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ABSTRACT

SIMULATION OF PHYSICAL SYSTEMS WITH FEW DEGREES OF FREEDOM

In physics, the models that describe our universe from macro to micro scales involve a set

of equations which denotes the relationships between variables. These systems are generally

represented by differential equations and are classified as dynamical systems. Dynamical

systems are studied in many science fields. With the use of chaos theory within dynamical

systems, many hitherto unknown properties of the systems have been discovered. Most real

systems are formalized under Hamiltonian mechanism and Hamiltonian systems both display

regular and chaotic behavior. In this study, we investigate a Hamiltonian system, namely

Matinyan-Yang-Mills-Higgs system, and we try to investigate the regions where the system

makes transition from regular to chaotic regions. In the second part of the thesis, we study the

power of artificial neural networks in modeling dynamical systems and estimating nonlinear

time series. In the third part, we use dynamical system as random number generators and we

use these random number generators in image encryption.
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ÖZET

AZ SAYIDA SERBESTLİK DERECESİNE SAHİP FİZİKSEL SİSTEMLERİN

SİMÜLASYONU

Fizikte, evrenimizi, makrodan mikro düzeye kadar tanımlayan modeller, değişkenler

arasındaki ilişkileri ifade eden denklemler listesi şeklinde düzenlenmiştir. Bu sistemler

genellikle diferansiyel denklemlerle temsil edilir ve dinamik sistemler olarak sınıflandırılır.

Dinamik sistemler birçok bilim alanı tarafından incelenmektedir. Kaos teorisinin

dinamik sistem içerisinde kullanılmasıyla, sistemlerin daha önce pek bilinmeyen özellikleri

keşfedilmiştir. Gerçek sistemlerin çoğu Hamiltonyen mekanizması altında biçimlendirilir

ve Hamiltonyen sistemler hem düzenli hem de kaotik davranış gösterir. Bu çalışmada bir

Hamiltonyen sistem, Matinyan-Yang-Mills-Higgs sistemini inceledik ve sistemin düzenli

bölgeden kaotik bölgelere geçiş yaptığı koşulları araştırdık. Tezin ikinci bölümünde, yapay

sinir ağlarının dinamik sistemleri modellemede ki ve lineer olmayan zaman serilerindeki

tahmin etme gücünü araştırdık. Üçüncü bölümde ise, dinamik sistemleri rassal sayı üreteci

olarak kullandık ve bu rassal sayı üreteclerini görüntü şifrelemede kullandık.
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1. INTRODUCTION

Computers have become the integral part of todays scientific studies and have had a

great impact on the development of the recent knowledge in the scientific literature from

mathematics to biology. In physics, through the advances in the computational power of

computers, researchers have been able to make great contributions to our understanding of

nature with high accuracy and speed. In physics, the main aim is to develop models of

nature to make the universe more understandable and computers allow physicists to make

simulations of constructed models of nature visible and testable. In addition to this, the

models can be tested in extreme cases to make predictions about the future of systems which

are under study.

Computer simulation have become the integral scientific tool especially in meteorology

and nuclear physics in the period following the World War II, and it has been used as an

indispensable tool in other disciplines of physics. Some of the scientific disciplines which

use computer simulation extensively are: astrophysics, particle physics, materials science,

engineering, fluid mechanics, climate science, evolutionary biology, ecology, economics,

decision theory, medicine, sociology, epidemiology, and many others. There are also some

other disciplines, such as chaos theory and complexity theory, whose development process

have gained impulse alongside the development of the computational models they study.

While talking about computer simulations, a more clear definition of computer simulation

may be required. However, there is no-single accepted definition of it which can be done

easily. Yet, for physicists′ point of view, computer simulation can be defined as: a program

that is run on a computer and that uses step-by-step methods or stochastic methods to explore

and understand the approximate behavior of real-world systems (the system will also be

hypothetical ones). On the other hand, computer simulations can be categorized in two

classes in terms of their usage purpose: for predicting the data which is not available and

for understanding the system according to data that we have. Computer simulations are

used to estimate how the real-world system would behave under a given set of particular

conditions. This is called as prediction and predictions can be made for detecting future cases
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of examined system as well as past phases of it. By use of simulations we can make different

types of predictions such as point prediction, interval estimation and global or systematic

predictions. One example of point predictions (or estimates) is prediction of the next-day

stock market indices value. Suppose we want to look for the range of parameter values in

which a dynamical system, such as the Lorenz system, displays chaotic behavior, we need

interval prediction via computer simulations. Systematic reductions are useful to answer

questions like: Is the orbit of investigated planet stable or not? Or what is the Lyapunov

exponent or fractal dimension of the studied time series?

Up to now, application areas and benefits of computer simulations, especially in physics,

were discussed. As in the case of other approaches, computer simulations have their

own disadvantages or drawbacks. As we already mentioned models that are generated to

simulate real-world phenomena will be very helpful in understanding of the phenomena

under consideration but simulated models can give misinterpretation of data or specious

(inadequate) information or conclusions about the system since physical models that we use

may not be sufficient to describe the full dynamics of the real system. For instance, it is not

easily possible to predict the occurrence and effects of earthquakes and tsunami. Another

drawback of computer simulations is: Simulations, especially complex ones, may need the

use of a computer system with a high processing power and enormous memory usage. The

most important factor which can be seen as a negative point for simulation in physics is

round-off errors and uncertainties in computer simulations.

Chaos theory is one of the interdisciplinary study fields that uses computer simulations

in many applications in its scope. Although, the term chaos in general is understood as

state of disorder, in theoretical point of view, it is related to determinism and extent of

predictability, at least in principle, of future outcomes of the system of interest. Many

definitions of chaos theory can be given but in general sense, chaos theory is interested

in finding reasonable explanation, in deterministic point of view, to complex behavior of

dynamical system(s). Dynamical systems are sets of equations (mostly nonlinear ones) which

describe the evolution of its parameters with respect to time or time parameter. Variables of

the dynamical system create a set of vectors in finite or infinite dimensional space and these

vectors form the phase space. Dynamical systems are the simple mathematical models which
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try to explain dynamics of real-world system, such as population dynamics (predator-prey

systems), or they can be heuristic models whose equations can behave unpredictably. Chaos

theory especially deals with dynamical systems whose dynamics sensitively depend on initial

conditions which means according to small changes in initial conditions (or perturbations),

systems can display widely varying behavior.

To classify the dynamical system as chaotic, it should satisfy some certain criteria. Although

chaotic systems display random like behavior, they display some common underlying

patterns such as self-similarity, fractal like behavior and sensitive dependence on initial

conditions (as it is already stated.) What makes these systems irregular is the fact that the

behavior is different from that of linear systems we are accustomed to. However, to classify

a dynamical system as chaotic, there should be some criteria. In [1], Delaney and Eckmann

stated the following criteria which are necessary to define dynamical systems as chaotic:

• It should be sensitive to initial conditions.

• It must display topological mixing.

• It should have dense periodic orbits

We have already mentioned about sensitive dependence on initial conditions but in society

it is generally known as butterfly effect which is originated from the Lorenz model (or

attractor). In 1963, Edward Lorenz published his famous Lorenz model which describes

atmospheric convection. Lorenz system is a nonlinear mathematical model which describes

the relations with change of three quantities with respect to time: the rate of convection,

the horizontal flow speed and temperature variation, and the vertical temperature variation.

Making changes on the parameters of Lorenz system or slightly changing initial conditions

on the system results in different outcomes and these aspects of analysis of Lorenz System

has been studied by many researchers [2, 3]. Because of the sensitivity to initial conditions

there is limited amount of information about the system (as is usually the case in practice),

then after a certain time the system does not have long predictable time horizon. The most

typical real-life cases of this short-term predictability is the weather. Because of this reason,

weather predictions have been limited by a certain timeline, usually one week.
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Most of the time, topological mixing (transitivity) can be ignored during chaos classification

and in general sensitivity to initial condition is accepted as the only parameter which displays

chaotic behavior. However, there are many cases that are sensitive to initial conditions but do

not give chaos. Physical meaning of topological mixing is the following: overlapping open

set of phase space of investigated system with any other region will lose its dependence on

region when the system evolves for sufficiently long time. The third condition to determine

the chaotic behavior of a dynamical system is having dense periodic orbit and this means that

every point in the phase space is approached arbitrarily closely by periodic orbits if sufficient

time elapses.

Chaotic dynamical systems have been a very popular topic in recent years and its results are

used especially by physicists to understand the dynamics of real-world phenomena especially

where finding the exact solutions is impossible or very hard. For instance, to understand the

early stages of the universe, nonlinearities in the general theory of relativity [4] leads to chaos

and solutions to attack this problem are done by numerical approaches. Dynamics of the

real physical events are described by Hamiltonian formalism in both classical and quantum

physics. However, most of the Hamiltonian systems are non-integrable. Non-integrability

in Hamiltonian systems generally originated from nonlinear terms in the system. The

first example of non-integrable chaotic system is discovered by Poincaré [5] via geometric

analysis in phase space. Koopman and von Neumann discovered the first analytical evidences

of chaos in Hamiltonian system with two-degrees of freedom [6, 7, 8]. The most commonly

observed structure in integrable Hamiltonian systems is invariant tori. In this geometric

view, the trajectories that start on any torus stays on the same torus for all time. If we have

enough information about the torus, this information can be used to analyze the stability of

the dynamical system or other chaotic behavior of the system. If the Hamiltonian system is

nearly integrable, the chaotic and regular motions can be both observed. As the Hamiltonian

becomes more non-integrable, the chaotic areas grow in the phase space and start to merge

with each other, so the invariant tori become destroyed.

Up to know, a brief introduction about the chaos theory, its applications areas and role of

computer simulation in studying dynamical system is presented. In addition to this, the

three criteria to define a dynamical system as chaotic are described. In this sense, it is
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necessary to mention about the methods to find out the chaos in dynamical systems. The most

common measure of the chaos is the Lyapunov exponent(s). Lyapunov exponents measure

the rates of convergence or divergence of nearby trajectories from slightly perturbed initial

conditions [9, 10], and this concept is found by, as its name suggest, Lyapunov [11]. If

the dynamical system is N-dimensional, we have N-Lyapunov exponents. At this point, it

is necessary to mention about the significance of Lyapunov exponent(s). If there exist a

positive Lyapunov exponent, signature of chaos is observed. If there exist a zero Lyapunov

exponent, the system can be said in steady state along that direction and the system can

be classified as conservative. In the case of negative Lyapunov exponent, we can consider

the system dissipative or non-conservative. However, suppose that we are dealing with N-

dimensional system, that’s why we have N-exponents, and some exponents are negative and

some of them are positive. In that case, if more than one exponent is positive then we have a

hyper-chaotic system. Yet, it is important to note here that if the system is Hamiltonian one,

sum of all exponents must be equal to zero according to Liouville’s theorem which is going

to be mentioned later.

In the literature, practical ways of calculating Lyapunov exponents are widely discussed.

The theoretical study on existence of Lyapunov exponents started with Osedelec[12] and

in this paper, Multiplicative Ergodic Theorem (MET) is given which allows the theoretical

basis for the numerical computation of Lyapunov exponents. Ergodic theory has also been

studied by many researchers such as Ruelle[13]. There are many numerical algorithms based

on theoretical approach to find the Lyapunov exponents in literature. The most commonly

used method is the Wolf-Benettin algorithm [10]. There are two versions of Wolf-Benettin

algorithm: one of them for time series and in the other version one can find the Lyapunov

exponents through differential equations of the system augmented by variational equations.

Another important algorithm is the Wiesel algorithm [14, 15] where evolution equations

are written for the unit vectors along the fiducial trajectory. Rosenstein and Kantz developed

their own algorithms for calculating largest Lyapunov exponents in [16] and [17] respectively

for time series.

Another important method which is used for determining chaos in a dynamical system is

stability analysis. By using the stability analysis, the fixed point of a dynamical system
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can be classified as stable (attractor), structurally stable(focus) or unstable (repeller). If

the system is perturbed by a small amount around the unstable fixed point (or repeller), the

trajectory of the system grows in time. If the fixed point is stable, the trajectory of the system

shrinks toward the fixed point. Stability analysis is easy for one-dimensional system but for

N-dimensional systems, where N≥2, the stability analysis is more complicated. For these

cases (N≥2), the fixed points are classified by studying at eigenvalues of the Jacobian matrix.

