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ABSTRACT

RECONSTRUCTION AND VALIDATION OF GENOME-SCALE METABOLIC

MODEL FOR GLUCONACETOBACTER DIAZOTROPHICUS; A PLANT GROWTH

PROMOTING BACTERIUM

Gluconacetobacter diazotrophicus is an acid tolerant, gram negative and obligate aerobe

bacterium whose genome is fully sequenced. It has important agricultural value such

as nitrogen fixation, producing plant promoting enhancers, increasing solubility of zinc

and phosphorus and increasing plant’s resistance against certain bacteria or fungi. It also

produces industrially and pharmaceutically valuable carboxyl acid gluconic acid which is

used as antiseptic and chelating agents. Unlike other diazotrophs, G. diazotrophicus is an

endophyte bacterium living within the plant without causing any harm. Its natural host is

sugarcane: a monocot plant with high sugar content. There are studies about plant growth

promoting and nitrogen fixation characteristics but the underlying metabolic pathways are

not fully understood. Adopting a system biology approach; reconstructing the genome-scale

metabolic model (GSMM) for the Gluconacetobacter diazotrophicus and applying Flux

Balance Analysis (FBA), can not only help us to find the carbon flux of its metabolism but

also to elucidate how it works and responds to the environmental factors. Consequently, the

analysis of the GSMM can be also used for determining the target pathways for metabolic

engineering considering utilitarian exploitation of the organism. In the light of the above,

a genome-scale metabolic model for G. diazotrophicus consisting of 1754 reactions, 1629

metabolites and 848 genes was constructed.



vi

ÖZET

BİTKİ BÜYÜMESİNİ TEŞVİK EDEN BAKTERİ (PGPB) OLAN

GLUCONACETOBACTER DIAZOTROPHICUS´UN GENOM-ÖLÇEKLİ

METABOLİK MODELİNİ OLUŞTURMA VE DOĞRULAMA

Gluconacetobacter diazotrophicus; gram negatif, aside toleranslı, zorunlu aerob ve

tüm genomu dizilenmiş bir bakteridir. Azot fiksleme, bitki büyümesine yardımcı

etkenler üretme, çinko ve fosfor çözünürlüğünü sağlama ve bitkilerin patojenlere karşı

dirençlerini arttırma gibi önemli zirai özellikleri vardır. Ayrıca inşaat ve ilaç endüstrisinde

antiseptik ve şelat oluşturucu olarak da kullanılan bir karboksil asit olan glukonik asit

üretmektedir. G. diazotrophicus endofit bir bakteridir; yani konak bitkisinin içinde, ona

zarar vermeden yaşamaktadır. Yüksek şeker içeren ve monokot bir bitki olan şeker

kamışı, bu bakterinin doğal konağıdır. Azot bağlayıcı ve bitkilerin büyümesine yardımcı

karakterlerini inceleyen birçok çalışma olmasına rağmen, bunlardan sorumlu metabolik

yolaklar hakkında bilgi oldukça yetersiz veya başlangıç aşamasındadır. Sistem biyolojisi

yaklaşımını kullanarak G. diazotrophicus bakterisinin genom ölçekli metabolik modelinin

oluşturulması, modele akı denge analizinin uygulanması, hem bakteri metabolizmasındaki

karbon akısının incelenmesine hem de bu metabolizmanın genel çalışma prensiplerinin ve

çevresel faktörlerden nasıl etkilendiğinin anlaşılmasına yardım edecektir. Ayrıca böyle bir

metabolik model, metabolizma mühendisliği için organizmanın endüstriyel açıdan faydalı

olmasını sağlayacak hedef yolakların bulunması için de yararlı olacaktır. Bu bilgiler ışığında

bu çalışmada, genom dizisinden yola çıkarak 1754 reaksiyon, 1629 metabolit ve 848 genden

oluşan bir metabolik model oluşturulmuştur.
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1. INTRODUCTION

Bacteria are prokaryotic organisms responsible for several metabolic functions which are

beneficial to soil and plant health such as nutrient cycling, decomposition of organic matter,

plant growth promotion and increased resistance to pathogens.

Nitrogen (N) is essential for life as amino acids, proteins and nucleotides contain N in

their structure. Nitrogen is found abundantly in nature in the form of N2(g), yet it is not

readily available for most organisms to use. The amount of accessible nitrogen is one

of the important crop yield-limiting factors. Thus in agriculture, to prevent production

loss, application of fertilizers and rotational crop practices are applied. However the

production of N-containing fertilizers and the excess usage of these have negative impacts

on the environment. Biological Nitrogen Fixation (BNF) can be a strategical move

to make agriculture more productive by providing the plants the needed nitrogen using

environmentally benign methods.

Some of the N-fixing bacteria have symbiotic relationships with plants. While plants provide

a habitat with essential nutrients to the bacteria, they receive ammonia which is a product

of BNF in return. The most common example of the symbiotic relationship between a

plant and nitrogen-fixing bacterium is the root nodules of legumes such as beans, lentils

and peas, hosting various plant growth promoting rhizobacteria (i.e. Rhizobia). Fortunately,

such relationship is not only limited to legumes. Gluconacetobacter diazotrophicus, an

endophyte which was initially isolated from monocot plant sugarcane, not only has the

ability to fix nitrogen but also has many other plant growth promoting properties such

as production of plant hormones (i.e. auxins, giberellins), increasing the solubility of

zinc and phosphate by acidification, showing antagonistic effects to plant pathogens.

The molecular research which includes sequencing of the whole genome of bacterium

G. diazotrophicus determined many candidate genes for understanding the relationship

between the endophyte and its host sugarcane. This relationship can be a model for

diazotroph-monocot interactions.

Although the plant growth promoting properties and nitrogen fixing characteristics of

Gluconacetobacter diazotrophicus have been studied, the responsible pathways are yet to
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be correctly defined. Taking a systems biology approach in the post genomic era may lead

us better than classical methods for a rational understanding of the metabolism, increasing

the yield and designing optimal media for growth. An important part that was missing for

systems biology approach was the genome-scale metabolic model for G. diazotrophicus.

This study is mainly computational; reconstruction and analysis of a mathematical model.

The experimental data were taken from the published literature. The main outcome of

this study is the “genome-scale metabolic model” of Gluconacetobacter diazotrophicus, the

plant growth promoting, N-fixing bacterium. The computational analysis was performed by

Flux Balance Analysis (FBA) method, which allowed us to study the metabolic capabilities

of the bacterium. This newly gathered knowledge will help us to adopt engineering

strategies to design novel strains with increased capabilities to produce industrially,

agriculturally or medically important products such as phytohormones or gluconic acid with

minimal economical cost.
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2. LITERATURE REVIEW

The world’s population is over 7 billion people and expected to reach 8.6 billion in 2030

and 9.8 billion in 2050 [1]. One of the biggest challenges of today’s world is to be able to

grow enough food to sustain population with the limited and diminishing arable land. Most

of the current agricultural strategies consist of using chemical fertilizers to achieve higher

yields since most of the time the essential elements are the limiting factors for growth.

This strategy has negative impacts on the environment and nutrient cycles. Developing

biotechnological tools which can be used for sustainable agriculture is a significant social

and industrial endeavor [2].

2.1. NUTRIENT CYCLES

According to the elemental analyzes performed on various living organisms from plants to

animals, there are eleven essential elements common to all living matter. From these, six

of them is found abundantly in biomass compared to others. These six elements are carbon

(C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P) and sulfur (S) and required

for building blocks of all the biological macromolecules; carbohydrates, proteins, lipids and

nucleic acids [3].

Earth can be assumed as a closed ecosystem where intake or loss of matter is negligible

compared to the earth’s mass, thus limiting the amount of chemical elements available

which makes recycling of essential elements a fundamental process for life on earth [4].

Recycling of elements consists of both biotic and abiotic components of earth, hence are

called biogeochemical cycles [5]. Two of the major biogeochemical cycles are carbon and

nitrogen cycles.

Carbon is elemental base for life since it is found in all organic compounds making the

carbon cycle one of the most important biogeochemical cycle. Carbon cycle consists of

four processes; photosynthesis (carbon fixation), respiration, combustion and decomposition

(Figure 2.1). During photosynthesis the carbon dioxide gas (CO2) is taken by the primary

producers (autothrophs) such as plants, and synthesized into carbohydrates via the enzyme
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ribulose bisphosphate carboxylase/oxygenase (rubisco), storing the light energy from the

sun into the chemical bonds. The plants incorporate the fixed carbon into their biomass

and become carbon source for consumers. The plants or animals which die without being

consumed by others, are decomposed by bacteria and fungi releasing the carbon to either to

the air or soil. Some of the carbon reservoir is found in the soil as fossils and fossil fuels.

The carbon also can return to the atmosphere as CO2 gas via either respiration process of

all living things, or combustion process where organic materials such as wood of fossil fuel

burn with an oxidant [4].

Another major element for life is nitrogen as it is the building block for proteins and nucleic

acids. Nitrogen is found abundantly as nitrogen gas (N2) in air making up 79 per cent of the

atmosphere. Nitrogen cannot be used in this form by most of the organism but diazotrophs

[4, 6]. Similar to carbon cycle, consumers obtain this element from the plants or other

animals. On the other hand, most plants obtain nitrogen from soil in the form of nitrite,

nitrate or ammonium (Figure2.2) [7, 8].

Nitrogen is fixed and becomes available via two natural and one artificial pathways.

