,) which
implies the fixed field of A, in L is k.

Now we fix a prime 7, € k. We know that every x € k™ can be uniquely written as x = mg'u,

where m € Z, u € U, and m = v(x). For such an x, we define

p: k* = Gal(L/k), (6.128)
x = A7 oy(u ) (x), (6.129)

where y : U, = Gal(L/k,,) is the isomorphism in 6.104 (Gal(L/k) = Gal(L/k,) X
Gal(L/k,,)). It is clear that this is a homomorphism between the Abelian groups k™ and

Gal(L/k) and by the definitons of the maps, it satisfies the following conditions:

Pk, = A lk,, = Pk (6.130)

Lemma 6.5.1. Lett’ € k', where k' = kyj;. form = 1. Put x = Ny (1t"). Then p(x) is the
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unique element & € Gal(L/k) such that
Eliey, = @k Elim = 1. (6.131)

Proof. The existence and uniqueness of such an element is guaranteed by the isomorphism

given in 6.103. We know that p(x) satisfies 6.130, so we only need to prove the following:
p(xX)|gmn =1, n = 1. (6.132)

Since k' /k is an unramified extension, m, € k'. Hence m = m,¢&, where € € Uy,. This
implies that
X = Nk//k(ﬂ’) = T[glu, u = Nk’/k(g) € uk. (6133)

Take f € F; , f' € F" and let 8(X) be as in 5.40. By Lemma 6.4.3,
0% =0 o [u],, (6.134)

where ¢’ is the extension of ¢,/ to K = k. Leta’ € Wi = 0(W;") and @’ = 6(a), where
a € W*. Then by the definition of p,

p)(@) =y (a) = [u™]s(a). (6.135)
Since 8(X) € Og[[X]] and p(x) can be extended to ¢’ (which means that it acts on K as ¢'),
p(X) (@) = p(x)(8(a)) = 67 (p(x)(@)) = 0 ° [ul; o [u](@) = 6(a) = a’. (6.136)

So p(x)|mn = 1 (Recall k;"™ = k'(W)). O

Theorem 6.5.2. There exists a unique homomorphism
pr kKX = Gal(L/k) (6.137)
such that p, (1) = A, for every prime w € k*.

Proof. Apply Lemma 6.5.1 withm = 1 and ® = ©'. Then p(m) is the unique element in
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Gal(L/k) satisfying the following conditions:

P(”)|kur = O P(”)|kn =1 (6.138)

So by the equations in 6.127, p(r) = A,. This implies that p defined above satisfies the
condition mentioned in the theorem. Since the multiplicative group k> of k is generated by

the primes in k (recall that m = 'u implies u = n/n’), p = p;. O

The definition of map p, is actually independent of 7. To see this, take a prime 7 in k and

let
x=n"u, m=v(x), u€ U, x€Kk* (6.139)
Then we have
Pe(x) = pre (@™ 0 p(w) = A7 o y(u™), (6.140)
POk, = A7 |k, = P& (6.141)

where m = v(x).

Theorem 6.5.3. The map p, has the following properties:
(i) It is injective and continuous in Krull topology of Gal(L/k) and v-topology of k™.

(ii) The image of py is dense in Gal(L/k) and consists of all elements & in Gal(L/k) such

that &y, = @i, m € L. Also, if {|y,. = @« then there is a unique prime € k such

that & = p, ().

Proof. (i) Assume that p,(x) = 1, where x = m;*u. Then pp(x)[,, = @i = 1. Since
the order of ¢, is infinite, m = 0 and x = u. This implies that y(u™!) = 1. Since y
is an isomorphism, u = 1, which means that x = 1. So p, is injective. To prove the
continuity of p,, consider a member of the basis of neighborhoods for Gal(L/k) : W X V,
where W and V are open in Gal(L/k,) and Gal(L/k,,), respectively. Since pr, o p, (U;) is
surjective (here pr; is the projection map from Gal(L/k,) x Gal(L/k,,) to Gal(L/k,,)) and
Uy, is homeomorphic to Gal(L/k,,), the inverse image of ({1} X V) n ({1} x Gal(L/k,,))
under p,, is U,;* for some n = 0. On the other hand, the pr; o p (k™) is < A, >. So,
the inverse image of (W x {1}) n (Gal(L/k,) X {1}) is equal to {mL|i € I € Z}. Hence
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P (W x V) N p (kX)) is the following open set:

U mUy " (6.142)

i€l

This proves that p;, is continuous.