By looking at the signs of eigenvalues, the fixed points can be classified as stable or unstable.

In addition to this, if the eigenvalues are complex, the fixed points are can be classified as

spiral or limit cycles. Detailed discussion of stability analysis is going to be given in the

chapter 2. Since the Jacobian matrix also evolves with the system, this is used as a basis for

the calculation of Lyapunov exponents in the Ruelle-Eckmann algorithm [13].

Up to now, numerical methods to calculate Lyapunov exponents are discussed. In this study,

one of the main concern is related to using artificial neural networks in computation of

chaotic parameters and capabilities of neural networks in estimations of chaotic time series.

Previously mentioned numerical methods fail in terms of accuracy in calculating Lyapunov

exponents due to the following reasons: the estimated exponents are sensitive to number of

data points and noise in the data set. In addition to estimating chaotic parameters, modeling

a chaotic system or time series is an important topic in literature. All forecasting methods

to predict evolution of a system are based on past measurement of time series in hand. In

the case of nonlinear system with many degrees of freedom, there is no simple procedure to

find a simple set of solutions without some sort of assumptions. This kind of simplifications

allow us to reduce the number of degree of freedom of the system up to relevant degree. In

that case, the dynamics of the system can be considered in a subspace ΓS , of space Γ , which

is called as attractor with lower dimension. In this kind of situation, neural networks can

be considered a very successful candidate tool for forecasting. In literature, there are many

studies related to finding Lyapunov exponents with neural networks. In [18], R.Gencay and

W.D.Dechert present an algorithm which uses feedforward neural network to calculate the

Lyapunov exponents of n-dimensional dynamical system which is based on Ruelle-Eckman

algorithm [13]. In another study [19], capabilities of neural networks in estimating Lyapunov

spectrum are compared with the exponent values calculated by TISEAN package [17]. The

filtering capacities of neural network with noisy chaotic time series is discussed in [20] and
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it is shown that neural networks are very efficient tool in prediction of noisy time series.

In addition to feedforward neural networks other types of networks are used in literature

for chaotic time series and dynamical systems such as recurrent neural networks, radial

basis function (RBF) neural network, fuzzy neural networks (FNNs) etc... In [21], fuzzy

neural network is used for application to chaotic time series prediction and it is reported

that fuzzy neural networks bring advantages by reducing the training time and reducing the

dimension of the system. Recurrent neural network is used in nonlinear modeling [22] and

forecasting performance of it is compared with feedforward neural networks. In addition

to estimating Lyapunov exponents and forecasting chaotic time series, neural networks are

used to determine other chaos parameters such as embedding dimension [23].

In field of cyber-security, chaos theory has found its application. Due to unpredictable nature

of chaotic systems, in image encryption, secure communication many scientist use chaotic

system in security algorithms. Also generating random numbers is very important topic

especially in Monte-Carlo simulations where absolute randomness is required. Ideal random

number generator should have long frequency and it should be fast. These properties can be

satisfied by chaotic systems.

In this dissertation, we try to find answers to 3 main problems: as a starting point we work on

a Hamiltonian physical model, namely the Matinyan-Yang-Mills-Higgs system, which may

offer answers to the dynamics of our early universe and try to investigate the possible regions

of chaos and transition regimes from stability to instability or vice versa. Secondly, we make

use of neural networks in modeling dynamical systems, estimating chaotic parameters such

as Lyapunov exponents and estimating nonlinear time series from previous states of them. In

chapter 5, we try to construct random number generator by using two different well-known

dynamical system and test their usability in image encryption.
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2. THEORETICAL BACKGROUND RELATED TO CHAOS

THEORY AND ANALYSIS OF MATINYAN-YANG-MILLS-HIGGS

SYSTEM

2.1. DEFINITIONS ABOUT DYNAMICAL SYSTEM THEORY

Although the nature of the physical laws of microscopic scales are not completely

deterministic, due to their probabilistic nature which is explained by quantum mechanics,

in the macroscopic word, classical solution, that are used to understand the realism of event

in our universe, yields very accurate descriptions such as in celestial bodies.

2.1.1. Lyapunov Exponent

In chapter 1, the basic definition of Lyapunov exponents is already given. In this section, the

mathematical definition of Lyapunov exponent(s) is going to be introduced and geometric

meaning of it is discussed.

Lyapunov exponents give the measure of the rate of divergence or convergence of nearby

trajectories. In Fig. 2.1, geometric point of view is presented. Start with considering the

given nearby points X0 and X0 + ∆X0 in Fig. 2.1 which are going to create the orbit or

trajectories of the investigated dynamical system based on equations of the system.

The generated orbits are functions of parameters and variables of the system and time.

If one of these orbits is selected as a reference orbit (fiducial trajectory), the separation

between the two orbits can be defined as a function of time. It is also necessary to note

that this separation is also a function of initial point ∆X(X0, t). Since there is a time

dependence in the calculation of separation between these two nearby trajectory, it will give

local rate of convergence (or divergence). Quantitatively, two trajectories in phase space

with initial separation converge or diverge with rate |∆X(t)| ≈ eλt∆X0 where λ is Lyapunov
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Figure 2.1. Geometric Interpretation of Calculation of Lyapunov Exponent.

exponent.As t goes to infinity, we can have the global Lyapunov exponent λ given by Eq. 2.1:

λ = lim
t→∞

lim
∆X0→0

1

t
In

∣∣∣∣∆X(X0, t)

X0

∣∣∣∣ (2.1)

It is necessary to note that if the system is N-dimensional, then there exist N-Lyapunov

exponents. In other words, Lyapunov exponent is exponential rate of convergence of

trajectories, but in our consideration its physical interpretation is more important. If the

Lyapunov exponent is λ < 0, then nearby trajectories converge (or attract) to stable fixed

point or stable periodic orbit. One of the examples from physics is critically damped

oscillation where the system is attracted towards the equilibrium point.

The second case is λ = 0. In that case, since the rate of convergence is zero, the system can

be considered as in steady state mode. Another important interpretation of zero Lyapunov

exponent is that the system has a conserved quantity and if the system is Hamiltonian, then

the system is conservative. In this point, we need to mention about Lyapunov stability issue

which is done in later sections.

The last possibility is λ > 0. This is the most critical case for chaos in dynamical system

since it shows the chaotic behavior in the system. However, it is meaningful to ask whether

positive Lyapunov exponents always refers to chaos or not. As it can be understood from
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previous discussions, the Lyapunov exponents quantify the sensitivity to initial conditions.

While calculating Lyapunov exponents, the recorded or generated time series are used and

this time series include some level of noise. Because of the noise effect, the system has a

positive Lyapunov exponent which will not display the correct behavior of the system.

For N-dimensional dynamical system, the Lyapunov exponent spectrum should be

mentioned. For a N-dimensional dynamical system with evolution equations ẋi = fi(x), the

Lyapunov spectrum is defined as {λ1, . . . , λN}, which depends on initial point X0. Behavior

of vectors in the tangent space of phase space described by the Jacobian matrix J whose

elements are defined as:

Jij(t) =
dfi(x)

dxj

∣∣∣∣
xt

(2.2)

The Jacobian matrix shows the effect of small changes on the initial point X0 on the final

point fi(x0). The following limit:

lim
t→∞

(J.JT )
1
2t (2.3)

where JT transpose of Jacobian matrix, defines a matrix Λ(X0) whose existence is

guaranteed by Osedelec’s Theorem [12]. Then the Lyapunov exponents of the system are

the eigenvalues of Λ(X0) matrix. Osedelec’s multiplicative ergodic theorem gives theoretical

background of calculation of Lyapunov exponents.

2.1.1.1. Largest Lyapunov Exponent

The usual indicator of chaos is the largest Lyapunov exponent. If the equations of the system

which generates the chaotic trajectory are known, calculating the largest Lyapunov exponent

follows a simple procedure. A basic idea behind this calculation is the following: consider

the two nearby trajectory and calculate their average logarithmic rate of separation.

When these two nearby orbits separate from each other, one of them must turn back to the
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Figure 2.2. Geometric View of Calculation of Largest Lyapunov Exponent.

vicinity of the other along the line of separation. This conservative procedure is composed

of the following steps:

• Choose a starting point at the basin of attraction.

• Make iteration until the orbit is on the attractor.

• Choose a nearby point separated by distance d0 as it is shown in Fig. 2.2.

• Iterate both orbits one time and recalculate the new separation distance d1.

• Calculate ln|d0/d1|

• Rearrange one of the orbits so that their separation is d0 and is in the same direction at

d1.

• Follow all the previous steps for many times.

• Take the average of each iteration.

Although the calculation of largest Lyapunov exponent seems to be easy, the calculation of

it is prone to some error and mistakes. Choosing a starting point at the basin of attraction

requires a previous knowledge about the system so that if a good initial point is not chosen,

then the calculated exponent will mislead us. Another possible error in this method happens

when d1 is very close to zero. When we take a natural logarithm, our calculation includes

the error. Furthermore, as many steps are taken, error on the calculation of exponent may

accumulate.

Kantz[17] and Rosenstein[16] develop their own algorithms to calculate largest Lyapunov

exponent numerically.
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2.1.2. Lyapunov Stability and Lyapunov Function

In physics, for most of problems finding equilibrium points of the system is very important

where the stability plays role. For dynamical system theory, finding equilibria of the system

on hand give clues about dynamics of system.

Consider the following autonomous(time-independent) system:

ẋ = f(x(t)) (2.4)

If x∗ is fixed point of the system, it satisfies f(x∗) = 0. Then, we can write Eq. 2.4 in series

expansion form close to x∗ as:

ẋ = f(x∗) +
∂f

∂x

∣∣∣∣
x=x∗

(x− x∗) + · · · = ∂f

∂x

∣∣∣∣
x=x∗

(x− x∗) + . . . (2.5)

Then the partial derivatives in right hand side of Eq. 2.5 creates a matrix, called as Jacobian

J

J =
∂f

∂x

∣∣∣∣
x∗

(2.6)

Then the system in Eq.2.4 can be reduced and analyzed in linearized form:

˙
x(t) = Jx(t) (2.7)

with x = x− x∗. The eigenvalues of J give information about the stability of the fixed point

x∗ as follows:

• If the eigenvalues of J evaluated at x∗ have all negative real parts, the fixed point

asymptotically stable for system 2.4.

• If at least one of the eigenvalues of J has positive real part, then the fixed point x∗ is

unstable.

• If the none of the eigenvalues of J has real part( purely imaginary), linearized system
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does not give information to characterize the stability of point x∗.

• If J has complex conjugate eigenvalues, the equilibrium point x∗ is called a stable or

unstable spiral focus, depending on the sign of the real part.

This kind of analysis is generally called as the first method of Lyapunov stability. Lyapunov

also states a second method to define stability. The second method also called as Lyapunov

stability criterion as stated as follows: Suppose there exist a function V (x), where x states

variables of system defined in Eq. 2.4, which satisfies the following properties:

V (x∗) = 0 iff x = x∗

V (x∗) > 0 for x 6= x∗
(2.8)

In addition to given conditions in Eq. 2.8 if V (x) satisfies:

dV (x)

dt
≤ 0, ∀t (2.9)

Then if function V (x) is called as Lyapunov function and the system considered as Lyapunov

stable. However, for most of the cases, it is not easy a construct a Lyapunov function V (x(t)).

2.2. POINCARÉ SECTION (MAP) ANALYSIS

Poincaré section analysis is a very useful approach in investigating the phase space structure

and time evolution of a dynamical system, especially for nearly non integrable systems. This

method has become very popular in the last decades in connection with the KAM theorem

for weakly perturbed Hamiltonian systems. More specifically, this method is very efficient

if one wants to explore the system dynamics with two degrees of freedom. Consider the

following Hamiltonian system:

H(p1, p2, q1, q2) = E (2.10)
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This restricts the orbit to a three-dimensional hyper-surface (or energy surface) in phase

space. Suppose that the system has a second integral of the motion I2.

