
REAL-TIME OBJECT TRACKING IN AERIAL IMAGES

by

Hüseyin Büyükeşmeli

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Electrical and Electronics Engineering

Yeditepe University

2019

iii

ACKNOWLEDGEMENTS

This has been a very long and rough journey for me. It has been more painful than it should

have been. But during this journey, I am most thankful to my advisor Cem Ünsalan. I am

aware that I pushed the limits of his patience, even then he did not give up on me. It was

the most memorable moments of my life that making me realize the unnecessity of being

happy. I can not thank him enough for his guidance and effort on me. I am also grateful

to Assoc. Prof. Dr. Engin Maşazade and Prof. Dr. Oğuzhan Urhan for their support and

contributions.

I was not alone in this journey. There is one other person who shares the similar path with

me. We shared same class, office, house in past fifteen years. I thank to H. Deniz Gürhan

for a friendship that will last forever.

Besides his beautiful friendship, I am thankful to Ahmet Dinçsoy especially for helping me

to take footage for this study.

I present my endless gratitude to Sibel Şentürk for the love and compassion that she showed.

I am especially grateful that she endured me even though I was a grumpy and annoying

person, as I approach the end of the thesis.

Even though her questionable objectivity, I would like to thank to Burçin Başyazıcı for the

hand that she offered whenever I was stuck.

Family is a complicated phenomenon. They are most valuable people in my life however,

I cannot thank them for this study. So, I thank to Aygün Büyükeşmeli and Mustafa

Büyükeşmeli for being who they are.

iv

ABSTRACT

REAL-TIME OBJECT TRACKING IN AERIAL IMAGES

Visual object trackers usually operate in real-time required by their nature. Hence, the

processing power demanded by them becomes very important. Moreover, fast trackers with

low memory footprint are very important for space, time, and power constrained applications

such as UAV on-board visual trackers. In this dissertation, a visual object tracker which can

operate on aerial images with low processing load is proposed.

The proposed method consists of two main parts as object representation and tracking. The

novelty of our method is in adding a simple yet flexible probabilistic object representation

method to the tracking framework. The proposed probabilistic object representation method

is based on classic edge or image feature detection methods. This representation allows

us modifying the tracker based on Bayesian tracking framework. To do so, we use three

methods as follows. First, the grid based pdf approximation is used in tracking. Second,

Kalman filter is used to simplify the framework and speed up the tracking process. Third,

particle filtering is applied to decrease the computational cost and increase success rate.

The proposed method requires such a low processing power that it can work on an ARM

Cortex-M7 microcontroller. Hence, we implemented it on both such a microcontroller

and PC. The implementation step also includes novel contributions in terms of decreasing

computation cost and speed up processes. Besides, we also compared the proposed method

with the state of the art in literature. This allowed us to justify the usefulness of the proposed

method especially when implemented on a microcontroller.

v

ÖZET

HAVA GÖRÜNTÜLERİNDE GERÇEK ZAMANLI NESNE TAKİBİ

Görsel nesne takibi yöntemlerinin, doğası gereği, genellikle gerçek zamanlı çalışmaları

istenir. Bu durumda, takip edici algitmanın gerektirdiği işlem yükü oldukça önemlidir. Hızlı

ve düşük hafıza gereksinimi ile çalışan görsel takip ediciler zaman, yer ve güç bakımından

kısıtlı uygulamalar için çok önemlidir. Bunlara örnek olarak insansız hava araçları üzerinde

çalışan takip edici uygulamalar gösterilebilir. Bu tezde hava görüntüleri için çalışacak, işlem

yükü oldukça az bir görsel nesne takip edici sunulmaktadır.

Sunulan yöntem, obje temsili ve takibi olmak üzere iki ana kısımdan oluşmaktadır. Bu

tezde sunulan yenilik, hedefi basit fakat gayet esnek bir şekilde olasılıksal sonuç veren

nesne bulucu bir algoritmanın takip etme yöntemleri ile birleştirilmesidir. Olasılıksal nesne

temsil yöntemi geleneksel kenar bulma veya görüntü öznitelikleri temellidir. Olasılıksal

gösterim, Bayesçi takip methodunu uygulamamıza olanak verir. Bu amaç için üç farklı

yöntem denedik. Bunlar sırası ile şu şekildedir. İlk olarak kafes tabanlı pdf tahmini denendi.

İkinci olarak Kalman filtresi ile takip işlemin basitleştirip hızlandırdık. Üçüncü olarak da,

parçacık filtresi işlem yükünü azaltmak ve takip başarını arttırmak için kullandık.

Bu tezde sunduğumuz yöntemin gerektirdiği işlem yükü o kadar azdır ki ARM Cortex-

M7 mikrodenetleyici üzerinde çalışabilir. Dolayısıyla yöntemden sonuçları elde edebilemk

için, hem bilgisayar için hem de mikroişlemci için uyguladık. Uygulama adımı işlem

yükü azaltma ve hızlandırma bakımından yenilikler içermektedir. Bunun yanında önerilen

yöntemimizi literatüredeki diğer önemli yöntemler ile karşılaştırdık. Böylece yöntemimizin

özellikle mikroişlemciler için işlevselliğini göstermiş olduk.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT .. iv

ÖZET... v

LIST OF FIGURES .. ix

LIST OF TABLES.. xii

LIST OF SYMBOLS/ABBREVIATIONS .. xiii

1. INTRODUCTION .. 1

2. LITERATURE SEARCH ... 3

2.1. UAV APPLICATIONS ... 3

2.2. TRACKING ... 5

2.3. OBJECT DETECTION .. 8

2.4. BENCHMARK METHODS ... 10

3. THE PROPOSED METHOD.. 14

3.1. PROBABILISTIC OBJECT REPRESENTATION 15

3.1.1. Preprocessing and Corner Extraction .. 16

3.1.2. Graph-based Clustering.. 17

3.1.3. Probabilistic Object Modeling ... 19

3.2. BAYESIAN OBJECT TRACKING FRAMEWORK 23

3.2.1. State Representation .. 24

3.2.2. Dynamic System and Measurement Models... 24

3.2.3. Probabilistic Representation.. 25

3.3. MERGING PROBABILISTIC OBJECT REPRESENTATION AND

BAYESIAN TRACKING FRAMEWORK ... 26

3.3.1. Our Dynamic System and Measurement Models 27

3.3.2. Our Prediction Operations .. 28

3.3.3. Our Update Operations .. 29

3.3.4. Updating the Probabilistic Object Representation 34

3.4. APPROXIMATE BAYESIAN TRACKING METHODS.............................. 35

3.4.1. Grid Based Approximation ... 36

3.4.2. Particle Filter ... 37

vii

3.4.3. Kalman Filter ... 40

3.5. TRACKING BY DETECTION ONLY ... 42

4. EMBEDDED IMPLEMENTATION .. 44

4.1. HARDWARE ... 44

4.1.1. Microcontroller... 46

4.1.1.1. Camera Module.. 47

4.1.2. STM32F746 Discovery Board ... 47

4.1.2.1. LCD... 48

4.1.2.2. SDRAM ... 48

4.1.2.3. SD Card.. 48

4.1.3. Camera ... 48

4.2. SOFTWARE .. 49

4.2.1. Development Environment ... 49

4.2.2. Embedded Software Packages ... 50

4.2.3. CMSIS Library ... 50

4.3. TRACKER IMPLEMENTATION .. 51

4.3.1. Initialization... 51

4.3.2. Object Representation.. 51

4.3.2.1. Harris Corner Detection... 52

4.3.2.2. Non Maxima Suppression .. 53

4.3.2.3. Clustering ... 55

4.3.3. Bayesian Tracking... 57

4.3.3.1. Grid-Based Approximation .. 57

4.3.3.2. Particle Filter ... 57

4.3.3.3. Random Number Generation .. 59

4.3.3.4. Exponential Function .. 59

4.3.3.5. Kalman Filter... 60

5. RESULTS AND DISCUSSION .. 62

5.1. DATASET USED IN EXPERIMENTS ... 62

5.2. EXPERIMENTS ON PC .. 66

5.3. PERFORMANCE ON CHALLENGES .. 70

viii

5.3.1. The Effect of Occlusion ... 70

5.3.2. The Effect of Changing Scale.. 70

5.3.3. The Effect of Image Resolution ... 73

5.3.4. The Effect of Similar Objects .. 73

5.4. THE EFFECT OF CORNER EXTRACTOR ON PERFORMANCE 73

5.5. APPROXIMATE BAYESIAN TRACKING METHODS.............................. 76

5.6. EMBEDDED IMPLEMENTATION ... 79

5.7. MEMORY USAGE ... 83

5.7.1. RAM Usage ... 83

5.7.2. Flash Memory Usage... 85

6. CONCLUSIONS .. 87

REFERENCES .. 89

APPENDIX A ... 99

ix

LIST OF FIGURES

Figure 3.1. Block diagram of the proposed tracker. .. 14

Figure 3.2. Toy image that illustrates the first image of the sequence. 15

Figure 3.3. Image patch which includes the target to be tracked. 17

Figure 3.4. Extracted corner points from the image patch. 18

Figure 3.5. Subgraphs obtained from extracted corner points. 20

Figure 3.6. Representation of clusters with Gaussian pdf. 21

Figure 3.7. Vote vectors defined for each cluster. ... 21

Figure 3.8. Obtaining the object pdf. ... 23

Figure 3.9. Predicted location calculation from the dynamic system model. 29

Figure 3.10. Association of corner points to propagated clusters. 30

Figure 3.11. Indication of the target based on corner locations after association.......... 31

Figure 3.12. Center of the rectangle which surrounds the associated corner points. 31

Figure 3.13. Illustration of our update operation. .. 33

Figure 3.14. Updating cluster means. .. 35

Figure 4.1. Hardware block diagram. .. 46

Figure 4.2. Camera connector schematic. ... 47

Figure 5.1. Sample sequence for occlusion (a) First image (b) Second image (c)

Third image. ... 64

x

Figure 5.2. Sample sequence for low resolution (a) First image (b) Second image

(c) Third image.. 64

Figure 5.3. Sample sequence for being around similar objects (a) First image (b)

Second image (c) Third image.. 65

Figure 5.4. Sample sequence for changing scale and aspect of the object (a) First

image (b) Second image (c) Third image.. 65

Figure 5.5. Results for each sequence. ... 67

Figure 5.6. Results for each sequence. (Continued) ... 68

Figure 5.7. Benchmark trackers performance (a) Success plot (b) Precision plot. 69

Figure 5.8. Results for the sequences which have occlusion (a) Success plot (b)

Precision plot. ... 71

Figure 5.9. Results for the sequences with scale change of the target (a) Success

plot (b) Precision plot. .. 72

Figure 5.10. Results for the sequences with low resolution (a) Success plot (b)

Precision plot. ... 74

Figure 5.11. Results for the sequences that the object is close to similar objects (a)

Success plot (b) Precision plot.. 75

Figure 5.12. Success and precision plots for different feature detection methods (a)

Success plot (b) Precision plot.. 77

Figure 5.13. Success and precision plot comparison of our trackers with Bayesian

filter (a) Success plot (b) Precision plot. ... 78

Figure 5.14. Comparison of our particle filter wrt particle number (a) Success plot

(b) Precision plot. .. 80

xi

Figure 5.15. Success and precision plot comparison of trackers on microcontroller

(a) Success plot (b) Precision plot. .. 81

Figure 5.16. Trackers comparison with microcontroller and PC implementations (a)

Success plot (b) Precision plot.. 82

xii

LIST OF TABLES

Table 4.1. Average current and power consumption of processors. 45

Table 4.2. RGB565 output format. .. 49

Table 4.3. YUV422 output format. .. 50

Table 5.1. Timing performance of trackers on PC... 70

Table 5.2. Timing performance of trackers on microcontroller. 83

Table 5.3. RAM requirements of implemented trackers. .. 85

Table 5.4. Code sizes of implemented trackers... 86

xiii

LIST OF SYMBOLS/ABBREVIATIONS

AUC Area under the curve

BRISK Binary robust invariant scalable keypoints

CDF Cumulative density function

CPU Central processing unit

FPGA Field programmable gate array

FPS Frames per second

GPS Global positioning system

GPU Graphical processing unit

HOG Histogram of oriented gradients

I2C Inter-integrated circuit

KCF Kernelized correlation filter

MAV Micro aerial vehicle

MSER Maximally stable extremal regions

OPE One-pass evaluation

PC Personal computer

PDF Probability density function

RAM Random access memory

ROI Region of interest

ROM Read only memory

SIFT Scale-invariant feature transform

SURF Speeded up robust features

SLAM Simultaneous localization and mapping

SVM Support vector machine

UAV Unmanned aerial vehicle

1

1. INTRODUCTION

Visual tracking is one of the fundamental problems in computer vision. It has a broad

application area including surveillance. One of the most common data source for tracking

is aerial imagery. Real-time applications are highly important for surveillance applications.

Unmanned Aerial Vehicles (UAV) are common choice for such applications.

UAVs have been used more often in our daily life compared to the past decade. Their history

begun with military applications. However, their usage in commercial or hobby purposes

increased exponentially recently. Their structure is quite flexible. Their scale can vary from

as small as couple of centimeter to meters [1]. They are also very suitable for autonomous

control. Hence, their possible application areas are diverse. UAVs can employ different

sensor types. Among these, the most common one is a visual sensor which is a camera.

Vision sensor are placed on UAVs for various purposes. They can be used to control the

vehicle such as landing spot detection, pose estimation, or motion control. They can also be

dedicated to surveillance of the environment. Hence, these sensors became a common aerial

image source.

Microcontrollers are inseparable part of UAVs. They are employed in the center of the

flight controller unit which is mainly responsible for stable flying of the UAV. In this unit,

microcontrollers conduct the control algorithm of the vehicle. They gather the peripheral

sensor data as input and control the rotation speed of motors as output according to the

command incoming from the user or path planner. A microcontroller is a suitable hardware

for such controlling task due to its small size and low power consumption. On the other

hand, microcontrollers usually are not the choice for vision tasks due to their speed and

memory constraints. However, they are improving.

Usually, on-board visual tasks in UAVs are conducted by a companion processor in

additional to the flight controller since such visual tasks bring burden to the flight controller

in terms of power consumption and processing load. In this thesis, we propose lightweight

visual trackers such that they can operate in real-time within limits of the microcontroller.

Thus, we can deploy both visual tracking and flight control process on the same platform.

2

Our tracker is based on a probabilistic object representation method. Within it, we combine

image features such as corner points and apply a probabilistic voting procedure to obtain a

probability density function (pdf).

One of the challenges of trackers using image features is to associate them from model to

search image [2]. Our voting method eliminates this step also. Moreover, our detection

algorithm can operate with fairly simple feature extraction methods such as Harris corner

detection [3]. This way, we can achieve fast object detection with fairly simple operations.

We combine our detection algorithm with Bayesian tracking framework. Hence, we can

exploit the object trajectory information to improve tracking performance [4]. The Bayesian

tracker recursively combines two pdfs, one for prediction and one for existence of the target

in order to achieve better tracking performance. We can directly use our object detector

with this framework since it provides a pdf. To do so, we proposed three different but

closely related methods. First, we use grid based pdf approximation. Here, we benefit from

the pdf obtained from the object detection step in tracking. Second, we use the Kalman

filter with our object detection result [5]. Third, we use particle filtering to speed up to the

tracking process [6].

This thesis consists of six chapters. The first chapter introduces overview of the thesis

and general concepts. The second chapter reviews literature. The third chapter introduces

theoretical foundations of the proposed tracker. The fourth chapter explains implementation

details and variations of the tracker. In the fifth chapter, we present experimental results and

comparison with state of the art methods from literature. In the sixth chapter, we conclude

our study.

3

2. LITERATURE SEARCH

In this chapter, we revise and list related work in literature in broad spectrum. First, we

revisit different UAV applications for possible source of aerial imagery. Then, we focus on

visual processing aspect of the problem. Visual object tracking is our main focus subjects.

Therefore, we list visual trackers and their usage with UAVs. Here, we talk about the

opportunity that can we fill in the literature. In the last section, we list studies in detail

that we used to compare in this study.

2.1. UAV APPLICATIONS

UAVs have been getting more attention in past decade. Thanks to their affordable cost

and modular structure, they provide an attractive option for building an autonomous system.

Many research have been reported about their usage in applications such as plant inspection,

search and rescue, traffic monitoring, and surveillance. In this section, UVAs are reviewed

as well as their applications are listed.

Khanna et al. [7] presented an application of UAVs in precision agriculture. They proposed

a pipeline of offline processing 3D point cloud of crop field. Proposed method is not real

time and requires post processing of aerial images with third party software to obtain 3D

point cloud.

Faessler et al. [8] presented a system including a quadrotor equipped with a monocular

camera and laptop serving as ground station. Its purpose is terrestrial 3D reconstruction for

search and rescue purposes. This system works in real-time. Its usage for both indoor and

outdoor environments are presented. The proposed system consists of three main parts

as flight controller, single board PC, and laptop. Single board PC obtains images and

applies preprocessing operations to calculate pose estimation and sends images to laptop.

