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ABSTRACT

EXPLICIT CONSTRUCTION OF LOCAL CLASS FIELD THEORY VIA

LUBIN-TATE FORMAL GROUPS

Class field theory constitutes a subsection in algebraic number theory which, in particular,

investigates Abelian extensions of global fields. On the other hand, local class field theory

was introduced by Helmut Hasse and studies the Abelian extensions of local fields with

respect to the objects related to the ground field. It was later developed by various important

mathematicians such as Schmidt, Chevalley, Nakayama, Artin, Kato and others. There are

several approches to local class field theory: Hasse approach, cohomological approach, the

explicit methods of Neukirch and Hazewinkel and others. Similar to the theory of complex

multiplication on elliptic curves, in their paper in 1965, Lubin and Tate showed that the main

theorems in local class field theory can be proved via formal groups over local fields. Using

the Lubin-Tate formal groups, they found an explicit way of generating Abelian extensions

of local fields. Here, we will study Lubin-Tate theory in detail.
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ÖZET

LUBIN-TATE FORMEL GRUPLARI ARACILIĞIYLA YEREL SINIF CİSİM

KURAMININAPAÇIK İNŞASI

Sınıf cisim kuramı, cebirsel sayı kuramının, global cisimlerin Abelyen genişlemelerini de

özel olarak inceleyen bir dalıdır. Diğer yandan, yerel sınıf cisim kuramı Helmut Hasse

tarafından ortaya atılmıştır ve yerel cisimlerinAbelyen genişlemelerini, taban cisim ile ilişkili

nesneler yönünden incelemektedir. Bu kuram daha sonra Schmidt, Chevalley, Nakayama,

Artin, Kato gibi çeşitli önemli matematikçiler tarafından geliştirilmiştir ve genelleştirilmiştir.

Yerel sınıf cisim kuramının inşası için birçok yaklaşım bulunmaktadır: Hasse yaklaşımı,

kohomolojik yaklaşım, Neukirch ve Hazewinkel’in apaçık yöntemleri vb. Eliptik eğrilerdeki

karmaşık çarpım teorisine benzer şekilde, 1965’te yayınlanan makalelerinde, Lubin ve Tate,

yerel cisimler üzerindeki formel grupların, yerel sınıf cisim kuramındaki temel teoremlerin

kanıtlanması için kullanılabileceğini gösterdiler. Lubin-Tate formel gruplarını kullanarak,

yerel cisimlerin Abelyen genişlemelerini üretmek için apaçık bir yol buldular. Bu tezde

Lubin-Tate kuramını detaylı bir şekilde inceleyeceğiz.
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1. INTRODUCTION

Class field theory can be described as one of the most influential achivements of algebraic

number theory in the 20th century. The term “class field”, coined by Weber, refers to an

Abelian field extension satisfying a technical property that is related to ideal class groups.

The aim of class field theory is to describe the Galois groups of Abelian extensions of a

global field 𝐾 based on our knowledge of 𝐾 itself (more specifically, the arithmetic of 𝐾

which is the study of the ideals of 𝐾, the quotient rings determined by the ideals of 𝐾, the

ideal class groups etc.). The Kronecker-Weber theorem is an early result stating that, if 𝐾 is

a finite Abelian extension ℚ, then it is contained in a cyclotomic field ℚ(𝜁) for some 𝑚.

Artin, Weber, Tagaki and Hilbert were among the mathematicians who developed class field

theory [1].

Local class field theory was introduced by Helmut Hasse and studies the abelian extensions

of local fields with respect to the objects related to the ground field as in the global case. It

was later developed and generalized by various mathematicians such as Schmidt, Chevalley,

Nakayama, Artin, Kato and others. In this theory, the Galois group of 𝑘, the maximal

Abelian extension of a local field 𝑘 can be described via the local Artin map which is an

injective homomorphism from 𝑘× to Gal(𝑘/𝑘). For example, for a finiteAbelian extension

𝐿 of 𝑘, the local Artin map induces the isomorphism 𝑘×/𝑁/(𝐿
×) ≅ Gal(𝐿/𝑘). There are

several approches to local class field theory: Hasse approach, the cohomological approach,

the explicit methods of Neukirch and Hazewinkel [2] and others.

Suggested by the theory of complex multiplication on elliptic curves, in their paper [3] in

1965, Lubin and Tate showed that, using the so-called Lubin-Tate formal groups over local

fields one can construct 𝑘 and the local Artin map explicitly. In this thesis, we will study

Lubin-Tate theory in detail.

This thesis consists of five chapters:

After discussing infinite Galois theory and profinite groups in the first chapter, we give basic

theory of local fields in the second chapter.

In the third chapter we introduce formal power series over arbitrary rings and study their
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properties.

The fourth chapter explains the formal groups and particularly Lubin-Tate formal groups.

In the final chapter, we define special (totally ramified) extensions of a local field 𝑘 via

Lubin-Tate formal groups and use these extensions to construct 𝑘గwhich is actually amaximal

totally ramified extension in 𝑘. Then we define a homomorphism 𝜌: 𝑘
× → Gal(𝑘/𝑘)

and using this homomorphism, we prove that 𝑘 = 𝑘௨𝑘గ, here the field 𝑘௨ is the maximal

unramified extension of 𝑘. Also we prove that 𝜌 is actually the local Artin map of 𝑘.

We claim no originality in this thesis.
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2. PRELIMINARIES

In this chapter, we will review Infinite Galois Theory and Profinite Groups very briefly and

state the important theorems without proofs, which will be used in the text frequently. The

main references for this chapter are Chapter 1 of [4], Chapter 6 of [5], Chapter 3 of [6] and

[7].

2.1. INFINITE GALOIS THEORY

Definition 2.1.1. A field extension𝑅/𝐾 is calledGalois extension if it is algebraic, seperable

and normal.

Definition 2.1.2. Let𝑅/𝐾 be anyGalois extension (infinite or finite). We can endowGal(𝑅/𝐾)

with a so-calledKrull topology. This makes Gal(𝑅/𝐾) a topological group. In this topology,

for any 𝜎 ∈ Gal(𝑅/𝐾), the cosets 𝜎Gal(𝑅/𝐸) are taken as a basis of neighborhoods of 𝜎,

where 𝐸/𝐾 runs over all (finite) Galois extensions of 𝐾 contained in 𝑅.

Theorem 2.1.1. Let 𝑅/𝐾 be a Galois extension. The Galois group Gal(𝑅/𝐾) is Hausdorff

and compact in Krull topology.

There is a fundamental theorem (in Galois theory) which holds for the infinite case via Krull

topology and is an extension of the fundamental theorem for the finite case:

Theorem 2.1.2. Let 𝑅/𝐾 be a Galois extension. The map

𝐸 ↦ Gal(𝑅/𝐸) (2.1)

is a bijection between

ቐ
the subextensions 𝐸

of 𝑅/𝐾
ቑ ↔ ቐ

the closed subgroups Gal(𝑅/𝐸)

of Gal(𝑅/𝐾)
ቑ , (2.2)
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that restricts to a bijection

ቐ
the finite subextensions 𝐸

of 𝑅/𝐾
ቑ ↔ ቐ

the open subgroups Gal(𝑅/𝐸)

of Gal(𝑅/𝐾)
ቑ . (2.3)

Also, in Gal(𝑅/𝐾), assume 𝐻 is a closed subgroup. Then 𝐻 is normal iff the corresponding

subextension is a Galois extension.

2.2. PROFINITE GROUPS

Definition 2.2.1. Let 𝑃 be a set. Denote a relation by the symbol ≤ on this set. This relation

is called a partial order if it satisfies the following for all 𝑒, 𝑓, 𝑔 ∈ 𝑃: 𝑒 ≤ 𝑒; this is called

reflexivity. 𝑒 ≤ 𝑓 and 𝑓 ≤ 𝑒 implies 𝑒 = 𝑓; this is called anti-symmetry. 𝑒 ≤ 𝑓 and 𝑓 ≤ 𝑔

implies 𝑒 ≤ 𝑔; this is called transitivity. The set 𝑃 together with a partial order ≤ is often

called a poset.

Definition 2.2.2. If a poset (𝐼, ≤) has the following property, then it is called a directed

poset: Take 𝑒, 𝑓 ∈ 𝐼. Then ∃ 𝑔 ∈ 𝐼 satisfying 𝑒 ≤ 𝑔 and 𝑓 ≤ 𝑔.

Definition 2.2.3. Let (𝐼, ≤) be a directed poset and assume that there is a group 𝐻 for every

𝑖 ∈ 𝐼 and homomorphisms 𝑡 ∶ 𝜎 → 𝜎 for all 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 satisfying the conditions

below:

(i) 𝑡 is the identity on 𝐻 for all 𝑖 ∈ 𝐼,

(ii) 𝑡 = 𝑡 ∘ 𝑡 for all 𝑖 ≤ 𝑗 ≤ 𝑘.

The maps 𝑡’s are called transition maps. The set ((𝐻)∈ூ, (𝑡)ஸ, ,∈ூ) is called an inverse

system of groups.

The inverse (projective) limit of this inverse system is defined as

lim
←−−
∈ூ

𝐻 = ൝ (𝑔)∈ூ ∈ෑ

∈ூ

𝐻 | 𝑡(𝑔) = 𝑔, 𝑖 ≤ 𝑗 and 𝑖, 𝑗 ∈ 𝐼 ൡ , (2.4)

if it exists.

Remark. If 𝐻’s are topological groups and 𝑡’s are continuous homomorphisms, then the
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inverse limit lim
←−−
∈ூ

𝐻 can be thought of as a topological group through embedding into ∏
∈ூ

𝐻.

Example 1. Let 𝐺 = ℤ/𝑛ℤ for 𝑛 ∈ ℕ. Define a partial order ≤ on ℕ: 𝑟 ≤ 𝑛 if 𝑟|𝑛. Define

𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑟ℤ, (2.5)

𝑎 ↦ 𝑎 (mod 𝑟). (2.6)

So we have

lim
←−−
∈ℕ

𝐺 = ൝ (𝑎)∈ℕ ∈ෑ

∈ℕ

ℤ/𝑛ℤ | 𝑎 ≡ 𝑎 (mod 𝑟), 𝑟|𝑛 and 𝑟, 𝑛 ∈ ℕ ൡ . (2.7)

An equivalent definition of the inverse limit can be given as follows: Let 𝑌 be a topological

group and ((𝑋)∈ூ, (𝜎)ஸ, ,∈ூ) an inverse system over a directed poset (𝐼, ≤), where𝑋’s are

topological groups, and 𝜓 ∶ 𝑌 → 𝑋 continuous group homomorphisms for 𝑖 ∈ 𝐼. The maps

𝜓’s are called compatible if 𝜎𝜓 = 𝜓, 𝑖 ≤ 𝑗. A topological group 𝑋 along with compatible

continuous homomorphisms 𝜎 ∶ 𝑋 → 𝑋 is called an inverse limit (of the inverse system) if

the following is satisfied, which is called the universal property:

If 𝑍 denotes a topological group and { 𝜓 ∶ 𝑍 → 𝑋 } is a set of compatible continuous

homomorphisms, there is a unique continuous homomorphism𝜓 ∶ 𝑍 → 𝑋 such that 𝜎𝜓 = 𝜓

for all 𝑖 ∈ 𝐼.

𝑍 𝑋

𝑋

ట

ట
ఙ (2.8)

Theorem 2.2.1. Let

(𝐼, ≤)

be a directed poset and ((𝑋)∈ூ, (𝜎)ஸ, ,∈ூ) an inverse system over 𝐼, where𝑋’s are topological

groups. Then there is an inverse limit of this inverse system and the limit is unique in

the following manner: If (𝑋, 𝜎) and (𝑌, 𝜓) are two inverse limits of the inverse system

((𝑋)∈ூ, (𝜎)ஸ, ,∈ூ), then there is a unique homeomorphism 𝜓 ∶ 𝑋 → 𝑌 such that 𝜓𝜓 = 𝜎

for 𝑖 ∈ 𝐼.

Definition 2.2.4. A topological group that is Hausdorff, compact and has a neighborhood
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basis of the identity, which consists of normal subgroups, is called a profinite group.

We have the following theorems about the profinite groups:

Theorem 2.2.2. If 𝐺 is a profinite group and 𝑁 runs over the normal open subgroups of 𝐺,

then

𝐺 ≅ lim
←−−
ே

𝐺/𝑁, (2.9)

the transition maps being natural projections. Conversely, let ((𝐺)∈ூ, (𝑓)ஸ, ,∈ூ) be an

inverse system, where 𝐺’s are finite groups. Then lim←−−
∈ூ

𝐺 is a profinite group.

Theorem 2.2.3. Let 𝐺 be a topological compact group and {𝐻 ∣ 𝑖 ∈ 𝐼} a family of normal

closed subgroups of finite index such that

(i) For every finite subset 𝐽 of 𝐼, there exists 𝑖 ∈ 𝐼 such that 𝐻 ⊆ ⋂
∈
𝐻,

(ii) ⋂
∈ூ
𝐻 = 1.

Then 𝐺 ≅ lim
←−−
∈ூ

𝐺/𝐻 as topological groups.

By using Krull topology, it can be proved that Galois groups are profinite groups and we

can write them in the form of inverse limits. Let 𝑅/𝐾 be a Galois extension. According

to Theorem 2.1.2, Gal(𝑅/𝐾) is a Hausdorff space and compact group and by definition, its

basis of open neighbourhoods of 1ୋୟ୪(ோ/) is given by Gal(𝑅/𝐸), where 𝐸 runs over the finite

Galois subextensions of 𝑅/𝐾, all of which are open normal subgroups and they are the only

such subgroups. So,

Gal(𝑅/𝐾) ≅ lim
⟵

ா/ is finite Galois

Gal(𝑅/𝐾)/Gal(𝑅/𝐸) ≅ lim
⟵

ா/ is finite Galois

Gal(𝐸/𝐾). (2.10)

Example 2. We have

Gal ቀ𝔽/𝔽ቁ ≅ lim
⟵
∈ℕ

Gal(𝔽/𝔽). (2.11)
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3. BASIC THEORY OF LOCAL FIELDS

In this chapter, the theory of local fields will be discussed briefly, which will be necessary

in the following chapters and we will not give any proofs here. The main references for this

chapter are Chapters 1, 2, and 3 of [8], Chapter 2 of [9], [10], [11], [12], [13] and [14].

3.1. VALUATIONS ONA FIELD

Definition 3.1.1. Let 𝑘 be a field. A mapping 𝑣 ∶ k → ℝ ∪ {+∞} satisfying the following

conditions is called a valuation on the field 𝑘:

(i) If 𝑥 ≠ 0, then 𝑣(𝑥) ∈ ℝ. We set 𝑣(0) = +∞.

(ii) For 𝑥, 𝑦 ∈ 𝑘,

𝑣(𝑥 + 𝑦) ⩾ min{𝑣(𝑥), 𝑣(𝑦)}. (3.1)

(iii) For 𝑥, 𝑦 ∈ 𝑘,

𝑣(𝑥𝑦) = 𝑣(𝑥) + 𝑣(𝑦). (3.2)

We denote a field 𝑘 with the valuation 𝑣 shortly as (𝑘, 𝑣).

Remark. By (iii) above, 𝑣 defines a homomorphism

𝑣 ∶ 𝑘× ⟶ℝା,

where ℝା denotes the additive group of ℝ.

Remark. Let 𝑣 be a valuation on a field 𝑘. By Definition 3.1.1, the following properties are

easy to show:

𝑣(±1) = 0, (3.3)

𝑣(−𝑥) = 𝑣(𝑥), (3.4)

𝑣(𝑥) < 𝑣(𝑦) ⟹ 𝑣(𝑥 + 𝑦) = 𝑣(𝑥), (3.5)

where 𝑥, 𝑦 ∈ 𝑘.
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Example 3. The mapping 𝑣 ∶ 𝑘 → ℝ ∪ {+∞} defined as:

𝑣 (𝑥) = ൞
0 if 𝑥 ≠ 0,

+∞ if 𝑥 = 0,

(3.6)

is a valuation on 𝑘 and called trivial valuation.

Example 4. Take a prime number 𝑝. Every non-zero rational number 𝑥 can be written in a

unique way as 𝑥 = 𝑝𝑦, where 𝑒 is an integer, 𝑦 is a rational number whose numerator and

denominator are not divisible by 𝑝. We define a mapping 𝑣 on ℚ by

𝑣(𝑥) = ቐ
+∞ if 𝑥 = 0,

𝑒 if 𝑥 ≠ 0 and 𝑥 = 𝑝𝑦.
(3.7)

The mapping can be shown to be a valuation, which is called the p-adic valuation of ℚ.

Example 5. Let 𝑘 be a field, 𝑘(𝑋) the field of all rational functions in an indeterminate 𝑋

with coefficients in 𝑘. Every 𝑓 ∈ 𝑘(𝑋) can be written uniquely: 𝑓 = 𝑋𝑔, here 𝑒 is an integer

and 𝑔 ∈ 𝑘(𝑋), which is not divisible by 𝑋. Now we define a valuation 𝑣 on 𝑘(𝑋) such that

𝑣(𝑋) = 1 as in the Example 4.

Example 6. Let 𝑘 be a field, 𝐺 ⩽ ℝା (the additive group), and 𝛾 ∈ ℝା. Suppose 𝑣 ∶ 𝑘 →

𝐺 ∪ {+∞} is a surjective valuation. For 𝑓 =


∑
ୀ

𝑎𝑋
 ∈ 𝑘[𝑋], define the mapping

𝑤 ∶ 𝑘[𝑋] → ℝା ∪ {+∞},

by the rule

𝑤(𝑓) = ቐ
+∞ if 𝑓 = 0,

min
ஸஸ

{𝑣(𝑎) + 𝑖𝛾} otherwise.
(3.8)

Consider the map

𝑤 ∶ 𝑘(𝑋) → ℝା ∪ {+∞},

defined by

𝑤 ቆ
𝑓

𝑔
ቇ = 𝑤(𝑓) − 𝑤(𝑔), (3.9)
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where 𝑓, 𝑔 ∈ 𝑘[𝑋] ⧵ {0}. Then 𝑤 is a valuation that extends 𝑣.

Let 𝑣 be a valuation on a field 𝑘. Introduce

𝒪 = {𝑥 ∈ 𝑘 ∣ 𝑣(𝑥) ≥ 0}, (3.10)

𝔭 = {𝑥 ∈ 𝑘 ∣ 𝑣(𝑥) > 0}, and (3.11)

𝜅 = 𝒪/𝔭. (3.12)

Here, 𝒪 (called the valuation ring) and 𝔭 (called themaximal ideal) become a subring of

𝑘 and a maximal ideal of 𝒪, respectively so that 𝜅 (called the residue field) is a field. In

addition, define the unit group 𝒰 of the valuation ring 𝒪 by

𝒰 = {𝑥 ∈ 𝒪 ∣ 𝑣(𝑥) = 0}. (3.13)

Remark. Note: the maximal ideal 𝔭 in 𝒪 is unique since 𝔭 = 𝒪 ⧵𝒰. In other words, 𝒪

is a local ring.

Definition 3.1.2. Let 𝑘 be a field. A map on 𝑘,

|⋅| ∶ 𝑘 ↦ ℝ, (3.14)

is called an absolute value if it satisfies the following properties:

(i) |𝑥| = 0 ⟺ 𝑥 = 0,

(ii) |𝑥| ≥ 0,

(iii) |𝑥𝑦| = |𝑥| ⋅ |𝑦|,

(iv) |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|,

for all 𝑥, 𝑦 ∈ 𝑘.

Definition 3.1.3. Let 𝑘 be a field and |⋅| an absolute value on 𝑘. If |⋅| satisfies the condition

|𝑥 + 𝑦| ≤ max{|𝑥| , |𝑦|}, ∀𝑥, 𝑦 ∈ 𝑘, (3.15)

then it is called non-archimedean.

In the following theorem, a correspondence between the non-archimedean absolute values
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and valutions is provided. So if we have a valution, we can define a topology on our field

just like in the metric spaces.

Theorem 3.1.1. Let 𝑘 be field, ∣ ⋅ ∣ a non-archimedean absolute value on 𝑘, 𝑠 ∈ ℝ, 𝑠 > 0.

The map

𝑣௦ ∶ 𝑘 → ℝ ∪ {+∞}, (3.16)

𝑥 ↦ ቐ
−𝑠 log |𝑥| 𝑥 ≠ 0,

+∞ 𝑥 = 0,
(3.17)

is a valuation on 𝑘. Also, if 𝑠 and 𝑠ᇱ ∈ ℝ, 𝑠, 𝑠ᇱ > 0 and 𝑠 ≠ 𝑠ᇱ, then 𝑣௦ is equivalent to 𝑣௦ᇲ

(refer to definition 3.1.5). Conversely, if 𝑣 is a valuation on 𝑘 and 𝑙 ∈ ℝ, 𝑙 > 1, then the map

∣ ⋅ ∣∶ 𝑘 → ℝ, (3.18)

𝑥 ↦ ቐ
𝑙ି௩(௫) 𝑥 ≠ 0,

0 𝑥 = 0,
(3.19)

is an absolute value on 𝑘. Also, if 𝑙 and 𝑙ᇱ ∈ ℝ, 𝑙, 𝑙ᇱ > 1 and 𝑙 ≠ 𝑙ᇱ, then ∣ ⋅ ∣ is equivalent

to ∣ ⋅ ∣ᇲ.

According to Theorem 3.1.1, we can use valuations and absolute values interchangeably and

in this thesis we’ll study and describe our theorems in terms of valuations.

Definition 3.1.4. A topological ring 𝑘which is a field, where, in addition, the inversemapping

𝑎 ↦ 𝑎ିଵ is continuous on 𝑘\{0}, is called a topological field.

Now we can define a topology on 𝑘. If, for each 𝑥 ∈ 𝑘 and 𝛼 ∈ ℝ, we take the family of

open balls 𝐵(𝑥, 𝛼) = {𝑦 ∣ 𝑣(𝑥 − 𝑦) > 𝛼 and 𝑦 ∈ 𝑘 }, we define a Hausdorff topology on 𝑘.

This topology is called 𝑣-topology on 𝑘. Now 𝑘 is a topological field in that topology. By

definition, 𝒪 is a closed set and 𝔭 is an open set in 𝑘.

Definition 3.1.5. If two valuations defined on the same field 𝑘 produce the same topology,

they are called equivalent valutions.

Remark. Equivalently, two valuations 𝑣 and 𝜇 on 𝑘 are equivalent if there exist an 𝛼 ∈ ℝவ
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such that

𝑣(𝑥) = 𝛼 ⋅ 𝜇(𝑥), ∀𝑥 ∈ 𝑘. (3.20)

In this case, we write 𝑣 ∼ 𝜇.

Remark. The valuation ring, the maximal ideal and the residue field as well as the unit group

of equivalent valuations are the same.

In terms of valuations, the limit of a sequence (𝑥) ∈ 𝑘 can be defined as follows:

lim
→ାஶ

𝑥 = 𝑥 ⇔ lim
→ାஶ

𝑣(𝑥 − 𝑥) = +∞. (3.21)

Similarly, a sequence (𝑥) ∈ 𝑘 is called a Cauchy sequence in the 𝑣-topology if,

𝑣(𝑥 − 𝑥) → +∞ as 𝑛, 𝑚 → +∞. (3.22)

Definition 3.1.6. A valuation 𝑣 on a field 𝑘 is called complete if every Cauchy sequence in

𝑣-topology is convergent.

Since every valuation corresponds to a non-archimedean absolute value, in 𝑘:

ஶ



ୀଵ

𝑥 = lim
→ାஶ





ୀଵ

𝑥 ⇔ 𝑣(𝑥) → +∞ as 𝑛 → +∞. (3.23)

Definition 3.1.7. Let 𝑘 be a field. A valuation 𝑣 on 𝑘 is called discrete if 𝑣(𝑘×) is a discrete

subgroup of ℝା. That means, 𝑣(𝑘×) is equal to ℤ𝛽 for some real number 𝛽 ≥ 0. When

𝛽 = 1, i.e. 𝑣(𝑘×) = ℤ, we say the valuation is normalized.

Let 𝑘ᇱ be an extension field of 𝑘 and 𝑣ᇱ be a valuation on 𝑘ᇱ. It can be shown that 𝑣ᇱ| is

also a valuation on 𝑘 and it’s called a restriction of 𝑣ᇱ to the subfield 𝑘. Conversely, if 𝑣 is

valuation on 𝑘, any valuation 𝑣ᇱ of 𝑘ᇱ satisfying 𝑣ᇱ| = 𝑣, is called an extension of 𝑣 to 𝑘ᇱ.
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Let 𝑣ᇱ| = 𝑣. The following hold:

𝒪ᇲ = {𝑥ᇱ ∈ 𝑘ᇱ ∣ 𝑣ᇱ(𝑥ᇱ) ≥ 0}, (3.24)

𝔭ᇲ = {𝑥ᇱ ∈ 𝑘ᇱ ∣ 𝑣ᇱ(𝑥ᇱ) > 0}, (3.25)

𝜅ᇲ = 𝒪ᇲ/𝔭ᇲ , (3.26)

𝒪 = 𝒪ᇲ ∩ 𝑘, (3.27)

𝔭 = 𝔭ᇲ ∩ 𝑘 = 𝔭ᇲ ∩ 𝒪. (3.28)

Since,

𝜅 = 𝒪/𝔭 = 𝒪/(𝔭ᇲ ∩ 𝒪) ≅ (𝒪 + 𝔭ᇲ)/𝔭ᇲ ⊆ 𝒪ᇲ/𝔭ᇲ = 𝜅ᇲ , (3.29)

we can embed 𝜅 of 𝑣 into 𝜅ᇲ of 𝑣
ᇱ naturally.

