
EVALUATION OF LAST LEVEL SET-BASED CACHE PARTITIONING

TECHNIQUES IN TERMS OF PERFORMANCE, POWER AND FAIRNESS

by

İsa Ahmet Güney

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Engineering

Yeditepe University

2020

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Assoc. Prof. Gürhan Küçük for his help, guidance

and encouragment throughout the research.

I also thank Burak Sezin Ovant and Abdullah Yıldız for their help with my research work.

Finally, I would like to thank my wife and my family for supporting me.

iv

ABSTRACT

EVALUATION OF LAST LEVEL SET-BASED CACHE PARTITIONING

TECHNIQUES IN TERMS OF PERFORMANCE, POWER AND FAIRNESS

Last Level Cache is an important resource that is shared among many cores in multi-core

processors. In an unmanaged system, this resource is allocated on demand, which may cause

performance problems when there is not sufficient cache space for all running applications.

In order to achieve higher system performance, smart partitioning mechanisms must be

utilized. This thesis describes a scalable, fine-grain and high-performance set-based

partitioning mechanism, along with a tailor-made allocation policy. Evaluations yield that

the proposed mechanism can provide 5 percent improvement on average, in terms of

throughput and fairness, compared to Vantage partitioner, state-of-the-art in the literature.

Additionally, set-based partitioning is investigated as a potential energy-saving technique.

Average energy consumed per instruction by the cache is reduced by 28 percent, while losing

less than 1 percent throughput on average, with minor modifications in the allocation policy

and enforcement scheme of the proposed set-based partitioner.

v

ÖZET

SET BAZLI SON SEVİYE ÖNBELLEK PAYLAŞTIRMA TEKNİKLERİNİN

PERFORMANS, GÜÇ VE ADİLLİK BAKIMINDAN DEĞERLENDİRİLMESİ

Son Seviye Önbellek, çok çekirdekli işlemcilerde birçok çekirdek tarafından paylaşılan

önemli bir kaynaktır. Kontrolsüz bir sistemde bu kaynak talebe bağlı olarak dağıtılmaktadır.

Bu durum, çalışmakta olan tüm uygulamalar için yeterli önbellek alanı bulunmadığında

performans yönünden sorunlar doğurabilmektedir. Yüksek sistem performansı elde

edebilmek için akıllı paylaştırıcı mekanizmalara ihtiyaç duyulmaktadır. Bu tezde

ölçeklenebilir, hassas ve yüksek performanslı, set bazlı bir paylaştırma mekanizması ve ona

özel hazırlanmış bir kaynak dağıtma algoritması tarif edilmektedir. Değerlendirmelere göre

önerilen mekanizmanın, literatürden alınan Vantage paylaştırma mekanizmasından ortalama

yüzde 5 daha yüksek komut tamamlama oranı ve adillik sağladığı görülmüştür. Ek olarak,

set bazlı paylaştırma potansiyel bir enerji tasarruf yöntemi olarak incelenmiştir. Önerilen set

bazlı kaynak dağıtma algoritması ve paylaştırma mekanizmasına yapılan ufak

düzenlemelerle ortalama komut tamamlama oranı kaybı yüzde 1’in altında iken önbellek

tarafından komut başına harcanan enerjide ortalama yüzde 28 tasarruf sağlanmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES .. viii