Atmospheric disposition where lightning is responsible for the 15 per cent of nitrogen

entering the ecosystem [6, 9]. The energy in the lightning breaks the bonds between the two

nitrogen atoms and form nitrogen oxides. These nitrogen oxides dissolves in the rain and

enter the soil to be available for plants to use. Biological nitrogen fixation is another natural

pathway where bacteria convert the N2 gas into ammonia (NH3) and responsible for 60 per

cent of the fixed nitrogen [4, 9]. The third, artificial nitrogen fixation method is the Haber-

Bosch process where atmospheric nitrogen gas is converted to NH3 using hydrogen gas and

a metal catalyst [6, 7, 9]. Via this process, around 500 million tonnes of artificial fertilizers

are produced each year [8]. Unfortunately, plants can only consume thirty to fifty percentage

of the applied nitrogen based chemical fertilizers. The rest is wasted, either converted and

released to the air in the form of nitrogen oxide, a greenhouse gas, by the soil bacteria or

leached into the water supplies. These wasted part of the nitrogen fertilizers are danger to

environment as they lead to both climate change and water pollution [8]. BNF is alternative

nitrogen source for plants, which is cleaner and sustainable compared to fertilizers.
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Figure 2.1. Simplified carbon cycle diagram.

Overall reactions for nitrogen fixing processes are presented below:

Lightning : N2 +O2 → 2NO,NO +
3

2
O2 → 2NO2

BNF : N2 + 8e+ 8H+ + 16ATP + 8H2O → 2NH3 + 16ADP +H2 + 16Pi

Haber-Bosch : N2 + 3H2 → 2NH3
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Figure 2.2. Simplified nitrogen cycle diagram.

Although the plants can use the ammonium (NH+
4 ), the protonated form of ammonia

directly, significant amount of the ammonium is used as energy source by the nitrification

bacteria and convert it to nitrite (NO−
2 ) and nitrate (NO−

3 ) forms. Plants also use both

nitrite and nitrate and assimilated into amino acids and nucleic acids. Consumers can

assimilate the organic nitrogen by feeding on other animals or plants. Decomposers can

also disintegrate the organic compounds containing nitrogen into ammonium via a process

known as ammonification [4].

Possible Ammonification Reactions :

• C-NH2(protein) +H2O → C −OH +NH3, NH3 +H2O → NH+
4 +OH−

• CO(NH2)2(urea) +H2O → HCO−
3 +NH3, NH3 +H2O → NH+

4 +OH−
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Dinitrifcation bacteria, do not use the oxygen from the air but instead use the oxygen found

in the nitrate compounds. This conversion enables the release of nitrogen gas back to the

atmosphere [4].

This thesis focuses on the biological nitrogen fixation part of the nitrogen cycle.

2.2. BIOLOGICAL NITROGEN FIXATION (BNF)

Biological Nitrogen Fixation is defined as the capability of prokaryotes to reduce dinitrogen

(N2) to ammonia (NH3) which helps sustaining the soil’s nitrogen supply [10, 11, 8]. BNF

is catalyzed by the enzyme called “Nitrogenase” (EC 1.18.6.1). Nitrogenase enzyme which

is a Molybdenum-dependent system is consist of two proteins. One of the protein contains

the ATP binding sites, called dinitrogenase reductase or Fe protein. The other protein which

possess the substrate binding sites is named dinitrogenase or MoFe protein [8]. Both of

these proteins are very sensitive to oxygen and reactive oxygen species (ROS) and can be

deactivated irreversibly by both, yet the nitrogen fixation is a very energy demanding process

requiring aerobic respiration [8, 12].

N2 needs six electrons to be reduced to NH3 by the nitrogenase complex, moreover two

extra electrons are needed as at least one mole of H2 is produced during biological nitrogen

fixation. The electrons needed by this process is provided by the reduction of ferrodoxin.

The energy needed to break the N2 bonds are provided by the dinitrogenase reductase part

of nitrogenase complex, which hydrolysis 2 ATP per electron hence 16 ATP in total. The

oxygen is consumed while oxidizing the reduced ferrodoxin [9].

Although there is no ideal method exists for quantification the nitrogenase enzyme activity,

there are two common methods; 15N2 enrichment and acetylene (C2H2) - ethylene (C2H4)

assay[13]. As a direct measurement method of N2 fixation during the 15N2 enrichment, the

samples are analyzed for 15N using a mass spectrometer after a incubation period with 15N2.

On the other hand, for the acetylene (C2H2) - ethylene (C2H4) assay which is an indirect

measurement method for N2 fixation , first the samples are incubated with the acetylene gas.

Then using gas chromatography, the produced ethylene gas is measured. The biochemical

basis if this assay method is, acetylene acts as an exogenous electron acceptor instead of N2
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and reduced to ethylene in the reaction catalyzed by the nitrogenase enzyme [13].

2.3. PLANT GROWTH PROMOTING BACTERIA (PGPB)

Apart from the biogeochemical cycles, large number of bacteria also have important

metabolic roles in plant growth and are called “Plant Growth Promoting Bacteria (PGPB)”

[14, 15]. PGPB include both free-living bacteria and endophytes. The free living bacteria

generally found in the soil around plant roots which is termed as ”rhizosphere” by Lorenz

Hiltner in 1904. On the other hand, endophytes are able to enter and live within the plant

tissue without any pathogenic activity [14, 16, 17].

PGPB can enhance plant growth either using direct or indirect metabolic mechanisms.

Direct metabolic mechanisms include solubilizing minerals such as phosphate, producing

phytohormones (cytokinins, giberellins, auxins and ethylene) or increasing plant’s own

production of these hormones and most importantly fixing nitrogen which is very significant

plant nutrient. On the other hand indirect mechanisms are producing antibiotics and lytic

enzymes against pathogenic microorganisms, helping other beneficial bacteria to improve

their effects on plants, production of siderophores which are chaletors for iron and other

heavy metals, and inducing systemic resistance (ISR) for plants to help their immune system

against pathogens [14, 17, 15]

2.4. GLUCONACETOBACTER DIAZOTROPHICUS

In 1988, Cavalcante and Dobereiner discovered a new species of nitrogen fixing bacterium

on roots of sugarcane, which is resistant to acidic conditions. Initially they suggested

that the bacterium species was called ”Saccharobacter nitrocaptans” [18]. Later Gillis

and colleagues named the bacterium as ”Acetobacter diazotrophicus” according to its

phenotypic, genomic and chemo-taxonomic properties which are the similarities between

the biocomposition of the organisms [19]. In 1997, after 16S ribosomal RNA analysis, it

was reclassified as Gluconacetobacter diazotrophicus [11, 20].

Gluconacetobacter diazotrophicus is an acid tolerant, gram negative and obligate aerobe
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bacteria. It has a rod shape and rounded ends with the size of 0.7-0.9 µm by 1-2 µm.

The bacteria cells can grow on high sucrose content and low acidity. The optimum sugar

concentration is 10 per cent and pH is 5.5 for growth although its recorded that they can

live at pH as low as 3. It is an endophyte, located at the internal tissues of its host without

causing any harmful effect on the plant (Figure 2.3) [18, 19, 21, 22, 23].

Figure 2.3. Gluconacetobacter diazotrophicus colonies on agar and inside root tissue of
Arabidopsis thaliana [24].

The whole genome of G. diazotrophicus strain Pal5 (ATCC 49037) has been sequenced

by two different institutes. First group to sequence and publish the genome is RioGene

FAPRJ, Brazil. Second group is from US DOE JGI, USA. The second genome sequence

has not been published as a paper but the sequence can be found on NCBI with the assembly

name ASM2132v1. There is a large difference between the two sequenced genomes [25].

RioGene determined G. diazotrophicus to have a single circular chromosome (3.9 Mb) and

two plasmids (38 kb and 16 kb). 3938 coding sequences has been annotated [26]. JGI

sequence has one plasmid (27 kb) and one chromosome (3.9 Mb). Giongo et al (2010),

reconstructed an optical map of the G. diazotrophicus and compared two DNA sequence

against it. Optical map is a physical restriction map of a genome which gives structural
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information about a genome thus can be used as validation tool in sequencing projects.[25]

Giongo and colleagues have found that RioGene sequence has several rearrangement

positions and regions which did not align with the optical map. On the other hand they

detected only small number of inversions on JGI DNA sequence. JGI DNA sequence aligned

more accurately with the optical map representation [25].

The most important characteristic of Gluconacetobacter diazotrophicus is the ability known

as ”Biological Nitrogen Fixation (BNF)”. G. diazotrophicus can provide its host with

sufficient amount of fixed nitrogen without nodule formation. For example, sugarcane

obtains nearly 150 kg N ha−1 per year from G. diazotrophicus [18]. The bacteria has also

the ability to secrete part of the fixed nitrogen in suspension cultures hence can be used in

nitrogen production as a biological work horse [27]. G. diazotrophicus also has advantage

over other N-fixing organisms (i.e. Azosprillium vinelendii, Rhizobium etli). It does not have

the nitrate reductase enzyme which reduces nitrate to nitrite. It can also fix nitrogen even in

the presence of soil nitrogen since both nitrite and excess nitrogen in soil can have negative

effect on the nitrogenase enzyme. Although the oxygen shows inhibition on nitrogenase, the

G. diazotrophicus nitrogenase enzyme can fix nitrogen under a wide range of atmospheric

oxygen pressure (5 to 60 kPa pO2) [28, 29]. Gluconacetobacter diazotrophicus can fix

nitrogen on semi-solid media but when it is grown on liquid culture, a started dose of 1mM

(NH4)2SO4 is needed [18].

Gluconacetobacter diazotrophicus has important characteristics for agricultural use other

than Biological Nitrogen Fixation (BNF) such as producing plant growth promoting agents

(i.e. phytohormones; Indole-3-acetic acid (IAA) and gibberellins (GA1 and GA3)).

Furthermore, G. diazotrophicus increases the solubility of the zinc and phosphorus which

also increase the plant growth [11, 26]. Additional studies showed that it produces

bacteriocin against Xanthomonas albilineans; a sugarcane pathogen and has antifungal

properties against Fusarium sp. and Helminthosporium carbonum [26].

The G. diazotrophicus host species is not only limited to sugarcane but also includes banana,

coffee, tea, wetland rice, pineapple and coconut plants. There are several studies where

artificial inoculates were successfully applied in high sugar content plants such as tomato,

wheat, corn and Arabidopsis thaliana; a model plant for dicots. Both natural and artificial
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inoculation studies showed that G. diazotrophicus enables an increase in plant growth and

crop yields [11, 30, 31].