Let

𝑒ᇲ/ = [𝑣ᇱ(𝑘ᇱ×) ∶ 𝑣(𝑘×)] and 𝑓ᇲ/ = [𝜅ᇲ ∶ 𝜅]. (3.30)

Here [𝑣ᇱ(𝑘ᇱ×) ∶ 𝑣(𝑘×)] is the group index and [𝜅ᇲ ∶ 𝜅] is the degree of 𝜅ᇲ/𝜅. Then 𝑒ᇲ/

is called the ramification index and 𝑓ᇲ/ is called the residue degree of 𝑣
ᇱ/𝑣.

We have the following central theorem in the valuation theory:

Theorem 3.1.2. Let 𝑣 be a complete valuation on 𝑘 and 𝑘ᇱ an algebraic extension of 𝑘. Then

𝑣 can be uniquely extended to a valuation 𝑣ᇱ on 𝑘ᇱ satisfying 𝑣ᇱ| = 𝑣. If 𝑘ᇱ/𝑘 is a finite

extension, then 𝑣ᇱ is also complete and we have the following:

𝑣ᇱ(𝑥ᇱ) =
1

𝑛
⋅ 𝑣(𝑁ᇲ/(𝑥

ᇱ)), ∀𝑥ᇱ ∈ 𝑘ᇱ, (3.31)

where 𝑛 = [𝑘ᇱ ∶ 𝑘] is the extension degree and 𝑁ᇲ/ is the norm map of 𝑘ᇱ/𝑘.

Corollary 3.1.2.1. Let 𝑘ᇱ/𝑘, 𝑣 and 𝑣ᇱ be as in Theorem 3.1.2 and 𝜎 an automorphism of 𝑘ᇱ

over 𝑘. Then we have the following:

𝑣ᇱ(𝜎(𝑥ᇱ)) = 𝑣ᇱ(𝑥ᇱ), ∀𝑥ᇱ ∈ 𝑘ᇱ,

𝜎(𝒪ᇲ) = 𝒪ᇲ , 𝜎(𝔭ᇲ) = 𝔭ᇲ .
(3.32)

This implies that𝜎 is a homeomorphism of 𝑘ᇱ in 𝑣ᇱ-topology. Also, 𝜎 induces an automorphism
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𝜎ᇱ of the residue field 𝜅ᇲ.

Let 𝑣 be a valuation on 𝑘. It can be shown that there is a field 𝑘ᇱ such that 𝑘 ⊆ 𝑘ᇱ and an

extension 𝑣ᇱ of 𝑣 which is complete and also 𝑘 is dense in 𝑘ᇱ with respect to 𝑣ᇱ-topology of

𝑘ᇱ. This field 𝑘ᇱ is called the completion of 𝑘 since it is unique (up to isomorphism). As

𝑘 is dense in 𝑘ᇱ, any 𝑥ᇱ in 𝑘ᇱ can be described as the limit of a sequence (𝑥) in 𝑘 in the

𝑣ᇱ-topology. So,

𝑥ᇱ = lim
→ஶ

𝑥, (3.33)

and then the following hold:

𝑣ᇱ(𝑥ᇱ) = lim
→ஶ

𝑣ᇱ(𝑥) = lim
→ஶ

𝑣(𝑥), (3.34)

𝑣ᇱ(𝑘ᇱ×) = 𝑣(𝑘×), (3.35)

𝜅ᇲ ≅ 𝜅, (3.36)

𝑒ᇲ/ = 𝑓ᇲ/ = 1. (3.37)

Example 7. Let 𝑘ᇱ be an extension field of 𝑘 and 𝑣ᇱ an extension of 𝑣 on 𝑘 to the extension

field 𝑘ᇱ ∶ 𝑣ᇱ| = 𝑣. Suppose 𝑣ᇱ is complete. Denote the topological closure of 𝑘 in 𝑘ᇱ in

𝑣ᇱ-topology by �̄� . Then, we know from the theory of the topological fields that �̄� is a subfield

of 𝑘ᇱ and (�̄�, �̄�) with �̄� = 𝑣ᇱ|ᇲ which is a completion of (𝑘, 𝑣).

3.2. COMPLETE FIELDS

Definition 3.2.1. Let 𝑣 be a valuation on a field 𝑘. If 𝑣 is complete and normalized, then 𝑘

is called a complete field.

Let 𝑣 be a normalized valuation on a field 𝑘 and (𝑘ᇱ, 𝑣ᇱ) the completion of (𝑘, 𝑣). Note that

𝑣ᇱ(𝑘ᇱ×) = 𝑣ᇱ(𝑘×) = ℤ and (𝑘ᇱ, 𝑣ᇱ) is a complete field.

Example 8. Let 𝑣 be the 𝑝-adic valuation on the fieldℚ. Then 𝑣 is a normalized valuation

(that is, 𝑣(𝑝) = 1). The completion ofℚ with respect to 𝑣 is the complete field (ℚ, 𝑣) of

𝑝-adic numbers. Its valuation ring ℤ is called the ring of 𝑝-adic integers and the maximal

ideal of this ring is 𝑝ℤ; it can be shown that the residue field of ℚ is the finite field of 𝔽

of 𝑝 elements.
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Example 9. Let 𝐹 be a field and assume 𝑇 is an indeterminate. Let 𝐹((𝑇)) be the set of all

formal Laurent series:
ାஶ



ୀ

𝑎𝑇
, 𝑎 ∈ 𝐹, 𝑖 ∈ ℤ. (3.38)

Define a mapping 𝑣 by

𝑣(𝑥) = ቐ
+∞ if 𝑥 = 0,

𝑖 if 𝑥 ≠ 0, 𝑥 = ∑
ାஶ

ୀ
𝑎𝑇

, 𝑎 ≠ 0.
(3.39)

It can be shown that 𝐹((𝑇)) is the completion of the field with the valuation which were

described in Example 5. The valuation ring 𝐹[[𝑇]] is the all (integral) power series in 𝑇 over

𝐹 (i.e. 𝑖 ≥ 0 in the Laurent series expansion) and the maximal ideal is 𝑇𝐹[[𝑇]]. Here, the

residue field of the valuation is isomorphic to 𝐹.

Let (𝑘, 𝑣) be a complete field. As 𝑣(𝑘×) = ℤ, there is an element 𝜋 in 𝑘 satisfying 𝑣(𝜋) =

1. Such elements are called prime elements or uniformizers of 𝑘. Since 𝔭 = {𝑥 ∈ 𝑘 ∣

𝑣(𝑥) ≥ 1}, we see that 𝔭 = (𝜋) = 𝜋𝒪. For any integer 𝑛 ≥ 0 define,

𝔭 = (𝜋 ) = 𝜋𝒪 = {𝑥 ∈ 𝑘 ∣ 𝑣(𝑥) ≥ 𝑛}. (3.40)

These are the all ideals of 𝒪 and the sequence

{0} ⊂ ⋯ ⊂ 𝔭ଶ ⊂ 𝔭 ⊂ 𝔭 = 𝒪 (3.41)

describes the ideal structure of 𝒪. So 𝒪 is a PID, i.e. a principal ideal domain. In addition

to this, 𝑣(𝑥) ≥ 𝑛 iff 𝑣(𝑥) > 𝑛 − 1 for any 𝑛 ∈ ℤ. So all the ideals are open and closed at

the same time and they form a neighborhood base of 0 in the 𝑣-topology of 𝑘. Generally, let

𝑎 be an 𝒪-submodule of 𝑘 not equal to 0 or 𝑘. The set {𝑣(𝑥) ∣ 𝑥 ∈ 𝑎, 𝑥 ≠ 0} is bounded

below (otherwise we can generate all elements of 𝑘 since 𝑎 is an 𝒪-submodule of 𝑘). If 𝑛 is

the minimum of integers in the set, then

𝑎 = {𝑥 ∈ 𝑘 ∣ 𝑣(𝑥) ≥ 𝑛} = 𝜋𝒪. (3.42)

Such 𝒪-submodules of 𝑘 are called ideals of 𝑘.

Now we consider the multiplicative group 𝑘× of 𝑘. Let 𝑥 ∈ 𝑘×. Since 𝑥 ≠ 0, 𝑣(𝑥) = 𝑛 ∈ ℤ.
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We see that 𝑣(𝑥𝜋ି ) = 0 which implies 𝑥 = 𝑢𝜋 , for some 𝑢 ∈ 𝒰. Then

𝑘× = 𝒰× < 𝜋 > . (3.43)

Define the following subgroups:

𝒰 = 𝒰, 𝒰 = 1 + 𝔭 = {𝑥 ∈ 𝒪 ∣ 𝑥 ≡ 1 mod 𝔭}, (3.44)

for 𝑛 ≥ 1.

Let 𝜅ା and 𝜅
×
 denote the additive and themultiplicative groups of 𝜅. The following sequences

of subgroups of 𝑘× and isomorphisms exist:

{1} ⊂ ⋯ ⊂ 𝒰ଷ ⊂ 𝒰ଶ ⊂ 𝒰ଵ ⊂ 𝒰 = 𝒰, (3.45)

𝒰/𝒰ଵ ≅ 𝜅× , 𝒰/𝒰ାଵ ≅ 𝜅ା , (3.46)

for 𝑛 ≥ 1.

Similarly, the groups 𝑈’s, 𝑛 ≥ 0 are open in 𝑘× and constitute a neighborhood base of 1 in

the 𝑣-topology of 𝑘×.

We continue assuming that (𝑘, 𝑣) is a complete field. Let𝐴 be a complete set of representatives

of the residue field 𝜅. If, for each 𝑛 ∈ ℤ, we fix an element 𝜋 in 𝑘 such that 𝑣(𝜋) = 𝑛,

then we can express every element of 𝑘 in the form of a special infinite sum as explained

below:

Theorem 3.2.1. (i) Each 𝑥 in 𝑘 can be expressed (uniquely) as follows:

𝑥 =

ାஶ



ୀ

𝑎𝜋, (3.47)

with 𝑎 ∈ A. If 𝑥 ≠ 0, 𝑎 ≠ 0, and 𝑎௦ = 0 for all 𝑠 < 𝑖, then 𝑣(𝑥) = 𝑖.

(ii) Let

𝑥 =𝑎𝜋 and 𝑦 =𝑏𝜋, 𝑎, 𝑏 ∈ 𝐴. (3.48)

Then for any integer 𝑖, 𝑣(𝑥 − 𝑦) ≥ 𝑖 iff 𝑎 = 𝑏 ∀𝑛 < 𝑖.

Example 10. If we consider ℚ, then we can take 𝐴 = {0, 1, … , 𝑝 − 1} and 𝜋 = 𝑝. Then
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every 𝑝-adic integer can be written (uniquely) as follows:

𝑥 =

ାஶ



ୀ

𝑎𝑝
, 𝑎 ∈ 𝐴. (3.49)

3.3. FINITE EXTENSIONS OF COMPLETE FIELDS

Let (𝑘, 𝑣) be a complete field.

Definition 3.3.1. If a complete field (𝑘ᇱ, 𝑣ᇱ) is an extension of a complete field (𝑘, 𝑣) such

that 𝑣ᇱ| ∼ 𝑣, then 𝑘ᇱ is called a complete extension of 𝑘.

Let 𝜇 = 𝑣ᇱ|. Then 𝑒ᇲ/ is the ramification index of 𝑘
ᇱ/𝑘 (an extension of complete fields)

an 𝑓ᇲ/ denotes the residue degree of 𝑘
ᇱ/𝑘, respectively. Since 𝜇 = 𝛼𝑣, 𝛼 > 0 and 𝜇(𝑘×) =

𝛼𝑣(𝑘×) = 𝛼ℤ,

𝑒ᇲ/ = [𝑣ᇱ(𝑘×) ∶ 𝜇(𝑘×)] = [ℤ ∶ 𝛼ℤ] = 𝛼. (3.50)

Nowwe see that 𝑣ᇱ| = 𝑒ᇲ/𝑣 and 𝑒ᇲ/ < +∞. But this may not be true for 𝑓ᇲ/. If (𝑘
ᇳ, 𝑣ᇳ)

is a complete extension of (𝑘ᇱ, 𝑣ᇱ), then

𝑒ᇴ/ = 𝑒ᇴ/ᇲ ⋅ 𝑒ᇲ/, (3.51)

and

𝑓ᇴ/ = 𝑓ᇴ/ᇲ ⋅ 𝑓ᇲ/. (3.52)

Lemma 3.3.1. Let (𝑘ᇱ, 𝑣ᇱ) be a complete extension of a complete field (𝑘, 𝑣). If 𝑓ᇲ/ is finite,

then 𝑘ᇱ/𝑘 is a finite extension and the following holds:

[𝑘ᇱ ∶ 𝑘] = 𝑒ᇲ/ ⋅ 𝑓ᇲ/. (3.53)

We can calculate the value of 𝑣ᇱ(𝑥ᇱ) via the following fundamental result:

Theorem 3.3.2. Let (𝑘, 𝑣) be a complete field and 𝑘ᇱ a finite extension of 𝑘. Then there exists

a unique normalized valuation 𝑣ᇱ on 𝑘ᇱ such that 𝑣ᇱ| ∼ 𝑣, (𝑘ᇱ, 𝑣ᇱ) is a complete extension
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of (𝑘, 𝑣),

[𝑘ᇱ ∶ 𝑘] = 𝑒ᇲ/ ⋅ 𝑓ᇲ/, (3.54)

and

𝑣ᇱ(𝑥ᇱ) =
1

𝑓ᇲ/
⋅ 𝑣(𝑁ᇲ/(𝑥

ᇱ)), ∀𝑥ᇱ ∈ 𝑘ᇱ. (3.55)

3.4. LOCAL FIELDS

In this section we will discuss local fields and their properties. Local fields are one of the

fundamental objects in this thesis.

Definition 3.4.1. If a complete field (𝑘, 𝑣) has a finite residue field, it is called a local field.

Example 11. The 𝑝-adic number field ℚ is a local field since

𝜅ℚ
= ℤ/𝑝ℤ ≅ 𝔽. (3.56)

Example 12. Let 𝔽 be a finite field where 𝑞 = 𝑝. Let 𝐹((𝑋)) be the field of formal Laurent

series in 𝑋 with coefficients in 𝔽, and 𝑣 be the valuation given in Example 9. Then 𝐹((𝑋))

is a local field since 𝜅ி(()) = 𝔽[[𝑋]]/𝑋𝔽[[𝑋]] ≅ 𝔽.

Definition 3.4.2. If the residue field 𝜅 of a local field 𝑘 is a field of characteristic 𝑝, then

the local field 𝑘 is called a p-field.

The following therom completely characterizes the topology of local fields.

Theorem 3.4.1. Let (𝑘, 𝑣) be a local field. Then 𝑘 is a non-discrete, totally disconnected,

locally compact field in its 𝑣-topology. The valuation ring 𝒪 and ideals 𝔭 of 𝒪, 𝑛 ≥ 1,

are open, compact subgroups of the additive group of field 𝑘 and they form a neighborhood

base of 0 in 𝑘. Furthermore 𝒪 is the (unique) maximal compact subring in 𝑘.

Take a prime element 𝜋 of a local field (𝑘, 𝑣). We know that 𝔭 = 𝜋𝒪, 𝑛 ≥ 0. So the

map

𝑥 ↦ 𝜋𝑥, 𝑥 ∈ 𝒪 (3.57)

induces an 𝒪-module isomorphism 𝒪/𝔭 ≅ 𝔭/𝔭
ାଵ
 for 𝑛 ≥ 0. The index [𝒪 ∶ 𝔭


] = 𝑞,
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𝑛 ≥ 0, because 𝜅 = 𝔽 and [𝒪 ∶ 𝔭] = 𝑞. According to Theorem 3.4.1, 𝒪 is compact

and the intersection of all 𝔭 for 𝑛 ≥ 0 is 0; so we see that by Definition 2.2.4 and Theorem

2.2.3,

𝒪 ≅ lim
←−−

𝒪/𝔭

 . (3.58)

That is, the additive group of 𝒪 constitutes a profinite group (actually a pro-𝑝-group). Here,

the transitionmapswhich are used in the inverse limit are𝒪/𝔭

 → 𝒪/𝔭


 for all𝑚 ≥ 𝑛 ≥ 0.

Local fields can be classified by the following the theorem:

Theorem 3.4.2. (Classification theorem) Let 𝑘 be a local field.

(i) Case 1 - 𝑘 has char 0: Then 𝑘 ≅ 𝐿, where 𝐿 is a finite extension of ℚ.

(ii) Case 2 - 𝑘 has char p: Then 𝑘 is isomorphic to 𝐾((𝑋)), the field of Laurent series (over

a finite field 𝐾 of characteristic p).

Lemma 3.4.3. Let 𝑘 be a local field, 𝑓(𝑋) ∈ 𝒪[𝑋] and 𝛼 ∈ 𝒪 satisfying ห𝑓(𝛼)ห < ห𝑓ᇱ(𝛼)ห
ଶ
.

Then there exists 𝛽 ∈ 𝒪 such that 𝑓(𝛽) = 0 and

|𝛽 − 𝛼| ≤ ቤ
𝑓(𝛼)

𝑓ᇱ(𝛼)
ቤ . (3.59)

The lemma above is called Hensel’s Lemma. There exists a proof, that is based on this

lemma, for the existence of Teichmüller representatives, i.e. the elements of the set 𝐴 in

the theorem below.

Let (𝑘, 𝑣) be a local field, 𝑉 = {𝑥 ∈ 𝑘 ∣ 𝑥ିଵ = 1} and 𝐴 = 𝑉 ∪ {0} = {𝑥 ∈ 𝑘 ∣ 𝑥 = 𝑥}.

Theorem 3.4.4. 𝐴 is complete set of representatives of 𝜅 in 𝒪 and contains 0. 𝑉 is the set

of all (𝑞 − 1)th roots of unity in 𝑘, and the canonical ring homomorphism 𝒪 → 𝜅 induces

the isomorphism of multiplicative groups 𝑉 ≅ 𝜅× . So 𝑉 is a cyclic group and it is of order

𝑞 − 1.

Teichmüller representatives can be used to show the existence of the following isomorphism:

Theorem 3.4.5. Let 𝑘 be a local field. Then 𝒪×
 ≅ 𝜅× × (1 + 𝔭) = 𝜅× ×𝒰ଵ.

The multiplicative structure of 𝑘× can be described as below:
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Theorem 3.4.6. Let (𝑘, 𝑣) be a local field. The group 𝑘× is a totally disconnected and locally

compact Abelian group, which is also non-discrete, in the 𝑣-topology of 𝑘. The unit group

𝒰 (= 𝒰) and its subgroups 𝒰 = 1 + 𝔭 , 𝑛 ≥ 1 are compact, open subgroups of 𝑘×, they

form a neighborhood base of 1 in 𝑘×. Furthermore, 𝒰 is the (unique) maximal compact

subgroup of 𝑘×.

It can be shown that the compact group 𝒰ଵ is the inverse limit of 𝒰ଵ/𝒰’s (finite Abelian

groups) with respect to the transition maps 𝒰ଵ/𝒰 → 𝒰ଵ/𝒰 for𝑚 ≥ 𝑛 ≥ 0:

𝒰ଵ ≅ lim
←−−

𝒰ଵ/𝒰. (3.60)

3.5. FINITE EXTENSIONS OF LOCAL FIELDS

Let (𝑘, 𝑣) be a local field and 𝜅 = 𝒪/𝔭 = 𝔽 its residue field. Let 𝑘ᇱ be any finite

extension over 𝑘. By Theorem 3.1.2, we can extend 𝑣 to a unique normalized valuation 𝑣ᇱ on

𝑘ᇱ s.t. 𝑣ᇱ| ∼ 𝑣. Then (𝑘ᇱ, 𝑣ᇱ) is a complete extension of (𝑘, 𝑣). So, if 𝑘ᇱ/𝑘 a finite extension,

we always get a local field (𝑘ᇱ, 𝑣ᇱ).

Definition 3.5.1. Let 𝑘ᇱ/𝑘 be a finite extnsion of local fields and put 𝑛 = [𝑘ᇱ ∶ 𝑘] = 𝑒ᇲ/ ⋅

𝑓ᇲ/. Then, 𝑘
ᇱ/𝑘 is called an unramified extension if 𝑒ᇲ/ = 1 and 𝑓ᇲ/ = 𝑛 and it is called

a totally ramified extension if 𝑒ᇲ/ = 𝑛 and 𝑓ᇲ/ = 1.

Take prime elements 𝜋 and 𝜋ᇲ of 𝑘 and 𝑘ᇱ, respectively. So 𝑣(𝜋) = 𝑣ᇱ(𝜋ᇲ) = 1. We

know that,

𝑒ᇲ/ = 𝑣ᇱ(𝜋), 𝑓ᇲ/ = 𝑣(𝑁ᇲ/(𝜋ᇲ)). (3.61)

Then we see that

• The extension 𝑘ᇱ/𝑘 is unramified iff a prime 𝜋 also becomes a prime in 𝑘
ᇱ,

• The extension 𝑘ᇱ/𝑘 is totally ramified iff 𝑁ᇲ/(𝜋ᇲ) is a prime element of 𝑘 when 𝜋ᇲ

is a prime element of 𝑘ᇱ.

Let 𝑘ᇱ/𝑘 be any finite extension of local fields, 𝑛 = [𝑘ᇱ ∶ 𝑘] = 𝑒ᇲ/ ⋅ 𝑓ᇲ/ and 𝜅 = 𝔽,
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𝜅ᇲ = 𝔽ᇲ for the residue fields with 𝑞
ᇱ = 𝑞ೖᇲ/ೖ. Let

𝐴ᇱ = {𝑦 ∈ 𝑘ᇱ ∣ 𝑦
ᇲ

= 𝑦}, 𝑘 = 𝑘(𝐴ᇱ), 𝑘 ⊆ 𝑘 ⊆ 𝑘ᇱ. (3.62)

For 𝑘, we have the following:

Lemma 3.5.1. The field 𝑘 is a splitting field of 𝑥
ᇲ

− 𝑥 over 𝑘 and 𝑘/𝑘 is an unramified

cyclic extension with degree [𝑘 ∶ 𝑘] = 𝑓ᇲ/.

Using the Lemma 3.5.1 we can show the following isomorphism:

Gal(𝑘/𝑘) ≅ Gal(𝜅బ/𝜅). (3.63)

We also have the following important result about the unramified extensions of local fields:

Theorem 3.5.2. Let (𝑘, 𝑣) be a local field and 𝜅 = 𝒪/𝔭 = 𝔽 its residue field. For each

integer 𝑛 ≥ 1, there exits an unramified extension 𝑘ᇱ/𝑘 with degree [𝑘ᇱ ∶ 𝑘] = 𝑛. Here 𝑘ᇱ is

unique over 𝑘 (up to an isomorphism). The extension field 𝑘ᇱ is a splitting field of 𝑋


− 𝑋

over 𝑘, and it is also a cyclic extension and of degree 𝑛 over 𝑘. Let 𝜅ᇲ be the residue field

of the local field (𝑘ᇱ, 𝑣ᇱ). Then each element of 𝜎 of Gal(𝑘ᇱ/𝑘) induces an automorphism 𝜎ᇱ

of 𝜅ᇲ/𝜅, and the map 𝜎 ↦ 𝜎ᇱ defines an isomorphism

Gal(𝑘ᇱ/𝑘) ≅ Gal(𝜅ᇲ/𝜅). (3.64)

The generator 𝜑 of the cyclic group Gal(𝑘ᇱ/𝑘) in Theorem 3.5.2, which corresponds to the

automorphism𝜔 ↦ 𝜔, ∀𝜔 ∈ 𝜅ᇲ, is called the Frobenius automorphism of the unramified

extension of 𝑘ᇱ/𝑘 and it is uniquely characterized by the following property:

𝜑(𝑦) ≡ 𝑦 mod 𝔭ᇲ , (3.65)

for all 𝑦 ∈ 𝒪ᇲ.

Theorem 3.5.3. The splitting field 𝑘 of 𝑥
ᇲ−𝑥 over 𝑘 in Lemma 3.5.1 is the unique maximal

unramified extension over 𝑘 in 𝑘ᇱ. The extension 𝑘ᇱ/𝑘 is a totally ramified extension and

[𝑘ᇱ ∶ 𝑘] = 𝑒ᇲ/, [𝑘 ∶ 𝑘] = 𝑓ᇲ/. (3.66)
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The field 𝑘 is called the inertia field of 𝑘
ᇱ/𝑘.

