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ABSTRACT 

 

 

OPTIMAL BIDDING AND REAL-TIME OPERATION STRATEGIES FOR WIND 

AND PUMPED HYDRO STORAGE SYSTEMS USING STOCHASTIC 

PROGRAMMING AND MODEL PREDICTIVE CONTROL 

 

Trading wind energy in deregulated markets is a challenging task due to uncertainties 

involved. To be more specific, a company participating into day-ahead market has to submit 

its bids for the next day without knowing actual generation that will occur. Consequently, 

there will be discrepancies between bids promised and energy generated. This leads to 

imbalances which causes penalties to be paid in the balancing market. Incorporating a 

pumped hydro storage system may be a remedy to this problem. In the literature, a significant 

body of work is devoted for the joint wind-PHS systems that participates in day-ahead 

bidding.  However, the problem of real-time operation is not studied well. Motivated by this 

fact, in this thesis, a new strategy in which the day-ahead bids are computed by solving a 

risk-averse stochastic program, and real-time operation is performed by a stochastic model 

predictive control-based algorithm with a risk control capability is proposed. This is a rolling 

horizon approach in which a MILP problem constructed from a stochastic scenario tree is 

solved repeatedly at every time instant within the day. By this way, optimal actions for the 

storage device can be computed exploiting the latest available information. The proposed 

algorithm is applied to a realistic system located in Turkey, and its performance is compared 

with the algorithms in the literature by using daily schedule, Pareto optimality and long-term 

analysis. Simulation studies shows that the proposed approach outperforms the available 

methods owing to its ability to exploit the most recent information available within the day 

and ability to take into account contingencies of wind energy production. 
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ÖZET 

 

 

RÜZGAR VE POMPAJLI HİDRO ELEKTRİK SANTRALLERİNDE EN İYİ 

TEKLİF VE GERÇEK ZAMANLI OPERASYON İÇİN STOKASTİK MODEL 

ÖNGÖRÜLÜ KONTROLÜN KULLANILMASI 

 

Serbest enerji piyasasında rüzgar enerjisi ticareti yapmak rüzgarın sahip olduğu belirsizlik 

nedeniyle zorlu bir iştir. Daha açık olmak gerekirse, gün öncesi piyasasına katılan bir 

şirketin, gerçekleşecek olan asıl üretimi bilmeden ertesi gün için tekliflerini sunması gerekir. 

Sonuç olarak, vaat edilen teklifler ile üretilen enerji arasında farklar olacaktır. Bu farklar, 

dengeleme pazarında belirli cezaların ödenmesine yol açar. Pompaj depolamalı bir hidro 

elektrik sisteminin eklenmesi bu soruna çare olabilir. Literatürde, gün öncesi ihalesine 

katılan ortak rüzgar-PHS sistemlerine önemli bir çalışma alanı ayrılmıştır. Ancak, gerçek 

zamanlı operasyon sorunu iyi çalışılmamıştır. Bu gerçeğe dayanarak, bu tezde, gün öncesi 

tekliflerinin riskten kontrollü stokastik bir program çözülerek hesaplandığı ve gerçek 

zamanlı operasyonun risk kontrolüne sahip stokastik model öngörülü kontrol yaklaşımına 

dayalı bir algoritma ile gerçekleştirildiği yeni bir strateji önerildi. Bu, stokastik bir senaryo 

ağacından inşa edilen bir lineer karışık tamsayı probleminin, günün her anında, tekrar tekrar 

çözüldüğü bir yaklaşımıdır. Bu şekilde, depolama cihazı için en uygun eylemler, mevcut 

olan en son bilgilerden yararlanılarak hesaplanabilir. Önerilen algoritma, Türkiye'de bulunan 

gerçekçi bir sisteme uygulanmakta ve performansı günlük program, Pareto optimallik ve 

uzun vadeli analizler kullanılarak literatürdeki algoritmalarla karşılaştırılmaktadır. 

Simülasyon çalışmaları, önerilen yaklaşımın, gün içinde mevcut olan en yeni bilgileri 

kullanabilme kabiliyeti ve rüzgar enerjisi üretimindeki beklenmedik durumları dikkate alma 

kabiliyeti sayesinde mevcut yöntemleri geride bıraktığını göstermektedir.  
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TEAŞ   Turkish Electricity Generation and Transmission Company 

TEDAŞ  Turkish Electricity Distribution Corporation 

TEİAŞ   Turkish Electricity Transmission Company 

TEK   Turkish Electricity Authority 

TETAŞ  Turkish Electricity Trading and Contracting Company 

VaR   Value-at-Risk 

VAWT  Vertical Axis Wind Turbine 

VSS   Value of Stochastic Solution 

WPP   Wind Power Plant 

WRIG   Wound Rotor Induction Generator 

WT   Wind Turbines 

YEKDEM  Renewable energy support mechanism 
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1. INTRODUCTION 

 

In the last decades, the energy infrastructure in many countries went through a transition 

from a regulated structure to a deregulated structure. A regulated electricity market consists 

of a monopolist that manages all of the generation, transmission and distribution utilities. 

However, investing in all services need a massive amount of capital, which is paid by the 

customers. Another significant problem was the low power generation efficiency because of 

the lack of competition. Thus, in order to struggle with these problems, the countries started 

to privatize their generation, transmission and distribution utilities, and all utilities are 

separated in order to create a competitive and transparent market structure. As a result, the 

change in the energy infrastructure in the world began in the late 1980s with the UK and 

continued in the USA and European Union.  

With the deregulation, the main change occurred in the generation side of the energy. With 

the liberation of the energy generation, new generation companies (GENCO) has acted in 

the energy generation. In addition to private-sector owned conventional power plants, the 

penetration of renewable energy has increased rapidly all over the world. Environmental 

concerns, along with decreasing capital costs, low operation costs and improvements in 

technology, constitute the driving forces behind this growth. However, higher utilization of 

renewable energy leads to significant challenges due to its intermittent nature, which 

diminishes its reliability. 

Due to the variability of demand and renewable energy generation, there are uncertainties 

that can be dealt with two different solution. One of the solutions is introduced by the system 

operator. With this solution, multiple market structures are established in different time 

scales, which are day-ahead, intraday, real-time balancing, and ancillary markets. Within 

these markets, most of the energy is traded in the day-ahead market. However, due to the 

uncertainties arising from the renewable energy sources, the imbalance between the 

generation and demand can occur in the power system. In order to reduce these imbalances, 

the intra-day market is established. Although the system is tried to be balanced with these 

market structures, some unpredictable short-term imbalances may still exist in the system. 

To cope with this problem, real-time imbalances are compensated in the balancing market.  
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Also, ancillary markets are mostly used to provide energy for frequency regulation and 

safety issues.  

The second solution is proposed by energy producers because of their profit decrease due to 

imbalances in the production plans. While these imbalances can be eliminated with 

conventional power plants, storage devices are an effective solution to alleviate problems of 

intermittency by energy shifting and imbalance reduction. Various storage technologies can 

be used for this purpose, such as Pumped Hydro Storage (PHS) plants, batteries, compressed 

air storage devices, flywheels [1]. Among these, PHS plants are one of the most promising 

solutions for large-scale storage due to their high capacity, rapid response time and long 

lifetime [2]. 

In this thesis, a wind energy producer supported by a PHS system was investigated. Two 

different, but closely located wind farms are sited in Manisa, and the PHS plant is planned 

to be built near the wind farms in the feasibility study carried out by the government. The 

producer is participating in the day-ahead market for trading energy and compensating its 

deviations in the balancing market. Thus, the joint wind-PHS energy producer implements 

a two-step decision-making process. In the first stage, which can be called as bidding, the 

day-ahead market bids are decided without knowing the actual energy prices and wind 

energy production so that the maximum income can be obtained. In the second stage, the 

producer determines the energy supplied to the grid for each hour in the real-time operation 

with the available data which are accepted bid, actual energy price, and system state. 

Thus, for this energy producer, an integrated strategy for day-ahead market bidding and real-

time operation was developed. The proposed real-time operation algorithm is based on a 

Stochastic Model Predictive Control (SMPC) algorithm while the bidding is formulated as 

a Mixed-Integer Linear Programming (MILP)-based stochastic program. In both phases, 

random information is modeled as scenario trees, imbalance costs are considered 

realistically, and risk aversion based on Conditional Value at Risk (CVaR) measure is a part 

of the objective. 

Different real-time operation methods from the literature were implemented along with the 

proposed SMPC algorithm, and their performances were compared. To be more specific, 

first, daily operation schedules of the algorithms were analyzed. Second, because the 

problem studied has two conflicting objectives of expectation maximization and risk 
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aversion, Pareto optimality of the methods relative to each other was investigated. Finally, 

long-term simulations were performed to compare the economic benefits of the strategies 

considered in a more general setting under changing imbalance market conditions. 

The overall structure of the thesis takes the form of ten chapters, including this introductory 

chapter. The wind energy and energy storage systems are introduced in Section 2 and Section 

3, respectively. In Section 4, the pumped energy storage device is investigated in detail with 

its historical background, capacity in the world and Turkey, main-use case applications and 

technical aspects. In Section 5, the general electricity market structure is explained with the 

detailed information about Turkey electricity market. In Section 6, a general background on 

stochastic programming and solution methods is provided. The scenario generation and 

reduction methods used in this thesis are also given in detail in this section. Section 7 begins 

by laying out the problem formulation of the joint wind-PHS system and market model, then 

presents a review about the related literature of the bidding and real-time operation. In 

Section 8, the proposed method for the bidding and real-time operation is given with the 

optimization model. In Section 9, the case study is described, and the simulation results are 

presented and analyzed. Finally, the main outcomes of this work are summarized in Section 

10. 
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2. WIND ENERGY 

 

Wind energy is an important renewable energy source which is used considerably today, and 

its share in total energy production has increased recently. Its popularity is due to the facts 

that it is a fuel-free, clean and environmentally friendly source. Although it is a popular 

energy source today, actually it has been used for a long time in history.  

The first applications of wind energy date back to 2800 BC as a power source for the sailing 

ships. In the next centuries, it was utilized for irrigation and grain milling purposes. Until 

the beginning of the 19th century, the use of wind energy had expanded, and its use in water 

pumps had become widespread. In the 19th century, with the invention of the steam engine 

in the Industrial Revolution, stable energy could be produced with fossil fuels. Thus, wind 

energy began to lose importance. However, after the oil crisis in the 1970s, countries made 

significant efforts to diversify energy sources by looking for alternatives. This triggered the 

use of wind as the electrical energy source. After that, small turbines were designed to 

provide electricity to houses and wind farms with capacity ranging between 10-15 MW were 

started to generate energy before the 1990s.  

Since the 1990s, wind energy technology has made significant progress, and high capacity 

wind power plants have been developed. The wind power in the world was only 2160 MW 

at the beginning of the 1990s, and the installed wind power over the world increased by six 

times to 13455 MW at the end of 1999. This trend continued in the 2000s, as shown in Figure 

2.1, and the total capacity increased to 539123 MW at the end of 2017 [3]. According to the 

market forecasts accomplished by Global Wind Energy Council (GWEC), the installed wind 

power capacity is expected to 840 GW by the end of 2022. 
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Figure 2.1. Installed wind power capacity - worldwide 2002-2017 

According to a report published by GWEC, 42.3 percent of the installed capacity was located 

in Asia at the end of 2017. Europe follows the Asia region with 33 percent, North America 

with 19.5 percent. The most crucial factor that makes the Asia leader in the world is China's 

recent investments in wind energy. At the end of 2017, China had the largest share across 

the globe, as can be seen from Figure 2.2.  

 

Figure 2.2. Cumulative installed capacity in 2017 

From Figure 2.2, it can be observed that Turkey became the sixth-largest wind energy 

producer in Europe and eleventh in the world. According to the same report in 2017, Turkey 

had increased its wind capacity by 766 MW and ranked 4th in Europe in this category and 

ranked 8th in the world. Turkey has an advantageous position compared to other countries 

because it has considerable potential for wind energy, which is estimated at approximately 
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48000 MW [4]. Two wind farms were built in 1998 with an 8.7 MW installed capacity, and 

there was no significant increase in capacity until the government’s new investment policies 

in renewable energy sources in 2005. After that investment policies, the capacity increased 

each year gradually and reached to 6872 MW at the end of 2017. The evolution of the 

installed wind power in Turkey is given in Figure 2.3. 

 

Figure 2.3. Installed wind capacity over the years 

In 2007, Turkey Wind Energy Potential Atlas was formed to determine the characteristics 

and distribution of wind energy resources in Turkey. The detailed wind source maps given 

in this atlas provide a guide for deciding suitable regions for wind energy production. The 

territories with the highest wind potential are Marmara and Aegean regions according to this 

atlas, and these were the places having 164 plants operational in Turkey by the end of 2017 

[5] and the distribution of these wind power plants by regions is depicted in Figure 2.4.  

 

Figure 2.4. Operational WPP’s according to regions 
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2.1. WIND TURBINES 

Wind Turbines (WT) convert the kinetic energy from the movement of air into electrical 

energy as in Figure 2.5. Firstly, the rotor of the wind turbine gathers the wind energy through 

aerodynamically designed blades and converts it into mechanical energy. Because the 

generator rotates at high speed, the low mechanical rotation speed must be increased with 

the gearbox. If the generator has a high number of poles, then it can operate at low speed. 

Thus, the mechanical energy can be transmitted to the generator without the need for a 

gearbox. After the generator converts mechanical energy to electrical energy, the electrical 

energy is transferred to the grid with the transformers and transmission lines. However, 

depending on the type of wind turbine, it may be necessary to use a power converter before 

the electrical energy is transmitted to the power transformers. 

 

Figure 2.5. Energy conversion of wind to electricity 

 

Figure 2.6. Classification of wind turbines 
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As depicted in Figure 2.6, WTs can be classified with respect to different aspects. One 

criterion is the rotation axis. There are Horizontal Axis Wind Turbines (HAWT) and Vertical 

Axis Wind Turbines (VAWT). Due to their higher efficiency and energy output 

characteristics, HWATs are preferred for large scale energy generation [6]. Details of the 

horizontal and vertical axis wind turbines will be presented in Section 2.1.1 and 2.1.2 

WTs can also be classified based on the generation capacities as follows.  

 Small (<25 kW) 

 Medium (25-100 kW) 

 Large (100 kW-1000 kW) 

 Very large (>1000 kW) 

WTs also differ in the mechanism used to transform mechanical power into electrical power. 

Some WTs transmit power with a gearbox, whereas new WT types make use of direct-drive 

technology. Gearbox turbines may have a Squirrel Cage Induction Generator (SCIG), 

Wound Rotor Induction Generator (WRIG) and Double-Fed Induction Generator (DFIG) 

with a small number of poles. While SCIG and WRIG are connected to the grid directly with 

a transformer, DFIG uses a partial scale converter before connecting to the network. 

Turbines with direct-drive technology may have an Electrically Excited Synchronous 

Generator (EESG) and Permanent Magnet Synchronous Generator (PMSG). Such 

generators have a large number of poles and need a full-scale converter before connecting 

to the grid. Grid connections for the generators mentioned above are depicted in Figure 2.7 

and  Figure 2.8.  

 

Figure 2.7. Grid connection of gearbox coupled generators 
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 Figure 2.8. Grid connection of direct-drive generators 

Another way for classifying wind turbines is their operating speed. They may be fixed or 

variable speed depending on the drive technology and generator type as shown in Table 2.1 

Table 2.1. Technical comparison of geared and direct drive generators 

 Geared Direct-drive 

SCIG WRIG DFIG EESG PMSG 

Grid 
Connection 

Direct via 
transformer 

Direct via 
transformer 

Partial scale 
converter 

Full scale 
converter 

Full scale 
converter 

Speed Fixed Limited 
variable 

Variable Variable Variable 

 

When the turbine sittings are investigated, it can be seen that most of the wind turbines are 

built on the land since installation costs are lower when compared with offshore areas. 

However, offshore wind turbines are becoming widespread since wind speed are higher over 

the sea, and available onshore areas are limited over Europe [6]. First offshore wind turbines 

were installed in shallow regions close to shores. The first offshore establishment had a 5 

MW turbine build near the island of Lolland in Denmark (Vindeby Windfarm). In the 

projections for the future, it is foreseen that the offshore wind power plants will generate 549 

TWh energy by the 2030s.  

The designs of the offshore and onshore WTs are very similar except the structure of the 

foundation. The types of offshore WT foundations are given in Figure 2.9 [6]. The first 

offshore WTs were building with an underwater tower but the later ones used floating 

foundations in order to locate the WTs on deeper waters. A company developed a floating 

WT which was designed to be used at places having depth up to 400 m, however, with the 
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recent technological improvements, it will be possible to place WTs to deeper regions in the 

near future.  

 

Figure 2.9. Offshore wind turbines and types of foundations 

2.1.1. Horizontal Axis Wind Turbines 

HAWTs have their axis of rotation parallel to the ground and perpendicular to wind 

direction, as shown in Figure 2.10. Because these type of wind turbines work most efficiently 

when blades are perpendicular to the wind direction, a yaw control mechanism should be 

employed. Also, this wind turbine should have a tower to place the rotor at high altitudes 

because the wind speed increases with height. A nacelle which contains the primary parts 

such as shaft and generator is located at the top of the tower and connected to the rotor.  

HAWTs are classified depending on the number of blades as follows. 

a. Single-bladed: The reason for the construction of single-bladed wind turbines is to 

increase the rotational speed on the blade by decreasing the inertia of the rotor. This 

reduces the machine mass and rotational torque of the rotor. However, the 

aerodynamic noise level of the rotor caused by the blade tip speed is very high. Also, 

a counterweight has to be placed on the other side of the hub to balance the rotor.  

b. Two-bladed: The balance of the two-blade rotor is more uniform than a single-bladed 

rotor, and it seems more economical compared to the three-bladed wind turbine. 

However, two-bladed wind turbines need additional equipment because of the 
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gyroscopic precession, which results in wobbling. The need for this additional 

equipment naturally raises costs and, as a result, its cost is close to that of three-

bladed wind turbines. 

c. Three-bladed: It is the most widely preferred blade type. This is because the blades 

have a constant moment of inertia at different speeds. Due to this feature, the three-

bladed structure does not need additional equipment, which reduces the installation 

cost.  

d. Multi-bladed: Multi-bladed turbines can operate at low wind speeds and produce 

high moment. Due to this property, it has been used for water pumping for many 

years. On the other hand, this blade configuration reduces the electricity generation 

efficiency because turbines face higher wind resistance, which reduces the energy 

generation. 

 

Figure 2.10. Horizontal axis wind turbine with components 

The two and three-bladed HAWTs can also be classified based on the direction of the wind 

coming to the blades, as shown in Figure 2.11. In an upwind turbine, the rotor faces the wind. 

Their most important feature is the minimization of the wake effect of the tower. However, 
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a yaw mechanism is required for these turbine types because it is necessary to align the rotor 

with the wind direction. In the downwind turbines, the rotor is placed behind the tower. 

Hence, a yaw mechanism is not necessary to turn the turbine to the wind because nacelle and 

rotor follow the wind direction passively. A more important advantage is that the blades can 

bend at high wind speed to reduce the stress at the tower. Also, this makes the machine 

lighter and leads to better power dynamics. However, the power fluctuation that occurs when 

the wind passes through the tower leads to significant energy losses. The comparison of the 

characteristics of upwind and downwind turbines can be summarized as in Table 2.2 

Table 2.2. Comparison of turbines according to the wind direction 

 Yaw 
mechanism 

Blade material 
structure 

Load on the 
tower 

Damage to 
the turbine 

Upwind Turbines Yes Hard Heavy Low 

Downwind Turbines No Soft Light High 

 

 

Figure 2.11. Upwind and downwind turbines 
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2.1.2. Vertical Axis Wind Turbines 

In this type of turbine, the rotor is vertical and perpendicular to the wind direction. Since the 

generator and gearbox can be housed on the ground, it is not necessary to place the turbine 

on the tower, which reduces the installation cost and the weight. Also, it is easier to transmit 

the generated power as the generator is at ground level. Furthermore, there is no need to turn 

the turbine to the direction of the wind, and therefore, the yaw mechanism system is not 

required. However, due to the turbine blades design, their efficiency is lower than the 

horizontal axis turbines. Also, since the blades are placed close to the ground, their rotation 

speed is lower than HWATs. These turbine types, which have a minimal share in commercial 

use, have different varieties such as Savonius and Darrieus, as shown in Figure 2.12.  

Savonius wind turbine: It was discovered in 1925 by Finnish engineer Sigurd J. Savonius. It 

consists of two half-cylinders placed between two flat discs, whose centers are 

symmetrically shifted relative to each other, as shown in Figure 2.12.a. The wind creates a 

positive moment on one of the half-cylinder while creates a negative moment on the other. 

Since the positive moment is larger than the negative moment, the rotation occurs in the 

positive moment direction. Compared to the other VAWTs, Savonius WTs have excellent 

starting characteristics at low wind speeds, and they can generate energy with self-starting. 

Moreover, their installation is easy and cheap. However, these turbines require adequate 

speed control to maintain efficiency at acceptable values and require mechanical braking to 

stop the turbine operation. 

Darrieus wind turbine: It was invented in 1931 by the French engineer George J.M. Darrieus. 

The blades rotate about its axis due to the difference between the push and pull forces formed 

on concave and convex surfaces. The power generated by the Darrieus wind turbine 

produces a sine curve that oscillates between the highest value and the lowest value twice 

per revolution. Darrieus WTs provide higher efficiency because they reduce friction losses 

compared to Savonius turbines. However, because this turbine cannot generate energy with 

self-starting, they require an additional device such as a Savonius turbine or a drive motor. 

In addition to the ellipse-shaped Darrieus wind turbines (Figure 2.12.b), H-shaped designs 

are also available (Figure 2.12.c). 
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(a) (b) (c)
 

Figure 2.12. Vertical axis wind turbines (a) Savonius, (b) Darrieus, (c) Darrieus –H 

2.1.3. Comparison of Wind Turbines Based on Axis 

During the installation of wind farms, the characteristics of the wind farms should be known 

to make the right choice. These characteristics are shown in Table 2.3 for the wind turbine 

types described above. The table shows how a turbine selection should be made based on 

the usage purpose, the amount of wind in the region and the financial aspects [7]. 

Table 2.3. Comparison of wind turbine characteristics 

 HAWT VAWT 

Single-
bladed 

Two-
bladed 

Three-
bladed 

Multi-
bladed 

Savonius Darrieus 

Cost Low Low High High Low Low 
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Aesthetic 

appearance 

Bad Bad Good Good Good Good 

Noise High High Low Low Low Low 

Operating 

Speed 

Very High High Medium Very Low Very Low Low 

Existence of 

Tower 

Yes Yes Yes Yes No No 

Commercial 

Usage 

Electricity  Electricity Electricity Rarely 
Electricity 
& Usually 
Water 
pumping 

Rarely 
Electricity 
& Usually 
Water 
pumping 

Rarely 
Electricity 
& Usually 
Water 
pumping 

Efficiency Medium Medium Very High Low Very Low Medium 

2.2. ENERGY CONVERSION IN WIND TURBINES 

In a WT, blades of a wind turbine convert the kinetic energy of the airflow into mechanical 

energy. This conversion can be formulated as 

𝑃 =
1

2
𝜌𝐴ௐ்𝑈ଷ 

(2.1) 

where 𝜌 is the air density, 𝐴ௐ் is the swept area of the turbine and 𝑈 represents the wind 

speed. However, all of the wind reaching the blades cannot be transformed into mechanical 

energy. Otherwise, wind passing through the rotor would stop. Therefore, the actual power 

captured by the rotor blades is given by the kinetic energy difference of inlet and outlet 

airflow of the wind channels, as illustrated in Figure 2.13. Thus, the power transferred to the 

rotor can be formulated as 

𝑃௞ =
1

2
𝑚̇(𝑈௜

ଶ − 𝑈௢
ଶ) 

(2.2) 

where 𝑃௞ is the mechanical wind power obtained from the rotor, 𝑚̇ is the mass flow rate of 

the air and 𝑈௜ and 𝑈௢ are the wind speed at the inlet and outlet, respectively.  
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Figure 2.13. Wind speed across a wind turbine 

In general, the wind speed is not uniform along the channel. Therefore, the mass flow of air 

moving through the rotating blades can be written as in Equation (2.3) 

𝑚̇ = 𝜌𝐴𝑈௞ (2.3) 

where 𝑈௞ is the average velocity difference of the air between inlet and outlet and it can be 

formulated as in Equation  (2.4) 

𝑈௞ =
𝑈௜ + 𝑈௢

2
  (2.4) 

Thus, the mechanical power transferred to the rotor can be found by substituting the Equation 

(2.3) and  (2.4) into Equation (2.2). 

𝑃௞ =
1

2
𝜌𝐴

𝑈௜ + 𝑈௢

2
(𝑈௜

ଶ − 𝑈௢
ଶ)  (2.5) 

Although inlet wind speed cannot be controlled, the outlet wind speed can be controlled by 

the design of the turbine blades. This design affects the power efficiency, 𝐶௣, which is the 

ratio of the mechanical power obtained by the rotor to the power of the inlet airflow. 

𝐶௣ =
𝑃௞

𝑃௜
 (2.6) 

where the inlet air flow power is  
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𝑃௜ =
1

2
𝜌𝐴𝑈௜

ଷ 
(2.7) 

By substituting the Equation  (2.5) and (2.7) into the Equation (2.6), the following 

formulation can be found.  

𝐶௣ =
𝑃௞

𝑃௜
=

1

2
൬1 +

𝑈௢

𝑈௜
൰ ቆ1 −

𝑈௢
ଶ

𝑈௜
ଶቇ (2.8) 

In order to simplify the formulation, the ratio between outlet and inlet wind speed can be 

written as 𝜆 = 𝑈௢ 𝑈௜⁄ , then 𝐶௣ can be calculated as  

𝐶௣ =
1

2
(1 + 𝜆)(1 − 𝜆ଶ) (2.9) 

The power coefficient curve with respect to 𝜆 is given in Figure 2.14. This power efficiency 

has to be maximum in order to obtain the maximum power from the inlet wind. Therefore, 

the maximum of 𝐶௣ can be obtained by differantiating the Equation (2.9) with respect to 𝜆. 

𝑑𝐶௣

𝑑𝜆
=

1

2
(−3𝜆ଶ − 2𝜆 + 1) = 0 (2.10) 

The root of the Equation (2.10) can be found as 𝜆ଵ = −1 and 𝜆ଶ = 1 3⁄  and because the 

speed ratios have to be positive, the speed ratio is found 1 3⁄ . According to this result, to 

obtain the highest power from the turbine, the inlet speed of the wind should be 3 times the 

speed of the outlet. If this ratio is substituted into Equation (2.9), the maximum power factor 

is found as 𝐶௣௠௔௫ =  0.5926. In this case, the maximum theoretical efficiency is 59.26 

percent and is referred to as Betz Limit or Betz Law [8]. The power coefficient curve with 

respect to 𝜆 = 𝑈௢ 𝑈௜⁄  the ratio is given in Figure 2.14. Finally, the actual power formula of 

a wind turbine is obtained in Equation (2.11) by subsituting the power coefficient formula 

in Equation (2.9) into Equation  (2.5). 