LIST OF TABLES ... x

LIST OF SYMBOLS/ABBREVIATIONS ... xi

1. INTRODUCTION .. 1

2. SET PARTITIONING .. 8

2.1. SET PARTITIONING .. 8

2.1.1. Set Index Computation .. 9

2.1.2. Double Access Mechanism .. 10

2.1.3. Ensuring Correct Computation .. 12

2.1.4. Fast Set Redirection ... 15

2.2. SET CLASSIFIER .. 16

3. SET PARTITIONING AS AN ENERGY-SAVING TECHNIQUE 22

3.1. MOTIVATION ... 22

3.1.1. Cache Decay .. 26

3.1.2. Drowsy Cache .. 32

3.2. ADDITIONAL ENERGY COSTS OF SET PARTITIONING 37

3.2.1. Fast Set Redirection Hardware .. 37

3.2.2. Other Energy Costs .. 39

3.3. A RULE-BASED APPROACH FOR SET PARTITIONING 40

4. TESTS AND RESULTS .. 43

4.1. SET PARTITIONING .. 43

4.1.1. Experimental Methodology ... 43

4.1.2. Results and Discussion .. 45

4.2. ENERGY CLASSIFIER ... 55

4.2.1. Experimental Methodology ... 56

vii

4.2.2. Results and Discussion .. 57

5. RELATED WORKS .. 63

5.1. SIMILAR WORK ... 63

5.1.1. DR-SNUCA ... 64

5.1.2. Fair and Adaptive Online Set-based Cache Partitioning 65

5.1.3. Jigsaw ... 66

5.2. VANTAGE ... 67

6. CONCLUSIONS AND FUTURE WORK ... 69

7. LIMITATIONS .. 72

REFERENCES .. 74

viii

LIST OF FIGURES

Figure 1.1. Example cache organizations for various partitioning approaches. (a) An

example organization for a way-based partitioning. (b) An example organization for a

line-based partitioning. (c) An example organization for a set-based partitioning. 5

Figure 2.1. Example set-index computations for traditional and Set Partitioning caches. (a)

An example set-index computation in a traditional cache. (b) An example set-index

computation in Set Partitioning cache. Partition 0 is allocated 200 sets and Partition 1 is

allocated 300 sets. The incoming line is inserted into Partition 1. (c) An example set-

index computation in Set Partitioning cache. Partition 0 is allocated 300 sets and

Partition 1 is allocated 200 sets. The incoming line is inserted into Partition 1. 11

Figure 2.2. Anexample case where retaining a clean cache line may cause errors. 13

Figure 2.3. Logic design of Fast Set Redirection. ... 17

Figure 3.1. The average rate of energy spent by various configurations. 28

Figure 3.2. Average throughput loss of various configurations. ... 29

Figure 3.3. The average efficiency of various configurations. .. 30

Figure 3.4. The average rate of energy spent by various configurations. 34

ix

Figure 3.5. The average throughput loss of various configurations. 35

Figure 3.6. The average efficiency of various configurations. .. 37

Figure 4.1. Throughput and fairness gain of Set Classifier. .. 47

Figure 4.2. Throughput and fairness gain of Set Partitioning with DA over without DA. .. 48

Figure 4.3. Throughput and fairness gain of Set Partitioning with FSR over without FSR.50

Figure 4.4. Entropy gain for FSR compared to modulo operator. 51

Figure 4.5. Additional conflicts for FSR compared to modulo operator. 51

Figure 4.6. Average entropy gain for FSR compared to modulo operator. 52

Figure 4.7. Average increase in cache misses for FSR compared to modulo operator. 53

Figure 4.8. Throughput and fairness gains of Set Partitioning over Vantage. 54

Figure 4.9. The average energy spent by Energy Classifier with various LIMIT values. ... 58

