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ABSTRACT 

 

 

LANDMARK LOCALIZATION ON COLOR CODED DIFFUSION ANISOTROPY 

IMAGES USING CONVOLUTIONAL NEURAL NETWORKS 

 

Landmark localization, finding exact location of structures in an image is a first stage of 

many complex computer vision problems. Locating specific landmarks on brain images is 

one of the stages in defining the target in functional surgery and in estimating point wise 

correspondence in image registration. Nowadays, various types of convolutional neural 

networks (CNN) have been proposed that are able to interpret complex computer vision 

problems. In this study, a CNN based landmark detector is employed to locate specific 

landmarks at given MNI coordinates, on an individual’s diffusion MR brain images. MR 

diffusion images, with their high degree of heterogeneity, especially in white matter, provide 

a rich set of features compared to other basic structural images such as T1 or T2 weighted 

images. Results show that finding a specific point on brain using diffusion characteristics by 

CNN based model is sustainable and has a potential to be a base for image registration 

techniques.  
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ÖZET 

 

 

RENK KODLU DİFÜZYON ANİSOTROPİ GÖRÜNTÜLERİNDE EVRİŞİMSEL 

SİNİR AĞLARI YORDAMIYLA İŞARETÇİ BULMA  

 

İşaretçi tayini, yani belirli bir yapının görüntü içindeki kesin konumunu belirlemek bu 

çalışmanın amacı olan görüntü çakıştırma işlemleri gibi bir çok bilgisayarlı göru probleminin 

ilk safhasını oluşturmaktadır. Beyin görüntüleri üzerinde belirli işaretçileri saptamak, 

işlevsel cerrahide ve nokta bazlı görüntü çakıştırma işlemlerinde başarılması önemli hedefler 

arasında yer almaktadır. Günümüzde, karmaşık bilgisayarlı görü problemlerinde 

kullanılabilecek evrişimsel sinir ağ modelleri (ESA) öne geliştirilmektedir. Bu çalışmada, 

MNI koordinatları bilinen bir noktayı bireyin beyin difüzyon görüntüsünde tespit etmek için 

ESA tabanlı işaretçi bulucu sunulmuştur. Yüksek heterojeniteye sahip MR difüzyon 

görüntüleri, özellikle beyaz maddede T1 veya T2 ağırlıklı MR görüntüleri gibi diğer yapısal 

görüntüleme yöntemlerine göre daha zengin nitelikler sunmaktadır. Sonuçlar göstermektedir 

ki, beyinde yer alan belirli noktaları bulmak için beynin difüzyon karakteristiğini ESA bazlı 

bir yöntemle bulmak sürdürülebilirdir ve görüntü çakıştırma yöntemleri için temel 

oluşturacak potansiyele sahiptir.  
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1. INTRODUCTION 

 

Landmark localization, finding the exact location of structures in an image is the first stage 

of many complex computer vision problems, including registration [1], segmentation [2], 

recognition[3], pose estimation [4, 5], object localization [6], and many more specialized 

problems. Landmark detection and localization can be helpful in clinical applications and/or 

provide possibilities to other research projects [7, 8]. Locating specific landmarks on brain 

images is one of the stages in defining the target in functional surgery and in estimating 

pointwise correspondence in image registration [9, 10].  

The human visual system is marvellous. It can recognize, classify, interpret objects within 

less than a second. Even though this procedure seems effortlessly to us, it can be very hard 

to express it to recognize an object in an algorithmic way since it’s hard to make precise 

rules that work both under special and general circumstances. The artificial neural network 

is one of many methods that has been proposed over years to overcome these common 

challenges. When looking back to last two decades of related literature, it’s the most 

promising approach solving complex computer vision problems.  

1.1. MOTIVATION 

In pose estimation, detection, or recognition procedures, locations of landmarks are useful 

since it enables highlighting key features of an image, and making easier to understand data 

and patterns of it. Likewise, in registration, determining locations of related landmarks can 

be used in space normalization and linear transformation processes which are prior 

conditions to nonlinear image registration processes. Manual landmark annotation is a time 

consuming, labour-intensive, prone to false marking method that leads the system to fatal 

flow, inconsistent and expensive method [7].  

In image-guided surgery, inferring pose of the body to register pre-and intra-interventional 

data is a well-studied problem [11]. The 2D-3D registration process includes merging 3D 

image modalities such as MRI, CT with 2D image modalities such as ultrasound, x-ray, optic 

camera images into the same coordinate system. As inter step, detecting and locating mutual 

landmarks is a preferable method.   
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Although the problem is too complex on a global scale without prior knowledge on the 

application domain, the CNN model could detect mutual landmarks from both domains [12]. 

As specified in [12], the problem of registering one’s head MR volume to planar camera as 

shown is Figure 1.1 images is addressed, motivated by the incision planning in neurosurgery 

[13]. Locating landmarks in both spaces could serve this purpose, especially, when 

annotating data from different domains could be expensive. On the other hand, domain 

generalization, which in this case refers to learning landmarks on a domain which annotation 

has lower costs, and applying it to another domain which annotation is not available or has 

high cost of time or source.   

 

Figure 1.1. a) Person’s camera image, b) 3D model obtained from his MRI  [12] 

 

Thus, working on different imaging modalities is not the only case. While registering 

medical images from same imaging modality, finding specific points on both domains is also 

necessity. It is possible to estimate the rigid transformation if a sufficient number of such 

landmark correspondences could be reliably detected.   

MR diffusion images, with their high degree of heterogeneity, especially in white matter, 

provide a rich set of features compared to other basic structural images. In other structural 

imaging methods such as T1 or T2 weighted images, they mainly focus on protons ( 𝐻 
1 ) in 

water molecules (𝐻2𝑂). Since molecular structure of white matter causes homogenous view 

as seen in Fig 1.2. Diffusion images carry more information about fibers and their 

orientations than T1 weighted MR images. 
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Figure 1.2. Comparison of T1WI and DTI based Color map [14]. 

 

Diffusion tensor images are successfully implemented as the image term in the deformable 

registration framework [15]. Those methods seek a solution on a local scale for the 

correspondence of the tissue microstructure with a high degree of regularization. In [9], a 

method based on white matter fiber connection patterns derived from diffusion tensor 

imaging data is proposed to predict cortical landmarks, which are named as DICCCOLs, in 

a new single brain.  

1.2. CONTRIBUTIONS 

In this dissertation, a convolutional neural network-based landmark localization method is 

proposed and its application areas are discussed. To the best of our knowledge, it’s the first 

study that aims to detect and locate landmarks on color coded diffusion images. 

This study mainly focuses on importing and adapting achievements from heatmap producing 

CNN models on feature localization related computer vision problems [6, 30]. The proposed 

CNN model is a result of  adaption of learning outcomes from hourglass alike CNN model 

which was proposed for human pose estimation [30] to medical landmark localization by 

regressing heatmaps [8]. All convolution, pooling, and upsampling operations take place in 

3D and learn features from 4-dimensional tensor patches from color FA maps.  
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2. BACKGROUND 
 

2.1. DIFFUSION MR IMAGES 

Diffusion tensor imaging is a non-invasive imaging method that takes reference as motion 

of water (diffusion) molecules which enables to estimate the location and orientation of the 

target structure, such as white matter tracts, or muscle fibers. There are detectable signal 

losses in voxels where diffusion take place caused by acquisition of random phase spins. 