𝑃ௐ =
1

2
𝜌𝐴𝐶௣𝑈ଷ (2.11) 
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Figure 2.14. Power coefficient curve 

Wind speeds are usually measured with anemometers at heights between 10 to 50 meters. 

However, the wind turbines can be placed more than 80 meters from the ground nowadays. 

Therefore, to estimate power generation accurately, it is necessary to calculate the wind 

speed at the turbine height. The relationship between wind speed and height can be expressed 

by the power-law given below, which is the commonly used formula in the literature. It is 

given as  

U = U଴ ∗ ൬
ℎ௧

ℎ଴
൰

ఈ

 (2.12) 

where ℎ௧ is the turbine height and ℎ଴ is the height at which the wind speed is measured. The 

measured wind speed (𝑈଴) is scaled with the ratio in (2.12) to calculated the wind speed (U) 

of interest. Power law coefficient, α, depends on the surface roughness which is given in 

Table 2.4  for different terrain types [9].  

Table 2.4. Power-law coefficient of various terrain 

Terrain Type α 

Lake, ocean and smooth hard ground 0.10 

Foot high grass on the level ground 0.15 

Tall crops, hedges, and shrubs 0.20 
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A wooded country with many trees 0.25 

A small town with some trees and shrubs 0.30 

City area with tall buildings 0.40 

 

2.3. WIND POWER PLANT USED IN THE THESIS 

In this thesis, two closely located wind farms are investigated. The first wind farm is Soma 

Wind Power Plant (WPP), and it is located in Soma district of Manisa. In 2009, the first 20 

wind turbines were commissioned, and electricity production was started with 18 MW 

capacity. Today, it is operated by Polat Energy and has installed capacity of 240.10 MW, 

which is the largest capacity among WPPs in Turkey. There are 169 WTs which generate 

energy with a yearly average of 486 GWh and can meet all the electrical energy needs of the 

daily life of 146987 people (housing, industry, metro transportation, official flat, 

environmental lighting). The installed capacity of the plant is planned to be increased to 

672.7 MW by adding 103 wind turbines with 4.2 MW capacity. After this addition, Soma 

WPP  is expected to be the eighth largest wind farm all over the world.  

Sayalar WPP, which is the other farm used in this study, is located in Kırkağaç district of 

Manisa. It is established by a joint venture of the Polat Energy and Demirer Energy, and it 

has an installed capacity of 57.2 MW provided by 48 Enercon wind turbines. Sayalar WPP 

can meet all electrical energy needs of 33188 people in daily life with a yearly average of 

110 GWh of electricity. The general specifications of both WPPs are given in Table 2.5. 

Table 2.5. Specifications of WPPs used in this thesis 

Farm Name 

Total Installed 
Capacity 

(MW) 
Turbine 

Manufacturer 
Turbine 
Model 

Turbine 
Power 

Number 
of 

Turbines 

Soma WPP 264.1 Enercon 
E-70/ 
E-44 

2 MW/ 
0.9 MW 

80/ 
89 

Sayalar WPP 57.2 Enercon 
E-70/ 
E-44 

2 MW/ 
0.9 MW 

10/ 
38 
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Figure 2.15. Location of wind farms 

As mentioned above both wind farms consists of Enercon turbines. From Table 2.6, where 

different wind turbine manufacturers having sales in Turkey are shown together with data 

related to market shares, it can be seen that Enercon is the third-largest supplier in Turkey 

[10]. 

Table 2.6. List of manufacturers of wind turbines in Turkey 

Manufacturer Country 

Number 
of 

Turbines 

Installed 
Power 
(MW) 

Market 
Share 
(%) 

Nordex  Germany 651 1642.55 24.89 
Vestas  Denmark 578 1528.25 23.16 
Enercon  Germany 766 1264.50 19.16 
GE USA 436 1019.95 15.46 
Siemens  Germany 241 640.85 9.71 
Gamesa  Spain 81 154.3 2.34 
Sinovel China 96 108 1.64 
Suzlon India 52 106.25 1.61 
Acciona  Spain 20 58 0.88 
Alstom  France 29 60 0.91 
Senvion Germany 1 3 0.05 
Unison South Korea 2 1.25 0.02 
Northel  Türkiye 7 0.82 0.01 
Ayetek Türkiye 1 0.5 0.01 
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Shriram India 1 0.25 0.00 
Other/Unknown  5 10.25 0.16 

 

Because the wind farms are built in large areas, the topology of the terrain mostly varies. 

Thus, more than one kind of wind turbine can be installed in the same wind farm in order to 

increase efficiency. For this reason, two different wind turbines which are E44 and E70 were 

used in both wind farms. These are designed as upwind HWAT with three blades since they 

are more efficient, more aesthetic, less noisy and exposed to mechanical stresses less as 

explained in Section 2.1 and Table 2.3. Also, they operate at variable speed with a direct-

drive generator. The characteristics and the power curves of these wind turbines are given in 

Table 2.7 and Figure 2.16, respectively [11].  

Table 2.7. Technical specifications of wind turbines used in the thesis 

Model E44 E70 

Rated power 900 kW 2000kW 

Rotor diameter 44 m 70 m 

Swept area 1521 𝑚ଶ 3849 𝑚ଶ 

Power density 1.69 𝑚ଶ/𝑘𝑊 1.93 𝑚ଶ/𝑘𝑊 

Cut-in wind speed 3 𝑚/𝑠 2.5 𝑚/𝑠 

Rated wind speed 17 𝑚/𝑠 14 𝑚/𝑠 

Cut-off wind speed 25 𝑚/𝑠 25 𝑚/𝑠 

Generator Type Direct-drive synchronous Direct-drive synchronous 

Hub Height 50 m 80 m 
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Figure 2.16. Power curves of wind turbines used in the thesis 

The power efficiency coefficient 𝐶௣ appearing in Equation (2.11) is a non-linear function of 

wind speed and depends on the turbine used. In general, it is difficult to derive an exact 

formula for 𝐶௣. Thus, the power curves can be approximated by a piecewise function as 

given in Equation (2.13). As can be seen from Equation (2.13) and Figure 2.16, WTs can not 

generate energy if the wind speed is less than the cut-in speed, 𝑈௖௨௧௜௡, and can generate 

electricity at maximum power, i.e., rated power, for speeds exceeds rated wind speed, 𝑈௥௔௧௘ௗ, 

till the cut-off speed, 𝑈௖௨௧௢௙௙. On the other hand, the power output is a nonlinear function, 

which is represented as 𝑃ௐ
௡௟(𝑈) between cut-in and rated speed. In order to approximate this 

function, different approaches are employed in practice [12].  

𝑃ௐ = ቐ

0
𝑃ௐ

௡௟(𝑈)

𝑃ௐ
௥௔௧௘ௗ

    
𝑈 < 𝑈௖௨௧௜௡  

𝑈௖௨௧௜௡ ≤ 𝑈 ≤ 𝑈௥௔௧௘ௗ

𝑈௥௔௧௘ௗ < 𝑈 < 𝑈௖௨௧௢௙௙

 (2.13) 

One approach is to use linear [13, 14], quadratic [15, 16] or cubic [15, 16] polynomials. 

Analytical expressions of the polynomial approximations up to third-degree can be obtained 

from turbine parameters rated power, cut-in speed and rated wind speed, as shown between 

Equations (2.14) - (2.16). 

𝑃ௐ
௡௟(𝑈) = 𝑃ௐ

௥௔௧௘ௗ ൬
𝑈 − 𝑈௖௨௧௜௡

𝑈௥௔௧௘ௗ − 𝑈௖௨௧௜௡
൰     (2.14) 
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𝑃ௐ
௡௟(𝑈) = 𝑃ௐ

௥௔௧௘ௗ ൬
𝑈 − 𝑈௖௨௧௜௡

𝑈௥௔௧௘ௗ − 𝑈௖௨௧௜௡
൰

ଶ

 (2.15) 

𝑃ௐ
௡௟(𝑈) =

𝑃ௐ
௥௔௧௘ௗ𝑈ଷ

𝑈௥௔௧௘ௗ
ଷ − 𝑈௖௨௧௜௡

ଷ −
𝑃ௐ

௥௔௧௘ௗ𝑈௥௔௧௘ௗ
ଷ

𝑈௥௔௧௘ௗ
ଷ − 𝑈௖௨௧௜௡

ଷ   (2.16) 

Although these approximations can be obtained from turbine parameters, they usually do not 

represent the actual curve well, as can be seen from Figure 2.17. Thus, in order to have an 

accurate approximation, one can use a higher-order polynomial as in Equation (2.17) and 

estimate its parameters by fitting the curve to a given wind power data [17, 18]. 

𝑃ௐ
௡௟(𝑈) = 𝑎଴ +  𝑎ଵ 𝑈 + 𝑎ଶ 𝑈ଶ + ⋯ + 𝑎௡ିଵ 𝑈௡ିଵ + 𝑎௡ 𝑈௡   (2.17) 

Alternatively, instead of using a single polynomial, one can use spline interpolation. In this 

method, a polynomial is fitted between each adjacent data points. These polynomials can be 

linear, quadratic or cubic. While the parameters of the quadratic and cubic spline 

polynomials should be fitted for the data points, linear spline polynomials can be formulated 

easily using the Equation (2.18) without any polynomial fitting. As can be seen from Figure 

2.17, linear spline interpolation method adequately represents the function 𝑃ௐ
௡௟(𝑈) given in 

the Equation (2.13) within the mentioned methods. Thus, in this thesis, linear spline 

interpolation is used for wind power output calculations of the WTs used. 

𝑃ௐ
௡௟(𝑈) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑃(𝑈଴) +

𝑃(𝑈ଵ) − 𝑃(𝑈଴)

𝑈ଵ − 𝑈଴

(𝑈 − 𝑈଴)                  𝑈଴ ≤ 𝑈 ≤ 𝑈ଵ 

𝑃(𝑈ଵ) +
𝑃(𝑈ଶ) − 𝑃(𝑈ଵ)

𝑈ଶ − 𝑈ଵ

(𝑈 − 𝑈ଵ)                 𝑈ଵ ≤ 𝑈 ≤ 𝑈ଶ

⋮

𝑃(𝑈௡ିଵ) +
𝑃(𝑈௡) − 𝑃(𝑈௡ିଵ)

𝑈௡ − 𝑈௡ିଵ

(𝑈 − 𝑈௡ିଵ)      𝑈௡ିଵ ≤ 𝑈 ≤ 𝑈௡

   (2.18) 
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Figure 2.17 Comparison of approximation methods 
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3. AN OVERVIEW OF ENERGY STORAGE SYSTEMS 

 

Today, most of the energy needs in the world are met by using conventional energy sources 

such as coal, natural gas, and oil. On the other hand, fossil fuel reserves are limited in the 

world and are gradually depleting due to increasing energy demand. Also, the use of 

conventional fuels causes a significant increase in greenhouse gas emissions and, 

consequently, results in global warming. Therefore, the importance of renewable energy 

systems, especially solar and wind-based systems, is increasing day by day. However, many 

of the renewable energy sources are extremely dependent on natural conditions. Therefore, 

the energy generated by these sources can vary in seasonally, daily or even instantly. 

Energy Storage Systems (ESS) may bring essential benefits to conventional and renewable 

energy generation systems. In conventional energy systems, they can support system 

stability by responding to sudden changes in energy demand and renewable generation. In 

renewable systems, they can be utilized for reducing costs due to energy imbalances. On the 

other hand, in a market environment, both systems can benefit from energy arbitrage and 

earn higher profit. Moreover, it can help in meeting peak energy demand in the network.  

 

Figure 3.1. Energy storage systems 

There are different types of energy storage technologies, which are mostly classified based 

on the form of the energy stored, as can be seen from Figure 3.1. Depending on the 
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application, one may choose a suitable technology by taking into account different factors 

such as response time, storage capacity, lifetime, etc. A detailed description of each category 

will be given in the following sections. 

3.1. MECHANICAL ENERGY STORAGE 

3.1.1. Pumped Hydro Storage System 

Pumped Hydro Storage (PHS) system is the most mature, widely used and large scale ESS 

technology in the world. The components of a PHS are given in Figure 3.2. It is composed 

of two water reservoir located at different levels from the ground. The energy is stored by 

pumping water to the upper reservoir while it is discharged by releasing water from the upper 

reservoir. The amount of energy accumulated depends on the height difference as well as the 

volume of the water. There exist PHS systems at different capacities ranging from 1 MW to 

3003 MW. Also, their cycle efficiency varies between 70-80 percent. Generally, a PHS 

system has a lifetime of more than 30 years [1]. In addition to these advantages, the self-

discharge is very low with respect to the other ESS types. Due to their characteristics, they 

can be used for energy shifting, frequency control and reserve purposes. However, there are 

some drawbacks of PHS. The first is the necessity of finding closely located reservoirs with 

sufficient elevation between them. Also, the construction time is long. The detailed 

explanations about the PHS system will be given in Section 4. 

 

Figure 3.2. Schematic diagram of a PHS system 

Upper reservoir

Lower reservoir
Power 
house
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3.1.2. Compressed Air Energy Storage 

A Compressed Air Energy Storage (CAES) system stores the energy in the form of high-

pressure air. Schematic diagram of a CAES system is shown in Figure 3.3. The system is 

composed of a generator, motor, compressors, turbines, coolers, combustion chambers and 

underground cave or tanks. In order to store energy, the air can be compressed and filled into 

a storage unit, which can be an underground cave or vessel. The energy stored in this way 

can be retrieved later by heating the air and passing it through the turbines. 

 

Figure 3.3. Schematic diagram of a CAES system 

The CAES systems are not widely used in large scale, and there were only two operating 

CAES system in 2017 with a power capacity of 110 MW and 290 MW in Germany and 

USA, respectively [19]. However, a CAES power plant is being constructed in the USA with 

a 2700 MW installed power. The net efficiency of a typical CAES plant is between 40 

percent and 75 percent with an expected lifetime of 40 years [1]. Due to the low self-

discharge rate, it is suitable for long-term storage. Also, it can be used for black-start service 

for nuclear power plants, smoothing the power output of renewable power plants, cheap peak 

power and frequency and voltage control. However, this system has a short discharge time 



28 
 

 
 

at rated power because of its small storage capacity. A notable example of short discharge 

time is the CAES system in Germany with two hours. The other drawback of building a 

large-scale CAES system is finding a suitable geographical location because the main 

investment cost of the plant is dependent on the type of underground cave.  

3.1.3. Flywheel Energy Storage 

A Flywheel Energy Storage (FES) system stores electrical energy in the form of rotational 

kinetic energy. The flywheel is placed in a vacuum chamber with magnetic bearings and 

generator/motor unit. Figure 3.4 illustrates a cross-sectional diagram of the FES. During the 

periods of low energy demand, the surplus energy is used to accelerate the flywheel. 

Whenever necessary, the stored energy in the flywheel is transferred to the grid by reducing 

its rotational speed. The flywheels can be classified according to their rotational speeds. An 

FES with rotation speed less than 10,000 rpm is more suitable for a shorter period of storage 

with high power capacity, while the higher rotation speed FESs are suitable for the opposite 

case [20].   

 

Figure 3.4. The schematic diagram of an FES system 
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A key aspect of FES is that it can react in short periods, such as milliseconds. Due to this 

fast response characteristics, it is suitable for frequency regulation and can be used as a UPS. 

Also, they have high energy efficiency (approximately 85 percent), long service life (about 

a hundred thousand discharges and 15 years) and low levels of environmental impact [1]. 

The most important disadvantages of flywheel systems are their high prices and the self-

discharge rates. The idle period energy losses of flywheels can reach 10 percent per hour. 

Therefore, flywheel systems are not suitable for long-term energy storage. 

3.2. ELECTROCHEMICAL ENERGY STORAGE 

3.2.1. Battery Energy Storage (BES) 

Batteries are one of the oldest devices for storing electrical energy. They store the energy in 

the form of electrochemical energy. Figure 3.5 shows the components and operational 

principle of the BES. A battery consists of one or more series or parallel connected 

electrochemical cells to provide the desired voltage and capacity. Each cell is composed of 

positive and negative electrodes, i.e., cathode and anode, respectively, with an electrolyte in 

solid or liquid form. Batteries are discharged by the chemical reactions that occurred in the 

electrolyte. By these chemical reactions, electrons are transferred from the anodes to 

cathodes. The reverse chemical reactions which are occurred by applying electrical energy 

charges the battery. 

Different types of batteries are available for energy storage such a lead-acid, Nickel 

Cadmium (NiCd), Nickel Metal Hybrid (NiMH), Lithium-Ion (Li-ion), and Sodium Sulphur 

(NaS) batteries. They have different rated power ranging from 100W to several megawatts 

with efficiency between 60 percent to 90 percent [1]. Rapid response time of batteries makes 

them suitable for tracking instant load variations. Due to their cost and smaller sizes, 

batteries have a significant advantage over PHS and CAES. However, most of the batteries 

lead to environmental problems because of the toxic materials they contain. Also, limited 

lifetime usually makes them unsuitable for large-scale applications. 
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Figure 3.5. The schematic diagram of a BES system 

3.2.2. Flow Batteries Energy Storage (FBES) 

In flow batteries, unlike the conventional batteries, energy is stored in electrolyte solutions 

which are stored in different tanks. The user can set the energy capacity or power level by 

simply changing the amount of liquid in the containers. As can be seen from Figure 3.6, the 

electrolyte solutions are pumped into the cell stack where chemical reactions occur. During 

the discharge process, the cathode electrolyte is oxidized, and the positively charged ions 

pass through the ion-selective membrane. The process is reversed during the charging 

operation.   

The FBES systems have not been fully commercialized since they have a low energy density, 

a narrow operating temperature range and high investment cost [21]. On the other hand, the 

energy capacity can easily be adjusted by increasing the volume in the reservoirs. Another 

essential advantage of the flow batteries is having a very small self-discharge because the 

electrolytes are stored in the separate tanks. Thus, FBES systems are suitable for long-term 
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energy storage. According to research and development studies, fluid batteries can be used 

in large-scale projects and economically better than other types of batteries in the future [22]. 

 

Figure 3.6. The schematic diagram of FBES system 

3.2.3. Fuel Cells 

Fuel Cells (FC) constitute another alternative to the batteries. FCs convert the chemical 

energy in the fuel with oxidants. Different types of fuel and oxidants can be used like 

methane, hydrocarbons, methanol. However, hydrogen is commonly preferred as fuel. For a 

hydrogen fuel cell, which is shown in Figure 3.7, the fuel is hydrogen, and the oxidizer is 

oxygen.  The fact that they are very high in terms of energy density and that only water and 

heat emerge when they are burned is their significant advantages, whereas they have a 

relatively high cost, low power density, and low efficiency.  
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Figure 3.7. The schematic diagram of hydrogen storage and FC 

3.3. ELECTROMAGNETIC ENERGY STORAGE 

3.3.1. Supercapacitors 

Supercapacitors, i.e., ultracapacitor, are based on the same principle with classical capacitors 

as can be seen from Figure 3.8. They store electrical energy directly without converting into 

any other form. However, they can store a large amount of energy when compared with 

ordinary capacitors. Moreover, their fast charge/discharge periods, long lifetimes and high 

efficiency (approx. 85-98 percent), makes them preferable alternative to other ESS [23]. One 

of the challenges facing supercapacitors is to increase its energy density. Also, their 

installation cost and daily self-discharge are high, which makes this system suitable for 

short-term storage applications.  
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Figure 3.8. The schematic diagram of supercapacitors 

3.3.2. Superconduction Magnetic Energy Storage 

Superconduction Magnetic Energy Storage (SMES) system stores the energy in the magnetic 

field generated by direct current in a superconducting coil. A classic SMES system is 

composed of a superconducting coil unit, refrigeration, and vacuum system, as shown in 

Figure 3.9. In this system, a superconducting coil manufactured from mercury, vanadium or 

Niobium–Titanium is used to store energy. Energy stored in the magnetic field formed in 

the coil can be discharged at the desired time. Electrical energy can be stored with almost 

zero loss because it is not dissipated as heat when the temperature is reduced below the 

superconducting critical temperature by the refrigerator system. This makes the cycle 

efficiency approximately 95-98 percent [23]. Also, SMES systems have fast response times 

(milliseconds) and very long cycle life (100,000 cycles). Their significant drawbacks are 

high capital costs, high daily self-discharge (10-15 percent), and the environmental 

disturbance arising from the strong magnetic field. Also, the temperature of the 

superconducting material has to be controlled precisely in order to keep the energy efficiency 

stable.  
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Figure 3.9. The schematic diagram of a SMES system 

3.4. COMPARISON OF ESS TECHNOLOGIES 

For comparing ESSs, one needs to take into account their installation cost and operating cost, 

power capacity, generation rating, self-discharge rate, efficiency, response time, lifetime and 

cycle time [1]. The cost of an ESS is one of the most significant aspects of commercial usage. 

A comparison of ESSs described above is given in Table 3.1 based on their costs [20]. The 

total cost of an ESS should be analyzed based on both installation and operating costs. The 

primary source of the operating cost is energy generation. However, maintenance, disposal 

and replacement fees should be included as well.  

With respect to energy capital cost ($/kWh), PHS and CAES systems are the most promising 

energy storage units. CAES has a lower energy capital cost while its power capital cost is 

higher with respect to PHS. Energy capital cost of FES and SMES are very high per kWh, 

but their operation and maintenance costs are very low relative to other storage systems 

which shows that these two systems are suitable for applications which require high power 

output for a short duration. FCs have both the highest installation and maintenance costs 

since they are still in the development stage for commercial use. As a result, when Table 3.1 

is analyzed, it is clear that the PHS systems are the most suitable system among the ESSs. 
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Table 3.1. Capital costs of ESSs 

Type System  Installation Cost Operating and 
Maintenance 
Cost ($/MW h 
and per cycle) 

Power capital 
cost ($ /kW) 

Energy 
capital cost 
($/kW h) 

Mechanical PHS 600–2000 5–100 0.1–1.4 
CAES 400–8000 2–50 2–4 

FES 250–350 1000–5000 3–25 

Battery LA 300–600 200–400 20–100 

NiCd 500–1500 800–1500 20–100 

Li-on 1200–4000 600–2500 15–100 

NaS 1000–3000 300–500 8–20 

Flow Battery VRB 600–1500 150–1000 5–80 

ZnBr 700–2500 150–1000 5–80 

Chemical FC 10000+ - 6000–20000 

Electromagnetic SC 100–300 300–2000 2–20 

SMES 200–300 1000–10000 1-2 

 

In addition to the costs of the ESS, one needs to take into account technical characteristics 

such as power rating, response time, efficiency, self-discharge rate and lifetime as well. 

These characteristics are given in Table 3.2 for the ESS investigated [1]. The power rating, 

which includes the power capacity and nominal discharge time at the rated power determines 

the general application area of the ESS. The ESS which has enormous power capacities like 

CAES and PHS are appropriate for large-scale storage. Moreover, the long discharge time 

indicates that the system can be used in arbitrage and energy shifting. In addition to power 

rating, self-discharge of the storage devices determine the storage duration, which is an 

important factor for selecting an appropriate system in applications. Because the ESSs like 

PHS, CAES, NaS, and flow battery systems have a low self-discharge rate, they are suitable 

to store energy for months. However, supercapacitors, SMES and FES can only be used for 

short time storage. Some applications like frequency regulation and oscillation damping 

require an almost immediate energy release from the ESS. FES, battery and electromagnetic 

storage systems are suitable for these applications because they have response times of 

orders of milliseconds. Another essential characteristic of an ESS is the efficiency (round 

trip efficiency) which is the ratio of the energy output to the input in a storage cycle. It is a 

measure of losses incurred with the charge and discharge of energy. While the systems 
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having high-efficiency are suitable for the applications in which charging and discharging 

takes place frequently, systems having low efficiency are mostly used for energy arbitrage 

applications which have long charge/discharge duration. Finally, the lifetime has also an 

essential role in ESS selection. The lifetime can be measured in different units, years or 

cycles.  

Table 3.2. Technical characteristics of ESS 

  
  

Power Rating 

Response 
time 

 

Efficiency 
(%) 

 

Self- 
discharge 
per day 

(%) 
 

Lifetime 

Power 
capacity 
(MW) 

Discharge 
time at 
power 
rating Years Cycles 

PHS 1-3000 1–24h+ min 70–80 
Very 
small 30-50 

20000- 
50000 

CAES 5– 300 1–24h+ min 40–75 Small 30-40 
10000- 
30000 

FES 0–0.25 s–h <s 80–90 100 15–20 >100000 

LA 0–20 s–h <s 75–90 0.1–0.3 3–15 
250-
3500 

NiCd 0–40 s–h <s 60–80 0.2–0.6 5–20 
1500-
3500 

Li-on 0–0.1 min–h <s 65–75 0.1–0.3 5–10 
1500-
3500 

NaS 0.05–8 s–h <s 70–85 
Very 
small 10–15 

2500-
4500 

VRB 0.03–3 s–10h s 60–75 Small 5–20 
1000- 
13000 

ZnBr 0.05–2 s–10h s 65–75 Small 5–10 
1000–
3650 

FC 0– 50 s–24h+ s–min 34–44 0 10–30 >2000 
SC 0–0.3 ms–1h <s 85–98 5-20 4–12 >50000 

SMES 0.1–10 ms–8s <s 95–98 10–15 >20 
  
>100000 

3.5. ESS IN THE WORLD 

In mid-2017, the total ESS capacity was 176 GW globally [24]. IRENA also reported that 

the PHS systems were by far the most widely used systems. Their installed capacity was 

approximately 169 MW. This was followed by the thermal storage with 3.3 GW constituting 
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1.4 percent of the total installed capacity. Among the thermal storage systems, molten salt 

technologies were dominating in this type with a share of 75 percent. Although 

electrochemical storage systems were one of the most promising storage devices, their 

installed capacity was only 1.9 GW. Among them, Li-on batteries were the most preferred 

units (59 percent). Mechanical storage systems other than PHS had a 1.6 GW (1 percent) 

installed capacity and the two technologies of this type have similar shares in the world 

storage capacity. The share of other storage units can be found in Figure 3.10. 

 

Figure 3.10. Installed capacity of ESS in the world (in 2017) 

Total 1.6 GW 

Total 1.9 GW 

Total 3.3 GW 
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4. PUMPED HYDRO STORAGE SYSTEMS 

 

In this chapter, PHS systems are investigated because they are the type of storage system 

used in this thesis. This chapter has been divided into three parts. The first part will explain 

the historical background briefly. The second part presents the PHS systems in the world 

and Turkey, focusing on the installed and potential capacity. The PHS system used in this 

thesis is also explained in detail by giving its general specification in this part. The third part 

gives brief information about the main-use case applications of PHS systems. The forth part 

reviews the technical properties of PHS, which were not given in Section 3.1.1. Finally, the 

mathematical modeling of the PHS power plant is presented.  

4.1. HISTORICAL BACKGROUND 

The first known conceptual design of pumped storage was proposed in 1882 in Zurich, 

Switzerland. The first facility was opened in 1909 in Schaffhausen, Switzerland with a 

capacity of 1500 kW. Subsequent installations followed throughout Europe for the next few 

decades. In the 1930s, reversible pump turbines were introduced, and the first installation 

took place in Baldeney, Germany. Reversible turbines had lead to cost savings as much as 

30 percent, but early designs were difficult to set up and hence, installation times were long. 