3D reconstruction is implemented on the laptop. Flight controller handles the stable flight

of the drone and positioning according to the pose estimation done in single board PC.

Delmerico et al. [9] proposed a system for guiding a ground robot with UAV through

unknown environment to a destination for search and rescue purposes. A map of the terrain

4

class and elevation map is built by vision based flying robot. The aim is to minimize the

deployment time of the terrain classifier. Therefore, accuracy of the classification is not the

main concern. The proposed system can generate the region map after 60 seconds of flight.

Giusti et al. [10] presented a novel system based on deep neural networks for navigating a

robot in unseen forest track. The system makes a decision about to go whether left, right

or straight by processing the image taken by onboard camera. Big dataset is used to train

deep neural network. This dataset is obtained with three cameras facing different directions

attached to a hiking person in the forest. Training procedure is realized in off-board PC.

Therefore, gathering dataset and training takes long time.

Mueggler et al. [11] proposed a mission planning algorithm for autonomous guiding ground

robot by aerial robot. Ground robot moves through moveable and non-moveable objects

in a scenario such as delivering first aid kit. UAV executes its mission without human

interaction. No specific object detection algorithm is deployed. Movable or non-movable

objects are recognized using AprilTag [12].

Minaeianet al. [13] proposed a vision-based crowd detection and geographic information

system (GIS) localization algorithm for a cooperative team of one unmanned aerial vehicle

and number of unmanned ground vehicles (UGV). UGVs are used to convert the image

locations of the detected targets into their GIS coordinates. Moreover, a test-bed consists

of unmanned vehicles and an agent-based simulation model are developed to conduct

experiments.

Gohl et al. [14] presented a study that aims to avoid obstacles based on 3D model of the

close environment. A general map is not constructed. In this work eight cameras, one stereo

vision for four sides, are employed. FPGA and an on-board PC is used for 3D modeling.

Proposed system requires heavy hardware and a lot of power consumption. Reported time

of flight is around eight minutes.

Fraundorfer et al. [15] combined stereo vision and optical flow in a system for exploration

purposes. Vector Field Histogram Plus (VFH+) for local navigation and the frontier-based

exploration algorithms are deployed with stereo camera in their system. Moreover, the

bug algorithm is implemented with downward looking optical flow camera as a secondary

5

navigation algorithm in case the first one fails in sparse environment [16]. These algorithms

are implemented on-board PC. Also a simultaneous localization and mapping (SLAM)

algorithm is implemented off-board in order to complete system.

Schauwecker et al. [17] deployed two separate stereo cameras, one forward looking and

one downward looking, to navigate an UAV. A SLAM algorithm is implemented with

forward looking camera pair. Downward looking camera pair is used for the tasks such

that ground plane detection, six degree-of-freedom (6 DoF) pose estimation and motion

tracking. Results of two camera pairs are combined with a Kalman filter.

Engel et al. [18] proposed a visual navigation system with a low-cost UAV to visually

navigate when GPS is not available. Weiss et al. [19] presented a framework that increases

robustness of navigation of aerial vehicles using multi-sensor fusion. They are both

structured on parallel tracking and mapping (PTAM) algorithm [20]. PTAM is a feature-

based SLAM algorithm that achieves robustness through tracking and mapping several

hundreds of features.

Applications mentioned in this section can be categorized as offline and real-time. Offline

applications generally require heavy data processing. One such example for this operation

is terrestrial mapping. We can group real-time applications into two groups as off-board

and on-board from visual processing perspective. Off-board applications transmit data to

the ground processing unit. This transmission requires wireless data link with high bit

rate. Therefore, it is power consuming. On-board applications need to carry a companion

processing unit. This unit needs space on the board and it consumes valuable onboard

power. Hence processing power demand by the visual application becomes very important

for on-board applications.

2.2. TRACKING

Visual object tracking is the task of locating a target (or multiple targets) over sequential

video images. Visual tracking is a fundamental field of study in computer vision. Its

scope of usage varies from human-computer interaction, surveillance, traffic control to

medical imaging, and augmented reality. Main objective of object tracking is finding

similarities between object in sequential video frames to obtain location, velocity, direction

6

information of the target. It cannot be said that there is a certain algorithm that provides

a superior performance. Performance of trackers can vary depending on the target or

environment. Moreover, they may perform differently under various tracking challenges

such as varying lighting condition and occlusion. In this section, a collection of trackers are

listed. Moreover, studies that implement tracking process using unmanned aerial vehicle are

reviewed.

Visual object tracking is a well-studied problem in literature. Every year, challenges are

organized across the world. If we look at the historical evolution of visual trackers, we see

that generative methods are generally used until mid 2000s. Then discriminative methods

are widely studied until 2014. Then, correlation filter based tracker emerged. These trackers

demonstrate high tracking performance and operation speed. Nowadays, deep learning

based methods yield the best performance in tracking success. However, these methods

require high computational power for real-time applications.

Yilmaz et al. [2] present a survey on trackers. It is the first comprehensive tracker survey

in literature that can be considered as a good reference to understand main types and

methodology of tracking problem. Smeulders et al. [21] present a more recent survey with

nineteen trackers which appear until 2011. This survey covers most of the trackers and it

also evaluates and compares trackers on a common dataset. A benchmark on an aerial image

is presented by Li et al. [22]. In this work a novel camera motion model is implemented and

compared with different type of trackers.

Briechle et al. [23] presented the most common act of tracking as directly matching

target and candidate patches with normalized cross-correlation measure. Baker et al. [24]

presented a Lucas-Kanade tracker which matches affine-transformed target patch bounding

box and candidate patches windows around the previous location. Arandjelović [25]

implemented a similar method on aerial images with vehicles as targets. Nguyen et al. [26]

handled occlusion problem with appearance-predicted matching. The target is represented

by 20x20 template intensities each of which is associated with a separate Kalman filter.

Adam et al. [27] matched ensemble of patches obtained from target bounding box by

breaking it into patches. Tracker can handle partial occlusion and pose changing patch

by patch. However, fragments or patches are easy to drift away around the ones with similar

7

appearance. Meer et al. [28] performed a mean-shift tracking by matching histograms

rather than using any spatial information. Oron et al. [29] pursued adaptation in object

by matching flexible rigidity. Target patch is represented by super pixels which consist of

center of mass and average HSV values. Ross et al. [30] presented a particle filter tracker

that computes eigen images of the target with incremental PCA over target’s intensity-value

template. Kwon et al. [31] used traditional (translation, scale, rotation) motion types to

extend target’s appearance model. Maggio and Cavallaro [32] divided object into four non-

overlapping rectangle parts. It conducts the object searching by mean shift, which has poor

adaptability for appearance and illumination change. Cao et al. [33] presented a KLT based

tracker using good features to tracking airborne videos [34]. These tracking methods require

a model to operate and they need to maintain the condition of the template.

Kim et al. [35] proposed an emergency navigation system that works in GPS-denied

environments. During the flight, in case of sudden absence of GPS signal, proposed

navigation system keeps relative navigation and starts visual object tracking. Hence, the

vehicle with the proposed system does not lose its location completely and wonders around

a ground land mark even if its location is unknown. Kernelized mean-shift tracker is used to

track the landmark. Then, the tracker output is combined with an inertial sensor unit (IMU)

through an extended Kalman filter (EKF). Thus, it can perform its state estimation.

Yang et al. [36] proposed a method that generates the HSI histogram of the super pixels

from extended target region. Using mean-shift clustering algorithm super pixels are grouped

with a confidence value. In new frame, candidate windows are sampled with Gaussian

distribution. Candidate window with highest confidence value is considered as the target.

Lu et al. [37] obtained a probability map using local binary pattern, color histogram

local binary pattern (LBP) histogram, RGB color histogram and pixel-pattern-based texture

feature (PPBTF) histogram with three different SVM classifier. Then, it uses mean-shift

algorithm to obtain modes of the probability map. Afterwards, image features are used for

improving mean-shift tracking algorithm. Xiaoyan and Shir [38] used local binary pattern

features in addition to color histogram. A Kalman filter is used in case of partial or full

occlusion occurs.

8

Szottka and Butenuth [39] presented an improved version of particle filter. Particles

represent state vector as location and direction. Standard particle filter is concerned

additions from three aspect has been made, particle distribution, particle guiding and

template update. Distribution of particles is implemented efficiently by adding sequential

adaptive noise to motion model. Particle guiding is added by changing directions of fraction

particles according to best matching particle. Template update is implemented by changing

likelihood function adaptively. However proposed system does not include detection of

vehicles. Initialization parameters and start location of vehicles are done manually.

Canosa et al. [40] presented a real-time method to detect and track moving objects

(DATMO) from UAVs using a single camera. Moving objects are detected using optical

flow and the targets are tracked using Kalman filter. System can work real-time on an on-

board PC. It is vulnerable to sudden camera view changes. Target needs to have minimum

speed to be distinguished by optical flow detection algorithm.

In the mentioned studies, there are a number of trackers for different use cases. As for

UAVs, real-time tracking operations are conducted rather on-board or off-board. For on-

board applications, a secondary processing unit is added to the UAV. This unit can be either

a single board PC with high processing power or FPGA or GPU if the main purpose is

parallel processing. However, these units require additional space and they increase the

power consumption of the vehicle. There are limited studies on implementing a vision task

such as tracking on a microcontroller. We aim to fill this gap by proposing a lightweight

visual tracker that can run even on a microcontroller.

2.3. OBJECT DETECTION

Object detection is one of the main parts of visual tracking. In this section, we revisit

the common object detection methods; then focus on applications with UAVs. Studies in

literature can be categorized in different groups yet a certain distinction cannot be made

because fusion of multiple methods can be found in many studies. Object detection can be

realized based on matching of feature points of the target and the candidate. Harris, KLT and

SIFT are the most commonly used features in object detection [3, 41, 42]. Moving objects

can be detected by background subtraction. Wu and Zhang [43] and Liu et al. [44] presented

9

object detectors using relatively constant background images. However, these detectors are

highly sensitive to illumination. Statistical features of pixels can be used for background

subtraction with the mixture of Gaussian method to obtain changing background [45, 46].

Davis et al. [47] presented a detector which uses mean, standard deviation, and brightness

changing values of pixels.

Object detection in aerial images has been broadly studied in literature. A comprehensive

survey is presented by Cheng and Han [48]. This study reviews publications on this field by

categorizing them into four groups as template matching, knowledge, feature, and machine

learning based object detection methods.

Detection of various objects using UAVs have been submitted. Rodriguez et al. [49]

developed a low cost UAV for land-mine detection. Malek et al. [50] detected palm trees

using UAV images. Popp et al. [51] and Katrasnik et al. [52] proposed power line inspection

with mobile robots and discussed for navigation and avoidance purposes. Chen et al. [53]

presented a study on inspecting buildings in order to detect structural changes using RGB-D

camera. Popp et al. [54] presented a real time building detection system on UAV. Flores et

al. [55] presented a system about finding and passing through a window with a micro UAV

(MAV) in GPS-denied environments. Yang et al. [56] proposed a method for landing area

detection using SIFT features. Moranduzzo et al. [57] presented an offline car counting

implementation in high resolution UAV images. Asphalt areas are obtained from geographic

information system (GIS). SIFT features are generated in segmented asphalt areas. Obtained

feature points are merged using morphological operations. SVM classifier is deployed to

classify merged key points. Tuermer et al. [58] presented a pipeline for detecting vehicles

in dense urban areas. The road information is obtained using road database and global

digital elevation map (DEM). Disparity map is generated on road segments. Irrelevant

parts (vegetation, buildings) are eliminated using height information. Remaining parts are

classified based on histogram of gradients (HOG) features. For tracking applications, feature

points are needed to be matched between target and candidate. Object detection methods

based on features like SIFT and HOG are very time and memory consuming methods.

Classification processes combined with these features increases demand for the process

power from application platform.

10

Liu and Mattyus [59] proposed a method for detection and classification (car/truck) of

vehicles. The vehicle location is detected by using integral channel features in 21-MPixel

images. Detected vehicles are classified with a binary classifier which gives the type and

orientation of the vehicle. Their system is implemented in an off-board PC. Proposed system

takes a few seconds to produce result. Thus it is not suitable for real-time applications.

Chen et al. [60] proposed system that is based on a deep neural network to detect vehicles in

satellite images. A hybrid deep neural network is implemented in order to learn rich features

at many scales. Kluckner et al. [61] presented a method for counting cars in aerial images.

An on-line AdaBoost algorithm is deployed for learning and selecting features. Also stereo

matching information is used to reduce false positive results.

Our object detection method can work with simple feature detection methods and relies

on probabilistic detection hence it does not require an additional matching step during the

tracking process.

2.4. BENCHMARK METHODS

We selected several trackers from literature in order to compare our tracker’s performance.

Simple template and histogram matching methods are implemented with Kalman and

particle filters. Besides these classical methods, state of the art trackers are also included for

the benchmark results. These trackers are selected from survey [22]. Since the main targeted

platform of this work is microcontrollers, neural network based trackers which require heavy

computing power are excluded.

Kalman filter is one of the most commonly used in Bayesian tracking framework. In

order to compare our tracking algorithm with a standard Kalman filter, we implemented a

template matching based tracker. Details of the Kalman filter implementation are explained

in the following sections. We implemented a template matching detection algorithm as

implemented in OpenCV as

R(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))
2 (2.1)

11

where T is the template image of the target, I is the input image and R is the resultant map

of the correlation calculation [62]. This map is calculated in an interested region and the

maximum valued location of the map is accepted as target location. Then this result will

become the measurement input to Kalman filter.

We also implemented a reference particle filter tracker for comparison. Particle filter is

another method in Bayesian tracking which is described in detail in following sections.

For this purpose, we selected a color histogram matching method as introduced in [28].

As mentioned earlier, Meer et al. performs a mean-shift algorithm for tracking with color

histogram matching using Bhattacharyya distance. They estimate target model pdf as

q̂ = {q̂u}u=1,2,···m

m∑
u=1

q̂u = 1 (2.2)

and candidate model pdf as

p̂(i) = {p̂u(i)}u=1,2,···m

m∑
u=1

p̂u = 1 (2.3)

where i denotes the candidate number. Then, the Bhattacharyya distance is calculated for

every candidate as di =
√

1− ρ(p̂(i), q̂) where ρ is the Bhattacharyya constant calculated

as ρ(p̂(i), q̂) =
∑m

u=1

√
p̂u(i)q̂u.

Instead of the mentioned Bhattacharyya distance, in this study we used its modified version

as wi = eαdi for weight distribution in standard particle filter. Here, α is the decaying

constant for monotonically decreasing similarity function.

Another tracker that we select as a benchmark is the kernelized correlation filter (KCF)

tracker [63]. KCF is one of the famous tracking-by-detection trackers in literature. KCF

converts the convolution process with element-wise multiplication by exploiting circular

12

matrix properties. This process speeds up the detection process such that it can run up to

300 fps. Moreover implementation of KCF is very easy. It can be realized with few line of

codes in MATLAB.

Another method that we will be using in comparison is the DAT tracker [64]. DAT uses the

target color histogram in order to construct Bayes decision rule. It can potentially detect

possible distractions near the target and prevents the tracker to drift away. This approach

allows efficient scale estimation. Therefore, it improves the accuracy and robustness

performance of the tracker.

Zhang et al. [65] proposed a model to solve drift problems in online tracking with using

multi-expert ensemble method (MEEM) of a tracker and its past snapshots. Instead of

preventing bad updates on model, a correction method is used to minimize the effects of

unwanted updates after they happen. The best expert is preferred to update current tracker

by choosing the minimum entropy one when a disagreement among experts occur. The main

tracker is utilized from online SVM on a budget algorithm and an explicit feature mapping

method is used to make more efficient updates and results.

Wang et al. [66] studied state-of-the-art trackers in literature. The study focuses on effects

of each tracker component on performance. They take into consideration five components

of trackers such as motion model, feature extractor, observation model, model updater,

and ensemble post-processor. Their results show that the feature extractor is the most

important part of tracker to improve tracking performance. Observation model selection

also affects the performance if weak features are used. When the observation model and

feature extractor effects are analyzed on the tracking performance, motion model has an

insignificant effect. Under scale variation and fast motion, design of the motion model

properly gets an important role to improve performance of the tracker. Despite model

updater have very significant impact, the number of studies are limited. Finally, the

ensemble post-processor has a significant contribution on the performance during study with

high diversity. We will refer this study as HOGLR in the following sections.

Danelljan et al. [67] presented an approach to solve estimating the location of a target in each

frame of an image sequence problem. They propose a tracker which learns discriminative

13

correlation filters for estimating translation and scale separately. We will refer this study as

DSST in the following sections.

14

3. THE PROPOSED METHOD

This chapter explains the proposed object tracking method in detail. General block diagram

of our tracker is as in Figure 3.1. As can be seen in this figure, our tracker estimates the

target location in the update step by combining two sources of information as measurement

and prediction. All steps in this diagram, as measurement, prediction, and update are

represented in probabilistic form within our method. This indicates that output of each

step is probabilistic as well.