I2(p1, p2; q1, q2) = C (2.11)

where C is constant. Then, the orbits of the system are embedded in a two-dimensional

surface which is the intersection of the three-dimensional energy surface E and second

integral of motion C. For instance, we can express the generalized momentum p1 with

respect to generalized coordinates q1 and q2 as p1 = p1(q1, q2, E, C). Then consider the

surface where q2 = 0, the trajectory of the motion embeds in a one dimensional curve. In

general, suppose for a given Hamiltonian of the form in Eq.2.10, it is not known whether or

not the second integral I2 exists. We can observe its existence via solving the Hamilton’s

equations of motion numerically:

dpi
dt

= − ∂H
∂qi

dqi
dt

= ∂H
∂pi

(2.12)

for i = 1, 2. Then the plot of p2 vs. q2 for initial values of p1 ≥ 0 and q1 = 0 is the Poincaré

section. If the system is integrable, the series of points seem to lie in a curve. If the system

is non-integrable, the points of trajectory seem to scatter around a finite region due to energy

conservation.

2.3. METHOD OF AVERAGING

Averaging method is a useful classical method for analyzing weakly nonlinear problems.

The origin of method of averaging goes back to 1788 in which the Lagrangian formulation

of the gravitational three body problem was treated in terms of perturbation of the two

body problem. However, up to 1930s, no systematic proof of the method of averaging

was given. Krylov and Bogoliubov gave the systematic study on the method of averaging

in [24, 25]. Then the method of averaging became one of the standard mathematical

methods for approximate analysis of oscillatory processes in non-linear dynamics. The

importance of the averaging theory is that the averaged system would be a good candidate
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for approximation of the exact dynamics of the original system. This is very useful in cases

which classical perturbation theory fails to explain.

The method of averaging can be used for dynamical systems in the following form:

ẋ = εf(x, t, ε) (2.13)

where x ∈ U ⊆ <n, ε << 1 and f : <n ×<×<+ is Cr, r ≥ 1 and of the period τ > 0 in t,

U is bounded and open. According to this, values in the averaged system are defined as:

ẏ = ε
1

τ

∫ τ

0

f(y, t, 0)dt = εf̄(y) (2.14)

We have said that the averaged system is a good approximation of the original system but

it is necessary to show that qualitative properties of the solutions of the averaged system

correspond to those of the original system. To justify this we need to recall the Averaging

theorem given in[26]. A paraphrase of the relevant part of theorem is following:

Theorem 1 (Averaging Theorem). Eq. (2.13) can be cast the form Eq. (2.15) using the Cr

near identity transformation x = y + εw(y, t, ε) under which Eq. (2.13) becomes

ẏ = εf(y) + ε2f1(y, t, ε) (2.15)

where f1 has period τ in t. Furthermore,

i If two solutions of Eq.( 2.13) and Eq.( 2.14), starting from initial conditions x0,y0, with

|x0 − y0| = O(ε), then |x0 − y0| remains O(ε) on a time scale t ∼ 1/ε.

ii Also, solution lying in the stable manifold satisfy |xs(t) − ys(t)| = O(ε), if |xs(0) −

ys(0)| = O(ε) for all times. If the solution lies in unstable manifold, similar result

applies for the time interval t ∈ [0, ε).

Proof of this theorem can be found in [26] but the conclusion (ii) says that this theorem can

be applied to approximate stable (or unstable) manifolds in bounded sets and for studying
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Poincaré section of the system of interest.

In the application of the averaging method, there are some important issues that should

be controlled as mentioned in [26]. While interpreting the averaged system, one must

give importance to the following point: global behavior of the original system may not be

observed in the averaged system directly since n-dimensional maps and vector-fields do not

display exactly the same behavior. Fortunately, under some conditions given in [27], certain

global features in f̄ display the same global features of f .

2.3.1. Comparison of Method of Averaging and Poincaré Map (Section) Analysis

The method of averaging and Poincaré maps are two different methods to study the time

evolution of a dynamical system. While Poincaré map (section) analysis is based on the

numerical integration of the system of interest, the method of averaging follows an analytical

approach which continues with integration over a period. Although, both of these methods

are useful tools to examine dynamical systems both have their own limitations. Since

Poincaré section analysis depends on numerical integration, the result of this analysis is

limited by the accuracy of the integrator which is used in simulation and this becomes

important in long time interval simulation of the system. On the other hand, the method

of averaging depends on perturbation theory and integration over a period which is based on

making series expansions which are truncated to a certain order. Because of this truncation,

errors are introduced so the averaged system can potentially display different behavior than

the original one.

In many studies one of these two methods are used, however combination of both of these

methods can give more accurate results according to [28] whose proof can be found in [26].

To claim that averaged system is meaningful to study, the original and averaged systems

should display isomorphic phase space topologies (and fixed points) as their Poincaré

sections. This can be said as required condition for the method of averaging.
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2.4. LIE TRANSFORM

Lie transform method is special perturbation method developed for Hamiltonian systems.

The main trick of the method is finding near-identity transformation which give simpler

form of the Hamiltonian.

The procedure of the method as follows: Start with Hamiltonian system H of the form:

dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

(2.16)

Expand the H(qi, pi) in powers of the perturbation term ε:

H = Ho(qi, pi) + εH1(qi, pi) + ε2H2(qi, pi) + . . . (2.17)

After expansion apply canonical near-identity transformations from old coordinates to new

coordinates (qi, pi)→(Qi, Pi):

qi = Qi + εF1i(Qi, Pi) + ε2F2i(Qi, Pi) + . . .

pi = Pi + εG1i(Qi, Pi) + ε2G2i(Qi, Pi) + . . .
(2.18)

in Eq.2.18, Fji and Gji must be selected in a way that Hamiltonian equations are the same

and we have canonical transformation. Combination of Eq. 2.17 and Eq.2.18 gives our new

Hamiltonian K:

K(Qi, Pi, ε) = H(Qi + εF1i(Qi, Pi) + . . . , Pi + εG1i(Qi, Pi) + . . . , ε) (2.19)

Eq.2.19 called as Kamiltonian, transformed perturbed Hamiltonian, in literature, thanks to

Goldstein. Eq.2.19 can be expanded again into power series of ε:

K = K0(Qi, Pi) + εK1(Qi, Pi) + ε2K2(Qi, Pi) + . . . (2.20)
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Important point in this argument is that H0 = K0, because of the fact that transformation

is the near-identity one at ε = 0. In addition to this, functions Ki based on function Hi

where functions Fji and Gji will decide the transformation. Then , the idea behind this

method comes into play: choose a transformation which keeps functions Ki simple.At this

step, we need to understand and find a systematic way of defining identity transformation in

subsection 2.4.1.

2.4.1. The Near-Identity Transformation

As it is understood main idea of the Lie transform method comes from identity-

transformation. The relation between old and new variables is a function of ε. In this sense,

ε plays a role like a time.

consider the evolution of transformation like as an evolution of Hamiltonian H:

dqi
dε

=
∂W

∂pi
,
dpi
dε

= −∂W
∂qi

(2.21)

where W is generating function and initial conditions are

ε = 0, qi = Qi, pi = Pi (2.22)

As it can be seen W is function of ε,Qi and Pi. Then expansion of W in power series of ε

yields:

W = W1(Qi, Pi) + εW2(Qi, Pi) + . . . (2.23)

At this step, it seen that the transformation required for Lie method (Eq. 2.18) can be found

using Eq. 2.4.1 and Eq. 2.21 after writing pi and qi in Taylor series of ε:

qi(ε) = qi(0) + ε dqi
dε

∣∣
ε=0

+ ε2 d2qi
dε2

∣∣∣
ε=0

+ . . .

pi(ε) = pi(0) + ε dpi
dε

∣∣
ε=0

+ ε2 d2pi
dε2

∣∣∣
ε=0

+ . . .
(2.24)
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When we substitute Eq. 2.23 into Eq.2.21, we have:

dqi
dε

∣∣∣∣
ε=0

=
∂W

∂pi

∣∣∣∣
ε=0

=
∂W1

∂pi

∣∣∣∣
ε=0

=
∂W1

∂Pi
(2.25)

remember that when ε = 0, pi = Pi. Finally, the near-identity transformation can be written

as:

qi = Qi + ε
∂W1

∂Pi
+O(ε2), pi = Pi − ε

∂W1

∂Qi

+O(ε2) (2.26)

Note that in this derivation,we derive near-identity transformation formulas for order ε.

Higher order derivation can be done using the same methodology. For much more details of

Lie transform method, one can refer to [29, 30].

In this study, we applied Poincaré section to investigate the possible parameter regions where

system make transition from ordered behavior to indeterministic nature then we make use

of the perturbation methods namely averaging method and Lie transform on the Matinyan-

Yang-Mills-Higgs (MYMH) system which is a Hamiltonian system. In chapter 3, all the

analysis results are presented, and observations are discussed with details.
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3. ANALYSIS OF NON-INTEGRABLE MATINYAN-YANG-MILLS-

HIGGS AND SIMULATION OF DYNAMICS OF THE SYSTEM

In this chapter, by making use of the theoretical information and tools in Chapter 2, we make

the analysis of the Matinyan-Yang-Mills-Higgs (MYMH) System. The MYMH system has

been used for modelling the onset of chaotic behavior in the classical Yang Mills system

[31]. It turns out that limited suppression of chaotic behavior is also exhibited. Analysis of

the system is important since this Hamiltonian system can represent our recent understanding

on the stability of the universe and the mechanism for the onset of instability.

This chapter is organized as follows: In section 3.1, we introduce the MYHM system and we

make linear stability analysis of it. After stability analysis, by playing with parameters of the

system,we try to investigate the region that system displays chaotic behavior and possible

parameter regions where the system makes transition from order to chaos or vice versa

by Poincare Map analysis with numerical simulations. Then in section 3.2, we try to find

approximately conserved quantity through some algebraic manipulations and we analyze the

integrability of the system under certain conditions. Finally in sections 3.3 and 3.4, we make

use of Lie transform and averaging methods on our system to investigate possible bifurcation

scenarios.

3.1. MYMH HAMILTONIAN AND IT’S LINEAR STABILITY ANALYSIS

MYMH Hamiltonian, in two-dimensional Cartesian coordinates, is described by the

following Hamiltonian H:

H =
p2x + p2y

2
+
g2(x2 + y2)

2
+
x2y2

2
+ VH(y) (3.1)

where VH(y):

VH(y) = −y
2

2
+
ay4

4
(3.2)
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Where g and a are real constant parameters and x, y and px, py are generalized coordinates

and corresponding momenta respectively. The term g2

2
(x2 + y2) is the harmonic oscillatory

term which has the potential to have a stabilizing effect on the system and lead the system

to a limit cycle like structure. The second important term is the Higgs term: 1
4
ay4. In a

detailed analysis of the Higgs term, discussed very intuitively in [31], is found that for high

energy values it leads the system to display chaotic characteristics. It is also important to note

that there is no sharp transition from chaotic regions to ordered regions by small changes in

energy values.

Before, starting analysis of the system we, rewrite the system (3.1) in the following form:

H =
p2x + p2y

2
+

(w2
1x

2 + w2
2y

2)

2
+
x2y2

2
+
ay4

4
(3.3)

where w2
1 = g2 and w2

2 = g2 − 1.