However, these difficulties are alleviated over time, and later designs evolved to the 

currently used turbines in 1960-1970s. After the oil crises in the early 1970s, their 

installation has been dramatically accelerated. PHS systems had been used for energy time-

shift applications until the 1970s. In the late 1980s, the variable speed reversible Pelton 

turbines were developed. Although they were more expensive than the prior turbines, their 

efficiency was considerably better. In the 1990s, the development of PHS systems had shown 

a severe decline. The cheap natural gas prices directed the countries towards the natural gas 

power plants which replaced PHS. However, after the high penetration of the renewables, 

PHS become popular in the world again to compensate for energy variations due to the 

intermittent nature of renewable generation.  

PHS system has been used as a system tool to provide energy in high load demand and to 

allow units of baseload plants to operate in the primary load mode during the low load 



39 
 

 
 

demand period. However, in countries with abundant hydro-energy capacity, PHS system 

has been developed to increase the efficiency of large-scale hydroelectric power plants.  

4.2. PHS SYSTEM IN THE WORLD AND TURKEY 

PHS systems have the highest installed capacity among all ESS alternatives, as mentioned 

in Section 3.5. PHS power plants are operational in 42 countries with an installed capacity 

of approximately 169 GW. Among these countries, Japan ranks first with 27637 MW 

installed capacity, which corresponds to about 10 percent of Japan's total installed power. 

The US built the largest PHS power plant in the world with a 3003 MW rated power in 1985 

and the overall installed capacity of PHS in the US was 22441 MW in 2017. Although the 

current PHS installed capacity of China is 23060 MW, the potential of PHS is increasing 

rapidly. China is currently constructing a PHS power plant with 3600 MW capacity, which 

is expected to be the largest PHS in the world when it is finished. PHS capacities of ten 

countries with the highest installed capacity in the world are given in Figure 4.1. 

 

Figure 4.1. Installed PHS capacity of the top ten countries (in megawatts) 

Considering the regions in the world, installed energy capacities were 3376 MW in Africa, 

7541 MW in South and Central Asia, 66454 MW in East Asia and Pacific, 1004 MW in 

South America, 51769 MW in Europe, 22986 MW in North and Central America at the end 

of 2017 [25].  
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Among all regions, Europe has the second largest capacity, and PHS systems have been 

operational in Europe since the 1970s. More than 50 percent of these facilities are located in 

Germany, Italy, Spain, and France, and the PHS system in European countries can be ranked 

according to their installed power as shown in Figure 4.2. Italy has the largest capacity with 

7.6 GW, which is followed by France, Germany, Spain and Austria.  

 

Figure 4.2. PHS capacity of selected European countries in 2017 (in megawatts) 

Despite all this installed power, Gutiérrez and Arántegui reported that only 10 percent of the 

PHS potential had been used in most of the regions of Europe [26]. In this study, the PHS 

potential given in Table 4.1 was determined by theoretical and realizable capacities of two 

different scenarios. The scenarios were chosen based on the existing (T1) and existing and 

prospective (T2) reservoirs.  

Table 4.1. PHS potential in Europe 

Country T1 
theoretical 

(TWh) 

T1 realizable 
(TWh) 

T2 
theoretical 

(TWh) 

T2 realizable 
(TWh) 

EU 12100  4111 67197 37059 
Turkey 36829 19635 45351  32660  
Other 6215  5082  26005  20433  
TOTAL 55144  28828  138553  90152  
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In Table 4.1, Turkey is shown separately for comparison. Turkey has nearly two times more 

potent than the total potential of all other countries in Europe in T1 reasonable scenario. 

However, there is no PHS plant in Turkey despite that potential because the use of PHS in a 

country is directly related with the use of renewable energy sources such as solar and wind 

energy [27]. Since the installed capacity of solar and wind power in Turkey is planned to be 

25 GW in 2023 [28], the importance of PHS systems in Turkey is expected to increase in the 

future.  

In Turkey, the PHS studies were started by the Electric Power Resources Survey and 

Development Administration (EİE) in 2005. A feasibility analysis was carried out in several 

regions, and 16 candidate PHS projects given in Table 4.2 are proposed [29]. In 2011, the 

governments of Turkey and Japan carried out a joint project named “Study on Optimal 

Power Generation for Peak Demand in Turkey” [30]. This study aimed to review the 

development plan of reported PHS power plant projects in EİE feasibility analysis and to 

propose new potential sites based on technical, geological and environmental criteria. 

Gökçekaya PHS and Altınkaya PHS projects were selected as high-priority candidate sites. 

Based on this result, the conceptual design of Gökçekaya PHS and Altınkaya PHP were 

conducted. Final feasibility study of Gökçekaya PHS was carried out between 2014-2016 

and ten years has been envisaged for the launch of Gökçekaya PHS.  

Table 4.2. Proposed PHS power plants in Turkey by EİE 

Name Installed 
Power (MW) 

Location Discharge 
rate (𝒎𝟑/𝒔) 

Head 
(m) 

Kargı PHS 1000 Ankara 238 496 
Sarıyar PHS 1000 Ankara 270 434 
Gökçekaya PHS 1600 Eskişehir 193 962 
Altınkaya PHS 1800 Samsun 350 611 
İznik-I PHS 1500 Bursa 687 255 
İznik-ll PHS 500 Bursa 221 263 
Yalova PHS 500 Yalova 147 400 
Demirköprü PHS 300 Manisa 166 213 
Adıgüzel PHS 1000 Denizli 484 242 
Burdur Gölü PHS 1000 Burdur 316 370 
Eğridir Gölü PHS 1000 Isparta 175 672 
Karacaören-ll PHS 1000 Burdur 190 615 
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Oymapınar PHS 500 Antalya 156 372 
Aslantaş PHS 500 Osmaniye 379 154 
Bayramhacılı PHS 1000 Kayseri 720 161 
Yamula PHS 500 Kayseri 228 260 
Hasan Uğurlu PHS 1000 Samsun 204 570 

 

Demirköprü PHS power plant, which is chosen as the storage plant in this thesis due to its 

proximity to wind farms used, is expected to be built in Manisa province at the coordinates 

38°39'01"N, 28°19'36"E. The upper reservoir will be a concrete covered pool with a height 

of 215 m. The project includes 473 m penstock, 157 m shaft and 832 m tail water tunnel. 

The investment cost of the project is estimated at $220,000,000 [31].  

Technical data of the Demirköprü PHS power plant is provided in Table 4.3 [32]. The 

maximum volume of the upper reservoir is 3 ℎ𝑚ଷ. The higher gross head is taken as 215 𝑚 

while the lower gross head as 205 𝑚. The plant is assumed to have three identical reversible 

Francis turbines, whose characteristics are given in Table 4.3 for the generation and pumping 

modes. 

Table 4.3. General specification of Demirköprü PHS power plant 

Dam 
Water storage capacity  3 ℎ𝑚ଷ 
Maximum head  215 m 

Minimum head  205 m 

Turbine 

Minimum energy generation of one turbine  37.3 MWh 
Maximum energy generation of one turbine  99.1 MWh 

Minimum discharge rate of one turbine  23.8 𝑚ଷ/𝑠 

Minimum discharge rate of one turbine 55.3 𝑚ଷ/𝑠 
Generation efficiency 0.87 

Energy consumption of one turbine in pumping mode 130.9 MWh 

Water pumped by one turbine in pumping mode  55.3 𝑚ଷ/𝑠 
Pumping efficiency 0.87 
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Figure 4.3. Demirköprü PHS power plant 

4.3. MAIN-USE-CASE APPLICATIONS OF PHS SYSTEMS 

According to the report published by the International Renewable Energy Agency (IRENA) 

[24], PHS systems can be used in many different applications, as illustrated in Figure 4.4. 

Among them, energy time-shifting (or arbitrage) in which energy is stored in low price 

periods and sold in high price periods, has the greatest share of 89 percent. This trend is 

expected to continue in the future with increasing penetration of renewable generation, 

which will increase the variation on energy prices. The generated renewable energy can be 

stored in off-peak periods to use at the peak power demand periods. Thus, 4 percent of the 

installed PHSs is utilized for peak shaving applications.  

Many power plants need an initial power to start operation which can be obtained from the 

grid. However, when the entire electrical grid collapses, these power plants would be 

incapable of restarting. This leads to a need for a power plant that can restart without external 

power from the grid. This situation is called as black-start operation. Within different 

alternative power plants, the required energy for a black start can be obtained from the PHS 

system with its quick response ability. Approximately 3.5 percent of the generation capacity 

of PHS systems is used for black start operations.  
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In addition to the grid-based operations, 3.2 GW installed power of PHS is used for 

compensating the intermittent generation of renewable power plants. Also, PHS is preferred 

because of its low response time to stabilize the power output of wind and solar power plants. 

Furthermore, it can be used to eliminate the imbalance that may occur between production 

and load as it may damage the system in case of a sudden interruption of wind turbines. 

PHS systems can provide more stable operation of the system by keeping a spinning reserve 

power to meet the regulation up or down requirements of the system. The spinning reserve 

must be synchronized to the system while it is running and able to be activated within 10 

minutes if needed. There are also other applications like electric bill management, voltage 

support and on-site power which have a minimal share in the main-use-case applications.  

 

Figure 4.4. Main-use-case applications of PHS systems  

4.4. TECHNICAL REVIEW OF PHS POWER PLANTS 

As described in Section 3.1.1, PHS systems store energy in the form of potential energy. 

This storage is achieved by pumping water to an upper reservoir. The stored water can be 

released and converted to electricity by means of turbines. A detailed diagram of a PHS is 

shown in Figure 4.5. It can be seen from the figure that the PHS system is composed of the 

following parts.  
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Figure 4.5. PHS system 

Reservoirs: In general, a PHS system is composed of an upper and a lower reservoir. 

Usually, upper reservoirs can be built in three different ways. One is using a reservoir of an 

existing dam. Second, a reservoir can be formed by constructing a barrier around a pit on a 

mountain or hill. Third, an existing lake is turned into a reservoir by closing the outlet of the 

lake. As for the lower reservoir, they can be built much easier since an existing lake or sea 

can be used for this purpose. 

Penstock: The long pipes that connect the pumps and turbines to the reservoirs.  

Tailwater channel: It delivers turbine water to the lower reservoir and the water to be 

pumped is taken from the lower reservoir. 

Control valve: This is an emergency valve for ensuring safety during pumping and 

generation.  

Turbine / Pump: They can be separate or together. Turbines convert the potential energy to 

mechanical energy and transfer the mechanical energy to the generators through a shaft. 

Pumps store the water in the upper reservoir using electric energy.  

Generator / Motor: They can be separate or together. The generator converts mechanical 

energy to electrical energy in generation mode. The motor converts the electrical energy to 

mechanical energy in pumping mode. 
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When the time scale of operation is considered, PHS systems can operate based on the daily, 

weekly or seasonal basis. While in the daily or weekly operation, water is pumped to the 

upper reservoir in the off-peak periods and used in peak periods, annual scheduling mostly 

depends on the flow rate of the river. The off-peak periods of daily schedule are usually 

between 5 h to 12 h of the day, and it is the weekend days in the weekly schedule. 

When the water flow is considered, a PHS can be built in two different ways, as a closed-

loop or open-loop system. The closed-loop PHS systems consist of a reservoir which does 

not have inflow from a river basin. The upper reservoir is filled using only water pumped 

from the lower reservoir. An open-loop storage hydropower plant, on the other hand, uses 

the natural flow from a river and water pumped from a lower reservoir. Because of this 

configuration, they are usually larger than the closed-loop PHS systems, and they are more 

suitable for weekly and seasonal operation [33]. This type of system is very similar to 

conventional cascaded hydroelectric power plants. The only difference is that they have 

pumping capabilities. 

PHS systems can operate in three modes; pumping, generation or idle. In pumping mode, 

excess energy is stored as potential energy by pumping water from the lower reservoir to the 

upper reservoir. On the contrary, in generation mode, the water is released from the upper 

reservoir to generate energy. The idle mode means that the PHS units are not operating. 

A PHS system can be classified as reversible turbines and ternary set according to the 

pump/turbine configuration. Reversible pump/turbine configuration is the most common and 

mature option [34]. With this configuration,  PHS can operate only either in generation or 

pumping mode, which limits the flexibility of the operation. The ternary set is composed of 

separate turbines and pumps. This setup improves efficiency due to the separately optimized 

turbine and pump. Because the pumps are optimized better, the startup of the pumping is 

shorter in the ternary set [35]. This system can also operate in simultaneous operation with 

the implementation of hydraulic short-circuit setup. On the other hand, the investment cost 

is very high in contrast to the reversible pump/turbine configuration. 
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4.5. MATHEMATICAL MODELLING OF PHS SYSTEMS 

There are different properties such as turbine/pump characteristics, head effects and 

efficiencies that one can think about when modeling a PHS system. These aspects have been 

investigated in the related literature [36–38] and the model introduced in [36] is employed 

for describing the turbine/pump characteristics in this thesis.  

The storage capacity of the PHS system is determined by the water volume in the upper 

reservoir. PHS can operate within the lower (𝑉௠௜௡) and upper (𝑉௠௔௫) volume limits of the 

upper reservoir which can be expressed as 

𝑉௠௜௡ ≤ 𝑉(𝑡) ≤ 𝑉௠௔௫                                                                                                              (4.1) 

where V is the water level in the upper reservoir at time 𝑡. The lower reservoir capacity can 

be limited or unlimited. The PHS systems which are built on islands, mostly use the sea as 

the lower reservoir which enables an unlimited capacity for the lower reservoir [39, 40]. On 

the other hand, studies consist of cascaded PHS systems [41] or PHS systems where a dam 

is used as a lower reservoir [42, 43] have limited lower reservoirs capacities. In that case, 

the lower reservoir limits can be written similar to Equation (4.1). However, since the upper 

reservoir capacity is very small when compared to the lower reservoir in this thesis, 

unlimited capacity is assumed at the lower reservoir like most of the studies.  

The evolution of the water volume in the upper reservoir is given by Equation (4.2) as a first-

order difference equation.  

𝑉(𝑡 + 1) = 𝑉(𝑡) + 𝑞௣(𝑡) − 𝑞ௗ(t) + 𝐼௏(𝑡) − 𝑆௏(𝑡) (4.2) 

where 𝑞ௗ is discharged water from the upper reservoir, 𝑞௣ is pumped water to the upper 

reservoir, 𝐼௏(𝑡) is the natural inflow into the reservoir and 𝑆௏(𝑡) is the spillage from the 

reservoir. If the upper reservoir is built on a river, i.e., open loop, as in the related studies 

[44, 45], the natural inflow and spilage can be used. However, because most of the upper 

reservoirs are closed loop systems, both variable 𝐼௏(𝑡) and 𝑆௏(𝑡) are neglected in most of 

the studies as in this thesis.  
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The power generation of a PHS system is similar to conventional power plants. It is a 

function of its discharge rate and net head. The latter is the difference between the upper and 

lower reservoir water levels. Therefore, the power generation can be written as  

𝑃ௗ = 𝑔𝑞ௗℎ௡𝜂ௗ  (4.3) 

where 𝑔 is the gravitational constant, ℎ௡ is the net head and 𝜂ௗ is the efficiency of the 

turbines in generation mode. When there is a huge head variation in comparison with respect 

to the total head between upper and lower reservoirs, the head effect can be modeled by 

equivalent energy curves as in the study [44]. On the other hand, as in this thesis, there are 

numerous studies in which the net head is assumed constant because of the small head 

variation.  

In generation mode, turbines operate continuously within an allowable power and discharge 

rate ranges and which are given as  

𝑃ௗ ≤ 𝑃ௗ ≤ 𝑃തௗ (4.4) 

𝑞ௗ ≤ 𝑞ௗ ≤ 𝑞തௗ (4.5) 

where 𝑃ௗ and 𝑃തௗ are minimum and maximum power generation and 𝑞ௗ and 𝑞തௗ are minimum 

and maximum discharge rates. 

The dependence of turbine efficiency to the discharge rate can be considered in the model. 

In this case, the Equation (4.3) can be written as 

𝑃ௗ = 𝑔𝑞ௗℎ𝜂ௗ(𝑞ௗ) (4.6) 

This equation can be linearized as follows  

𝑃ௗ = δௗ𝑞ఋℎ + 𝑃ௗ (4.7) 

𝑞ௗ = 𝑞ఋ + 𝑞ௗ (4.8) 

𝑞ఋ ≤ 𝑞തௗ − 𝑞ௗ (4.9) 
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where δௗ  is the energy coefficient and 𝑞ఋ is the deviation of water discharge from its 

technical minimum. 

The power consumption of turbines in pumping mode, 𝑃௣, can also be calculated in terms of 

net head and discharge rate,𝑞௣. However, unlike generation mode, pumping power 

consumption is inverse proportional to its efficiency, 𝜂௣, and can be formulated as 

𝑃௣ =
𝑔𝑞௣ℎ௡

𝜂௣
 (4.10) 

Similar to the generation mode, the head effect can be ignored and taken constant in pumping 

mode. On the other hand, the turbines operate discontinuously (on-off). Thus, the power 

consumed can take two discrete values. 

Power generation and consumption curves of the PHS system used in this thesis are given in 

Figure 4.6. In this figure, x and y axes represent the water flow and power 

generation/consumption, respectively. In the generation mode, the relation between the 

generated energy and discharged water is given by Equations (4.7)-(4.9). In pumping mode, 

the consumed power is calculated by the Equation (4.10).  

 

Figure 4.6. Characteristics of a conventional PHS unit 
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5. ELECTRICITY MARKET  

 

The electric energy industry consists of four core components; generation, transmission, 

distribution, and supply or retail activities. These functions are implemented in many parts 

of the world under a monopoly by vertically integrated companies or government agencies 

(Figure 5.1.a). As a result of the liberalization of the world, the vertically integrated energy 

industry has transformed into separated properties, creating a deregulated energy market. 

Structure of deregulated systems varies according to the conditions of each country. In many 

energy systems where deregulated structure exists, transmission and distribution systems can 

still be operated by the monopolies. Figure 5.1 shows examples of regulated and deregulated 

energy systems. 

 

Figure 5.1. Structure of electric power industry (a) Monopoly, (b) Wholesale and retail 

competition 

The regulative system's development and stability have caused the development of energy 

systems to become stagnant after a while [46]. After the changes in economic structure, the 

energy systems have begun to be privatized, and the private corporations have invested in 

energy generation. The primary challenge in the process of deregulation is to build a 

competitive market environment among other investors and systems managed by 
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monopolies. With increased competition, new trade routes between generation and retail 

services can be created. The energy produced by a generation company (GenCo) can be 

traded more than once before transmitted to the end-user in the market. Retailers earn 

revenue by purchasing large quantities of energy from wholesale markets and delivering 

them to the end consumer, which may vary from households to large manufacturing plants. 

However, end consumers do not always buy energy from retailers. While small and medium-

sized consumers buy energy from retailers, large consumers may choose to participate 

directly in the wholesale market, as shown in Figure 5.1.b. Now that energy production is 

not under the control of a monopoly, market prices are not controlled and are determined in 

the wholesale market.  

It is possible to classify today's electricity wholesale markets under three main structures as 

centralized markets (pool model), decentralized markets (bilateral agreements model) and 

hybrid model, which is shown in Figure 5.2. In the decentralized model, the participants can 

trade electric energy through agreements between themselves and at prices they specify. 

These agreements between the participants are called as bilateral contracts. The bilateral 

contracts include conditions that are not standardized such as start date, horizon, and delivery 

areas. The most remarkable benefit of this market is that supply and demand-side sign long-

term contracts to avoid being affected by price fluctuations.  

 

Figure 5.2. Structure of the wholesale market 



52 
 

 
 

In the centralized market structure, advanced power pool is operated by a central market 

operator. In pool-type markets, a GenCo can offer any price for the power that they want to 

sell. However, the offers should be reasonable; otherwise offering a high price may prevent 

the energy sale. Also, buyers such as end-users or retailers should set an appropriate price 

for purchasing power. The market operator matches the demand and supply quantity at the 

market-clearing process, and the energy prices are set, and the power is balanced. The 

clearing process will be explained in detail in Section 5.3, and there are many sources 

available for more detailed information on system price determination [47]. 

As shown in Figure 5.2, there are different types of centralized markets. They are used for 

trading energy in different time scales to ensure the energy generation meets the demand. 

These markets are summarized below.  

 Day-ahead Markets: Most of the energy is traded in this market structure in which 

production and consumption in the energy system are balanced one day in advance. 

The Day-ahead market enables an opportunity to compensate their generation and 

consumption and take their place in the market more effectively while protecting 

themselves against the risky prices that may change. In this market, generators and 

consumers submit hourly bids for 24 hours of the next day. Supply and demand are 

matched, and price, which is also named as Market Clearing Price (MCP) is 

determined. However, since the future supply and demand cannot be forecasted 

perfectly, there will be imbalances. These imbalances are compensated in other 

markets having shorter time scales.  

 Intra-day Markets: Intra-day markets is introduced recently to cope with renewable 

energy imbalances. It gives an opportunity to renewable GenCo to renew their bids 

based on the newly available information. Also, the intra-day market participants 

have the right to trade the capacities that they do not offer in day-ahead markets.  

 Balancing Markets: Bids given in day-ahead and intra-day markets may not be met 

due to unforeseen events. Then, there is a need for balancing mechanism which is 

provided by balancing markets. In this market, participants who can provide their 

generation (consumption) energy immediately submit bids for reserve power. These 

bids are making reserve power available not using it. Whenever there is an imbalance 

in the energy system, these reserves will be used within minutes.  
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 Ancillary Services Market: This market has the shortest time scale and provides 

immediate correction for the imbalances to ensure safety operations. In addition, the 

ancillary market has an essential role in situations such as black start and secondary 

reserve service. In some energy markets, it operates as a single market with a 

balancing market. 

5.1. HISTORY OF ENERGY MARKET IN TURKEY 

The history of the Turkish electricity markets can be in three main periods: the monopoly 

period, deregulation period, liberalization period. Due to the need for increased production, 

distribution and transmission in the country, the Turkish Electricity Authority (TEK) was 

established with the TEK Law and started the operation in 1970. With the establishment of 

TEK, the interconnection system had been improved. Between 1970 and 1983, there was a 

public dominance in electrical energy investments. Law No. 3096, which came into force in 

1984, allowed the private sector to make investments to energy generation that was totally 

state-controlled until that time. The model called Build - Operate - Transfer (BOT), which 

is also popular today, has begun to be used with this law. The purpose of this law was to 

eliminate the monopoly of the TEK by transferring the operating rights of the existing public 

electricity facilities to the private sector. TEK was divided into the Turkish Electricity 

Generation and Transmission Company (TEAŞ) and Turkish Electricity Distribution 

Corporation (TEDAŞ) on May 1994. TEDAŞ continued its electricity distribution activities 

until 2013, and as of that date, the operating rights of the distribution facilities have been 

transferred to the private sector in 21 distribution regions. After the transfer process, TEDAŞ 

undertook the mission of auditing these private sector companies. 

The restructuring of TEAŞ for privatization occurred in 2001. The main aim of the program 

was;  

 the establishment of separate public companies for electricity production, 

transmission, wholesale, and distribution,  

 the privatization of public electricity companies,  

 the restructuring of the electrical energy sector,  

 the transition to the free electricity market system,  
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 the provision of the liberated competition environment.  

With these goals, based on the Electricity Market Law dated 20.02.2001 and numbered 4628, 

TEAŞ was divided into Turkish Electricity Transmission Company (TEİAŞ), Electricity 

Generation Company (EÜAŞ) and Turkish Electricity Trading and Contracting Company 

(TETAŞ) and they organized as three separate state agencies. Figure 5.3 illustrates the 

evolution of state-owned energy companies over time. 

 

Figure 5.3. Disintegration of state-owned electricity companies 

TEİAŞ conducted transmission activities as a state monopoly and operated balancing and 

ancillary services markets with its market operation license. Until the establishment of 

Energy Markets Operating Corporation (EPİAŞ) in 2013, it had also operated the day-ahead 

market. EÜAŞ has been operating the state-owned power plants which were not transferred 

to the private sector. As of the end of 2016, the total installed capacity of EÜAŞ was 20105.1 

MW, while thermal and hydropower capacities were 6938.9 MW  and 13166.1 MW, 

respectively. EÜAŞ installed capacity accounted for 26 percent of Turkey’s installed 

capacity. The installed capacities of Turkey and EÜAŞ are presented in Figure 5.4. It is clear 

that the private energy generation sector has increased its share compared to the state-owned 

generation facilities. 
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Figure 5.4. Comparison of energy generation of EUAŞ w.r.t Turkey 

TETAŞ is a wholesale company that carries out sale and purchase. The primary duty of 

TETAŞ, which was established as the first electricity wholesale company, is undertaking the 

long-term, such as 15-20 years, energy trading commitments. These commitments are given 

to the power plants established as Build-Operate-Own (BOO), BOT and privatized power 

plants. The other responsibility of TETAŞ is selling the energy purchased with long-term 

contracts to distribution companies and its other customers. The share of TETAŞ in the 

market can be separated into three main periods, and it is presented in Figure 5.5. In 2001-

2006, TETAŞ traded all the energy that had produced in the BOO, BOT, privatized power 

plants and EÜAŞ power plants. Thus, the market share of TETAŞ in the electricity sector in 

this period was averagely 76 percent. In 2007- 2012, a certain amount of electrical energy 

generated by EÜAŞ had been sold directly to distribution companies. Hence, TETAŞ market 

share in this period decreased to 40 percent. Market share in 2013-2016 had been increased 

to 45 percent after the establishment of EPİAŞ.  
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Figure 5.5. Share of TETAŞ in energy trading 

Developments in the energy market were not only based on TEK but also supported by 

various laws and institutional changes. The changes in the energy market laws and 

institutions over the years are given in Figure 5.6. The law numbered 4628, which entered 

into force in 2001, can be considered as the milestone of the renovation in the Turkish energy 

market. This law covered the determination of the rights and obligations of the electricity 

generation, transmission, distribution, wholesale or retail sale, import and export, market 

operation and the establishment of the Energy Market Regulatory Authority (EMRA). Law 

No. 5346, which entered into force four years later, defined the principles and procedures 

for the protection of renewable energy resource areas, the certification of the electricity 

generated from these sources and the use of these resources. Moreover, the renewable energy 

support mechanism (YEKDEM), which is still in force, has been established with this law, 

and the economic support to be provided to the producer was determined. After this law, 

Turkey's wind power capacity of 51 MW in 2006 reached 6106 MW by the end of 2016, and 

93 percent of this capacity is supported by YEKDEM. Law number 5784 has been enacted 

to update the Law No. 4628 in 2008. As a result of this law, some articles of Law no. 4628 

had been amended, and the privatization of the distribution company and EÜAŞ had been 

provided. In addition, ancillary services regulation and automatic pricing mechanism had 

been settled. Even though the first steps for the settlement market were taken with the day-

ahead planning in 2009, the day-ahead market mechanism, which is still in force today, has 

been introduced in 2011. The new Electricity Market Law No. 6446 entered into force on 
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March 30, 2013. The new law abolished all provisions of the Electricity Market Law No. 

4628 except for the provisions of the EMRA regarding its organization, authorities and 

duties, and replaced them with new regulations. Under the new law, wholesale and retail 

licenses combined in a single license type under the name of supply license. In addition, a 

corporation named EPİAŞ was incorporated under this law to work on establishing new 

markets in organized wholesale electricity markets. On July 1, 2015, the intra-day market 

was put into operation to enable participants to provide a more balanced and active role in 

the Turkish electricity market, and a fully competitive market was established in 2016.  