G. diazotrophicus has application areas other than agriculture such as the production of

gluconic acid (GA) and the enzyme levansucrase.

2.4.1. PGPB Mechanisms

As a non-nodular endophytic bacterium, Gluconacetobacter diazotrophicus is a interesting

organism which has several direct and indirect PGPB mechanisms other than biological

nitrogen fixation (Figure 2.4).

Figure 2.4. Plant - PGPB interaction.

2.4.1.1. Phytohormone Production

Saravanan et al. showed that both wild type and nif-mutants (lacking the nif gene responsible

for the nitrogenase enzyme) could still promote plant growth in nitrogen rich soils which was
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an indication of phytohormone production [32].

In one study, 18 different strains of G. diazotrophicus were isolated from sugarcane grown

in Mexico. Then, all 18 strains were grown in defined cultre medium and analysed for

indoleacetic acid (IAA), a type of auxin. It was determined that all strains were able to

produce IAA into the medium from 0.14 to 2.42 µg per liter [33]. In another study, G.

diazotrophicus was found to produce different amounts of IAA according to the sucrose

content of the medium. It was measured that, when the bacteria were grown in a ten percent

sucrose medium the IAA production was the highest rate of 32 ng per ml [34]. Cytochrome

C biogenesis genes are involved in the production of IAA, and based on the presence of the

intermediate metabolites, the bacterium uses the IpyA pathway for IAA production [35, 36].

G. diazotrophicus also has been studied for giberellins synthesis and found to produce GA1

and GA3 types in chemically defined medium [34, 32]. GA1 secretion and GA3 secretion

were 1.6 ng per ml and 11.9 ng per ml respectively [11].

Polyamines such as putrescine, spermidine and spermine are phytohormone-like molecules

found in most of the organisms. They were demonstrated to enhance plant tolerance to

several abiotic stresses such as temperature, salt, water and pollutions. During stress times,

bacterial polyamine production can help the plant to cope with the environmental stress [37].

2.4.1.2. Phosphate and Zinc Solubility

Besides nitrogen, phosphorus (P) is one the significant nutrient limiting factor in agriculture.

Although it has been found in both organic and inorganic forms in the soil, not all forms are

readily available to plants and bacteria. Even though soluble phosphorus compounds are

readily given to the agricultural crops, they become insoluble quickly, become inaccessible

for plants and pollutes the soil [38]. G. diazotrophicus has been shown to increase P

solubilization via organic acid production and decreasing the pH of the environment. For

example, strawberry plants inoculated with GD strain, had increased P content and reversed

P deficiency [38, 39].

G. diazotrophicus can also increase the solubility of the trace element Zinc (Zn) via the

acidification of the environment [40]. It was also demonstrated via radiotracers that maize
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plants inoculated with G. diazotrophicus had higher uptake of Zinc than plants that were not

inoculated [41].

2.4.1.3. Siderophore Production

Iron (Fe) is a micronutrient required for many biochemical reactions as cofactors. Under

aerobic conditions, the iron ion is found in Fe+3 form which bacteria and plants cannot

use readily. Bacteria are known to produce small (<1000 Da) molecules, which can bind

Fe+3 ions. These molecules are known as siderophores. While binding to siderophores,

Fe ions are in the form of Fe+2 which can pass through the cell walls. Once they are

inside the cell, the Fe ions and siderophores are separated. Plants are known to use these

chelating molecules produced by the bacteria. These molecules not only help to prevent

iron deficiency and enhance plant growth but also help against infection by pathogenic

bacteria since the pathogens are deprived from the iron ions they require to grow [15, 42]. G.

diazotrophicus has been investigated to produce such small molecules to increase the plants

uptake of Fe ions [32, 43].

2.4.1.4. Antagonism Against Plant Pathogens

Gluconacetobacter diazotrophicus has been characterized to have antagonistic properties

against plant pathogens. The bacterium not only produces elicitor molecules which

increases the defense response of the plant but also secretes bacteriocins that kills other

microorganisms [44]. Plant pathogens which G. diazotrophicus has been identified to show

antagonisms are; Xanthomonas albilineans a sugar cane pathogen, Colletotrichum falcatum

(red dot fungal pathogen of sugarcane) and Gossypium hirsutum (cotton) pathogen root-

know nematode (Meloidogyne incofnita) [32, 45, 46].

Gluconic acid which is key molecule of the carbon metabolism of the Gluconacetobacter

diazotrophicus has antimicrobial activity and also responsible for the antimicrobial

characteristics of Gluconacetobacter diazotrophicus PAl5 strain. Although gram-positive

and negative bacteria show sensitivity to gluconic acid, eukaryotes are resistant [47].
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2.4.2. Metabolism

2.4.2.1. Carbon Metabolism

Glycolysis is an anaerobic process where one molecule of glucose is reduced to two

molecules of pyruvate. The whole pathway generates 4 molecules of ATP, yet it consumes

2 ATP. Thus the net ATP production is 2 ATP molecules [9]. Gluconeogenesis seems to be

the opposite pathway of the glycolysis (although it is not) where glucose is produced from

the non-carbohydrate precursors [9].

G. diazotrophicus has been demonstrated to have gluconeogenesis pathway since key and

related enzymes for the gluconeogenesis pathway has been detected in the crude extracts.

Presence of this pathway can explain why G. diazotrophicus can grow on glycerol and other

C2, C3 substrates [48].

Gluconacetobacter diazotrophicus has also pentose phosphate pathway and an uncommon

aldose oxidation pathway which reduces glucose to gluconic acid in exterior of the periplasm

via ”pyrroloquinoline quinone (PQQ) linked glucose dehydrogenase (PQQ-GDH) enzyme

(Figure 2.5)[32, 49, 50]. G. diazotrophicus lacks both the Entner-Doudoroff and Embden-

Meyerhof pathway as the bacterium does not posses the key enzymes 6-phosphogluconate

(6PG) dehydratase, KDPG aldolase and phosphofructokinase [48, 49].

Gluconacetobacter diazotrophicus posseses full TCA cycle along a respiratory chain-linked

malate dehydrogenase which explains the ability to fully oxidize ethanol to acetate [48].

G. diazotrophicus can oxidize ethanol to acetic acid in the periplasm without excreting the

acetaldehyde into the medium and two membrane-bound enzymes catalyze this process.

These enzymes are the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase

(ALDH) [52].

The bacterium grows well on sucrose, glucose, fructose, gluconate, mannitol, sorbitol and

glycerol but not on C4-dicarboxylates (DCA) such as succinate, fumarate and malate. The

enzymes needed to metabolize DCA exists in the crude extract of bacterium thus this

indicate that G. diazotrophicus has no transport mechanism for DCA [23, 48, 53]. Although

the optimum growth for the bacteria has been reported on ten percent sucrose, there is
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Figure 2.5. Simplified carbon metabolism (adapted from [51])

also no transport mechanism for sucrose. It is metabolized externally via the secretion of

levansucrase [11, 48].

Gluconacetobacter diazotrophicus can directly oxidize glucose,

gluconate and ketogluconate through respiratory chain-linked enzymes. Glucose, as with

the other aldoses, is reduced to gluconic acid externally via the enzyme PQQ-GDH which
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has a significant role in glucose metabolism [23, 49, 54]. Gluconate either fully metabolized

through the hexose monophosphate pathway or reduced further to ketogluconic acid via the

periplasmic enzyme gluconate dehydrogenase (GaDH) externally [48, 54, 55].

Oxidation via the PQQ-GDH enzyme is the main metabolic pathway for aldoses especially

under carbon limiting and BNF conditions. During N2 fixation, the metabolism requires

abundant amounts of energy so that the synthesis of PQQ-GDH is accelerated [56]. But

under glucose excess condition, an alternative pathway is simultaneously used. Excess

glucose is taken intercellulary and oxidized via NAD-GDH enzyme [54, 55].

Inactivity of PQQ-GDH in mild alkaline pH may be the reason why Gluconacetobacter

diazotrophicus does not grow under such conditions [57].

2.4.2.2. Nitrogen Metabolism

G. diazotrophicus has BNF capacity of 400 - 417 nmoles of C2H4 hr−1 mg−1 cell protein

as nitrogenase potential is measured by the acetylene (C2H2) - ethylene (C2H4) assay [11].

BNF bacteria has developed different strategies to cope with the energy demand and protect

their enzyme from the oxygen gas. For example, rhizobacteria assemble nodule type of

structure around the roots of host plants that is an oxygen free environment while plants

provide the required energy [58, 59] In the case of endophytic bacterium Gluconacetobacter

diazotrophicus, the direct oxidation of glucose might be an evolutionary strategy to protect

their enzyme from the O2 gas [23, 48]. G. diazotrophicus has one of the highest reported

respiratory capability for an aerobic bacteria [12]. The oxygen requirement for energy

production during the BNF conditions, utilizes the oxygen from the surroundings, hence

devising an environment which is friendly for the activity of nitrogenase enzyme [12].

Stephan et al. also demonstrated that nitrogenase had high oxygen tolerance in the

presence of glucose and gluconate [23]. It has been also shown that Gluconacetobacter

diazotrophicus can alter its redox metabolism during nitrogen fixing and decreases the

ROS generation via upregulating the antioxidant gene levels [59]. According to another

study, Gluconacetobacter diazotrophicus colonies can fix nitrogen under a range of different

oxygen pressure (5 to 60 kPa) and sustain the activity of their nitrogenase enzyme in
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response to changes in the oxygen pressure [29].

Nitrate reductase is not detectable in crude extracts of Gluconacetobacter diazotrophicus

and the fixed nitrogen is assimilated via the glutamine synthetase enzyme [48, 32].

2.4.3. Industrial Products

2.4.3.1. Gluconic Acid

One of the important products that G. diazotrophicus produces is gluconic acid (C6H12O7),

or gluconate. The bacteria secrete an enzyme called Pyrroloquinoline Quinone-Linked

Glucose Dehydrogenase EC 1.1.5.2 which oxidizes glucose into gluconic acid (GA) [11].