Figure 4.10. The average energy spent per instruction by Energy Classifier. 60

Figure 4.11. The average throughput loss caused by Energy Classifier. 61

Figure 4.12. The average energy efficiency gain of Energy Classifier. 62

x

LIST OF TABLES

Table 3.1. Simulated system specifications .. 25

Table 3.2. Power/energy requirements of the simulated L2 caches 25

Table 3.3. Cache Decay parameters .. 27

Table 4.1. Workloads .. 44

Table 4.2. Processor configurations .. 44

Table 4.3. Parameters of the partitioning algorithm ... 45

Table 4.4. Specifications of the simulation environment ... 56

Table 4.5. List of workloads ... 57

xi

LIST OF SYMBOLS/ABBREVIATIONS

CPI Cycles per instruction

CurrentTS Current timestamp

D Decay

DA Double access

DRate Decay rate

DThreshlow Decay rate lower threshold

DThreshhigh Decay rate upper threshold

DNUCA Dynamic non-uniform cache architecture

E Energy

E/Inst Energy per instruction

FRFCFS First ready first come first serve

FSR Fast set redirection

GB Gigabyte

GHz Gigahertz

IPC Instructions per cycle

K Kilo

KB Kilobyte

L1 Level 1

L2 Level 2

LLC Last level cache

LRU Least recently used

M Miss

MRate Miss rate

MRU Most recently rsed

MThreshlow Miss rate lower threshold

MThreshhigh Miss rate upper threshold

mW Miliwatt

ns Nanosecond

NUCA Non-uniform cache architecture

OoO Out of order

xii

PIPP Promotion/insertion pseudo-partitioning

pJ Picojoule

ROB Reorder buffer

SC Set classifier

SetpointTS Setpoint timestamp

SNUCA Static non-uniform cache architeture

STB Share translation buffer

T Traffic

TC Threadclass

TRate Traffic rate

TTreshlow Traffic rate lower threshold

TTreshhigh Traffic rate upper threshold

TV Threadvalue

U Unit

UCA Uniform cache architecture

UMON Utility monitor

uW Microwatt

1

1. INTRODUCTION

The importance of cache performance has been ever-increasing for the past few decades.

Processor performance improved much faster than memory structure performance in the past

few decades, causing the processing cores to spend more time idly, waiting for the data to

be fetched from the main memory. Caches help fight this problem, called the Memory Wall,

by storing critical data in much smaller but faster storage area which is also physically close

to the processor. As the performance gap between processing cores and memory structures

widened, the impact of cache performance became more significant. The increase in the

number of processing cores present in a single chip also plays an important role in the

increased pressure on cache structures.

The most common cache configurations for multi-core processors include private L1 and L2

caches along with a shared Last Level Cache (LLC). Sharing a cache level among multiple

cores introduces a number of problems: as with any case where the resources are limited but

the demand is virtually infinite, some sort of regulation is required to achieve near-optimal

cache performance.

Several problems may occur in an unregulated shared cache. Some applications may

monopolize the cache space by accessing the cache more frequently than some others,

forcing their data to be evicted. Even worse, the monopolizing application may have stream-

like properties where the data inserted to the cache are not reused for such long times that

recently inserted lines become practically useless. This kind of behavior is called thrashing

and is harmful to the system performance in addition to the fairness degradation caused by

monopolization.

A lack of regulation in a shared cache may also cause under-utilization. A good policy may

detect when and how much an application will benefit from additional cache space, and

decide to take away cache space from one application to another if the benefits outweigh the

losses. Moreover, applications tend to experience significant improvements in their cache

performance once they obtain sufficient cache space to fit their working sets in. Policies that

can guarantee that applications will get enough cache space can exploit such performance

gains, or they can prevent resource waste when applications do not show any interest in extra

cache space.

2

There are three ways to manage a shared cache: 1) sharing, 2) partitioning and 3) partition-

sharing. In sharing, all applications race to steal cache space, causing the problems discussed

above. In partitioning, each application is allocated a certain cache space. Finally, in

partition-sharing, applications may be divided into groups, where each group is allocated

cache space as partitioning, and applications in the same group share that cache space among

themselves as in sharing. Sharing is a special case of partition-sharing where all applications

belong to the same group. Brock et al. show that partitioning is always better than partition-

sharing [1], which motivates researchers to investigate cache partitioning mechanisms to

obtain near-optimal cache performance.

Cache partitioning has two major components: the allocation policy and the enforcement

mechanism. The allocation policy is responsible for deciding what portion of a cache each

partition should receive. The enforcement mechanisms' duty, on the other hand, is to make

this allocation decision happen.

Enforcement mechanisms can be investigated in two categories: implicit and explicit

mechanisms. Implicit ones are the mechanisms that try to guide the system towards the

desired allocation by modifying the cache eviction/insertion policy. For example,

Promotion/Insertion Pseudo-Partitioning (PIPP) inserts incoming lines into recency

positions different that the most recently used position, according to the owning partition's

allocation [2].

On the other hand, explicit mechanisms enforce the allocation by limiting eviction

candidates. For example, in way partitioning, a partition can only evict one of its own lines

if that partition has reached its target size in that set [3]. Similarly, a partition can only evict

a line belonging to another partition if it is below its target size.