 

Figure 5.6. Milestones of Turkish electricity market reform  

5.2. BALANCING AND SETTLEMENT MARKET HISTORY IN TURKEY 

According to the provisions of the Law No. 4628 and Electricity Market Licensing 

Regulation, it is possible to perform electricity energy and capacity purchase-sale activities 

on the market through bilateral agreements between the parties, and supply and demand must 

continuously be balanced. To this end, the market model is based on the principle that the 

energy supplied to the system under the bilateral agreements is consumed in the same period. 
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Therefore, the simultaneous measurement of the generation and consumption side should be 

collected at a specific center to monitor the volume of the commitments with the bilateral 

agreements and the amounts to be borne by the parties causing the imbalance in the system 

can be determined. Thus, in order to provide the balance of electricity supply and demand 

during the day, the balancing and settlement market has been established with balancing and 

settlement regulation based on the Law No. 4628 at 3 November 2004. Although attendance 

of certain production facilities with certain capacities is obligatory in the first period, these 

necessities have now been repealed.  

Although the balancing and settlement regulation had been established in 2004, it had gained 

functionality in 2006. This regulation permitted that accepted balancing energy offers were 

submitted monthly on hourly prices. Attendance of certain production facilities with certain 

capacities was obligatory in this first period. In 2009, a new regulation was issued that 

provided day-ahead planning and real-time balancing, which was formed for the first time. 

In this new market structure, offers were matched daily on an hourly basis. Attendance to 

the day-ahead planning and real-time balancing was mandatory to all generation 

/consumption facilities that can be activated within 15 minutes. In 2011, different from the 

day-ahead planning, the day-ahead market structure was introduced, which allowed the 

consumers (demand side) to submit bids. In addition, submission of bids within the day-

ahead market can be made with a sensitivity of 0.1 MWh. The intra-day market was 

announced on 28 March 2015, which provided the opportunity for the supplier to update 

their generation schedule before the real-time operations. It is aimed to reduce the 

imbalances caused by suppliers like wind and solar power plants, whose forecast errors are 

high. Thus, the imbalance penalties which are paid by the GenCo’s in the balancing market 

can be decreased. The evolution of the balancing and settlement market is shown in Figure 

5.7.  
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Figure 5.7. Timeline of Turkish balancing and settlement market 

Today, balancing and settlement market is composed of the day-ahead, balancing and intra-

day markets. As already mentioned, another way of selling electricity is bilateral agreements 

with a long-term contract which reduce the risk caused by price fluctuations. In addition to 

the reasons discussed above, since the balancing and settlement market is a relatively new 

trading tool, a significant portion of energy had been traded in bilateral agreements during 

the first years of these new markets. In 2009, when the day-ahead market first emerged, it 

had a share of 3.6 percent in total, while the bilateral energy trade had a rate close to 93 

percent as shown in Figure 5.8. However, as the day-ahead market structure had been 

understood better, the share in the trade of energy was increased dramatically to 43 percent. 

Although the intra-day was established in July 2015, it was still a new market type and not 

preferred by the GenCo. The share of the intra-day market was 0.3 percent at the end of 

2016, and it increased by 0.8 percent at the end of October 2017, which improves its share 

day by day.  
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Figure 5.8. Evolution of Turkish wholesale market shares 

5.3. STRUCTURE OF BALANCING AND SETTLEMENT MARKET IN TURKEY              

5.3.1. Day-ahead Market Structure 

The day-ahead market is the market in which energy trading is completed one day before the 

actual transfer of energy. From this point of view, the day-ahead market offers opportunities 

for market participants to reduce their risk to a minimum level by ensuring a predictable 

market nature. It also helps the system operator by providing a balanced system that enables 

to solve the problems caused by the continuous operation. Day-ahead market transactions 

are carried out within the following general guidelines.  

 Day-ahead market operations are performed on a daily basis with hourly time steps, 

and each day begins at 00:00 and ends at 00:00 the following day.  

 All bids submitted to the day-ahead market shall be valid for a specific day and a 

particular period of time within that day. 

 Purchase-sale bids accepted in the day-ahead market have to be satisfied by the 

participants 

 Each transaction concluded in the day-ahead period is completed by delivering the 

active electric energy to the settlement-based electric energy delivery point. 
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At this point, it will be useful to examine the structure of the bids in detail in order to better 

understand the day-ahead market. Market participants participating in the day-ahead market 

may offer either hourly, block or flexible or both offers within the context of the day-ahead 

market. It is essential that all bids submitted to the day-ahead market for a specific hour can 

be fulfilled at the same hour by the relevant market participant. 

Hourly Buying / Selling Bids: It is a type of bidding option in which a market participant 

offers price and quantity information for each hour of the next day. These offers can be given 

in lots with a sensitivity of 0.1 MWh, and 32 bids can be formed in the direction of buying 

and selling.  

An example of bids for a specific hour of the participant which may buy or sell energy is 

given in Table 5.1. According to the table, the trader decides that it is feasible to purchase 

energy if the price is less than or equal to 59 TL/MWh. The company may store this energy 

in order to use for arbitrage. Alternatively, if it has a bilateral contract for which energy price 

is higher than the market price, it can buy cheap energy from the market to satisfy the 

contracted energy. The GenCo submits generation bids which are represented with a 

negative sign when the price is higher than 100 TL/MWh.  

Table 5.1. Sample bids for specific hour of a trader 

Price (TL/MWh) 0 59 100 129 130 159 160 

Quantity (MW) 20 20 -40 -40 -60 -60 -90 

 

Block Purchase / Sale Bids: In addition to hourly bids, day-ahead market participants are 

also allowed to submit block bids. In block bids, an offer made by the participant will be 

used for more than one hour. The minimum length of a block can be three hours. A given 

bid cannot be accepted partially. Either it is rejected entirely, or it is approved for the whole 

period. Block bid offered to the day-ahead market cannot exceed 600 MWh.   

A sample block bid is given in Table 5.2. As can be seen in the table, the length of the bids 

are more than three hours and has both energy purchase and sale. 
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Table 5.2. Sample block bids of a trader 

Bidding Period Price (TL/MWh) Quantity (MW) 

00:00-11:59 50 40 

00:00-11:59 70 20 

12:00-23:59 110 -50 

12:00-23:59 200 -60 

 

Flexible Sale Bids: Flexible bids can be submitted as a sale bid for an unspecified hour with 

a price and volume. These bids are either wholly rejected or entirely accepted. Market 

participants can notify up to 10 flexible sales bids to the market operator. The main goal of 

these bids is to reduce the energy price in an hour. It can be observed according to the given 

sample bid in Table 5.3. For example, if the energy price is higher than 100 TL/MWh at 6 

am, then the bid number 1 will be accepted, and the GenCo will generate 10 MWh energy 

for that hour. However, in order to increase the profit of the participants, if the energy price 

is higher than 150 TL/MWh in any other hour of the day, then the first bid will be accepted 

in that higher price period.  

Table 5.3. Sample flexible bids of a trader 

Bid No. Price (TL/MWh) Quantity (MW) 

1 100 -10 

2 150 -30 

3 170 -50 

4 200 -60 

 

As shown in Figure 5.9, after gathering the long-term bilateral contracts, the day-ahead bids 

are collected and matched by the market operator. The prices are determined in this bid 

matching operation, and two different methods are used in determining the price of 

electricity in the auction market model. In the first method, which is named as pay as bid, 

each bid is paid according to the offered price. However, in a market-clearing price method, 

all accepted bids are paid with a market-clearing price. In Turkey, the market-clearing price 
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method is used by the market operator, EPİAŞ. There is an example illustrated in Table 5.4 

regarding the supply-demand balance in the day-ahead market auction structure for the one-

hour interval with six participants.  

 

Figure 5.9. Inputs and outputs of the day-ahead market 

The procedure starts with the ranking of prices in ascending order. Then, the bids for buying 

and selling are labeled with a positive sign a negative sign, respectively. The buying and 

selling energy bids are summed up separately and noted to total buying and selling rows for 

each price column. Finally, the energy balance can be calculated with a summation of entire 

buying and selling rows. To this end, an equilibrium point is obtained where energy balance 

is established with a zero value.   

Table 5.4. Illustration of bids of market participants 

Price (TL/MWh) 0 60 80 100 120 140 160 180 250 500 

Quant.of firm A -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 

Quant.of firm B 400 400 250 100 0 -90 -100 -130 -170 -170 

Quant.of firm C 200 100 100 100 50 50 -50 -50 -50 -50 

Quant.of firm D 200 150 150 110 110 90 90 50 30 0 

Quant.of firm E 300 250 150 150 100 100 100 100 100 100 

Quant.of firm F -10 -20 -20 -30 -30 -50 -50 -50 -100 -100 

Total Buying 1100 900 650 460 260 240 190 150 130 100 

Total Selling -110 -120 -120 -130 -130 -240 -300 -330 -420 -420 

Energy Balance 990 780 530 330 130 0 -110 -180 -290 -320 
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The detailed procedure of the day-ahead market in Turkey is as follows:  

 Until 12:30 each day, the day-ahead market participants shall submit the bids to the 

market operator through the system of the day-ahead market for the next day. 

 Each submitted day-ahead market bid is verified by the market operator between 

12:30-13:00. 

 Confirmed bids are evaluated between 13:00 and 13:30 with the optimization tool 

and market clearing prices and quantities for each hour of the relevant day are 

determined. 

 The accepted bids are notified to the relevant market participant at 13:30 each day. If 

there is an error in the content of these notifications, the market participant may 

submit their objections between 13:30-13:50. 

 Objections are evaluated between 13:50- 14:00, and the result is reported to the 

participant. At 14:00, the prices and bids for the next 24 hours are finally announced. 

5.3.2. Balancing Market Structure 

After the closure of the day-ahead market auction, the operator determines electricity prices 

and accepted bids, which become fixed and do not change throughout the day. If there is a 

discrepancy between the actual energy produced, and the contract, it is compensated by 

trading energy in the balancing market. Even if the main task of the balancing market is to 

provide the energy balance of the system, it undertakes the services such as the elimination 

of system constraints, voltage control and ancillary services. The companies which are 

capable of changing the generation or load at least 10 MW in 15 minutes can participate in 

the balancing market.  

The process of balancing power market starts at 14:00 each day with the completion of the 

day-ahead clearing and is carried out on a daily basis within the following steps;  

 The market participant transmits daily regulation up and regulation down bids of 

balancing power market until 16:00 hours to the system operator. In addition, the 

system operator shall be informed with the strict daily production schedule, including 

the hourly production values for the production facilities registered in its name. 
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 Until 17:00 every day, the system operator checks the final day-ahead 

production/consumption program notifications and regulation up and down bids to 

determine if there are any errors in the notifications. The system operator will contact 

the relevant market participant for incorrect notifications and will make the necessary 

corrections until 17:00. 

 The regulation up and regulation down bids submitted to the balancing power market 

are ordered with price by the system operator for each hour. 

 

Figure 5.10. Inputs and outputs of Turkish balancing market 

Figure 5.10 summarizes the real-time operation of a balancing market. Real-time operation 

begins at 00:00 and continues for that day until 23:59, and TEIAS is the system operator that 

ensures that the system remains balanced during this time. The system operator who has the 

fixed production schedule of all the participants in the balancing market takes into account 

the failure reports from the producers and consumers and decides whether the imbalance will 

occur by using the concise forecasting mechanism. In this case, if a supplier or consumer 

generated less or consumed more than its submitted bid, this energy will be bought at  System 

Buy Price (SBP). In addition, a supplier or consumer generated more or consumed less than 

its submitted bid, this energy will be sold at  System Sell Price (SSP). 
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In the case of imbalance, the System of Marginal Price (SMP) calculated with SBP and SSP 

in order to compensate for imbalance energy. This pricing can be calculated in two ways in 

the balancing markets, which are single imbalance pricing and dual imbalance pricing. 

Single pricing mechanism was the first method to calculate SMP until 2011 in balancing 

market in Turkey. In a single pricing structure, the party that causes imbalance has to be 

penalized whether the system is unbalanced or not. For the purpose of calculating the SMP 

in single pricing methodology, a constant which may change by region or country is 

multiplied with MCP. 

𝑆𝑀𝑃 = ൜
𝑆𝐵𝑃 = 𝛼௕ ∗ 𝑀𝐶𝑃,  𝑖𝑓 𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 𝑒𝑥𝑖𝑠𝑡
𝑆𝑆𝑃 = 𝛼௦ ∗ 𝑀𝐶𝑃, 𝑖𝑓 𝑒𝑥𝑡𝑟𝑎 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑥𝑖𝑠𝑡

 
(5.1) 

However, as a result of the introduction of the dual pricing structure in 2011, the system 

operator decreases deterrent SMPs to a reasonable level. Thus, imbalances have been 

observed to decrease by around 30 percent. [48]. In a dual pricing mechanism, SMP depends 

on the sign of an imbalance of the participant with respect to the sign of the overall system 

imbalance. Thus, where the transmission system has too much electricity, or in other term 

running long (𝑥 > 0), the supplier or consumer whose generate less or consumes more 

energy (short, 𝑦 < 0), respectively, will not be penalized. However, the supplier which is 

running long (𝑦 > 0), will sell energy with SSP which is lower than MCP for the excess 

energy produced.  

𝑆𝑆𝑃 = ൜
𝑆𝑀𝑃 = min{𝑀𝐶𝑃, 𝑆𝑀𝑃} , 𝑖𝑓 𝑥 > 0 𝑎𝑛𝑑 𝑦 > 0 

𝑀𝐶𝑃 = max{𝑀𝐶𝑃, 𝑆𝑀𝑃} , 𝑖𝑓 𝑥 > 0 𝑎𝑛𝑑 𝑦 < 0 
 

(5.2) 

In the case of the imbalance of the system is negative or network is running short (𝑥 < 0), 

then the SBP will be different than MCP if the supplier or consumer is running also short 

(𝑦 < 0), otherwise supplier will receive payment up to the MCP.  

𝑆𝐵𝑃 = ൜
𝑀𝐶𝑃 = min{𝑀𝐶𝑃, 𝑆𝑀𝑃} , 𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 > 0 

𝑆𝑀𝑃 = max{𝑀𝐶𝑃, 𝑆𝑀𝑃} , 𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 < 0 
 

(5.3) 
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6. STOCHASTIC OPTIMIZATION 

 

On the contrary to the deterministic optimization problems, most of the real-world problems 

consist of parameters which are uncertain at the time when a decision should be made. Thus, 

it is essential to take into consideration the uncertainty, especially for problems in finance, 

supply chain, transportation, telecommunication, environment and energy [49]. With this in 

mind, Stochastic Programming (SP) was first introduced by Dantzig with the goal of making 

the best possible decision under given constraints in the presence of uncertainties affecting 

the decisions [50]. Stochastic programming consists of two main stages. The first one is the 

modeling of the optimization in which the objective function and constraints are determined. 

The second one is the modeling of the uncertainty used in the problem. 

The modeling of a stochastic optimization can be grouped under four category, which is 

shown in Figure 6.1. Among the methods, expected value, risk-averse and chance-

constrained methods are distribution-based methods. While expected value problems 

optimize the average of the objective function based on a distribution, risk-averse problems 

optimize the risk on the objective. Chance-constrained problems optimize the decision-

making problems by ensuring that the probability of meeting constraints is above a certain 

level. On the other hand, robust optimization does not use probabilistic distributions as it 

optimizes the problem based on the worst case of the uncertainty.  

 

Figure 6.1. Categories of stochastic programming modeling 

This section is organized as follows. Firstly, the modeling of the stochastic programs will be 

introduced with the different approaches used, and the comparison of these modeling 

Modeling of Stochastic 
Optimization

Expected Value Risk-averse Chance-
constrained Robust
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approaches is performed. Then, the modeling of the randomness is explained in detail with 

scenario generation and reduction techniques. Finally, the method used in this thesis is 

presented.  

6.1. MODELING AND SOLUTION OF OPTIMIZATION 

6.1.1. Expected Value Problems 

One of the approaches for solving the stochastic optimization problems optimizes the 

expected value of the objective function. This kind of stochastic programming problems can 

be called as two-stage or in general multi-stage problems. In the following two sections, two 

and multi-stage expected value problems will be explained.  

6.1.1.1. Two-stage Stochastic Optimization 

Standard two-stage stochastic programming has different decision variables used for the first 

and second stages. The first-stage decision variables, which are also known as "here and now 

decisions," specify the decisions to be made before the occurrence of the uncertainty. The 

second-stage decision variables, which are also known as “wait and see decisions,” state the 

decisions taken after the uncertainty is resolved. The general representation of two-stage 

stochastic programming is shown in Figure 6.2, and its linear formulation is as follows.  

min
௫

𝑐𝑥 + 𝔼 ൤min
௬

𝑞(𝜔)𝑦(𝜔)൨ (6.1) 

𝐴𝑥 = 𝑏 (6.2) 

𝑅(𝜔)𝑥 + 𝐿(𝜔)𝑦(𝜔) = ℎ(𝜔), ∀𝜔𝜖Ω (6.3) 

𝑥 ∈ ℤା
௥  × ℝା

௠ି௥ , 𝑦 ∈ ℤା
ௗ  × ℝା

௦ିௗ  (6.4) 

where Ω = {𝜔ଵ, 𝜔ଶ, 𝜔ଷ, … , 𝜔௡} is the set of uncertain outcomes with a certain probability 

distribution. In the above formulation, a two-stage optimization is performed, where 𝑥 and 

𝑦 represent the first and second stage decision variables, respectively. In detail, the first part 

of Equation (6.1) identifies the profit obtained from the first stage, and the second presents 
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the expected income that can be obtained from the second stage. The second stage is an 

optimization problem where uncertainties, 𝜔, are revealed by observations and recourse 

actions are taken. For a given realization, the second stage data 𝐿(𝜔), 𝑊, 𝑞(𝜔) and ℎ(𝜔) 

become known. The term 𝑞(𝜔)𝑦(𝜔) is the profit of the recourse problem and the term 

𝐿(𝜔)𝑦(𝜔) determines the compensation of the possible inconsistencies which can be 

modeled with 𝐿(𝜔)𝑥. 

 

Figure 6.2. Two-stage stochastic programming 

Constraints of the linear stochastic optimization mathematical model given in Equations 

(6.1)-(6.4) can be written in the matrix form as in the following equation.   

𝑚𝑖𝑛[𝑐 𝑞(𝜔ଵ) 𝑞(𝜔ଶ) 𝑞(𝜔ଷ) … 𝑞(𝜔௡)]

⎣
⎢
⎢
⎢
⎢
⎡

𝑥
𝑦(𝜔ଵ)

𝑦(𝜔ଶ)

𝑦(𝜔ଷ)
⋮

𝑦(𝜔௡)⎦
⎥
⎥
⎥
⎥
⎤

 (6.5) 

⎣
⎢
⎢
⎢
⎢
⎡

𝐴 0 0 0 ⋯ 0
𝑅(𝜔ଵ) 𝐿(𝜔ଵ) 0 0 ⋯ 0

𝑅(𝜔ଶ) 0 𝐿(𝜔ଶ) 0 ⋯ 0

𝑅(𝜔ଷ) 0 0 𝐿(𝜔ଷ) ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑅(𝜔௡) 0 0 0 ⋯ 𝐿(𝜔௡)⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑥
𝑦(𝜔ଵ)

𝑦(𝜔ଶ)

𝑦(𝜔ଷ)
⋮

𝑦(𝜔௡)⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑏
ℎ(𝜔ଵ)

ℎ(𝜔ଶ)

ℎ(𝜔ଷ)
⋮

ℎ(𝜔௡)⎦
⎥
⎥
⎥
⎥
⎤

 (6.6) 

By replacing Equations (6.1)-(6.4) with Equations (6.5) and (6.6), the optimization becomes 

a single linear programming model.  
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One of the critical weaknesses of a stochastic problem given in Equations (6.5) and (6.6) is 

that it can be challenging to find a solution if the number of realization of the random 

variables is large. Among different approaches that cope with this problem, the L-shaped 

method, which is proposed by the Van Slyke and Wets’s [51] uses Benders’ [52] and 

Dantzig-Wolfe [53] decomposition methods. These decomposition methods are based on the 

primal and dual structure of the mixed-integer models, respectively. In general, this method 

approximates the recourse function, which is the second part of Equation (6.1), in order to 

avoid numerous second-stage function evaluation. Therefore, the mathematical model of the 

problem is divided into the master problem and slave problems, which corresponds to 

deterministic and stochastic parts of the model, respectively.  

The algorithm of the L-shaped method can be explained as follows briefly. Firstly, the master 

problem is solved and an optimal value of 𝑥∗ is calculated. Then, this value is checked in the 

slave problem for each occurrence 𝑖 in order to satisfy the feasibility condition. If the sub-

problem is not feasible with 𝑥∗, then a feasibility cut is added to the main problem and the 

main problem is solved again with the newly added constraint. If the slave problem is 

feasible, optimality cut is calculated and added to in the main problem. This process is 

repeated until new optimality or feasibility cut cannot be generated. The overall process of 

L-shaped method and process of generating the feasibility and optimality cuts are explained 

in detail by Birge [54].   

6.1.1.2. Multi-stage Stochastic Optimization 

The two-stage stochastic programming model discussed so far has only one recourse 

problem. However, there are some cases where decisions must be taken consecutively for 

each period, depending on the information available at certain times on the horizon. The 

multi-stage stochastic programming models are used in such problems which can be 

considered as a multi-step extension of two-stage programming. In the multi-stage stochastic 

optimization, uncertainty information 𝜔ଵ, 𝜔ଶ, … , 𝜔௧ revealed is gradually over time and, the 

decisions should be made sequentially, as illustrated in Figure 6.3.  

In the multi-stage stochastic programming models, instead of the first and second stage 

variables, which are defined as 𝑥 and 𝑦 as in two-stage stochastic programming model, 
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𝑥଴, 𝑥ଵ, … , 𝑥௧ denotes the decisions at each stage. 𝑥଴ does not depend on uncertainity while 

𝑥௧ depends on past uncertainties 𝜔⌊௧⌋ = {𝜔ଵ, … , 𝜔௧ିଵ}. Then, the decisions at any stage can 

be calculated with the following equation set.  

min
௫బ

𝑐଴𝑥଴ +𝐸 ቈmin
௫భ

𝑐ଵ൫𝜔⌊ଵ⌋൯𝑥ଵ൫𝜔⌊ଵ⌋൯ + ⋯ + 𝐸 ൤min
௫ಹ

𝑐ு൫𝜔⌊்⌋൯𝑥ு൫𝜔⌊்⌋൯൨቉ (6.7) 

s.t. 𝐴𝑥଴ = 𝑏 (6.8) 

𝑅଴൫𝜔⌊ଵ⌋൯𝑥଴ + 𝐿ଵ𝑥ଵ൫𝜔⌊ଵ⌋൯ = ℎଵ൫𝜔⌊ଵ⌋൯ 

⋮ 

𝑅்ିଵ൫𝜔⌊்⌋൯𝑥்ିଵ + 𝐿்𝑥்൫𝜔⌊்⌋൯ = ℎு൫𝜔⌊்⌋൯ 

(6.9) 

𝑥௧ ∈ ℤା
௥  × ℝା

௠ି௥  (6.10) 

In above,  𝑐଴, 𝐴 and 𝑏 are deterministic while of 𝑐௧, 𝑅௧, 𝐿௧ and ℎ௧ are random for 𝑡 = 1, … , 𝑇. 

The objective function is the minimization of the first stage cost and minimization of the 

expected cost of the following stages. Equation (6.8) is the constraint for the first stage which 

is the deterministic part of the problem. The constraints of the following stages are given in 

Equation (6.9). The reader is referred to the [55] for details of creating the deterministic 

equivalent of Equations (6.8)-(6.10). 

 

Figure 6.3. Multi-stage stochastic programming 

In multi-stage stochastic programming, usually, uncertainties are modeled as scenario trees. 

A scenario tree is composed of nodes at each stage. At the first stage, there is one node which 

is called the root. At each time period, new nodes branch from the nodes of the previous time 

period forming a tree. Nodes at the last stage of the tree are called leaves. A path from the 

root to a leaf is called scenario. 
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A sample scenario tree with eight scenarios is given in Figure 6.4.a. As can be seen from the 

figure, all scenarios at 𝑡 = 1, share the root node of the tree. After the branching at 𝑡 = 2, 

two different nodes are created. While scenarios with index 𝑖 = 1,2,3,4 share the first node, 

scenarios 𝑖 = 5,6,7,8 share the second node at time 𝑡 = 2. In order to illustrate how the 

scenarios are associated with the nodes, the relation between the scenarios and nodes are 

illustrated in Figure 6.4.b and shared nodes are put into ellipses. The mathematical equations 

of these share nodes for each stage are given in Equations (6.11)-(6.15). These equations are 

called as nonanticipativity constraints of the stochastic programming model.  

𝑥ଵ(𝜔ଵ
ଵ) = 𝑥ଵ(𝜔ଵ

ଶ) = 𝑥ଵ(𝜔ଵ
ଷ) = 𝑥ଵ(𝜔ଵ

ସ) = 𝑥ଵ(𝜔ଵ
ହ) = 𝑥ଵ(𝜔ଵ

଺) = 𝑥ଵ(𝜔ଵ
଻)

= 𝑥ଵ(𝜔ଵ
଼) 

(6.11) 

𝑥ଶ(𝜔ଶ
ଵ) = 𝑥ଶ(𝜔ଶ

ଶ) = 𝑥ଶ(𝜔ଶ
ଷ) = 𝑥ଶ(𝜔ଶ

ସ) (6.12) 

𝑥ଶ(𝜔ଶ
ହ) = 𝑥ଶ(𝜔ଶ

଺) = 𝑥ଶ(𝜔ଶ
଻) = 𝑥ଶ(𝜔ଶ

଼) (6.13) 

𝑥ଷ(𝜔ଷ
ଶ) = 𝑥ଷ(𝜔ଷ

ଷ) = 𝑥ଷ(𝜔ଷ
ସ) (6.14) 

𝑥ଷ(𝜔ଷ
଺) = 𝑥ଷ(𝜔ଷ

଻) (6.15) 

where 𝜔௧
௜  represesents the node of ith scenario at time 𝑡. 

 

Figure 6.4. A sample scenario tree (a) Tree structure, (b) Non-anticipativity constraints 
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In general, the nonanticipativity constraints can be written as 

𝑥௧(𝜔⌊௧⌋
௜ ) = 𝑥௧(𝜔⌊௧⌋

௝
), ∀𝑖, 𝑗 for which 𝜔⌊௧⌋

௜ = 𝜔⌊௧⌋
௝

, 𝑡 = 1, … , 𝑇 (6.16) 

As in two-stage recourse optimization, for large scale problems, it is necessary to use a 

decomposition method to solve multi-stage programming. To this end, the L-shaped method 

can be extended to a nested decomposition, which solves the problem with a forward step 

and a backward step in each iteration. The forward step solves the equations with an 

approximate expected cost-to-go function at each node 𝑛 as in the L-shaped method 

from  𝑡 = 1, … , 𝐻. When the algorithm reaches to 𝐻 in iteration 𝑖, a feasible solution is 

obtained and an upper bound is calculated. Then, the backward step starts and update the 

lower bound for each node 𝑛 from the last stage 𝐻 until it reaches back to the root node of 

the tree. If the lower and upper bounds coincide, the nested decomposition terminates; 

otherwise, the algorithm continues with another iteration. 