3.6. INFINITE EXTENSIONS OF LOCAL FIELDS

In this section the infinite extensions of local fields will be discussed. Let (𝑘, 𝑣) be a local

field and 𝜅 = 𝒪/𝔭 = 𝔽 its residue field. Denote a fixed algebraic closure of 𝑘 by 𝑘
ೌ

and let 𝜇 be the unique extension of 𝑣 to 𝑘ೌ. Denote the completion of (𝑘ೌ, 𝜇) by ( 𝑘ೌ, �̂�).

If 𝐹 is any intermediate field of 𝑘 and 𝑘, then we have:

𝑘 ⊆ 𝐹 ⊆ 𝑘ೌ ⊆ 𝑘ೌ. (3.67)

We have discussed that the closure 𝐹 of 𝐹 in 𝑘ೌ is a subfield of 𝑘ೌ. Let

𝜇ி = 𝜇|ி, 𝜇ி = �̂�|ி. (3.68)

Then 𝜇ி is the uniquely determined extension of 𝑣 to the algebraic extension 𝐹 over 𝑘. Also

(𝐹, 𝜇ி) is the completion of (𝐹, 𝜇ி) as described in Example 7. In case of infinite extensions,

similar to finite extensions, we have the following definitions:

𝒪ி ∶ the valuation ring of 𝜇ி, (3.69)

𝔭ி ∶ the maximal ideal of 𝜇ி, (3.70)

𝜅ி = 𝒪ி/𝔭ி ∶ the residue field of 𝜇ி. (3.71)

Also let 𝒪ி, 𝔭ி, and 𝜅ி be defined similarly for 𝜇ி. Since 𝑓ி/ி = 1, the injection 𝒪ி ↪ 𝒪ி

induces:

𝜅ி ≅ 𝜅ி. (3.72)

Lemma 3.6.1. Let 𝐿 be an extension of 𝐹 in 𝑘 (assume the extension is finite) and denote

the closure of 𝐿 in 𝑘 by �̄�. Then

𝐿�̄� = �̄�. (3.73)

If 𝐿/𝐹 is seperable, then we have that 𝐿 ∩ �̄� = 𝐹.
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3.7. UNRAMIFIEDAND TOTALLY RAMIFIED EXTENSIONS

Let 𝑘 ⊆ 𝐹 ⊆ 𝑘ೌ be as in Section 3.6

Definition 3.7.1. Then the extension 𝐹/𝑘 is called an unramified extension if every finite

extension 𝑘ᇱ over 𝑘 in 𝐹, 𝑘 ⊆ 𝑘ᇱ ⊆ 𝐹 is unramified; that is 𝑒ᇲ/ = 1. It is evident that, if

𝐹/𝑘 is unramified and also we have 𝑘 ⊆ 𝐹ᇱ ⊆ 𝐹, then 𝐹ᇱ/𝑘 is also unramified.

We have the following lemma to characterize the unramified extensions:

Lemma 3.7.1. Let 𝑘 ⊆ 𝐹 ⊆ 𝑘ೌ. Then 𝐹/𝑘 is unramified if and only if 𝜇ி(= 𝜇|ி) is a

normalized valuation on 𝐹; i.e. 𝜇(𝐹×) = ℤ.

There exists a unique unramified extension 𝑘௨ over 𝑘 in 𝑘
ೌ with degree 𝑛 for 𝑛 ≥ 1. This

field is the splitting field of 𝑋


−𝑋 over 𝑘 in 𝑘ೌ. If we take the union 𝑘௨ of all 𝑘

௨, 𝑛 ≥ 1,

then we get a subfield of 𝑘ೌ:

𝑘௨ =ራ

ஹଵ

𝑘௨. (3.74)

Let 𝐾 = 𝑘௨. It can be shown that 𝐾 is the unique maximal unramified extension over 𝑘

in 𝑘ೌ. Similar to finite case, the following theorem can be given for the Galois group of the

maximal unramified extension.

Theorem 3.7.2. The field 𝜅 is an algebraic closure of 𝜅 of 𝑘. Each 𝜎 ∈ Gal(𝐾/𝑘) induces

an automorphism 𝜎ᇱ of 𝜅/𝜅, and the map 𝜎 ↦ 𝜎ᇱ defines a natural isomorphism

Gal(𝐾/𝑘) ≅ Gal(𝜅/𝜅). (3.75)

Since 𝜅 = 𝔽, the map 𝜔 ↦ 𝜔, 𝜔 ∈ 𝜅 defines an automorphism of 𝜅 over 𝜅. Let 𝜑

denote the corresponding element in Gal(𝐾/𝑘) under Gal(𝐾/𝑘) ≅ Gal(𝜅/𝜅). This is the

unique element in Gal(𝐾/𝑘) satisfying

𝜑(𝛼) ≡ 𝛼 mod 𝔭, for all 𝛼 ∈ 𝒪. (3.76)

This automorphism is called the Frobenius automorphism of 𝐾/𝑘. It is usually denoted by

𝜑. We see that 𝜑 induces on each 𝑘

௨, 𝑛 ≥ 1, the Frobenius automorphism 𝜑 of 𝑘


௨/𝑘
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(Theorem 3.5.2). We know that Gal(𝑘௨/𝑘) is the cyclic group of order 𝑛 and it is generated

by 𝜑, so the map 𝑎 mod 𝑛 ↦ 𝜑
 , 𝑎 ∈ ℤ defines an isomorphism ℤ/𝑛ℤ ≅ Gal(𝑘௨/𝑘).

We know that ℤ = lim
←−−

ℤ/𝑛ℤ. It can be shown that the following diagram commutes:

ℤ/𝑚ℤ Gal(𝑘௨/𝑘)

ℤ/𝑛ℤ Gal(𝑘௨/𝑘)

∼

∼

(3.77)

Taken together, ℤ ≅ Gal(𝐾/𝑘) ≅ lim
←−−

Gal(𝑘௨/𝑘).

Definition 3.7.2. Let 𝐹 be an algebraic extension of 𝑘 in 𝑘ೌ: 𝑘 ⊆ 𝐹 ⊆ 𝑘ೌ. The extension

𝐹/𝑘 is called a totally ramified extension if every 𝑘ᇱ such that 𝑘 ⊆ 𝑘ᇱ ⊆ 𝐹, [𝑘ᇱ ∶ 𝑘] < ∞, is

a totally ramified extension; that is, 𝑓ᇲ/ = 1. In general 𝐹/𝑘 is totally ramified if and only

if 𝐹 ∩ 𝑘௨ = 𝑘.

Let 𝑘 be a local field. Assume that the cardinality of its residue field is 𝑞 which is a power of

a prime 𝑝. Let 𝑉ஶ be multipl. group of all roots of unity in 𝑘 with order prime to 𝑝. For

𝑛 ≥ 1, let 𝑉 denote the subgroup of all (𝑞
 − 1)th roots of unity in 𝑘. Then,

𝑉ஶ =ራ

ஹଵ

𝑉, 𝑘௨ = 𝑘(𝑉), 𝑘௨ = 𝑘(𝑉ஶ). (3.78)

By Theorem 3.4.4, the ring homomorphism 𝒪 → 𝜅 induces 𝑉ஶ ≅ 𝜅× . So if 𝜑(𝜂) ≡

𝜂 mod 𝔭 then 𝜑(𝜂) = 𝜂 mod 𝔭 for 𝜂 ∈ 𝑉ஶ.

We conclude this sectionwith the following important lemma about totally ramified extensions:

Lemma 3.7.3. Let 𝑇 be Galois over 𝑘, containing 𝑘௨, 𝜓 an element of Gal(𝑇/𝑘) satisfying

𝜓|ೠೝ = 𝜑. Denote the fixed field of 𝜓 in 𝑇 by 𝐹. Then

𝐹𝑘௨ = 𝑇, 𝐹 ∩ 𝑘௨ = 𝑘, Gal(𝑇/𝐹) ≅ Gal(𝑘௨/𝑘). (3.79)
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𝐹𝑘௨ = 𝑇

𝐹 𝑘௨

𝐹 ∩ 𝑘௨ = 𝑘

(3.80)

Particularly, 𝐹 is a maximal totally ramified extension over 𝑘 in 𝑇.

3.8. THE NORM GROUPS

Here we will present the norm groups of algebraic extensions. They will be used later on in

the text.

Let 𝑘 be a local field. Consider any algebraic extension 𝐹/𝑘 (𝑘 ⊆ 𝐹 ⊆ 𝑘ೌ). Let 𝒰ி denote

the unit group of 𝐹:

𝒰ி = Ker(𝜇ி ∶ 𝐹
× ↦ ℝା). (3.81)

Define

𝑁(𝐹/𝑘) =ሩ

ᇲ

𝑁ᇲ/(𝑘
ᇱ×), 𝑁𝑈(𝐹/𝑘) =ሩ

ᇲ

𝑁ᇲ/(𝒰ᇲ), (3.82)

where 𝑘 ⊆ 𝑘ᇱ ⊆ 𝐹, [𝑘ᇱ ∶ 𝑘] < +∞. The groups 𝑁(𝐹/𝑘) and 𝑁𝑈(𝐹/𝑘) are called the

norm group and the unit norm group of 𝐹/𝑘, respectively. If 𝐹/𝑘 is finite, we have

𝑁(𝐹/𝑘) = 𝑁ி/(𝐹
×), 𝑁𝑈(𝐹/𝑘) = 𝑁ி/(𝒰ி). (3.83)

The group 𝑁(𝐹/𝑘) is a closed subgroup in 𝑘×, 𝑁𝑈(𝐹/𝑘) is a compact subgroup of 𝒰, and

𝑁𝑈(𝐹/𝑘) = 𝑁(𝐹/𝑘) ∩ 𝒰. (3.84)

Note that, if 𝑘 ⊆ 𝐹 ⊆ 𝐹ᇱ ⊆ 𝑘ೌ, then

𝑁(𝐹ᇱ/𝑘) ⊆ 𝑁(𝐹/𝑘), 𝑁𝑈(𝐹ᇱ/𝑘) ⊆ 𝑁𝑈(𝐹/𝑘). (3.85)

Theorem 3.8.1. Let 𝐹/𝑘 be an algebraic extension. Assume also it is unramified. Then we
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have

𝑁𝑈(𝐹/𝑘) = 𝒰. (3.86)

Also, if the extension 𝐹/𝑘 is infinite,

𝑁(𝐹/𝑘) = 𝒰. (3.87)

Particularly, if F is 𝑘௨, in this case we have the following:

𝑁(𝑘௨/𝑘) = 𝑁𝑈(𝑘௨/𝑘) = 𝒰. (3.88)

Theorem 3.8.2. Let 𝑘 be a local field and 𝑇/𝑘 an algebraic extension, where 𝑘 ⊆ 𝑇 ⊆ 𝑘ೌ.

Then T/k is totally ramified iff N(T/k) contains a prime in k.

3.9. THE DIFFERENT

Consider the finite extension of local fields 𝑘ᇱ/𝑘 and assume also this extension is separable.

It is known that the trace map 𝑇ᇲ/ ∶ 𝑘
ᇱ → 𝑘 is continuous [15] and 𝑇ᇲ/(𝒪ᇲ) ⊆ 𝒪. Define:

𝐴 = {𝑥ᇱ ∈ 𝑘ᇱ ∣ 𝑇ᇲ/(𝑥
ᇱ𝒪ᇲ) ⊆ 𝒪}. (3.89)

Since we assumed 𝑘ᇱ/𝑘 is separable so there is an 𝑦 ∈ 𝑘ᇱ such that 𝑇ᇲ/(𝑦) ≠ 0. This implies

𝑇ᇲ/(𝑘
ᇱ) = 𝑘, also 𝐴 is an 𝒪ᇲ-submodule of 𝑘

ᇱ which is not equal to 𝑘ᇱ. The inclucion

𝑇ᇲ/(𝒪ᇲ) ⊆ 𝒪 implies that 𝒪ᇲ ⊆ 𝐴 and 𝐴 ≠ 0. So 𝑚 is an ideal of 𝑘ᇱ and 𝒟ᇲ/ = 𝑚ିଵ is

a non-zero ideal of 𝒪ᇲ (recall the definition of an ideal). We call 𝒟ᇲ/ the different of the

extension 𝑘ᇱ/𝑘.

Lemma 3.9.1. There is an element 𝜉 ∈ 𝒪ᇲ such that 1, 𝜉, … , 𝜉ିଵ form a free basis of the

𝒪-module 𝒪ᇲ; that is,

𝒪ᇲ = 𝒪 ⊕𝒪𝜉 ⊕⋯⊕𝒪𝜉
ିଵ. (3.90)

Particularly, 𝒪ᇲ = 𝒪[𝜉].
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Theorem 3.9.2. Let 𝑘ᇱ/𝑘 be a totally ramified finite extension and 𝜋ᇱ a prime in 𝑘ᇱ. Then

𝒪ᇲ = 𝒪[𝜋
ᇱ]. (3.91)

Theorem 3.9.3. Let 𝛼 ∈ 𝒪ᇲ be as in Lemma 3.9.1 and 𝑓(𝑋) the minimal polynomial of

𝛼 ∈ 𝑘. Then

𝒟ᇲ/ = 𝑓ᇱ(𝛼)𝒪ᇲ . (3.92)

Here 𝑓ᇱ(𝑋) denotes the formal derivative of 𝑓(𝑋).

3.10. THE RAMIFICATION THEORY OF LOCAL FIELDS

Let 𝑘ᇱ/𝑘 be a finite Galois extension of local fields and put 𝐺 = Gal(𝑘ᇱ/𝑘). Take an element

𝜉 ∈ 𝐺. Then by 3.32,

𝜉(𝒪ᇲ) = 𝒪ᇲ , 𝜉(𝔭ᇲ) = 𝔭ᇲ , 𝑛 ≥ 1. (3.93)

This implies 𝜉 induces the following automorphisms:

𝜉 ∶ 𝒪ᇲ/𝔭
ାଵ
ᇲ ≅ 𝒪ᇲ/𝔭

ାଵ
ᇲ . (3.94)

Themap𝜓 ∶ 𝜉 ↦ 𝜉 is a homomorphism of𝐺 intoAut(𝒪ᇲ/𝔭
ାଵ
ᇲ ), the group of automorphisms

of 𝒪ᇲ/𝔭
ାଵ
ᇲ . Denote Ker 𝜓 as 𝐺; i.e.,

𝐺 = {𝜉 ∈ 𝐺 ∣ 𝜉(𝑥ᇱ) ≡ 𝑥ᇱ mod 𝔭ାଵᇲ for all 𝑥ᇱ ∈ 𝒪ᇲ}. (3.95)

The subgroup 𝐺 is a normal in 𝐺 and 𝐺ାଵ ⊆ 𝐺 where 𝑛 ≥ 0. If 𝜉 ≠ 1, then there exists

an 𝑥ᇱ ∈ 𝒪ᇲ such that 𝜉(𝑥
ᇱ) ≠ 𝑥ᇱ, so 𝜉(𝑥ᇱ) − 𝑥ᇱ ∉ 𝔭ାଵᇲ for sufficiently large 𝑛. This means

that 𝐺 = 1 for𝑚 ≥ 𝑛 and we have the following sequence of normal subgroups of 𝐺:

1 = … = 𝐺 ⊆ … ⊆ 𝐺ଵ ⊆ 𝐺 = 𝐺. (3.96)

These groups are usually called (in lower numbering) the ramification groups of the extension

𝑘ᇱ/𝑘. We will need two theorems about the ramifications groups.
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Theorem 3.10.1. Let 𝑘 be the inertia field of 𝑘ᇱ/𝑘. Then the following hold:

𝐺 = Gal(𝑘ᇱ/𝑘), 𝐺/𝐺 = Gal(𝑘/𝑘) ≅ Gal(𝜅ᇲ/𝜅). (3.97)

By this theorem, 𝐺/𝐺 is a cyclic, |𝐺| = 𝑒ᇲ/. Also [𝐺 ∶ 𝐺] = 𝑓ᇲ/.

Theorem 3.10.2. There exists an injective homomorphism

𝜔 ∶ 𝐺/𝐺ାଵ → 𝒰/𝒰ାଵ, (3.98)

where 𝑛 ≥ 0 and 𝒰 is the subgroups of the unit group of 𝑘ᇱ as described in 3.45.

Now let 𝑘 be a 𝑝-field. Then by the equations in 3.46,

𝒰/𝒰ଵ ≅ 𝜅×ᇲ (3.99)

and

𝒰/𝒰ାଵ ≅ 𝜅ାᇲ , 𝑛 ≥ 1. (3.100)

So, if we consider the theorem above, the following easily follow:

(i) 𝐺/𝐺ଵ is cyclic and [𝐺 ∶ 𝐺ଵ] ∣ (𝑞
ᇱ − 1),

(ii) 𝐺/𝐺ାଵ is Abelian of type (𝑝, … , 𝑝), [𝐺 ∶ 𝐺ାଵ] ∣ 𝑞
ᇱ,

(iii) [𝐺 ∶ 𝐺ଵ] is prime to 𝑝 and ∣ 𝐺ଵ ∣ is a power of 𝑝.
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4. FORMAL POWER SERIES

In this chapter, we will discuss formal power series and then we will introduce power series

over 𝒪. The main references for this chapter are [8], [15], [16] and [17].

4.1. BASIC DEFINITIONS

Let 𝑅 be a commutative ring with identity 1 ≠ 0. In this chapter,

𝑆 = 𝑅[[𝑋ଵ, … , 𝑋]] (4.1)

denotes the commutative ring of all power series

𝑓 = 𝑓(𝑋ଵ, 𝑋ଶ, … , 𝑋ିଵ, 𝑋) =



𝑎భ, మ, … ,షభ,
𝑋
భ
ଵ 𝑋

మ
ଶ ⋯ 𝑋

షభ
ିଵ𝑋


 , 𝑎భ, మ, … ,షభ,

∈ 𝑅,

(4.2)

where𝑋ଵ, 𝑋ଶ, … , 𝑋ିଵ, 𝑋 are indeterminates and 𝑖 = (𝑖ଵ, 𝑖ଶ, … , 𝑖ିଵ, 𝑖) ranges over all𝑛-tuples

of non-negative integers.

Let 𝑓, 𝑔 ∈ 𝑆 and 𝑑 ≥ 0 an integer. Then, if the power series 𝑓 − 𝑔 does not have any terms

of total degree ≤ 𝑑, we write

𝑓 ≡ 𝑔 mod deg 𝑑. (4.3)

Let 𝑔ଵ, … , 𝑔 be power series in 𝑅[[𝑌ଵ, … , 𝑌]] such that 𝑔 ≡ 0 mod deg 1 for 1 ≤ 𝑖 ≤ 𝑛.

For any 𝑓(𝑋ଵ, … , 𝑋) in 𝑆, we can substitute 𝑔 for 𝑋, 1 ≤ 𝑖 ≤ 𝑛 and we get a well-defined

power series

𝑓(𝑔ଵ(𝑌ଵ, … , 𝑌), … , 𝑔(𝑌ଵ, … , 𝑌)), (4.4)

in 𝑇 = 𝑅[[𝑌ଵ, … , 𝑌]]. This is because we take ‘0 mod deg 1’ power series, so we do not

encounter such power series that contain constant terms and the problem of convergence does

not come up. We denote such a power series by 𝑓 ∘ (𝑔ଵ, … , 𝑔).

We can get interesting algebraic structures by using formal power series. As an example, let

𝑋 be an indeterminate. Consider the ideal 𝑀 of 𝑅[[𝑋]], generated by 𝑋; i.e., 𝑀 = (𝑋) =

𝑋⋅𝑅[[𝑋]]. The set𝑀 consists of all 𝑓 ≡ 0mod deg 1. Consider the preceeding discussion and
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take 𝑛 = 𝑚 = 1; then the power series 𝑓∘𝑔 is well-defined and it belongs to𝑀. In particular

we get a monoid with the multiplication defined by 𝑓 ∘ 𝑔. The power series 𝑒(𝑋) = 𝑋 is the

identity element of this monoid: 𝑋 ∘ 𝑓 = 𝑓 ∘ 𝑋 = 𝑓.

If there exist 𝑓, 𝑔 ∈ 𝑀 such that 𝑓 ∘ 𝑔 = 𝑔 ∘ 𝑓 = 𝑋, then we can define the inverses and

write

𝑓 = 𝑔ିଵ, 𝑔 = 𝑓ିଵ. (4.5)

The following lemma is a well-known fact about formal power series:

Lemma 4.1.1. Let 𝑓(𝑋) = ∑
ஶ

ୀଵ
𝑎𝑋

, 𝑎 ∈ 𝑅. Then 𝑓 is invertible in𝑀 iff 𝑎ଵ is invertible

in R.

Let 𝑘 be a local field, 𝑘ೌ a fixed algebraic closure of 𝑘, 𝑘ೌ the completion of 𝑘ೌ and 𝜅ೌ

the residue field of 𝑘ೌ. Take

𝑓 =



𝑎భ, … ,
𝑋
భ
ଵ ⋯𝑋


 , 𝑎భ, … ,

∈ 𝒪ೌ
, (4.6)

and let 𝑔ଵ, … , 𝑔 be power series in 𝒪ೌ
[[𝑌ଵ, … , 𝑌]] satisfying that the constant terms of

𝑔ଵ, … , 𝑔 are contained in 𝔭ೌ. Consider

𝑓 ∘ (𝑔ଵ, … , 𝑔) =



𝑎భ,…,𝑔(𝑌ଵ, … , 𝑌)
భ ⋯𝑔(𝑌ଵ, … , 𝑌)

 . (4.7)

We see that the formal power series converges in 𝒪ೌ
[[𝑌ଵ, … , 𝑌]] since the constant term

in it constitute a convergent series (because its terms belong to 𝔭ೌ, the powers of the terms

increase as 𝑛 goes to infinity, so the valuation of the difference between the consecutive

partial sums increases indefinitely, which proves that it is a Cauchy sequence). Particularly

if we took any 𝛼ଵ, … , 𝛼 ∈ 𝔭ೌ, then 𝑓(𝛼ଵ, … , 𝛼) would be well-defined.

4.2. POWER SERIES OVER 𝒪

Let 𝑘 be a local field and 𝐾 denote 𝑘௨, i.e. the maximal unramified extension of the local

field 𝑘 in 𝑘ೌ. Also denote the Frobenius automorphism of 𝑘 by 𝜑: 𝜑 ∈ Gal(𝐾/𝑘) and let
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𝜑 be the natural extension of 𝜑 to 𝐾. In this section we will call both of them 𝜑 if there is

no risk of confusion. Recall that 𝜑 induces the automorphism 𝜔 ↦ 𝜔 on the residue field

𝜅 ≅ 𝜅 = 𝒪/𝔭,

𝛼ఝ ≔ 𝜑(𝛼) ≡ 𝛼 mod 𝔭 for all 𝛼 ∈ 𝒪. (4.8)

We will prove a lemma for the endomorphisms below:

𝜑 − 1 ∶ 𝒪 → 𝒪, (4.9)

𝛼 ↦ (𝜑 − 1)(𝛼) = 𝜑(𝛼) − 𝛼, (4.10)

𝜑 − 1 ∶ 𝑈 → 𝑈, (4.11)

𝜉 ↦ 𝜉ఝିଵ = 𝜑(𝜉)/𝜉. (4.12)

Lemma 4.2.1. Let 𝒪 be the additive group of 𝒪, 𝑈 the group of units in 𝐾. The sequences

below are exact:

1 → 𝑈 → 𝑈

ఝିଵ
−−−→ 𝑈 → 1 (4.13)

0 → 𝒪 → 𝒪

ఝିଵ
−−−→ 𝒪 → 0 (4.14)

Proof. The exactness of the first sequence will be proved. The proof of the other case is

similar. Recall that 𝜅 ≅ 𝜅 is algebraically closed. So the maps 𝜅 → 𝜅 defined by

𝜔 ↦ 𝜔 − 𝜔 and 𝜔 ↦ 𝜔ିଵ are both surjective. So

(𝜑 − 1)𝒪 + 𝔭 = 𝒪, 𝑈
ఝିଵ


(1 + 𝔭) = 𝑈. (4.15)

Let 𝜉 ∈ 𝑈. We will use the induction to define a sequence of elements {𝜂}ஹ ∈ 𝑈

satisfying

𝜉 ≡ 𝜂
ఝିଵ
 mod 𝔭ାଵ

, 𝜂 ≡ 𝜂ାଵ mod 𝔭
ାଵ


, for all 𝑛 ≥ 0. (4.16)

There exists 𝜂 ∈ 𝑈 such that 𝜉 ≡ 𝜂
ఝିଵ
 mod 𝔭 by the equation 4.15. Now we suppose that

we found a sequence of elements, 𝜂, 𝜂ଵ, … , 𝜂, 𝑛 ≥ 0 satisfying the congruences in 4.16.