Gluconic acid is a carboxyl acid which is used as for its chelating and antiseptic properties.

Chelating agents are molecules which can bind to metal ions with more than one bonds. As

a chelating agent, gluconic acid can bind to Ca, Mg, Fe [47].

Gluconic acid is used in numerous industrial sectors such as pharmaceuticals, textile, food

and even construction. Microbial production of GA is an alternative methods to chemical,

catalytic or electrochemical processes [60]. GA is a biodegradable, water soluble, weak,

harmless, odorless, non-corosive and non-toxic acid [61].

In food industry, GA and its derivatives are used as acidity regulators (E574-E580) since

in both Europe and USA, it is assessed to be safe to use. They give a bitterness in taste of

foodstuff. They also have properties of raising, hardening and sequestering the food they

are added to [60, 61].

In pharmaceutical industry, gluconate derivatives are used as mineral supplements in

treatments of hypocelcaemia, anaemia and hypomagnesaemia [60].

Amids its other uses, GA has chelating ability of alkaline solutions hence it has been used

in both cleaning and construction industries. As an additive to cement, it increases the

resistance, hardness and stability to some of the extreme weather conditions [60, 62] .
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2.4.3.2. Levansucrase

The natural host of Gluconacetobacter diazotrophicus is sugarcane which is rich in plant

sucrose. Since G. diazotrophicus does not have a transport for sucrose, it secretes a

constitutively expressed enzyme levansucrase (LsdA, EC 2.4.1.10) to break down sucrose

[63]. The GA levansucrase has two different enzyme activities. First, it hydrolysis the

sucrose into glucose and fructose so that GA cells can transport these molecules into the

cytoplasm. Second, it has a role in the polymerization of fructosyls and levan production

[48, 64]. The LsdA enzyme has an adequate kestose-production which are used as natural

low-calorie sweeteners reported to boost human and animal gastrointestinal health as they

promote the growth of healthy gut bacteria [65]. The activity of this extracellular enzyme

has been measured as 1600 nmol glucose formed /min. mg protein by Alvarez et al. [48].

There are also several other medical and pharmaceutical uses of levan, a product of

levansucrase enzyme. It has biodegradable and film-forming abilities. It can be used as

filler, radioprotector, coating and binder properties in drug market. It can also be a plasma

substitute. [66]

2.5. SYSTEMS BIOLOGY

System biology is an interdisciplinary science where the objective is to understand the

systemic properties of cells or organisms and eventually predict the behavior of the

phenotype when environmental conditions fluctuate [67, 68]. System biology uses and

combines the powers of both experimental (omics technologies) and computational methods

(mathematical models) for these predictions [69, 68]. Mathematical models are required

because biological systems are too complex due to the large number of components which

interact in a nonlinear fashion [67].

One of the goals in life sciences is to elucidate the relationship between the genotype and

the phenotype. Before the emergence of systems biology, the reductionist view (bottom up

approach) was popular in the fields of molecular biology, genetics and biochemistry where

the functions and properties of individual parts such as a molecule, a gene or a reaction were

studied and identified [70]. Although this approach was useful to gain information about the
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components, it was inadequate when it comes to the emergent properties which are the

collective features of the biological systems (i.e. biofilm production by microorganism),

and the interactions of components within themselves or with their environment. On the

other hand, system biology adopts a top-down approach and takes on a holistic view when

it comes to complex biological problems [67, 69, 71].

One of the most studied and modeled subject in systems biology is metabolic networks.

Although still incomplete, a remarkable number of reactions and how they interact

stoichiometrically in the metabolism are known. Information on the enzymes catalyzing

these reactions and genes encoding these enzymes are also available. Using the particular

information Genome-scale Metabolic Models (GSMM) are constructed to analyze the

metabolic network of target organisms [67, 71, 72].

2.5.1. Fluxome

The fluxome is defined as the complete collection of metabolic fluxes; where a flux is the

rate of a given reaction typically at a steady state. The fluxome is the dynamic snap shot of

the phenotype’s response to the environment based on the metabolome of the cell [69].

GSMMs aim to capture the fluxome of the modeled organism with respect to the

environmental conditions that is being simulated.

2.5.2. Genome-scale Metabolic Modeling

Metabolism is the total collection of enzyme-catalyzed reactions in an organism required

for maintaining the living state. Enzymes encoded by the genome of the organism are

responsible for catalyzing these metabolic reactions. Metabolic models are mechanistic

models based on the relationship between the genome and the metabolism [70, 73].

Genome-scale metabolic models are the set of reactions needed for growth and maintaining

life, reconstructed via the information on the genome and bibliome which is the

experimental literature on the target organism [70, 74, 75, 76, 77].

While GSMMs lack the enzyme kinetics, they can still used for analyzing the metabolic
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capabilities of organisms via the well established stoichiometry of the reactions using

constraint based modeling approaches [72, 74]. Constraint based approaches are used to

limit the solution space of the models. The mass conservation principle, energy balance

and thermodynamic constraints are universal constraints applied to all systems whether its

biological or not. In order to further limit the solution space, organism’s characteristics and

behaviors can be applied as constraints on the models [78, 79].

When a mass-balance equation is written for each intracellular metabolite (x);

dx

dt
=

∑
vproduced −

∑
vconsumed (2.1)

where dx
dt

is the time derivative of the given metabolite concentration, vproduced is the rate of

formation and vconsumed is the rate consumption for that particular metabolite. Using a matrix

notation, the equation 2.1 can be written as;

dx
dt

= S · v (2.2)

In equation 2.2, S denotes the stoichiometric matrix; where the stoichiometric coefficients

for each metabolite is given per corresponding reaction and v stands for the rate of reaction

matrix. If the metabolite is consumed during the reaction, the stoichiometric coefficient in

the S matrix is negative, while if the metabolite is the product of that reaction the coefficient

has positive value.

Genome-scale models assume that the cells are in a pseudo stead-state because the turn

over time of metabolites are much smaller compared to the time-dependent behavior of

the intracellular of metabolite concentrations [80]. In this special case, the change in

concentration over time is equal to zero which yields the algebraic relation:

S · v = 0 (2.3)
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Reconstruction of a genome-scale model has been methodized using a 96 steps protocol by

Thiele and Palsson, it can be summarized in five steps [77, 81]:

1. Draft model reconstruction (usually done via automated tools such as Model SEED)

2. Gap-filling

3. Manual curation of the draft model into a detailed model

4. Transformation of the model into a mathematical one

5. Simulation of the model

The reconstruction processes is an iterative process in which if there is inconsistencies

between the model and the experimental data, the model should be re-evaluated and the

same steps should be taken from the start [74, 81].

The first step in generating a genome-scale metabolic model is functional annotation of

the genome to identify the metabolic reactions and determine their stoichiometry. The

reversibility of the reactions depending on the thermodynamic constraints (either calculated

using the Gibbs Free Energy or taken from the literature) can be added to the model as

well. The latter steps include assigning the reactions’ proper localization, creating a lumped

biomass reaction that will reflect the biomass composition of the cell, and evaluation of the

energy requirements of the cell [74, 81].

The gene-reaction relationships and cofactor requirements can be mined from databases

such as KEGG, BioCyc. When uncertain about whether NADH or NADPH is used as a

cofactor for a reaction, it is better to add both reactions to the model [74]

Definition of compartments in a model and assigning reactions to their proper localization

is also another important step of the metabolic reconstruction. Transport reactions between

the compartments should be added to the model. The identical metabolites of reactions

belonging to different compartments should be named accordingly. For example, one way

of naming metabolite X is, as X c if it belongs to reaction in cytosol while if it belongs to a

reaction localized on periplasm it should be named as X p [74, 81].

The biomass reaction is a lump, artificial reaction formed from the precursor metabolites

(i.e. amino acids, fatty acids, sugars etc) of macro molecules (i.e proteins, DNA, lipids
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etc.) constituting the biomass of the cell [74, 81]. The proportions of the biomass elements

cannot be derived from the annotated genome but should be either measured experimentally

or literature data of a similar organism can be used [82].

Another artifical reaction that should be added to the model is the non-growth associated

maintenance (NGAM) reaction which is an irreversible reaction. Non-growth associated

maintenance energy is the energy needed for survival of the cell without any growth. NGAM

accounts all the ATP expenses, that can not be taken stoichiometricaly into account, e.g.

via Futile cycles, signaling processes etc. In this reaction ATP is converted into ADP and

orthophosphate [73, 74].

After mining the set of reactions from both the annotated genome and the bibliome, the

stoichiometric matrix S(m x n) is constructed where m is the number of metabolites and n is

the number of reactions. The rows on the S matrix denote the metabolites while the columns

denote reactions [74, 83, 84]. For every matrix element, the Sij, shows the stoichiometry

of that metabolite in the given reaction. If the Sij is zero, it means that metabolite is not

present in the reaction [83].

Once the model is converted into S matrix, using a constrain based optimization such as

Flux Balance Analysis (FBA), the model can be analyzed. All the possible flux values for

each reactions can be calculated [74].

Apart from the reactions and their stoichiometric information, genome-scale metabolic

models can also include available enzyme commission numbers (E.C.) and gene-protein-

reaction (GPR) associations. GPR association is a description of which genes are

responsible for encoding the enzyme associated with the particular reaction [81, 85].

Although genome-scale metabolic models lack the regulatory information about the cells,

GPR association allows integration of -omics data (i.e. transcriptomics) to increase the

predictive power of the constraint based modeling approaches [70, 83].

Although all biological models including the genome-scale metabolic models, are simpler

interpretations of reality evaluating only part of the real life constraints, their predictions

are very useful[78]. Genome-scale metabolic models and constraint based model analysis

have been used first and foremost to elucidate metabolism and to predict its theoretical
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Figure 2.6. Workflow for reconstruction of a GSMM

capabilities [70, 74, 86, 87]. In vitro experiments are both time and money consuming,

thus in silico hypothesis testing using the GSMMs are optimal to reduce time and cost

while gathering as much data as possible on external and internal effects on the metabolism

[76, 86]. Even the incorrect predictions of the metabolic models can help to find missing

metabolic information or right the wrong ones. The inconsistencies between the model

prediction and the experiments can be used to construct targeted experiments to fix such

inaccurate metabolic knowledge [70].