6.1.2. Risk-Averse Optimization 

In robust optimization, the maximum loss is minimized with respect to the worst-case 

scenario to find the decision hedging against uncertainties. However, in general, this may 

lead to a too conservative solution that may result in low expected profit. One way to avoid 

this conservativeness is to introduce probabilistic risk measures into the objective function. 

One such measure is Value-at-Risk (VaR), which can be defined as the maximum possible 

loss within confidence interval 𝛼 of the probability distribution. This definition is shown in 

Figure 6.5 and can be expressed for a specified probability level 𝛼 as follows  

𝑉𝑎𝑅ఈ
ା = 𝑚𝑖𝑛{𝜁: 𝜓(𝑥, 𝜁) ≥ 𝛼} (6.17) 

where 𝜓(𝑥, 𝛾) is the cumulative probability function associated with the decision variable x 

and the threshold 𝜁.  

Using VaR, one can construct the following optimization problem 

min
௫

𝛽ଵ𝔼[𝑐(𝜔)𝑥] + 𝛽ଶ𝑉𝑎𝑅ఈ
ା (6.18) 
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𝐴(𝜔)𝑥 ≤ 𝑏(𝜔) (6.19) 

𝑥 ∈ ℤା
௥  × ℝା

௠ି௥ (6.20) 

The objective in Equation (6.18) is a weighted average of expected profit and VaR. By 

adjusting weights 𝛽ଵ and 𝛽ଶ, one can adjust the trade-off between minimization of the 

expected loss and the minimization of 𝑉𝑎𝑅ఈ
ା.The case 𝛽ଵ = 0 and 𝛽ଶ = 1 gives the most 

conservative solution. However, even this is less conservative when compared with robust 

optimization. This can be seen in Figure 6.5. VaR can not exceed maximum which 

corresponds to robust optimization objective.  

 

Figure 6.5. Illustration of VaR and CVaR [56] 

Although the risk-averse formulation given above can be used to avoid conservativeness, it 

can lead to computational problems since it is not a coherent risk measure and non-convex 

in general. To avoid this problem, one may use Conditional Value at Risk (CVaR) instead, 

which can be defined as the weighted average over the losses greater than or equal to VaR. 

Thus, the 𝐶𝑉𝑎𝑅ఈ can be defined as  

𝐶𝑉𝑎𝑅ఈ
ା =

1

(1 − 𝑎)
න 𝑓(𝑥, 𝑦) 𝑝(𝑦)𝑑𝑦

௙(௫,௬)ஹ௏௔ோഀ
శ

 (6.21) 

where 𝑓(𝑥, 𝑦) is the loss function with the decision variable x and a random variable 𝑦 and 

𝑝(𝑦) is the probability density function of random variable 𝑦.  
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Notice that 𝐶𝑉𝑎𝑅ఈ uses the 𝑉𝑎𝑅ఈ which makes it difficult to handle in the optimization 

problems. Thus, Rockafellar and Uryasev [56] define an alternative formula for the 𝐶𝑉𝑎𝑅ఈ 

as follows 

𝐶𝑉𝑎𝑅ఈ
ା = 𝜁 +

1

(1 − 𝑎)
න [𝑓(𝑥, 𝑦) − 𝜁]ା 𝑝(𝑦)𝑑𝑦

௬

 (6.22) 

However, in optimization problems, it is difficult to evaluate the integral in Equation (6.22). 

To alleviate this difficulty, one can use the following sampling-based approximation. 

𝐶𝑉𝑎𝑅ఈ
ା = 𝜁 +

1

(1 − 𝑎)
෍ 𝜋௜ൣ𝑓൫𝑥, 𝜔௜൯ − 𝜁൧

ା
 

ே

௜ୀଵ
 (6.23) 

where 𝜔௜ is ith sample and 𝜋௜ is the probability of occurrence of the ith sample. 

However, the Equation (6.23) can not be used in the linear optimization algorithms due to 

the discontinuity caused by [𝜏]ା. To overcome this problem, Rockafellar and Uryasev [56] 

linearized the discontinuous terms of the equations and converted the problem to a linear 

programming problem as follows 

min
௫

𝐶𝑉𝑎𝑅ఈ
ା = min

௫
൬𝜁 +

1

(1 − 𝑎)
෍ 𝜋௜𝜏௜  

ே

௜ୀଵ
൰  (6.24) 

𝜏௜ ≥ 𝑓൫𝑥, 𝜔௜൯ − 𝜁 (6.25) 

𝜏௜ ≥ 0 (6.26) 

The formulation above is given for the minimization problem of the loss function 𝑓(𝑥, 𝑦). 

On the other hand, when one needs to maximize the minimum probable profit, then 𝑉𝑎𝑅(ଵିఈ)
ି  

should be used instead. The difference between 𝑉𝑎𝑅ఈ
ା and 𝑉𝑎𝑅(ଵିఈ)

ି  is illustrated in Figure 

6.6. Because of this difference, the derivation of the 𝐶𝑉𝑎𝑅(ଵିఈ) is not the same as Equation 

(6.24). Similar to 𝐶𝑉𝑎𝑅ఈ
ା, the optimization of 𝐶𝑉𝑎𝑅(ଵିఈ) can be given as [56] 

max
௫

𝐶𝑉𝑎𝑅(ଵିఈ)
ି = max

௫
൬𝜁 −

1

(1 − 𝑎)
෍ 𝜋௜𝜏௜  

ே

௜ୀଵ
൰  (6.27) 

𝜏௜ ≥ 𝜁 − 𝑓൫𝑥, 𝜔௜൯ (6.28) 
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𝜏௜ ≥ 0 (6.29) 

Since profit maximization is interested in this thesis, 𝐶𝑉𝑎𝑅ି and 𝑉𝑎𝑅ି will be employed. 

To simplify the notation 𝐶𝑉𝑎𝑅ି and 𝑉𝑎𝑅ି will be denoted as 𝐶𝑉𝑎𝑅 and 𝑉𝑎𝑅 in the rest of 

the thesis.  

 

Figure 6.6. Illustrations for (a) 𝐶𝑉𝑎𝑅ା/ି, (b) 𝑉𝑎𝑅ା/ି 

6.1.3. Chance-Constrained Optimization 

For the all optimization formulations explained so far constraints are expected to be satisfied 

for all realizations of uncertainties. However, in some applications, it would be allowable to 

violate constraints as long as the occurrence of the violation is rare. In this case, one may 

replace constraint satisfaction with less conservative probability constraints and use the 

chance-constrained method. This method was proposed by Charnes et al. [57] and ensures 

that the probability of fulfilling a particular constraint is above a certain level [58].  

Chance-constrained optimization mathematical models are based on probability (or chance) 

constraints which may have the form as given in Equation (6.30). 

𝑃{𝑇(𝜔௜)𝑥 ≥ ℎ(𝜔௜)} ≥ 𝛽௜  𝑖 = 1,2, … 𝑛  (6.30) 

where 0 ≤ 𝛽௜ ≤ 1.  

The deterministic equivalent of Equation (6.30) can be developed with different approaches. 

One of them is using the sample average approximation, which can be acquired by 

substituting the real distribution in chance-constrained optimization by an empirical 
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distribution corresponding to a random sample  [59]. The sample average approximation 

formulation of the probabilistic constraint can be written as follows. Suppose that 

𝑔௜൫𝑥, 𝜉መ௝൯ = 𝑇௝(𝜔௜)𝑥 − ℎ௝(𝜔௜) and the uncertain variables are defined as 𝜉መ௝ =

{𝑇௝(𝜔௜), ℎ௝(𝜔௜)}. Then 

𝑔௜൫𝑥, 𝜉መ௝൯ ≥ 0    𝑖 = 1,2, … 𝑛, 𝑗 = 1 … 𝑁 (6.31) 

where  𝜉መଵ … 𝜉መே are independent and sampled from a distribution, which gives a discrete 

approximation of Equation (6.30). If the probability distribution function is replaced with 

Monte Carlo samples of 𝜉, then the Equation (6.31) transforms to the following deterministic 

constraint. 

1

𝑁
෍ 𝕀(𝑔௜൫𝑥, 𝜉መ௝൯

ே

௝ୀଵ

≥ 0) ≥ 𝛽௜, 𝑖 = 1,2, … 𝑛  (6.32) 

where 𝕀(𝒜) is an indicator function which is one when the 𝒜 is true and zero otherwise. 

Finally, if the big-M method is employed, the following MILP equivalent of Equation (6.32) 

can be obtained. 

𝑔௜൫𝑥, 𝜉መ௝൯ + 𝑀௜
௝
𝑦௝ ≥ 0 , 𝑖 = 1,2, … 𝑛, 𝑗 = 1 … 𝑁  (6.33) 

∑ 𝑦௝ே
௝ୀଵ

𝑁
≤ 1 − 𝛽௜ (6.34) 

𝑦௝ ∈ {0,1} (6.35) 

where 𝑀௜
௝  is big enough constant. In general, except for some special cases, it is difficult to 

solve chance-constrained problems, since they are non-convex. 

6.1.4. Robust Optimization 

Robust optimization (RO) is another stochastic optimization approach developed for the 

solution of optimization problems under uncertainty. This optimization technique aims to 

find the solution for the best objective function value under the worst-case uncertainty. The 

solution is mostly conservative because it hedges against the worst-case realization. The RO 



78 
 

 
 

may not be ideal for some applications due to this conservative nature; however, the RO is 

used in various sectors like inventory management, logistics, finance, machine learning, 

energy systems, safety systems, and healthcare systems [60].  

The robust approach entered into the optimization literature by Soyster addressing the 

problem of linear programming with uncertain data [61]. In this study, small perturbations 

are applied to the data, and a reformulation which is feasible under all possible perturbations 

to the original problem was found.  Mulvey et al. proposed the robust optimization method 

to cope with the trade-off between solution and model robustness by integrating goal 

programming formulations and scenario-based optimization [62].  

RO problems are transformed into a deterministic format called robust equivalence using 

strong duality arguments and are solved using standard optimization algorithms[63]. A static 

RO problem can be formulated as follows. 

min
௫

max
ఠ∈ஐ

𝑐(𝜔)𝑥 (6.36) 

𝐴(𝜔)𝑥 ≤ 𝑏(𝜔) (6.37) 

𝑥 ∈ ℤା
௥  × ℝା

௠ି௥ (6.38) 

where Ω is the uncertainty set. This formulation optimizes the objective for the worst-case 

realization of 𝜔 ∈ Ω.  

The mathematical model given in Equation (6.36) is a static model which does not consist 

of multiple stages. Similar to multi-stage recourse problems mentioned in Section 6.1.1.2, 

multi-stage robust optimization, i.e., adjustable robust optimization, concentrate on the cases 

when the decisions can be separated into multiple different cases.  The term “adjustable” 

refers that decision-makers can adjust their decisions when the uncertain parameters are 

realized in each stage. Adjustable robust optimization is less conservative than the classic 

RO approach as it calculates more flexible solutions which can be adjusted at any stage. Ben-

Tal et al. [64] introduced the adjustable robust solution and formulated for two-stage as in 

the Equation (6.39)-(6.42).  

min
௫

𝑐𝑥 + max
ఠ∈ஐ

min
௬

𝑞(𝜔)𝑦(𝜔) (6.39) 
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𝐴𝑥 = 𝑏 (6.40) 

𝑅(𝜔)𝑥 + 𝐿(𝜔)𝑦(𝜔) = ℎ(𝜔), ∀𝜔𝜖Ω (6.41) 

𝑥 ∈ ℤା
௥  × ℝା

௠ି௥ , 𝑦 ∈ ℤା
ௗ  × ℝା

௦ିௗ  (6.42) 

In this formulation, 𝑥 is the here-and-now decisions and 𝑦 is the wait-and-see decisions. The 

difference between the stochastic recourse problem described in Section 6.1.1 and adjustable 

recourse problem can be seen in this formulation. While Equation (6.1) minimizes the 

expected cost for the second-stage, the expectation operator is switched with a maximization 

operator in Equation (6.39). Note that the expectation operator is a linear operator while the 

maximization is another optimization problem. The Equation (6.1) can be extended to multi-

stage similar to stochastic optimization in the Equation (6.7) by replacing the expectation 

operator with a maximization operator.  

In early studies on RO, the uncertainty was modeled with the scenario trees by Mulvey et al. 

[62]. However, using scenario trees may not contain the worst-case scenarios because 

sampling methods are used for scenario generation. In order to solve this problem, 

uncertainty sets are used. Thus, the solution of the robust formulation is guaranteed to be 

optimal and feasible for the entire uncertainty set. Commonly used uncertainty sets are as 

follows; box uncertainty set [61], ellipsoid uncertainty set [65], polyhedral uncertainty set 

[66], and combinations of these sets.  

6.2. SAMPLING BASED APPROXIMATION  OF STOCHASTIC PROCESSES 

Solving stochastic problems with continuous variables is intractable in general. Thus, to 

make such problems traceable, one needs to use discrete approximations to these continuous 

variables. For multistage problems, such discrete approximation takes the form of a scenario 

tree due to the dependence of past observations. This approximation process of the scenario 

tree includes some or all of the following steps, which are also shown in Figure 6.7 [49]. 

 The collection of past observations of variables and preprocessing the collected data, 

 Determining the assumptions of the model describing the behavior of random 

variables and estimation of the model using historical data, 
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 Generation of data trajectories consistent with the discretization of the distribution  

 Reduction of the scenarios in order to generate a scenario tree with desired features 

 

Figure 6.7. Modeling of randomness 

In data preprocessing, data is transformed into a new format with cleaning, transformation 

and reduction techniques after the data collection. In data cleaning, the missing values are 

filled, and outliers are identified and removed. Transformation routine work for 

normalization, aggregation and conversion of the data. Data reduction is used for reducing 

the data set into a smaller size to make the data more convenient. Model estimation, scenario 

generation and scenario reduction techniques will be explained in detail in the following part 

of this section.  
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6.2.1. Model Estimation 

A model from the collected data can be created with different methods. The forecasting 

methods are one of the most common techniques used for model estimation. In literature, 

there exist numerous research results about the electricity price and wind speed forecasting 

methods. Forecasting techniques for wind speed are classified by Soman et al. [67], and 

Weron [68] summarizes the electricity price forecasting methods in five categories. The 

classification methods that can be used for the modeling of the randomness of wind and price 

data are shown in Figure 6.8. As can be seen from Figure 6.8, some methods are common to 

both wind and price forecasting problems, and some others are specific to each problem. In 

below, all forecasting techniques shown are explained briefly.  

6.2.1.1. Techniques Specific to Wind Speed Forecasting 

As can be seen from Figure 6.8, forecasting techniques specific to wind speed forecasting 

can be classified into two groups, namely, Numeric Weather Prediction (NWP) and 

persistence method. Persistence method assumes that the wind speed in the future is the same 

as the current time instant. This method is an effective way of forecasting for the ultra-short-

term (seconds to several minutes), and it can be used to benchmark other methods [67].  

NWP method solves complex mathematical models by using ambient properties like surface 

roughness, obstacles, temperature and pressure. These models need lots of computations and 

information which should be rendered with supercomputers. Thus, these calculations can be 

made by the central governmental institutions. Moreover, NWP is adequate for medium and 

long terms since the wind speed can be forecasted one or two times in a day. On the other 

hand, unstable atmospheric conditions result in bad weather predictions that reduce the 

accuracy of wind speed forecasting.  
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Figure 6.8. Forecasting methods for wind speed and electricity prices 

6.2.1.2. Techniques Specific to Electricity Price Forecasting 

There are three approaches specific to the energy price forecasting, namely, multi-agent 

models, fundamental methods and reduced-form models. Multi-agent systems simulate the 

whole electricity generation and transmission system to estimate the prices by mimicking 

the actual procedures carried out by the system in determining the electricity prices. A review 

of the methods for price estimation by simulation can be found in [68] and [69]. These 

methods constitute an incredibly flexible framework for analysis, which may also be a 

weakness as all assumptions in the model should be justified. Unlike the other techniques, it 
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focuses on mostly qualitative issues. Thus, it has a lower prediction accuracy than the other 

methods.   

Fundamental methods, which are reviewed by Weron [68], use fundamental drivers like 

loads, fuel prices and weather conditions and tries to model the primary relationship between 

these drivers and energy price. Many approaches of fundamental methods in the literature 

are considered as hybrid solutions with other methods. Medium-term forecasts are more 

accurate than short-term because fundamental driver data is often collected in weekly or 

monthly scale. Therefore, the practices of this method are usually limited to risk 

management. Also, in the fundamental methods, the price forecasts are very sensitive to the 

variations which need too much effort to adjust.  

Reduced-form models which are reviewed in detail by Benth et al. [70], determine the 

demographic characteristics of electricity prices over time, usually for risk management 

purposes. Some of the few studies conducted to estimate daily energy prices either with 

mean-reverting jump-diffusion [71] or Markov regime-switching models [72], however, 

Benth et al. [70] confirm that poor results have been achieved with these methods.   

6.2.1.3. Techniques Common to Wind Speed and Electricity Price Forecasting 

As can be seen from Figure 6.8, the forecasting methods common to both price and wind 

speed forecasting can be categorized as computational intelligence and statistical models.  

Computational intelligence-based techniques forecast the electricity prices and wind speed 

by learning, evaluation, and fuzziness approaches. The greatest strength of the computational 

intelligence-based methods is that they can model inherent complexities and nonlinearities 

of the data by learning. This allows them to build a useful model to make short-term 

predictions. Also, these models are simpler to construct as it is not necessary to define the 

mathematical expressions explicitly. Artificial Neural Networks (ANN) and fuzzy logic 

models are the primary techniques in this category.  

Artificial Neural Networks (ANN) is based on learning the relationship between input and 

output using historical data. They are composed of neurons which form networks. Two 

different types of network can be used, which are feed-forward and recurrent networks for 
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forecasting. Each network is composed of an input layer, hidden layer(s) and an output 

layer.ANNs can be classified by different aspects such as network structure, learning 

algorithm, etc. Also, fuzzy logic based ANNs are used for forecasting because it allows 

outputs to be deduced from noisy or fuzzy inputs, which eliminates the necessity of mapping 

of input and output.  

Different network structures can be used for price forecasting like radial basis functions [73], 

multi-layer perceptron [74, 75], recurrent network [76] and self-organizing maps [77]. Some 

of the existing ANN models used in the wind forecasting are radial basis functions [78], 

multi-layer perceptron [79], and recurrent network [80]. Also, fuzzy-neural ANNs are 

applied for both wind speed [81, 82] and electricity price forecasting [83]. However, since 

there exists a wide variety of rich methods in computational intelligence, it is challenging to 

decide which one will yield a better result. 

Statistical methods use historical data or external factors or both to forecast with a 

mathematical model. Mathematical models of the algorithms are composed of a combination 

of critical fundamental factors. Also, the structure of the analyzed data influences the 

accuracy of the prediction. Although this approach is still questioned in some studies, it is 

preferred due to the seasonal structure of electricity markets and wind speed in nature.  

As can be seen from Figure 6.8, statistical methods can be classified into five categories. 

Exponential smoothing predicts future observations with a weighted average of past 

observations. These weights are exponentially decreasing depending on a parameter. Also, 

it can handle seasonal and trend components. Taylor [84] and Jonsson et al. [85] employed 

Holt-Winters exponential smoothing for energy price forecasting and Cadenas et al. [86] 

forecasted the wind speed with a simple exponential smoothing.  

Regression methods are based on the relationships between predictor variables and a 

dependent variable. While predictor variables used for electricity price forecasting can be 

gas prices, temperature or rainfall, the wind speed forecasts may use temperature, pressure, 

and humidity. Among different alternatives, linear regression models are the most popular 

forecasting methods. In the literature, Wan der Walt and Botha [87] implemented ordinary 

least squares and Bayesian ridge regression models to wind forecasting, and Schmutz and 

Elkuch [88] forecasted energy prices with multiple regression model which uses gas prices, 

nuclear capacity, temperatures and rainfall as predictor variables.  
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AutoRegressive Moving Average (ARMA) models are one of the most popular forecasting 

technique that uses time-series data. The ARMA model has several variations depending on 

the structure of the data used. ARMA models are suitable if the time-series data is stationary. 

These models are used for energy price forecasting by Cuerasma et al. [89] and wind speed 

forecasting by Torres [90]. However, if there is non-stationary (or trend) data, then 

Autoregressive Integrated Moving Average (ARIMA) should be employed. Conejo et al. 

[91] forecasted the energy price with ARIMA technique and Palomares-Salas et al. [92] 

implemented an ARIMA model for wind speed forecasting. 

On the other hand, Seasonal Autoregressive Integrated Moving Average (SARIMA) models 

are employed when the time series exhibits seasonality. Mainly, wind speed and energy price 

data exhibits a seasonal structure mostly. Thus, the SARIMA model is suitable for these 

data. Many studies in the literature used SARIMA models for wind speed [93–95] and 

energy price [96–99] forecasting. ARX-type time series models use past values of the output 

variable together with exogenous variables like gas price, generation capacity and weather 

conditions.  

Threshold autoregressive models are proposed by Ambach and Schmid [100] for the 

medium-term forecast of the wind speed and Lucheroni [101] for the energy price 

forecasting. For ARX type models having non-constant variance or covariance function, 

Bollerslev [102] proposed a model named the Generalized AutoRegressive Conditional 

Heteroscedastic (GARCH). Jiang et al. [103] and Garcia et al. [104] forecasted wind speed 

and energy prices with GARCH method, respectively.  

6.2.2. Scenario Generation 

Scenario generation is the process of sampling trajectories of a stochastic process 

characterized by discrete or continuous distribution. In scenario generation, scenario trees, 

which are discrete possible outcomes in the future, are obtained. They can be used as a 

representation of future uncertainties in a stochastic programming model. In a scenario tree, 

the starting node shows the initial value, and the branches from that node express the values 

that the random variables in the following period can take. At the end of each branch, there 

are nodes which represent the values of the next period. This continues based on the stages 
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in which the statistical programming is determined. This tree is composed of several 

scenarios. Scenarios can be found by starting from the root node and following the next node 

till the end. The number of scenarios is equal to the total nodes at the last stage. A sample 

scenario tree, which is composed of 18 scenarios, is given in Figure 6.9.  

 

Figure 6.9. Sample scenario tree 

Among different scenario tree generation methods mentioned in the literature [49, 105], the 

sampling method is one of the most appropriate ones for the generation of wind speed and 

energy price scenario trees. The basic principle of the sampling method is to take a sample 

from the probability density function, which will give the value of the scenario node and its 

probability. Among different sampling techniques, random sampling [106], stratified 

sampling [106], bootstrapping [107] and Monte Carlo [108] are the most common methods 

in the literature.   

6.2.3. Scenario Reduction 

In scenario generation, while some techniques may directly generate scenario trees with few 

scenarios, some of them generate a rich set of trajectories. Nevertheless, the number of 

scenarios should be kept small to be able to attain a tractable problem. Moreover, if there 

exists more than one stochastic variable in the problem than the total scenario number will 
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be all combinations of them, which leads to an exponential growth of the number of 

scenarios. Thus, there is usually a need for reducing the number of scenarios. There exists 

different scenario reduction technique like Barycentric approximation [109], sequential 

clustering [110, 111] and backward and forward reduction [112].  

6.3. SCENARIO TREE GENERATION APPROACH USED IN THE THESIS 

In this thesis, the steps depicted in Figure 6.7 are applied for scenario tree modeling. 

Different methodologies can be used for the implementation of each step, as described in 

Section 6.2. In this study, the following methods are chosen for each step.  

Firstly, the preprocessing of the data stage is realized for the collected wind speed data by 

adjusting to the required height level, as mentioned in Section 2.2. Also, outliers of wind 

speed and electricity price data are cleared at this stage. SARIMA method is employed for 

modeling. The simulations were performed using SARIMA models of wind and price data 

to generate scenarios. Finally, the generated scenarios are reduced by means of a k-means 

clustering-based reduction technique.  Details of the methods and reasons for choosing them 

are described in the following section.  

6.3.1. Estimation of Forecast Model and its Parameters 

The time-series methods were described briefly in Section 6.2.1.3. In this thesis, ARMA 

type models are employed because it is a well-established method that can be modeled easily. 

A general ARIMA model can be represented as ARIMA(p,d,q), where q is the order of 

Moving Average (MA) part, d is the order of differencing used, and p is the order of 

AutoRegressive (AR) part. It can be formulated as follows.  

(1 − 𝜑ଵ𝐵 − 𝜑ଶ𝐵ଶ − ⋯ − 𝜑௣𝐵௣)(1 − 𝐵)ௗ𝑥௧

= (1 − 𝜃ଵ𝐵 − 𝜃ଶ𝐵ଶ − ⋯ − 𝜃௤𝐵௤)𝑒௧ 
(6.43) 

where 𝑥௧ and 𝑒௧ are time-series data and residuals, respectively. On the other hand, 𝜑௜(𝑖 =

1,2, … , 𝑝) and 𝜃௜(𝑖 = 1,2, … , 𝑞) represent the parameters of the AR and MA parts of the 
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model, (1 − 𝐵)ௗ shows the differencing operation where B is a backward shift operator, i.e., 

𝐵𝑥௧ = 𝑥௧ିଵ. 

In addition to dependence on past values and residuals, one also needs to take seasonalities 

in the data into account if they are present. One way to achieve this is to add an additional 

term into the standard ARIMA model. This leads to well known Seasonal ARIMA model 

which can be represented as SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)௦. The P and Q represent seasonally 

autoregressive and seasonal moving average orders. In order to ensure the stationarity of the 

series, a seasonal difference of order 𝐷 can be taken. In this representation, 𝑠 corresponds to 

the period of the seasonal part.  

If the differenced series is represented as 𝑌௧ = (1 − 𝐵)ௗ(1 − 𝐵)஽𝑥௧ SARIMA model can be 

defined as 

𝜑(𝐵)Φ(𝐵௦)𝑌௧ = 𝜃(𝐵)Θ(𝐵௦) 𝑧௧ (6.44) 

where 𝜑 and 𝜃 are non-seasonal AR and MA polynomials which are given in Equation 

(6.43), respectively. Φ and Θ represent seasonal AR and MA polynomials, respectively. 

These polynomial are similar to non-seasonal polynomials however they are composed of 

seasonal terms as expressed in the following equations.   

Φ(𝐵௦) = 1 − Φଵ𝐵௦ − Φଶ𝐵ଶ௦ − Φଷ𝐵ଷ௦ … − Φ௉𝐵௉௦ (6.45) 

Θ(𝐵௦) = 1 − Θଵ𝐵௦ − Θଶ𝐵ଶ௦ − Θଷ𝐵ଷ௦ … − Θ௉𝐵ொ௦ (6.46) 

After a brief introduction to the SARIMA model, the estimation of the SARIMA model 

parameters needs to be explained. This process consists of many stages, which are shown in 

Figure 6.10. First, the model's seasonality is determined by inspecting time-series  

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF). If a periodic 

behavior is observed in corresponding plots, a seasonal difference is added to the model until 

the elimination of the seasonal pattern. Following the determination of the seasonality, the 

degree of the model is determined by inspecting the ACF and PACF lags. If the model has 

no seasonality, then p and q are determined. Otherwise, the P and Q are determined firstly 

in order to eliminate the effect of seasonal AR and MA. After the degree of the model is 

determined, the coefficients of the model polynomials are estimated with the help of a 

software. Finally, residuals are analyzed to validate the model. In the analysis of the 



89 
 

 
 

residuals, firstly, their independence is tested with statistical and graphical methods. Finally, 

the statistical test for the validation of the models is performed. 