Figure 3.1. Block diagram of the proposed tracker.

We can briefly summarize our tracking framework based on Figure 3.1 as follows. When

a new frame comes, we first obtain the probabilistic object representation. This leads to

the measurement step, which indicates the existence of the target being tracked. Next,

the prediction step generates a pdf from motion of the target. Afterwards, the update step

combines these two pdfs to produce the final pdf which locates the target. In this chapter,

we will present the calculation and variations of these steps. First, we will construct our

probabilistic object representation in Section 3.1. Then in Section 3.2, we will present the

Bayesian tracking framework which is a recursive algorithm that associates measurement

and prediction pdfs. In Section 3.3, we will discuss how to obtain measurement pdf with

our object representation and how to conduct prediction step based on dynamic motion

models. Finally, in Section 3.4 we will present different implementations of Bayesian

15

tracking algorithm as grid-based approach, particle and Kalman filtering.

3.1. PROBABILISTIC OBJECT REPRESENTATION

Assume that we have a sequence of images at hand and we would like to track an object of

interest within this sequence. Let’s call the image sequence as Ik(x, y) where k represents

the image (frame) number in the sequence. We base our method on discrete time instants

such that the initial time is taken as k = 0. Hence, the first image becomes I0(x, y). The user

selects the target object to be tracked in this first frame. As a result, we have the template

image subwindow as T (x, y) = I0(xc ± w/2, yc ± h/2) where (xc, yc) is the center of the

object to be tracked. Here, w and h are the width and height of the subwindow, respectively.

We provide the schematic representation of this operation in Figure 3.2. For simplicity target

is illustrated as a rectangle box in a region of interest. In an actual operation, the target to be

tracked can have a more complex shape.

Figure 3.2. Toy image that illustrates the first image of the sequence.

There are three fundamental object representation methods in object tracking literature [21].

The first one is based on 2D array like image data which is used by NCC [23]. Similarly,

the KCF method holds the object information as FFT of the template image. This kind of

representation is vulnerable to a change in size of the target. Even if the target’s shape

may be consistent during the tracking sequence, its size may change due to camera or

target’s motion. This type of challenge can be overcome by increasing the search space

of the tracker. Since it needs to search the target for different size values, computational

16

cost increases too. The second object representation method is to represent the target as

a 1D histogram. The mean-shift tracker uses color histogram to represent the target to be

tracked. However, this type of representation discards the geometric information. The third

representation is using feature vectors. This representation requires matching of features in

sequential images [2]. This is a computational power demanding process.

In this study, we benefit from our previous work on object detection in satellite images

[68, 69]. There, we proposed a method which can be taken as the simplified form of implicit

shape model [70]. Our method depends on feature (keypoint or corner) extraction from the

image. Then, each keypoint (corner) votes for a possible object location. This way, the

object to be detected is represented as a sample pdf in spatial domain. Modes of this pdf

indicate possible objects in the image. In this study, we improve this method such that it fits

to the object tracking framework. This allows us to model the object to be tracked with few

parameters. Next, we will exploit this functionality to represent the target to be tracked in a

given image sequence.

3.1.1. Preprocessing and Corner Extraction

We model the object to be tracked by its corner points in our method. The main advantage

of this approach is that we do not have static shape-based model which needs to be updated

throughout the tracking process. As for corner point extraction, we pick the Harris corner

detector since it is easy to implement and provides fairly good performance for our tracking

scenarios. To note here, we also tested other keypoint (corner) extraction methods such as

KLT, SURF, and MSER. However, they did not give good results compared to the Harris

corner detector as will be analyzed in Chapter 5.

Before extracting Harris corners, we have a preprocessing operation as modifying the image

by an appropriate filter such as bilateral, sharpening, low-pass or median. The aim here is

to help the corner extraction operation. Hence, we use the subwindow T (x, y) after filtering

as illustrated in Figure 3.3. In this figure, we illustrated the search region.

In Figure 3.3, we illustrated the target as a rounded rectangle box. However, in practice it

may have a more complex shape. We then extract Harris corner points from the image. We

provide the schematic representation of this operation in Figure 3.4. Here, red dots represent

17

Figure 3.3. Image patch which includes the target to be tracked.

the extracted corner points.

Let’s represent the extracted corners at time step k as αjk = (xj, yj) where j = 1, · · · , Nk

and Nk is the total number of extracted corner points from the subwindow T (x, y) in the

given time step. Here, (xj, yj) represent the spatial coordinate of the extracted corner point.

3.1.2. Graph-based Clustering

There may be more than one Harris corner point extracted for the actual object corner or

multiple corner points may emerge very close to each other. Besides, there may be undesired

corners due to noise and other sources in the image. Therefore, we apply a graph-based

clustering method on all extracted corner points, αj0 for j = 1, · · · , Nk, from the first frame.

Graph is a structure that consists of a finite set of vertices V and edges E represented as

G = (V,E). Within our graph, vertices are our corner points. Hence, we have V =

{α0
0, · · · ,α

Nk
0 }. Edges, E, in the graph represent the link between vertices. For our graph,

we have E = {(αi0,α
j
0)} for i, j = 1, · · · , Nk. Then, we obtain the adjacency matrix D

summarizing the relation between vertices of the graph as

18

Figure 3.4. Extracted corner points from the image patch.

D =


0 d12 d13 · · · d1N

d21 0 d23 · · · d2N

...

dN1 dN2 dN3 · · · 0

 (3.1)

where dij = ||αi0 −α
j
0||.

We threshold the adjacency matrix to obtain

D =


0 a12 a13 · · · a1N

a21 0 a23 · · · a2N

...

aN1 aN2 an3 · · · 0

 (3.2)

19

where

aij =

1, if dij ≤ ε

0, if i = j or dij > ε

(3.3)

Here, ε is the threshold value that determines the spatial closeness of different corner point

locations.

By thresholding, we obtain the modified adjacency matrix which we can extract subgraphs.

Our subgraph representation is such that each subgraph member is connected to at least one

of its other subgraph member. In other words, there is always a path between subgraph

members. This way, we obtain S subgraphs represented by Gs and G =
⋃S
s=0G

s. Each

subgraph represents a cluster. Hence, we obtain the graph based clustering this way. Due

to the complex characteristics of the objects to be tracked, we set ε as 0.005 of the target’s

patch area which yields S ≈ 10 for our test case. However, this number can be set by

an automated method based on the object characteristics to be tracked. We provide the

schematic representation of these operations in Figure 3.5. As can be seen in this figure,

corners that are close to each other form subgraphs.

To note here, we do not form the graph representation G = (V,E) besides the first frame in

the image sequence. Instead, we use a Gaussian pdf to represent each cluster in subsequent

images. Therefore, the proposed method does not have an excessive computation load in

object tracking. We explain the Gaussian pdf based probabilistic object modeling next.

3.1.3. Probabilistic Object Modeling

We represent each cluster by a Gaussian pdfN (µs0,Σ
s
0) in the first frame in order to handle

the uncertainty in the extracted corner points and clusters extracted from them. Here, µs0 =

(xs, ys) is the sample mean of the corners (vertex locations) and Σs
0 is the covariance matrix

of corners taken as

20

Figure 3.5. Subgraphs obtained from extracted corner points.

Σs
0 =

 σ 0

0 σ

 (3.4)

where σ = max(σx, σy) and σx and σy are the standard deviation of vertex locations of

the subgraph Gs in x and y coordinates, respectively. We select Σs
0 as in Eqn. 3.4 so that

we have a symmetric Gaussian pdf. This allows us to have some degree of flexibility to

object representation changes such as object rotation in the tracking process. We provide

the schematic representation of this operation in Figure 3.6. Here, we represented each

cluster location by a Gaussian pdf.

As we have the Gaussian pdf representing clusters, Gs = N (µs0,Σ
s
0) for s = 1, · · · , S,

we can represent the object to be tracked by the center point of the subwindow T (x, y) =

I0(xc±w/2, yc±h/2). To do so, we ask the user to label the center point of the object to be

tracked (xc, yc) in the first frame, as mentioned earlier. We represent this point with another

Gaussian pdf as N (µc0,Σ
c
0) where µc0 = (xc, yc). Σc

0 is taken as the identity matrix in the

first frame. At this stage, we associate Gs with the labeled object center point, by forming

21

Figure 3.6. Representation of clusters with Gaussian pdf.

voting vectors between µs0 for s = 1, · · · , S and µc0. The vote vector of each cluster is then

represented as vs = µs0 − µc0 for s = 1, · · · , S. We provide the schematic representation

of this operation in Figure 3.7. In this figure, vote vector for each cluster is obtained by

subtracting cluster’s mean location from the object center location.

Figure 3.7. Vote vectors defined for each cluster.

22

Each cluster Gs is then represented by its vote vector vs, mean vector µc0, and covariance

matrix Σc
0. Based on this representation, these clusters vote for the center of the object

to be tracked. We also have N (µc0,Σ
c
0) to represent the object center. We fuse these two

representations by multiplying the associated pdfs. As a result, we represent the object as a

pdf in spatial (image) domain. To note here, we are calculating pdf values in discrete spatial

domain. Hence, the pdf value also represents the corresponding probability value of that

pixel. This is because of the definition in discrete random variables. Hence, we will use the

probability and pdf naming interchangeably from this point on.

We can obtain the pdf of the object for a given set of clusters as

p(x|Gs) = N (µc,Σc)
S∏
s=1

N (µs
′
,Σs′) (3.5)

where µc is the center point of the clusters. µs
′ is the location which maximizes the

probability indicated by a cluster. We can obtain this location as µs′ = vs + µs, adding

cluster vote vector to cluster mean location. We provide the schematic representation of this

operation in Figure 3.8. In this figure, each cluster mean is translated according to its vote

vector. We fit Gaussian to each translated location and also center of the clusters. Then, we

multiply all these Gaussian pdfs as in Eqn. 3.5.

As mentioned earlier, this probabilistic representation originates from our previous work.

The probabilistic object representation method proposed in this study is the enhanced

version of our previous work since it is specifically formed to track objects in image

sequences. Besides, it will be merged with the Bayesian object tracking framework in a

synergistic way to be explained in detail in Section 3.4.

Till this point, we formed a structure to represent the object to be tracked in a probabilistic

framework. Our aim here was to form a flexible yet powerful method such that the object

can be tracked in a robust manner under various disturbances such as occlusion, object size

and appearance change due to changing camera location, object color change due to lighting

23

Figure 3.8. Obtaining the object pdf.

effects, and viewpoint change due to changing camera location.

With our probabilistic object representation, we keep very few parameters about the target.

Yet, we can provide a generalized and flexible object model. This is the most powerful

aspect of our approach. We can emphasize this by a simple example. Let’s say the object to

be tracked is given in a 100 × 100 image patch. If we want to represent our target with the

patch directly, we need to hold 10000 parameters. Moreover, this patch needs to be updated

according to changes in the sequence which also increases the computational load. Let’s say

that we chose the cluster size as 10 with our probabilistic object model. We can represent the

same object with 10×2×1×2 = 40 parameters. This difference is highly crucial for object

tracking implementations on hardware limited platforms such as microcontroller. One can

also argue that, the object to be tracked can be represented with color histogram having 256

parameters. The first limitation here is selecting the proper bin size. More importantly, we

discard the information about geometrical shape of the target if we follow this path.

3.2. BAYESIAN OBJECT TRACKING FRAMEWORK

The next step in our method is forming the object tracking structure. Here, we benefit from

the Bayesian tracking framework based on a probabilistic recursive algorithm that enables

24

association of target locations through successive time steps. Since we have a probabilistic

object representation as introduced in the previous section, it naturally fits to this framework.

Before going further, we should explain the general Bayesian tracking framework. To do

so, we extensively benefit from the seminal work of Arulampalam et al. [6] in the notation

and description steps.

3.2.1. State Representation

We represent the target being tracked by a vector xk. This is called state vector of the target

within the Bayesian tracking framework. We can form the state vector for our tracking

method as

xk =



xk

yk

ẋk

ẏk

ẍk

ÿk


(3.6)

where (xk, yk) represent the target location, (ẋk, ẏk) represent the velocity, and (ẍk, ÿk)

represent the acceleration at time step k in x and y coordinates, respectively.

3.2.2. Dynamic System and Measurement Models

We represent the state evolution by two recursive equations as dynamic system and

measurement models within the Bayesian tracking framework. We have the dynamic system

model as

xk = fk(xk−1,wk−1) (3.7)

25

where the function fk relates the current and previous states of the target with an associated

noise parameter, wk−1, called the process noise. This relation is obtained from the motion

of the target.

At each time step, we also make measurements from the tracking operation. This is called

the measurement model represented as

zk = hk(xk,nk) (3.8)

where the function hk relates the state and measurement values of the target with uncertainty

as associated noise parameter, nk, called measurement noise.

3.2.3. Probabilistic Representation

The Bayesian tracking framework represents the present state of the object in a probabilistic

way based on previous state and measurement values. In other words, we frame the tracking

problem as obtaining p(xk|z1:k). Here, we have probability of the target being tracked as

p(xk−1|z1:k−1) at each time step. To note here, we do not take any measurements in the

first frame. Therefore, the time index in the measurement vector always starts with value 1

instead of 0 in our operations.

We predict the target’s current state based on previous measurements p(xk|z1:k−1) as

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.9)

where p(xk|xk−1) can be calculated using the dynamic system model in Eqn. 3.8, and

p(xk−1|z1:k−1) is the posterior target state probability in the previous time step including

the all the observations from time steps 1 to k − 1. Then, p(xk|z1:k−1) is called the prior

probability for the target being tracked for the time step k.

26

Since our ultimate goal is to estimate p(xk|z1:k), we can rewrite the prediction probability

using Bayes’ rule as

p(xk|z1:k) =
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.10)

Note that the denominator in Eqn. 3.10 is independent of the target state. Thus, it can

be expressed as normalizing factor η. With Markov process assumption, the current

measurement only depends on current state of the target. Hence, p(zk|xk, z1:k−1) =

p(zk|xk). This probability can be obtained from the measurement model. In Eqn. 3.10,

p(xk|z1:k−1) is the prediction probability as in Eqn. 3.9. We can write the posterior

probability of the target state xk given all measurements up to and including time step k

as

p(xk|z1:k) = ηp(zk|xk)p(xk|z1:k−1) (3.11)

We can associate the state of target being tracked between time steps by computing the prior

probability p(xk|z1:k−1) by using the dynamic system model and the likelihood probability

p(zk|xk) based on the measurement model. To note here, we can track the target solely

based on our object representation as explained in Section 3.5. However, using the Bayesian

framework improves the performance of our tracker. We will show this effect in Chapter 5.

3.3. MERGING PROBABILISTIC OBJECT REPRESENTATION AND BAYESIAN

TRACKING FRAMEWORK

We can use our probabilistic object representation, introduced in Section 3.1, in the Bayesian

tracking framework. To do so, we explain how our object representation fits in the dynamic

system and measurement models. We also consider how prediction and update operations

are done in the Bayesian framework in this section.

27

3.3.1. Our Dynamic System and Measurement Models

We can represent the dynamic system model in Eqn. 3.7 for our problem as follows. Due to

characteristics of the motion of objects to be tracked, we can assume that the target state xk

evolves according to

xk = Fxk−1 + ωk−1 (3.12)

where F is obtained from the motion model.

The motion model is the essential part of tracking systems. There are different options for

the motion model in literature for dynamic systems [71]. Generally, there are two motion

model types as non-maneuvering and maneuvering target dynamic models. In our method,

we assume that our target is not maneuvering in consecutive frames. Therefore, constant

velocity or constant acceleration models are used for our tracker. The motion model is the

mathematical representation of the motion of the target. One dimensional linear motion can

be expressed as

distance = velocity × time+
1

2
acceleration× time2 (3.13)

Since the acceleration is second derivative of the distance, this is a second order differential

equation. The constant velocity model represents this differential equation as matrix. For

28

the state representation given in Eqn. 3.6, the constant velocity model leads to

F ,



1 0 ∆ 0 ∆2

2
0

0 1 0 ∆ 0 ∆2

2

0 0 1 0 ∆ 0

0 0 0 1 0 ∆

0 0 0 0 1 0

0 0 0 0 0 1


(3.14)

Here, ∆ is the target sampling interval (time difference between two frames).

The process noise at time step k, ωk, in Eqn. 3.7 is assumed to be multivariate Gaussian

with zero mean and covariance matrix Q as

Q , ρ



∆6

36
0 ∆5

12
0 ∆4

6
0

0 ∆6

36
0 ∆5

12
0 ∆4

6

∆5

12
0 ∆4

4
0 ∆3

2
0

0 ∆5

12
0 ∆4

4
0 ∆3

2

∆4

6
0 ∆3

2
0 ∆ 0

0 ∆4

6
0 ∆3

2
0 ∆


(3.15)

Here, ρ denotes the process noise parameter derived from jerk. We assume that we have

perfect information about the target process (or motion) model in Eqn. 3.12.