Hamiltons equations of motion for H(Eq. 3.3) are:

dpx
dt

= −w2
1x− xy2 (3.4)

dpy
dt

= −ay3 − w2
2y − x2y (3.5)

dx

dt
= px (3.6)

dy

dt
= py (3.7)

The trivial fixed point of the system is the origin. The other fixed points of the systems are:

(i) x = ±
√
aw2

1 − w2
2, y = ±iw1, px = 0, py = 0

(ii) x = 0, y = ± iw2√
a

, px = 0, py = 0

The fixed point(s) in (i) can only take real value for w1 = w2 = 0, which is the origin. The
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second fixed point(s) can take real values for the cases where a < 0 and w2 ≥ 0. To classify

the fixed points, we firstly calculated the Jacobian matrix J :

J =


0 0 −w2

1 − y2 −2xy

0 0 −2xy −3ay2 − w2
2 − x2

1 0 0 0

0 1 0 0

 (3.8)

Firstly, to look at the stability of origin, we find the characteristic equation of J at the origin:

det(J − λI) = λ4 − (w2
2 − w2

1)λ
2 − w2

1w
2
2 (3.9)

We find the following eigenvalues λi:

λ1,2 = ±|w1|i, λ3,4 = ±w2 (3.10)

The eigenvalues of MYMH system are symmetric about both real and imaginary axis. To

claim that the origin is stable all according to Eq. 3.9 eigenvalues must lie on the imaginary

axis. While analyzing state of system like in Eq. 3.3, the important observation can be made

in case w1/w2 << 1. For the internal resonance case the relation like the following should

be satisfied:

k1w1 + k2w2 = 0 (3.11)

where k1 and k2 are integers. Firstly, we investigated case: w1/w2 = 1/2 in other words

1:2 resonance. In this situation, periodic set of solutions curves exist around the origin,

and in that case, we observe limit cycles. In Fig. 3.3, the situation, where w1/w2 = 1/2,

is illustrated. For the cases w2 6= 0, the origin is center, since there exist one positive

eigenvalues of J(see Fig. 3.1). Interesting situation may happen where w1 = 0 and w2 6= 0,

where we have double zero eigenvalues which will result in bifurcation. In this situation the

energy transfer from high frequency mode to low frequency mode may happen. To analyze

this kind of situation, perturbation methods are used. In the next two subsections 3.3 and 3.4,
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result of applying perturbation methods to MYMH(Eq. 3.3) are discussed.

a. Trajectory of the system in y-py plane b. Poincare map of the system

Figure 3.1. Trajectory and Poincare map of the MYMH system with initial conditions

px=0.2440286868, py=0.2, x= 0.0, y=-0.1 (where w1 = 0.2, w2 = 0.2, a = 1.0)

Secondly, we analyze the stability of the fixed point (ii) in the case that w2 ≥ 0 and a < 0.

Using the Jacobian J(Eq. 3.8),we find the characteristic equation:

a2λ4 + (a2w2
1 − 2a2w2

2 − aw2
2)λ

2 + 2aw2
2(w

2
2 − aw2

1) = 0 (3.12)

Then we find the eigenvalues of Eq. 3.12 for w2 = 0 and a < 0. We obtain the following

eigenvalues:

λ1,2 = 0 and λ3,4 = ±w1i (3.13)

This situation is the same as in the case where Eq. 3.10

Up to now, we have studied the MYMH system (Eq. 3.3) by linear stability analysis.

To understand the role of the parameters g and a on dynamics of system (Eq. 3.1), we

numerically search for range of parameters where the invariant torus is distorted and

eventually chaotic nature of the system is apparent.

Firstly, we study the effect of parameter g on the dynamics of the system.To view the role
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Figure 3.2. Trajectory of the MYHM system(Eq.3.3) for 1:1 resonance case

of g on stability of the system,we use Poincare map of the system by setting x = 0 and plot

Poincare sections on (y − py) plane.

When, Fig. 3.5.a is the Poincare map of the system, in the absence of g (g=0) and it shows

that the fixed point (0, 0, 0, 0) behaves as a source like point and there exist two closed curves

so that motion is irregular. When we increase the value of parameter g from 0 to 0.5 (Fig.

3.5.c, the behavior of the system changes and we observe a closed orbit around origin in

the Poincaré section. For higher values of the parameter g the system reaches structurally

stable cycle of limited spatial extent, which can be seen in the Fig. 3.5.e and Fig. 3.5.f. In

the light of these results from Poincare section analysis of system, parameter g can induce a

significant changes in the dynamical behavior of the system in such a way that system makes

transition from one chaotic behavior type to another one. Note that for each simulation result,

we have checked that energy is conserved.
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a. Trajectory of the system b. Poincare map of the system

Figure 3.3. Trajectory and Poincare map of the MYMH system where w1/w2 = 1/2 and

H = 1/5

Figure 3.4. Trajectory of the MYMH system (Eq.3.3) for 1:2 resonance case
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a. g=0.0 b. g=0.25

c. g=0.50 d. g=0.75

e. g=1.00 f. g=1.25

Figure 3.5. Poincare Maps of MYMH system at E = 0.05
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Up to this point, we have said that for low energy value system behaves chaotically by

looking at Poincare sections. To check this result, we have looked at Lyapunov exponent

spectrum of the system (Fig. 3.6) and their corresponding largest Lyapunov exponents for

each values of parameter g given by Wolf algorithm in Table 3.1.

Table 3.1. Lyapunov exponents of the system for different values of parameter g.

Parameter Maximal Lyapunov exponents

g λ1 λ2 λ3 λ4

0.0 0.0015 0.0006 -0.0006 -0.0015

0.25 0.0011 0.00035 -0.00035 -0.0011

0.50 0.0012 0.00039 -0.00039 -0.0012

0.75 0.0018 0.0015 -0.0015 -0.0018

1.00 0.0030 0.0026 -0.0026 -0.0030

1.25 0.0055 0.0013 -0.0013 -0.0055

In Fig. 3.6, Lyapunov exponent spectrum of system for g = 0.0 and g = 0.25 is given and in

both cases, there exists 2 positive, 2 negative exponents and sum of all the exponents is equal

to 0. In addition to this, since there are two positive exponents exist, chaos can be observed

for these values of parameter g. Furthermore, for increasing values of parameter g, largest

Lyapunov exponents become close to zero so that system is going to be nearly in limit cycle.



28

a. g=0.0 b. g=0.50

c. g=0.50 d. g=0.75

e. g=1.00 f. g=1.25

Figure 3.6. Lyapunov exponent spectrum of the system for different values of parameter g
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3.2. INTEGRABILITY OF MYMH

In this section, we consider the problem of finding approximately conserved quantities of

MYMH system (Eq.3.1) given in section 3.1. In Hamiltonian dynamics, if there exists a

second integral of motion I2 other than energy H itself,the Poisson bracket(PB) of I2 with H

denoted as I2, H , vanishes. The following two terms (x2 + y2) and (xpy − ypx) repeatedly

appear in the Toda truncations [32, 33]. We will see that (xpy − ypx) will be immaterial in

the MYMH case, since it depends on rotational invariance in x− y. Similar results covering

the existence of approximate integral in Toda case ,for specific values of parameters can be

found in[34]. Many terms in the MYMH system resemble these of the Toda truncations.

In order to generalize this to the MYMH system, the following candidate third integral is

constructed:

1

2
(p2x + p2y) +

c1
2

(x2 + y2) + c3(pyx− pxy) + (c4x+ c5y)(x2 + y2) (3.14)

where

2c2 = c1, 4c1 = g2, g2 = 1, c3 = 0. To find possible candidate for the I2 we follow algebraic

manipulation by making partial sums for truncated MYMH Hamiltonian to successive

homogeneous orders and the analytic isolating integral given by Iij .

HT (1) = 0

HT (2) =
p2x+p

2
y

2
+ g2(x2+y2)

2
− y2

2

HT (3) = 0

HT (4) = x2y2

2
+ py4

4

(3.15)

Possible candidates for Iii are given in Eq 3.16.

Iii(1) = 0

Iii(2) = (pxy − xpy)

Iii(3) = 4(3pxx
2 − 6p2ypx − 6xypy + 2p3x − pxy)

Iii(4) = 24(pxy − xpy)(x2 + y2)

(3.16)
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The non-vanishing terms of PBs’ of {HT (i), Iii(i)} are:

{HT (2), Iii(2)} = xy (3.17a)

{HT (2), Iii(3)} = 4(−6g2p2yy + 6p2yx− 12g2pxpyy + 18pxpyy + pxpy + 6g2p2xx (3.17b)

−6p2xx− 6g2xy2 + 6xy2 − g2xy + 3g2x3)

{HT (2), Iii(4)} = 24(2xyp2y − 2pxpyy
2 + 2pxpyx

2 − 2− 2p2xxy + xy3 + x3y) (3.17c)

{HT (4), Iii(2)} = xy(−ay2 + y2 − x2) (3.17d)

{HT (4), Iii(3)} = 4y(−6xyp2y − 12apxpyy
2 − 12pxpyx

2 + 6xyp2x − 6axp3y (3.17e)

−xy2 − 3x3y)

{HT (4), Iii(4)} = 24xy(−ay4 + y4 − ax2y2 − x4) (3.17f)

Then, the partial sums of HT (j) and Iii(j) are defined as follows:

Iiss(n) =
n∑
j=1

Iii(j) (3.18a)

HTs(n) =
n∑
j=1

HTs(n) (3.18b)

using the definitions in Eq.3.18, the PB of the partial sums of the list elements of truncated
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Toda Hamiltonian HT and the isolating integrals Iii is defined as follows:

{HTs(n); Iiis(n)} (3.19)

where n = 1, . . . ,∞. According to the truncations of HT (j) and Iii(j) given above, the PBs

of the partial sums of equal terms up to fifth order truncations are obtained as

{HTs(1), Iiis(1)} = 0 (3.20a)

{HTs(2), Iiis(2)} = xy (3.20b)

{HTs(3), Iiis(3)} = −24p2yx(g2 − 1) + pxpyy(72− 48g2) + 4pxpy + 12g2x3 (3.20c)

+24p2xx(g2 − 1) + 24xy2(1− g2)− xy(1− 4g2)

{HTs(4), Iiis(4)} = 2(−12p2yy
2x+ 24p2yxy − 6p2yx

3 − 12gp2yx− 24bpxpyy
3 (3.20d)

−24pxpyy
2) +O(5)terms

According to Eq.3.20d, the Poisson bracket of fourth order truncations give fifth order

terms which leads the idea of possible conserved quantity candidates.Yet, if PB of nth order

truncations is of higher order, the indicated quantity is considered to be conserved to order

n.
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3.3. ANALYSIS OF MYMH SYSTEM USING LIE TRANSFORM

To analyze the system (3.1) using Lie transform method, we rewrite the system the following

form:

H = ε

(
a y4

4
+ x2 y2

)
+
w2

2y2 + w1
2x2

2
+
py

2 + px
2

2
(3.21)

where ε denotes the perturbation constant and note that in this representation,we absorb

the −y2/2 term into constant w2. In this representation, the term x2y2/2 is treated as a

perturbation term, which leads to chaotic behavior on the system during the absence of

harmonic oscillatory term g2(x2 + y2)/2 in Eq. 3.1.

Firstly, we apply transformation from Cartesian coordinates to action-angle variables

(x, y, px, py)→ (J1, φ1, J2, φ2) using:

x =

√
2J1
w1

sin(φ1) px =
√

2J1w1 cos(φ1) (3.22)

y =

√
2J2
w2

sin(φ2) py =
√

2J2w2 cos(φ2) (3.23)

where Ji’s are action and φi’s are angle variables. After the transformation, Eq. 3.23 takes

the following form:

H = J2w2 +
J1 J2 cos (2φ2 + 2φ1)ε

2w1w2

+
J1 J2 cos (2φ2 − 2φ1)ε

2w1w2

− J1 j2 cos (2φ2)ε

w1w2

−

(3.24)

J1 J2 cos (2φ1)ε

w1w2

+
J1 J2ε

w1w2

+
J2
2 cos (4φ2)aε

8w2
2

− J2
2 cos (2φ2)aε

2w2
2

+
3J2

2aε

8w2
2

+ J1w1

Eq. 3.24 seems very complicated. The first order term in the power series expansion of
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Kamiltonian K about perturbation parameter ε called K1:

K1 = −I1 I2 cos (2ψ1)

w1w2

+
I1 I2
w1w2

+
3I22a

8w2
2

(3.25)

The generating function W1:

W1 =
sin (2ψ2) (2I1 I2w2 + I22aw1)

4w1w2
3

− I1 I2 sin (2ψ2 + 2ψ1)

4w1w2
2

+ sin (2ψ1)B (3.26)

− I1 I2 sin (2ψ2 − 2ψ1)

4w1w2
2

− I22 sin (4ψ2)a

32w2
3

+ cos (2ψ1)A

The self-similarity transformations from (Ji, φi) to (Ii, ψi) is done by:

J1 = ε

(
I1I2 sin(2ψ1)cos(2φ2)

w1w2
2

+ 2B cos 2ψ1 − 2A sin(2ψ1)

)
+ I1 (3.27a)

φ1 = ε

(
I2 sin (2ψ2 + 2ψ1)

8w1w2
2

+
I2 sin (2ψ2 − 2ψ1)

8w1w2
2

− I2 sin (2ψ2)

4w1w2
2

)
+ ψ1 (3.27b)

J2 = I2 + ε

(
cos (2ψ2) (2I1 I2w2 + I22aw1)

2w1w2
3

− I1 I2 cos (2ψ2 + 2ψ1)

2w1w2
2

(3.27c)

−I1 I2 cos (2ψ2 − 2ψ1)

2w1w2
2

− I22 cos (4ψ2)a

8w2
3

)

φ2 = ψ2 + ε

(
−sin (2ψ2) (2I1w2 + 2I2aw1)

4w1w2
3

+
I1 sin (2ψ2 + 2ψ1)

4w1w2
2

(3.27d)

+
I1 sin (2ψ2 − 2ψ1)

4w1w2
2

+
I2 sin (4ψ2)a

16w2
3

)
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We choose A and B to simplify the K1

A = 0, and B = − I1I2
8w1w2

2

(3.28)

The transformed perturbed Hamiltonian,called as Kamiltonian K is:

K = I1w1 + I2w2 + ε

(
−I1 I2 cos (2ψ1)

2w1w2

+
I1 I2

2w1w2

+
3 I22 a

8w2
2

)
+O(ε2) (3.29)

When you look at Kamiltonian K there is no-term related to angle coordinate ψ2, so that I2

is constant of motion (to O(ε2)). Apparently, K(Eq. 3.29) is also a constant of the motion in

this autonomous two degree of freedom system.Thus it follows that K − w2I2 is a constant

of the motion, so that:

L = −I2
(
I1cos(2ψ1)

2w1w2

+
I1

2w1w2

+
3a

8w2
2

)
+O(ε) = constant (3.30)

and K1 is a first integral to O(ε2). We check the Poisson bracket of Eq. 3.30 with K(Eq. 2.19

to order ε2:

{K,L} = 0 (3.31)

So this result agrees with the observation that K1 can be considered as approximate integral

to our system.