Take a prime 𝜋 in 𝑘. As 𝐾/𝑘 is unramified, 𝜋 is also a prime in 𝐾 and 𝐾. So, we can write

𝔭 = 𝜋𝒪. By the congruence in 4.16,

𝜉𝜂
ଵିఝ
 = 1 + 𝛼𝜋ାଵ , 𝛼 ∈ 𝒪. (4.17)
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We know by 4.16, there exists an element 𝛽 ∈ 𝒪 such that 𝛼 ≡ (𝜑 − 1)(𝛽) mod 𝔭.

Let

𝜂ାଵ = 𝜂(1 + 𝛽𝜋ାଵ). (4.18)

We see that 𝜂ାଵ ∈ 𝑈 and 𝜂 ≡ 𝜂ାଵ mod 𝔭
ାଵ


. We also know that 𝜑(𝜋) = 𝜋, then the

following holds:

𝜂
ఝିଵ
ାଵ = 𝜂

ఝିଵ
 (1 + 𝜑(𝛽)𝜋ାଵ ) ቆ1 +

−𝛽𝜋ାଵ

1 + 𝛽𝜋ାଵ

ቇ (4.19)

= 𝜂
ఝିଵ
 (1 + 𝜑(𝛽)𝜋ାଵ ){1 + [(−𝛽𝜋ାଵ )(1 + 𝛾𝜋ାଵ )]} (4.20)

≡ 𝜂
ఝିଵ
 (1 + (𝜑(𝛽) − 𝛽)𝜋ାଵ ) mod 𝔭ାଶ

(4.21)

≡ 𝜂
ఝିଵ
 (1 + 𝛼𝜋ାଵ ) mod 𝔭ାଶ

(4.22)

≡ 𝜉 mod 𝔭ାଶ
. (4.23)

where 𝛾 ∈ 𝒪 (we used the fact that 1 + 𝔭ାଵ
is a multiplicative group). Now we showed

the existence of the sequence {𝜂}ஹ. Since 𝐾 is complete, then 𝜂 = lim→ஶ 𝜂 exits in 𝑈

and satisfies 𝜂ఝିଵ = 𝜉. Hence we proved that 𝑈

ఝିଵ
−−−→ 𝑈 is surjective.

Consider the kernel of 𝑈

ఝିଵ
−−−→ 𝑈 and observe that 𝑈 is in the kernel. Suppose 𝜉 ∈

ker 𝜑−1, 𝜉ఝିଵ = 1. We know that the set 𝐴 = {0}∪𝑉ஶ is a complete set of representatives

for 𝜅 in 𝒪. Take a prime element 𝜋 as above. Then 𝜉 can be expressed (in a unique way)

as follows:

𝜉 =

ஶ



ୀ

𝑎𝜋

 , 𝑎 ∈ 𝐴 = {0} ∪ 𝑉ஶ. (4.24)

Now we apply 𝜑 to 𝜉 and we get 𝜉 = 𝜑(𝜉) = ∑
ஶ

ୀ
𝜑(𝑎)𝜋


 . But by the uniqueness of the

representation, 𝑎 = 𝜑(𝑎) = 𝑎

, for all 𝑛 ≥ 0. So 𝑎 = 0 or 𝑎 is an element of the cyclic

group 𝑉 of order 𝑞 − 1. Now we see that 𝜉 ∈ 𝑘 ∩𝑈 = 𝑈 and the exactness is proved.

From now on, for the power series

𝑓(𝑋ଵ, … , 𝑋) =



𝑎భ, … ,
𝑋
భ
ଵ ⋯𝑋


 , 𝑎భ, … ,

∈ 𝒪, (4.25)

𝑓ఝ will mean

𝑓ఝ(𝑋ଵ, … , 𝑋) =



𝜑(𝑎భ, … ,
)𝑋

భ
ଵ ⋯𝑋


 . (4.26)
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Now we will prove a fundamental theorem in this section.

Theorem 4.2.2. Let 𝜋ଵ and 𝜋ଶ be primes in 𝐾, 𝑓ଵ and 𝑓ଶ power series in 𝒪[[𝑋]] satisfying

the following conditions:

𝑓ଵ(𝑋) ≡ 𝜋ଵ𝑋, 𝑓ଶ(𝑋) ≡ 𝜋ଶ𝑋 mod deg 2, 𝑓ଵ(𝑋) ≡ 𝑓ଶ(𝑋) ≡ 𝑋 mod 𝔭, (4.27)

where 𝑞 is the order of 𝜅. Let

𝐿(𝑋ଵ, … , 𝑋) = 𝛼ଵ𝑋ଵ +⋯+ 𝛼𝑋, 𝛼 ∈ 𝒪, (4.28)

be a linear form in 𝑋ଵ, … , 𝑋 satisfying

𝜋ଵ𝐿(𝑋ଵ, 𝑋ଶ, … , 𝑋ିଵ, 𝑋) = 𝜋ଶ𝐿
ఝ(𝑋ଵ, 𝑋ଶ, … , 𝑋ିଵ, 𝑋). (4.29)

Then there is a unique 𝐹 = 𝐹(𝑋ଵ, … , 𝑋) in 𝒪[[𝑋ଵ, … , 𝑋]] such that

𝐹 ≡ 𝐿 mod deg 2, 𝑓ଵ ∘ 𝐹 = 𝐹ఝ ∘ 𝑓ଶ. (4.30)

Proof. We proceed by induction on 𝑛. We inductively construct a sequence (𝐹) satisfying

the following conditions:

𝑓ଵ ∘ 𝐹 ≡ 𝐹
ఝ
 ∘ 𝑓ଶ, 𝐹ାଵ ≡ 𝐹 mod deg 𝑛 + 1 for all 𝑛 ≥ 1. (4.31)

Let 𝐹ଵ = 𝐿. Because of our assumptions on 𝑓ଵ, 𝑓ଶ and 𝐿,

𝑓ଵ ∘ 𝐹ଵ ≡ 𝐹
ఝ
ଵ ∘ 𝑓ଶ mod deg 2. (4.32)

Assume that 𝑛 ≥ 1 and we have found a polynomial 𝐹 ot total degree ≤ 𝑛 in 𝒪[𝑋ଵ, … , 𝑋]

satisfying

𝑓ଵ ∘ 𝐹 ≡ 𝐹
ఝ
 ∘ 𝑓ଶ mod deg 𝑛 + 1. (4.33)

Let 𝐻ାଵ be a homogeneous polynomial, which is of degree 𝑛 + 1 and also a member of

𝒪[[𝑋ଵ, … , 𝑋]] and let

𝐹ାଵ = 𝐹 + 𝐻ାଵ. (4.34)
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So 𝐹ାଵ is a polynomial of total degree ≤ 𝑛 + 1 in 𝒪[𝑋ଵ, … , 𝑋] satisfying

𝐹ାଵ ≡ 𝐹 mod deg 𝑛 + 1. (4.35)

The existence of 𝐹 depends on the existence a particular unique 𝐻ାଵ such that 𝐹ାଵ above

satisfies

𝑓ଵ ∘ 𝐹ାଵ ≡ 𝐹
ఝ
ାଵ ∘ 𝑓ଶ mod deg 𝑛 + 2. (4.36)

Let 𝐺ାଵ = 𝑓ଵ ∘ 𝐹 − 𝐹
ఝ
 ∘ 𝑓ଶ. By the congruence 4.33, 𝐺ାଵ ≡ 0 mod deg 𝑛 + 1. Since

𝑓ଵ ≡ 𝜋ଵ𝑋 and also 𝑓ଶ ≡ 𝜋ଶ𝑋 mod deg 2,

𝑓ଵ ∘ 𝐹ାଵ = 𝑓ଵ(𝐹 + 𝐻ାଵ) ≡ 𝑓ଵ ∘ 𝐹 + 𝜋ଵ𝐻ାଵ mod deg 𝑛 + 2, (4.37)

𝐹
ఝ
ାଵ ∘ 𝑓ଶ = 𝐹

ఝ
 ∘ 𝑓ଶ + 𝐻

ఝ
ାଵ ∘ 𝑓ଶ ≡ 𝐹

ఝ
 ∘ 𝑓ଶ + 𝜋ାଵଶ 𝐻

ఝ
ାଵ mod deg 𝑛 + 2. (4.38)

So the congruence 4.36 is equivalent to the following congruence:

𝐺ାଵ + 𝜋ଵ𝐻ାଵ − 𝜋ାଵଶ 𝐻
ఝ
ାଵ ≡ 0 mod deg 𝑛 + 2. (4.39)

But, since 𝑓ଵ ≡ 𝑓ଶ ≡ 𝑋 mod 𝔭 and 𝛼ఝ ≡ 𝛼 mod 𝔭 for 𝛼 ∈ 𝒪, if we consider the

definition of 𝐺ାଵ, we will see that

𝐺ାଵ ≡ 𝐹(𝑋ଵ, … , 𝑋)
 − 𝐹

ఝ
 (𝑋


ଵ , … , 𝑋


) ≡ 0 mod 𝔭. (4.40)

Now consider a monomial 𝑋 = 𝑋
భ
ଵ ⋯𝑋


 of degree 𝑛+1 in 𝒪[𝑋ଵ, … , 𝑋]. The coefficient

of 𝑋 in 𝐺ାଵ should be an element of the form −𝜋ଵ𝛽, 𝛽 ∈ 𝒪. Let 𝛼 be the coefficient of 𝑋


in 𝐻ାଵ. Then the coefficient of the same 𝑋
 in 𝜋ଵ𝐻ାଵ−𝜋

ାଵ
ଶ 𝐻

ఝ
ାଵ is 𝜋ଵ𝛼−𝜋

ାଵ
ଶ 𝛼ఝ. Since

𝐺ାଵ ≡ 0 mod deg 𝑛 + 1, the congruence 4.39 holds if and only if 𝛼 satisfy the following:

− 𝜋ଵ𝛽 + 𝜋ଵ𝛼 − 𝜋ାଵଶ 𝛼ఝ = 0, (4.41)

for every monomial 𝑋 of degree 𝑛 + 1. Let 𝛾 = 𝜋ିଵଵ 𝜋ାଵଶ . We see that 𝜇(𝛾) = 𝑛 ≥ 1.

Then the equation above for 𝛼 can be written as

𝛼 − 𝛾𝛼ఝ = 𝛽, (4.42)
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where 𝛽 and 𝛾 are known quantities. Since 𝜇(𝛾) ≥ 1, this implies that the following series

is convergent in 𝒪 and satisfies the equality 4.42:

𝛼 = 𝛽 + 𝛾𝛽ఝ + 𝛾ଵାఝ𝛽ఝ
మ

+… (4.43)

To prove the uniqueness of the solution, assume that 𝛼ଵ and 𝛼ଶ are two solutions, then

𝛼ଵ − 𝛼ଶ = 𝛾(𝛼
ఝ
ଵ − 𝛼

ఝ
ଶ ). (4.44)

On the other hand,

𝜇(𝛼ଵ − 𝛼ଶ) = 𝜇(𝜑(𝛼ଵ − 𝛼ଶ)) = 𝜇(𝛼
ఝ
ଵ − 𝛼

ఝ
ଶ ), (4.45)

so that 𝜇(𝛼ଵ − 𝛼ଶ) = +∞. That means 𝛼ଵ = 𝛼ଶ. So we proved there exists a unique 𝐻ାଵ

satisfying the congruence 4.39 and𝐹ାଵ satisfying the congruence 4.36. Starting from𝐹ଵ = 𝐿,

we can construct a sequence of polynomials 𝐹 in 𝒪[[𝑋ଵ, … , 𝑋]] such that deg 𝐹 ≤ 𝑛 and

𝑓ଵ ∘ 𝐹 ≡ 𝐹
ఝ
 ∘ 𝑓ଶ, 𝐹ାଵ ≡ 𝐹 mod deg 𝑛 + 1 for all 𝑛 ≥ 1. (4.46)

The second congruence tells us that 𝐹 converges to a power series 𝐹 in 𝒪[[𝑋ଵ, … , 𝑋]] such

that 𝐹 ≡ 𝐹 mod deg 𝑛 + 1 for all 𝑛 ≥ 1. So we see that this power series 𝐹 satisfies the

following:

𝐹 ≡ 𝐹ଵ = 𝐿 mod deg 2, 𝑓ଵ ∘ 𝐹 = 𝐹ఝ ∘ 𝑓ଶ. (4.47)

Nowwe prove the uniqueness of𝐹. Let𝐹ᇱ be any power series satisfying the above-mentioned

conditions. Then, for 𝑛 ≥ 1, let 𝐹ᇱ represent the the sum which is composed of the terms of

degree≤ 𝑛 in the power series 𝐹ᇱ and let 𝐹ᇱାଵ = 𝐹ᇱ+𝐻
ᇱ
ାଵ. Since 𝐹

ᇱ ≡ 𝐿mod deg 2, we see

𝐹ᇱଵ = 𝐿 = 𝐹ଵ. But we proved that 𝐻ାଵ is unique so 𝐹
ᇱ
 = 𝐹 for all 𝑛 ≤ 1. Then 𝐹ᇱ = 𝐹.

Remark. In the proof above, we implicitly used the continuity property of formal power series

composition. For the proof, refer to [17].



35

5. FORMAL GROUPS

In this chapter, we will discuss formal groups and then we will introduce the Lubin-Tate

formal groups which will be the main tool in the following chapters. The main references for

this chapter are [8], [15], [6] and [3].

5.1. BASIC DEFINITIONS

Definition 5.1.1. Let 𝑅 be a commutative ring with 1 ≠ 0 and 𝑋, 𝑌, and 𝑍 indeterminates. A

power series 𝐹(𝑋, 𝑌) in 𝑅[[𝑋, 𝑌]] is called a formal group over 𝑅 if it satisfies the following

conditions:

F1. 𝐹(𝑋, 𝑌) ≡ 𝑋 + 𝑌 mod deg 2,

F2. 𝐹(𝐹(𝑋, 𝑌), 𝑍) = 𝐹(𝑋, 𝐹(𝑌, 𝑍)),

F3. 𝐹(𝑋, 𝑌) = 𝐹(𝑌, 𝑋).

By F1, 𝐹(0, 0) = 0, so we do not encounter any convergence issues in F2.

Let 𝑌 = 𝑍 = 0 in F1 and F2. So we see that

𝐹(𝑋, 0) ≡ 𝑋 mod deg 2, 𝐹(𝐹(𝑋, 0), 0) = 𝐹(𝑋, 0). (5.1)

First equivalence in 5.1 tells us that 𝑓(𝑋) ≔ 𝐹(𝑋, 0) has an inverse 𝑓ିଵ in 𝑀 = 𝑋𝑅[[𝑋]]

(consider the first coefficient: 1 ⋅𝑋). So if we apply 𝑓ିଵ to the second equality in 5.1, we get

𝐹(𝑋, 0) = 𝑋. Similarly, we also get 𝐹(0, 𝑌) = 𝑌. Then,

𝐹(𝑋, 𝑌) = 𝑋 + 𝑌 +

ஶ



, ஹଵ

𝑐𝑋
𝑌, 𝑐 ∈ 𝑅. (5.2)

Note that this implies 𝐹(𝑋, 𝑌) has no terms like 𝑋ଷ or 𝑌ଶ, etc.

There exists a unique power series

𝑖ி(𝑋) = −𝑋 +

ஶ



ୀଶ

𝑏𝑋
, 𝑏 ∈ 𝑅, (5.3)
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such that

𝐹(𝑋, 𝑖ி(𝑋)) = 0. (5.4)

For 𝑓, 𝑔 ∈ 𝑀 = 𝑋𝑅[[𝑋]] define a binary operation +ி on𝑀:

𝑓 +ி 𝑔 = 𝐹(𝑓(𝑋), 𝑔(𝑋)). (5.5)

Note that the addition 𝑓+ி𝑔 belongs to𝑀 and the following proposition easily follows from

the formal group axioms and the equation 5.4.

Proposition 5.1.1. The set𝑀 becomes an Abelian group with respect to the addition 𝑓 +ி 𝑔

and the inverse of 𝑓 is 𝑖ி(𝑓).

We denote this group by𝑀ி.

Let 𝐺(𝑋, 𝑌) be another formal group over 𝑅 and let 𝑓(𝑋) be a power series in𝑀 = 𝑋𝑅[[𝑋]]

such that

𝑓(𝐹(𝑋, 𝑌)) = 𝐺(𝑓(𝑋), 𝑓(𝑌)). (5.6)

We call such 𝑓 a homomorphism from 𝐹 to 𝐺 and write 𝑓 ∶ 𝐹 → 𝐺. In particular, if 𝑓 has

an inverse 𝑓ିଵ in 𝑀, then we can easily see that 𝑓ିଵ is a homomorphism from 𝐺 to 𝐹. In

this case we say 𝑓 is an isomorphism and we write 𝑓 ∶ 𝐹 ≅ 𝐺. From now on, we will write

𝑓 ∘ 𝐹 = 𝐺 ∘ 𝑓 instead of the equation 5.6.

Let 𝐹(𝑋ଵ, … , 𝑋) be any power series in 𝑅[[𝑋ଵ, … , 𝑋]] and 𝑓 ∈ 𝑀 = 𝑋𝑅[[𝑋]] invertible in

𝑀. We define a power series 𝐹(𝑋ଵ, … , 𝑋) in 𝑅[[𝑋ଵ, … , 𝑋]] by

𝐹(𝑋ଵ, … , 𝑋) = 𝑓 ∘ 𝐹 ∘ 𝑓ିଵ = 𝑓(𝐹(𝑓ିଵ(𝑋ଵ), … , 𝑓
ିଵ(𝑋))). (5.7)

We see that if 𝐹(𝑋, 𝑌) is a formal group over 𝑅, then 𝐺 = 𝐹 is also a formal group and

𝑓 ∶ 𝐹 ≅ 𝐺.

We put

Homோ(𝐹, 𝐺) ≔ {𝑓 ∣ 𝑓 is a homomorphism from 𝐹 to 𝐺}. (5.8)

and in particular we set

Endோ(𝐹) ≔ Homோ(𝐹, 𝐹). (5.9)

Example 13. If 𝐹(𝑋, 𝑌) = 𝑋 + 𝑌 + 𝑋𝑌, then 𝑓(𝑇) = (1 + 𝑇) − 1 is an endomorphism
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where 𝑝 is a prime number.

Concerning the set Homோ(𝐹, 𝐺), we have the followng lemma:

Lemma 5.1.2. Homோ(𝐹, 𝐺) is a subgroup of the Abelian group 𝑀ீ and Endோ(𝐹) is a ring

with respect to the addition 𝑓 +ி 𝑔 and the multiplication 𝑓 ∘ 𝑔 defined by the power series

composition where 𝑓, 𝑔 ∈ Homோ(𝐹, 𝐺).

Proof. Let 𝑓, 𝑔 ∈ Homோ(𝐹, 𝐺) and ℎ = 𝑓 +ீ 𝑔. Then,

ℎ ∘ 𝐹 = 𝑓 ∘ 𝐹 +ீ 𝑔 ∘ 𝐹 = 𝐺 ∘ 𝑓 +ீ 𝐺 ∘ 𝑔 = 𝐺(𝐺 ∘ 𝑓, 𝐺 ∘ 𝑔). (5.10)

Using the formal group axioms, we get

𝐺(𝐺 ∘ 𝑓, 𝐺 ∘ 𝑔) = 𝐺(𝐺(𝑓(𝑋), 𝑔(𝑋)), 𝐺(𝑓(𝑌), 𝑔(𝑌))) (5.11)

= 𝐺((𝑓 +ீ 𝑔)(𝑋), (𝑓 +ீ 𝑔)(𝑌)) (5.12)

= 𝐺 ∘ ℎ. (5.13)

So Homோ(𝐹, 𝐺) is closed under addition. Consider the following equality:

𝐺(𝐺(𝑋, 𝑌), 𝐺(𝑖ீ(𝑋), 𝑖ீ(𝑌)) = 𝐺(𝐺(𝑋, 𝑖ீ(𝑋)), 𝐺(𝑌, 𝑖ீ(𝑌)) = 𝐺(0, 0) = 0. (5.14)

This tells us that 𝐺 ∘ 𝑖ீ = 𝑖ீ ∘ 𝐺 (by the formal group axioms). So,

𝑖ீ(𝑓) ∘ 𝐹 = 𝑖ீ ∘ 𝑓 ∘ 𝐹 = 𝑖ீ ∘ 𝐺 ∘ 𝑓 = 𝐺 ∘ 𝑖ீ ∘ 𝑓 = 𝐺 ∘ 𝑖ீ(𝑓). (5.15)

Now it has been shown that 𝑖ீ(𝑓) ∈ Homோ(𝐹, 𝐺). Clearly 0 ∈ Homோ(𝐹, 𝐺). We have proved

that Homோ(𝐹, 𝐺) is a subgroup of𝑀ீ.

For the second part of the lemma, we will show that the distributive law holds in Endோ(𝐹),

since the rest easily follows from the axioms and the definitions.

Let 𝑓 ∈ Endோ(𝐹) and 𝑔, ℎ ∈ 𝑀ி. Then,

𝑓 ∘ (𝑔 +ி ℎ) = 𝑓(𝐹(𝑔(𝑋), ℎ(𝑋))) = 𝐹(𝑓(𝑔(𝑋), 𝑓(ℎ(𝑋))) = 𝑓 ∘ 𝑔 +ி 𝑓 ∘ ℎ. (5.16)
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5.2. LUBIN-TATE FORMAL GROUPS 𝐹(𝑋, 𝑌)

Let 𝑘 be a local field, 𝜅 = 𝒪/𝔭 = 𝔽 its residue field. Here, the same notation will be

used as in the section 4.2. For a prime 𝜋 of 𝐾, ℱగ ಼
denotes the family of all power series

𝑓(𝑋) in 𝑅[[𝑋]] satisfying

𝑓(𝑋) ≡ 𝜋𝑋 mod deg 2, 𝑓(𝑋) ≡ 𝑋 mod 𝔭. (5.17)

For example, the polynomial 𝜋𝑋 + 𝑋 belongs to ℱగ ಼
. Also, we see that if 𝑓 ∈ ℱగ ಼

, then

𝑓ఝ ∈ ℱఝ(గ ಼ ). The union of the sets ℱగ ಼
for all prime 𝜋’s of 𝐾 is denoted by

ℱ = ራ

గ ಼ is a prime in 

ℱగ ಼
. (5.18)

Theorem 5.2.1. For each 𝑓 ∈ ℱగ, there exists a unique formal group 𝐹(𝑋, 𝑌) over 𝑅 such

that 𝑓 ∈ Homோ(𝐹, 𝐹
ఝ
 ): 𝑓 ∘ 𝐹 = 𝐹

ఝ
 ∘ 𝑓. Here, 𝐹’s are called Lubin-Tate formal groups.

Proof. Take 𝜋ଵ = 𝜋ଶ = 𝜋, 𝑓ଵ = 𝑓ଶ = 𝑓, 𝐿(𝑋, 𝑌) = 𝑋 + 𝑌 and 𝑚 = 2 in Theorem 4.2.2.

Then there exists a unique power series 𝐹(𝑋, 𝑌) in 𝑅[[𝑋, 𝑌]] such that

𝐹(𝑋, 𝑌) ≡ 𝑋 + 𝑌 mod deg 2, (5.19)

𝑓 ∘ 𝐹 = 𝐹ఝ ∘ 𝑓. (5.20)

We verify that 𝐹 satisfies the formal group axioms F2 and F3.

Associativity:

Let

𝐹ଵ(𝑋, 𝑌, 𝑍) = 𝐹(𝐹(𝑋, 𝑌), 𝑍), (5.21)

𝐹ଶ(𝑋, 𝑌, 𝑍) = 𝐹(𝑋, 𝐹(𝑌, 𝑍)). (5.22)

By the equations 5.19 and 5.20, we get

𝐹ଵ(𝑋, 𝑌, 𝑍) ≡ 𝐹(𝑋, 𝑌) + 𝑍 ≡ 𝑋 + 𝑌 + 𝑍 mod deg 2, (5.23)
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𝑓 ∘ 𝐹ଵ = 𝐹ఝ(𝑓(𝐹(𝑋, 𝑌)), 𝑓(𝑍)) = 𝐹ఝ(𝐹ఝ(𝑓(𝑋), 𝑓(𝑌)), 𝑓(𝑍)) = 𝐹
ఝ
ଵ ∘ 𝑓. (5.24)

By the similar argument,

𝐹ଶ(𝑋, 𝑌, 𝑍) ≡ 𝑋 + 𝑌 + 𝑍 mod deg 2, 𝑓 ∘ 𝐹ଶ = 𝐹
ఝ
ଶ ∘ 𝑓. (5.25)

Now, if we take 𝐿(𝑋, 𝑌, 𝑍) = 𝑋 + 𝑌 + 𝑍, the uniqueness part of Theorem 4.2.2 implies

𝐹ଵ = 𝐹ଶ; that is the associative property for formal groups holds:

𝐹(𝐹(𝑋, 𝑌), 𝑍) = 𝐹(𝑋, 𝐹(𝑌, 𝑍)). (5.26)

Commutativity:

To prove the commutativity, let 𝐺(𝑋, 𝑌) = 𝐹(𝑌, 𝑋). Then we see,

𝐺(𝑋, 𝑌) ≡ 𝑋 + 𝑌 mod deg 2, 𝑓 ∘ 𝐺 = 𝐺ఝ ∘ 𝑓. (5.27)

Since 𝐹(𝑋, 𝑌) is unique by the Theorem 4.2.2, we obtain 𝐹 = 𝐺; that is 𝐹(𝑋, 𝑌) = 𝐹(𝑌, 𝑋).