 

Figure 6.10. Stages of SARIMA model parameter estimation 
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6.3.2. Monte Carlo Simulation 

Among different scenario generation technique, the Monte Carlo simulation is used in this 

thesis in order to generate scenarios. To this end, the SARIMA model developed is fed by 

independently and randomly generated residuals to obtain sample paths of the underlying 

stochastic process. Example scenario fans are presented in Figure 6.11 and Figure 6.12 for 

wind speed and energy prices, respectively. In the scenario generation, 10,000 scenarios are 

generated with equal probabilities. However, 100 samples are selected randomly from the 

generated scenario fans to illustrate the scenarios clearly. 

 

Figure 6.11. Sample Monte Carlo simulation output of 100 scenarios for wind speed 

 

Figure 6.12. Sample Monte Carlo simulation output of 100 scenarios for energy price 
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6.3.3. Clustering-based Scenario Reduction 

In order to obtain realistic results, a rich set of prediction trajectories are usually generated 

in the scenario generation stage. Nevertheless, for a large number of scenarios, there is a 

need to perform reduction to make corresponding stochastic optimization problem tractable. 

Towards this end, reduction algorithms were employed to construct scenario trees of 

moderate sizes, which contain the essential information associated with the underlying 

stochastic process. 

There are different methods for the scenario reduction in the literature [110, 113]. In this 

work, the method proposed by Sutiene et al. [114] is employed, and the detailed flow chart 

is presented in Figure 6.13. This method is an iterative algorithm that starts by creating a 

root node to which all the scenarios are assigned. Then, repeatedly, for each node, scenarios 

associated with it are divided into smaller sets using the clustering algorithm, and a node is 

created for each cluster (Step 2 and Step 3). The value of a newly created node and its 

probability is calculated based on the scenarios assigned to it (Step 4 and Step 5). This 

procedure is repeated until the end of the horizon to construct the tree that expands as one 

moves forward in time. The procedure in each step can be explained as follows. 

Suppose that the initial scenario set, which is denoted by 𝜉௦ = (𝜉଴
௦, 𝜉ଵ

௦, … 𝜉௧
௦, … , 𝜉்

௦), 𝑠 =

1, … , 𝑆 has K scenarios where 𝑡 is the stage. 𝑏௧ is the branching structure at time 𝑡 which 

means the scenarios passing through the node at time 𝑡 − 1 will be divided into 𝑏௧ clusters 

𝐶ଵ, … , 𝐶௕೟. Each scenario which was assigned to the node 𝑘௧ at time 𝑡 is represented by 𝜉௧
௞ =

൫𝜉௧ାଵ
௞ , … , 𝜉்

௞൯, 𝑘 = 1, … , 𝑁𝐶௞೟   where 𝑁𝐶௞೟ is the number of scenarios assigned to a node 

𝑘௧. The total number of nodes at time 𝑡 is denoted by 𝑁௧ where 𝑁௧ = ∏ 𝑏௧
௧
ଵ , 𝑡 = 1, … , 𝑇 and 

𝑁଴ = 1 as there will be only one node at root node.  

Step 1: Collect generated scenarios, determine 𝑏௧, 𝑡 = 1, … , 𝑇, set 𝑡 = 0 and create the root 

node 𝜉଴
ଵ by calculating the mean of generated scenarios at time 𝑡 = 0.  

Step 2: Calculate cluster centroids, which is shown as 𝜉̅௜ = (𝜉௧̅ାଵ
௜ , … , 𝜉்̅௜ ), 𝑖 = 1, … , 𝑏௧ାଵ of 

the 𝑏௧ାଵ branches passing through the current node 𝑘௧. The cluster centroids are calculated 

by minimizing the following objective function 
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min ෍ ෍ 𝑑(𝜉௧
௞, 𝜉̅௜)

ே஼ೖ೟

௞ୀଵ

௕೟శభ

௜ୀଵ

   (6.47) 

where 𝑑(𝜉௧
௞, 𝜉̅௜) changes according to the clustering method used.  

Step 3: For each scenario 𝜉௧
௞ passing through the current node, assign it to the cluster 𝐶௟ such 

that 𝜉௧
௞ is closest to 𝜉̅௜. The value 𝑙 is determined with  

𝑙 = arg min௜∈{ଵ,…,௕೟} 𝑑( 𝜉௧
௞, 𝜉̅௜) (6.48) 

Step 4: For each node calculated at time 𝑡, calculate the ratio between the number of 

scenarios in 𝐶௜ and the total generated scenario. 

Step 5: Assign 𝜉௧̅ାଵ
௜  as the value of the node for each node calculated at time 𝑡. 

In the method mentioned above, different clustering techniques can be applied. In order to 

find out an appropriate method for scenario reduction, two different techniques are applied, 

namely k-means clustering and Fuzzy C-Means (FCM) clustering. These techniques differ 

in cluster assignment and centroids update stages. While k-means assigns the scenarios to 

the clusters with the minimum distance function as in Equation (6.49), FCM uses a distance 

function, which is given in Equation (6.50), by calculating the membership value of each 

scenario before the distance calculation. 

𝑑൫𝜉௞, 𝜉̅௜൯ = ฮ൫𝜉௧ାଵ
௞ , … , 𝜉்

௞൯ − ൫𝜉௧̅ାଵ
௜ , … , 𝜉்̅௜ ൯ฮ

ଶ
 (6.49) 

𝑑൫𝜉௞, 𝜉̅௜൯ = ൫𝑢௧
௜௞൯

௠
ฮ൫𝜉௧ାଵ

௞ , … , 𝜉்
௞൯ − ൫𝜉௧̅ାଵ

௜ , … , 𝜉்̅௜ ൯ฮ
ଶ
 (6.50) 

where 𝑚 is the fuzzifier and 𝑚 > 1. The value of 𝑢௧
௜௞ is calculated at each time and for each 

scenario by the following equation.  

𝑢௧
௜௞ =

⎝

⎛෍ ቆ
ฮ൫𝜉௧ାଵ

௞ , … , 𝜉்
௞൯ − ൫𝜉௧̅ାଵ

௜ , … , 𝜉்̅௜ ൯ฮ

ฮ൫𝜉௧ାଵ
௞ , … , 𝜉்

௞൯ − ൫𝜉௧̅ାଵ
௦ , … , 𝜉்̅௦൯ฮ

ቇ

௕೟

௦ୀଵ

ଶ
௠ିଵ

⎠

⎞

ିଵ

 (6.51) 
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Figure 6.13. Flow chart of the scenario tree reduction 

In order to show how the reduction algorithm depicted in Figure 6.13 performs, the methods 

are applied to a set of wind and price scenarios given in Figure 6.11 and Figure 6.12. Both 

clustering methods described above are used separately. The reduced scenarios for energy 

price and wind speed are presented in Figure 6.14 and Figure 6.15. As can be seen from the 
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figures, the reduced scenarios are slightly different for each method. Hence, it is not clear 

which method performs better based on these figures.  

 

Figure 6.14. Sample scenario trees of energy price that reduced with two clustering 

algorithm 

 

Figure 6.15. Sample scenario trees of wind speed that reduced with two clustering 

algorithm 
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Therefore, the scenario reduction process is repeated for 60 different days with two 

clustering algorithm in order to determine which clustering method will be used in this thesis. 

During the simulations, computation times are recorded, and the weighted distances between 

the scenarios and real data are calculated by using scenario probabilities. Then, a paired 

samples t-test is conducted for the distances and computation times as both methods are 

tested for the same days. The test statistics of the paired samples t-test, mean and standard 

deviation of all results are given in Table 6.1. As can be seen from the table, all comparisons 

are significant as the p values are less than 0.05. It can be concluded that the k-means 

algorithm generates scenarios closer to the real data and has a better computation time than 

the FCM algorithm. Thus, k-means is preferred in this thesis. 

Table 6.1. Test statistics of compared algorithms 

  Wind Price 

 k-means FCM k-means FCM 

Distance Mean 59.54 61.85 318.86 333.32 

Std.Dev 17.41 16.77 109.75 104.79 

p 0.000 0.000 

Speed Mean 0.43 0.92 0.44 1.08 

Std.Dev 0.16 0.28 0.13 0.08 

p 0.000 0.000 
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7. PROBLEM FORMULATION AND LITERATURE REVIEW 

 

The penetration of wind energy has increased rapidly all over the world in the last decades. 

Environmental concerns along with decreasing capital costs, low operation costs and 

improvements in turbine efficiencies constitutes the driving forces behind this growth. 

However, higher utilization of wind leads to significant challenges due to its intermittent 

nature, constituting a significant problem for both market operators and GenCos.  

As long as wind energy producers are concerned, currently there are incentives in many 

countries in which energy is bought with the feed-in tariff. This policy ignores the variations 

in the production for the GenCo. However, the support mechanism is valid for a limited time 

after which GenCo should trade in deregulated markets. In the market environment, 

deviations from energy schedules are penalized, reducing the income of the company.  

A viable approach to mitigating this problem is to support wind generation with a storage 

unit. Storage systems can perform energy shifting, arbitrage and imbalance reduction. 

Several technologies, which are mentioned in detail in Section 3, can be used, such as 

batteries, compressed air energy storage systems, supercapacitors and Pumped Hydro 

Storage (PHS) reservoirs. Among these energy storage systems, PHS technology is one of 

the most important solutions for large-scale wind energy integration with fast response time, 

high efficiency and large capacity, as mentioned in Section 4.3 [115]. 

Thus, in this work, a system composed of wind farms and a PHS unit is considered. This 

hybrid power plant can participate to day-ahead market and compensates its real-time 

operation deviations in the balancing market. An overall block diagram of the bidding and 

real-time operation for a wind-powered PHS system and a timing diagram of the market 

structure are depicted in Figure 7.1 and Figure 7.2, respectively. It can be seen that at day 

D-1 energy contracts for the next day are computed based on the wind and day-ahead price 

forecast scenarios. These bids must be submitted to the day-ahead market before the gate 

closure time. However, there is a significant delay between the gate closure and operation 

times. This implies that contracts need to be made under a high level of uncertainty since the 

accuracy of wind energy forecasts diminishes with time significantly, as illustrated in Figure 

7.2 [116, 117]. There are different approaches proposed in the literature for computing 

profitable bidding decisions. A review of these methods is given in the next section. 
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After the submission of the bids to the day-ahead market, market clearing is performed by 

the system operator. This is followed by the real-time operation period, which starts 

considerably later. At this phase, the company is expected to meet its contracts at each hour. 

Throughout the day D, the real-time operation algorithm controls the systems by calculating 

operation decisions of PHS. The decisions are computed for each hour making use of the 

day-ahead bids determined, announced market prices and actual wind power when the 

decisions are calculated. As can be seen in Figure 7.2, there is a significant certainty gain 

about wind production at this stage when compared with the bidding phase. The new 

measurements of wind energy are available at each hour, which can be exploited to obtain 

better forecasts for the rest of the operation horizon. Also, the amount of energy in the storage 

device is known at each time step. All this information can be used to make more informed 

decisions in real-time when compared with the bidding stage. 

 

Figure 7.1. Block diagram of bidding and real-time operation of one day 
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Figure 7.2. Diagram showing wind forecast uncertainty and timing of energy trading in 

day-ahead and balancing markets 

In the following sections, firstly, the mathematical model of the joint wind-PHS system and 

market trading are introduced. Then, the detailed literature survey for the bidding and real-

time operation is given. Finally, the contribution of the thesis is explained.  

7.1. WIND-PHS SYSTEM  

The system considered in this thesis is composed of wind farms and a PHS system, as 

depicted in Figure 7.3. In this system, the main objective is to sell the energy generated by 

the wind farm to the grid. PHS system, on the other hand, provides a buffering capability by 

storing energy drawn from the network or wind farm and supplying it to the grid when 

deemed necessary. PHS plant is equipped with several reversible turbines, which are capable 

of generating energy and pumping water. 
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Figure 7.3. Schematic representation of the wind–PHS system. 

The energy flow in the system is governed by the following equations 

𝑃்(𝑡) = ෍ 𝑃ௗ
௖(𝑡)

௖

+ 𝑊௚௥௜ௗ(𝑡) − 𝑃௚௥௜ௗ(𝑡) (7.1) 

෍ 𝑃௣
௖

௖

(𝑡) = 𝑃௚௥௜ௗ(𝑡) + 𝜂்𝑊௣௨௠௣(𝑡) (7.2) 

𝑊(𝑡) = 𝑊௣௨௠௣(𝑡) + 𝑊௚௥௜ௗ(𝑡) (7.3) 

where 𝑃் is the net power exchange with grid, 𝑃ௗ
௖ is the power generated by the turbine 𝑐, 

𝑃௣
௖ is the power consumed by the turbine 𝑐, 𝑊 is the wind power generated by the wind 

farms, 𝑊௚௥௜ௗ is wind energy sold to the grid, 𝑊௣௨௠௣ is the wind energy consumed by the 

turbines, 𝑃௚௥௜ௗ is the energy bought from the day-ahead market, 𝜂் is the transmission 

efficiency between wind farms and PHS system.  
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Equation (7.1) shows that the net power exchange with the grid is given by the difference 

between the energy supplied by the wind farm and the PHS, and the energy drawn from the 

network. The left-hand side of Equation (7.2) is the total energy consumed by the turbines 

for pumping. This energy is supplied by the wind farm and the grid as can be seen from the 

right-hand side. Equation (7.3) shows that the total wind power generated is distributed to 

turbines for pumping and to the grid. 

7.2. MARKET MODEL  

In this thesis, the wind-PHS power generation company participates to the day-ahead market 

and compensates their imbalances occurred in the real-time operation in the balancing 

market. In the day-ahead market, it receives a payment 𝜆 × 𝑃், where 𝜆 is the day-ahead 

market price, for the energy it supplies to the system. Deviation of the supply from the 

contract, Δ = 𝑃் − 𝐵, leads to an imbalance cost which result from compensating the 

deviation in the balancing market. The imbalance cost can be expressed as 

𝐼𝐶 = 𝜆 × ൜
𝑟ି × max(−Δ, 0) , 𝑟𝑒𝑔. 𝑢𝑝 

𝑟ା × max( Δ, 0) ,      𝑟𝑒𝑔. 𝑑𝑜𝑤𝑛
 (7.4) 

To understand the formulation above, first, suppose that system is in the regulation-up state 

(there is an energy deficit). If Δ > 0, the company is not penalized since it is helping the 

system but in a contrary situation cost incurred becomes 𝜆 × 𝑟ି × Δ. Similarly, provided 

that system is in the regulation-down state if Δ > 0 imbalance cost becomes 𝜆 × 𝑟ା × Δ 

while if Δ < 0 there is no associated cost because the company consumes the excess energy 

of the system. Here, 𝑟ାand 𝑟ି are penalty ratios which can be computed from the ratios of 

the positive and negative imbalance market prices to the day-ahead market price. More 

specifically, 𝑟ା = 1 − 𝜆௜௕
ା /𝜆  and 𝑟ି = 𝜆௜௕

ି /𝜆 − 1, where 𝜆௜௕
ା  and 𝜆௜௕

ି  are positive and 

negative imbalance market prices, respectively.   
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7.3. LITERATURE REVIEW OF BIDDING AND REAL-TIME OPERATION 

7.3.1. Literature Review of Bidding 

The most straightforward approach to the day-ahead bidding problem for a wind producer is 

to compute point forecasts of wind generation and submit them as generation bids. The 

success of this method depends on the accuracy of the predictions. There is a rich literature 

on wind forecasting [118, 119] and the proposed methods range from primitive persistence 

forecasts to more advanced techniques, as mentioned in Section 6.2.1. However, there is a 

limit on the accuracy of these tools [120]. Although improvements have been achieved over 

time, according to recent figures, the estimation errors of the state of art methods are no less 

than 10 percent for day-ahead timescales [118, 121]. 

Another idea is to make use of probabilistic methods [122]. Instead of point forecasts, the 

probability distribution of uncertainty, such as the Weibull distribution [123], can be 

employed to formulate the bidding as an expectation maximization problem. For simple 

systems, only composed of wind farms, analytical solutions that provide optimal contracts 

can be found [124–126].  

Aforementioned analytical solutions can be derived when there is no time couplings and 

limiting constraints as in the case of the systems composed of only wind energy generation 

units. However, with the involvement of energy storage or some other aspects such as risk-

control, this becomes a challenging task if not impossible. Stochastic programming methods, 

which converts the bidding problem into a numerical optimization by approximating 

uncertainties with scenario trees, constitute a remedy to this difficulty [127]. Representative 

papers in which stochastic programming is used can be found in Table 7.1. As can be seen 

from the table, these studies mainly differ in energy generation and storage devices used. 

The stochastic approach was used for bidding of price-taker wind energy companies [128–

131], wind farms supported by PHS plants or hydro reservoirs [42, 132–135], and standalone 

PHS systems [95]. Moreover, in [136], a system having multiple wind farms and battery 

storage units was investigated. In [137] and [138], this technique was applied to virtual 

power plants.   
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Apart from the energy generation and storage, studies differ in forecasting technique. While 

time series forecasting method is the dominant approach in the literature, ANN is also used 

for forecasting the price and wind speed. In most of the studies, the scenario trees are 

generated by adding the forecast error to the point forecasts of wind power. Also, historical 

data is used directly instead of applying a forecasting method in some studies.  

Table 7.1. Stochastic bidding methods employed in the literature 

  Storage 
Energy 
source 

Optimization 
Technique 

Forecasting 
Scenario 

generation 
Risk 

aversion Imbalance 
Cost 

 

Energy 
Price 

Wind Speed 

[128] - Wind MIP 
Ratio of 
price 

Historical 
data 

ARMA 
Additive 
error 

No 

[129] - Wind LP SARIMA SARIMA AR 
Additive 
error 

Yes 

[130] - Wind LP SARIMA SARIMA SARIMA 
Additive 
error 

Yes 

[131] - Wind LP ANN ANN ANN 
Additive 
error 

No 

[42] PHS Wind MILP 
Ratio of 
price 

ANN ANN IOHMM No 

[132] PHS Wind MINLP 
Historical 
data 

Historical 
data 

ANN 
Additive 
error 

No 

[133] - 
Wind + 
Hydro 

MILP ARIMA ARIMA ARMA 
Additive 
error 

No 

[134] - 
Wind + 
Hydro 

NLP 
Historcial 
data 

Historcial 
data 

Historical 
data 

Historical 
data 

No 

[95] PHS - MINLP - SARIMA - - No 

[136] Battery Wind LP - 
Historical 
data 

- Probability 
distribution 

No 

[135] - 
Wind+Hydr
o 

MILP 
Ratio of 
price 

Historical 
data 

Historical 
data 

- Yes 

[137] Battery 
Wind+PV+
Diesel 
generator 

MILP - - - 
Probability 
distribution 

Yes 

[138] PHS Wind+CPP MILP 
Historical 
data 

Historical 
data 

Historical 
data 

Historical 
data 

Yes 

 

Although maximizing the expected profit is a desirable target, companies are usually 

sensitive to risks encountered due to contingencies. They want to avoid the worst-case low 

probability scenarios that can lead to significant losses in case such events occur. With this 

in mind, a stochastic programming-based risk-averse bidding strategy for a wind energy 

producer was developed in [129, 130]. Similarly, [135] considered the day-ahead bidding of 

a combined wind-hydro plant by incorporating risk-control. Also, the risk-aversion approach 

was discussed for the virtual power plants in [137, 138]. Conditional Value at Risk (CVaR) 

was chosen as the risk measure, which was optimized in conjunction with the expected profit 

by taking their weighted average as the objective. This provides a trade-off between the 
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expected profit and unexpected substantial losses. The detailed information about CVaR was 

given in Section 6.1.2. 

7.3.2. Literature Review of Real-time Operation 

In contrast to day-ahead bidding, the real-time operation is a dynamic decision-making 

problem [139]. The company should make a decision on the amount of energy to supply to 

the grid at each hour based on new information available. If the only energy source is wind, 

there is nothing much that can be done because weather conditions determine the generation 

entirely. To alleviate this problem, the wind generation can be supported by a storage unit, 

which can be used to adjust the energy injected into the grid by storing and supplying it when 

deemed necessary. At this stage, the decision-maker has a certain advantage compared to the 

day-ahead bidding because new information on wind measurements is available. This leads 

to a substantial reduction in wind uncertainty, as can be observed from Figure 7.2. Moreover, 

the stored energy can be measured in case there is a storage device, and the spot market 

prices are known along with the accepted bids.  

Until recently, the real-time operation problem had not drawn enough attention. Most of the 

works concentrated on the bidding phase without considering this aspect rigorously. The 

underlying stochastic optimal control problem was either ignored entirely or employed with 

simple heuristics. For example, a popular approach appeared in several works including 

[140–143] is to determine a fixed schedule at the beginning of the day and apply it for the 

whole horizon, which, herein, is referred to as the open-loop strategy. This strategy, 

however, is blind to the information that becomes available up to the present time within the 

day. To benefit from this information, [144] proposes a ratio-based heuristic that adapts the 

precomputed plan to actual wind power realizations by preserving ratios of individual 

variables, which are derived from the open-loop decisions. An alternative idea appeared in 

[145] and also used in [146] utilizes the storage device to minimize deviations from the bid 

instantaneously. This method is called as bid-following heuristic throughout the thesis. All 

these methods will be explained in detail in the following section. 

In the last few years, several works appeared that focuses on real-time operation more 

systematically. Representative papers can be found in Table 7.2. As can be inferred from the 
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table, deterministic model predictive control (DMPC) is the dominating approach for real-

time operation. The underlying algorithm is a rolling horizon method in which an 

optimization problem depending on point forecasts of random variables is solved repeatedly. 

The real-time performance can be improved significantly as a result of the certainty gain 

arising from the repeated computation (recall Figure 7.2).  

The studies using DMPC mainly differ in the energy generation and storage technologies 

utilized. In [147], a Concentrated Solar Power Plant (CSPP) supported by a thermal storage 

unit was considered. The DMPC optimization objective is imbalance minimization instead 

of financial losses while bidding model considered is deterministic. [148] investigated a 

system involving solar, wind, and Combined Heat and Power (CHP) sources and having a 

thermal storage unit. Bidding is taken as a two-stage stochastic program, and imbalance cost 

minimization is performed both in bidding and operation phases. In [149], a plant composed 

of a micro-CHP, PhotoVoltaic (PV), and thermal storage units was studied. The bidding 

model is deterministic and does not involve imbalances. Imbalances are only considered in 

the operation phase. The system investigated in [150] consists of a wind farm and a thermal 

generator as the energy sources while batteries maintain storage. Bidding is formulated as a 

stochastic mixed-integer nonlinear programming problem having the imbalance cost in the 

objective. Real-time operation considers only deviations from the day-ahead contracts. In 

[151], a wind energy source supported by a battery storage system was investigated. Only 

real-time operation aspects are considered ignoring the bidding phase. In [152], a PV system 

coupled with a generic energy storage device was studied. Day-ahead contracts were 

assumed to be given, and only the operation part was analyzed. Lastly, the system 

investigated in [153] comprises a wind farm and a PHS plant. Generation contracts were 

taken as point forecasts of wind production while the objective of the real-time operation 

was imbalance cost minimization.  

Although the DMPC approach benefits from certainty gain with updated computations, the 

probability distribution of uncertainties are not exploited since the underlying algorithm is 

based on point forecasts. Moreover, it is not amenable to incorporating risk control because 

of the deterministic formulation. Similar to stochastic programming based methods proposed 

for the bidding problem, one may naturally think about making use of the uncertainty 

information to compute better decisions and bring the risk-control into the operation phase. 
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There are just two studies covers the stochastic approach. The methods shown in Table 7.2 

are based on Stochastic Model Predictive Control (SMPC) and Linear Decision Rules 

(LDR). SMPC can be regarded as an extension of DMPC in which instead of a point forecast, 

a scenario tree is used to model the effects of uncertainties. [154] introduced a risk-neutral 

SMPC method for the real-time operation of a system composed of a wind farm and a PHS. 

The proposed approach involves risk control, neither in bidding nor operation phases. LDR, 

on the other hand, obtain risk-averse bidding and operation strategies for a wind energy 

producer having a generic storage device by employing local linear approximations of 

decision functions which depend on uncertainties [155].  

Table 7.2. Real-time operation methods employed in the literature 

  Storage 
Energy 
source 

Day-ahead 
Bidding 

Real-time 
operation 

Imbalance cost Forecasting 
Scenario 

generation 
Risk 

Aversion 
DAB RTO 

[147] thermal CSPP 
Deterministi
c MIQP 

DMPC 
MIQP 

Deviation Deviation 
Historical data, 
linear regression 
(AR type) 

NA no 

[148] thermal 
PV + 
wind + 
CHP 

Stochastic 
MILP  

DMPC  
MILP 

IB cost IB cost Historical data  
Additive 
error 

no 

[149] thermal CHP+PV 
Deterministi
c MILP  

DMPC  
MILP 

No IB cost 
ARIMA, 
historical data, 
linear regression  

NA no 

[150] Battery 
Wind + 
Dist. 
thermal 

Stochastic 
MINLP  

DMPC  
MINLP 

IB cost Deviation Historical data  
Additive 
error 

no 

[151] Battery Wind NA 
DMPC  
MILP  

No 
Income 
from IB 
market 

Historical data NA no 

[152] Generic PV Given 
DMPC  
LP 

No IB cost 
Historical data, 
solar model 

NA no 

[156] PHS Wind 
Stochastic 
MILP  

SMPC 
MILP 

IB cost IB cost ANN time series  
Additive 
error 

no 

[153] PHS wind 
Point wind 
forecast 

DMPC 
LP 

No IB cost NWP  NA no 

[155] Generic Wind 
Stochastic 
LDR 

Stochastic  
LDR 

IB cost IB cost Historical data 
Additive 
error 

yes 

7.4. CONTRIBUTION OF THE THESIS 

This work aims to introduce a combined method for bidding and real-time operation, the 

main focus being on the latter, of a wind farm equipped with a PHS system. Bidding is based 

on MILP stochastic programming model of the problem. For real-time operation, an SMPC 
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strategy is proposed. Compared to previous works employing the DMPC approach, the 

distinguishing aspect of the proposed method is the incorporation of uncertainty information 

and risk control into real-time operation computations. The proposed algorithm differs from 

the other stochastic operation methods proposed in [43] and [44] in that the former does not 

consider risk control while the latter is based on a completely different technique and uses a 

different type of storage unit.  

Different real-time operation methods in the literature were implemented along with the 

proposed SMPC algorithm and their performances were compared under changing market 

conditions. This is the first study that gives such a detailed comparison between available 

operation methods. 

Also, although real-time operation decisions and their consequences depend on the bidding 

strategy, this was not elaborated in all of the works. In some of them, the bidding stage is 

ignored completely ([151, 152]). However, the actual performance achieved is determined 

by the outcomes of the real-time operation. Thus, the gap between the profits given by 

bidding and operation-based analyses is investigated in order to demonstrate how important 

the latter is for a realistic evaluation of the actual performance. There have been no studies 

in the literature which perform this analysis.   