These signal losses would be less in some regions where diffusion  is restricted. Diffusion 

weighted images are acquired by applying special diffusion encoding gradients to map the 

diffusion. These motions can be measured along any axis desired. Opportunity of measuring 

diffusion along any axis that is important since prior knowledge of fiber anatomy is not 

always available, especially in brain. Nonetheless, freely diffusing water is not meaningful 

alone since it’s homogeneous, almost same in any direction. This type of diffusion is called 

isotropic diffusion. In this scenario, only one parameter is enough to describe diffusion, 

which would be a diameter of sphere. On the other hand, in biological tissues such as muscles 

or brain, water motion is inclined along certain directions due to restrictions by biological 

structures. This type of movement is called anisotropic diffusion and mostly observed in 

structures called fibers. As agreed, anisotropic diffusion is more biologically relevant and 

carries more information. Theoretically, fibers must align to the orientation which has the 

biggest diffusion constant. It’s harder to describe anisotropic diffusion than isotropic 

diffusion since its shape is related with ellipsoid in 3D. In 2D plane, anisotropic diffusion is 

observed as an oval. Obviously, there are more parameters needed to express this kind of 

motion. An oval requires 3 parameters to be expressed properly which are length of longest 

and shortest axes, and orientation of the shape. In 3D, this number jumps to 6.  
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Figure 2.1. Ellipsoid model for anisotropic diffusion 

 

Since D has 6 independent components, there has to be at least 6 independent measurements 

to be acquired. Diffusion tensor is defined as in equation 2.1.    

                                                      𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

]                                                          (2.1) 

where 𝐷𝑥𝑥, 𝐷𝑦𝑦, 𝐷𝑧𝑧 are diffusion coefficients measured along axes, and other six terms 

represent motions between each pair of directions. 𝐷 is a symmetric tensor. That means, 

𝐷𝑖𝑗 = 𝐷𝑗𝑖. The eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 and the eigenvectors 𝑒1, 𝑒2, 𝑒3 are used to 

define 𝑫 of ellipsoid that are obtained from diagonalization of D as in equation 2.2.  

                         𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

]  = [𝑒1 𝑒2 𝑒3]𝑇 [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] [𝑒1 𝑒2 𝑒3]               (2.2) 

Another parameter that is derived from these values is fractional anisotropy (FA) coefficient 

which is given in equation 2.3. The 𝐹𝐴 value has a range of 0 to 1. It’s value is 0 when 

diffusion is isotropic, and 1 when diffusion is strongly anisotropic.  

                               𝐹𝐴 =
1

2

√((𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆3 − 𝜆1)2)

√(𝜆1
2 + 𝜆2

2 + 𝜆3
2)

                                (2.3) 

Using only FA maps provides grayscale images which carries certain informations about 

fibers, yet it can be enhanced.  
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Figure 2.2. (a) FA vs (b) Color FA [14] 

The eigenvector 𝑒1, the principal eigenvector, provides an estimate of the fiber direction. 

Therefore FA weighted 𝑒1 maps are used for assigning fiber orientations colors for better 

visualization. In Figure 2.2, A) is FA map whereas B) is color FA map. Each color indicates 

different direction. Red is left-right, green is anterior-posterior, blue is superior-inferior.   

2.2. ARTIFICIAL NEURAL NETWORKS 

In this chapter, methods to be used for landmark localization are explained. Artificial Neural 

Network, or Neural Network which is a type of machine learning method, is establishing the 

backbone of our works. 

Artificial Neural Network is more than an algorithm, it’s a framework that can be used while 

working with complex data and problems without being explicitly programmed for a specific 

task. ANN finds one of the best possible approximation. As in equation 2.4,  It maps an input 

x to target y by learning parameters θ with a help of hyper-parameters 𝜇 [27]. Hyper-

parameters are non-learnable parameters that are determined by user before training. 

                                                              𝑦 = 𝑓(𝑥; 𝜃; 𝜇)                                                                   (2.4) 

As mentioned above, we have x and y pairs in our dataset. Finding relation between these 

two of them is supervised learning. Feed-forward Neural networks are mostly used within 

the context of supervised learning. However, it’s possible to train neural network models in 

context of unsupervised learning. The most popular example of unsupervised learning of 

neural networks would be autoencoders. Yet, unsupervised learning methods lie beyond the 

scope of this study. 
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 Artificial Neural Networks are inspired by signal transmission through neuron cells of living 

organisms [16]. A Neuron cell and an artificial neuron can be compared briefly by looking 

in Figure 2.3. The 2 major concepts that made foundations of Neural Networks are Threshold 

Mechanism and Hebbian Learning [16] which is a learning model that takes basis as neural 

plasticity. Thresholds in neurons produce discrete outputs that are cell is fired or cell is not 

fired when input with continuous range coming from receptors and/or other neurons. In other 

words, there is a mechanism that can be modelled as step function. This is an activation 

function of neuron. In addition, inputs are weighted before going through activation function. 

 

Figure 2.3. Structure of a neuron(left), Structure of artificial neuron (right) [27] 

 

A weight is assigned to each neuron connection. Weight between two neurons represents 

strength of the connection. Information can be restored using this weights. Learning takes 

places when these weights get updated and create patterns as a similar approach to plasticity 

that occurs in our nervous system. An adult human brain contains about 1011 neurons and 

1014 connections of neurons called synapses. It’s a good criterion to compare human 

intelligence with ANN. 

A standard feed-forward artificial neural network is composed of layers of neurons that are 

connected to each other in a certain way so that data x flows through one way and generate 

y. Neurons in the same layer are not connected to each other. As in Figure 2.4, a neuron 

makes connections with neurons in the next and previous layers. Each of the neurons gets 

activated in terms of weight and bias values that are assigned to them in the first place. 

Achieving the task that is given to Neural networks is highly dependent on number of layers 

and neurons, and weight and bias values of neurons. 
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Figure 2.4. Artificial neural network with 1 hidden layer 

2.2.1. Perceptrons 

Perceptron is a linear classifier. It’s an early steps of comprehensive neural networks that are 

used nowadays. A perceptron takes several values as an input and produces single binary 

output in terms of response of activation function to weighted input. Activation function 

takes weighted inputs as an input and passes its output to the neurons of the next layer. In 

order to increase capacity of system, modelling neurons with more complex activation 

function rather than step function with constant threshold value would be more efficient and 

more realistic. It can be nonlinear functions such as sigmoid, tanh or a linear function such 

as relu (rectifier linear unit). 

                                                  𝑓(𝑥) = {
1,   𝑤 . 𝑥 + 𝑏 > 0

      0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
                                              (2.5) 

 

 Let’s consider activation function is step function with threshold value of 0. Its output is 

identified as 1, if the sum of the multiplication of inputs and their assigned weights is higher 

than threshold, and 0 otherwise as in equation 2.5, where 𝑤 is weights, 𝑥 input, 𝑏 bias of 

neuron. 