We formulate the measurement model separately for object tracking using particle filter and

Kalman filter. We will introduce these in detail later in this section.

3.3.2. Our Prediction Operations

For prediction operations, we first crop a search region from current image Ik(x̂k|k−1 ±

w′/2, ŷk|k−1 ± h′/2) where (x̂k−1|k−1, ŷk−1|k−1) is the target location estimate for time step

29

k − 1. (x̂k|k−1, ŷk|k−1) is their propagated version based on Eqn. 3.12. Here, w′ and h′ are

width and height of the search region.

Let Σs
k−1|k−1 be the covariance matrix of each cluster at time step k− 1. From µsk−1|k−1, we

then propagate the mean location of each cluster for time step k, µsk|k−1 based on the process

model in Eqn. 3.12. We assume that predicted covariance matrix of each cluster remains

unchanged as Σs
k|k−1 = Σs

k−1|k−1. To note here, we made this assumption because Σs
k|k

has relatively small effect on association process where it will be used. This process will be

explained later in the next section. This parameter may be updated based on scale change of

the target. We provide the schematic representation of these operations in Figure 3.9. In this

figure, we illustrated the propagation of the clusters according to predicted target location.

Figure 3.9. Predicted location calculation from the dynamic system model.

3.3.3. Our Update Operations

We obtain the corner points αk within Ik(x̂k|k−1 ± w′/2, ŷk|k−1 ± h′/2) for the update

operations during time step k. Then, we associate each new corner point to one of the

propagated clusters. We exclude the outlier corner points from the extracted ones. Here, we

take a corner point to be an outlier if it is 3σ away from the propagated cluster mean µsk|k−1.

We select the 3σ value as threshold since it covers the 99.7 percent of the Gaussian pdf.

Hence, we obtain a set of corner points as αk = {αjk}
Nk
j=1. We provide the schematic

30

representation of these operations in Figure 3.10. Here, we illustrated the association

process of the corners to clusters. The corner point at middle left remain not associated

because it is considered as outlier.

Figure 3.10. Association of corner points to propagated clusters.

We can rephrase the operations in Figure 3.10 as follows. αjk is assigned to a cluster with

respect to its distance to the propagated cluster mean µsk|k−1. Each new corner αjk then

indicates the presence of the target at location mj
k subject to the vote vector of its cluster vs.

In other words, we have mj
k = αjk + vs for j ∈ {1, 2, · · · , Nk}. The set of all mean target

locations pointed by the corners are represented as mk = [m1
k,m

2
k, · · · ,m

Nk
k]. We provide

the schematic representation of these operations in Figure 3.11. Here, we illustrate locations

which maximize the target location probability of each corner point.

We use yet another indication of the target in order to improve measurement. To do

so, we obtain the center point µc from bounding box of corner points, mk, which were

included in the association step. We provide the schematic representation of this operation

in Figure 3.12. Here we draw a rectangle that surrounds the associated corner points and

calculate the center of rectangle.

Given the unobserved target state xk, the first set of measurements is the corner points αk.

The second set of observations is the indicated target locations mk based on the corner

31

Figure 3.11. Indication of the target based on corner locations after association.

Figure 3.12. Center of the rectangle which surrounds the associated corner points.

32

points. We can then have an observed target location zk from mk and µc where we define

the mode of p(mk,µc|xk) as the observed target location zk. As a result, we get the chain

of observations from the unknown target state xk from a single frame at time step k as

xk → αk →mk,µc → zt.

We can then define the likelihood pdf p(zk|xk) ≈ p(mk,µc|xk) used in Eqn. 3.11 with

these measurements at hand. To note here, we use the Eqn. 3.5 for probabilistic object

representation. Here, we use the same relation to estimate target state. Assuming conditional

independence,

p(mk,µc|xk) = p(mk|xk)p(µc|xk) (3.16)

Here, p(mk|xk) is the conditional pdf of corner locations for given target location. We

can expand this pdf as p(mk|xk) = p(m1
k,m

2
k, · · · ,m

Nk
k |xk). Assuming conditional

independence again, we will have

p(mk|xk) =

Nk∏
j=1

p(mj
k|xk) (3.17)

After the measurement is complete, we conduct the updating operation as in Eqn. 3.11. We

obtain the prior pdf p(xk|z1:k−1) as in Eqn. 3.9 and likelihood pdf p(zk|xk) as in Eqn. 3.16.

By multiplying these two pdfs, we obtain the target pdf p(xk|z1:k) for time step k. We

illustrate the pdfs before update step in Figure 3.13(a). We illustrate the final pdf after

update step in Figure 3.13(b). We accept the mode of this pdf as location of the target being

tracked.

In this study, we use mk and µc as our measurements from the target state xk to estimate

the target state x̂k since we have the proposal pdf p(xk|xk−1) which can be used for particle

filtering. On the other hand, we use zk as our observation in order to find the estimated

33

(a)

(b)

Figure 3.13. Illustration of our update operation. (a) Pdfs before the update step (b) Final

pdf after the update step.

34

target location xk|k in Kalman filtering. We will explain these in detail in Section 3.4.

3.3.4. Updating the Probabilistic Object Representation

Target properties such as shape, rotation, and scale may change during the tracking process.

In order to adapt such changes, trackers generally update their object representations in

two different ways as short- and long-term update. Short-term update is used to handle

more temporal or small changes in the target such as partial occlusion. On the other hand,

long-term update is used to cover more persistent or major changes such as scale or shape.

Usually short-term update is applied at ever time step. On the other hand, long-term update

is applied less frequently such as on every 10 or 20 steps.

For our tracker, we also define short- and long-term updates as well. We update the cluster

means in every time step as for short-term update. We update the vote vectors which are

associated to clusters in every 10 steps as for long-term update. Let’s explain them in detail

next.

We can explain the short-term update in our method as follows. After estimating the target

location x̂k at time step k, we update the probabilistic representation of each cluster Gs as

follows. We translate the target location in reverse direction of the cluster vector µs′ =

x̂k − vs for each cluster. We then compute the distance of each corner located in Gs to µs′

as λs,j = ‖µs′ − αs,jk ‖ where
{
αs,jk

}Ns
k

j=1
and N s

k are the total number of corners located in

Gs at time step k. Upon normalizing the weights for each cluster as

λs,j =
λs,j∑Ns,k

j=1 λ
s,j

(3.18)

We update the mean cluster location µsk|k as

µsk|k =

Ns
k∑

j=1

λs,jαs,jk (3.19)

35

We provide the schematic representation of this operation in Figure 3.14. Here, purple points

are obtained from back propagation of the object center for each cluster. Corner points are

weighted according to distance to these purple points. Then, new cluster means become the

weighted sum of the corner points.

Figure 3.14. Updating cluster means.

We can explain the long-term update in our method as follows. We update the cluster

vote vector vs in every 10 frames. Vote vectors contain geometric information about the

target. In a streaming video sequence, usually changes in physical shape of the target in

consecutive frames are small. Therefore, we don’t need to update vote vectors in every time

step. Moreover, changing cluster vote vectors in every time step can cause to drift away

of the tracker in some cases such that if there are too many redundant corner points in the

background. Finally note that, we take precaution in case of drifting away from the cluster

mean. If any corner location is not assigned to a cluster in the association step for three

consecutive time steps, we relocate the cluster mean where closer to object center. To do so,

we decrease the length of the cluster’s vote vector to half.

3.4. APPROXIMATE BAYESIAN TRACKING METHODS

The merging operation introduced in Section 3.3 is applicable to the generalized Bayesian

tracking framework. In this section, we simplify this operation using three approximation

36

methods within the Bayesian framework as grid, particle filter, and Kalman filter based. We

explain implementation details for each method in detail next.

3.4.1. Grid Based Approximation

In practice, our search space is limited with image plane. Therefore we can approximate

prediction, measurement and update pdfs with discrete states which corresponds to image

pixel locations. Let’s assume the state space at time k−1 consists of discrete states xdk−1, d =

1, · · ·Nd where xdk−1 represent the pixel location and Nd is the total number of pixels.

Based on Arulampalam et al. [6], posterior pdf defined in Eqn. 3.11 at previous time step

k − 1 can be approximated as

p(xk−1|z1:k−1) =

Nd∑
d=1

wdk−1|k−1δ(xk − xdk) (3.20)

where δ is the Dirac delta function and wdk−1|k−1 is the weight obtained from pdf value at

given pixel location. Hence, we obtain the prior probability in Eqn. 3.11 by substituting

Eqn. 3.20 into Eqn. 3.9

p(xk|z1:k−1) =

Nd∑
d=1

wdk|k−1δ(xk − xdk) (3.21)

Similarly, we can apply this procedure to the update step defined in Eqn. 3.11. Hence, we

can obtain the update probability as

p(xk|z1:k) =

Nd∑
d=1

wdk|kδ(xk − xdk) (3.22)

37

where,

wdk|k−1 ,
Nd∑
d′=1

wd
′

k−1|k−1p(x
d
k|xd

′

k−1) (3.23)

wdk|k ,
wdk|k−1p(zk|xdk−1)∑Nd

d′=1 w
d′
k|k−1p(zk|xdk)

(3.24)

We accept the target location as highest weighted pixel obtained in Eqn. 3.22.

3.4.2. Particle Filter

For particle filtering, we consider the mean target location voted by each corner point mk =

[m1
k,m

2
k, . . . ,m

Nk
k]T as observations from the unknown target location xk for the time step

k. Here, Nk is the total number of corner points.

In the Bayesian framework, the minimum mean square error (MMSE) estimate of the target

state at time step k is

x̂k,MMSE =

∫
xkp(xk|m1:k)dxk (3.25)

where p(xk|m1:k) is called the posterior probability of xk given all the observations up to

and including time step k, m1:k = {m1,m2, · · · ,mk}.

Using only the posterior probability p(xk|m1:k), we can also have the maximum a posteriori

38

(MAP) estimate of the target location at time step k as

x̂k,MAP = arg max
xk

p(xk|m1:k) (3.26)

Furthermore, p(xk|m1:k) is conditioned as p(xk|m1:k) ≈ p(mk|xk)p(xk|m1:k−1) to

compute Eqn. 3.25 or 3.26. As a result, current observation only depends on the current

target state p(mk|xk,m1:k−1) = p(mk|xk). Here, p(xk|m1:k−1) is the prior probability of

xk given observations m1:k−1 up to and including time step k − 1.

Here, we model p(xk|m1:k) with a total of NQ particles xqk with associated weights wqk as

p(xk|m1:k) =

NQ∑
q=1

wqkδ (xk − xqk) (3.27)

Due to sifting property, MMSE estimate of the target becomes

x̂k,MMSE =

∫
xk

(
Nq∑
q=1

wqkδ (xk − xqk)

)
dxk (3.28)

=

Nq∑
q=1

wqkx
q
k (3.29)

Likewise, MAP estimate of the target becomes

x̂k,MAP = arg max
xq
k

wqk q ∈ {1, 2, . . . , NQ} (3.30)

39

We represent the uncertainty of each corner point around its voting direction with a Gaussian

pdf with mean mj
k = αjk+vs and covariance matrix Σj

k|k−1 at time step k. Here, we assume

that E[mj
k] = xk. We further assume Σj

k|k−1 = Σs to be fixed for all the corner points

within cluster s, namely j ∈ {1, 2, · · · , N s
k} as in Eqn. 3.4. Along with observations mk,

we further define a rectangle which covers all the corners {αjk}
Nt
j=1 in the subwindow. Then,

we represent the center of the rectangle as µc. We also use µc as a measurement along with

the pointed target locations mk. The measurement pdf now becomes

p(mk,µc|xk) = p(mk|xk)p(µc|xk) (3.31)

by using the conditional independence assumption. Here, p(mk|xk) is given in Eqn. 3.32

and p(µc|xk) is assumed to have a Gaussian pdf asN (µc,Σc). For simplification, we abuse

the notation and call p(mk,µc|xk) with only p(mk|xk) while stating all the propagation and

update equations. Finally, we model the joint pdf of {mj
k}

Nk
j=1 given the target location xk as

p(mk|xk) =
1

γ
exp

{
1

2
(µc − xk)

T Σc
−1 (µc − xk)

}

Nk∏
j=1

exp

{
1

2

(
mj

k − xk
)T

Σs−1
(
mj

k − xk
)} (3.32)

where γ is the scaling parameter to ensure p(mk|xk) is a valid pdf.

Since we use a set of particles xqk with their associated weights wqk to approximate

p(xk|m1:k), we determine the weight of each particle according to Eqn. 3.31 as

wqk ∝ p(mk|xqk) (3.33)

40

The Algorithm 3.1 then shows the brief generic particle filtering implementation as

mentioned in [6]. In this work, we picked the MAP estimate rather than MMSE estimate.

Because in final form, mode of the pdf which is the location that maximize the probability

is target location. MMSE estimate may result in another location different than the mode

if there is an accumulation of the corner points which do not belong the target. Finally, the

resampling step dismisses the particles which have zero weight and resets the weights of

significant particles back to N−1
Q .

Algorithm 3.1. SIR based Particle Filtering for Target Tracking

Set k = 1. Generate initial particles for k = 0 from a known distribution xq0 ∼ p(x0) with

∀q , wq0 = N−1
Q .

while k ≤ TS do

Propagate particles xqk = Fxqk−1 and p(xk|m1:k−1) ≈ 1
Nq

∑Nq

q=1 δ(xk − xqk).

Receive observations, mk = {m1
k,m

2
k, . . . ,m

Nk
k }.

wqk ∝ p(mk|xqk). (Updating weights based on Eqn. 3.31),

wqk =
wq

k∑Nq
j=1 w

j
k

. (Normalizing weights).

x̂k,MAP = arg max
xq
k

wqk q ∈ {1, 2, · · · , NS} (MAP estimate).

{xqk, N
−1
Q } = Resampling(xqk, w

q
k)

k = k + 1

end while

3.4.3. Kalman Filter

We generate the observed target location zk from the mode of the pdf p(mk|xk) and

determine the state estimate x̂k|k using the propagation and update properties of the Kalman

filter. In other words, we fit a single multivariate Gaussian to Eqn. 3.32 as

p(mk|xk) ≈ p(zk|xk) =
exp

{
−1

2
(zk −Hxk)

T R−1
k (zk −Hxk)

}
(2π)2|Rk|1/2

(3.34)

41

for Kalman filtering. Here, zk is called the observed target location and represents the pixel

which maximizes p(mk|xk). We assume E[zk] = xk and approximate the uncertainty of

p(mk|xk) with a single measurement error covariance matrix as Rk. The measurement error

nk between the observed target location zk and the actual target location xk is represented

as nk = zk −Hxk. This yields the measurement model

zk = Hxk + nk (3.35)

For our tracking problem, we have

H =

 1 0 0 0

0 1 0 0

 (3.36)

We further assume that the measurement error nk follows multivariate Gaussian pdf with

zero mean and covariance matrix, Rk as described in Eqn. 3.34.

Let x̂k|k be the a posteriori state estimate of the unknown state xk at time step k given

observations up to and including time step k and Pk|k be the a posteriori estimate covariance

matrix.

Prediction and update steps of the Kalman filter using the process and measurement models

given in Eqns. 3.12 and 3.35 are formulated as follows. Let x̂k|k−1 be the predicted (a priori)

state estimate of the unknown state xk and Pk|k−1 be the predicted estimate covariance.

Then, x̂k|k−1 and Pk|k−1 are determined from x̂k|k and Pk|k according to

x̂k|k−1 = Fx̂k−1|k−1 (3.37)

Pk|k−1 = FPk−1|k−1F
T + Q (3.38)

42

where Q is the process noise covariance matrix given as in Eqn. 3.15 . Given that the

observed target location is available at time step k, zk, update step evolves according to

ỹk = zk −Hx̂k|k−1 (3.39)

Sk = HPk|k−1H
T + Rk (3.40)

Kk = Pk|k−1H
TS−1

k (3.41)

x̂k|k = x̂k|k−1 + Kkỹk (3.42)

Pk|k = (I− LkH)Pk|k−1 (3.43)

where ỹk is the innovation residual, Sk is the innovation covariance, Kk is the Kalman

gain. Then, x̂k|k and Pk|k represent the updated (a posteriori) state estimate and a posteriori

estimate covariance, respectively.

Kalman filter is initialized with x̂0|0 and its covariance matrix P0|0. We determine the

predicted target location and its covariance matrix as in Eqn. 3.37. Upon having the

observation zk, we execute the update step in Eqn. 3.39.

3.5. TRACKING BY DETECTION ONLY

In the absence of a motion model (or prior information), the unknown target state xk is

estimated by maximizing p(mk|xk) as

x̂k,ML = arg max
xk

p(mt|xk) (3.44)

43

where x̂k,ML is called the maximum likelihood (ML) estimate of xk.

Here, we partition the region of interest into discrete states xrk where r ∈ {1, 2, · · · , NP}.