We have proved that 𝐹(𝑋, 𝑌) is a formal grup (over 𝑅). It can be easily shown that 𝐹ఝ is a

formal group (over 𝑅). Write 𝐹 for 𝐹. So 𝐹 is the unique formal group over 𝑅 satisfying

𝑓 ∘ 𝐹 = 𝐹
ఝ
 ∘ 𝑓, meaning that 𝑓 ∈ Homோ(𝐹, 𝐹

ఝ
 ).

Remark. Observe that the equality 𝑓 ∘ 𝐹 = 𝐹
ఝ
 ∘ 𝑓 implies 𝑓ఝ ∘ 𝐹

ఝ
 = (𝐹

ఝ
 )

ఝ ∘ 𝑓ఝ. But it

means that

𝐹
ఝ
 = 𝐹ക , where 𝑓ఝ ∈ ℱఝ(గ). (5.28)

Let 𝑓 ∈ ℱ and 𝑎 ∈ 𝒪 of 𝑘. If we apply Theorem 4.2.2 for 𝐿(𝑋) = 𝑎𝑋, we see there is a

unique power series 𝜓(𝑋) in 𝑅[[𝑋]], which satisfies the following conditions:

𝜓(𝑋) ≡ 𝑎𝑋 mod deg 2, 𝑓 ∘ 𝜓 = 𝜓ఝ ∘ 𝑓. (5.29)

We denote this power series 𝜓(𝑋) by [𝑎].

Theorem 5.2.2. For each 𝑎 ∈ 𝒪, [𝑎] ∈ Endோ(𝐹). Moreover the map 𝑎 ↦ [𝑎] is injective
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and it is a ring homomorphism:

𝜉 ∶ 𝒪 → Endோ(𝐹). (5.30)

Proof. Let 𝜓 ≔ [𝑎]. Consider the following equations:

𝑓 ∘ 𝜓 ∘ 𝐹 = 𝜓ఝ ∘ 𝑓 ∘ 𝐹 = 𝜓ఝ ∘ 𝐹
ఝ
 ∘ 𝑓 = (𝜓 ∘ 𝐹)

ఝ ∘ 𝑓, (5.31)

𝑓 ∘ 𝐹 ∘ 𝜓 = 𝐹
ఝ
 ∘ 𝑓 ∘ 𝜓 = 𝐹

ఝ
 ∘ 𝜓ఝ ∘ 𝑓 = (𝐹 ∘ 𝜓)

ఝ ∘ 𝑓, (5.32)

𝜓 ∘ 𝐹 ≡ 𝐹 ∘ 𝜓 ≡ 𝑎(𝑋 + 𝑌) mod deg 2. (5.33)

So, by 5.31, 5.32 and 5.33 together with the uniqueness in Theorem 4.2.2,

𝜓 ∘ 𝐹 = 𝐹 ∘ 𝜓, that is, 𝜓 = [𝑎] ∈ Endோ(𝐹). (5.34)

Let 𝑎, 𝑏 ∈ 𝒪. Along the similar lines,

𝑓 ∘ ([𝑎] +ி [𝑏]) = 𝑓 ∘ 𝐹([𝑎], [𝑏]) (5.35)

= 𝐹
ఝ
 (𝑓 ∘ [𝑎], 𝑓 ∘ [𝑏]) (5.36)

= 𝐹ఝ([𝑎]
ఝ
 ∘ 𝑓, [𝑏]

ఝ
 ∘ 𝑓) (5.37)

= ([𝑎] +ி [𝑏])
ఝ ∘ 𝑓. (5.38)

Also we have

[𝑎] +ி [𝑏] ≡ [𝑎 + 𝑏] ≡ (𝑎 + 𝑏)𝑋 mod deg 2. (5.39)

Hence we see [𝑎] +ி [𝑏] = [𝑎 + 𝑏]. Similarly we get [𝑎] ∘ [𝑏] = [𝑎𝑏]. So we

have proved that 𝑎 ↦ [𝑎] defines a ring homomorphism 𝜉 ∶ 𝒪 → Endோ(𝐹). This

homomorphism is injective because 𝑎 depends on [𝑎] ≡ 𝑎𝑋 mod deg 2.

Take two primes 𝜋 and 𝜋ᇱ in 𝐾 and let 𝑓 ∈ ℱగ, 𝑓
ᇱ ∈ ℱగᇲ. Recall that 𝜋

ᇱ = 𝜋𝜉, 𝜉 ∈ 𝑈(𝐾). By

Lemma 4.2.1, ∃𝜂 ∈ 𝑈(𝐾) satisfying 𝜉 = 𝜂ఝିଵ. Let 𝐿(𝑋) = 𝜂𝑋. Then 𝜋ᇱ𝐿(𝑋) = 𝜋𝐿ఝ(𝑋).

So, applying Theorem 4.2.2 for 𝑓ଵ = 𝑓ᇱ, 𝑓ଶ = 𝑓, 𝜋ଵ = 𝜋ᇱ, 𝜋ଶ = 𝜋, 𝐿(𝑋) = 𝜂𝑋, we can
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conclude that, in 𝒪[[𝑋]], ∃!𝜃(𝑋) such that

𝜃(𝑋) ≡ 𝜂𝑋 mod deg 2, 𝑓ᇱ ∘ 𝜃 = 𝜃ఝ ∘ 𝑓. (5.40)

Also, since 𝜂 ∈ 𝑈(𝐾), 𝜃(𝑋) is invertible in𝑀 = 𝑋𝒪[[𝑋]].

Theorem 5.2.3. The power series 𝜃(𝑋) has the following properties:

(i) 𝜃 ∶ 𝐹 ≅ 𝐹ᇲ , i.e., 𝐹
ఏ
 = 𝐹ᇲ,

(ii) [𝑎]ఏ = [𝑎]ᇲ for 𝑎 ∈ 𝒪.

Proof. To prove (i) consider the following relationships:

𝑓ᇱ ∘ 𝜃 ∘ 𝐹 = 𝜃ఝ ∘ 𝑓 ∘ 𝐹 = 𝜃ఝ ∘ 𝐹
ఝ
 ∘ 𝑓 = (𝜃 ∘ 𝐹)

ఝ ∘ 𝑓, (5.41)

𝑓ᇱ ∘ 𝐹ᇲ ∘ 𝜃 = 𝐹
ఝ

ᇲ ∘ 𝑓
ᇱ ∘ 𝜃 = 𝐹

ఝ

ᇲ ∘ 𝜃
ఝ ∘ 𝑓 = (𝐹ᇲ ∘ 𝜃)

ఝ ∘ 𝑓, (5.42)

𝜃 ∘ 𝐹 ≡ 𝐹 ∘ 𝜃 ≡ 𝜂(𝑋 + 𝑌) mod deg 2. (5.43)

If we use the uniqueness property in Theorem 4.2.2 with 𝐿(𝑋, 𝑌) = 𝜂(𝑋 + 𝑌), we see that

𝜃 ∘ 𝐹 = 𝐹ᇲ ∘ 𝜃, i.e., 𝐹
ఏ
 = 𝐹ᇲ . (5.44)

This concludes the proof for (i). The proof for (ii) is similar.

Theorem 5.2.3 tells us that formal groups 𝐹’s over 𝒪 are isomorphic to each other for all

power series 𝑓 in the family ℱ.

Example 14. Let 𝑘 = ℚ and 𝜋 = 𝑝. Then, 𝑓(𝑋) = (1 + 𝑋) − 1 ∈ ℱ. One can directly

show that 𝐹(𝑋, 𝑌) = 𝐹 = 𝑋 + 𝑌 + 𝑋𝑌. For any 𝑎 ∈ ℤ define

(1 + 𝑋) = 

ஹ

ቆ
𝑎

𝑚
ቇ𝑋, ቆ

𝑎

𝑚
ቇ =

𝑎(𝑎 − 1)⋯ (𝑎 −𝑚 + 1)

𝑚(𝑚 − 1)⋯1
. (5.45)

It can be shown ൫



൯ ∈ ℤ. We claim that

[𝑎] = (1 + 𝑋) − 1. (5.46)
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To prove this, note that (1 + 𝑋) − 1 = 𝑎𝑋 + ... and recall that 𝜑| = id. Also,

𝑓 ∘ ((1 + 𝑋) − 1) = (1 + 𝑋) − 1 = ((1 + 𝑋) − 1) ∘ 𝑓 (5.47)

holds when 𝑎 is an integer, which (by continuity) implies that it holds for all 𝑎 ∈ ℤ.
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6. THE MAIN THEOREMS

The main references for this chapter are [8], [15], [9] and [2].

Let 𝑘 be a local field. Fix an algebraic closure 𝑘ೌ of 𝑘. Let 𝑘 denote the maximal Abelian

subextension in 𝑘ೌ over 𝑘, which is the compositum of all finite Abelian extension over 𝑘.

Abelian local class field theory for 𝑘 [2] states that a unique group homomorphism exists:

𝐴𝑟𝑡 ∶ 𝑘
× → Gal(𝑘/𝑘), (6.1)

which is called the local Artin map of 𝑘 characterized by two properties below:

(i) For a prime 𝜋 ∈ 𝑘, 𝐴𝑟𝑡(𝜋)|ೠೝ = 𝜑, where 𝜑 is the Frobenius automorphism of

𝑘௨.

(ii) For each finite Abelian extension 𝑘ᇱ over 𝑘, Art(𝑁(𝑘
ᇱ/𝑘)) ∣ᇲ= 1.

In this chapter, we have three objectives:

(i) For a fixed prime element𝜋 ∈ 𝑘, wewill construct amaximal totally ramified extension

𝑘గ/𝑘 in 𝑘
.

(ii) We will define a map 𝜌 ∶ 𝑘
× → Gal(𝑘/𝑘).

(iii) We will show that this map 𝜌 is the local Artin map and we will prove 𝑘
 = 𝑘గ𝑘௨

using the local Artin map .

6.1. 𝒪-MODULES𝑊


In this section, we keep the same terminology and assumptions as in the section 3.6 and as in

the sections of the Chapter 5. For a local field 𝑘, we will define an 𝒪-module structure on

𝔪 ≔ 𝔭ೌ and using these modules, we will construct certain finite Galois extensions of 𝑘.

As before, let 𝐾 denote the completion of 𝑘௨(= 𝐾) and let 𝐹(𝑋, 𝑌) be the formal group

over 𝑅 = 𝒪 for an 𝑓 ∈ ℱ. For 𝛼, 𝛽 ∈ 𝔭ೌ and for any 𝑎 ∈ 𝒪, define

𝛼 + 𝛽 = 𝐹(𝛼, 𝛽), 𝑎 ⋅ 𝛼 = [𝑎](𝛼). (6.2)
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Here we see that 𝐹(𝛼, 𝛽) and [𝑎](𝛼) ∈ 𝒪. Also, since 𝐹(𝑋, 𝑌) ≡ 0 mod deg 1 and

[𝑎](𝑋) ≡ 0 mod deg 1 by definition, we get

𝛼 + 𝛽, 𝑎 ⋅ 𝛼 ∈ 𝔭ೌ (6.3)

for 𝛼, 𝛽 ∈ 𝔭ೌ, 𝑎 ∈ 𝒪.

The set 𝔭ೌ can be seen to be an Abelian group, the operation of which is the adition +

defined above. In this group, the inverse of an element 𝛼 is 𝑖ி(𝛼) (consider the equation

5.4). It can be shown that the operations in 6.2 defines an 𝒪-module structure on 𝔭ೌ. For

example:

Since we know that [𝑎] ∘ 𝐹 = 𝐹 ∘ [𝑎] (the equality 5.34),

𝑎 ⋅ (𝛼 + 𝛽) = [𝑎](𝐹(𝛼, 𝛽)) = 𝐹([𝑎](𝛼), [𝑎](𝛽)) = (𝑎 ⋅ 𝛼) + (𝑎 ⋅ 𝛽). (6.4)

The other module axioms can be proved similarly. If we define this 𝒪-module structure on

𝔭ೌ, we denote 𝔭ೌ by 𝔪.

Now, for any integer 𝑛 ≥ 1, a fixed 𝑓 and 𝛼 ∈ 𝔪 we define:

𝔭ାଵ ⋅ 𝛼 = {𝑎 ⋅ 𝛼 ∣ 𝑎 ∈ 𝔭
ାଵ}, (6.5)

𝑊
 = {𝛼 ∈ 𝔪 ∣ 𝔭

ାଵ ⋅ 𝛼 = 0}. (6.6)

For 𝑛 ≥ −1,𝑊
 ’s constitute a nested sequence of 𝒪-submodules of 𝔪:

{0} = 𝑊ିଵ
 ⊆ 𝑊

 ⊆ ⋯ ⊆ 𝑊
 ⊆ ⋯ ⊆ 𝑊, (6.7)

where

𝑊 =

ஶ

ራ

ஹିଵ

𝑊
 . (6.8)

Now take 𝑓ᇱ inℱ. By Theorem 5.2.3, we know that there exists an invertible 𝜃(𝑋) ∈ 𝑋𝑅[[𝑋]]

satisfying 𝐹ఏ = 𝐹ᇲ and [𝑎]
ఏ
 = [𝑎]ᇲ (𝑎 ∈ 𝒪). We can show that 𝜃 defines an 𝒪-module
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isomorphism:

𝜃 ∶ 𝔪 ≅ 𝔪ᇲ . (6.9)

It is clear that 𝜃(𝛼) ∈ 𝔪ᇲ where 𝛼 ∈ 𝔪, since 𝜃 ≡ 0 mod deg 1. Also observe that

𝜃(𝛼 + 𝛽) = 𝜃(𝐹(𝛼, 𝛽)) = 𝐹ᇲ(𝜃(𝛼), 𝜃(𝛽)) = 𝜃(𝛼) +ᇲ 𝜃(𝛽) (6.10)

The other properties of the isomorphism can be proved similarly. The power series 𝜃 also

induces the following 𝒪-module isomorphisms:

𝜃ᇱ ∶ 𝑊
 ≅ 𝑊

ᇲ , 𝜃ᇳ ∶ 𝑊 ≅ 𝑊ᇲ , 𝑛 ≥ −1. (6.11)

Now we will explicitly describe the elements of𝑊
 ’s.

Lemma 6.1.1. Define

𝑓 ≔ 𝑓ఝ


, 𝑔 ≔ 𝑓 ∘ 𝑓ିଵ ∘ ⋯ ∘ 𝑓, 𝑔ିଵ(𝑋) = 𝑋 (6.12)

for 𝑓 ∈ ℱ and 𝑖 ≥ 0. Then

𝑊
 = {𝛼 ∈ 𝔪 ∣ 𝑔(𝛼) = 0}, for 𝑛 ≥ −1. (6.13)

Proof. The lemma is true for 𝑛 = −1 since 𝑊ିଵ
 = {0} and 𝑔ିଵ(𝑋) = 𝑋. Now let 𝑛 ≥ 0

and take 𝑓ᇱ and 𝜃 as above. Then we know that 𝑓ᇱ ∘ 𝜃 = 𝜃ఝ ∘ 𝑓. We have the following:

𝑓ᇱ ∘ 𝜃
ఝ

= 𝜃ఝ
శభ

∘ 𝑓, 𝑓ᇱ = 𝜃ఝ
శభ

∘ 𝑓 ∘ 𝜃
ିఝ

, 𝑖 ≥ 0, (6.14)

𝑔ᇱ = 𝑓ᇱ ∘ 𝑓
ᇱ
ିଵ ∘ ⋯ ∘ 𝑓ᇱ = 𝜃ఝ

శభ

∘ 𝑔 ∘ 𝜃
ିଵ, 𝑛 ≥ 0. (6.15)

The last two equations imply that if the lemma is true for 𝑓, then it also true for 𝑓ᇱ. To see

this, let 𝛽 ∈ 𝑊
ᇲ and consider 𝜃

ିଵ(𝛽) = 𝛼. Then

𝑔ᇱ(𝛽) = 𝜃ఝ
శభ

∘ 𝑔 ∘ 𝜃
ିଵ(𝛽) = 𝜃ఝ

శభ

∘ 𝑔(𝛼) = 0. (6.16)
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Let 𝜋 ∈ 𝑘. We know that 𝐾/𝑘 is an unramified extension so 𝜋 ∈ 𝐾. Hence

𝑓(𝑋) = 𝜋𝑋 + 𝑋 ∈ ℱ. (6.17)

Observe that 𝜋 ∈ 𝒪, 𝑓 ≡ 𝜋𝑋 mod deg 2 and 𝑓 ∘ 𝑓 = 𝑓ఝ ∘ 𝑓. By the equation in 5.29, this

implies

𝑓 = [𝜋], 𝑓 = 𝑓, 𝑔 = 𝑓 ∘ ⋯ ∘ 𝑓ᇦᇧᇧᇧᇧᇨ
n+1 many

= [𝜋ାଵ ]. (6.18)

Since 𝔭ାଵ = 𝒪𝜋
ାଵ
 , we have the following:

𝑊
 = {𝛼 ∈ 𝔪 ∣ 𝔭

ାଵ
 ⋅ 𝛼 = 0} = {𝛼 ∈ 𝔪 ∣ 𝑔(𝛼) = 0}. (6.19)

Now we have proved that the lemma is valid for 𝑓(𝑋). So it is valid for any 𝑓 ∈ ℱ.

Take an integer𝑚 ≥ 1 and consider 𝑘ᇱ ≔ 𝑘௨ (the unique unramified extension of degree𝑚

over 𝑘 in 𝑘).

Take a prime 𝜋ᇲ in 𝑘
ᇱ. Then the polynomial 𝑓(𝑋) = 𝜋ᇲ𝑋 + 𝑋 ∈ 𝒪ᇲ[[𝑋]] and it is also a

member of ℱ. Since 𝑘ᇱ/𝑘 is a complete extension, the following hold:

𝐹(𝑋, 𝑌) ∈ 𝒪ᇲ[[𝑋, 𝑌]], [𝑎](𝑋) ∈ 𝒪ᇲ[[𝑋]], for 𝑎 ∈ 𝒪. (6.20)

For 𝑛 ≥ 0, define

ℎ(𝑋) = 𝜋
ఝ

ᇲ + [𝑔ିଵ(𝑋)]
ିଵ. (6.21)

Then we see that

𝑔 = 𝑓 ∘ 𝑔ିଵ = 𝑓ఝ


∘ 𝑔ିଵ = ℎ(𝑋)𝑔ିଵ(𝑋) (6.22)

and

𝑔(𝑋) = ℎ(𝑋)ℎିଵ(𝑋)⋯ℎ(𝑋)𝑋. (6.23)

Now we will study the properties of ℎ(𝑋) and 𝑔(𝑋).

Lemma 6.1.2. The following hold for ℎ(𝑋) and 𝑔(𝑋):

(i) The polynomial ℎ(𝑋) is a monic separable irreducible polynomial of degree (𝑞−1)𝑞
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in 𝒪ᇲ[𝑋] and it is also irreducible in 𝐾[𝑋].

(ii) The polynomial 𝑔(𝑋) is a monic separable polynomial of degree 𝑞ାଵ in 𝒪ᇲ[𝑋]. The

set 𝑊
 consists of all roots of 𝑔(𝑋) in 𝑘

. The order of 𝑊
 is equal to 𝑞ାଵ and

hence the extension 𝑘ᇱ(𝑊
 )/k’ is a finite Galois extension over 𝑘ᇱ.

(iii) For 𝑛 ≥ 0, let ℎ(𝛼) = 0, where 𝛼 ∈ 𝑘
. Then following hold:

• 𝛼 ∈ 𝑊

 , 𝛼 ∉ 𝑊

ିଵ
 , (𝑞 − 1)𝑞 = [𝑘ᇱ(𝛼) ∶ 𝑘

ᇱ] and

• 𝜋
ఝ

ᇲ = 𝑁(−𝛼) ∈ 𝑁(𝑘
ᇱ(𝛼)/𝑘

ᇱ).

Proof. By definition, 𝑔 = 𝑓 ∘ 𝑓ିଵ ∘ ⋯ ∘ 𝑓. So,

𝑔(𝑋) = 𝑎𝑋 +⋯+ 𝑋
శభ

≡ 𝑋
శభ

mod 𝔭ᇱ, where 𝑎 = 𝜋ଵାఝା⋯ାఝ


, (6.24)

ℎ(𝑋) = 𝜋ఝ


+ (𝑎ିଵ𝑋 +⋯+ 𝑋


)ିଵ ≡ 𝑋(ିଵ)


mod 𝔭ᇱ. (6.25)

From the equations above, we see that 𝑔(𝑋) and ℎ(𝑋) are monic polynomials in 𝒪ᇲ[𝑋]

of degrees 𝑞ାଵ and (𝑞 − 1)𝑞, respectively. Since 𝜋ఝ


is a prime in 𝐾 (remember that

automorphisms do not change the valution of an element), the polynomial ℎ(𝑋) is Eisenstein

in 𝒪[𝑋]. This implies that ℎ(𝑋) is irreducible in 𝐾[𝑋]. Now suppose that 𝑘 has char 𝑝 so

that 𝑞 is a power of 𝑝. Note that

𝑑ℎ

𝑑𝑋
= (𝑞 − 1)𝑎

ିଵ
ିଵ𝑋

ିଶ +⋯ , 𝑎ିଵ = 𝜋ଵାఝା⋯ାఝ
షభ

. (6.26)

Here
ௗ

ௗ
denotes formal derivative. Since (𝑞 − 1)𝑎

ିଵ
ିଵ ≠ 0, ℎ(𝑋) is separable. Also,

since ℎ(𝑋) is irreducible, ℎ(𝑋) ≠ ℎ(𝑋) for 𝑖 ≠ 𝑗. Hence 𝑔(𝑋) = ℎ(𝑋)ℎିଵ⋯ℎ(𝑋)𝑋

is a separable polynomial. We know that if 𝛼 ∈ 𝑊
 , then 𝑔(𝛼) = 0 (clearly 𝛼 ∈ 𝑘.

Conversely, assume that 𝑔(𝛼) = 0, where 𝛼 ∈ 𝑘. Then by the equation 6.24, 𝜇(𝛼) > 0,

so 𝛼 ∈ 𝔪 ∩ 𝑘. This means that 𝑊
 consists of the set of all roots of 𝑔(𝑋), which is

a separable polynomial, in 𝑘. The order of𝑊
 is 𝑞ାଵ and 𝑘ᇱ(𝑊

 )/𝑘
ᇱ is a finite Galois

extension. Nowwe have proved (i) and (ii). For the first part of (iii), consider ℎ(𝑋) ≠ ℎ(𝑋)

for 𝑖 ≠ 𝑗. If 𝛼 ∈ 𝑊
ିଵ
 , then it would be a root of some ℎ(𝑋), 0 ≤ 𝑖 ≤ 𝑛 − 1 or 0 which is

a contradiction. The second part of (iii) is the consequence of the fact that the constant term

in ℎ(𝑋) is 𝜋
ఝ

ᇲ .
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Lemma 6.1.3. Let 𝑓 ∈ ℱ ⊆ 𝒪[[𝑋]]. Then the following hold:

(i) Fix an element 𝛼 ∈ 𝑊

 ⧵ 𝑊ିଵ

 for 𝑛 ≥ 0. Then𝑊
 = 𝒪 ⋅ 𝛼 and the map

𝜉 ∶ 𝑎 ↦ 𝑎 ⋅ 𝛼 (6.27)

induces the following isomorphism:

𝒪/𝔭
ାଵ
 ≅ 𝑊

 . (6.28)

(ii) 𝔭 ⋅ 𝑊

 = 𝑊ି

 for 0 ≤ 𝑖 ≤ 𝑛.

Proof. Since ห𝑊
 ห is 𝑞

ାଵ and ห𝑊ିଵ
 ห is 𝑞, there exists an 𝛼 such that 𝛼 ∈ 𝑊


 ⧵ 𝑊ିଵ

 .

It is clear that 𝜉 is an 𝒪-module homomorphism. Also, by definition, 𝔭
ାଵ
 ⋅ 𝛼 = 0 and

𝔭 ⋅ 𝛼 ≠ 0. The kernel contains 𝔭ାଵ but not 𝔭; i.e., it is equal to 𝔭
ାଵ
 for every 𝑛 ≥ 0.