Perceptrons offer practical and interpretable decision making system. Expressiveness of 

perceptrons is promising yet limited [17]. In order to measure what can we do with 
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perceptrons, modelling logic gates would be effective approach. Although there isn’t any 

problem expressing NOT, AND, OR NAND, NOR gates, XOR gate can’t be expressed with 

single layer perceptron. This indicates that, if classes are not linearly separable, single layer 

perceptron can’t separate. So single layer perceptron has certain capacity and to express 

some functions, using more than single layer perceptron is necessary. Multi-layer 

perceptrons are perceptrons with hidden layers as seen in Figure 2.4. That means, there are 

mid layers between input and output layers. Increasing layer size also increases the capacity 

of expressiveness of neural network. Nevertheless, not every problem and its solution are 

expressed in binary. Making the system produce output with continuous range rather than 

certain binary result could solve it. Step function that has certain threshold value can be 

replaced with some other activation function, such as sigmoid, relu or relu variations. 

Therefore, output also has a continuous range. 

2.2.2. Activation Functions 

Activation functions determines the range of output. There are nonlinear activation functions 

such as sigmoid as in equation 2.6 and Figure 2.5 that squashes their output to certain range 

that is (0, 1) for sigmoid. relu, (rectifier linear unit) as in equation 2.8 and Figure 2.6 (red 

line) sets zero if input value is smaller than 0, and produces same value with input if input is 

bigger than 0. That makes its range [0, ∞). Derivation of sigmoid function is given in 

equation 2.7 and derivation of relu is given in equation 2.9.  

                                                        𝑆(𝑧) =
1

(1 + 𝑒−𝑧)
                                                                  (2.6) 

                                                        𝑆′(𝑧) = 𝑆(𝑧). (1 − 𝑆(𝑧))                                                     (2.7) 
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Figure 2.5 Sigmoid function 

                                                       𝑅(𝑧) = {
𝑧, 𝑧 > 0
0, 𝑧 ≤ 0

}                                                          (2.8) 

                                                       𝑅′(𝑧) = {
1, 𝑧 > 0
0, 𝑧 < 0

}                                                         (2.9) 

 

Figure 2.6. Relu vs elu 

 

Characteristics of derivative of activation functions have important role since they are used 

in error calculation and backpropagation, derivative. Although nonlinear functions could be 

good classifiers than step function, they have a significant limitation that when number of 

layers increases, outputs start to pile up limits of the function. Big changes on the 𝒙 is not 

observed on 𝒚. This problem is called as vanishing gradients. On the other hand, activation 



11 

 

 

functions with linear characteristics such as relu, don’t have a problem like this since it sets 

output to input value as long as it is positive. It’s proved that this approach is more efficient 

in multi-layer architectures. 

                                             𝐿(𝑧) = {
𝑧,                           𝑧 > 0
𝛼. (𝑒𝑧 − 1), 𝑧 ≤ 0

}                                                (2.10) 

                                                 𝐿′(𝑧) = {
𝑧,                𝑧 > 0
𝛼. 𝑒𝑧, 𝑧 < 0

}                                                      (2.11) 

 

Another activation function is elu [18] as in equation 2.10 and Figure 2.6 (blue line) where 

𝛼 is a pre-defined constant coefficient. Actually, It’s an upgraded version of relu. It aims 

performance increase by adjusting behaviour of relu on negative values. It’s proposed that 

assigning proportionally small values rather than just setting all negative values to zero 

makes gradients more effectively distributed. 

2.2.3. Loss Function 

Loss function, or cost function is a function which is desired to be minimized, indicates how 

good is the result of the system by comparing the result with the desired result. Loss function 

evaluates the output and reduces it to a number which is called error. There several loss 

functions to be used for neural networks nowadays. In equation 2.12 squared error loss 

function is given. Type of problem has a determining role on choosing loss function. Cross 

entropy can be used on binary or multi-class classification problems  whereas variations of 

squared error can be used on regression problems 

                                                  𝐸𝑟𝑟𝑜𝑟 =
1

2
∑(𝑦𝑖 − ℎ(𝑤)𝑖)2 

𝑖

                                                (2.12) 

2.2.4. Back Propagation 

Neurons learn by adjusting its weights. There are 2 essential procedures that adjust weights 

that are forward pass and backward pass. In forward pass, weights are initialized, an output 
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is produced. The error is calculated between output which is produced by neural network 

and ground truth in terms of loss function.   

 

Figure 2.7. Effect of a change on a weight to next layers 

 

Derivative of the error function tells us whether error is increasing or decreasing. Backward 

pass is about propagating calculated error with respect to output of last layer back to the rest 

of network till the first layer using gradient descent so that all weights and bias values can 

be updated properly [19]. A concise explanation to backpropagation would be its practical 

implementation of chain rule of derivatives to calculate the gradient of the loss function in 

terms of learnable parameters which are weights and biases as in Figure 2.7. That leads to 

contribution of each parameter to loss as in algorithm 3.1 where 𝑙 is number of layer, 𝜎 is 

related activation function, 𝑤 is weight, 𝑏 is bias of a neuron, 𝛻𝑎𝐶  is the rate of change of 

C w.r.t. the output activations. 

 

Algorithm 3.1. Backpropagation  

1.Input 𝒙 : samples from training dataset 

2. Compute in feed forward : 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 ,   𝑎𝑙 = 𝜎(𝑧𝑙) for each l =2,3,…,L   

3. Calculate output error : 𝛿𝐿 =  𝛻𝑎𝐶 . 𝜎′(𝑧𝐿)  

for l from L-1 to 2  

    compute : 𝛿𝑙 = ((𝑤𝑙+1)𝛿𝑙+1). 𝜎′(𝑧𝑙)  

end for 

Output : The gradient of cost function is given by 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑗
𝑙 and 

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 
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Afterwards, optimizers take place to update these values to minimize loss. 

2.2.5. Optimization 

Optimization algorithms are used to minimize loss (another name for error function output) 

through gradients that were calculated by backpropagation. Computed output values will be 

updated in the direction of optimal solution. There are 2 major categories of optimization 

algorithms which are first order and second order optimization algorithms. 

The second order optimization algorithms use second order derivative. The second order 

derivative tells increment or decrement in first order derivative which leads to an opinion 

about curvature of function. Nonetheless, it is not used as much as first order optimization 

algorithms since its cost is higher although it may outperform first order optimization 

algorithms. 

In first order optimization algorithms use gradient values of target function. The first order 

derivative tells if the function increases or decreases at a specific point. A gradient shows 

the rate of change on a specific direction of function [20]. It can be said that gradient is 

generalized state of derivative for multi-variable dependent functions. The most popular first 

order optimization algorithm is gradient descent. 

                                                   𝜃 ←  𝜃 −  𝛼. 𝛻𝐽(𝜃)                                                                  (2.13) 

Gradient descent plays crucial role on finding the minimal point of loss function. As in 

equation 2.13, it updates parameters θ by gradient of loss functions, where α is the learning 

rate that penalizes the rate of change in order to prevent making radical changes on 

parameters. If learning rate is so small it will take longer for system to converge, meanwhile 

if learning rate is large, it will probably overshoot the global minima over and over again. 