Note that such discrete states do not change with time since we do not use the dynamic

system model in Eqn. 3.12. In our application, NP represents the total number of pixels in

one frame. Then, the target is localized from the frame received at time step k as

x̂k,ML = arg max
xr
k

p(mk|xrk) r ∈ {1, 2, · · · , NP} (3.45)

where p(mk|xrk) is computed according to Eqn. 3.8.

44

4. EMBEDDED IMPLEMENTATION

We run our tracker on an embedded platform, more specifically on a microcontroller.

Hence, it is the hardware limitation that will determine the real-time performance of the

tracker. Therefore, selected hardware setup should be efficient, cost effective, and capable of

fulfilling real-time constraints. Besides, the software implementation should be optimized

for the selected hardware. This chapter covers the selected hardware setup and software

optimization steps. We will also discuss implementation details of the proposed tracker.

Therefore, we will first introduce the hardware components of our system as processor and

camera. Then, we will explain the important points of software implementation in detail.

4.1. HARDWARE

There are many hardware options as for the embedded platform on the market for a given

application. We can group these into three categories. As the first group, there are high

level processors such as Broadcom Arm Cortex A53 or Samsung Exynos5 Octa. These are

available on boards like Raspberry Pi 3 B+ or Odroid XU4. These processors have high

processing capability. Some of them contain on-chip graphics processor as in Exnynos5

Octa with Mali GPU provided by ARM. Likewise, NVIDIA’s Jetson development boards

contain GPUs. However, high processing power comes with high power consumption.

The second group consists of microcontrollers offering compact size, low footprint, and low

power consumption. However, they have lower processing power compared to the previous

category. ARM Cortex-M series microcontrollers are typical example for this group.

Cortex-M has a variety of solutions for different applications. For example, the Cortex-

M0 based core is targeted for low power consumption. Cortex-M4 based microcontrollers

offer cheap and battery friendly performance. The Cortex-M7 is upgraded architecture of

Cortex-M4 processors in clock speed and memory. Cortex-H7 microcontrollers are based on

Cortex-M7 core. They offer more processing power but Cortex-M7 processors are cheaper.

ST Microelectronics produces STM32F4 series microcontrollers based on Cortex-M4 core

and STM32F7 series microcontrollers based on Cortex-M7 core. NXP semiconductors

produce MX RT1050 and RT1060 series microcontrollers based on Cortex-M7 core. The

45

current consumption of mentioned processors and microcontrollers is tabulated in Table 4.1.

Table 4.1. Average current and power consumption of processors.

Processor

Clock

Speed

(MHz)

Current

Consumption

(mA)

Power

Consumption

(mW)

Broadcom BCM2837 (Idle) 1200 350 1750

Broadcom BCM2837 (Full Load) 1200 980 4900

Exynos5 Octa (Average) 1800 750 3750

MX RT 150 600 75 225

STM32F7 216 178 587

STM32F4 180 44 145

FPGAs are the third group. They differ from the previous two categories in hardware level.

Thus, their design procedure is totally different. Hence, they are out of scope of this study.

In a typical UAV system, flight controller card employs a Cortex-M4 based microcontroller.

If a vision task needs to be done on the UAV, a companion computer accompanies the flight

controller card since most operations require heavy processing power such as stereo vision

or visual tracking.

We aim to implement our visual tracking method on a microcontroller. Hence, the

companion computer can be discarded. As a result, significant room and power can be

saved in the limited UAV platform. The proposed tracker can be run on either Cortex-M4 or

Cortex-M7 platform if memory is available. Cortex-M4 processors are significantly smaller

and have less current consumption compared to Cortex-M7 devices. However, a Cortex-M7

device is selected in this study in order to meet real-time constraints. Since STM32F746

Discovery board is suitable and budget friendly, we selected it rather than NXP MX RT

1050.

We selected two main components as STM32F746 Discovery board (as processing platform)

46

and STM32F4DIS-CAM (as image source). The STM32F746 Discovery board is a

development platform for ARM Cortex-M7 core based STM32F746NGH6 microcontroller.

Cortex-M7 series microcontrollers are superior in terms of clock speed and memory in ARM

Cortex-M family. Therefore, they are more suitable for tasks requiring more computation

power such as image processing. STM32F4DIS-CAM is a digital camera module which

is designed by Embest. It is compatible with many development boards. It contains an

OV9655 chip which is a 1.3 megapixel CMOS SXGA image sensor.

We provide the hardware block diagram of our tracker in Figure 4.1. Digital Camera

Interface (DCMI) module will be used for grabbing incoming image. I2C module will

provide an access to the camera chip for configuring camera registers which contain

operation settings of the camera. SDRAM is an external memory chip that is mounted on

board. The image will be stored in this memory area. SDRAM will be accessed through the

memory controller module. Results can be displayed using LCD module. These modules

will be explained in following sections.

Figure 4.1. Hardware block diagram.

4.1.1. Microcontroller

STM32F746NGH6 is a microcontroller based on ARM Cortex-M7 core developed by ST

Microelectronics. This microcontroller has several peripheral units such as DCMI, four

I2Cs, SDMMC, four UARTs, three 12-bit ADCs, two 12-bit DACs, 8- to 14-bit digital

47

camera module interface, internal 320+16+4-Kbyte SRAM and 1-Mbyte Flash memory,

USB HS OTG, USB FS OTG, Ethernet MAC, FMC interface, Quad-SPI interface. In this

section, we will explain main modules that we use for our tracker.

4.1.1.1. Camera Module

There is a camera module on the STM32F746 Discovery board that enables communication

between microcontroller and digital camera chips using dedicated connector. This module

consists of DCMI module, I2C module, 24 MHz oscillator clock and GPIO pins. Schematic

of camera connector is given in Figure 4.2 [72].

Figure 4.2. Camera connector schematic.

The DCMI module is able to connect with camera modules through 8-, 10-, 12- or 14-bit

parallel data bus to receive image data. It can sustain a data transfer rate up to 54 Mbytes per

second. DCMI module supports data formats such as monochrome, RGB565, YCbCr422.

User may run this module in continuous or snapshot modes. It also has capability to crop

image automatically. This module can generate interrupts when a line or a frame is acquired.

The camera clock is set to 24 MHz that is connected to on-board oscillator to feed camera.

DCMI SDA, DCMI SCL are I2C module pins. They are used to access camera registers in

order to configure its operation. DCMI PWR EN and DCMI NRST pins are GPIO pins that

are used for holding camera in standby mode and hardware resetting camera respectively.

4.1.2. STM32F746 Discovery Board

The STM32F746 Discovery board is a development platform equipped with various

hardware peripherals such as USB OTG HS, USB OTG FS, 10/100-Mbit Ethernet, micro

SD card, USART, SAI Audio DAC stereo with audio jack input and output, MEMS

digital microphones, SDRAM, Quad-SPI Flash memory, 4.3” color LCD-TFT with a

48

capacitive multi-touch panel. The board also contains Arduino Uno V3 connectors which

make it possible to easily connect extension shields. An embedded in-circuit debugger

and programmer is provided by the integrated ST-LINK/V2-1 for the STM32F746NGH6

microcontroller.

4.1.2.1. LCD

STM32F746 Discovery board employs a 4.3” 480 × 278 resolution LCD display on it.

The STM32F746NGH6 microcontroller has a specific module named LCD TFT Display

Controller (LTDC) to use this display. This module transfers image from a predefined

address to the LCD in a fast manner. It provides 24-bit parallel digital RGB signals and

delivers them directly to LCD up to XGA (1024 × 768) resolution. LTDC has two layers to

show two images at the same time. These two images (in two separate memory locations)

can be displayed either separately or in combined form using these layers and each layer

can be configured for eight different color formats.

4.1.2.2. SDRAM

There is a 128-Mbit SDRAM memory chip on the STM32F746 Discovery board. We

will benefit from it in image processing and LCD display applications. Data transfer

to the SDRAM is controlled by the Flexible Memory Controller (FMC) module in the

STM32F746NGH6 microcontroller.

4.1.2.3. SD Card

There is a micro SD card socket on the STM32F746 Discovery board. We used this module

to access dataset images for tracker testing. FatFS library is used to store images in SD card

[73].

4.1.3. Camera

STM32F4DIS-CAM board is selected as image acquisition module. This board employs

OV9655 image sensor chip by OmniVision. We will next provide detailed information about

internal functionality of this chip. OV9655 includes SXGA (1280×1024) resolution color

image sensor and image processor. It supports various formats and resolutions in 8-bit or 10-

49

bit parallel bus. OV9655 can operate up to 15 frames per second (fps) for SXGA or 30 fps for

VGA (640×480) resolution. This chip offers image processing functions such as exposure

control, gamma, white balance, color saturation, hue control, white pixel canceling. Image

formats and image processing functions can be configured through Serial Camera Control

Bus (SCCB) interface [74].

The OV9655 image sensor supports several output formats. For RGB565 pixel format, one

pixel is represented with 16 bits, distributed as 5 bits for red value, 6 bits for green value

and 5 bits for blue value. Distribution of these bits is given in Table 4.2.

Table 4.2. RGB565 output format.

Pixels Bytes D7 to D0

Pixel
Even R7 R6 R5 R4 R3 G7 G6 G5

Odd G4 G3 G2 B7 B6 B5 B4 B3

OV9655 is capable of giving output in YUV422 format. Distribution of bits is given in

Table 4.3. In this format, each pixel has individual 8-bit Y value. Two consecutive pixels

share the same U and V values. The advantage of this format is that, the Y value corresponds

to illumination value. Hence, the grayscale image can be retrieved directly from camera by

reading Y value of the stream.

4.2. SOFTWARE

The proposed method is implemented on two different platforms. The first platform is the

PC with Intel Core i7 processor. The second platform is the microcontroller with ARM

Cortex-M7 core. In this section, we will introduce our development environment and

software implementation details for the PC and microcontroller.

4.2.1. Development Environment

On the PC side, MATLAB is used as the main software development tool. It includes all

main computer vision algorithm implementations and additional components either hand

50

Table 4.3. YUV422 output format.

Pixels Bytes D7 to D0

Pixel 1

1st Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

2nd U7 U6 U5 U4 U3 U2 U1 U0

4th V7 V6 V5 V4 V3 V2 V1 V0

Pixel 2

3rd Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

2nd U7 U6 U5 U4 U3 U2 U1 U0

4th V7 V6 V5 V4 V3 V2 V1 V0

coded or imported from file exchange community [75]. Comparison of all trackers are

implemented on MATLAB as well. For the microcontroller environment, we used Atollic

TrueSTUDIO provided by ST Microelectronics.

4.2.2. Embedded Software Packages

On the microcontroller side, there is no compact library for image processing. Therefore,

all of the required functions are hand coded. ST Microelectronics provides device firmware

package for their products. It contains HAL libraries which is low-level drivers for

microcontrollers and board support packages (BSP). In our tracker implementation, HAL

library is used to access and configure device peripherals such as DCMI, LTDC etc. We

used BSP provided for STM32F746 Discovery board in order to access board components

such as LCD, SDRAM, SD card.

4.2.3. CMSIS Library

While implementing tracker components, heavy mathematical and vector operations are

used. ARM provides such a library named Cortex Microcontroller Software Interface

Standard (CMSIS) [76]. It is an extensive software package aimed for Cortex-M based

devices. CMSIS-DSP package in the library is used to implement vector manipulation,

matrix operations, statistical calculations and fast mathematical functions. We used this

library for matrix, vector multiplications and FFT calculations.

51

4.3. TRACKER IMPLEMENTATION

We will explain details of software implementation of our tracker in this section. Hence,

it is divided into three parts. In the first part, initialization procedure of the tracker is

explained. In the second part, we will explain implementation in details. In the third part,

implementation details of the proposed tracking method with measurement is explained.

4.3.1. Initialization

We need to initialize our tracker according to the target before running. For online trackers,

it is assumed that location and the bounding box of the target is known in the first frame.

These adjustments can be made for the use case for some parameters. Other parameters can

be set based on model image of the target for every tracking sequence. Adjusted parameters

are as follows.

Almost every image feature extraction method has some degree of quality measure in order

to distinguish a feature location. This value directly effects the number of features which

will be extracted. Usually, this value is adjusted according to operation condition of the

application.

4.3.2. Object Representation

Pseudo code for object representation algorithm is given in Algorithm 4.1. Implementation

of this procedure’s structure is same for both the PC and microcontroller. Some

optimizations for clock speed and arrangements for memory usage are made on

microcontroller implementation. Details of this algorithm is presented in the following

sections.

Our object representation method first starts with corner extraction. Types and their

effects are discussed in Section 5.4. On MATLAB version of implementation, any corner

extraction method can be chosen. Most commonly used algorithms are already implemented

in MATLAB image processing toolbox. On the embedded side, a resource friendly

option is needed to be selected. Harris corner detector suits this purpose. Other feature

detection algorithms can be used as well. However, it should be run on microcontroller.

Implementation details are explained next.

52

Algorithm 4.1. Object Representation pseudocode

Convert first image to grayscale

Extract feature points

Cluster feature points

Calculate mean and standard deviation for each cluster

Calculate vote vector for each cluster

4.3.2.1. Harris Corner Detection

The proposed object representation method can use various feature detectors working as

corner extractors. When it comes to microcontroller implementation, the method should

be fast and efficient. The easiest method for implementation is edge locations. However,

this method produces excessive amount of points. Hence, it is more convenient to use more

specific points such as corners. Harris and KLT operators are the simplest, efficient and

reliable corner detectors in literature. Compared to KLT, Harris operator produces more

reliable corner points as in repeatability and immunity to lighting conditions. Therefore, the

Harris corner detector is selected as the feature extraction method on the microcontroller. In

order to calculate the Harris response map, we need to obtain first derivatives of the image

in x and y directions. This operation is done 2D convolution of Sobel filter kernels and

structure tensor matrix as

M(x,y) =
x+1∑
i=x−1

y+1∑
j=y−1

 Dx(i, j)
2 Dx(i, j)Dy(i, j)

Dx(i, j)Dy(i, j) Dy(i, j)
2

 (4.1)

where Dy and Dy are the derivative values in x and y coordinates, respectively. Then, the

Harris response (MR) is calculated as MR = det(M)−k(trace(M))2. Here, k is set to 0.04

empirically [3]. HR is considered as the Harris response map. Local peaks of this map are

considered as corner points. Extraction of these locations is handled by procedure named

non-maxima suppression.

53

4.3.2.2. Non Maxima Suppression

Non-maxima suppression (NMS) is an essential post-processing operation in many

computer vision applications [77, 78, 79]. It is used to obtain multiple location points or

bounding boxes in a smooth response map, in our case corner locations, by extracting the

local maxima. There are various methods while implementing NMS [80]. The common

approach is greedy procedure which is threshold. Due to its simplicity, we used this method

in our microcontroller implementation.

NMS is required for our corner detection method since we should locate the pixel which

maximizes the Harris response locally. Locating the corner point falsely may result in

shifted direction of the gradient. Since the method needs to run on a microcontroller, fast

and memory efficient version of this method is implemented.

We assumed that a blobs will left from in Harris response map HrR when we threshold.

Highest response value of the blobs will be extracted as the corner locations. A recursive

algorithm which extract these locations is implemented as in Algorithm 4.2 and 4.3. In

Algorithm 4.2 we search the area for new corner point. When we meet a pixel value higher

than threshold, we recursively call the function named NMS. This function is defined in

Algorithm 4.3. It searches and returns maximum valued location in the blob.

Advantage of this recursive implementation is that it does not require any extra image sized

memory. It also does not require dynamic memory allocation like one-pass or two-pass

labeling algorithms. It boils down thresholding, labeling, and non maxima suppression.

Algorithm 4.2 demonstrates application of the non maxima suppression for a given Harris

response map obtained from its normalized version. In this pseudocode, every pixel is

scanned for possible blob for corner location. If a pixel value is over the threshold, it is

accepted as a new blob for corner location. The variable that holds the maximum value

of the blob is initialized and the recursive function name NMS is called. We provide

pseudocode for this function in Algorithm 4.3. This function scans and returns the corner

blob for maximum valued location. Also, it uses only memory for dedicated to response

map and assigns pixel values higher than one. Thus it can yield a labeling procedure.

In our application, we did not use the labeling value. However, it is a side product of

54

Algorithm 4.2. Non-maxima suppression pseudocode

HR; Normalized Harris response map

ε; Corner detection threshold value

n = 0; Corner count

for i = 1 to ImageWidth do i = i+ 1; Subwindow column index

for j = 1 to ImageHeight do j = j + 1; Subwindow row index

if HR(i, j) > ε AND HR(i, j) < 1 then; New Corner Location Condition

MaxV alue = 0 ; Initialized for detected corner blob

if HR(i, j) >MaxV alue then

MaxV alue = HR(i, j)

MaxLocation = (i, j)

end if

CornerLocation[n] = NMS(HR, i, j, Threshold,MaxV alue); Add this

location to corner locations array

n = n+ 1

else

HR(i, j) = 0; Set pixels to zero under threshold

end if

end for

end for

55

implementation.