(i1) Since the image of p;, is equal to < A, > X Gal(L/k,,) and < A, >isdensein Gal(L/k,),
the first part is obvious (recall that the closure of a product is the product of the closures).
The second part of (ii) is the consequence of the fact that any automorphism ¢ € Gal(L/k)

is completely determined by the automorphisms &, and &y . [

Let k' /k be a finite extension of local fields. Now we prove a lemma about the following
maps:

px : kX = Gal(L/k), (6.143)
Prr + k™ = Gal(Ly /k"). (6.144)

Let M = L, N Ly:,. The extension L, /k is Abelian, so this means that p,(x) induces an
automorphism of M over k for x € k*. If we take x" € k', then p,/(x") also induces an

automorphism of M over k (as k € k').

Lemma 6.5.4. Suppose k' /k is a totally ramified finite extension of local fields. Then the
following equality holds:

P (X = Pie(Nie e (X)) |ms for all x" € k™. (6.145)

Proof. We know that k' is generated by the primes in k', so if we prove the equality 6.145
for a prime 1’ € k', we prove the lemma. Extend p,/(7") to an automorphism ¢ of k%9 and
let F denote the fixed field of & in k*9. Recall that the fixed field of 1,/ (= py: (")) in L is
k... Hence,

FNLgy=k., FNkl, =k, (6.146)

This implies F /k’ is totally ramified and also k" € k., € F. By Theorem 6.4.5, N(F /k") =
< 7' >. Observe that &[, = ppr (") |1, = @y by the equation 6.141. Also, since k'/k is
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totally ramified, @[, = @x. So we have the following:

f|kur = (Sz|k{w)|kw = §0k'|kur = QPk- (6.147)

Put ¢ = &[;,. Then clearly Y[, = @x. By Theorem 6.5.3, 3 = p,(m) for some 7 € k.
Recall that k,, is the fixed field of p, () in L;, so k € k, S F. Considering the fact that
F/k" and k' /k are totally ramified, we conclude that F /k is also totally ramified. Then again
by Theorem 6.4.5, N(F/k) = < m >. Since N(F/k') = < ©' >, it is easy to see that
Ny (") € N(F /k) (recall that k € k' C k" implies N(k"/k) < N(k'/k)). Butk'/kis a

totally ramified extension, so Ny (7") is a prime in k. That is,

Ny (") = m. (6.148)

Finally,
P (M) = &l = Ylu = Py = Pre(Nierje (7)) |- (6.149)
]

As a direct consequence, consider the case k € k' € L,. Then clearly k € k' € M. Hence

Pre(Nier i (k"N Nger = pror (K7 i = 1. (6.150)

Now we prove that L = k. To prove this, the following lemmata will be established first.

Lemma 6.5.5. Let k be a p-field and k' [k a cyclic extension of degree p over k. Then
Ny (k™) # k™, (6.151)

Proof. Denote the Galois group of k'/k by G and let G, be the ramification groups of the
extension k'/k for n > 0. By assumption, G is a cyclic group and also of order p, so every

G, is either G or {1}.

Case 1: Suppose G, = {1}. Then by Theorem 3.10.1, e/, = 1 and f;+ . = p which implies
that k' /k is unramified. In the view of the equation 3.55, p|v(Ny:(x")) for x” € k'*. Since

the valuations of prime elements are equal to 1 in k, Nys ;. (K"™) # k*.
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Case 2: Now assume G, = G. In this case k' /k is totally ramified. Also, [G, : G;] is coprime

to p. So there is an integer s = 1 such that
Go=0G,=..=0G;, Gop1 =G =...=1. (6.152)

Fix a prime 7, and take the minimal polynomial f(X) of m;/ (over k). By Theorem 3.9.3,

fay= || e -gmy (6.153)
§eq, &1

and Gg,, = 1, v'(m — &(my)) = s+ 1 for all £ # 1. This implies that
V' (f (M) = (0 — D(s + 1), Dyrype = pif VD, (6.154)

Letx' € Uiy =14 pp. Putx’ =14 y', where y’ € pi'. We see that

New@) = | [a+600) =14 v+ Nep ), (6.155)

§€G w

where w runs through all the elements &; + -+ +¢&,,,, 1 < m < p — 1. Since |G| is prime, the
left multiplication by p(# 1) does not stabilize any element, so w, pw, ..., p? "' w are distinct

elements. Then we can decompose ), |y’ into sums of the following form:
D ¥ = Tou®). (6.156)
éeG

s+1

Since k' /k is totally ramified and y’ € p37 -,

’ -1 1 1 1
Dk’/ky w (- p’(g;’ )(S+ )+(S+ ) — p’I:’(S+ ) — p}9c+1. (6.157)