Since gradient descent calculates gradient of whole dataset for 1 update it would be very 

slow process and its computational cost can’t be afforded always since the memory may be 

inadequate for entire dataset. 

                                               𝜃 ←  𝜃 −  𝛼. 𝛻𝐽(𝜃;  𝑥(𝑖);  𝑦(𝑖))                                                (2.14) 
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As in equation 2.14 where 𝑥(𝑖)  and 𝑦(𝑖) are examples from training data, Stochastic 

gradient descent (SGD) is more suitable for larger datasets. Per one update, one training 

example is enough for SGD. Most of the time it’s faster than gradient descent. Another thing 

about SGD is frequent updates. It makes parameters have high variance that causes 

fluctuations in loss. There’s an approach called mini-batch gradient descent. It uses n data 

points where n > 1. There are several ways that is proposed by Geoffrey Hinton to improve 

optimization algorithms in one of his courses over Coursera, such as using momentum, 

adaptive learning rate. As an example RMSprop is introduced [21]. RMSProp is a gradient 

based optimization algorithm that uses momentum technique to converge with an that during 

a calculation of a weight, it divides learning rate by a magnitude of gradients for that weight. 

 

Figure 2.8. Standard gradient descent 

 

As seen in Figure 2.8 there is a difference between step sizes between directions. The main 

idea behind momentum is to use gradient to use velocity of an rolling object on a surface 

with curvatures rather than its position. If incline gets steeper on direction that object goes, 

momentum helps to adjust velocity. Momentum helps to prevent oscillation by restricting 

steps taken in 𝑦 direction. This also gives a chance to choose higher learning rates. 

2.2.6. Deep Learning 

Deep Learning, which is a concept that enables us to design neural networks with enhanced 

learning capacity by adding numerous more layers is a specialized machine learning area 

that is aimed to overcome near human-level or above human-level intelligence required tasks 

by machines. This idea  is almost as old as artificial neural networks, yet it had different 

names over the years, with different philosophical aspects. In Figure 2.9, the relationship 

between deep learning methods and other AI approaches is shown. 
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Figure 2.9. Venn diagram of relations between selected AI approaches [27]. 

 

Rise of deep learning started at the beginning of the 2000s. The concept of deep learning 

includes regulations and training methods that are explained in section 2.3. On the other 

hand, the computational power of machines had reached a certain level that enabled 

theoretical knowledge that made training deeper neural networks (neural networks with more 

layers) possible transferred into practice. The use of GPU in neural network training is worth 

mentioning since it remarkably shortened the training periods. Also, not only hardware also 

software infrastructure has a role. User-friendly frameworks written on high-level 

programming languages have become very popular and been supported by large 

communities. Support of large crowds had lead deep learning to find itself more area of use 

as the number of available training dataset has become available. 

2.2.7. Deep Feed-Forward Neural Networks 

Adding more layers and expecting consistent and accurate results are not realistic. The more 

layers are added to ANN, the harder it gets to converge. Because backpropagation  algorithm 

might not find global minimum and confuses one of the local minimum points with global 

minimum. This possibility is directly proportional to number of parameters, thus  number of 



16 

 

 

layers. When using only backpropagation came short on deep feed forward networks, new 

challenge is born. There are few significant approaches that are proposed. 

One of them is greedy layer-wise training which indicates each layer must be trained 

separately [22]. In other words, each layer is treated as output layer one at a time. After 

getting meaningful weights comparing to random weights, all layers are merged. Therefore 

ANN is more determinant. 

As mentioned above, one of the significant developments is using linear activation functions 

to prevent vanishing gradients problem. 

First thing that is expected from neural network (NN) is to make correct predictions. Yet, 

it’s not enough by itself. What really matters is making predictions by learning patterns in 

the training data, rather than memorizing answers. In order to train neural network, there are 

requirements to fulfil. There are some adjustments on hyper-parameters, such as setting the 

right activation functions. These changes should be done by considering response of neural 

network to data and task. Before that, training dataset must be inspected. It’s as important as 

neural network design. If dataset has high variance, NN may likely underfit, which means 

NN are hesitant among possibilities. It can be observed as fluctuations in loss graph during 

training and low success ratio over validation dataset. High variance in dataset is not the 

only reason of underfitting. If NN doesn’t have enough parameters to express the target 

function, it may not converge. If dataset has high bias, in other words, if there are lots of 

examples of a certain case, NN might choose to memorize these examples. It’s called as 

overfitting. It can be observed as high accuracy on training set, whereas these accuracy 

doesn’t show up on examples that NN hasn’t seen before, such as validation set. Having 

more parameters than needed may also lead up to overfitting. Another efficient way to 

prevent overfitting is dropout [23]. It’s a regulation that’s applied to neurons that involves 

setting weights of a neurons to zero with a certain probability. Therefore, if a neuron has 

high weight values it would be filtered by setting its weight to zero. If it was representing 

something important, it would most likely be set to a similar value. But if it was set by chance 

or a result of an imbalance in data, it would be set to lower value as it should be.  

Therefore, training dataset must be normalized, standardized. An effective way of 

normalization is batch normalization [35]. It maintains the activations of layers of NN in a 

certain range. Standardization of outputs increases total performance.   
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2.3. CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNNs) are not so different than ordinary neural networks. 

They have neurons with learn-able parameters called weights and biases. They have also 

activation functions. They also have loss function like regular neural networks do. Thus 

CNNs are good at focusing on local structures than regular neural networks. CNNs are 

suitable for the data that has spatial arrangement. 

Let’s define convolution operation first as the way it is used in the context of Convolutional 

Neural Networks. Convolution is a response of a function when another function passes 

through it. It’s a mathematical method to combine two different signals to generate a new 

signal [26]. In equation 2.15 spatial convolution formula in discrete form is given.  

                         𝑓[𝑥, 𝑦] ∗ 𝑔[𝑥, 𝑦]  = ∑ ∑ 𝑓[𝑛1, 𝑛2]. 𝑔[𝑥 − 𝑛1, 𝑦 − 𝑛2]

+∞

−∞

+∞

−∞

                          (2.15) 

Convolution is a linear operation. In fact, it’s composed of multiplication and addition. In 

the image, the first signal is input data, and the second signal is the convolution kernel or 

convolution filter. Elements of kernels are considered as neurons. A kernel is slid over an 

image. Centre element of kernel is placed over each pixel in the image. Value of weighted 

sum of centred pixel and its neighbours is assigned to one of the pixels of the output array 

that spatially corresponds to centred pixel as seen in Figure 2.10. Size of the convolution 

kernel determines local receptive field, which means how far neighbours are to be 

considered. With increasing size of kernel increases accuracy of operation, but also increases 

the computational cost.  

 

Figure 2.10. Implementation of convolution operation in images 
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Regular feed forward neural networks is not suited for multidimensional data such as images. 