There are some important features that enforcement schemes should support to achieve high-

performance levels. With the ever-increasing number of cores in a processor, scalability

becomes an important feature that every enforcement scheme should consider. Recently,

Intel and AMD released their 32- and 64-core architectures, Xeon Phi and Ryzen

Threadripper.

Considering that ideally, partitioning should be used rather than partition-sharing, a

partitioning mechanism should support at least as many partitions as the number of cores in

3

the system, and perhaps more, in order to support separate partitions for individual threads

or orthogonal techniques such as Talus [4]. For example, one of the most well-known

techniques, way partitioning can support only as many partitions as the associativity of the

cache. However, since increasing associativity beyond a certain level starts hurting

performance due to the increase in access latency, there exists a virtual limit on associativity,

which also limits the scalability of any partitioning mechanism which solely relies on cache

ways.

In order to be truly scalable, a mechanism should use a highly available base unit. There are

usually only a handful of cache ways in a cache, but thousands of cache lines. Therefore,

partitioning a cache in terms of cache lines would be a much finer-grain way of partitioning

as well as being highly scalable. Indeed, mechanisms such as Vantage partition the cache in

terms of cache lines [5]. In Vantage, a partition may have a different number of lines in

different sets, as long as the total number of lines the partition has is equal (or close) to its

target size. However, this approach also has its problems, such as isolation and preservation

of associativity. In Vantage, an application may steal lines from another application even

when the second application is not over its target size.

Providing isolation is an important aspect of cache partitioning. Violating isolation may

cause important lines to be evicted by other applications, causing harmful behavior. This is

the harmful behavior cache partitioning techniques are trying to prevent in the first place. In

addition to its impact on performance, lack of isolation also harms fairness.

A partitioning mechanism should also preserve the associativity. The ultimate purpose of

partitioning mechanisms is to improve system performance. However, hurting effective

associativity may have an even greater impact on performance. This problem becomes even

more significant in configurations where a high number of partitions are required. For

example, in an 8-way cache with 8 partitions, way partitioning will have to allocate only one

way per partition, which is a solution in which partitions are effectively using a direct-

mapped cache. In line-based mechanisms such as Vantage, this problem still exists even

though it is less severe. The number of eviction candidates in a given set will be determined

by which partitions are existent in the set, and whether they have achieved their target sizes

or not. Even if the cache reaches a stable state where the actual sizes of partitions are exactly

4

equal to their target sizes, the number of eviction candidates available will be equal to the

number of lines the inserting partition has in the respective set.

In summary, scalability (fine-grain partitioning, support for a high number of partitions),

isolation (protecting partitions from each other) and preservation of associativity (keeping

the number of eviction candidates high) are three pillars of a good cache partitioning

mechanism. It is these factors that motivate this study: partitioning the cache in terms of sets

supports these key features. It is fine-grain because a cache set is a fairly small unit of

storage, and one can give/take away a single set to/from a partition. It is scalable since a very

large number of cache sets are usually present in a last-level cache (hundreds/thousands of

sets). It can also provide isolation by preventing partitions from evicting cache lines from

other partitions. Lastly, it can preserve associativity since any given set will be completely

dedicated to a single partition during an allocation decision. Figure 1.1. shows example

organizations for way-based, line-based and set-based partitioning mechanisms.

Naturally, there are some challenges along the way to develop a set-based partitioning

mechanism. The two most prominent challenges are the problem of directing accesses to the

sets owned by the partition, and the problem of preventing cache lines to be lost after a re-

allocation. Along with these problems, there also exist some sub-mechanisms to investigate

which may further improve the performance of set-based partitioning.

Today, the most growing concern in processor development is energy consumption. With

the increase in processor use in household devices and the increase in both the number and

size of data centers, the importance of energy efficiency became much more important than

ever. A recent study predicts that if no precaution is taken, energy consumed by information

and communication technologies may amount to more than 20 percent of global energy

consumption by 2030 [6].

Cache partitioning mechanisms proposed in the literature usually focus on performance

rather than energy efficiency. However, cache memory is also a good candidate for saving

energy. There exist some line-based energy saving techniques which aim to save energy by

powering down unused cache lines, or putting them into a low-power mode [7,8]. Still, a

smart energy-oriented cache allocation policy may provide even better energy savings by

orchestrating cache management in the long run.