3.4. ANALYSIS OF MYMH WITH METHOD OF AVERAGING

In this subsection, we analyze MYMH system(Eq. 3.3) by using the method of averaging,

we analyze Eq. 3.3 for different w1 : w2 resonance cases. Firstly, we investigate the situation
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where w1 = w2 = w. The canonical transformations applied to the MYHM system are:

x = u coswt+ v sinwt

y = −u sinwt+ v coswt

py = pu coswt+ pv sinwt

px = −pu sinwt+ pv coswt

(3.32)

where u,v, pu and pv are functions of the time. Subsequently, we find the averaged system

for the 1:1 resonance case by integrating the Hamilton canonical equations and averaging

over the period 2π/w(the period of the quadratic oscillator part). The resulting averaged

equations are:

u̇ = pu − wv

v̇ = pv + wu

ṗu = −3au3−3auv2−8wpv−2u3−2uv2−8w2u+4u
8

ṗv = −3av3−3au2v+8wpu−2v3−2u2v−8w2v+4v
8

(3.33)

There exist at equilibrium two complex conjugate roots and one real fixed point

(u, v, pu, pv) = (0, 0, 0, 0) of the system. It is also important to note that the same real

fixed point (u, v, pu, pv) = (0, 0, 0, 0) also exists in the original system so that the Poincare

section analysis of original system can give correct approximation to the original system by

satisfying necessary condition mentioned in the subsection 3.1.

To check the linearized stability at the real fixed point of the averaged system(Eq. 3.33), we

calculate the Jacobian matrix of the linear part of the averaged system there.

J(0,0,0,0) =


0 −w 1 0

w 0 0 1

1/2 0 0 0

0 1/2 0 0

 (3.34)

To find the eigenvalues λi of J , we find the characteristic equation:

det |J − λI| = 4λ4 + 4(w2 − 1)λ2 + 1 = 0 (3.35)
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The corresponding eigenvalues are:

λ1,2 =
±i
√
w2 − 2 + w

2
and λ3,4 =

±i
√
w2 − 2∓ iw

2
(3.36)

When eigenvalues given in Eq. 3.36 is taking into consideration, stability of the origin for the

averaged system(Eq. 3.33) depends on the choice of w.When w2 = 2, we have two complex

conjugate purely imaginary eigenvalues and two real eigenvalues and this result suggests that

there is a Hopf bifurcation change according to the value of the parameter(driving frequency)

ω. We reach this conclusion because of the following reason: Hopf bifurcation typically

occurs when a complex conjugate pair of eigenvalues of the linearized flow at a fixed point

becomes purely imaginary.

To be more accurate about the role of the constant g in the stability of the system, we write

the following Lyapunov function V (u, v, pu, pv) by looking at the following observation for

high values of g where g2 is much greater than 1:

puṗu + pvṗv = −g2(upu + vpv) (3.37)

Then we construct the following positive definite Lyapunov function V (u, v, pu, pv) > 0:

V = g2(u2 + v2) + p2u + p2v (3.38)

V is positive definite for all points other than the origin of the averaged system for the given

g2 limit above. We also compute the derivative of Lyapunov function V̇ :

V̇ (u, v, pu, pv) = 0 (3.39)

Since the time derivative of the Lyapunov function V equals to 0, according to LaSalles’

theorem [35], there exists an invariant set M where every motion starting in converges

either to the origin or to the limit cycle. Furthermore, it might be said that the Lyapunov

function that we offer can be considered as a generalized energy function. To check validity

of this assumption, we have simulated the averaged system for g=10 (g2 >> 1) and get the
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Figure 3.7. Trajectory of linearized averaged system for g = 10

following Poincare section shown in Fig. 3.7. Then, we have used Poincare section analysis

to understand the time evolution of the averaged linearized system. We simulated the system

for a large range values of g but, we observed that the fixed point (0,0,0,0) behaves like an

attractor especially for values g ≥ 0.75.In Fig. 3.8, time evolution of each components of the

system is presented. In Fig. 3.9 u(t) vs v(t) and pv(t) vs. v(t) plots are given and according

to these graphs, there exists an unstable torus around the origin.
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Figure 3.8. Time evolution of linearized averaged system (g = 0.74)

a. u(t) vs. v(t) b. pv(t) vs. v(t)

Figure 3.9. Time evolution of linearized averaged system (g = 0.74) in u(t) vs v(t) and

pv(t) vs. v(t) spaces

For smaller values of parameter g, the system displays regular behavior and pv and v have a

linear relationship.
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4. NEURAL NETWORKS AND THEIR USAGE IN CHAOTIC

DYNAMICAL SYSTEMS

In many scientific study fields, estimation of future values of a system in interest is very

important in understanding the dynamical evolution. The physical systems, which are

governed by a set of equations of motion, are commonly investigated by integrating them

forward in time and by this way, evolution of the system is studied. In chaos theory, for

a given time series, particularly with a series originating form a dynamical system, it is

important to understand whether time series is chaotic or not which means that there is

a sensitive dependence on initial conditions or not. One the most commonly accepted

parameter to talk about existence of chaos in given time series is its Lyapunov exponent

which gives the rate of convergence (or divergence) of nearby trajectories in state space. For

a time, series, positive Lyapunov exponent is indicator of chaos. In addition to this, Lyapunov

exponents are used to calculate important measures of a dynamical system. Dimension

of the attractor is calculated by Kaplan-Yorke conjecture using Lyapunov exponents and

Kolmogorov-Sinai entropy can also be calculated by making use of them.

However, many cases, governing equations of motion for a given time series are unknown,

such as stock market indices in economics or experimental data. To forecast chaotic time

series, there are many methods other than neural networks such as Taylor series expansion,

radial basis functions, nonparametric kernel regressions. These methods are based on

interpolation and approximation of unknown function by use of scattered data points. In

Taylor series expansion approach the main disadvantage is rapidly increasing order of

expansion and according to Casdagli [36], there is no guaranteed order of convergence

for dimensions n > 1, and higher polynomial degrees have a wide oscillation tendency.

Nonparametric kernel regression is a method that depends on estimating probability density

function from observed time series, but it has some drawbacks mentioned in [22]. On the

other hand, in the literature, there are many studies which demonstrate the capabilities of

neural networks in forecasting chaotic time series. For example, two-layered feedforward

neural networks are used in [37], it gives promising result in estimation of chaotic time

series generated from Lorenz system, Henon and Logistic maps. In another study [20],
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Gencay demonstrates that nonlinear noisy time series can be modeled quite accurately by

single-layer feedforward neural networks.

In this chapter, we use three different neural network architectures to test capabilities of

neural networks in forecasting time series generated from different dynamical systems.

In addition to forecasting time series, using the feedforward neural network with single

hidden layer, Lyapunov exponents of the studied systems are forecast. This chapter is

organized as follows: in section 4.1, we define the fundamentals of neural network and their

working mechanism. In section 4.2, we present the performance of each network in terms

of forecasting ability. In section 4.3, an algorithm designed to calculate using the neural

network is presented and evaluating performance of each network in estimation of Lyapunov

exponent is reported.

4.1. NEURAL NETWORK AND LEARNING MECHANISM

Neural Networks are the mathematical model which tries to imitate the working mechanism

of neurons in our brain. Earliest form of neural networks, called perceptrons were developed

in the 1950s and 1960s by the scientist Frank Rosenblatt. Basically, neural networks are

designed to imitate the working mechanism of neurons in brain. They are very commonly

used tools in many science fields: such as image recognition, classification, time series

forecasting, pattern recognition etc... Yet, they do not completely share the same mechanism

with biological neurons.

Figure 4.1. Artificial Neuron vs. Biological Neuron
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Table 4.1. Artificial Neurons vs. Biological Neurons

Criteria
Biological

Neuron

Artificial

Neuron

Typical Operating Speed ∼10 millisecond ∼10 nanosecond

Number of Processing

Units
∼10 billion neurons thousands of processors

Energy Consumption 10−16 Joule 10−16 Joule Joule

Learning Algorithm Still unknown
Gradient Descent,

back-propagation etc...

Difference between artificial neuron and biological neurons is summarized in Table 4.1.

Working mechanism of artificial neuron is actually very simple. To understand this

mechanism, we need to define basic components of artificial neuron: Input weights and

biases, are denoted Wij and bj respectively. Weights Wij define rate of effect for input

xi from neuron i to neuron j. Bias value bj allows you to shift the activation function to

the left or right, which may be critical for successful learning and it can be considered as

preconception in our brain. Another important component of artificial neuron is activation

function f . Activation function has the role of threshold in biological neuron. Networks are

Figure 4.2. Block Diagram of Artificial Neuron

composed of neurons which are stored in layers li. The first layer that data enter is called

input layer. The layer that the prediction or result is given is called output layer. The layer(s)

in which actual computation or approximation occurs is called as hidden layer(s). In a layer
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Input #1

Input #2

Input #3

Input #4

Output

Hidden

layer

Input

layer

Output

layer

Figure 4.3. Block Diagram of 3 layer neural network

li, there can be one or many neurons which are connected neurons from li−1 and li+1 layer.

Schematic view of neural network is given in Fig. 4.3. Up to now, the main components

of artificial neuron and network are discussed. The most important part of network is the

neuron which processes the given input and creates an output.

Suppose n input values xi are coming to neuron j in lth layer from (l − 1)th layer. Then, in

a neuron all inputs are processed in the following way:

yj,t = bj +
n∑
i=1

Wijxi (4.1)

Then, yj,t passes through the activation function fj and output of jth neuron is denoted by

ôj:

ôj = f((yj, t)) (4.2)

where Wij , bj are learned or estimated parameters through the learning process in learning

cycles or epochs which are the concepts discussed later on. At this step it is important to

mention about the role of activation function. Purpose of activation function is to convert the

input signal of a node, which is then used as an input in the next layer. Activation function

should be applied, otherwise the output will be a linear function. Since neural networks are
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Figure 4.4. Plot of transfer functions: sigmoid, hyperbolic tangent, ReLu

used to work with nonlinear or complicated data sets, such as images, videos, audio, speech,

time series, nonlinear activation functions are used. The most commonly used are: sigmoid,

hyperbolic tangent, ReLu -Rectified linear units( See Fig. 4.4). Mathematical definition of

sigmiod and ReLu functions are given in Eq. 4.3 and Eq. 4.4.The sigmoid is:

s(x) =
1

1 + e−x
(4.3)

and ReLu is:

r(x) =

 0, x < 0

x, x ≥ 0
(4.4)

As you can see from Fig. 4.4, choice of transfer function in neural networks depends on the

format of the output from the neuron. If we want artificial neuron which creates outputs as

zeros and ones, we will use sigmoid activation function. on the other hand, if we use neural

network for forecasting generally, hyperbolic tangent is used in hidden layers and ReLu is

used in output layers. Another important feature of artificial neural networks is their ability

of learning. In general, there are two general types of learning algorithms: supervised and

unsupervised learning. Since we are interested in time series forecasting, we use supervised
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learning. Role of weights and biases are already discussed previously and learning in neural

network is related to updating connection weights and biases in neuron. Thats why after

many training steps, weights and biases are updated according to connection weights and

biases in neurons, this causes the network to give true prediction for given input values. But

the question is how to update the weights and biases.