For example, for a tiny image size of 28 𝑥 28 𝑥 3 (width, height, color channels), 

28 𝑥 28 𝑥 3 =  2352 weights needed for first layer of neural network(NN). Although it is 

not that high, when size of image is more relatable such as 256 𝑥 256 𝑥 3, that means 

256 𝑥 256 𝑥 3 =  196608 weights, just for first layer. Besides, many of these connections 

are redundant. Images are composed of local structures. There is no need to look at all the 

pixels of the image at once to inform about an object that holds relatively small percentage 

of place in the image.  

There are certain key concepts that brings CNN forward, which are sparse interactions, 

parameter sharing, and equivariant representations [27]. Sparse interactions occur when 

kernel is smaller than image, which usually is.  it’s enough a feature to appear once in the 

image in somewhere, rather than dominating structure in the image, for CNN to activate. 

Parameter sharing is using the same parameters over and over again. Equivariant 

representation refers to changing in the input affects the output in the same way. It must be 

said, Convolutional layers have equivariant at some level. If data has significant 

transformations, it requires another manoeuvres. 

Using same neurons over and over again as in Figure 2.7 is not only computationally 

efficient, it also works better than regular NNs. Starting with LeNet-5 that made itself 

mentioned by recognizing handwritten digits [24], and followed by a huge success of Alex-

Net on ImageNet classification [25], convolutional neural networks (CNN) have been 

showing great success in computer vision tasks and outperformed earlier methods for two 

decades. Although LeNet-5 achieved human level accuracy on recognizing handwritten 

digits, it’s a simpler task than general purpose object classification. On the other hand, 

AlexNet showed CNNs can be also useful in large scale problems such as classifying an 

object among 1000 classes in high resolution images. It proved we hadn’t reached the limit 

of learning capacity of convolutional neural networks.  
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Figure 2.11. Representation of neurons in CNN. 

 

In Figure 2.11, representation of neurons is shown where 𝒙𝒏 is input layer, A and B are 

convolutional layers, max is max pooling layer, and F is fully connected layer which is 

responsible for decision process. 

 

Figure 2.12. LeNet-5 Architecture[24] 

 

In Figure 2.12, architecture of Lenet-5 is shown. It takes an input, convolves by 5𝑥5 kernel. 

As a result of convolution operation, size of the output is 28 𝑥 28. Dimension calculation is 

given in equation 2.16. After convolution, pooling operation takes places where it down-

samples its input from 28 𝑥 28 to 14 𝑥 14. After pooling, feature maps are convolved with 

5𝑥5 kernels and different feature maps with 10 𝑥 10 are generated. After another pooling, 

output is reshaped so it could be sent to fully connected neural network for classification 

process. Convolution and pooling operations are used for extracting features from data. The 

role of pooling operation is reducing number of parameters which also means  reducing 
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computational cost. With pooling, exact location of a feature is also lost. Classifier makes 

decisions based on features, not where exactly is in the input image. 

There are several practical applications that getting more performance on CNN such as data 

augmentation. Augmenting the dataset is quite popular method make CNN more robust to 

noise or variances. Data augmentation is a process that generating new samples from dataset 

by making small changes on original samples from original data. While working with 

images, changing resolution of image, flipping, cropping, rolling, rotating, translating an 

image could be useful. The idea behind this procedure is, an object can be perceived different 

under different conditions by machines. The objective of data augmentation is to regulate 

response of neurons when encountering different forms of objects in the image [28]. 

Yet, not every computer vision problem can be represented as a classification problem. In 

biomedical imaging, it’s desired to be more specific. Usually, the aim is to identify each 

basic unit which can be pixel or voxel since a single one of them might make a difference, 

for which the traditional convolutional networks designed for simple classification may not 

satisfy these kinds of expectations. Nowadays, various types of CNNs have been proposed 

that are able to interpret so many complex problems. Pixel-based localization of an object, 

landmark or a structure is one of them. 

2.3.1. Types of Layers 

2.3.1.1. Convolutional Layers 

A convolutional layer is an essential layer for CNN where convolution operation takes place. 

Its basic hyper-parameters to be set are the size of kernels, number of these kernels, stride 

value, behaviour on edges of the array, type of activation function. What behaviour on the 

edges meant is, as a result of convolution, there is a reduction in the size of the array. As a 

practical application is to pad the convoluted array to keep the size of the array fixed. 

Therefore, not only array size calculations, but also making the array to its initial size could 

be easier since a symmetrical structure can be created by simply switching pooling layers 

with up-sampling layers. Kernel size determines how far and along which dimensions to 

consider to determine a new value of relevant array element. 
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                                                     𝑂 = (
𝐼 − 𝐾 + 2𝑃

𝑆
) + 1                                                         (2.16) 

Equation 2.16 denotes how to calculate output size O after convolution operation where I 

input, K kernel size, P amount of padding and S is amount of stride. In addition, third 

dimension is related to number of kernels since a different feature map is generated for each 

kernel. 

2.3.1.2. Pooling and Up-Sample Layers 

A pooling layer takes several parameters in a certain area as an input and returns a single 

value as seen in Figure 2.13. This value can be either an average of inputs (average pooling) 

or the maximum value of inputs (max pooling). Pooling is a basic way to reduce the number 

of parameters in the model. Parameter reduction is important in two ways which are forcing 

the model to recognize patterns and correspondences in data by representing it with fewer 

parameters, and reducing the computational cost of the system. The pooling operation is 

deterministic, so it doesn’t have learn-able parameters. Its basic hyper-parameters are kernel 

size and stride value. 

 

 Figure 2.13. Pooling Operation 

 

An up-sampling layer is the opposite function of the pooling operation that is shown in 

Figure 2.14. It takes several parameters in a certain area as input and doubles them in a 

certain way, such as nearest neighbour interpolation. Nonetheless, Up-sampling and pooling 

layers have a lot in common, actually. Up-sampling layer doesn’t have any learning 

parameters, too. It has the same types of hyper-parameters as the pooling layer. 
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Figure 2.14. Up-sampling operation 

 

2.3.1.3. Dropout Layers 

Dropout layers apply dropout regularization to its input. Its only hyper parameter is the 

dropout rate which is non-trainable value. The dropout rate takes a value between 0 and 1. 

It determines how possibly activated neurons get set zero. 

2.3.1.4. Fully Connected Layers 

Fully connected layers refer to layers of ordinary feed forward neural networks. They are 

added after several convolutional layers. Convolutional layers are responsible for extracting 

features in data and fully connected layers are responsible for producing output. Their task 

can be classification or regression. CNN with fully connected layers is a common structure 

since it’s much more efficient to pass data through convolutional layers before the neural 

network than sending raw data directly to the neural network. 

2.3.1.5. Replacing Fully Connected Layers with Convolutional Layers 

Replacing fully connected layers can be advantageous due to their computational cost and 

limited applicability. In a landmark localization problem, fully connected layers may 

produce a vector k that denotes to coordinates of the related landmark. It can be directly 

regressing the numbers or by sliding a window over the input image and classifying patches 
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that are cropped from the input image whether they include the related landmark or not. 