Since we know that [𝒪 ∶ 𝔭
ାଵ
 ] = 𝑞ାଵ,

𝒪/𝔭
ାଵ
 ≅ 𝑊

 and𝑊
 = 𝒪 ⋅ 𝛼. (6.29)

Now we have proved (i). For (ii), let 𝜋 be a prime in 𝑘. So

𝛼 ∈ 𝑊

 ⧵ 𝑊ିଵ

 ⟹ 𝜋 ⋅ 𝛼 ∈ 𝑊
ି
 , 𝜋 ⋅ 𝛼 ∉ 𝑊

ିିଵ
 . (6.30)

So if we apply (i),

𝔭 ⋅ 𝑊

 = 𝜋 ⋅ 𝒪 ⋅ 𝛼 = 𝒪 ⋅ 𝜋

 ⋅ 𝛼 = 𝑊ି
 . (6.31)

Hence the proof is complete.

Let 𝑓 ∈ ℱ. We define

End(𝑊
 ) ≔ the endomorphisms ring of the 𝒪-module𝑊


 ,

Aut(𝑊
 ) ≔ the group of all automorphisms of the 𝒪-module𝑊


 .
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Consider the following map:

𝜉 ∶ 𝑊

 → 𝑊

 , (6.32)

𝛽 ↦ 𝑎 ⋅ 𝛽 = [𝑎](𝛽), (6.33)

where 𝑎 ∈ 𝒪. Since𝑊

 is and 𝒪-submodule, 𝜉 is an endomorphism. If we take 𝑏 ∈ 𝑈,

then 𝜉 becomoes invertible since [𝑏
ିଵ] = [𝑏]ିଵ . So the map 𝑎 ↦ 𝜉 defines the following

homomorphisms for the ring End(𝑊
 ) and the group Aut(𝑊


 ):

𝛼 ∶ 𝒪 → End(𝑊
 ), (6.34)

𝛽 ∶ 𝒰 → Aut(𝑊
 ). (6.35)

Theorem 6.1.4. The homomorphisms 𝛼 and 𝛽 induce the following isomoprhisms:

𝒪/𝔭
ାଵ ≅ End(𝑊

 ), (6.36)

𝒰/𝒰ାଵ ≅ Aut(𝑊
 ), (6.37)

where 𝑛 ≥ 0.

Proof. Take 𝑎 ∈ 𝑊
 ⧵𝑊ିଵ

 . Then we know that𝑊
 = 𝒪 ⋅ 𝑎 by Lemma 6.1.3. We show

that the homomorphism 𝛼 is surjective. Take 𝜉 ∈ End(𝑊
 ). So 𝜉(𝑎) = 𝑏 ⋅ 𝑎 for some

𝑏 ∈ 𝒪. Let 𝑐 ∈ 𝑊

 . By the module axioms,

𝜉(𝑐) = 𝜉(𝑑 ⋅ 𝑎) = 𝑑 ⋅ 𝜉(𝑎) = 𝑑 ⋅ (𝑏 ⋅ 𝑎) = 𝑏 ⋅ (𝑑 ⋅ 𝑎) = 𝑏 ⋅ 𝑐. (6.38)

That means 𝜉 = 𝜉. So the homomorphism 𝛼 is surjective. Since 𝔭ାଵ ⋅ 𝑊

 = 0 and 𝔭 ⋅

𝑊
 = 𝑊

 ≠ 0, the kernel of 𝛼 is 𝔭ାଵ; hence we proved that 𝒪/𝔭
ାଵ ≅ End(𝑊

 ). Since

the unit group of 𝒪/𝔭
ାଵ is isomorphic to 𝒰/𝒰ାଵ, it follows that 𝒰/𝒰ାଵ ≅ Aut(𝑊

 ).
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6.2. EXTENSIONS 𝐿/𝐾

In this section, we will study the extension 𝐾(𝑊
 )/𝐾 and define a natural homomorphism

from 𝒰 to Gal(𝐾(𝑊

 )/𝐾).

Lemma 6.2.1. The extension 𝐾(𝑊
 )/𝐾 is a finite Galois extension over 𝐾 and independent

of 𝑓 in the family ℱ.

Proof. Take 𝑓(𝑋) = 𝜋𝑋+𝑋, where 𝜋 is a prime in 𝑘ᇱ = 𝑘௨. By Lemma 6.1.2, 𝑘
ᇱ(𝑊

 )/𝑘
ᇱ

is a finite Galois extension. As 𝑘ᇱ ⊆ 𝐾, 𝐾(𝑊
 )/𝐾 is also a finite Galois. Since 𝐾 is complete

by definition and 𝐾(𝑊
 )/𝐾 is a finite extension, 𝐾(𝑊

 ) is also complete in
𝑘. Take any

power series 𝑓ᇱ ∈ ℱ and let 𝜃(𝑋) be the power series as in Theorem 5.2.3. Then,

𝜃(𝑊
 ) = 𝑊

ᇲ , 𝜃ିଵ(𝑊
ᇲ) = 𝑊

 . (6.39)

The power series 𝜃(𝑋) ∈ 𝒪[[𝑋]] and 𝐾(𝑊

 ) is complete, so

𝑊
ᇲ = 𝜃(𝑊

 ) ⊆ 𝐾(𝑊
 ). (6.40)

This implies that

𝐾 ⊆ 𝐾(𝑊
ᇲ) ⊆

𝐾(𝑊
 ). (6.41)

Since 𝜃(𝑋) is invertible and 𝜃ିଵ(𝑊
ᇲ) = 𝑊

 , similarly we get 𝐾(𝑊

 ) ⊆ 𝐾(𝑊

ᇲ). So

𝐾(𝑊
 ) = 𝐾(𝑊

ᇲ). (6.42)

We denote the field 𝐾(𝑊
 ) by 𝐿

.

Theorem 6.2.2. There exists a homomorphism

𝛾 ∶ 𝒰 → Gal(𝐿/𝐾) (6.43)
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where 𝑛 ≥ 0, satisfying that for 𝑢 ∈ 𝒰,

𝛾(𝑢)(𝛼) = 𝑢 ⋅ 𝛼 (6.44)

= [𝑢](𝛼) (6.45)

for every 𝑓 ∈ ℱ and for every 𝛼 ∈ 𝑊
 . The homomorphism 𝛾 induces the following

isomorphism:

𝒰/𝒰ାଵ ≅ Gal(𝐿/𝐾). (6.46)

So, 𝐿/𝐾 is an Abelian extension with degree (𝑞 − 1)𝑞.

Proof. Let 𝑓(𝑋) = 𝜋𝑋 + 𝑋 and take ℎ(𝑋) and 𝛼 as in the Lemma 6.1.2. We know that

ℎ(𝑋) is irreducible in 𝐾[𝑋]. Also its degree is (𝑞 − 1)𝑞. So,

(𝑞 − 1)𝑞 = [𝐾(𝛼) ∶ 𝐾] ≤ [𝐿 ∶ 𝐾]. (6.47)

Take any 𝜎 in Gal(𝐿/𝐾). Recall that 𝜎 is continuous and 𝐹(𝑋, 𝑌) and [𝑎](𝑋) are power

series in 𝒪[[𝑋]] for 𝑎 ∈ 𝒪. Then the following hold:

𝜎(𝐹(𝛼, 𝛽)) = 𝐹(𝜎(𝛼), 𝜎(𝛽)) = 𝜎(𝛼) + 𝜎(𝛽), (6.48)

𝜎(𝑎 ⋅ 𝛼) = 𝜎([𝑎](𝛼)) = [𝑎](𝜎(𝛼)) = 𝑎 ⋅ 𝜎(𝛼) (6.49)

for 𝛼, 𝛽 ∈ 𝑊
 and 𝑎 ∈ 𝒪. Observe that, by the equation 6.49, 𝜎(𝛼) ∈ 𝑊

 for 𝛼 ∈ 𝑊
 ,

since 𝑊
 = {𝛼 ∈ 𝔪 ∣ 𝔭

ାଵ ⋅ 𝛼 = 0}. So 𝜎 induces an automorphism 𝜎ᇱ of 𝑊
 and the

following homomorphism can be defined:

Gal(𝐿/𝐾) → Aut(𝑊
 ), (6.50)

𝜎 ↦ 𝜎ᇱ. (6.51)

This homomorphism is injective because any element of Gal(𝐿/𝐾) is defined by its actions

on the elements of𝑊
 . By Theorem 6.1.4, |Aut(𝑊

 )| = [𝒰 ∶ 𝒰ାଵ] = (𝑞 − 1)𝑞, so

[𝐿 ∶ 𝐾] ≤ (𝑞 − 1)𝑞. (6.52)
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Combining this with the equation 4.93, we get

𝐿 = 𝐾(𝛼), [𝐿
 ∶ 𝐾] = (𝑞 − 1)𝑞, Gal(𝐿/𝐾) ≅ Aut(𝑊

 ). (6.53)

Set 𝛾 to be the composition of the mappings below:

𝒰 → 𝒰/𝒰ାଵ ≅ Aut(𝑊
 ) ≅ Gal(𝐿/𝐾). (6.54)

Note that 𝛾(𝑢)(𝛼) = [𝑢](𝛼) = 𝑢 ⋅ 𝛼 for all 𝑢 ∈ 𝒰, 𝛼 ∈ 𝑊

 .

Now, let 𝑓ᇱ be another power series in ℱ and 𝜃(𝑋) the power series as in Theorem 5.2.3.

Recall that𝑊
ᇲ = 𝜃(𝑊

 ). Let 𝛼
ᇱ ∈ 𝑊

ᇲ and 𝛼
ᇱ = 𝜃(𝛼), where 𝛼 ∈ 𝑊

 . Then the following

holds:

𝑢 ⋅ᇲ 𝛼
ᇱ = [𝑢]ᇲ(𝛼

ᇱ) = 𝜃 ∘ [𝑢] ∘ 𝜃
ିଵ(𝜃(𝛼)) = 𝜃([𝑢](𝛼)) = 𝜃(𝛾(𝑢)(𝛼)). (6.55)

where 𝑢 ∈ 𝒰. On the other hand, recall that 𝜃(𝑋) ∈ 𝒪[[𝑋]] and 𝛾
(𝑢) ∈ Gal(𝐿/𝐾). So,

by the continuity of automorphisms, we have the following for 𝑓ᇱ ∈ ℱ, 𝛼ᇱ ∈ 𝑊
ᇲ :

𝑢 ⋅ᇲ 𝛼
ᇱ = 𝜃(𝛾(𝑢)(𝛼)) = 𝛾(𝑢)(𝜃(𝛼)) = 𝛾(𝑢)(𝛼ᇱ). (6.56)

Let 𝐿 be the union of 𝐿’s for 𝑛 ≥ −1. So 𝐿 = 𝐾(𝑊) for any 𝑓 ∈ ℱ.

Theorem 6.2.3. 𝐿/𝐾 is an Abelian extension and there exists a homoemorphism

𝛾 ∶ 𝒰 ≅ Gal(𝐿/𝐾). (6.57)

Moreover, this homeomorphism induces 𝛾 ∶ 𝒰 → Gal(𝐿/𝐾) for every 𝑛 ≥ 0.

Proof. The following diagram commutes:

𝒰/𝒰ାଶ Gal(𝐿ାଵ/𝐾)

𝒰/𝒰ାଵ Gal(𝐿/𝐾)

∼

natural projection restriction

∼

(6.58)
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So, we see that

𝛾 ∶ 𝒰 = lim
←−−

𝒰/𝒰ାଵ ≅ lim
←−−

Gal(𝐿/𝐾) = Gal(𝐿/𝐾), (6.59)

for 𝑛 ≥ 0.

6.3. THE EXTENSIONS 𝐿 AND 𝑘,గ

In this section, we will construct certain Abelian extensions of a local field 𝑘 (and its finite

unramified extension fields) and then study the properties of those Abelian extensions.

Denote the valuation ring of the unramified extension 𝑘௨ of degree 𝑚 over 𝑘 by 𝒪
 for

𝑚 ≥ 1. If we take a prime element 𝜋 ∈ 𝑘௨, we know that it is also prime in 𝐾 = 𝑘௨ and 𝐾.

Let ℱగ be the set of power series in 𝒪[[𝑋]] as defined in 5.17. We define

ℱ
గ = ℱగ ∩ 𝒪


 [[𝑋]]. (6.60)

Then 𝑓(𝑋) = 𝜋𝑋 + 𝑋 ∈ ℱ
గ . We put

ℱ ∶= the union of ℱ
గ for 𝜋 ∈ 𝑘௨, (6.61)

ℱஶ = the union of ℱ for𝑚 ≥ 1. (6.62)

Lemma 6.3.1. For𝑚 ≥ 1 and 𝑛 ≥ 0:

(i) If 𝑓 ∈ ℱ
గ , then 𝑘௨(𝑊


 ) is independent of 𝑓 in ℱ

గ .

(ii) If 𝑓 ∈ ℱஶ, then 𝐾(𝑊
 ) is independent of 𝑓 in ℱஶ.

Proof. (i) Let 𝑓(𝑋) = 𝜋𝑋 + 𝑋, where 𝜋 ∈ 𝑘௨ and 𝑓
ᇱ ∈ ℱ

గ . If we put 𝜋ଵ = 𝜋 and

𝜂 = 𝜉 = 1 as in 5.40, then 𝜃(𝑋) ∈ 𝒪
 [[𝑋]]. Recall that 𝑘


௨(𝑊


 ) is finite Galois by 6.1.2.

So, it is complete. Then, similar to Lemma 6.2.1,

𝑊
ᇲ = 𝜃(𝑊

 ) ⊆ 𝑘௨(𝑊

 ). (6.63)
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This implies

𝑘௨(𝑊

ᇲ) ⊆ 𝑘௨(𝑊


 ). (6.64)

Since 𝜃(𝑋)ିଵ ∈ 𝒪
 [[𝑋]], we also have 𝑘


௨(𝑊


 ) ⊆ 𝑘௨(𝑊


ᇲ). So 𝑘


௨(𝑊


 ) = 𝑘௨(𝑊


ᇲ) for

any 𝑓ᇱ ∈ ℱ
గ .

(ii) Let 𝑓 ∈ ℱஶ. So 𝑓 ∈ ℱ
గ for some 𝑚 ≥ 1 and 𝜋 ∈ 𝑘௨. Put 𝐸 = 𝐾(𝑊

 ) = 𝐾𝑘௨(𝑊

 ).

Recall that 𝑘௨(𝑊

 )/𝑘


௨ is finite Galois. Then 𝐸/𝐾 is a finite Galois. By Lemma 3.6.1,

𝐸 = 𝐸𝐾 = 𝐾(𝑊
 ) = 𝐿, 𝐾 = 𝐸 ∩ 𝐾. (6.65)

Now we take another power series 𝑓ᇱ ∈ ℱஶ. Put 𝐸ᇱ = 𝐾(𝑊
ᇲ). Then 𝐸

ᇱ/𝐾 is also a finite

Galois extension and 𝐸ᇱ = 𝐿 since 𝐾(𝑊
 ) = 𝐾(𝑊

ᇲ). Let𝑀 = 𝐸𝐸ᇱ. Then again by Lemma

3.6.1,

𝐾(𝑊
ᇲ) = 𝐸ᇱ = 𝑀 ∩ 𝐸ᇱ = 𝑀 ∩ 𝐿 = 𝑀 ∩ 𝐸 = 𝐸 = 𝐾(𝑊

 ). (6.66)

So we proved the theorem.

Since 𝑘௨(𝑊

 ) and 𝐾(𝑊


 ) are independnt of 𝑓, the following extensions are well-defined:

𝑘,గ = 𝑘௨(𝑊

 ), 𝑓 ∈ ℱ


గ , 𝑛 ≥ −1, (6.67)

𝐿 = 𝐾(𝑊
 ), 𝑓 ∈ ℱ

ஶ, 𝑛 ≥ −1. (6.68)

Theorem 6.3.2. Let 𝑚 ≥ 1, 𝑛 ≥ 0, and 𝜋 a prime element in 𝑘௨. Then the following hold:

The field 𝐿 is the closure of 𝐿 in 𝑘. Also,

𝐿 = 𝐾𝐿, 𝐾 = 𝐾 ∩ 𝐿, Gal(𝐿/𝐾) ≅ Gal(𝐿/𝐾). (6.69)

The field 𝐿 is equal to 𝐾𝑘,గ , 𝑘௨ = 𝐾 ∩ 𝑘,గ and 𝑘,గ is a maximal totally ramified

extension over 𝑘௨ in 𝐿
 and

Gal(𝐿/𝑘௨) = Gal(𝐿/𝑘,గ ) × Gal(𝐿/𝐾) ≅ Gal(𝐾/𝑘௨) × Gal(𝑘
,
గ /𝑘௨). (6.70)
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𝐾𝑘,గ = 𝐿

𝐾 𝑘,గ

𝐾 ∩ 𝑘,గ = 𝑘௨

(6.71)

The field extensions 𝐿/𝑘, 𝐿/𝐾, 𝑘,గ /𝑘 and 𝑘,గ /𝑘௨ are Abelian and

[𝐿 ∶ 𝐾] = [𝑘,గ ∶ 𝑘௨] = (𝑞 − 1)𝑞, [𝑘,గ ∶ 𝑘] = 𝑚(𝑞 − 1)𝑞. (6.72)

Proof. We know that 𝐿/𝐾 and 𝑘,గ /𝑘௨ are finite Galois extensions, 𝐿
 = 𝐾𝐿 and 𝐾 =

𝐾 ∩ 𝐿 by Lemma 6.3.1. This implies Gal(𝐿/𝐾) ≅ Gal(𝐿/𝐾). Since we know [𝐿 ∶ 𝐾] =

(𝑞 − 1)𝑞 by the equation 6.53, [𝐿 ∶ 𝐾] = (𝑞 − 1)𝑞.

Since 𝐿 = 𝐾𝑘,గ and 𝑘௨ ⊆ 𝐾 ∩ 𝑘,గ ⊆ 𝑘,గ , we see that

(𝑞 − 1)𝑞 = [𝐿 ∶ 𝐾] = [𝑘,గ ∶ 𝐾 ∩ 𝑘,గ ] ≤ [𝑘,గ ∶ 𝑘௨]. (6.73)

Let 𝑓(𝑋) = 𝜋𝑋 + 𝑋, where 𝜋 a prime element of 𝑘௨, ℎ and 𝛼 as in Lemma 6.1.2. So,

𝑊
 = 𝒪 ⋅ 𝛼 = {[𝑎](𝛼)|𝑎 ∈ 𝒪}. (6.74)

Since 𝑓(𝑋) ∈ 𝒪
 [[𝑋]], then so is [𝑎]. Hence

𝑊
 ⊆ 𝑘௨(𝛼). (6.75)

We know 𝛼 ∈ 𝑊

 . This implies that

𝑘,గ = 𝑘௨(𝑊

 ) = 𝑘௨(𝛼). (6.76)

By Lemma 6.1.3:

(𝑞 − 1)𝑞 = [𝑘,గ ∶ 𝑘௨] = [𝑘௨(𝛼) ∶ 𝑘

௨]. (6.77)

In the view of the inequality 6.73, we get 𝑘௨ = 𝐾 ∩ 𝑘,గ and this means that 𝑘,గ is a

maximal totally ramified extension over 𝑘௨ in 𝐿
 (recall Definition 3.7.2). Now we have

Gal(𝐿/𝐾) ≅ Gal(𝐿/𝐾) ≅ Gal(𝑘,గ /𝑘௨), (6.78)
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the extensions 𝐿/𝐾 and 𝑘,గ /𝑘௨ are Abelian. Take𝑚 = 1 as a special case. We know that

𝑘ଵ,గ /𝑘 is Abelian. Since 𝐿 is the compositum of 𝐾 and 𝑘ଵ,గ and 𝐾/𝑘 is Abelian, 𝐿/𝑘 is also

Abelian. Then it immediately follows that 𝑘,గ /𝑘 isAbelian. The claims about the extension

degrees are obvious.

Consider the isomorphism in 6.78. The maps between Galois groups are obtained using

restrictions (e.g., we restrict 𝐿 to 𝐿). So in the view of Theorem 6.2.2, we can define the

following maps similarly:

𝛾 ∶ 𝒰 → Gal(𝐿/𝐾) (6.79)

for 𝑛 ≥ 0. For each 𝑓 ∈ ℱஶ, 𝑢 ∈ 𝒰 and 𝛼 ∈ 𝑊

 , this map has the following form:

𝛾(𝑢)(𝛼) = [𝑢](𝛼), (6.80)

and also it induces the following isomorphism:

𝒰/𝒰ାଵ ≅ Gal(𝐿/𝐾). (6.81)

Take a prime element 𝜋 ∈ 𝑘௨. Then we can define the following map:

𝛾గ ∶ 𝒰 → Gal(𝑘,గ /𝑘௨) (6.82)

for 𝑚 ≥ 1. Similarly, for each 𝑓 ∈ ℱ
గ , 𝑢 ∈ 𝒰 and 𝛼 ∈ 𝑊

 , this map has the following

form:

𝛾గ (𝑢)(𝛼) = [𝑢](𝛼), (6.83)

and also it induces the following isomorphism:

𝒰/𝒰ାଵ ≅ Gal(𝑘,గ /𝑘௨). (6.84)

Corollary 6.3.2.1. Let 0 ≤ 𝑡 ≤ 𝑛. The isomorphism 𝒰/𝒰ାଵ ≅ Gal(𝑘,గ /𝑘௨) induces

the following map:

𝒰௧ାଵ/𝒰ାଵ ≅ 𝛾గ (𝒰௧ାଵ) = Gal(𝑘,గ /𝑘,௧గ ). (6.85)

Proof. For 𝑢 ∈ 𝒰, 𝛾

గ (𝑢)|,

ഏ
= 𝛾௧గ(𝑢) (Recall that 𝑘

,௧
గ ⊆ 𝑘,గ ). So, we have the following
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equivalences:

𝑢 ∈ 𝒰௧ାଵ ⟺ 𝛾௧గ(𝑢) = 1 ⟺ 𝛾గ (𝑢)|,
ഏ
= 1 ⟺ 𝛾గ (𝑢) ∈ Gal(𝑘

,
గ /𝑘,௧గ ). (6.86)

So we see that 𝒰௧ାଵ/𝒰ାଵ ≅ 𝛾గ (𝒰௧ାଵ) = Gal(𝑘,గ /𝑘,௧గ ).

Theorem 6.3.3. Let 𝜋 be a prime in 𝑘௨,𝑚 ≥ 1 and 𝑛 ≥ 0. Then the following hold:

(i) The extension 𝑘,గ /𝑘௨ is a finite Abelian extension and also totally ramified. In

additon, 𝜋 ∈ 𝑁(𝑘,గ /𝑘௨).

(ii) Let 𝑓 ∈ ℱ
గ and 𝛼 ∈ 𝑊

 , 𝛼 ∉ 𝑊ିଵ
 . Then 𝛼 is a prime in 𝑘,గ and also 𝑘,గ =

𝑘௨(𝛼) and 𝒪
, = 𝒪[𝛼], where 𝒪

, and 𝒪 are the valuation rings of 𝑘,గ and

𝑘௨, respectively.

Proof. (i) We know that 𝐾 ∩ 𝑘,గ = 𝑘௨, so 𝑘
,
గ /𝑘௨ is totally ramified. Previously we

proved that 𝜑(𝜋) ∈ 𝑁(𝑘,గ /𝑘௨) and 𝑘
,
గ /𝑘 is Abelian. Since it is Abelian, we can extend

the automorphism 𝜑 to an automorphism 𝜑 in 𝑘,గ /𝑘. Consider the following equalities:

𝜑(𝜎ଵ(𝑥)⋯𝜎(ିଵ)(𝑥)) = 𝜎ଵ(𝜑(𝑥))⋯𝜎(ିଵ)(𝜑(𝑥)). (6.87)

where 𝑥 ∈ 𝑘,గ . This implies that 𝜑(𝑁(𝑘,గ /𝑘௨)) = 𝜑(𝑁(𝑘,గ /𝑘௨)) = 𝑁(𝑘,గ /𝑘௨).

So 𝜋 ∈ 𝑁(𝑘,గ /𝑘௨).

(ii) Let 𝑓(𝑋) = 𝜋𝑋 + 𝑋 and 𝑓ᇱ any power series in ℱ
గ . Take 𝛼ᇱ ∈ 𝑊

ᇲ\𝑊
ିଵ
ᇲ . Put 𝛼 =

𝜃ିଵ(𝛼ᇱ), where 𝜃(𝑋) is as in 5.40. Since 𝜃(𝑋) induces an isomorphism between𝑊
ᇲ and𝑊


 ,

we see that 𝛼 ∈ 𝑊

 \𝑊

ିଵ
 . So, by Lemma 6.1.2, ℎ(𝛼) = 0 and also 𝜑(𝜋) = 𝑁(−𝛼).