The answer is Error (or Cost) Function E:

E(y, ô) =
1

n− 1

n∑
i=1

(yi − ôi)2 (4.5)

where y is target variable. then the weights are adjusted by the following way:

W new
ij = W old

ij − α
∂E

∂Wij

(4.6)

where 0 < α < 1 the learning rate, is generally chosen as 0.01. At this point, it is understood

that the activation function should be differentiable. This learning schema is called back-

propagation. The clever thing about back-propagation is that it enables us to simultaneously

compute all the partial derivatives ∂E
∂Wij

in just one pass so the total cost of back-propagation

is roughly the same as making just two forward passes through the network.

The learning rate is a relatively small constant that indicates the relative change in weights

and biases. If the learning rate is too low, the network will learn very slowly. If the learning

rate is too high, the network may oscillate around, overshooting the lowest point with each

weight adjustment, but never actually reach it. Some modifications to the back-propagation

algorithm allows the learning rate to decrease from a large value during the learning process.

4.1.1. Types of Neural Networks

In the literature, a number of commonly accepted neural network architectures are discussed.

In this study, two types of neural networks are used: Feedforward Neural Network(FN)

and Recurrent Neural Network(RN). Feedforward Neural Networks(FNs) are the networks
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where connections between neurons in layers do not form a cycle which means the input

propagates only in the forward direction (from input layer to output layer). If the network

is composed of more than one hidden layer, they are called multilayer feedforward neural

networks (multilayer perceptrons) denoted by MFN throughout in this study.

Figure 4.5. Schema of Feedforward Neural Network

When feedforward neural networks are extended to include feedback connections, they are

called recurrent neural networks (RNs). Since neurons in layer have self-connection, they

are considered as networks with a memory. There are some tricky points about neural

Figure 4.6. Elman’s Recurrent Network Diagram

networks. There is no general solution to decide how many hidden layers and how many

neurons are needed in networks in deep learning community. But in general, to approximate

more complicated dynamics, we need more hidden layers. Although, we mentioned back-

propagation learning algorithm, with its variants, so choice of learning algorithm is not

unique and depends on the problem on hand.
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Figure 4.7. Trajectory of Duffing Oscillator in x− ẋ plane

4.2. PREDICTION OF CHAOTIC TIME SERIES WITH NEURAL NETWORKS

In order to compare the capability of neural networks in forecasting chaotic time series, three

different dynamical systems are used: Duffing oscillator, Rössler System and MYMH system

which we analyzed in Chapter 3. In the following two subsections, governing equations of

each system are given and with three types of neural networks, forecasting performance of

each network architecture is compared. This makes use of numerical solutions yielded by

systems.

4.2.1. Duffing Oscillator

The chaotic dynamics of Duffing oscillator has been studied in many works in literature. The

Duffing equation that is used in this study is:

ẍ+ δẋ+ βx+ αx3 = γsin(wt) (4.7)

The given system (Eq. 4.7 displays chaotic behavior with for parameter values γ = 0.42,

δ = 0.5, α = −1, β = 1,w = 1 and initial conditions (x0, ẋ0) = (0.5021, 0.17606) and

trajectory of the system is given in Fig. 4.7.
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Figure 4.8. Rössler attractor for given set of initial conditions and parameters

4.2.2. Rössler System

The second system we are interested in is the Rössler system or attractor:

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c)

(4.8)

Where a, b, c are real constant parameters of the system. For a = b = 0.2, c = 5.7, the

system has corresponding Lyapunov exponents: (0.0714, 0,−5.3943). Since there exists a

positive Lyapunov exponent the system displays chaotic behavior. (see Fig. 4.8)

4.2.3. Use of Neural Network Estimating Chaotic Time Series Generated From

Dynamical Systems

The systems that we are going to use for comparing the capability of neural networks in

forecasting chaotic time series were defined in subsections 4.2.1 and 4.2.2. In this subsection,

we compare the performance of three different neural networks: multilayer feedforward
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neural network (MFN), single layer feedforward (FN) and single layer recurrent neural

network (RN).

In this study, we have used firstly, feedforward neural network with one hidden layer with

m number of input units. Duffing oscillator is two-dimensional system (d = 2). According

to Takens theorem, an embedding dimension must be less than or equal to 2d + 1. We

choose embedding dimension m = 4. Then we use multilayer feedforward neural with the

following architecture (m : 2m : m : 1) which is the same architecture used in [37]. As a

third architecture we use Elmans recurrent neural network with one hidden layer.

In our simulations, performances of the three mentioned neural networks are compared using

data with and without additive noise. For performance comparison of neural network without

noise case we let yt = xt where yt is our target variable. For the noisy data generation, we

add noise to our data in the following way:

yt = xt + ut (4.9)

Where ut represents the noise component and ut = ησgt where σ is sample standard

deviation of xt and η is noise level which takes different values between 0 < η < 1 and

gt is standard normal random variable.

In the result, for forecasting performance of each network root-mean-square error (rmse)

is used as performance criteria. Using the multilayer feedforward neural network (MFN)

with architecture (4 : 8 : 4 : 1), the neural network predicts the actual time series perfectly

with rmse = 3.003 × 10−5 for Duffing oscillator (without noise) and predicted and original

time series are plotted in Fig. 4.9. For Rössler system, we use the MFN with architecture

(4 : 8 : 4 : 1) and for without noise, the network is very efficient. In Fig. 4.10 , predicted

and original time series are for Rössler system without noise case is given. For the same

data set, generated from Duffing system, we use Elmans recurrent neural net in predicting

Duffing oscillator, which is very similar to single hidden layer feedforward neural network,

but it also uses previous estimation value as an input which makes it a neural network with

a memory. For single hidden layer we try to choose optimal number of neurons. We choose
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Figure 4.9. Prediction of Duffing time series without noise for MFN(4 : 8 : 4 : 1)

Figure 4.10. Prediction of Rössler time series without noise for MFN(6 : 12 : 6 : 1)
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Figure 4.11. Recurrent neural network estimation of Duffing system where η = 0

optimum number of neurons as 8 which is two times the embedding dimension m = 4. For

forecasting result, Elman network display performance as good as multilayer feedforward

neural network. Elmans neural network gives rmse = 3.349 × 10−5. Estimation of Elmans

neural network and original data is plotted in Fig. 4.11. It is also important to note that

with the given architectures of networks, Elman network gives results for smaller number of

epochs than the multilayer feedforward one.

Finally, for the Duffing oscillator without noise, we test the performance of feedforward

neural network with single hidden layer. For the single hidden layer, number of neurons is

chosen as again 2m which is same as Elman recurrent network. With single hidden layer

neural network, performance of forecast is slightly increasing compared to recurrent one

with rmse = 3.328 × 10−5 but it is worse than the multilayer neural network. In addition,

the speed of convergence of single hidden layer feedforward neural network is higher than

the recurrent one. For Rössler system, recurrent network with 8 neurons in hidden layer

gives the optimum performance. Plot of estimation of RN(12) given in Fig. 4.13 (with

rmse = 3.399× 10−5).
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Figure 4.12. Estimation of FN(12) network topology for Duffing system where η = 0

Figure 4.13. Estimation of FN(8) network topology for Rössler system where η = 0
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Figure 4.14. Duffing system prediction of MFN(4 : 8 : 4 : 1) with η = 0.01

After forecasting the Duffing data set without noise, we test the noise filtering capabilities

of these three types of neural networks. For η = 0.01, multilayer neural network, forecast

performance is good but as it is expected it is worse than the case without noise (with rmse =

0.059). Estimated and original data is plotted in Fig. 4.14. For η = 0.1, performance of

multilayer feedforward decreases as expected compared to previous case (Fig. 4.15). It gives

rmse = 0.5755. For η = 0.2, rmse increases to 0.765(see Fig. 4.16).

To increase the forecasting performance of MFN, we increase neuron numbers in layer from

4 to 5. With this change, we train the network and make prediction for data with error rate

η = 0.2. Neural network gives better estimate with rmse=0.6635 and forecast of modified

MFN is plotted in Fig. 4.17. After analyzing noise filtering performance of MFN, we apply

the same tests to Elman type recurrent network. In [22], they demonstrated that recurrent

neural networks are more accurate than single layer feedforward neural networks. In our

analysis, we observe that for η = 0.01, it performs a little bit better than MFN but there is

no significant improvement (with rmse=0.053). When we increase the error rate to η = 0.1,

performance of recurrent network is again close to MFN (with rmse=0.5498). For η = 0.2,
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Figure 4.15. Duffing system prediction of MFN(4 : 8 : 4 : 1) with η = 0.1

Figure 4.16. Duffing system prediction of MFN(4 : 8 : 4 : 1) with η = 0.2
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Figure 4.17. Duffing system prediction of MFN(5 : 10 : 5 : 1) with η = 0.2

performance of recurrent network clearly better than MFN with rmse=0.6487. Prediction of

recurrent network with error rate η = 0.2, is plotted in Fig. 4.18.

FN(8), for time series with error rate η = 0.01, performs as well as both of the other two

neural nets. For η = 0.1, performance of this network is worse than both recurrent and MFN’

one. Finally, for η = 0.2, forecast performance is getting worse than previous cases as it is

expected.

It can be seen in previous analysis results, as mentioned in [22], RN is better predictor model

than FN in noisy time series. For higher noisy level (η = 0.2) interestingly performance of

MFN is not as good as RN and FN. In Table 4.2, rmse values of each prediction for Duffing

system is given.

For the Rössler system, we test each network architecture. In summary, Rössler system

can also be estimated very efficiently by the described network architecture. Like Duffing

oscillator, when we increase the noise level, prediction error rates increase. In Table 4.3,
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Figure 4.18. Duffing system prediction of RN(8) with η = 0.2

Figure 4.19. Duffing system prediction of FN(8) with η = 0.2
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Table 4.2. rmse values of each network with respect to changing error rate η for Duffing

oscillator

Network Model rmse

η = 0 (no noise)

MFN(4:8:4:1) 3.003× 10−5

RN(8) 3.349× 10−5

FN(8) 3.328× 10−5

η = 0.01

MFN(4:8:4:1) 0.059

RN(8) 0.053

FN(8) 0.058

η = 0.1

MFN(4:8:4:1) 0.5755

RN(8) 0.5498

FN(8) 0.5997

η = 0.2

MFN(4:8:4:1) 0.7650

RN(8) 0.6487

FN(8) 0.6766

rmse error values for each prediction of Rössler system are given.

4.3. ALGORITHM FOR CALCULATION OF LYAPUNOV EXPONENT USING

ARTIFICIAL NEURAL NETWORK

In general, since people have rarely known the real generating function G of a given time

series, there is an alternative point of view: Suppose there is an observation function h :

< → < that generates our observation yt:

yt = h(xt) (4.10)
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Table 4.3. rmse values of each network with respect to changing error rate η for Rössler

System

Network Model rmse

η = 0 (no noise)

MFN(6:12:6:1) 3.3625× 10−5

RN(12) 3.399× 10−5

FN(12) 3.388× 10−5

η = 0.01

MFN(6:12:6:1) 0.048

RN(8) 0.053

FN(8) 0.054

η = 0.1

MFN(4:8:4:1) 0.8755

RN(8) 0.7498

FN(8) 0.8997

η = 0.2

MFN(4:8:4:1) 0.9650

RN(8) 0.8487

FN(8) 0.9887
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And all that is available for us is the sequence yt .With time lag or embedding dimension m,

the new sequence is generated as:

ymt = (yt, yt+1, . . . , yt+m−1) (4.11)

Using these identities, we get the following result:

Jm(G(xt)) = g(Jm(xt)) (4.12)

So g is topological conjugate of G. That’s why, g has the same dynamical properties of G.