Another aspect, which was not treated well, is imbalance costs. Imbalance cost is taken into 

account realistically both in bidding and operation phases in just a few of the papers. In the 

rest, instead of incorporating the imbalance cost, either deviation from the bids are penalized, 

or imbalances are entirely ignored in the bidding phase. Moreover, the mathematical model 

utilized in this study involves several characteristics of a PHS plant, which were not taken 

into account completely in previous works. 

For the forecasts of uncertain variables, the majority of the papers directly make use of 

historical data instead of employing a forecasting mechanism, which is not realistic. 

Furthermore, in all of the works using a stochastic model for bidding or operations phases, 

scenarios are generated by simply adding a noise component to the point forecasts. This does 

not model the temporal relations of the random variables well. A more appropriate approach 

would be to use advanced time series techniques for this purpose. Thus, scenarios utilized in 

bidding and operation phases are generated by Monte Carlo simulations, which are 

performed by a well-developed SARIMA based time-series models of wind and price data.  



107 
 

 
 

8. PROPOSED METHOD FOR BIDDING AND REAL- TIME 

OPERATION 

 

In this section, firstly, the proposed mathematical model for the bidding is presented with 

the scenario tree structure used. Then, the proposed real-time operation approach is 

explained in detail. Finally, the real-time operation methods in the literature, which are 

employed for the performance comparison of the proposed method are explained briefly. 

8.1. BIDDING IN DAY-AHEAD MARKET 

The bidding phase aims to determine the energy contracts for the next day that maximizes 

the expected profit. Due to uncertainties involved, the bidding is modeled as a stochastic 

programming problem in which the wind farm and the PHS systems are assumed to 

cooperate. This coordinated planning results in utilizing PHS for two purposes, namely, 

energy shifting and arbitrage. The former means that the excess wind energy is stored and 

used in a later time when the wind energy source is insufficient. The latter implies that energy 

bought from the grid in a low price period is sold back to the network when energy prices 

are high to make a profit out of this difference.  

In stochastic programming formulation, the different realizations of the random data are 

represented, as a scenario tree as depicted in Figure 8.1, which shows the spread of the 

random information over time. Each node is represented by a pair of integers, the second of 

which is the time. The first enumerates the nodes at each time instant starting from one to 𝐾, 

where 𝐾 represents the number of nodes at time 𝑡. Each scenario has a certain probability 

which is shown as 𝜋(𝑘), such that the summation of node probabilities for a fixed time adds 

up to one.  

In order to construct the optimization problem, one needs to combine the objective with the 

constraints arising from the physical model described in Section 7.1 and from physical and 

operational limitations. The constraints are required to be satisfied for all possible scenario 

nodes at every time instant. The following MILP gives the overall optimization problem. 
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Figure 8.1. Scenario tree structure used in bidding model 

𝑚𝑎𝑥 ෍ ෍ 𝜋(𝑘)(𝜆(𝑘, 𝑡)𝑃்(𝑘, 𝑡) −  𝐼𝐵(𝑘, 𝑡) − 𝑆𝑈𝑆𝐷(𝑘, 𝑡))

்

௧ୀ௦

௄

௞ୀଵ

+ 𝛽 ∙ 𝐶𝑉𝑎𝑅ఓ (8.1) 

𝐼𝐵(𝑘, 𝑡) = rା𝜆(𝑘, 𝑡)Δା(𝑘, 𝑡) + rି𝜆(𝑘, 𝑡)Δି(𝑘, 𝑡) (8.2) 

Δା(𝑘, 𝑡) − Δି(𝑘, 𝑡) = 𝑃்(𝑘, 𝑡) − 𝐵(𝑡) (8.3) 

𝑆𝑈𝑆𝐷(𝑘, 𝑡) = 𝛼ௗ
௨௣

෍ 𝑦ௗ
௖(𝑘, 𝑡)

஼

௖ୀଵ

+ 𝛼௣
௨௣

෍ 𝑦௣
௖(𝑘, 𝑡)

஼

௖ୀଵ

+ 𝛼ௗ
ௗ௢௪௡ ෍ 𝑧ௗ

௖(𝑘, 𝑡)

஼

௖ୀଵ

+ 𝛼௣
ௗ௢௪௡ ෍ 𝑧௣

௖(𝑘, 𝑡)

௖ୀ஼

௖ୀଵ

 

(8.4) 

𝑦ௗ
௖(𝑘, 𝑡) − 𝑧ௗ

௖(𝑘, 𝑡) = 𝑢ௗ
௖ (𝑘, 𝑡) − 𝑢ௗ

௖ (𝑘, 𝑡 − 1) (8.5) 

𝑦௣
௖(𝑘, 𝑡) − 𝑧௣

௖(𝑘, 𝑡) = 𝑢௣
௖ (𝑘, 𝑡) − 𝑢௣

௖ (𝑘, 𝑡 − 1) (8.6) 

𝐶𝑉𝑎𝑅ఓ = 𝜁 −
1

1 − 𝜇
෍ 𝜋(𝑘)𝜏(𝑘)

௄

௞ୀଵ

 (8.7) 
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− ෍൫𝜆(𝑘, 𝑡)𝑃்(𝑘, 𝑡) −  𝐼𝐶(𝑘, 𝑡) − 𝑆𝑈𝑆𝐷(𝑘, 𝑡)൯ +

்

௧ୀ௦

𝜁 − 𝜏(𝑘) ≤ 0 (8.8) 

𝑉(𝑘, 𝑡) = 𝑉(𝑘, 𝑡 − 1) + ෍ ቀ𝑞௣
௖(𝑘, 𝑡) − 𝑞ௗ

௖ (𝑘, 𝑡)ቁ

஼

௖ୀଵ

 (8.9) 

𝑉(𝑘, 0) = 𝑉௜௡௜௧௜௔௟ (8.10) 

𝑉 ≤ 𝑉(𝑘, 𝑡) ≤ 𝑉 (8.11) 

𝑞ௗ
௖ (𝑘, 𝑡) = 𝑢ௗ

௖ (𝑘, 𝑡)𝑞ௗ(𝑐) + 𝑞ఋ
௖(𝑘, 𝑡) (8.12) 

𝑃ௗ
௖(𝑘, 𝑡) = 𝑢ௗ

௖ (𝑘, 𝑡)𝑃ௗ
௖ + 𝑞ఋ

௖(𝑘, 𝑡)𝛿௖ (8.13) 

𝑞ఋ
௖(𝑘, 𝑡) ≤ 𝑢ௗ

௖ (𝑘, 𝑡) ቀ𝑞
ௗ

௖
− 𝑞ௗ

௖ ቁ (8.14) 

𝑃௣
௖(𝑘, 𝑡) = 𝑢௣

௖ (𝑘, 𝑡)𝑃෨௣
௖ (8.15) 

𝑞௣
௖(𝑘, 𝑡) = 𝑢௣

௖ (𝑘, 𝑡)𝑞෤௣
௖  (8.16) 

෍ 𝑢ௗ
௖ (𝑘, 𝑡)

஼

௖ୀଵ

− 𝑙(𝑘, 𝑡)𝐶 ≤ 0 (8.17) 

෍ 𝑢௣
௖ (𝑘, 𝑡)

஼

௖ୀଵ

+ 𝑙(𝑘, 𝑡)𝐶 ≤ 𝐶 (8.18) 

𝑃்(𝑘, 𝑡) = 𝑊௚௥௜ௗ(𝑘, 𝑡) + ෍ 𝑃ௗ
௖(𝑘, 𝑡)

஼

௖ୀଵ

− 𝑃௚௥௜ௗ(𝑘, 𝑡) (8.19) 

෍ 𝑃௣
௖(𝑘, 𝑡)

஼

௖ୀଵ

= 𝑊௣௨௠௣(𝑘, 𝑡)𝜂் + 𝑃௚௥௜ௗ(𝑘, 𝑡) (8.20) 

𝑊(𝑘, 𝑡) = 𝑊௣௨௠௣(𝑘, 𝑡) + 𝑊௚௥௜ௗ(𝑘, 𝑡) (8.21) 

𝑙(𝑘, 𝑡), 𝑢ௗ
௖ (𝑘, 𝑡), 𝑢௣

௖ (𝑘, 𝑡), 𝑦ௗ
௖(𝑘, 𝑡), 𝑦௣

௖(𝑘, 𝑡), 𝑧ௗ
௖(𝑘, 𝑡), 𝑧௣

௖(𝑘, 𝑡) ∈  {0,1} (8.22) 
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𝑃ௗ
௖(𝑘, 𝑡), 𝑃௣

௖(𝑘, 𝑡), 𝑞ௗ
௖ (𝑘, 𝑡), 𝑞௣

௖(𝑘, 𝑡), 𝑞ఋ
௖(𝑘, 𝑡), 𝑊௚௥௜ௗ(𝑘, 𝑡), 𝑃௚௥௜ௗ(𝑘, 𝑡), 

𝑊௣௨௠௣(𝑘, 𝑡),   𝜏(𝑘), Δା(𝑘, 𝑡), Δି(𝑘, 𝑡) ≥ 0 
(8.23) 

where all constraints are satisfied for 𝑘 = 1: 𝐾, 𝑡 = 𝑠: 𝑇 and constraints Equations 

(8.5),(8.6), (8.12),(8.16), (8.22)and (8.23) are satisfied for 𝑐 = 1: 𝐶.  

In the objective function (8.1), the first term is the expected net profit. It is the average of 

the difference between the income from the energy exchange with the grid and penalties paid 

for the imbalance and startup/shutdown costs. The second term is the CVaR at probability 

level 𝜇 (𝐶𝑉𝐴𝑅ఓ) that imposes the risk control [56]. It is weighted by the factor 𝛽 to adjust 

the degree of risk aversion. The imbalance cost is computed using Equation (8.2) as the 

summation costs for positive and negative deviations from the day-ahead contracts, which 

are obtained using Equation (8.3). Equations (8.4)-(8.6) are for startup and shutdown costs 

of the turbines while constraints Equation (8.7) and (8.8) compute the CVaR.  

The time evolution of the water volume in the upper reservoir and its initial value and limits 

are given by Equations (8.9), (8.10) and (8.11), respectively. Constraints Equations (8.12)-

(8.18) describe the operation of turbines, as explained in Section 4.5. Turbine 𝑐 is in 

generation mode if the associated logic variable 𝑢ௗ
௖  is one. In that case, Equation (8.12) 

implies that the discharged water is the sum of its technical minimum and the deviation from 

this minimum (𝑞ఋ
௖). Similarly, the produced power is given by Equation (8.13) as the 

technical minimum power plus the additional energy produced by 𝑞ఋ
௖ . The deviation 𝑞ఋ

௖  is 

limited by Equation (8.14) If the turbine 𝑐 is not in generation mode, 𝑢ௗ
௖  becomes zero, 

which, in turn, enforces 𝑞ఋ
௖ , 𝑞ௗ

௖ , and 𝑃ௗ
௖ to become zero. On-off operation in the pumping 

mode is represented by Equations (8.15) and (8.16). Equations (8.17) and (8.18) are for 

preventing simultaneous pumping and discharging.  

The energy balance of the system is formulated by the constraints (8.19)–(8.21). Equation 

(8.19) implies that the total energy exchange with the grid is equal to the energy provided 

by the wind and PHS turbines minus the energy drawn from the network. Equation (8.20) 

indicates that the wind turbines and the grid provide the energy consumed for pumping. 

Here, losses encountered while transmitting wind power to the PHS system are taken into 

account by multiplying the power with the transmission efficiency 𝜂். As can be observed 

from Equation (8.21), the total wind power generated is transferred to the turbines and the 
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grid. Equation (8.22) defines binary variables while nonnegativity constraints are imposed 

by Equation (8.23).  

Also, the following nonanticipativity constraints must be satisfied  

𝑃ௗ
௖(𝑖, 𝑡) = 𝑃ௗ

௖(𝑗, 𝑡), 𝑃௣
௖(𝑖, 𝑡) = 𝑃௣

௖(𝑗, 𝑡) ∀𝑐 and ∀(𝑖, 𝑗) ∈ Ω(𝑛, 𝑡) and ∀𝑛, 𝑡 (8.24) 

𝐵(𝑖, 𝑡) = 𝐵(𝑗, 𝑡) ∀𝑖, 𝑗, 𝑡 (8.25) 

The nonanticipativity constraints were explained in Section 6.1.1.2 in detail. To be able to 

formulate nonanticipativity constraints in the mathematical model used, the set of indexes 

of all scenarios passing through a node (𝑛, 𝑡) as Ω(𝑛, 𝑡) is denoted. The purpose of 

nonanticipativity constraints is to ensure that variables of the scenarios corresponding to the 

same non-leaf node take the same values. By this way, one can make sure that a decision 

made at a specific time instant does not depend on the future realizations of the random data 

(see [157] for further details).  

It should be noted that the actual values of random data are only known for the times coming 

before the beginning of bidding computations (𝑡଴). On the other hand, bids should be 

determined for the operation period, which starts considerably at a later time (𝑠). Therefore, 

although the scenario tree is constructed starting from the beginning of the bidding phase, 

only the part of it corresponding to the operation interval (𝑡 = 𝑠: 𝑇) is used, as can be 

observed from Figure 8.1a and Equations (8.1)–(8.25). 

8.2. PROPOSED APPROACH TO REAL-TIME OPERATION 

The proposed approach, which is depicted in Figure 8.2, is an SMPC based real-time 

operation optimization method that also optimizes the day-ahead bids. As mentioned in 

Section 2, the day-ahead bids of day D are determined with wind 𝑊෡  and price forecast 𝜆መ 

scenarios in day D-1. As the bids are calculated and submitted to the market, the real-time 

operation starts at 00:00 for day D. At day D, the SMPC algorithm regulates the operation 

of the PHS system by calculating pumping (p) and generation (d) decisions. Decisions are 

calculated every hour using bids, and declared electricity prices determined before the start 

of the operation, and updated balancing market price ratios, amount of energy in reservoirs 



112 
 

 
 

and wind scenarios generated for the rest of the day. The price and wind scenarios used in 

the operation phase are generated with Monte Carlo simulations that use SARIMA forecast 

models. During operation, these historical data are updated every hour with a new wind 

measurement, and the data is stored in a memory unit. The oldest wind data is deleted when 

the new one is written to memory. Using the most recent of wind measurements, the 

generation of wind scenarios to be used in the SPMC is repeated at each hour.  

 

Figure 8.2. Block diagram of the proposed real-time approach 

The flow chart of the SMPC-based operation algorithm is depicted in Figure 8.3. In this 

algorithm, in contrast to that of bidding, 𝑡଴ refers to the current hour within the operation 

day for which the decisions are computed. At 𝑡 = 𝑡଴, the storage level of the PHS plant and 

the wind realization are measured, wind scenarios are forecasted for the rest of the day, and 

a scenario tree is created employing a scenario reduction algorithm. Then, a stochastic MILP 

problem is solved to calculate the decision variables 𝑝 and 𝑑 for the rest of the horizon. Only 

the values corresponding to the first time instant are taken as the decisions and the rest are 

discarded.  
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Figure 8.3. Flowchart of the SMPC algorithm 

The optimization problem of the SMPC strategy is very similar to that of bidding with the 

difference that bids and energy prices become known. This implies that the only random 

information remaining in the problem is the wind generation for the following hours. Hence, 

the SMPC control law can be computed by solving Equations (8.1)-(8.24) by replacing bids 

with their known values in Equation (8.3), employing cleared market prices in Equations 

(8.1), (8.2) and (8.8), and constructing the scenario tree only from wind data. The start time 

should be taken as 𝑠 = 𝑡଴ because, unlike bidding, there is no gap among the times at which 

computations are performed and decisions are applied. Note that because the optimization 

problem is stochastic, 𝑝 and 𝑑 normally take different values for different nodes of the 

scenario tree. For 𝑡 = 𝑡଴, however, it is necessary to have a single solution to be able to make 

a decision. To achieve this, the scenario tree used in the operation phase is constructed so 

that branching starts at 𝑡 = 𝑡଴ + 1. In other words, there is only one node at 𝑡 = 𝑡଴ + 1, 

which is connected to the root at 𝑡 = 𝑡଴ with a single edge (see Figure 8.4). The risk-averse 

operation can be achieved by choosing a 𝛽 value different from zero.  

Start Measure 
 𝑉(𝑡଴), 𝑊(𝑡଴)   

Solve MILP to obtain 
𝑝(𝑡଴: 23) and 

𝑑(𝑡଴: 23) 

Apply  
𝑝(𝑡଴) and 𝑑(𝑡଴) 

End of the 
horizon 

End 

Create wind scenario 
tree from the 

estimates 𝑊෡ (𝑡଴: 23) 

No Yes 
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Figure 8.4. Scenario tree structures used in SMPC model 

8.3. ALTERNATIVE APPROACHES PROPOSED FOR REAL-TIME 

OPERATION IN LITERATURE 

In order to demonstrate the importance of the choice of the real-time operation method, 

several alternative algorithms described in Section 7.3.2 were analyzed and compared with 

the proposed SMPC approach. These methods are summarized in this part and implemented 

to demonstrate the performance of the SMPC strategy.  

8.3.1. Bid-following Heuristics 

The basic idea of this method, which is employed in [155] and [146] is to satisfy the bid as 

much as possible. In other words, it is an instantaneous imbalance minimization with the 

most recent wind information which is shown in Figure 8.5.  
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Figure 8.5. Block diagram of bid-following heuristics algorithm 

In this method, firstly, the imbalance is calculated with a difference of bid and actual wind 

power for a specific hour. According to the sign of imbalance, the decisions of the PHS units 

are calculated based on the flow chart given in Figure 8.6. In the case of the negative 

imbalance, the excess energy needs to be pumped to the upper reservoir, while water needs 

to be discharged to the lower reservoir as the imbalance is positive. However, if the 

imbalance is zero, then the PHS system will be in idle mode. In both cases, system 

constraints are taken into account, and the decisions need to be modified to comply with 

them whenever necessary. Thus, after the pumping and generation decisions are calculated, 

they are checked if they are higher than the operational limits of the turbine for generation 

and pumping. Then, volume for the following hour is calculated to check the volume that 

should be between the upper and lower limits of the reservoir. If it is not in the operation 

limits, then corrections are calculated, and the decisions are sent to the PHS system. This 

process is repeated until the end of the day for each time step. While utilization of the actual 

wind power is the main advantage for this method, this heuristic strategy only considers the 

current time without taking into account what may happen in the future about wind power 

realizations. 
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Figure 8.6. Flow chart of bid-following heuristics algorithm 

8.3.2. Open-loop Method 

This real-time operation method is one of the most common techniques employed in the 

literature [140–143]. The optimization model, which is explained in the bidding phase with 

the Equations (8.1)-(8.23) is implemented without a scenario structure and the risk aversion. 

The wind power is forecasted for the whole horizon in order to compute an optimal plan 

which decides the operation of the PHS units from the start of the operation till the end of 

the day with the submitted day-ahead bids. The decisions are applied without any change 
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independent of wind energy realizations through the day. Since the actual wind power will 

possibly be quite different from its initial forecasts, that approach leads to suboptimal results. 

8.3.3. Ratio-based Heuristics 

It is a real-time operation method implemented in [144], and this can be considered as a 

closed-loop adaptation of an open-loop strategy which is shown in Figure 8.7 with the flow 

chart of the algorithm presented in Figure 8.8.  

 

Figure 8.7. Block diagram of ratio-based heuristics method 

Firstly, the generation, 𝑑ை௅, and pumping, 𝑝ை௅, decisions obtained and wind power used in 

the open-loop method are collected. By using this information, the stored energy in the open-

loop algorithm, 𝐸ை௅, is calculated for each hour. Then, at the start of each hour, the decision 

of open-loop algorithm is checked that if it is pumping or generating. If a pumping action is 

decided in the open-loop algorithm, then the sign of total power sent to the grid is checked. 

According to the sign of total power sent, the ratios of wind power delivered to the 

grid, 𝑅𝑤𝑖𝑛𝑑

𝑔𝑟𝑖𝑑
, or wind power used in the pumping operation, 𝑅௣௨௠௣

௪௜௡ௗ , in the open-loop method 

are calculated. On the other hand, if the open-loop method decides to generate energy, ratio 

of energy generated by the turbine, 𝑅௧௨௥
௖௔௣, in the open-loop method is calculated. Then, based 

on the newest information of wind speed, new decisions are computed, which preserves the 

precomputed ratios. After the update of the decisions, the new volume and new energy 
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capacity,𝐸௥௔௧௜௢, that will occur after the updated decisions are calculated in order to check 

that the PHS will be in the operating limits. As in the bid-following heuristics algorithm, if 

operating limits are exceeded, the PHS decisions are updated again to take within limits. 

 

Figure 8.8. Flow chart of ratio-based heuristics algorithm 
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8.3.4. Deterministic Model Predictive Control (DMPC) Method 

It is a rolling horizon method studied in [147–152] which uses a point forecast of future wind 

power realizations. It constitutes a special case of SMPC in which scenario tree is just a 

single trajectory without any branching. 

8.3.5. Perfect Information Solution 

In this strategy, the actual wind power is used as the forecast in the open-loop method. Since 

the future wind power generation is known perfectly, it provides the best possible solution, 

and no other method can give a better result. Although this method cannot be realized in 

practice, it is used as a reference to show how close the other methods are to the ideal case. 
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9. CASE STUDY 

 

In this section, numerical results for the proposed bidding and operation strategies are 

investigated, comparing their performance with the other methods available in the literature. 

The methods contrasted with SMPC are open-loop scheduling, ratio-based heuristic, bid-

following heuristic and DMPC. These methods were described briefly in Section 8.2 by 

giving references to the related works. In addition, for the SMPC method, two variants are 

implemented with different tree structures, in order to understand the effects of the scenario 

tree structure on the performance.  

The first set of simulations were carried out for a specific day, i.e., April 8, 2011. First, day-

ahead bids were computed and a Pareto analysis was performed to investigate the tradeoff 

between expected profit and CVaR. Second, for these bids, daily schedules of all operation 

methods were obtained and compared. Third, a Monte Carlo analysis was conducted to 

investigate the Pareto optimality of the operation methods and bidding results. This analysis 

also verifies observations made based on the daily schedules statistically. In all these 

simulations, positive and negative imbalance ratios were set as𝑟ା = 0.44 and 𝑟ି = 0.44, 

which are averages of values calculated from actual imbalance and spot market prices for 

2011. 

The purpose of the second set of simulations is to justify the observations made for a single 

day in the long run and investigate the sensitivity of the economic performance to imbalance 

market conditions. The time span was taken from April 1, 2011, to April 30, 2011. 

Optimization problems were solved using CPLEX 12.6.1, and high-level algorithms were 

implemented in MATLAB. 

9.1. SPECIFICATIONS OF WIND FARM AND PHS SYSTEM  

The system investigated comprises two wind farms and a PHS plant as depicted in Figure 

9.1 and Figure 9.2. Wind Power Plants (WPP), namely Soma and Sayalar, are operated by 

the same company and approximately 20 km apart. Due to their close proximity, they 

experience very similar weather conditions.  
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Figure 9.1. Locations of wind farms and the PHS plant 

Transmisson 
Grid

Upper 
Reservoir

Lower 
Reservoir

SOMA WPP

SAYALAR WPP

DEMİRKÖPRÜ 
PHS  

Figure 9.2. Schematic representation of the wind-PHS system 

As described in Section Section 2.3, Soma WPP has a total installed capacity of 240.1 MW 

provided by 169 ENERCON (80 E-70,89 E-44) turbines while Sayalar WPP has 48 

ENERCON (10 E-70, 38 E-44) turbines of the total capacity of 57.2 MW, the combined 
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capacity being 297.3 MW. As for the PHS plant, its all parameters are given in Table 9.1 

which includes start-up and shut-down costs and transmission losses in addition to the ones 

given in Section 4. 

Table 9.1. Parameters of the PHS plant 

𝑉 3 ℎ𝑚ଷ 𝜂
ௗ

௖
 0.87 

𝑉 0 ℎ𝑚ଷ 𝑃ധ௣
௖ 130.9 MW 

ℎ 215 𝑚 𝑞ധ௣
௖  55.3 𝑚ଷ/𝑠 

ℎ 205 𝑚 𝜂̿௣
௖  0.87 

𝑃ௗ
௖ 37.3 MW 𝜂் 0.98 

𝑃ௗ

௖
 99.1 MW 𝛼ௗ

௨௣ 525 TL 

𝑞ௗ
௖  23.8 𝑚ଷ/𝑠 𝛼௣

௨௣ 325 TL 

𝑞
ௗ

௖
 55.3 𝑚ଷ/𝑠 𝛼ௗ

ௗ௢௪௡ 52.5 TL 

𝜂ௗ
௖  0.78 𝛼௣

ௗ௢௪௡ 32.5 TL 

9.2. SARIMA MODELS OF WIND POWER AND ELECTRICITY PRICE 

Stages of model estimation were described in Section 6.3 and applied as follows. Firstly, in 

order to determine the seasonality of the SARIMA model, ACF and PACF are plotted as in 

Figure 9.3 and Figure 9.4 with the raw data of wind speed and electricity price. The 

periodicity of the lags in the ACF plots of the raw data exhibits the 24-hour seasonality as 

can be seen from Figure 9.3 and Figure 9.4.  
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Figure 9.3. ACF and PACF of wind speed raw data 

 

Figure 9.4. ACF and PACF of energy price raw data 

After determination of the seasonality, the SARIMA models for wind speed and electricity 

price were estimated by applying all stages of the method explained in Figure 6.10. The 

models used for both variables are presented in Table 9.2 and Table 9.3. As can be seen from 

tables, both models are complicated, which may result in inaccurate model estimation. 

Therefore, SPSS Time Series Module, which can identify the best-fitting for SARIMA 

model estimation was used to check the proposed SARIMA models if they are correct or 

not. 
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Table 9.2. SARIMA model parameters of wind speed  

Wind Power Model Value t 𝒑 

AR Lag 2 0.893 125.7 0 

Difference 1 

MA 

Lag 1 0.056 4.6 0 

Lag 2 0.996 171.2 0 

Lag 4 -0.051 -4.6 0 

AR. Seasonal Lag 1 0.909 87.1 0 

Lag 2 0.034 -2.7 0.01 

MA. Seasonal Lag 1 0.853 211.5 0 

(2,1,4)(2,0,1)ଶସ 

 

Table 9.3. SARIMA model parameters of energy price 

Price Model Value t 𝒑 

AR Lag 1 0.957 132.9 0 

MA Lag 1 0.421 32.1 0 

 

Lag 2 0.077 5.81 0 

Lag 3 0.053 3.9 0 

Lag 4 0.083 6.4 0 

Lag 5 0.063 5.1 0 

AR. Seasonal Lag 1 0.078 8.3 0 

Seasonal Difference 1 

MA. Seasonal Lag 1 0.864 149.0 0 

(1,0,5)(1,1,1)ଶସ 
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The best-fitting parameters can be calculated with different measures like normalized 

Bayesian information criterion, 𝑅ଶ, MAPE and MAE. The model fit statistics for both 

models are presented in Table 9.4 and the model fit statistics are higher than 0.5 which shows 

the 50 percent of the dependent variable variance is explained by the independent variables. 