GSMMs are also used in finding metabolic engineering targets [70, 87, 88]. For example

using the gene-reaction relationships in the model, new gene-knock out strategies can be

developed for acquiring new or improved phenotypes [74, 86]. Optimum media design for

targeted cellular bioprocess is also possible using GSMMs [74].

GSMMs are optimal tools to calculate yield of a particular product single or more substrates.

Yield is defined as the maximum amount of product can be produced per unit substrate[89].
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2.5.3. Flux Balance Analysis (FBA)

Flux Balance Analysis is a constraint based optimization method which is used to analyze

genome-scale metabolic models [74, 84]. FBA can evaluate reaction fluxes without any

regulatory information and kinetic enzyme parameters assuming a steady-state [69, 79, 85].

To apply FBA, a metabolic network reconstruction is required in the form of a stoichiometric

matrix, S(m x n). The S matrix is multiplied by a column vector, v, which is the unknown

flux vector to establish the linear equation system. Since the assumption that the system is

in a steady state exits, the product of this matrix has to be equal to zero [83, 84, 90].

S · v = 0 (2.4)

In FBA, the system is generally under-determined, as number of reactions is much larger

than the number of metabolites in the metabolic models [69]. A bounded solution space can

be found as FBA limits it via the constraints set on the equation system. These constraints

are thermodynamics constraints, mass balance, upper/lower limits of fluxes and organism

specific ones; such as constraining oxygen uptake while being an anaerobe. Constraining

the solution space gives us a more accurate representation of the target organism [69, 74, 79,

83, 90]. The single solution calculated via the FBA is not necessarily unique, there can be

numerous flux distributions where the objective function can reach optimum value [67, 74].

Figure 2.7. The basis of constrain-based analysis (adapted from [84])

FBA uses linear optimization to solve the system to find the representation of the metabolic
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phenotype under certain conditions [77, 86]. Linear optimization demands an objective

function, which will be used to optimize the equation system [69, 74]. Although there are no

single objective function to describe the phenotype under all conditions, some of them can be

used to make biological meaningful predictions (i.e. maximum growth or ATP production)

[67]. In genome-scale metabolic models, objective function is generally biomass reaction

representing the growth rate since it is assumed that organisms usually maximize their

growth [67, 73]. Different type of objective functions can be used as well. For example;

maximization of ATP synthesis or a product synthesis can all be used as objective functions

[74, 83].

Since FBA maximizes or minimizes the objective function, Z, the dot product of vectors c

and v, where c represents the weight of each reaction contributing to the objective. Since

only one reaction is needed to be maximized or minimized, all except one value is zero on

the vector c [83, 84]

Z = c · v where LBi ≤ vi ≤ UBi (2.5)
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3. THE OBJECTIVE OF THE STUDY

Gluconacetobacter diazotrophicus is plant growth promoting bacterium with interesting

characteristics. Albeit the plant promoting properties and nitrogen fixing aspect of the

Gluconacetobacter diazotrophicus haven been the subjects of various studies, the bacterium

has not been studied at the systems biology perspective. In order to approach the metabolism

of Gluconacetobacter diazotrophicus from a systems biology perspective, a key tool is

missing; the genome-scale metabolic model which can also serve as a blue print of

biochemical reactions for the bacterium. The model would be an effective instrument to

answer questions about the organism such as;

• How the bacterium reacts to changes in its environment?

• How does it interact with the plants or other microorganisms?

• How can the genome and pathways of the organism can be exploited for utilitarian

desires for targeted metabolic engineering? (for example, improving production of

phytohormones, nitrogen fixation or gluconic acid)

The aim of this study is to reconstruct the genome-scale metabolic model of the plant growth

promoting bacterium Gluconacetobacter diazotrophicus. The GSMM was validated and

analyzed using Flux Balance Analysis. Validation was performed by the comparison of

simulation results and the experimental data from literature. The mathematical model was

used to investigate the metabolic capabilities of the bacterium; determining the carbon and

nitrogen flow and flux distributions under constraint conditions.
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4. MATERIALS AND METHODS

4.1. MODEL RECONSTRUCTION

The genome sequences of the Gluconacetobacter diazotrophicus have been downloaded

from the NBCI with the assembly names ASM2132v1 and ASM6704v1. The ASM2132v1

has been submitted by the US DOE Joint Genome Institute (JGI-PGF) and has one

chromosome and one plasmid. On the other hand, the ASM6704v1 has been submitted

and published by FAPERJ - RioGene and has one chromosome and two plasmids.

Table 4.1. Sequence information of Gluconacetobacter diazotrophicus

Assembly Name ASM2132v1 ASM6704v1
Total Sequence Length (bp) 3,914,947 3,999,591
Total Ungapped Length (bp) 3,914,947 3,999,591
Number of Chromosomes 1 1
Number of Plasmids 1 2
G-C content 66.3 66.3

Table 4.2. RAST options chosen during genome annotation step

UPLOAD OPTIONS
Scheme Classic RAST
Gene Caller RAST
FIGfam Version Release 70
Fix errors Yes
Fix Frameshift Yes
Build Metabolic Model Yes
Backfill gaps Yes
Turn on debug Yes
Verbose level 5
Disable replication Yes

4.2. MANUAL CURATION

Using the pathway maps on the Model SEED database, E.C. numbers and subsystem

information were added for the available reactions.
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Biomass formula was derived from the draft model’s biomass reaction.

4.2.1. Elemental Balances

In order to find if there were any gaps or mistakes in elemental balances in the model, using

the COBRA toolbox’s checkBalance function was used.

4.2.2. Gap Filling

Online gap-filling algorithm of Model Seed was run. The algorithm uses a single, non-

redundant set of reactions from KEGG database and 13 published GSMMs to add reactions

to ensure that the model is able to simulate growth[91].

Manual curations were done according to the annotations on KEGG pathways, reference

metabolic models such as Gluconacetobacter xylinus & Escherichia coli and literature.

4.2.3. FBA Validation

Fermentation and enzyme assay data are taken from the literature for validation of the model.

When needed, specific consumption or formations rates are calculated from the given data

and/or unit conversions were performed. The model was simulated with either biomass as

the objective function, or any other reaction with an experimental value. The computational

results compared with the experimental data.
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Figure 4.1. Gluconacetobacter diazotrophicus batch fermentation data with 5 g/l glucose
and nitrogen fixation [51]

Figure 4.2. Gluconacetobacter diazotrophicus batch fermentation data with 5 g/l glucose
and without nitrogen fixation [51]
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Figure 4.3. Gluconacetobacter diazotrophicus batch fermentation data with 10 g/l glucose
and without nitrogen fixation [51]

Figure 4.4. Gluconacetobacter diazotrophicus batch fermentation data with gluconic acid
and nitrogen fixation [51]
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Figure 4.5. Gluconacetobacter diazotrophicus batch fermentation data with gluconic acid
and without nitrogen fixation [51]

Figure 4.6. Gluconacetobacter diazotrophicus batch fermentation data with glycerol and
without nitrogen fixation [51]
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4.3. DATABASES AND ONLINE TOOLS USED

4.3.1. RAST server (Rapid Annotation using Subsystem Technology)

The SEED was built in 2004 to be a platform which could be used to store precise genome

annotations and to develop new annotations. The SEED also provides information about

compilations of functionally related protein families and their FIGfams (protein families)

[91]. In 2008, the RAST server was established to annotate sequenced genomes of

microorganisms [92, 93]. After a new genome in fasta format uploaded to the RAST server

and the genes are called, their annotations are generated by comparing them to the FIGfam

collection in the SEED database [91].

RAST annotations are also used a base for automated metabolic model reconstruction in the

modelSEED and KBASE [92, 93].

4.3.2. Model SEED

The Model SEED is a online resource that automates the first 72 steps of 96 stepped gnome-

scale metabolic model reconstruction protocol written by Thiele et al.. It is built on the

basis of the SEED annotation database. Model SEED is able to reconstruct a draft metabolic

model with gene-protein-reaction (GPR) associations, a biomass reaction, and information

on the thermodynamic reversibility of the reactions [94].

4.3.3. KEGG (Kyoto Encyclopedia of Genes and Genomes)

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a reference knowledge base where

genomic information is linked to higher order functional information [95]. There are also

reference pathway maps for core metabolic pathways. A user can check organism specific

pathway maps with KEGG annotation [95].
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4.3.4. BRENDA (BRaunschweig ENzyme DAtabase)

BRENDA (BRaunschweig ENzyme DAtabase) is a public database for enzymes and

enzyme-ligand associated information. The relevant information is directly extracted from

the primary literature. The enzyme information is based on the EC classification system

belonging to the International Union of Biochemistry and Molecular Biology (IUBMB).

There are over 4 million manually annotated experimental on 84.000 enzyme found in the

BRENDA. The database also integrated with other type of external databases for additional

information such as KEGG, UniProt etc [96].

4.3.5. EcoCyc

EcoCyc is a free to use database which provides experimental data for the bacterial model

Escherichia coli K-12. Information on gene products, functions and regulations, metabolic

pathways, enzymes and related cofactors can be extracted from the database which is

updated regularly. There are also SmartTable tools which enable users to browse the content

easier. E. coli metabolic models can be directly simulated and modified directly from the

EcoCyc [97].