So the mapping g can be estimated as:

g :


yt
...

yt+m−1

→


yt+1

...

ν(yt, yt+1, . . . , yt+m−1)

 (4.13)

This result reduces to estimating:

yt+m = ν(yt, yt+1, . . . , yt+m−1) (4.14)

At this step, ν is estimated by neural network. Linearization of map G gives:

∆ymt+1 = (DG)ym0 ∆y
m
0 (4.15)

Then the solution is:

(Dgt)ym0 = (Dg)ymt−1...(Dg)ym0 (4.16)
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Table 4.4. Lyapunov exponents of systems calculated by both TISEAN and FN networks

Lyapunov Exponents

Rössler System

TISEAN results (0.0714, 0, -5.3943)

FN(12) (0.0704, 0.002, -5.4943)

Duffing System

TISEAN result (0.3675, 0.4256)

FN(8) (0.3254, 0.4613)

MYMH System

TISEAN results (0.0011, 0.00035,-0.00035,-0.0011)

FN(16) (0.0015, 0.00041,-0.00043,-0.0007)

and

(Dg)ymt =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

0 0 0 . . . 0 1

ν1,t ν2,t ν3,t . . . νm,t


(4.17)

Then the Lyapunov exponents can be calculated from the eigenvalues of matrix in Eq. 4.17.

To test the efficiency of the given algorithm, we test it by using the time series generated

from Rössler (Eq. 4.8), Duffing (Eq. 4.7) and MYMH(Eq. 2.17) systems. As we already

stated that ν in Eq. 4.14 is estimated by the neural network. For calculating maximal

Lyapunov exponents of the systems, we use single hidden layer feedforward neural network.

Estimation of maximal Lyapunov exponents by neural network and Lyapunov exponents

values calculated using TISEAN package[38](using lyapk function) is compared to reach a

conclusion about the validity of results obtained by neural networks. In Table 4.4, Lyapunov

exponents of three system are displayed for the test systems. In the estimation of Rössler

system 12 hidden units and 2000 points generated from Eq 4.8 are used in a single hidden

layer feedforward network. We find the Lyapunov exponents of the Rössler system using
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FN(12), this gives Lyapunov exponents of the system as (0.0704, 0.002,−5.4943) which

is very good estimate without noise condition (η = 0). For the Duffing system, best

estimates are observed with 8 hidden units for 2000 observations with feedforward network.

For this analysis, estimates are not as accurate as such in the Rössler case. Yet, they are

not too much different from the expected values. For MYMH system, we use the initial

conditions(px, py, x, y)=(0.2440286868, 0.2, 0.0, -0.1) and parameters(g=0.25, a=1). For

calculation of Lyapunov exponents,we use again 2000 points and with network of 16 units.As

we already mentioned MYMH system displays both chaotic and regular behaviors at the

same time.

4.4. MODELING DYNAMICAL SYSTEM WITH NEURAL NETWORK

In this chapter, up to now, we use neural networks for modeling nonlinear time series by

using previous time steps. Neural networks can also be used to predict a value of a target

variable which is the result of other parameters. For example, suppose you want to estimate

how many kilograms of rain per meter-square fall in İstanbul during August. There exist

historical rainfall values in hand, data of the factors that affect the rainfall amount such as

humidity, wind etc... However, writing a mathematical model which describes the rainfall

amount is not an easy task. As we have already mentioned neural networks are able to

estimate very complicated functions. In this section, we test the performance of neural

networks in modeling dynamical systems.

We use the Rössler (Eq. 4.8) and Duffing system (Eq. 4.7) as test cases for neural

networks.During the analysis, the time series generated in section 4.2 for both system

are used. For modeling systems, many types of neural networks are studied: RBF

neural networks[39], nonlinear auto regressive model with external input (NARX) neural

networks[40]. In this study, we compare the performance two neural networks on modeling

dynamical system: FN and NARX neural networks. In section 4.1.1 definition of FN is

given. However, we did not yet define NARX .

The NARX is a type of RN. This network model creates relationships between current and

past values of the driving (exogenous) series and past values of the target time series which
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Figure 4.20. Types of NARX networks

can be represented mathematically by the following notation:

yt = F (yt1 , yt−2, yt−3, . . . , ut, ut−1, ut−2, ut−3, . . . ) + et (4.18)

where yt is again target variables and ut−i and et denote values of driving variables and error.

NARX network has two types of architecture, which are shown in Fig. 4.20. The difference

between these two architectures can summarized as follows: while the target time series yt

in series-parallel architecture are estimated using present and past values of ut and real past

values of yt−1, in parallel architecture,the predicted past values of yt−1 are used instead of

real past values yt−1 along with ut. Inner learning mechanism of NARX networks are same

as other neural networks such as in FN and RN.

In the analysis, we used Levenberg-Marquardt learning algorithm for both system in neural

networks. For Rössler system, we use 6 hidden neurons in both FN and NARX networks.

In training state of networks 70% of data is used and 15% of data is used for as test case,

the remaining 15% of data is used as validation set. As performance criteria,we use rmse

of estimates. The test results for both FN and NARX networks are plotted in Fig. 4.21 and

it is clear that the variables x(t) of Rössler system can be estimated very well by the both

network architecture. While rmse of NARX network is 3.22 × 10−4 ,for FN, rmse is equal

to 4.07 × 10−4. In addition to this, other variables of the system, namely y(t) and z(t), are

studied using the same network structures and the success of both network are also observed

in these scenarios.
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Figure 4.21. Predicted x(t) values of FN network vs. predicted x(t) values NARX Network

for Rössler System

For Duffing system, we use single hidden layer NARX network with 4 neurons, again we use

tangent-sigmoid activation function in hidden layer and linear activation function in output

layer. Output of NARX and FN networks for Duffing system are plotted in Fig. 4.22.

For Duffing system, we want to try modelling ˙x(t) in Eq. 4.7 based on the variable x(t) for

Duffing system, note that time dependent part of ẍ is not considered in neural network model

input but both networks are very successful in modeling system variables based on the other

dependent variable. For NARX network, the rmse is equal to 2.22 × 10−5 and for FN

network rmse is 2.82× 10−5.
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Figure 4.22. Predicted ˙x(t) values of FN network vs. predicted ˙x(t) values NARX Network

for Duffing System
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5. CONTINUOUS DYNAMICAL SYSTEMS AS PSEUDO RANDOM

NUMBER GENERATOR

Random numbers are used in many fields of study ranging from generating data encryption

keys to simulating and modeling complex phenomena. There are two main categories

of random numbers: those generated by Pseudo Random Generators (PRNGs) and True

Random Number Generators (TRNGs). TRNGs (or hardware based RNGs) are based on

physical processes such as radioactive decay, photoelectric effect, thermal noise, atmospheric

noise etc. TRNGs have the quality required for random numbers: they are nondeterministic

and unpredictable. On the other hand, they have two main drawbacks: they are slow, and

they require good hardware implementation which is costly.

The second alternative to create random numbers is PRNGs. PRNGs uses mathematical

formulae to create random sequences. PRNGs are very efficient which means they can

generate many random numbers in short time but if one seeks an undeterministic way of

generation they are not suitable since they are created by a deterministic approach. That’s

why, they would be predictable and repeatable or periodic. In the light of this information,

desired PRNGs should satisfy the following criteria: they must create uniformly distributed,

fast and serially uncorrelated random numbers with long periods. There are many algorithms

used as PRNGs to generate numbers that appear as random; the well-known example of

PRNGs is linear congruential generator (LCG). LCGs are fast but they are not a good choice

for Monte-Carlo simulations and cryptographic applications. LGC does not satisfy the high

criteria of randomness because of their short period and serial correlation between successive

random numbers.

Chaotic systems are recently used as a random number generator especially in cryptography

and data encryption. Researchers prefer to use chaotic dynamical systems as PRNG due to

their non-periodic behavior and they can be used as fast random number generators. Chaos

theory aims to explain the long-term behavior of a system in a deterministic way. One

important characteristic of the chaotic systems is their sensitive dependence on its initial

conditions which means if one wants to integrate equations of motion of a chaotic system,
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even an infinitesimal change in the initial conditions will increase the deviation exponentially

over time and will easily collapse the accuracy of the prediction. That’s why chaotic systems

are unpredictable which makes them attractive for pseudo random number generators.

Iterative maps are discrete continuous systems which are used as PRNGs in many studies.

Logistic map is studied as a number generator in [41], 3-d chaotic Arnold cat-map is studied

in [42]. The chaotic Henon map was used as a RNG in [43]. The most famous example

of chaotic systems is the Lorenz System. Lorenz system was used as a random number

generator in [44, 45] and in [45],it is shown that Lorenz system could be a good candidate

for a desirable random generator. The Rössler system as PRNG is described in [46]. Chaotic

Chua’s circuit is also another example of dynamical system as PRNG studied in [47].

To test the PSRGs, there are some statistical test suites such FIPS-140-2, DIEHARD

and NIST test suites. In in this chapter, we propose generator (PRBG) based on

two chaotic continues dynamical systems namely: Rössler System(Eq. 4.8) and Duffing

oscillator(Eq. 4.7).

5.1. DESCRIPTIONS OF STATISTICAL TESTS FOR RANDOMNESS

There are many statistical tests for quality of random numbers: Poker test, Runs test,

Frequency Test etc. In this analysis we use a NIST test suite for statistical analysis of our

new PRNG described in section 5.2. For the usage of our PRNG in image encryption,we use

other statistical test. In this section, we briefly introduce the test that we use in this study.

5.1.1. Histogram Analysis

As we have already know images are consisting of pixels. Each pixel,if the image is black

and white, has its own grey scale level. So if we plot the number of pixels in each grey

scale level, we will get the histogram of an image. The encrypted images are called as

cipher-image. The good image encryption algorithm creates a cipher-image which has

uniform distribution in histogram. In addition to this, the histograms of cipher image and

original image should be significantly different. Histogram analysis gives information about
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confusion and diffusion properties of cipher-image and it is important to characterize the

power of proposed solution against statistical attacks.

5.1.2. Information Entropy Analysis

Concept of entropy is very familiar and important measure for physicists from

thermodynamics. Entropy is measure of degree of disorder in a system. In information

theory, Shannon[48] defines the entropy as the average minimum amount of information

needed to encode a given data sets(string and image), upon the frequency of the given system.

Entropy gives information about the degree of unpredictability. That’s why, the higher the

entropy, the better the security. Entropy E(X) for source x defined as:

E(X) =
n∑
i=1

P (xi) log2

(
1

P (xi)

)
(5.1)

where X refers to our image(pixel value matrix), xi denotes random pixel in X and P (xi) is

the probability of choosing xi in X . For a source emitting 2N symbols, the maximum value

of entropy can be N .

5.1.3. Correlation of Adjacent pixels

There is a high correlation between adjacent pixels in each direction(horizontal, vertical,

diagonal) for an ordinary image. Yet, an encrypted image should have low correlation

between adjacent pixels in each direction. Correlation between adjacent pixels can be tested

visually by plotting distribution of adjacent pixels of original image versus cipher image.

Numerically measure of correlation coefficient between adjacent pixels rx,y can be calculated

using:

rx,y =
cov(x, y)√
V (x)

√
V (y)

(5.2)
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where cov(x, y) denotes co-variance between x and y values of pixels:

cov(x, y) = M(x−M(x))(y −M(y)) (5.3)

M(x) is the average of Xi and V (x) is the variance of Xi.

M(x) =
1

N

N∑
i=1

Xi (5.4)

V (x) =
1

N

N∑
i=1

(X −M(Xi))
2 (5.5)

5.2. PROPOSED PRNG

Our proposed random number generator is a kind of LCGs, based on integration of equations

of the system in time. We choose a dynamical system:

ẋ = f(x) (5.6)

x ∈ Rn. Then the system is integrated in time. As a second step, we define functions S(ti)

and M(ti) as follows:

S(ti) =
n∑
j=1

1014xj(ti) (5.7)

M(ti) = floor(S(ti)) mod 2d (5.8)

where xj(ti) is jth component of the system Eq. 5.6 at ith iteration in time t. We choose

1014 as multiplier to make period of our PRNG long. In Eq. 5.8, M(ti) takes values between
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(0, 2d − 1). At the final step M(ti) is converted to d-bit binary sequences. In our test we

choose d = 8 and generated random integers from time series between (1, 255).