Algorithm 4.3. NMS function pseudocode

function NMS(I,i,j,Threshold,MaxValue,MaxLocation)

for k = −1 to 1 do k = k + 1; Subwindow column index

for l = −1 to 1 do l = l + 1; Subwindow row index

if k = 0 AND l = 0 then

continue

end if

if I(i+ l, j + k) > Threshold AND I(i+ l, j + k) < 1 then

if I(i+ l, j + k) >MaxV alue then

MaxV alue = I(i+ l, j + k)

MaxLocation = (i+ l, j + k)

end if

I(i+ l, j + k) = I(i+ l, j + k) + 1

MaxLocation = NMS(I, i+ l, j + k, Threshold,MaxV alue)

end if

end for

end for

return MaxLocation

end function

4.3.2.3. Clustering

After extracting corner points, the clustering operation is applied to the points. Pseudo code

for clustering is given in Algorithm 4.4. Corner points that are close to each other for given

distance are grouped together and labeled. After this procedure is run, same labeled corner

locations are considered as in the same group. Hence, the voting procedure is conducted

accordingly.

On the PC implementation, the overall pdf can be calculated by Eqn. 3.32 However, this

operation is very time consuming on the microcontroller. Therefore, predefined fixed

56

Algorithm 4.4. Grouping procedure pseudocode

CornerLocations; Array that extracted locations are stored

Set ClusterLabels elements to 0; Same length array with locations, stores group labels

n; Number of found feature point

Set LabelCounter = 0

for i = 0 to n− 1 do i = i+ 1; Label array index

if ClusterLabels[i] = 0 then

LabelCounter+ = 1

ClusterLabels[i] = LabelCounter

end if

for j = i to n do j = j + 1;

D =Distance(CornerLocation[i],CornerLocation[j])

if D 6 Threshold then

if ClusterLabels[j] = 0 then

ClusterLabels[j] = ClusterLabels[i]

else

Set all ClusterLabels[j] to ClusterLabels[i] in ClusterLabels

end if

end if

end for

end for

57

windows are stored in header files for the voting operation.

4.3.3. Bayesian Tracking

In this section, we will discuss implementation details of our tracking algorithm with

Bayesian filtering. As mentioned earlier, we implemented our trackers on both the PC

and microcontroller. We realized our tracker in MATLAB on the PC side as explained in

Section 3.4. On the other hand, we made some optimizations for memory and speed during

the implementation on microcontroller. We will present these procedures next.

Pseudo codes for Bayesian tracker implementations are given in Algorithm 4.6, 3.1,

and 4.5. Kalman filter calculation are done using matrix multiplication in CMSIS-DSP

libraries. In grid based approximation, implementation a Gaussian window is used with

pre-calculated header file. Particle filter implementation contains numerous exponential

function calculation and random number generation. Implementation details for these

operations are given in following sections.

4.3.3.1. Grid-Based Approximation

We provide the pseudocode of grid based pdf approximation method implementation of our

tracker in Algorithm 4.5. In this version, we calculate two pdfs as p(zk|xk) and p(xk|z1:k−1).

p(xk|z1:k) is obtained as described in Section 3.4.1. At each time step, p(xk|z1:k−1) is

obtained by translation of pre-calculated 2D array which stores a Gaussian pdf. We can

obtain prediction location from any motion model. We can calculate the update step by

element wise multiplying these two pdfs.

4.3.3.2. Particle Filter

We provide pseudocode of particle filter implementation of our tracker in Algorithm 3.1 in

the previous section. In implementation, we select our initial particles randomly around the

target location with equal weight value in the first frame. Then, at each time step we translate

particle locations according to the predicted location obtained from the motion model. Any

motion model can be used in this step. Similar to grid based method, we calculate the pdfs

p(zk|xk) as in Eqn. 3.31. Different from the previous method, we only calculate these pdfs

58

Algorithm 4.5. Tracker Grid-Based Approximation pseudocode

Initialize Tracker

Initialize State Vector x0

Set k = 1

while Frame Available do

I = GetFrame()

Calculate p(zk|xk)

Predict xk|k−1 using motion model

Translate p(xk|z1:k−1) according to xk|k−1

p(xk|z1:k) = p(xk|z1:k−1)× p(zk|xk)

Update xk with maximum Detection of p(xk|z1:k)

k+ = 1

end while

in particle locations. We assigned value of pdf as particle weights and accept the maximum

weighted particle as target location. For the next time step, we resample particles with their

weight. Therefore, we can discard particles with low probability value and move them to

regions with higher probability value. Since we apply weighted sampling, it is highly likely

to draw the same particle with multiple times. We add zero mean Gaussian noise to location

of sampled particles at each time step.

We applied two extra procedures specific to the microcontroller in particle filter

implementation. The first one is the random number generation. In order to resample

particles and generate zero mean Gaussian noise, we need a random number generator.

MATLAB has a function which produces random numbers with desired distribution.

However, we rely on the random number generation module (RNG) on the microcontroller.

We will explain the usage of this module in the next section. The second procedure is

introduced while obtaining p(zk|xk) and p(xk|z1:k−1). Here, we had to conduct too many

exponential function calculations. An optimized version of this procedure will also be

presented in the following sections.

59

4.3.3.3. Random Number Generation

There are two types of random number generators as true random and pseudo random

number generator. Particle filter implementation requires a lot of normally distributed

random numbers. The RNG module provides random numbers from uniform distribution.

However, we need Gaussian distributed random numbers. There are several methods for

this purpose. Box-Muller algorithm and ratio of uniforms are easy to implement methods

[81, 82]. However, they are very slow. Inverse CDF is another method. Marsaglia and

Tsang [83] introduced improved version of it named Zigguart method. It can generate

numerous random numbers based on normally distributed random number. Original paper

presents a C implementation of the method.

4.3.3.4. Exponential Function

Float number multiplication and exponential function are computationally expensive

operations. If the microcontroller has a Floating Point Unit (FPU), float number

multiplications can be done in a fast manner. Most microcontrollers in the market have

the FPU because float number multiplication is a widely used operation. Standard C library

contains an exponential function in math.h header file. However, it remains slow when

many calculations in number is required. Therefore, it can become a bottleneck of the main

process.

We overcome this bottleneck by using pre-calculated tables in Kalman filter and grid based

approximation implementations. Since whole pdf needs to be calculated in both methods,

using fixed tables speeds up the process significantly. These tables can be stored in the

flash memory of the microcontroller since they are only needed to be read. Therefore,

no additional memory is consumed from RAM. One drawback of this method is standard

deviation of the pdf has to be fixed and can not be changed on the run.

In particle filter implementation, pdfs are calculated on average of 200 points. When it

is compared to whole pdf, which is typically a 120 × 120 matrix, there is a significant

gain. Therefore, we can use the exponential function on the run while computing weight

of particles. Yet we do not need high precision when we calculate the exponential

value. Schraudolph [84] proposed a method that approximates the exponential function by

60

manipulating components of a standard floating-point representation. This method yields

six times faster implementation of exponential function. This method still remains slow

compared to fixed tables for Kalman and grid based approximation methods. However, it

gives ability to manipulate standard deviation of the calculated pdf.

4.3.3.5. Kalman Filter

We provide pseudocode of Kalman filter implementation of our tracker in Algorithm 4.6.

In this version, we generate measurement pdf and take mode of the pdf as measurement.

Then, we realize prediction and update steps as in Section 3.4.3. We can use the

constant acceleration motion model for Fk. We assign constant diagonal matrices for noise

covariance parameters Qk−1 and Rk.

In order to speed up measurement, we realized voting process with predefined arrays on

the microcontroller as mentioned earlier in Section 3.4.3. Moreover, we use CMSIS-DSP

library to realize matrix multiplications.

61

Algorithm 4.6. Tracker with Kalman filter pseudocode

function KALMAN FILTER

Initialize Tracker

Initialize State Vector x0

Set k = 1

while Frame Available do

I = GetFrame()

Calculate p(zk|xk)

Predict:

x̂k|k−1 = Fx̂k|k

Pk|k−1 = FPk|kF
T

Update:

Sk = HPk|k−1H
T + Rk

Kk = Pk|k−1H
TS−1

k

xk|k = x̂k|k−1 + Kkỹk

Pk|k = (I− LkH)Pk|k−1

k+ = 1

end while

end function

62

5. RESULTS AND DISCUSSION

In this chapter, we present performance results and comparison of our tracker with the state

of the art in literature. The proposed tracker and its variations are implemented on both

PC and microcontroller. Trackers mentioned in Section 2.4 are also implemented on PC.

Some of them are realized on the microcontroller as well. We tested implemented trackers

on standard datasets.

5.1. DATASET USED IN EXPERIMENTS

The main aim in developing our tracker was using it on airborne images acquired by an

UAV. Based on this aim, we formed a testbed to measure the performance of our tracker. To

do so, we gathered 80 video sequences from seven different standard and publicly available

tracking datasets. We provide the detailed list of video sequences as well as the challenges

they have in Appendix. The standard tracking datasets that we used are as follows.

Nus-Pro [85] is a general tracking dataset published in 2016. It contains more than 300

image sequences. There are 12 different type of targeted moving rigid objects in the dataset.

We used 16 sequences from this dataset.

The Stanford drone dataset has been published by Robicquet et al. [86] in 2016. This dataset

is composed of bird eye view aerial images acquired by a drone. This is the best scenario

for our tracking framework. The dataset consist of eight scenes and total of 60 videos. In

video sequences, there are various moving objects such as cars, people, and bikers. We

specifically targeted vehicles in this dataset. However, other objects can be tracked in this

dataset as well. Therefore, nine sequences are cropped from videos which only contain

movement of a specific target.

Vivid [87] tracker benchmark dataset is published in 2005. It contains video sequences taken

from an aerial platform. We especially used the sequences in this dataset to test our tracker’s

performance with low resolution imagery. We used five sequences from this dataset.

OTB70 [22] is published in 2017. It aims to cover tracking problem in videos taken from

UAVs. It contains 70 video sequence with various subject of interest. We used nine

63

sequences from this dataset.

Amsterdam Library of Ordinary Videos, (ALOV300) [21], aims to cover different type of

visual tracking challenges. It contains more than 300 video sequences targeted 11 different

type of circumstances. This is a general tracking dataset. Within it, we picked the sequences

that are recorded from an aerial platform. We used six sequences from this dataset.

VisDrone [88] is an annual challenge for visual trackers. Dataset first published in 2018

and contains video sequences recorded with UAVs. It has different subsets that aims for

different problems such as detection, single object or multi-object tracking. We used 4

sequences from this dataset.

UAV123 [89] is published in 2016. It mainly targets long term tracking problems. It contains

more than 100 videos containing various subjects. We used 31 sequences from this dataset.

We composed a set of image sequences from these dataset which fits our aimed problem.

Let’s remind our problem limitations. We focus on aerial imagery. However, our tracker

does not have any physical dependence on this setup. The main requirement for our problem

is to have a fairly stable background image. In other words, if the background image is no

changing much and there is no excessive clutter in the background, our tracking method

works as expected. These constrains are most of the times satisfied for aerial images.

Therefore, we focused on them in experiments.

Our main targeted object is vehicles. But we also considered other objects such as human,

motorcycle, and boat. We grouped our test set into four main challenging circumstances as

occlusion, low resolution, moving with similar objects, and scale/aspect ratio change.

Occlusion is partially or fully absence of the target for a short time interval. We also

considered situation such that the object goes out of view briefly and comes back as in

occlusion as well. We provide a sample sequence for this case in Figure 5.1. In this figure,

target falls behind the bushes between first and third images.

If the target has very small size or low contrast, we consider this type of circumstance as low

resolution. We provide a sample sequence for this case in Figure 5.2. In this figure, target is

contained in a very small and low contrasted image patch.

64

(a) (b) (c)

Figure 5.1. Sample sequence for occlusion (a) First image (b) Second image (c) Third

image.

(a) (b) (c)

Figure 5.2. Sample sequence for low resolution (a) First image (b) Second image (c) Third

image.

65

We next consider the scenario such that object being tracked is moving close to other object

that are similar. We provide a sample sequence for this case in Figure 5.3. In this figure,

target is a soldier who walks in a parade. Hence, there are similar dressed soldiers around

the target.

(a) (b) (c)

Figure 5.3. Sample sequence for being around similar objects (a) First image (b) Second

image (c) Third image.

If the object’s size or aspect ratio changes due to camera motion, we consider this situation

as another challenge. We provide a sample sequence for this case in Figure 5.4. In this

figure, camera starts recording from right side of the target vehicle ends in closer and right

side of the target. Hence, both perspective and target size changes during the sequence.

(a) (b) (c)

Figure 5.4. Sample sequence for changing scale and aspect of the object (a) First image (b)

Second image (c) Third image.

Next, we will report the performance of our tracker compared to other trackers in literature.

We will present overall and specific to each challenge performances.

66

5.2. EXPERIMENTS ON PC

We present results for five trackers in Figures 5.5 and 5.6. We listed and colorized individual

results for better comparison for all sequences. Values in the figures are percentage of

number of frames with difference between tracker result and ground truth is less than 50

pixels. Higher scores are colored as green and lower scores are colored as red. The tracker

named Ours is the particle filter implementation of our method. We can see that our tracker

out perform all other trackers in sequences car4, bookstore6, and airplane 006. These

sequences include partial occlusion that our tracker can recover from and others cannot.

On the other hand, our tracker performs worse than other trackers in sequences soccer 3,

soccer 10, and SpeedCar4. That is because these sequences include very similar objects to

the target object.

Success and precision plots are used to measure the trackers’ performances. Both plots show

the percentage of successfully tracked frames with respect to the threshold. The success plot

thresholds the intersection over the union (IOU) metric and the precision plot thresholds

the center location error. To rank the trackers, two types of ranking scores are used. The

first one is the area under curve (AUC) metric for the success plot. The second one is the

representative precision score at the threshold of 20 for the precision plot. Different from

[90], only one-pass evaluation (OPE) is kept.

We provide the result of our tracker implementation and the ones in literature in Figure 5.7.

Based on the figure, we can conclude that all trackers perform close to each other when

we compare them on PC. Grid-based approach is slightly worse than other trackers. Our

Kalman filter and tracking by detection methods lost the target in several sequences.

Therefore, its precision and success plots have lower values.

As can be seen in Figures 5.7, 5.5, and 5.6, there is no dominance of a single tracker over

all test datasets.

Timing performance of the considered trackers are given in Table 5.1. As can be seen in this

table, KCF is the fastest tracking algorithm. Our method yields a moderate performance

on PC. Hence, we pick KCF as a benchmark method for embedded implementation. Our

trackers’ timing performance may vary depending on number of extracted corner points.

67

Figure 5.5. Results for each sequence.

68

Figure 5.6. Results for each sequence. (Continued)

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

KCF (HOG) [0.419]
DSST [0.414]
HOGLR [0.403]
DAT [0.397]
Mean-shift tracker [0.392]
Ours (Particle Filter) [0.384]
Ours (Grid Based) [0.323]
Ours (Kalman Filter) [0.235]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

KCF (HOG) [0.592]
DAT [0.575]
DSST [0.566]
Ours (Particle Filter) [0.552]
Mean-shift tracker [0.549]
HOGLR [0.545]
Ours (Grid Based) [0.462]
Ours (Kalman Filter) [0.256]

(b)

Figure 5.7. Benchmark trackers performance (a) Success plot (b) Precision plot.

70

We provide an average number for PC implementation. We examine timing performance on

embedded performance in detail.

Table 5.1. Timing performance of trackers on PC.

Method FPS

Ours (Particle Filter) 32.72

HOGLR 4.88

KCF 320.82

DAT 13.85

DSST 30.49

Mean Shift 30.17

5.3. PERFORMANCE ON CHALLENGES

We labeled every test sequence with the challenge it contains. We give detailed list of the

sequences and challenges in Table A.1 and A.4. In this section, we compare the trackers

according to specific challenges.

5.3.1. The Effect of Occlusion

Occlusion is the temporal loss of the target in the visual sight. This can be caused because

another object can partially or fully block the target or target can go outside the camera

frame. We present the results only for the sequences that have occlusion in Figure 5.8. As

can be seen in this figure, our tracker can recover the temporal absence of the target and

produce competitive results compared to other trackers.

5.3.2. The Effect of Changing Scale

Target appearance or size can change during the sequence due to camera or target movement.

We present the results only for the sequences that includes changing scale of the target in

Figure 5.9. As can be seen in this figure, our tracker can handle the scale change and

provides competitive results compered to other trackers.

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

DAT [0.375]
Ours (Particle Filter) [0.362]
Mean-shift tracker [0.355]
HOGLR [0.345]
KCF (HOG) [0.345]
DSST [0.334]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

DAT [0.552]
Ours (Particle Filter) [0.550]
Mean-shift tracker [0.545]
HOGLR [0.515]
KCF (HOG) [0.508]
DSST [0.486]

(b)

Figure 5.8. Results for the sequences which have occlusion (a) Success plot (b) Precision

plot.