Instead, as proposed in [29] a convolutional layer with 1 x 1 kernel makes dot product over 

3 dimensions which is equivalent to what fully connected layers do. Then it enables to 

produce the output by reducing the depth of the previous convolutional layer controllably to 

the desired output, which in our case it’s a heatmap that represents the likelihood of position 

of related landmark [30]. 

2.3.1.6. Skip Layers 

Skip layers is feeding a layer with not only output of previous layers but also output of a few 

previous layer [31]. It can be summing up feature maps or concatenating feature maps and 

send it to convolution layer. It is proposed that by doing so, backpropagation works 

efficiently and achieved preserving locations and characteristics of features in data. 

2.3.1.7. Batch Normalization Layers  

This type of layers is responsible for normalizing its input. Aim of batch normalization 

procedure is to increase the stability and performance on deep structures by maintains the 

activations of previous layer at certain range, for example between 0 and 1 [35].  
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3. MATERIALS AND METHODS 

 

All of the computation operations are written in python programming language and well 

known libraries for python such as numpy, matplotlib. Dipy is used for handling and 

processing diffusion MRI data [37]. Keras is used to build CNN models [32]. 

3.1. CNN STRUCTURE AND TRAINING 

Pre-processed diffusion MR data of 400 randomly chosen subjects, which are available 

under the 1200 Subjects Data Release of the Human Connectome Project (HCP), are used in 

CNN training [33]. 90 landmarks are randomly selected in multiple brain regions using the 

Harvard-Oxford Subcortical Atlas in MNI coordinates. The regional distribution of 

landmarks is specified in Table 3.1. 

 

Table 3.1. The regional distribution of landmarks 

Num. of 

Landmarks 

Brain Region 

30 White Matter 

30 Gray Matter 

10 Ventricles 

4 Thalamus 

4 Brain Stem 

2 Caudate 

2 Putamen 

2 Pallidum 

2 Hippocampus 

2 Amygdala 

2 Accumbens 

 

Microsoft Azure cloud infrastructure is used to process a big amount of data. By using the 

“Batch Service” and Python API, 400 virtual machines running Linux operating systems are 

initiated and necessary software is installed. Each machine downloads the data of one subject 
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from Amazon servers, fits the tensor model to the diffusion MR data, and computes the 

eigenvectors and eigenvalues by using the DTIFIT tool of the FSL. Landmarks, defined in 

MNI coordinates, are transferred to the subject’s brain by using the deformation field, which 

is estimated on T1-weighted MR images by FNIRT tool of FSL and available under the HCP 

repository [34]. The data are downloaded to the local workstation and color-coded fractional 

anisotropy (color FA) maps are calculated by element-wise multiplication of FA maps with 

biggest eigen-vector tensors. For each landmark of each subject, a heat map is generated as 

a 3-dimensional Gaussian function centred at the landmark location and having a standard 

deviation of 1 voxel.  

 

Figure 3.1. Sample of input data and  label heatmap that shows position of selected 

landmark   

 

In Figure 3.1, 𝑥𝑛 denotes one of the slices of input data which landmark is located in, 𝑦𝑛 

denotes one of the slices of target output or label that shows location of landmark. The reason 

of using sliced images is ease of visualization.   

Due to the large data size, instead of feeding the color FA field of the whole brain, 

16 𝑥 16 𝑥 16 patches are cropped and used. The locations of patch centers are randomly 

drawn from a uniform distribution on the brain mask. The corresponding patches at the same 

location and size are also cropped from the heat map. The patch is named positive if it 

includes the landmark, and negative otherwise. The training data are fed into the CNN in 

batches of 20 patches consisting of an equal number of positive and negative samples. The 

main structure of CNN is illustrated in Figure 3.2. CNN is trained jointly. That means for 

each of the 90 landmark points, a separate network with the same structure is trained.  
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Figure 3.2. CNN layer structure 

 

Due to the volumetric structure of the input data, all convolution, pooling and up-sampling 

operations are performed in 3 dimensions. Size of the convolution kernels is 3 𝑥 3 𝑥 3 except 

for the last two layers since the last two layers are assigned to a different task which is 

reducing feature maps so that the network could generate numerous heatmaps, whereas 

2 𝑥 2 𝑥 2 masks are used in pooling and up-sampling. Exponential linear unit (elu) is used 

for the activation function [18] in all convolution layers except sigmoid function is preferred 

in the last layer. The tensor is normalized after the elu activation function applied to the 

output of each convolution layer. The main reason behind this batch normalization procedure 

is to regulate the layer output to a certain distribution to increase the stability and 

performance on deep structures[35]. Dropout with 0.25 rate is applied before first 

upsampling layer. 

The input size of the network is 16 𝑥 16 𝑥 16 𝑥 3, and the output is 16 𝑥 16 𝑥 16 𝑥 1. The 

last dimension of the output corresponds to the number of desired heatmaps and is set to 1 

for detecting a single landmark at a time. There are 2 residual connections in the network 

model, as shown in Figure 3.1. The output of the layer is not only passed to the next layer 

but also skips a few layers and concatenates with another layer. The residual structures are 

proposed to help to preserve the spatial information and increase the efficiency of 

backpropagation [31]. 
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Unlike traditional CNNs as in [24], there are no fully connected neural network layers 

stacked after convolutional layers at the end of the proposed network. In traditional 

networks, after consecutive pooling and convolution operations, the number of parameters 

becomes sufficiently small to go under fully connected neurons for regressing coordinates 

of the desired landmark. Differently, at this stage, the proposed network starts to increase 

the size of data again by employing upsample layers, which perform nearest neighbour 

interpolation. The number of upsampling and pooling operations are equal to each other so 

that input and output could be the same size. After processed data reach the same size of the 

input, two convolution operations with 1 𝑥 1 𝑥 1 kernel size are applied to generate the 

heatmap [30]. 

The depth of first convolutional layer is 64, depth is increased by 2 after pooling operations, 

and is reduce by 2 after up-sampling operation. The loss function is determined as mean 

squared error. RMSProp [21] is used for optimization with 2 ×  10−5 learning rate and 

5 ×  10−8 decay. Training for each landmark point last 5000 iterations where one iteration 

is defined as one weight update as a result of a batch passes through the network. 

3.2. TESTING AND EVALUATIONS 

3.2.1. HCP Dataset 

Color FA maps of 50 randomly selected HCP subjects, that are not included in the training 

dataset, are used in evaluation studies. A 16 𝑥 16 𝑥 16 window over input image and with 

half value of window size which is 8. These windows are sent to CNN model. Naturally, 

there would be overlapped regions, since windows that are sent to CNN are overlapped. So, 

not all non-zero values include landmark. It’s assumed that maximum values on the label 

map would indicates landmark. The final map is obtained by summing the output heatmaps 

of the network for each patch and the location of the maximum voxel is labelled as the 

landmark. The process time which is highly depending on the hardware capabilities of the 

workstation,  for the whole brain of a subject takes approximately 90 seconds. That time is 

highly dependent to hardware specs4 of work station such as memory size, type of storage, 

capability of CPU and GPU. 
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Assigning number of slide equal to half size makes all points are sent to CNN 2 times. CNN 

model has a chance to see the landmark more than one. On the other hand, it also has a 

chance to see structures that CNN thought it was a landmark. Therefore, despite increasing 

computational cost, sending overlapped patches increases confidence of CNN model. 