5

(a)

(b)

(c)

Figure 1.1. Example cache organizations for various partitioning approaches. (a) An
example organization for a way-based partitioning. (b) An example organization for a line-
based partitioning. (c) An example organization for a set-based partitioning.

6

We propose a set-based cache partitioning with the primary focus of improving the

performance and fairness of the systems. Our contribution in this research are listed as

follows:

 Introduction of a set-based cache partitioning mechanism:

o An access redirection circuitry that can redirect accesses to any range of sets

is proposed. The effects of utilizing this circuitry in terms of performance,

fairness and energy are analyzed.

o The effects of invalidating cache lines periodically due to the change in

allocation decisions are analyzed.

o A double-access mechanism that improves performance by allowing

partitions to access lines based on previous allocation decisions is introduced.

The contributions of this mechanism in terms of performance and fairness are

analyzed.

 Introduction of a new allocation policy:

o Scalable allocation policy that has a linear time complexity which is only

dependent on the number of partitions supported.

o Classifies access streams according to their cache behavior.

o Designed specifically with set-based partitioning in mind.

 Comparison of the introduced partitioning scheme with a line-based scheme called

Vantage from literature in a many-core configuration.

 Modifying the partitioning scheme to decrease energy consumption/improve energy

efficiency:

o A preliminary analysis which treats set-based partitioning as a special case of

powering down portions of cache, and compares it with other line-based

energy-saving techniques (Cache Decay and Drowsy Cache).

o Analysis of the impact of set-based partitioning and its sub-mechanisms on

energy consumption.

o Introduction of a proof-of-concept energy-oriented allocation policy, which

is very similar to the original allocation policy, but can also provide a

reduction in energy consumption.

The rest of the thesis is structured as follows: Chapter 2. describes the proposed partitioning

scheme and allocation policy. Chapter 3. analyzes set-based partitioning as an energy-saving

7

technique and proposes an example allocation policy. Chapter 4. presents simulation results

and discussion. Chapter 5. summarizes background work in the field and discussed the

differences between this research and similar work from the literature. Chapter 6. concludes

by summarizing the research and discussing the importance of this work, along with possible

future work. Chapter 7. discusses the limitations of this research.

8

2. SET PARTITIONING

The organization of this chapter is as follows: Chapter 2.1. explains the enforcement scheme

of the partitioner by describing the proposed set-index computation, the Double Access

mechanism that initiates a secondary access after a cache miss, the forced eviction process

which prevents the cache from entering a faulty state and the proposed circuitry for the new

set-index computation. Chapter 2.2. presents the proposed allocation policy that works as a

counterpart to the enforcement scheme.

2.1. SET PARTITIONING

Set Partitioning is an enforcement mechanism, which partitions the cache by allocating

blocks of sets to partitions. In this mechanism, associativity available to a partition is not

hindered by other partitions. Partitions work with cache regions, which have less number of

sets but are completely dedicated to themselves.

At a glance, advantages of Set Partitioning are better scalability, granularity and

performance. In Set Partitioning, the smallest unit which can be allocated to a partition is a

set. Caches usually consist of hundreds or thousands of sets, which makes Set Partitioning a

fine-grained mechanism. This also makes Set Partitioning scalable since there are a large

number of sets available for partitioning; thus, Set Partitioning can support a large number

of partitions.

Partitioning the cache in terms of sets allows Set Partitioning to preserve associativity

provided by the hardware. For example, way partitioning halves associativity for each

partition in a two-partition configuration whereas Set Partitioning does not degrade

associativity. Besides, associativity stays constant as the number of partitions increase in Set

Partitioning.

Set Partitioning also raises some issues as cache coherency, cache flush effect and the latency

of modulo operator. These issues and our proposed solutions are discussed in the following

subsections.

9

2.1.1. Set Index Computation

In traditional caches, the set index of a memory address is determined by applying a bitmask

to the memory address after eliminating offset bits. This is equivalent to computing the

modulo as shown in Equation 2.1. However, since each partition owns a reduced number of

sets in Set Partitioning, the set index is computed using the number of sets allocated to a

partition as shown in Equation 2.2.