4.3.6. National Center for Biotechnology Information (NCBI)

National Center for Biotechnology Information (NCBI) was established as a division of

the National Library of Medicine (NLM) at the National Institutes of Health (NIH), USA

in 1988. NCBI not only hosts several databases on molecular biology, biochemistry and

genetics, but also provide several bioinformatics tools such as BLAST [98]. One of the

notable databases belonging to NCBI is GenBank, where genome sequences of organism

can be found. Data on genes, proteins, single nucleotide polymorphisms, taxonomy, can all

be reached using NBCI.
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4.4. SOFTWARE USED

4.4.1. MATLAB

MATLAB is a software and a matrix-based scripting language developed for scientists and

engineers by MathWorks. MATLAB is designed primarly for numeric operations yet with

the optional toolboxes, symbolic computations are also possible. MATLAB enables users to

make matrix manipulations, function and data plotting, algorithm developments and model

creations [99].

MATLAB R2018a version was used in this thesis for model analysis with the help of

addition third party toolboxes and solvers.

4.4.2. GLPK (GNU Linear Programming Kit)

GLPK (GNU Linear Programming Kit) is a solver organized as a callable library, written in

ANSI c and intended for linear programming (LP) and mixed integer programming (MIP)

problems [100].

4.4.3. COBRA (COnstraint-Based Reconstruction and Analysis) Toolbox

COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox is compilation of several

algorithms required for constrain based analysis of metabolic models on MATLAB platform.

COBRA toolbox V.3 consists of updated methods for model reconstruction, analysis, strain

and experimental design and network integration for various data such as proteomics,

transcriptomics and metabolomics [101].

4.4.4. BLAST (Basic Local Alignment Search Tool)

BLAST (Basic Local Alignment Search Tool) is one of the popular bioinformatics software

for sequence comparison. Both the online and stand alone version is hosted by the NCBI.

There are different versions of BLAST and algorithms for different types of biological
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sequences. Blastn is used for nucleotide sequences and Blastp is used for protein sequence

alignments. BLAST takes a heuristic approach and tries to find local and short similarities

between two sequences. It uses substitution score matrices to measure the similarities

between the two nucleotides or amino acids [102].

4.5. CALCULATIONS OF Q RATES

The special formation or consumption rates were calculated using the fermentation data

found from literature using the formula 4.1 where c denotes the metabolite concentration;

t, time and x, the biomass. ∆c is the difference between the metabolite concentrations at t0

and t1, while ∆t denotes the difference between t0 and t1.

q =
∆c

∆t · (x1+x2

2
)

(4.1)

The enzyme activity data were converted into the q rates via the unit conversions. For

example if enzyme activity is defined as mol per gram protein per unit time, it was converted

into mmol per gram dry weight per unit time assuming that biomass is 60 per cent protein.
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5. RESULTS AND DISCUSSION

The genome of ASM2132v1 assembly was uploaded to the RAST (Rapid Annotation using

Subsystem Technology) server which is an automated annotation service for bacteria and

archaea [91, 92, 93]. For annotation, the options on Table 4.2 were chosen. Once the

annotation was complete, Model SEED server was used to create the draft model using

the complete media option. The SBML file was downloaded. The same steps were taken

for the assembly ASM6704v1 for a second draft model. After both reconstructions were

completed, the reactions which were unique to the model ASM6704v1 were added to the

model ASM2132v1 in order to reconstruct a super model.

Figure 5.1. Workflow for the model reconstruction

Initially there were 1378 reactions and 1469 metabolites in model named iAU848. To check

if there were any gaps in the initial draft model, the gap-fill algorithm of the Model SEED

was run for the first time and there were 57 added reactions.

In order to check the carbon and nitrogen balances in the draft model, the function
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”checkBalance” which is included in the COBRA Toolbox was used. This function checks

if each reaction is elementally balances using the metabolic formulas and stoichiometric

data found in the model. Exchange reactions and three more reactions corresponding

to RNA,DNA and protein biosynthesis were identified to be elementally unbalanced.

Exchange reactions were expected to be unbalanced as they represent one way reactions

such as secretion of a metabolite to the environment or addition of metabolites in the

environment of cells representing the in silico media in which cells grow. The three extra

reactions were removed from the model as they did not have any reaction stoichiometry or

formulas for the metabolites they consisted of.

After the first simulation of the draft model with the objective function biomass, exchange

reactions were set to zero one by one to find out which metabolites were not produced by

the model.

The model was taking up various dipeptides from media. After constraining these dipeptide

exchange reactions to zero, the model stopped simulating the growth. This indicated that

there were some gaps in the amino acid biosynthesis pathways. For all 20 amino acids, first

of all new exchange reactions were added to the model. Then all the dipeptide exchange

reactions were constrained to zero. Finally, to find out which amino acids were not being

synthesized, the amino acid exchange reactions were set to zero one at a time and checked if

the model still simulated growth. For five amino acids, gaps were found in the biosynthesis

pathways, these amino acids and reactions that were added to ensure model growth can be

seen on Table 5.1.

Table 5.1. Amino acids that could not be produced by the initial draft model

Amino acid name Added reactions
Tyrosine rxn01256
Phenylalanine rxn01256
Asparagine rxn00416
Histidine rxn02160
Lysine rxn01644, rxn02928, rxn02929, rxn03087

From the literature, the Gluconacetobacter diazotrophicus is known to produce three

different plant hormones; Indole-3-acetic acid (IAA), giberellin 1 (GA1) and giberellin 3

(GA3). The draft genome lack the reactions to produce any plant hormones. According to
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the literature the IAA was produced from the IpyA pathway so the missing reactions were

added from the literature information about that pathway [35, 36]. Giberrellin biosynthesis

reactions were not detailed for bacteria, hence reaction for precursors and a super reaction

for both GA1 and GA3 productions were added to the model (Table 5.2). Three exchange

reactions were added to the model to simulate hormone secretion.

Table 5.2. Hormone biosynthesis reactions added to the model

Plant hormone name Added reactions
Indole-3-acetic acid tryptpyramin, rxn00483, rxn00477, rxn01937, rxn11964
Giberellin 1 rxn23454, rxn23455, rxn03452, rxn01490, ga1
Giberellin 3 rxn23454, rxn23455, rxn03452, rxn01490, ga3

External sucrose hydrolyses reaction was added to the model and the levan production

reaction was changed into an external reaction instead of cytoplasmic one since the

bacteria do not posses a sucrose transport pathway [11, 48]. Gluconic acid production

reaction was also changed into an external one. Reactions which represent the possible

external catabolism of gluconic acid into 2-ketogluconic acid,5-ketogluconic acid and 2,5-

diketogluconic acid were also added to the model. Transport and exchange reactions were

added for gluconic acid, 2-ketogluconic acid,5-ketogluconic acid and 2,5-diketogluconic

acid. Glucose transport was initially missing from the model was added.

There were three metabolites that were absent in the model but needed for the biomass

formation; spermidine, myristic acid, lauric acid. Reactions ”rxn02061, rxn15947 and

rxn15949” were added manually for spermidine production. For the other two metabolite

missing reactions belonging the fatty acid biosynthesis, elongation and degredation

pathways were added.

The model was not simulating growth in the absence of metabolite trehalose, which turned

out to be a problem with reactions related to Uridine diphosphate glucose (UDPG). The

Escherichia coli genome scale model iAF1260 was used as a reference for those reactions

[103]. The absentee reactions that were present in the E. coli model were manually added.

Ethanol, acetate and levan exchange reactions were added.

Simulations were run with different type of carbon sources. There were no growth on
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sorbitol and galactose contrary to literature [48]. Missing reactions were added.

Lery et al., did a proteomics analysis on the Gluconacetobacter diazotrophicus. From

this study’s supplementary files, enzymes (and their corresponding reactions) that were

validated to be present in the G. diazotrophicus metabolism were added to the model using

modelSEED’s reaction database [104].

Using KEGG’s organism specific pathway maps, the reactions that were absent on

modelSEED annotation but present on the KEGG G. diazotrophicus annotations were added

to the model from all available pathways.

When the model was simulated with minimizing the objective function ”oxygen

exchange”, the FBA resulted in infeasible solution which indicated missing reactions

from oxidative phosphorylation. For those reactions, a genome-scale metabolic model for

Gluconacetobacter xylinus and iAF1260 were used references and 11 reactions were added

[103, 105].

Apart from the annotated reactions from modelSEED and KEGG, all the enzymes for

added reactions were blasted against the Gluconacetobacter diazotrophicus’ proteome using

protein BLAST with the DELTA-BLAST algorithm. The BLAST results can be seen on

appendix Table 7.1. The logic behind using the proteome rather than the genome of the

bacteria that proteins are more conserved and genes for the target proteins may vary because

of the codon bias

After the gap-fill step and manual curation, the genome-scale metabolic model of

Gluconacetobacter diazotrophicus consists of 1754 reactions, 1629 metabolites and 848

genes.

G. diazotrophicus has limited genetic diversity as the environment within the sugarcane

stems which is the natural habitat of this bacterium is relatively constant [106]. It has been

observed that PAL 3 and PAL 5 strains have same observable characteristics, for instance

they can grow on the same carbon sources and under same pH range, they both fix nitrogen

even in the presence of NO−
3 [23]. Due to this reason, the validation of the model was done

using the literature data on both strains.
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5.1. BIOMASS COMPOSITION

Using the components of the biomass function taken from the model SEED for a generic

gram negative bacterium, a general biomass formula was generated. After close inspection

of the biomass function, the metabolites which are the product of the three removed reactions

correspoding for RNA,DNA and protein synthesis were discarded as they do not linked to

any other metabolites or reactions . The biomass formula per one carbon was found to be

CH1.60O0.37N0.22P0.021S0.006.

The stoichiometric ratios of the elements in the biomass formula is in agreement with the

ones in the literature [50].

5.2. VALIDATION

Metabolic model validation requires experimental data acquired from either from batch

fermentation or preferably chemostate. For this thesis, the validations were performed using

the batch data found in the literature [51]. The batch fermentation data contains specific

comsumption/production rates for glucose, gluconic acid, glycerol and 2-ketogluconic acid

(Figure 4.1-4.6). The data did not contain any information about the qCO2 or qO2 rates,

these values were calculated from carbon balance and degrees of reduction balance. The

calculated experimental q rates for carbon sources,oxygen, products and byproducts for

different phases of the growth are given in tables 5.3-5.8.