To evaluate the performance of the proposed landmark detector, results are compared to 

locations that were marked by using FNIRT tool of FSL. 3 metrics are defined as success 

rate, accuracy and euclidean distance between the landmarks. 

Success Rate: If the euclidean distance of CNN prediction to FNIRT marked point is less 

than 1.25 cm, the prediction is considered as success, otherwise failure. 

Distance: The average of euclidean distances of FNIRT and CNN proposed landmark 

positions on subjects, which satisfy success criterion, is calculated in millimeter unit. 

Accuracy: In order to evaluate the accuracy, overlap of eigenvector-eigenvalue pairs (OVL) 

measure, which compares the similarity of two tensor fields F and M, is used [36]. OVL is 

given in equation 3.1 and is used for registration quality assessment in [15]. 

                         𝑂𝑉𝐿(𝐹, 𝑀) =
1

𝑁ℝ
∑

∑ 𝜆𝑖
𝐹(𝑥)𝜆𝑖

𝑀(𝑥) (𝑒𝑖
𝐹𝑇

(𝑥)𝑒𝑖
𝑀(𝑥))

2
3
𝑖=1

∑ 𝜆𝑖
𝐹(𝑥)𝜆𝑖

𝑀(𝑥)3
𝑖=1𝑥𝜖ℝ

                          (3.1) 

where 𝜆 are eigenvalues, 𝑒 are eigenvectors, ℝ is the region of interest selected as 5 voxel 

cube centered at the landmark location and 𝑁ℝ is the number of voxels in region of interest. 

For each landmark, the average OVL score of every possible F, M combination on 50 test 

subjects that satisfy the success criterion is calculated. This value quantifies the consistency 

of the local tensor fields around the landmark among subjects. 

3.2.2. Clinical Dataset 

Points that MNI coordinates correspond to landmarks are marked on IIT DTI atlas (v5.0) 

which is publicly available. Then, predictions of CNN model on clinical color FA maps of 

7 patients are visually compared one by one with points marked on atlas to obtain success 

rate. If CNN model predicts a point which is visually similar point on all of the 7 patients, 
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its success rate will be 1, if its predictions are not visually similar to the point marked on 

atlas on all of the 7 patients, its success rate will be 0.      

 

Figure 3.3. CNN prediction that shows success all of the patients, that makes its success 

rate 1. The first image on the left is atlas image with MNI coordinate of relevant landmark 

is marked and circled. 

 

 

Figure 3.4. CNN prediction that shows success none of the patients that makes its success 

rate 0. The first image on the left is atlas image with MNI coordinate of relevant landmark 

is marked and circled. 
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4. RESULTS 

 

4.1. RESULTS ON HCP DATA 

The success rate for each landmark mapped on a glass brain are given in Figure 4.2 and the 

average value grouped in brain regions are given in the graph, in Figure 4.1 . A zero success 

rate indicates that the landmark could not be detected in any of the 50 subjects. 

 

Figure 4.1. Regional averages of success rates 

 

 

Figure 4.2. Average success rate for each landmark on glass brain template 
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Figure 4.3. Regional average distance between FNIRT and CNN predictions 

 

 

Figure 4.4. Average distances of FNIRT and CNN predictions on glass brain template 

 

The regional distances in milimeter between FNIRT labels and CNN predictions for each 

landmark mapped on a glass brain are given in Figure 4.3 and the average values grouped in 

brain regions are given in the graph, in Figure 4.4 . 
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Figure 4.5. Regional average differences of OVL Scores 

 

 

Figure 4.6. Average difference between the OVL Scores on glass brain template 

 

Difference of OVL scores of CNN model prediction from FNIRT labels for each landmark 

mapped on a glass brain are given in Figure 4.6 and the averaged values of both CNN 

predictions and OVL scores of FNIRT labels grouped in brain regions are given in the graph, 

in Figure 4.5. 
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Table 4.1. Average and standard deviations of the evaluation results based on regions. 

Brain  

Region 

Succes 

Rate 

Distance 

(mm) 

FNIRT 

OVL 

CNN 

OVL 

White Matter 0.814±0.208 3.01±0.98 0.59±0.14 0.61±0.14 

Gray Matter 0.667±0.283 3.37±1.00 0.58±0.13 0.45±0.08 

Ventricles 0.998±0.006 2.09±0.46 0.63±0.16 0.54±0.09 

Brain Stem 0.995±0.008 1.72±0.51 0.66±0.15 0.69±0.19 

Thalamus 1.000±0.000 1.44±0.08 0.66±0.15 0.75±0.08 

Subcortical 1.000±0.000 1.66±0.36 0.56±0.15 0.62±0.11 

OVERALL 0.826±0.240 2.72±1.09 0.60±0.14 0.56±0.14 

 

Summation of the results on HCP dataset are presented in table 4.1.    

4.2. RESULTS ON CLINICAL DATA 

Anonymized 3T MRI data with spin echo scanning sequence, 1.75 x 1.75 mm pixel spacing 

and 2.5 mm slice thickness, that includes DWI, b-values and b-vectors is acquired from 

Yeditepe University Hospital with the approval of ethics committee. Diffusion images of 7 

patients are fit to a tensor using dipy which is a free and open-source python library for 

computational neuroanatomy, focusing mainly on diffusion magnetic resonance imaging 

(dMRI) analysis [37]. Afterwards, color FA maps are generated and sent to CNN model as 

16 x 16 x 16 x 3 patches. Maximum point of prediction result are marked on clinical data. 

Next step is to inspect whether there is a correlation between maximum point and related 

landmark.  

It needs to be said that clinical data is very noisy, unaligned, low-resolution compared to 

HCP dataset. And there is no pre-process step applied to data in order to measure capability 

and robustness of CNN model.  
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Figure 4.7.  Predicted points of CNNs over 7 patient data for Landmark nu. 1-10. 
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Figure 4.8.  Predicted points of CNNs over 7 patient data for Landmark nu. 11-20. 
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Figure 4.9.  Predicted points of CNNs over 7 patient data for Landmark nu. 21-30. 
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Figure 4.10.  Predicted points of CNNs over 7 patient data for Landmark nu. 31-40. 
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Figure 4.11.  Predicted points of CNNs over 7 patient data for Landmark nu. 41-50. 
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Figure 4.12.  Predicted points of CNNs over 7 patient data for Landmark nu. 51-60. 
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Figure 4.13.  Predicted points of CNNs over 7 patient data for Landmark nu. 61-70. 
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Figure 4.14.  Predicted points of CNNs over 7 patient data for Landmark nu. 71-80. 

 



42 

 

 

 

Figure 4.15.  Predicted points of CNNs over 7 patient data for Landmark nu. 81-90. 
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Figure 4.16. Regional averages of success rates of clinical data 
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In Figure 4.16, success rates of landmarks over 7 patients that are grouped based on regions 

are shown. As seen, the worst results were obtained on gray matter whereas the best results 

were obtained from thalamus.   