Since 𝜑(𝜋) is a prime in 𝑘௨ and 𝑘
,
గ /𝑘௨ is a totally ramified extension, 𝛼 is a prime in

𝑘,గ (recall the equation 3.55). We know that 𝜃(𝑋) ∈ 𝒪
 [[𝑋]] and 𝜃(𝑋) ≡ 𝑋mod deg 2. So

𝜃(𝛼) = 𝛼ᇱ is a prime in 𝑘,గ (consider the expansion of 𝜃(𝛼)). Then by Theorem 3.9.2,

𝒪, = 𝒪[𝛼ᇱ] and 𝑘,గ = 𝑘௨(𝛼
ᇱ).

Corollary 6.3.3.1. Let 𝑓 ∈ ℱ
గ and 𝛼 ∈ 𝑊

 \𝑊
ିଵ
 . Then the following hold:

(i) The complete set of conjugates of 𝛼 over 𝑘௨ is

𝐶 = {𝛽 ∣ 𝛽 ∈ 𝑊
 \𝑊

ିଵ
 }. (6.88)
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(ii) If 0 ≤ 𝑖 ≤ 𝑛, then the complete set of conjugates of 𝛼 over 𝑘,గ is

𝛼 + 𝑊
ିିଵ
 = {𝛼 + 𝛽 ∣ 𝛽 ∈ 𝑊

ିିଵ
 }. (6.89)

Proof. (i) We know 𝑘,గ = 𝑘௨(𝛼) by Theorem 6.3.3. By the isomorphism in 6.84, all

conjugates of 𝛼 are given by the elements 𝑢 ⋅ 𝛼, where 𝑢 ∈ 𝒰. In the view of the fact that

𝑊
 = 𝒪 ⋅ 𝛼 and𝑊

ିଵ
 = 𝔭 ⋅ 𝛼, hence the corollary is proved (recall that 𝒰 = 𝒪\𝔭).

(ii) Consider the isomorphism in 6.85. By this isomorphism, the complete set of conjugates

of 𝛼 over 𝑘,గ is given by the set

{𝑢 ⋅ 𝛼 ∣ 𝑢 ∈ 𝒰ାଵ}, (6.90)

which is also equal to

(1 + 𝔭ାଵ) ⋅ 𝛼 = 𝛼 + (𝔭
ାଵ ⋅ 𝛼). (6.91)

As 𝔭ାଵ ⋅ 𝛼 = 𝑊ିିଵ
 , the result follows.

Example 15. Consider the Example 14. Let:

𝑘 = ℚ, 𝜋 = 𝑝, 𝑓(𝑋) = (1 + 𝑋) − 1 ∈ ℱଵ
 , 𝐹(𝑋, 𝑌) = (1 + 𝑋)(1 + 𝑌) − 1. (6.92)

We also showed that [𝑎] = (1 + 𝑋) − 1, 𝑎 ∈ ℤ. Since [𝑝
ାଵ](𝑋) = (1 + 𝑋)

శభ

− 1,

𝑊
 = {𝛼 − 1 ∣ 𝛼

శభ

= 1}. (6.93)

So 𝑘ଵ, = ℚ(𝑊

 ) is the cyclotomic field of 𝑝

ାଵth roots of unity over ℚ = 𝑘ଵ௨. Let

𝑢 ∈ 𝒰ℚ
and 𝛽 = 𝛼 − 1 ∈ 𝑊

 . Then,

𝛾 (𝑢)(𝛽) = [𝑢](𝛽) = (1 + 𝛽)௨ − 1. (6.94)

We also have the following isomorphisms:

𝒰ℚ
/𝒰ାଵ ≅ ℤ×/(1 + 𝑝ାଵℤ) ≅ Gal(ℚ(𝑊


 )/ℚ). (6.95)
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6.4. ABELIAN EXTENSIONS 𝐿AND 𝑘గ OVER 𝑘

Recall that𝑊ିଵ
 ⊆ 𝑊

 , 𝑓 ∈ ℱ. So for a prime 𝜋 ∈ 𝑘

௨ and𝑚 ≥ 1, we have the following:

𝑘௨ = 𝑘,ିଵ௨ ⊆ 𝑘,௨ ⊆ ⋯ ⊆ 𝑘,௨ ⊆ 𝑘, (6.96)

𝑘௨ = 𝐾 = 𝐿ିଵ ⊆ 𝐿 ⊆ 𝐿ଵ ⊆ ⋯ ⊆ 𝐿 ⊆ 𝑘. (6.97)

Define

𝑘,ஶగ ≔ ራ

ஹିଵ

𝑘,గ , (6.98)

𝐿 ≔

ஶ

ራ

ஹିଵ

𝐿. (6.99)

Then we have

𝑘,ஶగ = 𝑘௨(𝑊

 ) (6.100)

for 𝑓 ∈ ℱ
గ ,

𝐿 = 𝑘௨(𝑊) (6.101)

for 𝑓 ∈ ℱஶ. In the view of the previous theorems in this chapter, we can make the following

series of observations:

(i) Since 𝐿/𝑘 is Abelian for 𝑛 ≥ −1, so is 𝐿/𝑘.

(ii) According to Theorem 6.3.2), we have:

𝐿 = 𝑘௨𝑘
,ஶ
గ , 𝑘௨ = 𝑘௨ ∩ 𝑘

,ஶ
గ . (6.102)

(iii) The extension 𝑘,ஶగ /𝑘௨ is a maximal totally ramified extension over 𝑘

௨ in 𝐿.

(iv) If we consider (ii),

Gal(𝐿/𝑘௨) = Gal(𝐿/𝑘,ஶగ )×Gal(𝐿/𝑘௨) ≅ Gal(𝑘௨/𝑘

௨)×Gal(𝑘

,ஶ
గ /𝑘௨). (6.103)

We state the following theorem (its proof is very similar to Theorem 6.2.3):
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Theorem 6.4.1. There exist homeomorphisms

𝛾 ∶ 𝒰 ≅ Gal(𝐿/𝑘௨), (6.104)

𝛾గ ∶ 𝒰 ≅ Gal(𝑘,ஶగ /𝑘௨), (6.105)

which also induce the homomorphisms 𝛾 and 𝛾గ in 6.79 and 6.82, respectively.

Now take𝑚 = 1, 𝜋 ∈ 𝑘 = 𝑘ଵగ and denote 𝑘
ଵ,ஶ
గ by 𝑘గ. Then we have the following:

𝐿 = 𝑘௨𝑘గ, 𝑘 = 𝑘௨ ∩ 𝑘గ. (6.106)

The extension 𝑘గ is a maximal totally ramifed over 𝑘 in 𝐿 and

Gal(𝐿/𝑘) = Gal(𝐿/𝑘గ) × Gal(𝐿/𝑘௨) ≅ Gal(𝑘௨/𝑘) × Gal(𝑘గ/𝑘). (6.107)

𝑘௨𝑘గ = 𝐿

𝑘௨ 𝑘గ

𝑘௨ ∩ 𝑘గ = 𝑘

(6.108)

Also we have:

𝛾గ ∶ 𝒰 ≅ Gal(𝑘గ/𝑘), (6.109)

which is a homeomorphism.

Lemma 6.4.2. Let 𝑔 = ℎ ∘ [𝜋], where 𝑔, ℎ ∈ 𝒪[[𝑋]], 𝜋 ∈ 𝑘 and 𝑓 ∈ ℱଵ
గ . Then for 𝑛 ≥ 0,

𝑔 ≡ 0 mod 𝔭 ⟺ ℎ ≡ 0 mod 𝔭 . (6.110)

Proof. (⇐) If we assume ℎ ≡ 0 mod 𝔭, then the coefficients in the composition ℎ ∘ [𝜋]

is equivalent to 0mod 𝔭. (⇒) Use induction on 𝑛. The proposition is true for 𝑛 = 0, since

ℎ ∈ 𝒪[[𝑋]]. So assume 𝑔 ≡ 0 mod 𝔭, 𝑛 ≥ 1. This implies that 𝑔 ≡ 0 mod 𝔭ିଵ and

𝑔 = 𝜋ିଵ𝑔ଵ, where 𝑔ଵ ∈ 𝒪[[𝑋]]. By the induction assumption, ℎ ≡ 0 mod 𝔭ିଵ , ℎ =

𝜋ିଵℎଵ, where ℎଵ ∈ 𝒪[[𝑋]]. So 𝑔ଵ = ℎଵ ∘ [𝜋]. On the other hand, since 𝑔 ≡ 0 mod 𝔭,
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this implies that 𝑔ଵ ≡ 0 mod 𝔭. Observe that [𝜋] = 𝑓(𝑋) ≡ 𝑋 mod 𝔭. So we have

ℎଵ(𝑋
) = ℎଵ ∘ [𝜋] = 𝑔ଵ ≡ 0 mod 𝔭. (6.111)

This implies that ℎଵ(𝑋) ≡ 0 mod 𝔭. Finally ℎ = 𝜋ିଵℎଵ ≡ 0 mod 𝔭 which completes the

proof.

Remark. Note that the lemma holds for ℎ, 𝑔 ∈ 𝒪[[𝑋]], where 𝐾 = 𝑘௨. Also observe that

𝑔 ≡ 0 mod 𝔭 ⟺ ℎ ≡ 0 mod 𝔭 implies 𝑔 = 0 ⟺ ℎ = 0.

Now we fix a prime 𝜋 in 𝑘 and 𝑚 ≥ 1. Let 𝑘ᇱ = 𝑘௨ and 𝜑
ᇱ = 𝜑ᇲ. Recall that 𝜑

ᇱ = 𝜑
 .

Let 𝜋ᇱ be a prime in 𝑘ᇱ. We know that 𝜋 is also prime in 𝑘ᇱ, so we have 𝜋ᇱ = 𝜋𝛼, where

𝛼 ∈ 𝒰ᇲ. Let

𝑢 = 𝑁ᇲ/(𝛼) ∈ 𝒰. (6.112)

Lemma 6.4.3. Let 𝑓 ∈ ℱଵ
గ , 𝑓

ᇱ ∈ ℱ
గᇲ and 𝜃(𝑋) as in 5.40. Then we have:

𝜃ఝ
ᇲ

= 𝜃 ∘ [𝑢]. (6.113)

Proof. Define 𝑔ିଵ and 𝑔ᇱିଵ for 𝑓 and 𝑓ᇱ, respectively, as in Lemma 6.1.1. Then the

following holds:

𝑔ᇱିଵ ∘ 𝜃 = 𝜃ఝ
ᇲ

∘ 𝑔ିଵ. (6.114)

Put 𝑎 = 𝑁ᇲ/(𝜋
ᇱ) = 𝜋𝑢. Then 𝑔ᇱିଵ ≡ 𝑎𝑋 mod deg 2. Also, since 𝑓ᇱ ∈ ℱ

గᇲ , we have

𝑓ᇱఝ
ᇲ

= 𝑓ᇱ. By the equation 6.15,

𝑓ᇱ ∘ 𝑔ᇱିଵ = 𝑔
ᇱఝ
ିଵ ∘ 𝑓

ᇱ. (6.115)

In the view of the uniqueness part of the equation 5.29, we conclude that

𝑔ᇱିଵ = [𝑎]ᇲ = [𝑎]ఏ . (6.116)

This implies

𝑔ᇱିଵ ∘ 𝜃 = 𝜃 ∘ [𝑎] = 𝜃 ∘ [𝑢] ∘ [𝜋
]. (6.117)



62

Since 𝑓 ∈ ℱଵ
గ , we have 𝑓 = [𝜋] and 𝑔ିଵ = [𝜋]. So,

𝜃ఝ
ᇲ

∘ [𝜋] = 𝜃 ∘ [𝑢] ∘ [𝜋
]. (6.118)

Since 𝜃ఝ
ᇲ

∘ [𝜋] = 𝜃 ∘ [𝑢] ∘ [𝜋
] = (𝜃ఝ

ᇲ

− (𝜃 ∘ [𝑢])) ∘ [𝜋
], by Lemma 6.4.2,

𝜃ఝ
ᇲ

= 𝜃 ∘ [𝑢]. (6.119)

Theorem 6.4.4. Let 𝜋 and 𝜋ᇱ be primes in 𝑘 such that 𝜋ᇱ = 𝜋𝑢, where 𝑢 ∈ 𝒰ାଵ. Then

𝑘గ = 𝑘గᇲ.

Proof. Apply Lemma 6.4.3 with 𝑚 = 1, 𝜑 = 𝜑ᇱ and 𝜋ᇱ = 𝑢𝜋. Take 𝛼ᇱ ∈ 𝑊
ᇲ . Then

𝛼ᇱ = 𝜃(𝛼), where 𝛼 ∈ 𝑊
 . By the preceding lemma,

𝜃ఝ(𝛼) = 𝜃([𝑢](𝛼)). (6.120)

Since 𝑢 ∈ 𝒰ାଵ, [𝑢] is the identity automorphism, so 𝜃ఝ(𝛼) = 𝜃(𝛼). We know that

𝑘௨∩𝑘

గ = 𝑘, so we can extend 𝜑 to 𝐿 = 𝑘௨𝑘


గ over 𝑘


గ. Call that automorphism 𝜑∗. Since

𝛼 ∈ 𝑊
 ⊆ 𝑘గ, we see that

𝜃(𝛼)ఝ
∗

= 𝜃ఝ
∗

(𝛼) = 𝜃ఝ(𝛼) = 𝜃(𝛼), (6.121)

where 𝛼ᇱ = 𝜃(𝛼) ∈ 𝐿 = 𝑘௨(𝑊

ᇲ). So 𝛼

ᇱ ∈ 𝑘గ. Then we obtain

𝑘గᇲ = 𝑘(𝑊
ᇲ) ⊆ 𝑘గ . (6.122)

Since 𝑢ିଵ ∈ 𝒰ାଵ and 𝜋 = 𝑢ିଵ𝜋ᇱ, similarly we obtain 𝑘గ ⊆ 𝑘గᇲ. Hence 𝑘

గᇲ = 𝑘గ.

For brevity, the following theorem will be provided without proof. Its proof is based on the

norm operator of Coleman. Refer to [8] for the complete proof.

Theorem 6.4.5. Let 𝜋 be a prime in 𝑘. Then

𝑁(𝑘గ/𝑘) = < 𝜋 > × 𝒰ାଵ, 𝑛 ≥ −1, (6.123)
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and

𝑁(𝑘గ/𝑘) = < 𝜋 > . (6.124)

If 𝐹 is totally ramified over k, containing 𝑘గ, then

𝑁(𝐹/𝑘) = < 𝜋 > . (6.125)

6.5. HOMOMORPHISM 𝜌 AND PROOF OF 𝐿 = 𝑘

Recall that 𝐿 = 𝑘௨(𝑊) and 𝐿/𝑘 is an Abelian extension. So

𝑘 ⊆ 𝐿 ⊆ 𝑘. (6.126)

We denote 𝐿 by 𝐿 when 𝑘 is varied. Since we know that Gal(𝐿/𝑘గ) ≅ Gal(𝑘௨/𝑘) for 𝜋 ∈ 𝑘,

there exists a unique automorphism 𝜆గ ∈ Gal(𝐿/𝑘) such that

𝜆గ|ೠೝ = 𝜑 and 𝜆గ|ഏ = 1. (6.127)

We showed that < 𝜑 > is dense in Gal(𝑘௨/𝑘), so < 𝜆గ > is dense in Gal(𝐿/𝑘గ) which

implies the fixed field of 𝜆గ in 𝐿 is 𝑘గ.

Nowwe fix a prime 𝜋 ∈ 𝑘. We know that every 𝑥 ∈ 𝑘× can be uniquely written as 𝑥 = 𝜋 𝑢,

where𝑚 ∈ ℤ, 𝑢 ∈ 𝒰, and𝑚 = 𝑣(𝑥). For such an 𝑥, we define

𝜌 ∶ 𝑘× → Gal(𝐿/𝑘), (6.128)

𝑥 ↦ 𝜆గబ ∘ 𝛾(𝑢
ିଵ)(𝑥), (6.129)

where 𝛾 ∶ 𝒰 ≅ Gal(𝐿/𝑘௨) is the isomorphism in 6.104 (Gal(𝐿/𝑘) = Gal(𝐿/𝑘గ) ×

Gal(𝐿/𝑘௨)). It is clear that this is a homomorphism between the Abelian groups 𝑘× and

Gal(𝐿/𝑘) and by the definitons of the maps, it satisfies the following conditions:

𝜌(𝑥)|ೠೝ = 𝜆గబ|ೠೝ = 𝜑
 . (6.130)

Lemma 6.5.1. Let 𝜋ᇱ ∈ 𝑘ᇱ, where 𝑘ᇱ = 𝑘௨ for𝑚 ≥ 1. Put 𝑥 = 𝑁ᇲ/(𝜋
ᇱ). Then 𝜌(𝑥) is the
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unique element 𝜉 ∈ Gal(𝐿/𝑘) such that

𝜉|ೠೝ = 𝜑
 , 𝜉|,ಮ

ഏᇲ
= 1. (6.131)

Proof. The existence and uniqueness of such an element is guaranteed by the isomorphism

given in 6.103. We know that 𝜌(𝑥) satisfies 6.130, so we only need to prove the following:

𝜌(𝑥)|,

ഏᇲ
= 1, 𝑛 ≥ 1. (6.132)

Since 𝑘ᇱ/𝑘 is an unramified extension, 𝜋 ∈ 𝑘ᇱ. Hence 𝜋 = 𝜋𝜀, where 𝜀 ∈ 𝒰ᇲ. This

implies that

𝑥 = 𝑁ᇲ/(𝜋
ᇱ) = 𝜋 𝑢, 𝑢 = 𝑁ᇲ/(𝜀) ∈ 𝒰. (6.133)

Take 𝑓 ∈ ℱଵ
గబ
, 𝑓ᇱ ∈ ℱ

గᇲ and let 𝜃(𝑋) be as in 5.40. By Lemma 6.4.3,

𝜃ఝ
ᇲ

= 𝜃 ∘ [𝑢], (6.134)

where 𝜑ᇱ is the extension of 𝜑ᇲ to 𝐾 = 𝑘௨. Let 𝛼
ᇱ ∈ 𝑊

ᇲ = 𝜃(𝑊
 ) and 𝛼

ᇱ = 𝜃(𝛼), where

𝛼 ∈ 𝑊
 . Then by the definition of 𝜌,

𝜌(𝑥)(𝛼) = 𝛾(𝑢ିଵ)(𝛼) = [𝑢ିଵ](𝛼). (6.135)

Since 𝜃(𝑋) ∈ 𝒪[[𝑋]] and 𝜌(𝑥) can be extended to 𝜑
ᇱ (which means that it acts on 𝐾 as 𝜑ᇱ),

𝜌(𝑥)(𝛼ᇱ) = 𝜌(𝑥)(𝜃(𝛼)) = 𝜃ఝ
ᇲ

(𝜌(𝑥)(𝛼)) = 𝜃 ∘ [𝑢] ∘ [𝑢
ିଵ](𝛼) = 𝜃(𝛼) = 𝛼ᇱ. (6.136)

So 𝜌(𝑥)|,

ഏᇲ
= 1 (Recall 𝑘

,
గᇲ = 𝑘ᇱ(𝑊

ᇲ)).

Theorem 6.5.2. There exists a unique homomorphism

𝜌 ∶ 𝑘
× → Gal(𝐿/𝑘) (6.137)

such that 𝜌(𝜋) = 𝜆గ for every prime 𝜋 ∈ 𝑘×.

Proof. Apply Lemma 6.5.1 with 𝑚 = 1 and 𝜋 = 𝜋ᇱ. Then 𝜌(𝜋) is the unique element in
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Gal(𝐿/𝑘) satisfying the following conditions:

𝜌(𝜋)|ೠೝ = 𝜑, 𝜌(𝜋)|ഏ = 1. (6.138)

So by the equations in 6.127, 𝜌(𝜋) = 𝜆గ. This implies that 𝜌 defined above satisfies the

condition mentioned in the theorem. Since the multiplicative group 𝑘× of 𝑘 is generated by

the primes in 𝑘 (recall that 𝜋 = 𝜋ᇱ𝑢 implies 𝑢 = 𝜋/𝜋ᇱ), 𝜌 = 𝜌.

The definition of map 𝜌 is actually independent of 𝜋. To see this, take a prime 𝜋 in 𝑘 and

let

𝑥 = 𝜋𝑢, 𝑚 = 𝑣(𝑥), 𝑢 ∈ 𝒰, 𝑥 ∈ 𝑘
×. (6.139)

Then we have

𝜌(𝑥) = 𝜌(𝜋)
 ∘ 𝜌(𝑢) = 𝜆గ ∘ 𝛾(𝑢

ିଵ), (6.140)

𝜌(𝑥)|ೠೝ = 𝜆గ |ೠೝ = 𝜑
 , (6.141)

where𝑚 = 𝑣(𝑥).

Theorem 6.5.3. The map 𝜌 has the following properties:

(i) It is injective and continuous in Krull topology of Gal(𝐿/𝑘) and 𝑣-topology of 𝑘×.

(ii) The image of 𝜌 is dense in Gal(𝐿/𝑘) and consists of all elements 𝜉 in Gal(𝐿/𝑘) such

that 𝜉|ೠೝ = 𝜑
 , 𝑚 ∈ ℤ. Also, if 𝜉|ೠೝ = 𝜑, then there is a unique prime 𝜋 ∈ 𝑘 such

that 𝜉 = 𝜌(𝜋).

Proof. (i) Assume that 𝜌(𝑥) = 1, where 𝑥 = 𝜋 𝑢. Then 𝜌(𝑥)|ೠೝ = 𝜑
 = 1. Since

the order of 𝜑 is infinite, 𝑚 = 0 and 𝑥 = 𝑢. This implies that 𝛾(𝑢ିଵ) = 1. Since 𝛾

is an isomorphism, 𝑢 = 1, which means that 𝑥 = 1. So 𝜌 is injective. To prove the

continuity of 𝜌, consider a member of the basis of neighborhoods for Gal(𝐿/𝑘) ∶ 𝑊 × 𝑉,

where𝑊 and 𝑉 are open in Gal(𝐿/𝑘గ) and Gal(𝐿/𝑘௨), respectively. Since 𝑝𝑟ଶ ∘ 𝜌(𝒰) is

surjective (here 𝑝𝑟ଶ is the projection map from Gal(𝐿/𝑘గ) × Gal(𝐿/𝑘௨) to Gal(𝐿/𝑘௨)) and

𝒰 is homeomorphic to Gal(𝐿/𝑘௨), the inverse image of ({1} × 𝑉) ∩ ({1} × Gal(𝐿/𝑘௨))

under 𝜌 is 𝒰
ିଵ
 for some 𝑛 ≥ 0. On the other hand, the 𝑝𝑟ଵ ∘ 𝜌(𝑘

×) is < 𝜆గ >. So,

the inverse image of (𝑊 × {1}) ∩ (Gal(𝐿/𝑘గ) × {1}) is equal to {𝜋|𝑖 ∈ 𝐼 ⊆ ℤ}. Hence
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𝜌ିଵ ((𝑊 × 𝑉) ∩ 𝜌(𝑘
×)) is the following open set:

ራ

∈ூ

𝜋𝒰
ିଵ
 . (6.142)

This proves that 𝜌 is continuous.

(ii) Since the image of 𝜌 is equal to< 𝜆గ > ×Gal(𝐿/𝑘௨) and< 𝜆గ > is dense inGal(𝐿/𝑘గ),

the first part is obvious (recall that the closure of a product is the product of the closures).

The second part of (ii) is the consequence of the fact that any automorphism 𝜉 ∈ Gal(𝐿/𝑘)

is completely determined by the automorphisms 𝜉|ೠೝ and 𝜉|ഏ.

Let 𝑘ᇱ/𝑘 be a finite extension of local fields. Now we prove a lemma about the following

maps:

𝜌 ∶ 𝑘
× → Gal(𝐿/𝑘), (6.143)

𝜌ᇲ ∶ 𝑘
ᇱ× → Gal(𝐿ᇲ/𝑘

ᇱ). (6.144)

Let 𝑀 = 𝐿 ∩ 𝐿ᇲ. The extension 𝐿/𝑘 is Abelian, so this means that 𝜌(𝑥) induces an

automorphism of 𝑀 over 𝑘 for 𝑥 ∈ 𝑘×. If we take 𝑥ᇱ ∈ 𝑘ᇱ×, then 𝜌ᇲ(𝑥
ᇱ) also induces an

automorphism of𝑀 over 𝑘 (as 𝑘 ⊆ 𝑘ᇱ).