In order to validate the model, the specific consumption rates of carbon sources were given

to the model as constrains, the production rates for products were also used as constrains.

The CO2 and O2 q rates were constrained using the calculated values as upper or lower

boundaries, but there were instances were the calculated values did not reflect the biological

characteristics of the bacteria. In these cases, the upper and lower boundaries were set to

the default values in the model. The validation simulations were performed using biomass

reaction as the objective function.

According to the data taken from the Luna (2003), when the bacteria are grown on the media

containing glucose as carbon source, they demonstrate a three-phase growth pattern [51]. In
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the first phase the glucose is converted into gluconic acid which results in the drop of pH.

During early stage of this phase, the specific growth rate is low; 0.065 1/h until the bacteria

convert the most of the glucose into gluconic acid. During the second phase, bacteria starts

metabolizing the gluconic acid with a concomitant accumulation of keto-acids outside the

cell. At this stage the specific growth rate is doubled. This phase has the highest specific

growth rate compared to other phases, as most of the carbon source (in this case gluconic

acid) is used for biomass growth. At the third phase, when the gluconic acid concentration

drops low, the cells start using the keto-acids as carbon sources. The specific growth rate

also decreases. This three phase growth pattern can be observed both with and without

nitrogen fixing conditions (Tables 5.3-5.5) [51].

As reported by Luna (2003), when the carbon source is only gluconic acid, there are

two phases for bacterial growth. During the first phase gluconic acid is used for growth

while small percentage the gluconic acid is converted to the 2-ketogluconic acid. After the

gluconic acid concentration reduces to a certain point, the consumption of 2-ketogluconic

acid starts. The specific growth rate is halved during the second phase as the total carbon

source concentration is lower than the first phase. This pattern is again observable under

both with BNF and without BNF conditions (Table 5.6-5.7) [51].

Luna (2003) also demonstrated that G. diazotrophicus can grow on glycerol as carbon

source, during which the growth rate is slow (Table 5.8). During this fermentation, gluconic

acid or ketoacid were not produced hence the pH of the environment dropped slowly [51].
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Figure 5.2. Comparison of experimental and in silico data for 5 g/l glucose and BNF
during first phase of growth

When the simulations were performed with constraints taken from the table 5.3 using

biomass reaction as objective function and the biological nitrogen fixation was allowed.

For the first phase, qCO2 and qO2 values could not be set to the experimental values as

the simulation could not be solved. Both exchange reactions were set to default constrains

(-1000,1000). According to the in silico values, the CO2 is produced not consumed which

agrees with the biological characteristics of this species, as it is not a carbon-fixer. The

qO2 in silico value is close to the experimental value and also coherent with the biology of

the bacterium as it is an obligate aerobe. According to the simulations, the specific growth

rate is almost 3.5 times higher than the experimental value. This difference might be due

to the fact that, during the experiment, other byproducts were produced but they were not

measured and taken into the account. Since the simulations are performed using the data

from the experiment, the lack of constraints on byproducts result in using the most of the

carbon from the substrates into the biomass rather than other biological products.

For the second phase simulation, again the specific rates for glucose, gluconic acid and

2-ketogluconic acid were set as constraints. The specific rates for CO2 and O2 were set



44

Figure 5.3. Comparison of experimental and in silico data for 5 g/l glucose and BNF
during second phase of growth

as upper bound and lower bound respectively. The in silico values for specific rates of

biomass, CO2 and O2 were divergent from the experimental values. Again like the first

phase simulation, the growth rate was higher than the experimental value, but the specific

rates of CO2 and O2 were lower. For the third phase simulation, only specific rate of CO2

could not be constrained to the experimental value. The CO2 specific rate was estimated to

be higher than the experimental value and like the other two phases, the growth rate was

higher as well. The inconsistencies between the experimental and in silico values might be

due to the fact that experimental data were missing measurements for products other than

they targeted. Also, the experiment was a batch fermentation where the concentration of

metabolites changes instantaneously while the genome scale metabolic model assumes that

the concentrations do not change with respect to time.

Although there were inconsisties between the simulation and the batch fermentation,for all

phases, the pattern of the growth rate observed during the fermentation could be simulated

with the model as well.

For simulations performed using the data from Table 5.4 and 5.5, the biological nitrogen
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Figure 5.4. Comparison of experimental and in silico data for 5 g/l glucose and BNF
during third phase of growth

fixation was not simulated. Instead, since the media that batch fermentation grew consisted

of NH3 as nitrogen source, the exchange NH4 reaction used. The specific rate of the NH4

exchange reaction were set to experimental growth rate value, as it was assumed that, the

nitrogen source was only used for the growth and the rate it is taken should be equal to the

growth rate. Although it is expected that the growth rate should be higher than the BNF

conditions as the model does not use ATP or sources for nitrogen fixation. It is calculated

to be very low compared to experimental values. The reason behind this case may be that

the model nitrogen source was constrained very strictly and the nitrogen was not enough to

grow for such high rates.

When the G. diazotrophicus is grown with gluconic acid as the carbon source, it shows a two

phase growth pattern (Table 5.6-5.7). During the first phase, just like the second phase of

the previous experiment, the gluconic acid is consumed while a percentage of it is converted

into 2-ketogluconic acid. During the second stage, both the remaining gluconic acid and the

2-ketogluconic acid are used as carbon sources. The cells grow with a faster rate during the

first phase. This pattern is observed with both BNF and without BNF conditions [51].
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Figure 5.5. Comparison of experimental and in silico data for 5 g/l glucose and without
BNF during the first phase of growth

Albeit the model simulated the growth patterns for BNF and without BNF conditions with

5g/l gluconic acid, the growth rates were distinctively lower than the experimental values

especially when BNF was not active. The differences between the experimental and in silico

values might be due the fact that at the points of the batch fermentation where the data is

measured and calculated from might not be suitable to simulate using GSMMs.

Table 5.8. Validation of experimental data; 5 g/l glycerol without BNF

Condition:
5 g/l Glycerol
without BNF

qGlycerol
(mmol/gDW/h)

qCO2

(mmol/gDW/h)
qO2

(mmol/gDW/h)
qBiomass
(1/h)

Experimental
Value -4.149 22.978 -45.956 0.048

In Silico
Value -4.149 12.229 -14.283 0.006

When the batch fermentation was performed with glycerol for the carbon source, it was

measured that the growth rate is lower than the other two carbon source glucose and gluconic

acid [51]. The simulation growth rate was again lower than the experimental value. This

might be due to the fact that the rate of exchange reaction for the nitrogen source (NH4) was
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Figure 5.6. Comparison of experimental and in silico data for 5 g/l glucose and without
BNF during second phase of growth

set low than the experimental value. Since there are no data for specific consumption rate of

N-source during the batch experiment, the constraint for the NH4 was assumed to be equal

to the batch fermentation growth rate.
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Figure 5.7. Comparison of experimental and in silico data for 5 g/l glucose and without
BNF during third phase of growth

Figure 5.8. Comparison of experimental and in silico data for 10 g/l glucose and without
BNF during first phase of growth
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Figure 5.9. Comparison of experimental and in silico data for 10 g/l glucose and without
BNF during second phase of growth
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Figure 5.10. Comparison of experimental and in silico data for 10 g/l glucose and without
BNF during third phase of growth
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Figure 5.11. Comparison of experimental and in silico data for 5 g/l gluconic acid and BNF
during first phase of growth



56

Figure 5.12. Comparison of experimental and in silico data for 5 g/l gluconic acid and BNF
during second phase of growth
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Figure 5.13. Comparison of experimental and in silico data for 5 g/l gluconic acid and
without BNF during first phase of growth
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Figure 5.14. Comparison of experimental and in silico data for 5 g/l gluconic acid and
without BNF during second phase of growth
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Figure 5.15. Comparison of experimental and in silico data for 5 g/l glycerin without BNF
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5.3. CARBON AND NITROGEN METABOLISMS ANALYSIS

The model is able to simulate growth using different carbon sources such as glucose,

sucrose, fructose, gluconic acid etc. which agrees with the literature [48]. The growth

rates and calculated yields are shown on Table 5.9 for various carbon sources. As expected,

when nitrogen source is supplied to the model rather than using nitrogen fixation as sole

nitrogen source, the yields are higher. Since nitrogen fixation requires 16 mol of ATP per

two moles of NH3 fixed, when there is an external nitrogen source, the cell can use the 16

ATP on growth rather than BNF [9].

Table 5.9. Yields and specific growth rate with different carbon sources

Carbon Source
qS=-10 mmol/gDW/h Yield (BNF) Yield (without BNF) µ (BNF) µ (without BNF)

Glucose 0.48 0.59 0.87 1.06
Sucrose 0.53 0.69 1.81 2.33
Fructose 0.52 0.71 0.94 1.27
Gluconic Acid 0.44 0.54 0.86 1.06
Ribose 0.52 0.71 0.79 1.06
Glycerol 0.51 0.69 0.47 0.64
Mannose 0.52 0.71 0.94 1.27
Xylose 0.52 0.71 0.79 1.06

The natural host of the G. diazotrophicus is sugarcane. Inside the sugarcane tissue where the

bacteria live, the abundant carbon source is sucrose. The optimal condition for the bacterial

growth is 10 per cent sucrose [11]. When the grow rates for different the carbon sources

are compared, the highest growth rate is calculated for sucrose. The G. diazotrophicus

hydrolyses the sucrose into fructose and glucose, and can metabolize both monomer for

growth. Although when the yields are compared for different carbon sources, the sucrose

yield is only higher than the glucose yield. This could be the due the fact that although the

bacteria can grow on sucrose fast, cannot use it efficiently, but since inside the host there is

no carbon limitation, this inefficiency is not disadvantageous.