In a SARIMA model, the dependent variable is the forecasted value and the independent 

variables are the historical data which is used by the SARIMA model parameters. 

After the model specifications, a statistical test for autocorrelation should be applied to the 

residuals. Ljung-Box Q tests the overall randomness of a specified number of lags instead 

of testing at each distinct lag. It generally tests the autocorrelation of residuals of an ARIMA 

model that is different from zero or not. If the significance value of this test is less than 0.05, 

then the correlations of the residuals are zero. Table 9.4 shows that the residuals are 

uncorrelated in both wind speed and electricity price SARIMA models.   

Table 9.4. Residual and model fit analysis 

Wind Speed Electricity Price 

Model 
Fit 

Statistics 

Ljung-Box 
Q 

Residual 
Descriptive 
Statistics 

Model 
Fit 

statistics 
Ljung-Box Q 

Residual 
Descriptive 
Statistics 

𝑅ଶ 𝜒ଶ 𝑝 µ 𝜎 𝑅ଶ 𝜒ଶ 𝑝 µ 𝜎 

0.896 35.4 0.0 0.005  1.47  0.826 25.6 0.004 0.07 19.5 

 

The statistical results of the residuals can be supported with the graphs, which show whether 

autocorrelation of residuals is within specified limits. Figure 9.5 and Figure 9.6 show that 

the ACF and PACF are decreased below the desired limits for wind speed and electricity 

price residuals, respectively. The outliers of residual lags, which is higher than the limits, 

are so close to the limits, and these can be neglected. Moreover, the histogram of the 

residuals for both wind speed and electricity price forecasting shows that these residuals are 

normally distributed. Normality is an essential measure for the Monte Carlo simulation 

because the residuals in the simulation need to be normally distributed. 
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Figure 9.5. ACF, PACF and histogram of residuals after SARIMA model of wind speed 
forecasting 

 

Figure 9.6. ACF, PACF and histogram of residuals after SARIMA model of electricity 

price forecasting 

After the assumptions for a statistically valid model are satisfied, the validity of SARIMA 

model parameters should be tested. In order to conclude that the model parameters are 

statistically valid, the t-test values of all estimated parameters should satisfy the statistical 
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conditions, 𝑝 < 0.05. In accordance with this information, the test results of SARIMA 

model parameters can be analyzed in Table 9.2. The p-values in Table 9.2 for both model 

wind speed and electricity price respectively, satisfy this statistical condition. Thus, the 

model is valid and the SARIMA models of both variables are presented in the last row of 

the table.  

Lastly, a SARIMA model can be expressed in two forms. The first one is a multiplicative 

model which is formulated as in Equation (6.43) and the results presented in Table 9.2 are 

the parameters shown in Equation (6.43). Then, the multiplicative model for wind speed and 

electricity price can be expressed, respectively, as follows 

(1 − 0.893𝐵ଶ)(1 − 𝐵)(1 − 0.0344𝐵ଶସ − 0.9091𝐵ସ଼)𝑊௧

= (1 − 0.0556𝐵 − 0.9959𝐵ଶ + 0.05148𝐵ସ)(1 − 0.8531𝐵ଶସ)𝑒௧ 
(9.1) 

(1 − 0.9572𝐵)(1 − 0.0782𝐵ଶସ)(1 − 𝐵ଶସ)𝜆௧

=  (1 − 0.4207𝐵 − 0.0774𝐵ଶ − 0.0531𝐵ଷ − 0.0825𝐵ସ

− 0.0626𝐵ହ)(1 − 0.8636𝐵ଶସ)𝑒௧ 

(9.2) 

where 𝐵௜ is the lag operator. 

The second method is the additive model representation of SARIMA. It can be derived by 

multiplication of the parameters of Equation (6.43) and the additive model for wind speed 

and electricity price can be expressed as follows 

𝑊௧ = 0.8120 𝑊௧ିହଵ −

0.8120 𝑊௧ିହ଴−0.9091𝑊௧ିସଽ+0.9091𝑊௧ିସ଼+0.0307𝑊௧ିଶ଻ − 0.0307𝑊௧ିଶ଺ −

0.0344𝑊௧ିଶହ + 0.0344𝑊௧ିଶସ − 0.8932𝑊௧ିଷ + 0.8932𝑊௧ିଶ −

𝑊௧ିଵ−0.0439𝑒௧ିଶ଼ + 0.8495𝑒௧ିଶ଺ + 0.0475𝑒௧ିଶହ − 0.8531𝑒௧ିଶସ +

0.0515𝑒௧ିସ − 0.9958𝑒௧ିଶ − 0.0556𝑒௧ିଵ + 𝑒௧  

(9.3) 

𝜆௧ = −0.0749𝜆௧ିସଽ + 0.0782𝜆௧ିସ଼ + 0.8823𝜆௧ିଶହ − 0.9218𝜆௧ିଶସ +

0.9572𝜆௧ିଵ+0.0540𝑒௧ିଶଽ+0.0712𝑒௧ିଶ଼ + 0.0458𝑒௧ିଶ଻ + 0.0667𝑒௧ିଶ଺ +

0.3629𝑒௧ିଶହ − 0.8626𝑒௧ିଶସ − 0.0626𝑒௧ିହ − 0.0825𝑒௧ିସ − 0.0531𝑒௧ିଷ −

0.0774𝑒௧ିଶ − 0.4207𝑒௧ିଵ+𝑒௧  

(9.4) 
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9.3. DAILY ANALYSIS OF DAY-AHEAD BIDDING 

The first simulation was conducted to analyze the results of the day-ahead bidding. In this 

simulation, three different analysis were realized. In the first one, the effect of scenario 

number on expected profit and CVaR was analyzed to determine the number of scenarios 

that will be used. Then, by changing the confidence interval of the risk aversion, the Pareto 

frontier’s were calculated to determine the most suitable the confidence interval value. 

Finally, the effects of risk-aversion on daily bids were investigated for the confidence 

interval and the number of scenarios found. 

In all bidding analysis, the wind and price scenarios were derived from SARIMA models 

Equations (9.3) and (9.4). To be more specific, 10,000 price and wind trajectories were 

generated by Monte Carlo simulations. By reducing these trajectories into a different number 

of scenarios having smaller sizes, two different sets of scenarios were created for the first 

analysis. In the first of these scenario sets, the trajectories were reduced into ten wind and 

five price scenarios using the reduction method described in Section 6.3.3. Then, 50 pairwise 

combinations of these scenarios were taken as bidding scenarios. In the second scenario set, 

scenarios in the first scenario set were reduced into 6 wind and 4 price scenarios, and a total 

of 24 scenarios were generated with the pairwise combination of these scenarios. Finally, 

the values between day-ahead market closure time (𝑡 = 0) and the start of the operation (𝑡 =

12) were clipped in the both scenario sets. After the scenario generation, the expected profit 

and CVaR of both sets were calculated for the values of 𝛽 between 0 and 1. In addition, the 

Pareto frontier’s of the scenario sets were plotted.  

As can be seen from Figure 9.7, using a higher number of scenario increases the expected 

profit and CVaR significantly. On the other hand, the computation times of the 50 scenarios 

and 24 scenarios were averagely 38.2 and 7.2 minutes, respectively. This shows that raising 

the number of scenarios increased the computation time considerably, and if more than 50 

scenarios were used, the calculations would take longer than the time available for 

computing the day ahead bids. Thus, 50 scenarios were used in the bidding phase analysis. 
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Figure 9.7. Comparison of expected profit and CVaR with respect to the different number 

of scenarios 

After the number of scenarios that should be used in the bidding phase was determined, the 

next stage is to decide the confidence interval level, 𝜇. To accomplish this, three different 

confidence levels, 𝜇 = 0.7, 𝜇 = 0.8 and 𝜇 = 0.9, were selected and the expected profit and 

CVaR values were calculated with 50 scenarios. Based on these calculations, the Pareto 

frontiers were plotted as Figure 9.8. In this figure, it is expected that the increase in the 

confidence interval level will decrease the CVaR because of a decrease in the number of 

risky scenarios. Thus, it can be concluded that the CVaR and expected profit calculations 

are consistent based on the change of confidence interval level. In the literature, three 

different confidence interval level is used which are 0.99, 0.95 and 0.90. On the other hand, 

0.99 and 0.95 are suitable when the number of scenarios is very high. Thus, 0.90 is selected 

as the confidence level in this thesis. 
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Figure 9.8. Expected profit vs. CVaR frontier for different values of µ and β 

 

Figure 9.9. Wind power scenarios and actual wind power generation 

  

Figure 9.10. Day-ahead price scenarios and actual prices 
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For a specific day, the parts of the wind and price scenarios falling into operation period 

(𝑡 = 12: 36) are depicted in Figure 9.9 and Figure 9.10 and day-ahead bids calculated for 

𝛽 = 0 and 𝛽 = 1 are shown in Figure 9.11. When the bidding results are analyzed by 

ignoring the concept of risk control since both electricity prices and wind energy generation 

are low between 1h to 5h, in this time interval bids becomes negative to benefit from 

arbitrage. In the following hours, the energy stored in low price periods is used together with 

the wind energy at high price times. This explains the intention to sell a relatively large 

amount of energy between 8h-10h and between 18h-19h.  

 

Figure 9.11. Bids for 8 April 2011 

Moreover, bids are calculated with two different 𝛽 like 𝛽 = 0 and 𝛽 = 1 which are the risk-

neutral and risk-averse approach, respectively. As can be clearly seen from the graphs, it 

becomes more conservative with the implementation of the risk-averse method. Indeed, 

while more energy was purchased than the grid between 1 h to 5 h, energy sales were 

significantly reduced when compared to the risk-neutral aspect of the rest of the day. The 

difference between risk-neutral and risk-averse cases can also be explained with the PHS 

operation as given in Figure 9.12 and Figure 9.13. As can be seen from these figures, more 

scenarios operated in generation mode for the risk-neutral case during non-peak price 

periods. On the other hand, in the risk-averse case, the PHS units were forced to operate in 

peak price periods to hedge against the worst-case price scenarios.  
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Figure 9.12. Operation of PHS units for all scenarios when β=0 

 

Figure 9.13. Operation of PHS units for all scenarios when β=1 

As expected, risk-averse strategy reduces average profits while hedging against worst-case 

scenarios. The trade-off can be assessed by calculating the expected profit and CVaR for 

different values of 𝛽 and visualizing the resulting limit which is shown in Figure 9.8. Not 

surprisingly, with the increasing values of 𝛽, the expected profit decreases while CVaR 

increases. Nevertheless, the relative reduction in the former is fairly small when compared 
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with the gain obtained for the latter. To be more specific, when 𝛽 changes from 0 to 1, the 

expected profit goes down from 186,021 TL to 174,188 TL, while CVaR goes up from 

23,740 TL to 64,751 TL. Thus, by sacrificing the expected profit a little bit, considerable 

improvements can be achieved on the losses incurred by worst-case scenarios.  

The results of the analyzes based on the bidding model are given above, and this is the 

standard approach used in the literature to evaluate the results of the bidding methods and 

the effects of risk control. However, it will be shown later that these results do not reflect 

the actual performance achieved. Actual performance depends on the process used. It 

calculates interest statistics using the results of the real-time operation to make a more 

realistic assessment. 

9.4. DAILY ANALYSIS OF OPERATION STRATEGIES 

For the real-time operation, in addition to the methods in the literature, two versions of 

SMPC are implemented which differs in the tree structure employed for the wind scenarios. 

In one of them, denoted as SMPC 4x2, the nodes at 𝑡 = 𝑡଴ + 1, 𝑡଴ + 2 branches into four 

nodes without further branchings in the following hours. This leads to the structure appearing 

in Figure 9.14.a. In the other one, SMPC 2x4, all nodes branches into two nodes for 𝑡 = 𝑡଴ +

1: 𝑡଴ + 4 then no branching occurs as shown in Figure 9.14.b. In both trees, the node at 𝑡 =

𝑡଴ has a single child to be able to have a single decision as described in Section 3.2.  

 

(a) 
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(b) 

Figure 9.14. Scenario tree structures used in the real-time operation: (a) SMPC 4x2, (b) 

SMPC 2x4 

In numerical computations of all operations strategies summarized in Section 8.2 and the 

bids are given in Figure 9.11 are employed. The hourly energy exchange with the grid for 

each operation method is given in Figure 9.15, Figure 9.16 and Figure 9.17 while the time 

evolution of the water volume stored in PHS system is depicted in Figure 9.18. Also, the 

PHS system operation is given in Figure 9.19. Bids, actual wind energy realization, and 

operation decisions of perfect information case are taken as references with respect to which 

the behavior and performance of the other methods are evaluated. Hence, their graphics are 

put into all figures from Figure 9.15 to Figure 9.17.  

If the behavior of the perfect information case is investigated in Figure 9.15, it can be seen 

that the exchange level with the grid stays consistently above the bid. This is because the 

total energy delivered by the actual wind realization is higher than the expected total energy 

of wind scenarios used for bidding. The deviation becomes significant, especially in the first 

seven hours due to excessive wind power observed during this period. 

As can be observed from Figure 9.15, the behavior of the bid-following method differs 

considerably from that of the perfect information solution. This is because the underlying 

algorithm merely tries to follow day-ahead contracts without considering the future 
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consequences of its actions. As a result, a certain amount of water remains in the upper 

reservoir at the end of the day as can be verified from Figure 9.18. The algorithm fails to 

capture bids for the first seven h due to the abundance of wind power in this period. Even if 

turbines pump at full capacity, the excess energy cannot be stored completely. 

Operation of open-loop and ratio based algorithms are based on the wind power forecast 

made at the beginning of the day. Therefore, differences between these estimates from their 

actual values affect the performance of the method considered. Indeed, Figure 9.16 shows 

that the actions taken by these methods deviate from the ideal decisions of the perfect 

information algorithm at many time instances, which is a natural consequence of the 

forecasting error. Nevertheless, unlike the bid following heuristic, both algorithms utilize all 

the stored energy for attaining a higher income, and they follow ideal solutions more closely.  

When the behaviors of MPC based methods are investigated, it can be seen from Figure 9.17 

their decisions are the same as the perfect information case except for five hours for DMPC 

and three hours for SMPC algorithms. Even if their operations do not follow the ideal case 

perfectly, they perform significantly better when compared with the other algorithms 

analyzed above. This superior performance can be attributed to the accuracy of the wind 

energy and energy storage level resulting from the latest measurements available. Because 

the SMPC method uses scenarios instead of point estimates, it almost matches solution 

decisions based on the perfect forecast. 

In addition, the methods can be compared with Figure 9.19 which shows the pumping and 

generation decisions of the PHS system. As can be observed from this figure, the bid 

following algorithm makes the most different decisions with respect to the perfect 

information solution. On the other hand, the proposed method exhibits the closest 

performance to the reference solution for that day.  

Lastly, it is also important to verify that the optimization performed at each time step for 

finding control decisions is carried out fast enough to satisfy the timing limitations of the 

real-time operation. When all simulations given above are considered, the maximum 

computation time is found to be 82.9 seconds. This is much shorter than the available time 

limit of one hour and justifies the applicability of the method in practice.  
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Figure 9.15. Energy exchange with the grid for perfect information and bid following 

heuristic methods 

 

Figure 9.16. Energy exchange with the grid for perfect information, open-loop and ratio 

based heuristic methods 

 

Figure 9.17. Energy exchange with the grid for DMPC and SMPC methods 
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Figure 9.18. Evaluation of water volume in the upper reservoir of PHS for all methods 

 

Figure 9.19. Operation of the PHS system for all methods 

9.5. MONTE CARLO SIMULATION AND PARETO ANALYSIS 

The observations made above for a single simulation run should be justified by statistical 

analysis. To this end, Monte Carlo simulations were performed for the same day. 

Simulations were carried out for a range of values of 𝛽  from 0 to 1 and 100 runs were taken 

for each operation method. The expected profits and CVaR values calculated are depicted in 

Figure 9.20 together with the frontier previously obtained for the bidding problem. Plots 

show the tradeoff between the expected profit and the risk measure. Apart from a few points, 
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the former goes down as the latter goes up with the increasing values of 𝛽 in all graphs. It 

can be seen that the curves do not intersect implying that moving from one method to another 

one can improve both the expected profit and CVaR for all values of 𝛽 or vice versa. 

Therefore, a ranking can be established among the algorithms independent of the weighting 

factor. Since the perfect information case has the best achievable performance, it gives the 

Pareto-optimal solution. This is followed by SMPC, DMPC, open-loop, ratio-based heuristic 

and bid-following methods in that order. In order to compare the performance of the different 

methods quantitatively, the averages of expected profit and CVaR values were computed for 

each method and are presented in Table 9.5. 

9.5.1. Comparison of Real-time Operation Methods 

As can be seen from Figure 9.21, the performances of SMPC methods are very close to the 

perfect information case and they are followed by the DMPC method. The difference 

between the expected profits of SMPC and DMPC algorithms is a consequence of using 

uncertainty information. The resulting Value of Stochastic Solution (VSS), which is the 

relative improvement achieved by the stochastic solution over the deterministic one, is about 

0.8 percent for the expected profit. On the other hand, the relative improvement in CVaR is 

around 1.5 percent, which comes from the risk control capability of the proposed SMPC 

approach.  

The gap between the MPC based algorithms and the open-loop method is more significant 

as can be verified from Figure 9.20 and Table 9.5. This is due to the certainty gain arising 

from the periodic measurements. Relative to the open-loop method, expected profit and 

CVaR values of the DMPC method are 1.25 percent and 19.6 percent higher, respectively. 

This shows the importance of using the most recent information while making operation 

decisions.  

The ratio-based heuristic algorithm performs worse than the open-loop algorithm, although 

it uses the new information to adapt its initial plan. Indeed, the corresponding frontier is 

considerably below that of the open-loop method. This is in agreement with the numerical 

values provided in Table 9.5. The averages of the expected profit and CVaR for the open-

loop method are 5.8 percent and 20 percent higher, respectively, when compared with the 
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ratio-based heuristic method. This shows that the online adaptation of a precomputed 

schedule did not work as expected.   

The worse performance is achieved by the bid-following algorithm whose frontier is well 

below the others pointing to a significant loss in the expected profit. This loss is about 41 

percent relative to the ratio-based heuristic algorithm. Surprisingly, there is an improvement 

in the average CVaR value given in Table 9.5, which seems to contradict with Figure 9.20  

and Figure 9.21. The reason is that the points are accumulated toward the right of the curve 

of the bid-following method.  

9.5.2. An Analysis of Bidding Results 

Another important conclusion is about the results provided by the solution of the bidding 

problem. The performance calculated turns out to be very low relative to all real-time 

operation methods, as can be seen from Figure 9.20, Figure 9.21 and Table 9.5. This happens 

as a result of the certainty loss arising from the considerable lead time between bidding the 

computations and the operation period. Therefore, one should be careful about using bidding 

outcomes for evaluating the performance, which is a common practice employed in the 

literature. The results presented above show that it can be misleading in general.  

Table 9.5. Average expected profit and CVaR values for operation methods 

 Expected profit (TL) CVaR (TL) 
Bidding model 180,895 51,073 
Bid-following heuristic 195,872 69,086 
Ratio-based heuristic 275,968 66,255 
Open Loop 291,887 79,603 
DMPC 295,523 95,216 
SMPC 4x2 297,788 96,692 
SMPC 2x4 297,875 96,656 
Perfect information case 302,959 97,727 

 



140 
 

 
 

  

Figure 9.20. CVaR-expected profit frontiers for all methods and the bidding model 

 

Figure 9.21. CVaR-expected profit frontiers. DMPC, SMPC, and perfect information case 
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9.6. LONG-TERM RESULTS AND SENSITIVITY ANALYSIS 

The results of the previous section are based on the simulations of one day. In order to have 

a fair assessment of economic performance, it is also necessary to carry out out-of-sample 

analysis [130] for several days. Moreover, the performance of real-time operation methods 

highly depends on the balancing market conditions. Therefore, it would be informative to 

investigate how the operation methods compare as the imbalance price ratios vary. 

Motivated by these facts, long-term Monte Carlo simulations were performed. In the 

computations, the positive and negative imbalance ratios were taken equally, 𝑟ା = 𝑟ି = 𝑟 , 

and the operation methods were analyzed for different values on 𝑟 in the presence/absence 

of risk control. 

The time interval of simulations is taken between 1 April 2011 and 30 April 2011. At the 

beginning of each day, bids are calculated, and all algorithms make operation decisions 

based on the same bids. The daily profits of the operation methods are accumulated to obtain 

total profit over the time interval of interest. These computations are repeated for different 

values of 𝑟 and for 𝛽 = 1 and 𝛽 = 0. Risk-aversion weight of SMPC method is taken the 

same as that of bidding. That is, risk-aversion is present during the operation when it is in 

bidding and vice versa. Under these conditions, the graphs given in Figure 9.22 are attained 

which show the percentage profit loss of each operation method relative to the perfect 

information case. Recall that the perfect information solution gives the upper bound of the 

best performance that can be achieved.  

9.6.1. Comparison of Real-time Operation Methods 

As can be seen from Figure 9.22, for all values of 𝑟 and 𝛽, the SMPC based algorithm 

exhibits the best performance, and it is followed by DMPC, open-loop, ratio-based heuristic 

and bid-following heuristic methods in that order. These rankings are in agreement with the 

results of the previous section and similarly show the importance of incorporating 

uncertainty information, risk-control and repeated measurements into the real-time 

operation. The use of these features becomes more crucial with the increasing values of the 

penalty factor since the gaps between the expected profits of the algorithms increase with 𝑟 

as evident from Figure 9.22. Similar to the observations of the previous section, ratio-based 
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heuristic and especially bid-following heuristic performs very poorly while the differences 

between the other methods are less severe.   

 

Figure 9.22. Profit losses of the algorithms relative to the perfect information solution for 

changing imbalance price ratio values 

9.6.2. An Analysis of Bidding Results 

In order to evaluate the reliability of bidding based computations, expected profits estimated 

by them are also depicted in Figure 9.22. The plots show that these values differ significantly 

from the best performance that can be achieved. This is again due to the certainty loss arising 

from the large lead time between the bidding and operation phases. However, different than 

the results found earlier, the values are overestimates instead of underestimates. This should 

not be surprising. In general, the expected profits given by any operation method must be 

lower than that of the perfect information case. On the other hand, there is no such guarantee 



143 
 

 
 

for an optimal solution obtained from the bidding optimization. This is because the 

optimization model is based on estimations of the future and these estimations may turn out 

to be different from the actual realizations.   
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10.   CONCLUSION 

 

In this thesis, a novel SMPC algorithm having risk control capability is proposed for the real-

time operation of a wind energy generation system equipped with a PHS unit. The real-time 

operation is integrated with a bidding phase formulated as a risk-averse two-stage stochastic 

program. Optimization problems of SMPC algorithm and bidding are modeled as MILPs 

and CVaR is used as the risk measure. When the literature is investigated, the risk-control 

was only considered in the bidding phase in most of the studies. Also, there was only one 

study that considers risk control in the real-time operation which uses linear decision rules. 

Thus, this is the first study which incorporates risk-control into SMPC method for real-time 

operation. 

In this thesis, imbalance market modeling, start-up and shut-down cost, transmission 

efficiency, stochastic bidding, forecasting and scenario generation and detailed model for 

PHS system were all taken into account to obtain more realistic results, which was not done 

in the previous works on the real-time operation. 

Although there are different real-time operation methods proposed in the literature, only a 

few of them were compared in previous studies. In this thesis, an extensive comparison of 

available real-time operations was carried out by simulations. One set of simulations was 

conducted for a specific day. In these simulations, daily schedules of all operation methods 

were obtained and compared. In addition, a Monte Carlo analysis was conducted to 

investigate the Pareto optimality to confirm observations of daily schedules statistically. The 

second set of simulation was performed for long term analysis. From all simulations, it is 

observed that among the methods investigated, bid-following algorithm exhibited the worst 

performance because this algorithm only tries to follow day-ahead bids without considering 

the future consequences of its actions. The ratio-based heuristic method achieved a better 

performance than the bid-following but its performance was very poor with respect to the 

perfect information solution. Because the open-loop method optimizes the decisions by 

using future uncertainties, it calculated better operational decisions for PHS than the 

heuristic algorithms. On the other hand, there was still significant deviations from the perfect 

information case because the wind forecast errors were considerably high. The behavior of 

the DMPC was much closer to the ideal solution than the algorithms analyzed above because 
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of the certainty gain arising from the latest available measurements of wind power. Lastly, 

the proposed SMPC method exhibited the best performance in all simulations. This comes 

from its ability to exploit the most recent information and underlying scenario tree-based 

stochastic optimization approach. Advantages of risk-averse operation capability of SMPC 

strategy are analyzed. As expected, introducing risk control into real-time decisions leads to 

further improvements in the profits of the worst-case scenarios while yielding to a relatively 

small loss on the expected profit. This justifies the use of risk-averse operation.  

In addition, by the long term simulations, the performance of the operation methods was 

investigated under changing imbalance market conditions. As expected, as the imbalance 

prices get higher, using MPC based methods becomes more advantageous for both risk-

neutral and risk-averse cases, again SMPC yielding to the best performance. The effect of 

the scenario structure on the performance of the SMPC method was also investigated. It was 

observed that the choice of scenario tree structure did not have a significant effect on the 

results.  

Another contribution is the comparison of risk-profit analyses made for real-time operation 

and bidding, the latter is the standard approach followed in the literature. Results of Monte 

Carlo simulations showed that the expected profit and CVaR values computed from the real-

time operation and bidding simulations differ considerably. It is deduced that the difference 

can be attributed to two facts. One is the certainty gain due to the availability of the new 

information with the start of the real-time operation. As a result, profits obtained becomes 

higher. Second, naturally, the actual performance realized depends on the outcomes of the 

real-time operation. Thus, real-time operation should be used to asses the economic 

performance of the system.  

In addition, the approach proposed in this thesis is not limited to the case study considered. 

In a similar manner, it can be adopted to the systems composed of other storage and 

renewable generation technologies as well. This amounts to changing the associated 

equations employed in the bidding and operation models. As long as the optimization 

problem is tractable, the algorithm will exhibit similar behavior and perform better relative 

to the alternative strategies investigated owing to its abilities to utilize new information, 

exploit the probability distribution of uncertainties and incorporate risk-control.  
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In the application considered, although the transmission losses were taken into account, 

transmission capacity constraints were neglected. It was done partly because the storage unit 

and the energy sources are closely located. Apart from this, in general, one may expect that 

the need for energy storage will be higher during off-peak periods since energy prices will 

be lower and wind speeds will likely be higher (nighttime). This reduces the chances of 

experiencing congestion.  Nevertheless, in general, there may be a long distance between the 

energy source and the PHS unit and one may want to work with a more realistic model by 

incorporating transmission constraints. In that case, the profits may become lower since the 

storage utilization would decrease. However, the real-time operation algorithms are expected 

to behave relatively similar although gaps between their performances may get smaller.  

Lastly, the case study considered in this study has a relatively small size in terms of 

generation and storage capacity when compared with the systems currently operational in 

the regions having large-scale wind generation and hydro storage facilities including USA, 

Canada, Australia and Northern Europe. The application of the advanced operation methods 

as the one proposed in this thesis will have a more profound impact on such large-scale 

systems as far as financial gains concerned.   
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