Lemma 6.5.4. Suppose 𝑘ᇱ/𝑘 is a totally ramified finite extension of local fields. Then the

following equality holds:

𝜌ᇲ(𝑥
ᇱ)|ெ = 𝜌(𝑁ᇲ/(𝑥

ᇱ))|ெ, for all 𝑥ᇱ ∈ 𝑘ᇱ×. (6.145)

Proof. We know that 𝑘ᇱ× is generated by the primes in 𝑘ᇱ, so if we prove the equality 6.145

for a prime 𝜋ᇱ ∈ 𝑘ᇱ, we prove the lemma. Extend 𝜌ᇲ(𝜋
ᇱ) to an automorphism 𝜉 of 𝑘 and

let 𝐹 denote the fixed field of 𝜉 in 𝑘. Recall that the fixed field of 𝜆గᇲ(= 𝜌ᇲ(𝜋
ᇱ)) in 𝐿ᇲ is

𝑘ᇱగᇲ. Hence,

𝐹 ∩ 𝐿ᇲ = 𝑘ᇱగᇲ , 𝐹 ∩ 𝑘
ᇱ
௨ = 𝑘ᇱ. (6.146)

This implies 𝐹/𝑘ᇱ is totally ramified and also 𝑘ᇱ ⊆ 𝑘ᇱగᇲ ⊆ 𝐹. By Theorem 6.4.5, 𝑁(𝐹/𝑘ᇱ) =

< 𝜋ᇱ >. Observe that 𝜉|ᇲೠೝ = 𝜌ᇲ(𝜋
ᇱ)|ᇲೠೝ = 𝜑ᇲ by the equation 6.141. Also, since 𝑘

ᇱ/𝑘 is
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totally ramified, 𝜑ᇲ|ೠೝ = 𝜑. So we have the following:

𝜉|ೠೝ = (𝜉|ᇲೠೝ)|ೠೝ = 𝜑ᇲ|ೠೝ = 𝜑. (6.147)

Put 𝜓 = 𝜉|ೖ. Then clearly 𝜓|ೠೝ = 𝜑. By Theorem 6.5.3, 𝜓 = 𝜌(𝜋) for some 𝜋 ∈ 𝑘.

Recall that 𝑘గ is the fixed field of 𝜌(𝜋) in 𝐿, so 𝑘 ⊆ 𝑘గ ⊆ 𝐹. Considering the fact that

𝐹/𝑘ᇱ and 𝑘ᇱ/𝑘 are totally ramified, we conclude that 𝐹/𝑘 is also totally ramified. Then again

by Theorem 6.4.5, 𝑁(𝐹/𝑘) = < 𝜋 >. Since 𝑁(𝐹/𝑘ᇱ) = < 𝜋ᇱ >, it is easy to see that

𝑁ᇲ/(𝜋
ᇱ) ∈ 𝑁(𝐹/𝑘) (recall that 𝑘 ⊆ 𝑘ᇱ ⊆ 𝑘ᇳ implies 𝑁(𝑘ᇳ/𝑘) ⊆ 𝑁(𝑘ᇱ/𝑘)). But 𝑘ᇱ/𝑘 is a

totally ramified extension, so 𝑁ᇲ/(𝜋
ᇱ) is a prime in 𝑘. That is,

𝑁ᇲ/(𝜋
ᇱ) = 𝜋. (6.148)

Finally,

𝜌ᇲ(𝜋
ᇱ)|ெ = 𝜉|ெ = 𝜓|ெ = 𝜌(𝜋)|ெ = 𝜌(𝑁ᇲ/(𝜋

ᇱ))|ெ. (6.149)

As a direct consequence, consider the case 𝑘 ⊆ 𝑘ᇱ ⊆ 𝐿. Then clearly 𝑘 ⊆ 𝑘ᇱ ⊆ 𝑀. Hence

𝜌(𝑁ᇲ/(𝑘
ᇱ×))|ᇲ = 𝜌ᇲ(𝑘

ᇱ×)|ᇲ = 1. (6.150)

Now we prove that 𝐿 = 𝑘. To prove this, the following lemmata will be established first.

Lemma 6.5.5. Let 𝑘 be a p-field and 𝑘ᇱ/𝑘 a cyclic extension of degree 𝑝 over 𝑘. Then

𝑁ᇲ/(𝑘
ᇱ×) ≠ 𝑘×. (6.151)

Proof. Denote the Galois group of 𝑘ᇱ/𝑘 by 𝐺 and let 𝐺 be the ramification groups of the

extension 𝑘ᇱ/𝑘 for 𝑛 ≥ 0. By assumption, 𝐺 is a cyclic group and also of order 𝑝, so every

𝐺 is either 𝐺 or {1}.

Case 1: Suppose 𝐺 = {1}. Then by Theorem 3.10.1, 𝑒ᇲ/ = 1 and 𝑓ᇲ/ = 𝑝 which implies

that 𝑘ᇱ/𝑘 is unramified. In the view of the equation 3.55, 𝑝|𝑣(𝑁ᇲ/(𝑥
ᇱ)) for 𝑥ᇱ ∈ 𝑘ᇱ×. Since

the valuations of prime elements are equal to 1 in 𝑘, 𝑁ᇲ/(𝑘
ᇱ×) ≠ 𝑘×.
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Case 2: Now assume 𝐺 = 𝐺. In this case 𝑘ᇱ/𝑘 is totally ramified. Also, [𝐺 ∶ 𝐺ଵ] is coprime

to 𝑝. So there is an integer 𝑠 ≥ 1 such that

𝐺 = 𝐺ଵ = … = 𝐺௦, 𝐺௦ାଵ = 𝐺௦ାଵ = … = 1. (6.152)

Fix a prime 𝜋ᇲ and take the minimal polynomial 𝑓(𝑋) of 𝜋ᇲ (over 𝑘). By Theorem 3.9.3,

we know that 𝒟ᇲ/ = 𝑓ᇱ(𝜋ᇲ)𝒪ᇲ. Since

𝑓ᇱ(𝜋ᇲ) = ෑ

క∈ீ, కஷଵ

(𝜋ᇲ − 𝜉(𝜋ᇲ)) (6.153)

and 𝐺௦ାଵ = 1, 𝑣ᇱ(𝜋ᇲ − 𝜉(𝜋ᇲ)) = 𝑠 + 1 for all 𝜉 ≠ 1. This implies that

𝑣ᇱ(𝑓ᇱ(𝜋ᇲ)) = (𝑝 − 1)(𝑠 + 1), 𝒟ᇲ/ = 𝔭
(ିଵ)(௦ାଵ)

ᇲ . (6.154)

Let 𝑥ᇱ ∈ 𝒰ᇱ
௦ାଵ = 1 + 𝔭ᇲ. Put 𝑥

ᇱ = 1 + 𝑦ᇱ, where 𝑦ᇱ ∈ 𝔭௦ାଵᇲ . We see that

𝑁ᇲ/(𝑥
ᇱ) =ෑ

క∈ீ

(1 + 𝜉(𝑦ᇱ)) = 1 +

ఠ

𝑦ᇱఠ + 𝑁ᇲ/(𝑦
ᇱ), (6.155)

where 𝜔 runs through all the elements 𝜉ଵ+⋯+𝜉, 1 ≤ 𝑚 ≤ 𝑝−1. Since |𝐺| is prime, the

left multiplication by 𝜌(≠ 1) does not stabilize any element, so 𝜔, 𝜌𝜔,… , 𝜌ିଵ𝜔 are distinct

elements. Then we can decompose ∑
ఠ
𝑦ᇱఠ into sums of the following form:



క∈ீ

𝑦కఠ = 𝑇ᇲ/(𝑦
ఠ). (6.156)

Since 𝑘ᇱ/𝑘 is totally ramified and 𝑦ᇱ ∈ 𝔭௦ାଵᇲ ,

𝒟ᇲ/𝑦
ᇱఠ ⊆ 𝔭

(ିଵ)(௦ାଵ)ା(௦ାଵ)

ᇲ = 𝔭
(௦ାଵ)

ᇲ = 𝔭௦ାଵ . (6.157)

So we have

𝑇ᇲ/(𝑦
ᇱఠ) ∈ 𝑇ᇲ/(𝔭

௦ାଵ
ᇲ 𝒟

ିଵ
ᇲ/) = 𝔭௦ାଵᇲ 𝑇ᇲ/(𝒟

ିଵ
ᇲ/) ⊆ 𝔭௦ାଵ . (6.158)

Observe that 𝑦ᇱ ∈ 𝔭௦ାଵᇲ implies 𝑁ᇲ/(𝑦
ᇱ) ∈ 𝔭௦ାଵ by the equation 3.55. Hence by 6.155,

𝑁ᇲ/(𝑥
ᇱ) ≡ 1𝔭௦ାଵ , 𝑥ᇱ ∈ 𝒰ᇱ

௦ାଵ, (6.159)
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which implies 𝑁ᇲ/(𝒰
ᇱ
௦ାଵ) ⊆ 𝒰௦ାଵ. So we can define the following homomorphism using

the norm map 𝑁ᇲ/:

𝛼 ∶ 𝒰ᇱ/𝒰ᇱ
௦ାଵ → 𝒰/𝒰௦ାଵ. (6.160)

Since 𝑘ᇱ/𝑘 is totally ramified, 𝒪ᇲ/𝔭ᇲ ≅ 𝒪/𝔭 = 𝔽. So by 3.46,

[𝒰ᇱ ∶ 𝒰ᇱ
௦ାଵ] = [𝒰 ∶ 𝒰௦ାଵ] = (𝑞 − 1)𝑞௦. (6.161)

If we take 𝜀 = 𝜉(𝜋ᇱ)/𝜋ᇱ, where 𝜋ᇱ ∈ 𝑘ᇱ and 𝜉(≠ 1) ∈ 𝐺, 𝑣ᇱ(𝜉(𝜋ᇱ) − 𝜋ᇱ) = 𝑠 + 1 implies

that 𝜀 ∈ 𝒰ᇱ
௦ ⧵ 𝒰

ᇱ
௦ାଵ. But valuations are invariant under automorphisms, so 𝑁ᇲ/(𝜀) = 1.

This means that 𝛼 is not injective, and as a result of the fact that [𝒰ᇱ ∶ 𝒰ᇱ
௦ାଵ] is finite, it is not

surjective. Then 𝑁ᇲ/(𝒰
ᇱ) ≠ 𝒰 and consequently 𝑁ᇲ/(𝑘

ᇱ×) ≠ 𝑘×.

Lemma 6.5.6. Let 𝑘 be a 𝑝-field and 𝑘ᇱ/𝑘 a cyclic extension of degree 𝑝, then 𝑘ᇱ ⊆ 𝐿.

Proof. Assume 𝑘ᇱ ⊈ 𝐿. So 𝑘ᇱ ∩ 𝐿 ≠ 𝑘ᇱ. Since [𝑘ᇱ ∶ 𝑘] = 𝑝, [𝑘ᇱ ∩ 𝐿 ∶ 𝑘] ≠ 𝑝, and

[𝑘ᇱ ∩ 𝐿 ∶ 𝑘] | 𝑝, so we have the following:

𝑘ᇱ ∩ 𝐿 = 𝑘, Gal(𝑘ᇱ𝐿/𝑘) ≅ Gal(𝑘ᇱ/𝑘) × Gal(𝐿/𝑘). (6.162)

Let 𝜋 be a prime in 𝑘. Then we know that Gal(𝐿/𝑘) ≅ Gal(𝑘௨/𝑘) × Gal(𝑘గ/𝑘). By 6.162,

Gal(𝑘ᇱ𝐿/𝑘) ≅ Gal(𝑘ᇱ/𝑘)×Gal(𝑘௨/𝑘)×Gal(𝑘గ/𝑘) ≅ Gal(𝑘ᇱ𝑘గ/𝑘)×Gal(𝑘௨/𝑘). (6.163)

This implies that 𝑘ᇱ𝑘గ ∩ 𝑘௨ = 𝑘 which means that 𝑘ᇱ𝑘గ is a totally ramified extension over

𝑘, containing 𝑘గ. Then by Theorem 6.4.5, 𝑁(𝑘ᇱ𝑘గ/𝑘) =< 𝜋 > and so 𝜋 ∈ 𝑁(𝑘ᇱ/𝑘). The

the prime elements of 𝑘 generate field 𝑘×. Hence 𝑁(𝑘ᇱ/𝑘) = 𝑘×, which contradicts Lemma

6.5.5. We conclude that 𝑘ᇱ ⊆ 𝐿.

Lemma 6.5.7. Let 𝑝 be a prime in ℤ, 𝑘 be a field and 𝜁 ⊆ 𝑘, where 𝜁 is a primitive 𝑝-th

root of unity. Let s be an integer, 𝑠 ≥ 0 and there exists a cyclic extension 𝑘ᇱ, which is of

degree 𝑝௦ over 𝑘. Also, suppose that 𝑘ᇱ ⊆ 𝑘ᇳ, where 𝑘ᇳ is a cyclic extension of degree 𝑝௦ାଵ

over 𝑘. Then 𝜁 is the norm of an element of 𝑘ᇱ.

Proof. Take a generator 𝜎 of Gal(𝑘ᇳ/𝑘). Let 𝜏 = 𝜎
ೞ

. Then 𝜏 is a generator of Gal(𝑘ᇳ/𝑘ᇱ).
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Since 𝜁 ∈ 𝑘
ᇱ ⊆ 𝑘ᇳ, by Kummer theory ([18], Chapter 14.7), there exists 𝛼 ∈ 𝑘ᇳ such that

𝑘ᇳ = 𝑘ᇱ(𝛼), 𝛼ఛିଵ = 𝜁, (6.164)

where 𝛼ఛିଵ = 𝜏(𝛼)𝛼ିଵ. Let 𝛽 = 𝛼ఙିଵ. Then we see that

𝛽ఛିଵ = (𝛼ఙିଵ)ఛିଵ = (𝛼ఛିଵ)ఙିଵ = 𝜁ఙିଵ = 1. (6.165)

This implies that 𝜏(𝛽) = 𝛽, so 𝛽 ∈ 𝑘ᇱ. Note that

𝜏 − 1 = 𝜎
ೞ

− 1 = (𝜎 − 1)



𝜎, 0 ≤ 𝑖 ≤ 𝑝௦. (6.166)

So, 𝛽 satisfies the following:

𝑁ᇲ/(𝛽) = 𝛽∑ ఙ


= 𝛼(ఙିଵ)∑ ఙ


= 𝛼ఛିଵ = 𝜁, (6.167)

where 0 ≤ 𝑖 ≤ 𝑝௦.

Now, after establishing the preceding lemmata, we are ready to prove that 𝐿 = 𝑘.

(Step 1) We know that 𝑘 ⊆ 𝑘௨ ⊆ 𝑘. So we can extend Frobenius automorphism 𝜑 of

𝑘 to an automorphism 𝜓 of 𝑘. Denote the fixed field of 𝜓 in 𝑘 by 𝐹ట. Then by Lemma

3.7.3 we have the following:

𝐹ట𝑘௨ = 𝑘, 𝐹ట ∩ 𝑘௨ = 𝑘, Gal(𝑘/𝐹ట) ≅ Gal(𝑘௨/𝑘). (6.168)

Put 𝜎 = 𝜓|. Then we see that 𝜎|ೠೝ = 𝜓|ೠೝ = 𝜑. By Theorem 6.5.3, 𝜎 = 𝜌(𝜋) for some

prime 𝜋 ∈ 𝑘. The fixed field of 𝜎 in 𝐿 is 𝐿 ∩ 𝐹ట. Also we know that 𝜎 = 𝜌(𝜋) = 𝜆గ, so we

have the following:

𝑘 ⊆ 𝑘గ = 𝐿 ∩ 𝐹ట ⊆ 𝐹ట. (6.169)

To prove that 𝐿 = 𝑘(= 𝑘గ𝑘௨), we need to show that 𝐹ట = 𝑘గ. We have the following

diagram:
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𝑘 = 𝐹ట𝑘௨

𝐹ట 𝐿 = 𝑘గ𝑘௨

𝑘గ 𝑘௨

𝑘

?

?
(6.170)

(Step 2) Now consider a finite extension 𝑘ᇱ of 𝑘 such that

𝑘 ⊆ 𝑘గ ⊆ 𝑘ᇱ ⊆ 𝐹ట, (6.171)

where 𝑘గ = 𝑘ଵ,గ . By Lemma 3.7.3, 𝐹ట ∩ 𝑘௨ = 𝑘, so 𝑘ᇱ/𝑘 is a totally ramified Abelian

extension. Hence, by Theorem 3.10.1, [𝑘ᇱ ∶ 𝑘] is the product of a factor of 𝑞−1 and a power

of 𝑝, where 𝑞 is the order of the residue fields of 𝑘ᇱ, 𝑘. Recall that [𝑘గ ∶ 𝑘] = 𝑞 − 1, so

[𝑘ᇱ ∶ 𝑘గ] is a power of 𝑝 for any 𝑘
ᇱ.

(Step 3) Now assume 𝑘గ ≠ 𝐹ట. Then there is a cyclic finite extenson 𝐸/𝑘, which satisfies

the following conditions [6]:

𝑘 ⊆ 𝐸 ⊆ 𝐹ట, 𝐸 ⊈ 𝑘గ. (6.172)

By (ii), [𝐸 ∶ 𝐸 ∩ 𝑘గ] = [𝐸𝑘గ ∶ 𝑘

గ] is a power of 𝑝 (𝐸𝑘


గ is totally ramified), but [𝐸 ∩ 𝑘


గ ∶ 𝑘]

is coprime to 𝑝 since (𝐸 ∩ 𝑘గ)/𝑘 is a subextension of 𝑘

గ/𝑘. Then we see that there exists an

extension 𝐸ᇱ of 𝑘, which is cyclic and its degree is a 𝑝-power,

𝐸ᇱ ∩ (𝐸 ∩ 𝑘గ) = 𝑘 and 𝐸ᇱ(𝐸 ∩ 𝑘గ) = 𝐸. (6.173)

Consider:

𝐸𝑘గ

𝐸 𝑘గ

𝐸ᇱ 𝐸 ∩ 𝑘గ

𝑘





q-1



(6.174)
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Since 𝐸 ∩ 𝑘గ ⊆ 𝑘గ and 𝐸 ⊈ 𝑘గ, we have 𝐸
ᇱ ⊈ 𝑘గ. As 𝐸

ᇱ/𝑘 is a finite cyclic 𝑝-extension

of 𝑘, replacing 𝐸ᇱ with a subfield if necessary, a finite cyclic 𝑝-extension 𝐸ᇱ over 𝑘 can be

found, satisfying 𝑘 ⊆ 𝐸ᇱ ⊆ 𝐹ట and [𝐸ᇱ ∶ 𝐸ᇱ ∩ 𝑘గ] = 𝑝. This can be summarized as follows:

𝐹ట

𝐸ᇱ 𝑘గ

𝐸ᇱ ∩ 𝑘గ

𝑘

?

ೞశభ



ೞ

(6.175)

where 𝑠 ≥ 0.

Let 𝑙 = 𝐸ᇱ ∩ 𝑘గ. We know that 𝒰 ≅ Gal(𝑘గ/𝑘) by the isomorphism in 6.109. Denote the

subgroup isomorphic to Gal(𝑘గ/𝑙) under this map by 𝒰
ᇱ. Since 𝒰/𝒰

ᇱ ≅ Gal(𝑙/𝑘), we see

that 𝒰/𝒰
ᇱ is cyclic group of order 𝑝௦. Hence there is a character 𝜒 of 𝒰/𝒰

ᇱ with order 𝑝௦.

We can view it as a continuous character of the compact group 𝒰 with kernel 𝒰
ᇱ. It will

be shown that there exists a continuous character 𝜆 with order 𝑝௦ାଵ such that 𝜒 = 𝜆. We

refer the reader to [8] and [19] for the facts below about the structure of𝒰ଵ and the character

group of ℤ.

Firstly recall that 𝒰 = 𝜅× ×𝒰ଵ by Theorem 3.4.5.

Case 1: Assume that 𝑘 contains no primitive 𝑝th root of unity. Then 𝒰ଵ is isomorphic to the

direct product of finitely or infinitely many copies of ℤ. The set 𝜒(𝜅
×
 ) must be equal to 1,

because the order of 𝜅× is coprime to 𝑝. Also, since 𝒰ଵ is compact, it is enough to study the

character group of ℤ. It is known that the character group of the 𝑝-adic integers, i.e. ℤ is

isomorphic to ℚ/ℤ, which is a divisible group. So the existence of 𝜆 is obvious.

Case 2: Now suppose that 𝑘 contains a primitive 𝑝-th root 𝜇 of unity. Then 𝑘 has characteristic

0. This implies that 𝒰ଵ ≅ ℤ/𝑝ℤ ⊕ ℤௗ, where 𝑎 ≥ 0, 𝑑 ≥ 1. Since 𝑙 ⊆ 𝐸ᇱ, where 𝐸ᇱ is a

cyclic extension of degree 𝑝௦ାଵ, by Lemma 6.5.7, 𝜇 ∈ 𝑁(𝑙/𝑘). Hence, it follows from the

equation 6.150 that 𝜌(𝜇)| = 1, that is, 𝜇 ∈ 𝒰
ᇱ and 𝜒(𝜇) = 1. Since 𝜒(𝜇) = 1, we see

that we can find a suitable character on ℤ/𝑝ℤ. We can find a character 𝜆 on ℤௗ such that
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𝜒 = 𝜆 as above.

(Step 4) Now let 𝜒 and 𝜆 be as above, 𝒰ᇳ = ker(𝜆) and 𝑘ᇱ the subfield of 𝑘గ, corresponding

to 𝒰ᇳ. So,

𝒰ᇳ ≅ Gal(𝑘గ/𝑘
ᇱ), 𝒰/𝒰

ᇳ ≅ Gal(𝑘ᇱ/𝑘). (6.176)

Since 𝑙 = 𝐸ᇱ ∩ 𝑘గ and 𝑙 ⊆ 𝑘ᇱ ⊆ 𝑘గ, 𝑙 = 𝐸ᇱ ∩ 𝑘ᇱ. Also, according to the diagram, 𝐸ᇱ/𝑘 is a

cyclic extension of degree 𝑝௦ାଵ. Since 𝜆 is a character of order 𝑝௦ାଵ, 𝑘ᇱ/𝑘 is also of degree

𝑝௦ାଵ. It follows that there exists a cyclic extension 𝑀/𝑘 of degree 𝑝 such that 𝐸ᇱ𝑘ᇱ = 𝑀𝑘ᇱ.

Consider the following diagram:

𝐸ᇱ𝑘ᇱ = 𝑀𝑘ᇱ 𝑘గ

𝐸ᇱ 𝑘ᇱ

𝑙 = 𝐸ᇱ ∩ 𝑘ᇱ

𝑘




ఒ

ఞ



ೞశభ



ೞశభ

ೞ

(6.177)

But, by Theorem 6.5.6, 𝑀 is a subset of 𝑘గ = 𝐿 ∩ 𝐹. This implies that 𝐸 ⊆ 𝑀𝑘ᇱ ⊆ 𝑘గ and

this contradicts 𝐸ᇱ ⊈ 𝑘గ. So we have proved that:

𝐹 = 𝑘గ, 𝑘
 = 𝑘௨𝐹 = 𝑘௨𝑘గ = 𝐿. (6.178)

It can be stated as a theorem:

Theorem 6.5.8. Let 𝑘 be a local field. Then

𝑘 = 𝑘௨𝑘గ. (6.179)

for any prime element 𝜋 of 𝑘.

Example 16. Let 𝑘 be the field of 𝑝-adic numbers ℚ. By Example 15, we have

𝑘 = ℚ(𝑊

 ), 𝑛 ≥ 1, (6.180)
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where𝑊
 is (the group of) all 𝑝ାଵ-th roots of unity in 𝑘. So,

𝑘 =ራ



𝑘 = ℚ(𝑊), (6.181)

where,𝑊 is (the group of) all 𝑝-power roots of unity in 𝑘
. Also we know that,

𝑘௨ = ℚ(𝑉ஶ), (6.182)

where 𝑉ஶ is (the group of) all roots of unity in 𝑘 with order coprime to 𝑝. Therefore ℚ


is generated by all roots of unity over ℚ in 𝑘
.

Finally, we prove that 𝜌 is the local Artin map. Recall that 𝐴𝑟𝑡 satisfies the following:

(i) For a prime 𝜋 ∈ 𝑘, 𝐴𝑟𝑡(𝜋)|ೠೝ = 𝜑, where 𝜑 is the Frobenius automorphism of

𝑘௨.

(ii) For each finite Abelian extension 𝑘ᇱ over 𝑘, Ker 𝐴𝑟𝑡 = 𝑁(𝑘ᇱ/𝑘).

Theorem 6.5.9. The map 𝜌 is the local Artin map.

Proof. Let 𝜋 be any prime in 𝑘. By Theorem 6.3.3, 𝜋 ∈ 𝑁(𝑘గ/𝑘) for 𝑛 ≥ 0, so it follows

from (ii) that 𝐴𝑟𝑡(𝜋)|ഏ = 1. This implies that 𝐴𝑟𝑡(𝜋)|ഏ = 1. As 𝐴𝑟𝑡(𝜋)|ೠೝ = 𝜑

by (i), we see that 𝐴𝑟𝑡(𝜋) = 𝜆గ = 𝜌(𝜋). Since 𝑘
× is generated by prime elements of 𝑘,

𝐴𝑟𝑡 = 𝜌.
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