The model can simulate the production of three plant hormones, which the G. diazotrophicus

is known to produce [11, 34, 36]. When the simulation is performed using the biomass

reaction as the objective function, the model does not produce any of the hormones, which

suggest that the pathway responsible for the hormone production are not required for the
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Figure 5.16. Metabolic comparison of phytohormone IAA and biomass productions

Figure 5.17. Metabolic comparison of phytohormone GA1 and biomass productions
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Figure 5.18. Metabolic comparison of phytohormone GA3 and biomass productions

Figure 5.19. Metabolic comparison of amino acid phenylalanine and biomass productions
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biomass. As it is indicated by the scatter plots Figures 5.16-5.18, the metabolic pathways

required for the biomass production and the hormone production are not the same. In

order to see the difference between a product of a pathway which is related to biomass, an

amino acid production was simulated and plotted against the biomass production simulation.

Figure 5.19 clearly suggests that if a product is linked to the pathways related to the growth,

the simulations would have almost identical trends.

In order to investigate the affect of the maintenance ATP, which is the energy required to

sustain a cell’s living state without any growth, mATP values are plotted against the bacterial

yield. By theory, the more maintenance ATP is required, the slower the growth will be.

In figure 5.20, Yield vs mATP graph can be seen for one of the most curated metabolic

models iND750 [107]. As expected the yield decreases with increasing mATP. In this

model, the yield decrease can be observed instantaneously whereas in the model iUA848,

the maintenance ATP does not affect the yield till the mATP value reaches to a certain value

which is much larger than the Saccharomyces cerevisiae, then follows the decrease trend and

yield reaches zero at larger mATP values. This could be explained that G. diazotrophicus

has different energy metabolism where it starts oxidizing glucose outside of the cytoplasm

and does not have a full glycolysis patyway thus the metabolism uses PPP mainly for growth

[48, 51].

Figure 5.20. Yield vs maintenance ATP values for Saccharomyces cerevisiae using model
iND750

Since the bacterium G. diazotrophicus does not posses a full glycolysis pathway, the
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Figure 5.21. Yield vs maintenance ATP values for G. diazotrophicus using model iUA848
under both BNF and without BNF conditions

model is constructed to simulate this biological characteristics. Although the bacterium

does not use the glycolysis, it only lacks one enzyme from that pathway which is

the phosphofructokinase [48]. In order to observe what happens to the central carbon

metabolism of the bacterium when it would have a full glycolysis route, the missing

enzyme reaction was added to the model. To compare both wildtype metabolism (missing

phosphofructokinase) and glycolysis metabolism, both conditions were simulated. Then the

reactions which have values different than zero and related to the pathways glycolysis, PPP,

TCA and oxydative phosphorylation were selected. For both conditions, scatter graph was

plotted Figure 5.22. As is seen from the figure 5.8, compared to wildtype metabolism, the

full glycolysis in silico strain, posses more active pathways where as the number of central

carbon pathways is lower for the wildtype strain. In wildtype metabolism, cell uses the PPP,

to produce pyruvate directly or by generating precursors of pyruvate.
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Figure 5.22. Metabolic comparison of wildtype G. diazotrophicus and full glycolysis in
silico strain using model iUA848.
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6. CONCLUSIONS

Gluconacetobacter diazotrophicus is an acid tolerant, gram negative and obligate aerobe

plant growth promoting bacterium with interesting characteristics. To be able to elucidate

the bacterium’s metabolism a key systems biology tool was missing from the literature,

which was the focus of this thesis; the genome-scale metabolic model iUA848. The genome-

scale metabolic model was reconstructed using annotated genome sequence, online tools and

databases for metabolic reconstruction. The metabolic model consists of 1754 reactions,

1629 metabolites and 848 genes. The validation of the model was performed via comparing

literature data and in silico generated data. A systems biology approach was taken and

the model was analyzed using FBA. Gluconacetobacter diazotrophicus is an intriguing

organism because it lacks a complete glycolysis pathway and investigating the carbon flux

of the metabolism was essential. Using this metabolic model, environmental responses of

the organism also investigated under certain conditions, such as with or without nitrogen

fixation. Furthermore, the model can be used for targeted metabolic engineering as a guide

to exploit the organism’s metabolic capabilities. For future work, the model can be improved

in way that the model can be integrated with plant metabolic models in order to investigate

the interaction between the diazotrophic organisms and plants.
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F, Baldani JI, Martins OB. Antioxidant pathways are up-regulated during

biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in

Gluconacetobacter diazotrophicus. Archives of Microbiology. 2010;192(10):835–

841.

60. Canete-Rodriguez AM, Santos-Duenas IM, Jimenez-Hornero JE, Ehrenreich A,

Liebl W, Garcia-Garcia I. Gluconic acid: Properties, production methods and

applications—An excellent opportunity for agro-industrial by-products and waste

bio-valorization. Process Biochemistry. 2016;51(12):1891–1903.

61. Ramachandran S, Fontanille P, Pandey A, Larroche C. Gluconic acid: Properties,

applications and microbial production. Food Technology & Biotechnology. 2006;

44(2):185–195.

62. Singh OV, Kumar R. Biotechnological production of gluconic acid: future

implications. Applied Microbiology and Biotechnology. 2007;75(4):713–722.

63. Arrieta JG, Sotolongo M, Menéndez C, Alfonso D, Trujillo LE, Soto M, Ramı́rez R,

Hernández L. A type II protein secretory pathway required for levansucrase secretion

by Gluconacetobacter diazotrophicus. Journal of Bacteriology. 2004;186(15):5031–

5039.

64. Velázquez-Hernández ML, Baizabal-Aguirre VM, Cruz-Vázquez F, Trejo-Contreras

MJ, Fuentes-Ramı́rez LE, Bravo-Patiño A, Cajero-Juárez M, Chávez-Moctezuma
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Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V. Creation and analysis of

biochemical constraint-based models: the COBRA Toolbox v3. 0. arXiv Preprint

arXiv:1710.04038. 2017;1–78.

102. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search



79

tool. Journal of Molecular Biology. 1990;215(3):403–410.

103. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt

LJ, Hatzimanikatis V, Palsson BØ. A genome-scale metabolic reconstruction for

Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic

information. Molecular Systems Biology. 2007;3(1):1–18.

104. Lery LM, Coelho A, von Kruger WM, Gonçalves MS, Santos MF, Valente RH,
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APPENDIX A: MODEL iUA484 RELATED TABLE

Table A.1. Blastp results of added reactions

ADDED RXN ID PROTEIN COVERAGE (%) E-VALUE PER. IDENT (%)

rxn01256 24 6E-28 35.48

rxn00416 54 6.00E-08 17.05

rxn01644 100 1.00E-144 46.08

rxn02928 99 7E-100 40.07

rxn02929 99 7E-100 40.07

rxn03087 96 3.00E-174 40.15

rxn02160 54 2E-124 48.99

rxn23454 89 2E-76 17.84

rxn23455 89 2E-76 17.84

rxn03452 89 2E-76 17.84

rxn01490 89 2E-76 17.84

rxn00701 26 1E-13 20.20

rxn00212 37 3E-10 11.32

rxn09028 87 1E-41 14.25

rxn09029 * * *

rxn00213 100 3E-69 40.00

rxn00483 98 5E-107 31.60

rxn00477 89 2E-147 25.19

R10180 91 9E-67 17.53

rxn01937 96 0 68.29

rxn11964 51 0 29.74

rxn05329 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

rxn05330 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

rxn05331 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

rxn05332 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

Continued on next page
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Table A.1. Blastp results of added reactions (continued)

ADDED RXN ID PROTEIN COVERAGE E-VALUE PER. IDENT

rxn05333 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

rxn05334 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

rxn05335 99 , 99, 97 1E-84, 1E-84, 4E-59 45.79, 45.79, 45.58

rxn06556 84 1E-17 14.80

rxn08434 91 2E-39 33.67

rxn03249 28, 27 4E-59, 3E-65 28.50, 29.80

rxn03246 28, 27 4E-59, 3E-65 28.50, 29.80

rxn03244 28, 27 4E-59, 3E-65 28.50, 29.80

rxn03242 28, 27 4E-59, 3E-65 28.50, 29.80

rxn06777 28, 27 4E-59, 3E-65 28.50, 29.80

rxn03239 28, 27 4E-59, 3E-65 28.50, 29.80

rxn03250 98 1E-78 32.55

rxn00943 62 3E-16 18.18

rxn04793 98, 86 6E-92, 1E-24 21.54, 18.34

rxn02678 98, 86 6E-92, 1E-24 21.54, 18.34

rxn03252 98, 86 6E-92, 1E-24 21.54, 18.34

rxn02719 98, 86 6E-92, 1E-24 21.54, 18.34

rxn02802 98, 86 6E-92, 1E-24 21.54, 18.34

rxn00945 98, 86 6E-92, 1E-24 21.54, 18.34

rxn00947 96 6.00E-88 17.85

rxn01409 4 0.53 32.14

rxn01451 28 4.00E-59 28.50

rxn00946 82 9.00E-16 14.47

rxn02803 86 2.00E-19 17.10

rxn02720 41 6.00E-12 15.06

rxn03253 55 6.00E-19 12.68

rxn02679 41 6.00E-12 15.06

rxn03251 41 6.00E-12 15.06

Continued on next page
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Table A.1. Blastp results of added reactions (continued)

ADDED RXN ID PROTEIN COVERAGE E-VALUE PER. IDENT

rxn00872 82 9E-16 14.47

R10619 97 3E-130 37.07

rxn00808 42 0.066 25.00

rxn00701 26 1E-13 20.00

rxn02061 98 4E-106 46.15

rxn03886 99 2E-86 25.10

rxn00500 96 5E-77 40.33

rxn10112 90 5E-48 37.43

rxn30498 * * *

rxn13848 90 4E-48 37.43

rxn13930 59 8E-15 17.36

rxn06106 * * *

rxn08973 * * *

rxn08978 100 7E-99 30.58

rxn30496 * * *

rxn13835 98 1E-107 37.61

rxn00104 99 0 79.68

* No enzyme/Gene information for the given reaction

** Multiple values means, the reaction has more than one enzyme catalyzing it