ݔ݁݀݊݅ ݐ݁ݏ (2.1) (ݏݐ݁ݏ ℎ݁ܿܽܿ ݂ ݎܾ݁݉ݑ݊) ݀݉ (ݏݏ݁ݎ݀݀ܽ ݕݎ݉݁݉)

ݔ݁݀݊݅ ݐ݁ݏ ൌ ܾ݁݃݅݊݊ ݐ݁ݏ + (ݏݐ݁ݏ ℎ݁ܿܽܿ ݂ ݎܾ݁݉ݑ݊) ݀݉ (ݏݏ݁ݎ݀݀ܽ ݕݎ݉݁݉)

(2.2)

The beginning set of a partition starts at the end of the previous partition's dedicated cache

region and can be computed iteratively using Equation 2.3.

ݐ݁ݏ ܾ݃݊݅݊݊݅݃݁ ൌ {
0, ݂݅ ݅ ൌ 0
−ଵݐ݁ݏ ܾ݃݊݅݊݊݅݃݁ + ݁ݏ݅ݓݎℎ݁ݐ ,−ଵ݁ݖ݅ݏ

 (2.3)

An example organization of Set Partitioning with two cores and a cache of 500 sets is as

follows: core 0 and core 1 are given 200 and 300 sets, respectively. When core 1 accesses

the address 1550, the set index is computed as (200 + 1550 mod 300) and is inserted into set

250. However, after a repartitioning phase, which gives 300 sets to core 0 and 200 sets to

core 1, same address will be mapped to set 450, computed as (300 + 1550 mod 200). This

example is depicted in Figure 2.1.

In traditional caches, lines with different set bits are directed into different sets, and lines

that have identical set bits are distinguished by their tag bits. However, when Set Partitioning

is utilized, cores may have less number of sets than there is in the cache, causing lines which

have identical tags but different set bits being mapped to the same set after repartitioning.

To help the cache distinguish different addresses that are mapped to the same set, tag bits

are extended to include set bits in Set Partitioning. The additional area requirement due to

this extension is somewhat negligible. For example, in a 2048 set cache with 64-byte line

size in a 32-bit address space, each cache line requires 537 bits (512 bits for data, 15 bits for

the tag, 8 bits for timestamp, 1 bit for a valid flag and 1 bit for a dirty flag). With Set

Partitioning, this value increases to 549, since 11 bits are added to the tag field of each cache

10

line to include set bits and a one-bit counter is utilized for invalidating stale data (discussed

in Chapter 2.1.3.). For this configuration, the inclusion of set bits causes roughly a 2 percent

increase on the entire cache space.

2.1.2. Double Access Mechanism

Changing the mapping function is equivalent to an immediate cache flush in terms of

throughput. Lines may remain in the cache, but most of them, if not all, become effectively

inaccessible. Chapter 2.1.1. presents an example where a cache line which actually is in the

cache becomes inaccessible due to a change in the mapping function. In order to mitigate

the throughput loss caused by these cache flushes, a new mechanism called Double Access

(DA) is proposed.

In DA, partitions remember their size and beginning set for the previous allocation in

addition to the current one. This allows partitions to be able to locate their valuable cache

lines inserted in earlier periods. When a cache access occurs, a partition initially searches a

cache line within a set indexed by the current mapping function. If the line is valid and if

there is a tag match, it is called a primary hit, otherwise a primary miss. In the case of a

primary miss, the partition searches the requested line within a set computed by the mapping

function of the previous period. If the line is valid and if there is a tag match at the end of

this second search, it is called a secondary hit, otherwise a secondary miss. Primary and

secondary accesses are carried out sequentially; therefore, access latency of a primary hit is

equal to the latency of the cache, whereas the access latency of a secondary hit is equal to

twice the latency of the cache. In case of a secondary miss, data is retrieved from a lower-

level memory structure as usual.

Secondary accesses allow partitions to address cache lines from other partitions. Partitions

are free to evict any line from their dedicated space whenever it is necessary, but there is no

need to prevent others from accessing these lines as long as they stay healthy in the cache,

especially if others can benefit from them. Indeed, results discussed in Chapter 4.1.2.2. show

that there is a possible throughput gain by allowing this via the DA mechanism.