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

HOGLR [0.396]
DAT [0.388]
DSST [0.375]
KCF (HOG) [0.358]
Ours (Particle Filter) [0.355]
Mean-shift tracker [0.341]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

DAT [0.570]
Ours (Particle Filter) [0.505]
HOGLR [0.491]
DSST [0.468]
KCF (HOG) [0.462]
Mean-shift tracker [0.422]

(b)

Figure 5.9. Results for the sequences with scale change of the target (a) Success plot (b)

Precision plot.

73

5.3.3. The Effect of Image Resolution

In some images, target can be defined poorly in the sequence which means target can be

very small portion of the image because of the distance to camera. Or image can be flue due

to camera focus. Hence, low contrasted images can be occurred. We present the results only

for the sequences with low resolution in Figure 5.10. As can be seen in figure, our tracker

performs poorly in such conditions. This is because our target representation relies on the

corner points which requires definitive contrast. In these kind of images, corner detection

performs poorly. Therefore, our tracker’s performance reduces.

5.3.4. The Effect of Similar Objects

We present the results only for the sequences that target moves close to look alike objects in

Figure 5.11. Our tracker performs very poorly in these kind of sequences because we do not

consider if a corner point belongs to target or not. We process all emerged corner points in

the search region. We can overcome this problem by using by more definitive features such

as SIFT, and conduct a matching process between current and initial image.

5.4. THE EFFECT OF CORNER EXTRACTOR ON PERFORMANCE

Our object representation method can run with various types of corner (feature) extraction

methods. We analyzed the effect of these corner (feature) extractors in this section.

Corner detection methods such as Harris or FAST, feature generation methods such as SIFT,

BRISK, MSER or simply edge points can be used within the proposed tracker. Performance

of the object representation method is directly related to the number of voting points. Hence,

edge points yield better results compared to other corner detection methods. However,

computational cost increases with the number of the voters.

In Figure 5.12 performance comparison of feature detection methods are presented. We

tested feature points with tracking by detection method in order to emphasize the effect

of feature extraction methodology. We also did not use any other filter or procedure such

as grouping. Harris, minimum eigenvalue (KLT), BRISK and FAST are corner detection

algorithms available in MATLAB. Other feature detection algorithms available in MATLAB

(such as KAZE and MSER) are also included. Another corner detection method, L-shaped

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
uc

ce
ss

DSST [0.290]
KCF (HOG) [0.283]
Ours (Particle Filter) [0.237]
Mean-shift tracker [0.234]
DAT [0.219]
HOGLR [0.208]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

KCF (HOG) [0.613]
DSST [0.601]
Ours (Particle Filter) [0.513]
DAT [0.505]
Mean-shift tracker [0.499]
HOGLR [0.399]

(b)

Figure 5.10. Results for the sequences with low resolution (a) Success plot (b) Precision

plot.

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

DAT [0.515]
KCF (HOG) [0.512]
DSST [0.472]
Mean-shift tracker [0.429]
HOGLR [0.425]
Ours (Particle Filter) [0.389]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

KCF (HOG) [0.773]
DAT [0.726]
HOGLR [0.720]
DSST [0.699]
Mean-shift tracker [0.688]
Ours (Particle Filter) [0.537]

(b)

Figure 5.11. Results for the sequences that the object is close to similar objects (a) Success

plot (b) Precision plot.

76

steerable filter and Sobel edge detection are also implemented.

As can be seen in Figure 5.12, edge detection method has the best performance as predicted.

Because more voting points belonging to the target will yield more accumulation on the

target. Hence, target object will be the dominant location in the measurement pdf. Steerable

filter gives the second best result because more definitive corner points can be obtained

with this method. However, this method requires an angular search of corners. Both edge

and steerable filter features are computationally costly. If we use edge locations, voting

procedure will take too long. On the other hand, if we use steerable filter feature extraction,

it will take too long because of angle sweeping. Effect of other features are also given in

Figure 5.12. We selected Harris corner method for further experiments.

5.5. APPROXIMATE BAYESIAN TRACKING METHODS

Within the Bayesian tracking framework, there three options as Kalman filter, particle filter,

and grid based approximation. In this section, performance of these options are discussed.

Kalman filter accepts prediction and measurement probabilities only as Gaussian pdf.

Therefore, it only takes detected target location and assumes normally distributed pdf. We

can say that with Kalman filter, we can not use full benefit of our object representation

method.

We present the precision and success plots in Figure 5.13. Kalman filter it can not be

very successful since it ignores the non-gaussian structure of the measurement pdf. Grid

based approximation gives better result since it cover the whole pdf in object representation

and update steps. In theory we expect to grid based and particle filter produce similar

results. However there gap between grid based and particle filter approaches in Figure 5.13.

This is because, during the experiments we down sample the input image to speed up

the computation since calculating whole pdfs takes too long. Another reason, during

the development of the algorithm we tested particle filter more and it is more optimized.

Kalman filter has the advantage of computational low cost compared to grid based approach.

However, particle filter overcomes Kalman filter and grid based in speed and performance.

Due to our object representation method’s structure, particle filter can speed up the

measurement and Bayesian filter methods at the same time.

77

(a)

(b)

Figure 5.12. Success and precision plots for different feature detection methods (a) Success

plot (b) Precision plot.

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

Ours (Particle Filter) [0.384]
Ours (Grid Based) [0.323]
Ours (Kalman Filter) [0.235]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Ours (Particle Filter) [0.552]
Ours (Grid Based) [0.462]
Ours (Kalman Filter) [0.256]

(b)

Figure 5.13. Success and precision plot comparison of our trackers with Bayesian filter (a)

Success plot (b) Precision plot.

79

We present effect of number of the particles in particle filter in Figure 5.14. Number of

the particles are directly related to time of computation for the particle filter. Increasing or

decreasing the number of particles depends on how densely the pdf is sampled. Therefore it

is important to select the particle number enough to cover effectively the sampled space.

As can be seen in Figure 5.14, there is a saturation after 20 particles in our case. Which

means our prediction and update pdfs can be successfully covered with 20 particles. If we

consider the grid based approximation method, generated pdf’s size is 120 × 120 which is

720 times higher than the particle filter. However, we selected the particle number as 200 to

be safe during the experiments.

5.6. EMBEDDED IMPLEMENTATION

We provide the result of trackers that are implemented on STM32F746 Discovery board in

Figure 5.15. The worst performance belongs to tracking by detection tracker as expected.

The best performance in precision and success plots is particle filter implementation of our

tracker.

In Table 5.2 timing performances of the trackers on microcontroller are given. We observe

that particle filter with our detection method yields the fastest performance since we

calculate measurement pdf in few points. Therefore, it can speed up the detection method

compared to other trackers. For the grid based and Kalman filter method, calculating the

whole pdf is needed for locating the target. KCF tracker can not operate as much fast as in

PC due to requirement of additional memory on the microcontroller. Classic Kalman filter

method is the slowest one because we used template matching method which is an extremely

slow process. Color histogram matching as in classic particle filter is faster than template

matching. However, it can not catch up our particle filter implementation.

Performance comparison of the trackers implemented on MATLAB and microcontroller

is given in Figure 5.16. As can be seen in this figure, performance of the KCF changed

drastically. The main reason for this change is the usage of raw pixel values on the

microcontroller. For MATLAB implementation, HOG features are used hence it can perform

much better. It is important to say that our particle filter implementation can be exported to

microcontroller without loss of performance.

80

(a)

(b)

Figure 5.14. Comparison of our particle filter wrt particle number (a) Success plot (b)

Precision plot.

81

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Ours (Grid Based) MCU [0.710]
Ours (Particle Filter) MCU [0.709]
Mean-shift MCU [0.572]
Template matching (Kalman Filter) [0.523]
Histogram Mathcing (Particle Filter) [0.449]
Ours (Kalman Filter) MCU [0.392]
KCF (raw pixel) [0.311]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

Ours (Particle Filter) MCU [0.555]
Ours (Grid Based) MCU [0.524]
Mean-shift MCU [0.454]
Template matching (Kalman Filter) [0.408]
KCF (raw pixel) [0.391]
Histogram Mathcing (Particle Filter) [0.352]
Ours (Kalman Filter) MCU [0.340]

(b)

Figure 5.15. Success and precision plot comparison of trackers on microcontroller (a)

Success plot (b) Precision plot.

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

KCF (HOG) [0.654]
Ours (Particle Filter) [0.602]
Mean-shift tracker [0.596]
Ours (Particle Filter) MCU [0.555]
Ours (Grid Based) [0.535]
Ours (Grid Based) MCU [0.524]
Ours (Kalman Filter) [0.460]
Mean-shift MCU [0.454]
KCF (raw pixel) [0.391]
Ours (Kalman Filter) MCU [0.340]

(a)

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

KCF (HOG) [0.863]
Ours (Particle Filter) [0.791]
Mean-shift tracker [0.763]
Ours (Grid Based) [0.728]
Ours (Grid Based) MCU [0.710]
Ours (Particle Filter) MCU [0.709]
Ours (Kalman Filter) [0.596]
Mean-shift MCU [0.572]
Ours (Kalman Filter) MCU [0.392]
KCF (raw pixel) [0.311]

(b)

Figure 5.16. Trackers comparison with microcontroller and PC implementations (a)

Success plot (b) Precision plot.

83

Table 5.2. Timing performance of trackers on microcontroller.

Method FPS

Our tracker (particle filter) 8.6

Our tracker (Kalman filter) 8.08

Our tracker (grid-based) 7.92

KCF 2.17

Classic Kalman filter 0.54

Classic particle filter 3.38

Mean Shift 1.65

5.7. MEMORY USAGE

Memory usage is crucial for microcontroller implementation due to limited resource of

memory. In this section, memory requirements of the tracker implementation are compared.

Allocation strategy of RAM and flash memory requirements are presented.

5.7.1. RAM Usage

As mentioned earlier, microcontroller has limited memory source. In our setup, the selected

microcontrolller has 320 kilobytes internal RAM. It can access to eight megabytes of

external RAM. In our test sequences, target size is around 70× 50 pixels. Therefore, region

of interest patch size is selected as 120× 120 pixels.

For all trackers that are implemented with our object representation method, only internal

RAM is used. One patch sized unsigned char type memory space is reserved for input .

Three patch sized float type image is allocated for measurement and pdf calculations. Two

of them are holding the gradient information and one is used for Harris response and pdf

calculations. For Kalman filter and grid based estimation implementations, prediction and

voting pdfs are stored in flash memory. Hence, they do not occupy memory on RAM. For the

particle filter implementation, these windows are discarded. Instead, a double type array

with number of particle element is allocated. As a result 13×PatchWidth×PatchHeight

84

bytes memory is allocated to image processing operations. Additionally, four kilobytes

memory is reserved within stack which is used by function variables, arrays and additional

libraries such as FatFS.

KCF implementation contains a lot of FFT operations. Therefore, the patch size is selected

as 128 × 128 pixels for ease of calculation. As aside note, FFT functions in CMSIS-DSP

library accept arrays only with a length of power of two. FFT of an image resulted with

complex numbers and input of inverse FFT function is also complex number. Therefore, at

least two float type patch sized memory should be allocated in order to store and operate

these functions. KCF tracker requires FFT and IFFT operations multiple times and it

also stores model patch as complex numbers. As a result, it needs 49 × PatchWidth ×

PatchHeight bytes memory for transformation functions in total. This amount of memory

is not available on the STM32F746. Consecutively external RAM chip is used in KCF

implementation. One drawback of this usage is that external RAM is accessed through a

module named Flexible Memory Controller (FMC). It can not operate as fast as the internal

bus in the microcontroller. FMC is fed by peripheral clock in microcontroller which can

be half of the core clock maximum. This causes drop in tracker speed by half. Another

issue with the KCF is that it uses histograms of oriented gradients as the main feature [79].

As stated in original paper, it can also work with grayscale pixels. Since implementation

of HOG algorithm on the microcontroller is time and memory consuming, grayscale pixel

values are used. However, it also caused performance drop for the tracker.

Particle filter with Bhattacharya distance and Kalman filter with template matching

implementations are the lightest trackers when memory is concerned. They can both run

on smaller memory space compared to other trackers. Therefore, only internal RAM is

used in their implementation. The main drawback of these algorithms that is they are both

computationally expensive.

We present approximate RAM requirement of implemented trackers in Table 5.3. The values

here are approximate since heap and stack memory requirements are not included in this

table. Only image processing related memory size is presented because it consists of biggest

percentage of the memory usage. As can seen in this table, KCF requires largest RAM size.

This memory provided by external RAM chip on STM32F746 Discovery board.

85

Table 5.3. RAM requirements of implemented trackers.

Tracker RAM Size (Kilobytes)

Our tracker (particle filter) 171

Our tracker (Kalman filter) 169

Our tracker (grid-based) 169

KCF 802

Classic Kalman filter tracker 57

Classic particle filter tracker 44

Mean Shift 259

5.7.2. Flash Memory Usage

We implemented six trackers on the microcontroller and ranked them by their space

requirement on ROM. Code size is a measure that gives an idea about how large the program

is. Code that generated by the compiler is stored in microcontroller’s flash memory. In our

case, STM32F746NG has 1 MB flash memory on chip. All implemented trackers are within

this memory size.

Grid based approximation method requires the largest flash memory among our trackers

because it has to include two precalculated Gaussian pdfs. These pdfs are stored in 2D

arrays for voting and prediction. The KCF tracker needs large memory size since there

is also a precalculated mask for filtering purpose. FFT of candidate image is filtered

by this mask in order to reduce the effect of edges of the search area. Other trackers’

flash memory requirements are close to each other because they mostly consist of function

implementations, no predefined memory block is included. We present code size which

indicates the flash memory size of our implementation in Table 5.4.

86

Table 5.4. Code sizes of implemented trackers.

Tracker Code Size (Kilobytes)

Our tracker (particle filter) 84

Our tracker (Kalman filter) 105

Our tracker (grid-based) 181

KCF 199

Classic Kalman filter 65

Classic particle filter 70

Mean Shift 73

87

6. CONCLUSIONS

In this study, we proposed a novel visual tracking method. With our method, we achieved

a visual tracker such that it can operate even on very resource limited hardware such as a

microcontroller. As a result, we can discard the companion computer for space and power

limited platforms such as UAVs.

We build our tracker framework on a probabilistic object representation method. We tested

the performance of our tracker with different feature extraction methods. We obtained

optimal results with the Harris corner detector. Since this method is able to operate with

very limited resources, this would be an advantage when we implement our tracker on the

microcontroller.

After the object representation step, we can adopt probabilistic the outcome of the detector

in Bayesian filtering. To do so, we proposed three Bayesian filter implementations. First,

we used Kalman filter. We observed that we can not use full information that is provided

by our detector. Then, we implemented grid based pdf approximation method. We used

pdf generated by detector in prediction and update steps of the Bayesian filter. We observed

that we can speed up these steps using particle filter since we do not need to calculate

the whole pdf. Particle filter speeds up the not only prediction and update steps, but also

our object detector as well. Thanks to particle filter, we do not need to calculate whole

pdf in measurement method either. This was the second advantage of our tracker for

microcontroller implementation.

We compared our tracker with both classical and state of the art methods. On the PC, we

obtained a moderate performance with our trackers among others. However, we can export

our tracker on a microcontroller platform without performance loss. We obtained superior

performance in terms of success and speed for this case. Hence, we achieved a tracker

performance with low computational cost. In this study, we selected STM32F746 as our

microcontroller implementation platform. It is a ARM Cortex-M7 based microcontroller.

However there is no limitation to implement our tracker on microcontrollers with less

computational resource such as ARM Cortex-M4 based microcontrollers. For example

88

STM32F429 has 192 kilobyte ram with similar clock speed. Our tracker would work but

smaller image size. On the other hand we can achieve a faster performance with STM32H7

devices which offers two times higher clock than the STM32F746.

In this study we targeted only microcontroller as embedded platform. Our work can be

extended to lower level of hardware such as FPGA with multiple object tracking.

89

REFERENCES

1. Drones A. AERIUS - The NEW World’s Smallest Quadcopter; [cited

2020 17 January]. Available from: https://www.indiegogo.com/projects/

aerius-the-new-world-s-smallest-quadcopter.

2. Yilmaz A, Javed O, Shah M. Object tracking: A survey. ACM Computing Surveys.

2006;38(4):13–es.

3. Harris C, Stephens M. A combined corner and edge detector. In Proceedings of Fourth

Alvey Vision Conference on; 1988.

4. Chen Z. Bayesian filtering: from Kalman filters to particle filters, and beyond.

Statistics: A Journal of Theoretical and Applied Statistics. 2003;182(1):1–69.

5. Grewal MS, Andrews AP. Kalman filtering: Theory and practice with MATLAB. 4th

ed. New Jersey: Wiley-IEEE Press; 2014.

6. Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters

for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal

Processing. 2002;50(2):174–188.