So we have
Tk,/k(y"‘)) € Tk,/k(pifll),;,l/k) = piflTk,/k(D,:,l/k) c pitt. (6.158)

s+1

Observe that y' € pr* implies Ny, (y') € pi*! by the equation 3.55. Hence by 6.155,

Neje(x') = 1pp™, x' € Ugys, (6.159)
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which implies Ny, (Ugy1) € Usyq. So we can define the following homomorphism using
the norm map Ny

a: U/ Uy - U Ug,,. (6.160)

Since k'/k is totally ramified, Oy /pyr = O, /pi = F,. So by 3.46,
[U" : Usys] = [U: Usya] = (@ — D). (6.161)

If we take € = (") /', where n’ € k' and §(# 1) € G, v'({(n') — ') = s + 1 implies
that ¢ € U \ Ugy,. But valuations are invariant under automorphisms, so Ny (€) = 1.
This means that « is not injective, and as a result of the fact that [U' : ‘U] is finite, it is not

surjective. Then Ny, (U") # U and consequently Ny (k™) # k*. O]
Lemma 6.5.6. Let k be a p-field and k' [k a cyclic extension of degree p, then k' € L.

Proof. Assume k' &€ L. Sok'NnL # k'. Since [k' : k] = p, [k "L : k] # p, and
[k'NL:k]|p,sowehave the following:

k'nL =k, Gal(k'L/k) = Gal(k'/k) x Gal(L/k). (6.162)
Let  be a prime in k. Then we know that Gal(L/k) = Gal(k,,/k) X Gal(k,/k). By 6.162,
Gal(k'L/k) = Gal(k'/k)xGal(k,,/k)xGal(k,/k) = Gal(k'k,/k)*xGal(k,,/k). (6.163)

This implies that k'k,, N k,,,, = k which means that k'k,, is a totally ramified extension over
k, containing k. Then by Theorem 6.4.5, N(k'k,/k) =< m >andsom € N(k'/k). The
the prime elements of k generate field k*. Hence N(k'/k) = k>, which contradicts Lemma

6.5.5. We conclude that k' € L. O

Lemma 6.5.7. Let p be a prime in Z, k be a field and {,, < k, where {, is a primitive p-th
root of unity. Let s be an integer, s = 0 and there exists a cyclic extension k', which is of
degree p° over k. Also, suppose that k' € k", where k" is a cyclic extension of degree p***

over k. Then {, is the norm of an element of k'.

Proof. Take a generator o of Gal(k” /k). Let T = ¢P°. Then 7 is a generator of Gal(k” /k').
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Since ¢, € k' < k", by Kummer theory ([18], Chapter 14.7), there exists a € k" such that
k" =k'(a), a™ " =, (6.164)
where a1 = 7(a)a™t. Let B = a°1. Then we see that
Brl=(a ) ' =@ ) =" =1 (6.165)
This implies that () = B, so f € k'. Note that
T—1=01’s—1=(0—1)20i, 0<i<p. (6.166)
i
So, f satisfies the following:
N (B) = B2 = @@ DL = gl = ¢ | (6.167)
where 0 < i < p°. ]

Now, after establishing the preceding lemmata, we are ready to prove that L = k.

(Step 1) We know that k € k,,,, € k®. So we can extend Frobenius automorphism ¢, of
k to an automorphism 1 of k®?. Denote the fixed field of 1 in k*” by F,. Then by Lemma

3.7.3 we have the following:
Fyky, = k®, FE, 0k, =k, Gal(k®/F,) = Gal(k,,/k). (6.168)

Put 0 = |,. Then we see that o, = Y|, = @r. By Theorem 6.5.3, 0 = p, () for some
prime 7 € k. The fixed field of o in L is L N ;. Also we know that 0 = p, () = A, so we
have the following:

k Cky,=LNE,CF, (6.169)

To prove that L = k* (= k,k,,), we need to show that E, = k,. We have the following

diagram:
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kb = Eykyy
Flll L= kn-kur
Kz \ Ky
k /

(Step 2) Now consider a finite extension k' of k such that
kSkyCSk'CF, (6.171)

where kj = ky°. By Lemma 3.7.3, F, N k,, = k, so k'/k is a totally ramified Abelian
extension. Hence, by Theorem 3.10.1, [k’ : k] is the product of a factor of ¢ — 1 and a power
of p, where q is the order of the residue fields of k', k. Recall that [k : k] = q — 1, so
[k’ : k2] is a power of p for any k'.