5.3. STATISTICAL TESTING OF PROPOSED PRNGS

To be sure that the newly proposed pseudo random number generators are cryptographically

secure, they should be subjected to a variety of statistical tests designed to detect the specific

characteristics expected of truly random sequences. The four most generally used test suites

are: NIST [49], DIEHARD [50], Crypt-XS, FIPS-140-2. In this study, we use NIST

test suite. The NIST tests suite is a statistical package which consists of 16 tests that are

developed to test the randomness of (arbitrary long) binary sequences produced by either

hardware or software based cryptographic random or pseudo random number generators.

For generation of time series, we integrate given two systems in time and we generate the

random numbers by the proposed method in section 5.2. For the Rössler system (Eq. 4.8),

we use the following initial conditions and parameter values: (x0, y0) = (0.5021, 0.17606)

and a = 0.2, b = 0.2, c = 5.7. For the Duffing oscillator, the initial condition is (x0, y0) =

(0.5021, 0.17606) with parameter values γ=0.42, δ=0.5, α=-1, β=1, w=1. Both systems are

integrated in time and we have time series with length 2000 for both of the system. Then

these random number are converted to 8-bit sequences. Finally, these data sets are tested

using NIST test suite. Test results with p-values for both systems is given in Table 5.1. In

addition to this, distribution of generated random numbers with two systems mentioned are

shown in the histograms in scaled range (0, 1) in Fig. 5.1. According to these histograms

both generated PRNGs obey uniform distribution.

5.4. USE OF CPRNGS IN IMAGE APPLICATION

To test our chaotic PRNGs given above, we use the algorithm schema used in[51] for

encrypting the images by adapting our CPRNGs and evaluate their performance in terms

of their ability of the attackers to break it by using the following three methods: histogram

analysis, entropy analysis and correlation analysis. The image encryption algorithm that we

use is based on perturbation of image by shuffling (by XOR operator) of row, columns and
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Table 5.1. Results of the SP 800-22 test of PRNG for Rössler and Duffing oscilattor based

on PRNGs

Rössler System Duffing Oscillator

Test index p-value Result p-value Result

Frequency 0.5436 Success 0.5436 Success

Block

frequency
0.6784 Success 0.4217 Success

Cumulative

sums
0.4327 Success 0.2561 Success

Runs 0.6921 Success 0.4378 Success

Longest run 0.1121 Success 0.0914 Success

Rank 0.7221 Success 0.5412 Success

Non-overlapping

template
0.0322 Success 0.0355 Success

FFT 0.6121 Success 0.3421 Success

Overlapping

template matching
0.1398 Success 0.1021 Success

Universal 0.2655 Success 0.1465 Success

Approximate

entropy
0.2356 Success 0.1137 Success

Random excursions 0.3102 Success 0.2102 Success

Random

excursion variant
0.0543 Success 0.0431 Success

Serial 0.1244 Success 0.1212 Success

Linear complexity 0.2321 Success 0.2119 Success
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a. Rössler system b. Duffing Oscillator

Figure 5.1. Histogram of generated random numbers in scaled range (0, 1)

pixels of the original image are presented. For fully description of the algorithm, the reader

should refer to [51]. For our analysis, we use Lena image with size 256x256. Firstly, we use

Rössler system as PRNG in encryption algorithm[51]. The ciphered and original images of

the Lena by their corresponding histogram analysis is shown in Fig.5.2.b for Rössler system

as PRNG. According to histogram analysis, ciphered image (Fig. 5.2.d) displays behavior

close to uniform distribution so that according to histogram analysis, Rössler system can be

a good candidate for image encryption as PRNG. In Fig 5.2.f, histogram analysis results for

Duffing oscillator is used as CPRNG for image encryption is shown. It also displays similar

performance to the Rössler system. In addition, ciphered images, deciphered images are

given in Fig. 5.3.a and Fig. 5.3.c with their corresponding histogram analysis. According to

Fig. 5.3, we can successfully reverse the encryption operation on the ciphered images.

Entropy E gives information about the degree to which system is random. If the entropy of

the system is high, the encryption is more secure. For our Lena image, maximum entropy

value can be 8. For cipher image done by using Rössler system, the entropy E is 7.9928

which very close to optimum value so our encryption is secure against entropy attacks. On

the other hand, Duffing oscillator has an entropy values E = 7.9916 which is also very close

to optimum value but slightly lower than performance of Rössler system.

In the correlation analysis, the correlation between adjacent pixels is examined. For

security purposes cipher image should have very low correlation coefficients. We test cipher
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a. Original Lena image b. Histogram of Lena image

c. Ciphered image for Lena using the

Rössler system system

d. Histogram of cipher image for Lena

using Rössler system

e. Ciphered image for Lena using the

Duffing oscillator

f. Histogram of cipher image for Lena

using the Duffing oscillator

Figure 5.2. Cipher and original images of Lena and their histograms
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a. Deciphered image for Lena using the

Rössler system

b. Histogram of deciphered image for Lena

using Rössler system

c. Deciphered image for Lena using the

Duffing oscillator

d. Histogram of deciphered image for Lena

using Duffing oscillator

Figure 5.3. Deciphered images and their histogram analysis

images generated by Rössler and Duffing oscillator systems in the following cases: vertical,

horizontal and diagonal adjacent pixels.
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Figure 5.4. Correlation analysis of Lena Figure and its cipher image by Rössler system

Table 5.2. Correlation Coefficients for Adjacent pixels

Correlation

Coefficients
Lena Image

Cipher Image by

Rössler system

Cipher Image by

Duffing Oscillator

Horizontal 0.9607 0.0125 0.0211

Vertical 0.9276 0.0753 0.0761

Diagonal 0.9057 0.0561 0.0541
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Figure 5.5. Correlation analysis of Lena Figure and its cipher image by Duffing system
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6. CONCLUSION

In this dissertation, we worked on three different problems. Firstly, we analyzed the

MYMH system (Eq. 3.1) which is a very important model to understand current evolution

of universe. Secondly, we made use of neural networks to make prediction about nonlinear

systems. We use neural networks not just to predict nonlinear time series but also to estimate

Lyapunov exponents and modeling dynamical systems. Finally, we constructed a random

number generator from two different dynamical systems which can be very useful for image

encryption and Monte-Carlo applications in physics.

We have studied the MYMH system and have tried to investigate the possible chaotic

behavior of the MYMH system based on following the effect of parameter g on the stability

of the system. We observed that for small values of energy E system display chaotic behavior

where there exist two isolated islands around a fixed point (0, 0, 0, 0). When we increase

the value of the parameter g, the stabilizing effect of the harmonic oscillator term of the

Hamiltonian becomes obvious. After application of the method of averaging, we have

observed that changing values of parameter g can result in Hopf bifurcation. We find this

result important since we can construct a positive Lyapunov function whose derivative gives

exactly zero. Thus, we have found the existence of a possible approximately conserved

quantity and asymptotic structural stability in the system.

In chapter 4, we compare and test the performance of three neural network architecture for

prediction of chaotic time series generated from dynamical systems. We observe very simple

network structures give very efficient estimation of nonlinear phenomena compared to other

well-known techniques such as least squares estimates. According to our observations, their

success originated from their ability in nonlinear function estimation. They are also very

trustful tool for prediction of chaotic parameters such as Lyapunov exponents as we reported.

In chapter 5, we have demonstrated that our chaotic PRNGs are able to pass statistical tests

to be accepted as good real random number generators. In addition to this, we demonstrate

their efficiency in image encryption algorithm which is originally based on iterative logistic
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map. One possible handicapped situation of our PRNGs is that if the initial conditions and

parameter values are known, they can be hacked. To deal with this issue for each instantiation

initial conditions can be stated by TRG based on hardware. However, to make use of their

chaotic nature as PRNG, certain initial conditions and parameter values should be settled.
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44. Lynnyk V, Sakamoto N, Čelikovskỳ S. Pseudo random number generator based on the

generalized Lorenz chaotic system. IFAC-Papers OnLine. 2015;48(18):257–261.
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APPENDIX A: Recurrent Neural Network Matlab Code

1 f unc t i on [ f f n e t ,Y1 , performance , t r s e t ]=elmannet (y ,m, eta )

2 y=y ( : ) ;

3 y=y ' ;

4 [ nyr , nyc ]= s i z e ( y ) ;

5 t r s e t =100;

6 t r s e t=f l o o r ( 0 . 8* nyc* t r s e t /100) ;

7 yL=lagmatr ix (y ' , 1 :m) ' ;

8 l r = max l in l r (yL ( : ,m+1:end ) , ' b ia s ' ) ;

9 PRL=min(yL') ' ;

10 PRU=max(yL') ' ;

11 f f n e t=newelm ( [PRL( 1 :m) PRU( 1 :m) ] , [ 2 *m 1] ,{ ' t an s i g ' , ' pu r e l i n '} , ' t ra in lm ' ) ;

12 f f n e t . trainparam . epochs=1000;

13 f f n e t . trainparam . goa l=1e−9;

14 f f n e t=t r a i n ( f f n e t , yL ( 1 :m,m+1: t r s e t ) , y (1 , ...

15 m+1: t r s e t ) ) ;

16 A=yL ( 1 :m, t r s e t +1:nyc ) ;

17 A=A+eta * s q r t ( var ( y ) ) * randn ( s i z e (A) ) ;

18 Y1 = sim ( f f n e t ,A) ;

19 performance=perform ( f f n e t , y (1 , t r s e t +1:nyc ) ,Y1) ;

20 t=t r s e t +1:nyc ;

21 p lo t ( t ,Y1 , ' . ' ) ;

22 hold on

23 p lo t ( t , y (1 , t r s e t +1:nyc ) ) ;

24 xlim ( [ min ( t ) max( t ) ] ) ;

25 x l ab e l ( 'Time' ) ;

26 y l ab e l ( 'X( t ) ' ) ;

27 l egend ( ' est imated ' , ' o r i g i n a l ' ) ;

28 end

Figure A.1. Recurrent Neural Network Matlab Code
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APPENDIX B: Multilayer Feedforward Neural Network Matlab Code

1 f unc t i on [ f f n e t ,Y1 , performance , t r s e t ]= f e edmu l t i l a y e r (y ,m, eta )

2 y=y ( : ) ;

3 y=y ' ;

4 [ nyr , nyc ]= s i z e ( y ) ;

5 t r s e t =100;

6 t r s e t=f l o o r ( 0 . 8* nyc* t r s e t /100) ;

7 yL=lagmatr ix (y ' , 1 :m) ' ;

8 l r = max l in l r (yL ( : ,m+1:end ) , ' b ia s ' ) ;

9 PRL=min(yL') ' ;

10 PRU=max(yL') ' ;

11 f f n e t=newff ( [PRL( 1 :m) PRU( 1 :m) ] , [m 2*m m 1] ,{ ' t an s i g ' , ' t an s i g ' , ' t an s i g '...

12 , ' pu r e l i n '} , ' t ra in lm ' ) ;

13 f f n e t . trainparam . epochs=2000;

14 f f n e t . trainparam . goa l=1e−9;

15 f f n e t=t r a i n ( f f n e t , yL ( 1 :m,m+1: t r s e t ) , y (1 , ...

16 m+1: t r s e t ) ) ;

17 A=yL ( 1 :m, t r s e t +1:nyc ) ;

18 A=A+eta * s q r t ( var ( y ) ) * randn ( s i z e (A) ) ;

19

20 Y1 = sim ( f f n e t ,A) ;

21 performance=sq r t ( perform ( f f n e t , y (1 , t r s e t +1:nyc ) ,Y1) ) ;

22 t=t r s e t +1:nyc ;

23 p lo t ( t ,Y1 , ' . ' ) ;

24 hold on

25 p lo t ( t , y (1 , t r s e t +1:nyc ) ) ;

26 xlim ( [ min ( t ) max( t ) ] )

27 x l ab e l ( 'Time' ) ;

28 y l ab e l ( 'X( t ) ' ) ;

29 l egend ( ' est imated ' , ' o r i g i n a l ' ) ;

30 end

Figure B.1. Multilayer Feedforward Neural Network Matlab Code