7. Khanna R, Möller M, Pfeifer J, Liebisch F, Walter A, Siegwart R. Beyond point clouds

- 3D mapping and field parameter measurements using UAVs. Emerging Technologies

Factory Automation on; 2015:IEEE.

8. Faessler M, Fontana F, Forster C, Mueggler E, Pizzoli M, Scaramuzza D.

Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro

aerial vehicle. Journal of Field Robotics. 2016;33(4):431–450.

9. Delmerico J, Giusti A, Mueggler E, Gambardella LM, Scaramuzza D. “On-the-

spot training” for terrain classification in autonomous air-ground collaborative teams.

International Symposium on Experimental Robotics on; 2016:Springer.

90

10. Giusti A, Guzzi J, Cireşan DC, He FL, Rodrı́guez JP, Fontana F, et al. A machine

learning approach to visual perception of forest trails for mobile robots. IEEE

Robotics and Automation Letters. 2015;1(2):661–667.

11. Mueggler E, Faessler M, Fontana F, Scaramuzza D. Aerial-guided navigation of a

ground robot among movable obstacles. International Symposium on Safety, Security,

and Rescue Robotics on; 2014:IEEE.

12. Olson E. AprilTag: A robust and flexible visual fiducial system. International

Conference on Robotics and Automation on; 2011:IEEE.

13. Minaeian S, Liu J, Son YJ. Vision-based target detection and localization via a team

of cooperative UAV and UGVs. IEEE Transactions on Systems, Man, and Cybernetics

Systems. 2015;46(7):1005–1016.

14. Gohl P, Honegger D, Omari S, Achtelik M, Pollefeys M, Siegwart R. Omnidirectional

visual obstacle detection using embedded FPGA. International Conference on

Intelligent Robots and Systems on; 2015:IEEE.

15. Fraundorfer F, Heng L, Honegger D, Lee GH, Meier L, Tanskanen P, et al. Vision-

based autonomous mapping and exploration using a quadrotor MAV. International

Conference on Intelligent Robots and Systems on; 2012:IEEE.

16. McGuire K, de Croon G, Tuyls K. A comparative study of bug algorithms for robot

navigation. Robotics and Autonomous Systems. 2019;121:103261.

17. Schauwecker K, Zell A. On-board dual-stereo-vision for the navigation of an

autonomous MAV. Journal of Intelligent & Robotic Systems. 2014;74(1-2):1–16.

18. Engel J, Sturm J, Cremers D. Camera-based navigation of a low-cost quadrocopter.

International Conference on Intelligent Robots and Systems on; 2012:IEEE.

19. Lynen S, Achtelik MW, Weiss S, Chli M, Siegwart R. A robust and modular multi-

91

sensor fusion approach applied to mav navigation. International Conference on

Intelligent Robots and Systems on; 2013:IEEE.

20. Klein G, Murray D. Parallel tracking and mapping for small AR workspaces.

International Symposium on Mixed and Augmented Reality on; 2007:IEEE.

21. Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual

tracking: An experimental survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence. 2013;36(7):1442–1468.

22. Li S, Yeung DY. Visual object tracking for unmanned aerial vehicles: A benchmark

and new motion models. Conference on Artificial Intelligence on; 2017:AAAI.

23. Briechle K, Hanebeck UD. Template matching using fast normalized cross

correlation. Proceedings of SPIE - The International Society for Optical Engineering.

2001;4387:95–102.

24. Baker S, Matthews I. Lucas-kanade 20 years on: A unifying framework. International

Journal of Computer Vision. 2004;56(3):221–255.

25. Arandjelović O. Automatic vehicle tracking and recognition from aerial image

sequences. International Conference on Advanced Video and Signal Based

Surveillance on; 2015:IEEE.

26. Nguyen HT, Smeulders AW. Fast occluded object tracking by a robust

appearance filter. IEEE Transactions on Pattern Analysis and Machine Intelligence.

2004;26(8):1099–1104.

27. Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral

histogram. IEEE Computer Society Conference on Computer Vision and Pattern

Recognition on; 2006:IEEE.

28. Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean

92

shift. Conference on Computer Vision and Pattern Recognition on; 2000:IEEE.

29. Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. International

Journal of Computer Vision. 2015;111(2):213–228.

30. Ross DA, Lim J, Lin RS, Yang MH. Incremental learning for robust visual tracking.

International Journal of Computer Vision. 2008;77(1-3):125–141.

31. Kwon J, Lee KM, Park FC. Visual tracking via geometric particle filtering on the

affine group with optimal importance functions. Conference on Computer Vision and

Pattern Recognition on; 2009:IEEE.

32. Maggio E, Cavallaro A. Multi-part target representation for color tracking.

International Conference on Image Processing on; 2005:IEEE.

33. Cao X, Lan J, Yan P, Li X. Vehicle detection and tracking in airborne videos by

multi-motion layer analysis. Machine Vision and Applications. 2012;23(5):921–935.

34. Shi J, Tomasi C. Good features to track. Conference on Computer Vision and Pattern

Recognition on; 1994:IEEE.

35. Kim Y, Jung W, Bang H. Visual target tracking and relative navigation for unmanned

aerial vehicles in a GPS-denied environment. International Journal of Aeronautical

and Space Sciences. 2014;15(3):112–121.

36. Yang F, Lu H, Yang MH. Robust superpixel tracking. IEEE Transactions on Image

Processing. 2014;23(4):1639–1651.

37. Lu H, Wang D, Zhang R, Chen YW. Video object pursuit by tri-tracker with

on-line learning from positive and negative candidates. IET Image Processing.

2011;5(1):101–111.

38. Xiaoyan J, Shiru Q. A target tracking algorithm based on mean shift with feature

fusion. Chinese Control Conference on; 2015:IEEE.

93

39. Szottka I, Butenuth M. Advanced particle filtering for airborne vehicle tracking in

urban areas. IEEE Geoscience and Remote Sensing Letters. 2013;11(3):686–690.

40. Rodrı́guez-Canosa GR, Thomas S, Del Cerro J, Barrientos A, MacDonald B. A real-

time method to detect and track moving objects (DATMO) from unmanned aerial

vehicles (UAVs) using a single camera. Remote Sensing. 2012;4(4):1090–1111.

41. Kanade T, Collins R, Lipton A, Burt P, Wixson L. Advances in cooperative multi-

sensor video surveillance. Proceedings of DARPA Image Understanding Workshop

on; 1998.

42. Lowe DG. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision. 2004;60(2):91–110.

43. Zhang H, Wu K. A vehicle detection algorithm based on three-frame differencing and

background subtraction. International Symposium on Computational Intelligence and

Design on; 2012:IEEE.

44. Liu L, Sang N, Huang R. Background subtraction using shape and colour information.

Electronics Letters. 2010;46(1):41–43.

45. Stauffer C, Grimson WEL. Adaptive background mixture models for real-time

tracking. Computer Society Conference on Computer Vision and Pattern Recognition

on 1999:IEEE.

46. Lee DS. Effective Gaussian mixture learning for video background subtraction. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2005;27(5):827–832.

47. Horprasert T, Harwood D, Davis LS. A statistical approach for real-time robust

background subtraction and shadow detection. International Conference on Computer

Vision on; 1999:IEEE.

48. Cheng G, Han J. A survey on object detection in optical remote sensing images.

94

ISPRS Journal of Photogrammetry and Remote Sensing. 2016;117:11–28.

49. Rodriguez J, Castiblanco C, Mondragon I, Colorado J. Low-cost quadrotor applied

for visual detection of landmine-like objects. 2014 International Conference on

Unmanned Aircraft Systems on; 2014:IEEE.

50. Malek S, Bazi Y, Alajlan N, AlHichri H, Melgani F. Efficient framework for palm

tree detection in UAV images. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing. 2014;7(12):4692–4703.

51. Song B, Li X. Power line detection from optical images. Neurocomputing.

2014;129:350–361.

52. Katrasnik J, Pernus F, Likar B. A survey of mobile robots for distribution power line

inspection. IEEE Transactions on Power Delivery. 2009;25(1):485–493.

53. Chen B, Chen Z, Deng L, Duan Y, Zhou J. Building change detection with RGB-D

map generated from UAV images. Neurocomputing. 2016;208:350–364.

54. Popp M, Granacher R, Trommer G. Automatic detection of complex shaped

buildings in aerial images to support the navigation of micro aerial vehicles in urban

environment. Gyroscopy and Navigation. 2015;6(1):1–8.

55. Flores G, Zhou S, Lozano R, Castillo P. A vision and GPS-based real-time trajectory

planning for a MAV in unknown and low-sunlight environments. Journal of Intelligent

& Robotic Systems. 2014;74(1-2):59–67.

56. Yang S, Scherer SA, Schauwecker K, Zell A. Autonomous landing of MAVs on an

arbitrarily textured landing site using onboard monocular vision. Journal of Intelligent

& Robotic Systems. 2014;74(1-2):27–43.

57. Moranduzzo T, Melgani F. Automatic car counting method for unmanned

aerial vehicle images. IEEE Transactions on Geoscience and Remote Sensing.

95

2013;52(3):1635–1647.

58. Tuermer S, Kurz F, Reinartz P, Stilla U. Airborne vehicle detection in dense urban

areas using HoG features and disparity maps. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing. 2013;6(6):2327–2337.

59. Liu K, Mattyus G. Fast multiclass vehicle detection on aerial images. IEEE

Geoscience and Remote Sensing Letters. 2015;12(9):1938–1942.

60. Chen X, Xiang S, Liu CL, Pan CH. Vehicle detection in satellite images by hybrid

deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters.

2014;11(10):1797–1801.

61. Kluckner S, Pacher G, Grabner H, Bischof H, Bauer J. A 3D teacher for car detection

in aerial images. International Conference on Computer Vision on; 2007:IEEE.

62. Bradski G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV library.

Sebastopol: O’Reilly Media, Inc.; 2008.

63. Henriques JF, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized

correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence.

2014;37(3):583–596.

64. Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking.

Conference on Computer Vision and Pattern Recognition on; 2015:IEEE.

65. Zhang J, Ma S, Sclaroff S. MEEM: robust tracking via multiple experts using entropy

minimization. European Conference on Computer Vision on; 2014:Springer.

66. Wang N, Shi J, Yeung DY, Jia J. Understanding and diagnosing visual tracking

systems. International Conference on Computer Vision on; 2015:IEEE.

67. Danelljan M, Häger G, Khan F, Felsberg M. Accurate scale estimation for robust

visual tracking. British Machine Vision Conference on; 2014:BMVA Press.

96

68. Sirmacek B, Unsalan C. Urban-area and building detection using SIFT keypoints

and graph theory. IEEE Transactions on Geoscience and Remote Sensing.

2009;47(4):1156–1167.

69. Özcan AH. 3D Object Detection and Representation in Remote Sensing: Probabilistic

Methods and Applications. PhD thesis. Yeditepe University. Istanbul; 2017.

70. Leibe B, Leonardis A, Schiele B. Combined object categorization and segmentation

with an implicit shape model. Toward category-level object recognition; 2006:508–

524.

71. Bar-Shalom Y, Li XR. Estimation and tracking- Principles, techniques, and software.

Norwood: Artech House, Inc.; 1993

72. STM32F745xx, STM32F746xx Datasheet; [cited 2020 17 January]. Available from:

https://www.st.com/resource/en/datasheet/DM00166116.pdf.

73. Chan E. FatFs - Generic FAT File System Module; [cited 2020 17 January]. Available

from: http://elm-chan.org/fsw/ff/00index e.html.

74. OV9655 Color CMOS SXGA (1.3 MegaPixel) CAMERACHIP with OmniPixel

Technology; [cited 2020 17 January]. Available from: http://www.arducam.com/

downloads/modules/OV9655/ov9655 full.pdf.

75. File Exchange - MATLAB Central; [cited 2020 17 January]. Available from: https:

//www.mathworks.com/matlabcentral/fileexchange/.

76. CMSIS DSP Software Library; [cited 2020 17 January]. Available from: http://www.

keil.com/pack/doc/CMSIS/DSP/html/index.html.

77. Kim Z, Malik J. Fast vehicle detection with probabilistic feature grouping and its

application to vehicle tracking. International Conference on Computer Vision on;

2003:IEEE.

97

78. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 1986;(6):679–698.

79. Dalal N, Triggs B. Histograms of oriented gradients for human detection. Conference

on Computer Vision and Pattern Recognition on; 2005:IEEE.

80. Rothe R, Guillaumin M, Van Gool L. Non-maximum suppression for object detection

by passing messages between windows. Asian Conference on Computer Vision on;

2014:Springer.

81. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C.

Cambridge: Cambridge University Press; 1988.

82. Box GE. A note on the generation of random normal deviates. The Annals of

Mathematical Statistics 1958;29:610–611.

83. Marsaglia G, Tsang WW, et al. The ziggurat method for generating random variables.

Journal of Statistical Software. 2000;5(8):1–7.

84. Schraudolph NN. A fast, compact approximation of the exponential function. Neural

Computation. 1999;11(4):853–862.

85. Li A, Lin M, Wu Y, Yang MH, Yan S. Nus-pro: A new visual tracking challenge. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2015;38(2):335–349.

86. Robicquet A, Sadeghian A, Alahi A, Savarese S. Learning social etiquette: Human

trajectory understanding in crowded scenes. European Conference on Computer

Vision on; 2016:Springer.

87. Collins R, Zhou X, Teh SK. An Open Source Tracking Testbed and Evaluation

Web Site. Workshop on Performance Evaluation of Tracking and Surveillance on;

2005:IEEE.

88. Zhu P, Wen L, Bian X, Ling H, Hu Q. Vision meets drones: A challenge. arXiv

98

preprint arXiv . 2018;1804:07437

89. Mueller M, Smith N, Ghanem B. A benchmark and simulator for uav tracking.

European Conference on Computer Vision on; 2016:Springer.

90. Wu Y, Lim J, Yang MH. Online object tracking: A benchmark. Conference on

Computer Vision and Pattern Recognition on; 2013:IEEE.

99

APPENDIX A: SEQUENCE LIST

All sequences that are used in this study are listed in tabular form in Tables A.1 to A.4.

Table A.1. Sequence list.

Occlusion Low

Res.

Similar

Objects

Scale

/Aspect

Change

Source

Dataset

01-Light video00012 X Alov300

01-Light video00014 Alov300

01-Light video00024 Alov300

09-Confusion video00002 X Alov300

11-Occlusion video00006 X Alov300

11-Occlusion video00007 X Alov300

airplane 002 X NusPro

airplane 003 X NusPro

airplane 004 X NusPro

airplane 005 X X NusPro

airplane 006 X NusPro

airplane 007 X NusPro

airplane 008 X NusPro

airplane 009 X NusPro

airplane 010 X NusPro

airplane 011 X NusPro

100

Table A.2. Sequence list cont.

Occlusion Low

Res.

Similar

Objects

Scale

/Aspect

Change

Source

Dataset

airplane 012 X NusPro

airplane 013 NusPro

airplane 014 X NusPro

airplane 015 X NusPro

airplane 017 X X NusPro

airplane 018 X NusPro

airplane 020 X UAV123

boat2 X UAV123

boat4 X UAV123

boat5 X UAV123

boat6 X UAV123

boat8 X UAV123

bookstore Stanford

bookstore 2 X Stanford

bookstore 3 Stanford

bookstore 4 X Stanford

bookstore 5 X Stanford

bookstore 6 X Stanford

car 5 OTB70

car 6 X X OTB70

car 8 X OTB70

car1 X UAV123

101

Table A.3. Sequence list cont.

Occlusion Low

Res.

Similar

Objects

Scale

/Aspect

Change

Source

Dataset

car10 X UAV123

car11 X X UAV123

car14 X X UAV123

car2 X UAV123

car3 UAV123

car4 X UAV123

deathcircle 1 Stanford

deathcircle 2 Stanford

deathcircle 3 Stanford

egtest01 X X Vivid

egtest02 X X Vivid

egtest03 X X Vivid

egtest04 X X Vivid

egtest05 X Vivid

ManRunning1 X X OTB70

person1 UAV123

person11 X UAV123

person15 X UAV123

person2 UAV123

person22 X X UAV123

person23 X X UAV123

person3 UAV123

person6 X X UAV123

RcCar5 X OTB70

RcCar8 X X OTB71

102

Table A.4. Sequence list cont.

Occlusion Low

Res.

Similar

Objects

Scale

/Aspect

Change

Source

Dataset

RcCar9 X OTB72

soccer 001 X X UAV123

soccer 002 X X X UAV123

soccer 003 X UAV123

soccer 004 X X UAV123

soccer 005 X X X UAV123

soccer 006 X X UAV123

soccer 007 X X UAV123

soccer 008 X X UAV123

soccer 009 X X UAV123

soccer 010 X X UAV123

SpeedCar2 X OTB70

SpeedCar4 X OTB70

uav0000126 07915 s VisDrone

uav0000238 01280 s X VisDrone

uav0000252 00001 s X VisDrone

uav0000303 01250 s X VisDrone