 

Table 4.2. Average results based on regions of clinical data 

 

Region Name Success Rate 

White Matter 0.14±0.25 

Gray Matter 0.07±0.20 

Ventricles 0.70±0.27 

Brain Stem 0.57±0.11 

Thalamus 0.93±0.23 

Subcortical Regions 0.69±0.24 

 

In table 4.2, overall results on clinical test data grouped by regions are shown.  
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5. DISCUSSION 

 

In this dissertation, a CNN model is proposed that locates specified landmarks on the target 

image set. Diffusion MR images were chosen for applying landmark localization method for 

several key points. First, it provides richer information about connectivity in brain than other 

structural images. As an example of usefulness of DTI, pre-operative planning of tumour 

removal operation can be given. The task is to maximize the extent of tumor resection, but 

at the same time minimize the neurological damages. It’s only possible if relationship with 

tumor and functional structures such as gray matter, white matter tracts is known. It is 

reported that DTI is a better option for cortical mapping than functional MRI, or electro-

cortical stimulation methods [38].  

There are notable studies that aim to locate structures on brain using connectivity. In [9], the 

aim is to precisely reproduce selected landmarks on brain using connectivity in the brain. 

Although the aim is similar, methods that are followed are quite different. Deep learning 

based approach is not preferred.  

CNNs have been solidifying their positions in computer vision literature with a help of their 

good grasp of understanding the patterns in the data. Recently proposed improvements and 

CNN architectures, and have so much potential application areas besides the originally 

addressed problem. In that context, the proposed CNN model was originally inspired from 

hourglass CNN design which was proposed to estimate human pose in the wild from 2D 

images [30]. In [39], the same CNN structure was used as a starting point to develop a system 

that reconstructs 3D face from single 2D image.  

Hourglass architecture, as known as encode-decode architectures has an advantage of 

overcoming problems related to transformations in image set [30]. It has been very popular 

approach. One of the well-known studies that uses similar architecture is U-Net, which aims 

segmentation of medical images by classifying each pixel [40]. On the other hand, aim of 

this study is to regress the location landmarks on diffusion MRI images, which is 4D. 

Therefore, modifications and simplifications are tailored to this specific problem.       

CNN was trained with color-coded FA maps of the HCP dataset with identical spatial 

position, direction, and resolutions and showed different results in regions of the brain. The 
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worst results were obtained on the gray matter while the best results were obtained on 

subcortical regions. Landmarks located at the inner regions of the brain could be detected 

with a higher success rate. Despite the possibility that this is because inner regions have 

richer characteristics, landmarks on ventricles, which are observed homogeneous on color-

coded FA maps, are also located with a high success rate. Even if the failure cases are 

removed, the distance between CNN and FNIRT predicted landmarks is higher in the outer 

regions of the brain. The reason for this low performance might be due to some sort of 

systematic error related to patches that are close to the edge of the brain, which needs to be 

investigated. 

OVL results shows that CNN outperforms on white matter, brain stem, thalamus, subcortical 

regions which are rich in fiber structures, meanwhile FSL-FNIRT performs better on gray 

matter and lateral ventricles where diffusion tends to be isotropic. Although CNN training 

is performed by using the FNIRT labelled landmarks, the performance of CNN is higher in 

some regions, which is an interesting result. Therefore, CNN does not learn the FNIRT 

labelling process but the underlying diffusion pattern. It should also be noted that OVL 

metric on tensor field consistencies might result in an unbalanced comparison, for FNIRT 

method implements T1 weighted MR images as the data term. 

CNN was trained on the HCP data which is high resolution, cubic voxel structured, pre-

processed data. However, when making predictions over low resolution raw clinical data 

that was acquired directly from scanner was not edited, pre-processed, unmasked. 

Nonetheless, reproducible results were obtained for some landmarks that are mostly located 

at inner regions of brain or intersections of fibers. In addition, since the CNN model works 

on patches, it’s guaranteed that CNN model does not learn location of landmarks, it learns 

characteristics of data. Results on clinical data, especially on data 6 show that the system has 

a certain level of robustness against tumor caused deformations, especially when inspecting 

landmark no.74. Also, regional results on HCP dataset and clinical dataset show significant 

correlations. High success rate on ventricles, which have isotropic diffusion characteristics 

shows that these landmarks are not memorized but learned by the CNN model. Nonetheless, 

this information has to be solidified by more comprehensive numerical tests. 

In order to get better results, first step must be data augmentation. Since positions of patch 

centres were chosen so that they were uniformly distributed while generating training data, 

any additional data augmentation step was not considered. In further stages, while evaluating 
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results, it has been observed that starting to slide window from different voxel changed the 

results. Since there is no correlation between getting better results and selecting starting point 

closer or farther from centre of edge of image, more comprehensive test are not regarded 

necessary.  
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6. CONCLUSION 
 

Nowadays, CNN provides the best results in computer vision problems. Henceforth it’s the 

most promising approach to  overcome frequently confronting problems such as translation, 

rotation or scaling objects in images, different types of noises, working on different 

resolutions. Well working network design could not only work on different sets of examples 

from different problems. Furthermore, besides adapting network designs to a different 

problem, opportunity transferring the learned representations to other  networks enables 

getting results faster and better. 

 Getting rid of fully connected neural network layers and replacing them with convolutional 

layers reduced the computational cost. Nonetheless, total cost is still concerning. CNN based 

landmark localization frameworks could be more feasible to widen its area of use. Therefore 

computational cost and training time must be reduced. As stated in section 3.1, CNN model 

was trained jointly for each landmark. In other words, for each landmark, kernel weights 

were initialized randomly. Instead of repeating same procedure over and over again, starting 

with kernel weights that is tailored to extract features from our training dataset, and then 

fine-tune the CNN for specific landmark would be more efficient.  

So as to increase success rate on landmarks located on gray matter, besides data 

augmentation, making adjustments on CNN design such as adding more skip layers or 

increasing the depth by adding more layers can be tried. Another suggestion is to train  CNN 

model with different patch sizes. It would be beneficial since it enriches training dataset with 

positive samples. Patch size is very important variable that is worth optimizing. In this study, 

selecting the patch size 16 in 3 dimensions was an educated guess. Although different patch 

sizes were tried, none of them outperformed the CNN model that takes 16 x 16 x 16 x 3 

patches as input. It’s related to structure of features in dataset and may need update if dataset 

or problem changes.  

Training with multiple patch sizes at once, and altering the design of CNN in that matter 

would be helpful. There are proposed CNN models that takes multiple input with different 

sizes or processing the same input with different sized kernels. Nonetheless, at this point, it 

is hard to say that this approach will meet the expectations, and the gained results will worth 

the increased computational cost. Instead, making pre-defined parameters such as patch size, 



49 

 

 

kernel size, number of kernels dynamic and turning it into learnable parameter might be both 

efficient and computationally more affordable. Yet, it’s not only out of scope of this study, 

it is a comprehensive task that requires being inspected from different aspects.  
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APPENDIX A:  ETHICAL APPROVAL FORM  

 

 