(Step 3) Now assume k, # Fy. Then there is a cyclic finite extenson E /k, which satisfies
the following conditions [6]:

k<SECF, E¢k, (6.172)

By (ii), [E : E N k2] = [EKD : k2] is a power of p (Ek? is totally ramified), but [E N k2 : k]
is coprime to p since (E N k2)/k is a subextension of k2 /k. Then we see that there exists an

extension E’ of k, which is cyclic and its degree is a p-power,
EEN(ENkY) =kandE'(ENkY) =E (6.173)

Consider:
E k2
(6.174)

~
/

! Enk°
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Since ENkS C k,and E € k,, we have E' € k,. As E'/k is a finite cyclic p-extension
of k, replacing E’ with a subfield if necessary, a finite cyclic p-extension E’ over k can be

found, satisfying k € E' € Fj, and [E' : E' N k,] = p. This can be summarized as follows:

(6.175)

where s = 0.

Letl = E' N k,;. We know that U, = Gal(k,/k) by the isomorphism in 6.109. Denote the
subgroup isomorphic to Gal(k,/l) under this map by U’. Since U, /U’ = Gal(l/k), we see
that U, /U’ is cyclic group of order p*. Hence there is a character y of U, /U’ with order p®.
We can view it as a continuous character of the compact group U, with kernel U'. It will
be shown that there exists a continuous character A with order p*** such that y = AP. We
refer the reader to [8] and [19] for the facts below about the structure of U, and the character

group of Z,.
Firstly recall that U, = k; X U, by Theorem 3.4.5.

Case 1: Assume that k contains no primitive pth root of unity. Then U, is isomorphic to the
direct product of finitely or infinitely many copies of Z,,. The set x (i) must be equal to 1,
because the order of k;; is coprime to p. Also, since U, is compact, it is enough to study the
character group of Z,. It is known that the character group of the p-adic integers, i.e. Z, is

isomorphic to Q,/Z,,, which is a divisible group. So the existence of 1 is obvious.

Case 2: Now suppose that k contains a primitive p-th root u,, of unity. Then k has characteristic
0. This implies that U, = Z/p*Z @ Z2, where a > 0,d > 1. Since l € E’, where E' is a
cyclic extension of degree p***, by Lemma 6.5.7, i, € N(I/k). Hence, it follows from the
equation 6.150 that p, (u,)|; = 1, that is, p,, € U’ and y(u,) = 1. Since y(u,) = 1, we see

that we can find a suitable character on Z/p®Z. We can find a character 4 on Zg such that
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x = AP as above.

(Step 4) Now let y and A be as above, U" = ker(A) and k' the subfield of k, corresponding
to U". So,

U = Gal(k,/k"), Ug/U" = Gal(k'/k). (6.176)

Sincel =E'Nk,andl S k' C k., | = E' N k'. Also, according to the diagram, E'/k is a
cyclic extension of degree p***. Since 1 is a character of order p**?, k' /k is also of degree
p**1. It follows that there exists a cyclic extension M /k of degree p such that E'k’ = Mk'.

Consider the following diagram:

k' k,

=M
/ P kerA
kery

S+1

(6.177)

But, by Theorem 6.5.6, M is a subset of k, = L N F. This implies that E € Mk’ € k, and

this contradicts E’ & k... So we have proved that:
F =k, k*® =k, F =ky,k, =L. (6.178)

It can be stated as a theorem:

Theorem 6.5.8. Let k be a local field. Then

kb =k k. (6.179)

for any prime element 1 of k.

Example 16. Let k be the field of p-adic numbers Q,,. By Example 15, we have

Kl =Q,(WM), n=1, (6.180)
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where W/ is (the group of) all p™**-th roots of unity in k9. So,
k= = @, (6.181)
n
where, W is (the group of) all p-power roots of unity in k9. Also we know that,

kur = Qp(Voo), (6.182)

where V,, is (the group of) all roots of unity in k**9 with order coprime to p. Therefore Q4”

is generated by all roots of unity over Q, in k.

Finally, we prove that p, is the local Artin map. Recall that Art, satisfies the following:
(i) For a prime w € k, Arty ()|, = @k, Where @y is the Frobenius automorphism of

ko
(i) For each finite Abelian extension k' over k, Ker Art, = N(k'/k).
Theorem 6.5.9. The map py, is the local Artin map.
Proof. Let m be any prime in k. By Theorem 6.3.3, m € N(k}/k) forn > 0, so it follows
from (ii) that Art,(m)[x = 1. This implies that Art, ()|, = 1. As Art(m)lk, = Pk

by (i), we see that Art, () = A, = p,(m). Since k* is generated by prime elements of k,
ATtk = pk' D
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