11

 (a)

(b)

(c)

Figure 2.1. Example set-index computations for traditional and Set Partitioning caches. (a)
An example set-index computation in a traditional cache. (b) An example set-index

computation in Set Partitioning cache. Partition 0 is allocated 200 sets and Partition 1 is
allocated 300 sets. The incoming line is inserted into Partition 1. (c) An example set-index

computation in Set Partitioning cache. Partition 0 is allocated 300 sets and Partition 1 is
allocated 200 sets. The incoming line is inserted into Partition 1.

12

In DA, to prevent partitions from evicting lines from other partitions and violating allocation

decisions, the secondary access only allows accessing cache lines without updating their

timestamps, and all insertions are applied to a partition's own space (i.e. using the most up-

to-date mapping function). Another interesting design choice might be to update timestamp

information of cache lines that give a secondary hit. In such a case, the new owner of those

cache lines may get a really hard time evicting them, since they can be instantly moved to

the Most Recently Used (MRU) position in a cache set, with each secondary hit. Currently,

giving secondary access as a best-effort service without impeding the performance of the

new owner of a partition is utilized.

Another design choice to be considered when applying the DA mechanism is to decide

whether a line should be relocated to its primary partition upon a secondary hit or not. Here,

relocating a frequently used line halves the access time, whereas relocating a rarely used line

initiates unnecessary traffic and possibly evicts a useful line from the primary partition. A

more ambitious option would be to relocate all lines upon a change in the mapping function.

As discussed in Chapter 2.1.3., the proposed scheme requires bulk invalidations to be carried

out at the end of each repartitioning period. This approach can eliminate the DA mechanism

altogether and minimize the number of writebacks. However, this also requires further

analysis of design space and its impact on performance. The current scheme with no

relocations costs much less both in terms of cache traffic and hardware resources. Cache

lines that are accessed in foreign partitions are gradually evicted by the new owners of

partitions, and frequently used lines are inserted into primary partitions upon a cache miss.

2.1.3. Ensuring Correct Computation

When a partition's beginning set or size changes, its mapping function for computing set

indices also changes. This may cause lines which are inserted two periods ago to be

inaccessible (unless the mapping function happens to be the same with one of the last two

periods). If not managed properly, such lines will become "lost", i.e. will still be in the cache

but become inaccessible.

Lost lines cause two types of problems which may cause the program to enter a faulty state.

If the lost line is a dirty line, the cache will be unable to locate the requested line and bring

the line with an outdated value from a lower-level memory structure. The other case is when

13

the lost line is clean: a clean line may be retained in the cache long enough so that it becomes

accessible again after several repartition periods, but data in that line may be outdated.

An example of the latter case is shown in Figure 2.2. Let A be a variable of interest in an

application. The application inserts the related line let us call line L, into the cache at period

t. Due to change in mapping functions, L becomes inaccessible at period t+2. The application

again accesses A at t+3. Since L is inaccessible, another line (L') is inserted into the cache.

At t+4, the value of A changes. The value stored in L' is also updated, but since L is

inaccessible at this point, the value in L becomes outdated. At t+5, L' becomes inaccessible.

At t+6, L is still alive and becomes accessible again due to a change in the mapping function.

At t+7, the application accesses A again and uses the outdated data stored in L.

Figure 2.2. Anexample case where retaining a clean cache line may cause errors.

Both problems arise from lost cache lines. Therefore, to prevent such problems, lost cache

lines must be avoided at all costs. This can be implemented by using an extra one-bit counter

per line, called the stale bit. This bit represents whether a cache line will become lost in the

next repartitioning period or not. If a cache line is just inserted or is accessed by a primary

access, it means that it will also be accessible during the next period. Therefore, when a line

is inserted or accessed via a primary access, the stale bit of that line is reset.

At the end of each period, all lines which will be lost during the next period must be evicted.

Similar to a traditional eviction, if the line to be evicted is clean, simply resetting the valid

bit is sufficient to evict that line. On the other hand, if the line is dirty, the contents of that

line must be sent to the lower level unit in the memory hierarchy. Algorithm 2.1. and

Algorithm 2.2. show how cache lines are treated at each access and the end of each

repartitioning period.

14

Algorithm 2.1. Access cache line

 if primary access then

 line.stale_bit ← 0

 end if

Algorithm 2.2. Flush stale lines

 for every cache line l do

 if l.stale_bit == 0 then

 l.stale_bit ← 1

 else

 if l.dirty == 1 then

 Send data of l to the lower level

 end if

 Invalidate l

 end if

 end for

There exist some solutions which could significantly reduce the time spent for invalidating

dirty cache lines. For example, relocating lines on secondary hits would move some of the

dirty stale bits to a primary partition, rendering them not stale, hence eliminating the need

for writing these lines back to memory. Similarly, the eviction process could be handled

gradually towards the end of repartitioning periods and using write-through policy during

this interval would prevent creating new dirty lines. Finally, an extreme approach would be

to use the write-through cache policy from the beginning to the end.

However, these solutions are either not practical, or do not guarantee any performance gains.

Utilizing write-through policy would greatly increase memory bandwidth utilization and

power consumption. Relocating lines on secondary hits could help, but there is no guarantee

on what percentage of dirty stale lines would be relocated. Besides, as discussed in Chapter

2.1.2., relocating lines may hurt performance and requires further analysis.

15

Here, a bulk invalidation/eviction process after each repartitioning period is proposed.

During this process, all cache lines are sequentially checked, and clean stale lines are

invalidated, and dirty stale lines are written back to the main memory. The process ends

when all lines are checked and all write-back operations are completed. All cache accesses

are blocked during this period. The impact of this invalidation/eviction process on

performance is discussed in Chapter 4.1.2.4. Support for bulk invalidation of cache lines

have been proposed in other work in the literature as well [9,10].

2.1.4. Fast Set Redirection

The modulo operator is an ideal operator for directing incoming cache accesses towards

cache sets if addresses are assumed to be uniformly distributed. Since the computation of

the set index is on the critical path of cache access, the number of sets in caches are always

selected in powers of two to allow fast bit extraction instead of executing a costly modulo

operation. However, in Set Partitioning, partitions may have sizes that are not powers of two.

The modulo operator is significantly slower than the bit extraction and it is an unfeasible

option for fast set index computation. Considering that cache access latency has a big impact

on the processor throughput, the mechanism which replaces modulo operator should be as

simple and as fast as possible.

As speed is of utmost importance, utilizing bitmasks in order to harness their speed is

proposed. Two simple approaches exist which use bitmasks with non-power of two sizes:

rounding a given size up or down to a power of two.

If partition sizes are rounded down, some sets would never be indexed and, therefore, never

would be accessed. This approach would require additional mechanisms for deciding which

accesses would be directed to that extra space and how accesses would be indexed within

that region. On the other hand, if partition sizes are rounded up, some accesses would be

indexed to sets which are beyond the extent of a partition and would have to be redirected

inside partition boundaries.

A simple and fast method called Fast Set Redirection (FSR) is proposed for computing set

indexes by rounding partition sizes up to a power of two as shown in Algorithm 2.3.

16

Algorithm 2.3. Fast Set Redirection

 set index = (address) mod (rounded up partition size)

 if set index ≥ partition size then

 set index = set index – partition size

 end if

 set index = set index + beginning set of partition

The proposed set index computation method is not ideal and does not uniformly distribute

accesses. Therefore, some sets in a partition are used less frequently than others. The effect

of this suboptimal distribution on throughput is examined in Chapter 4.1.2.3.

FSR computation requires one bitmask, one comparison, one subtraction and one addition

operations. However, the computation can be implemented in a much simpler way. First, the

comparison can be ignored since comparing two operands is carried out by applying a

subtraction and checking the sign bit. Therefore, FSR can apply subtraction operation

immediately and use this value if the sign bit is appropriate. The addition and subtraction

operations can be handled in a single move with the 3-in-1 structures described by

Vassiliadis et al. [11]. Overall, FSR computation can be carried out with a bitmask operation

and parallel 3-in-1 and 2-in-1 operations. Logic design for FSR is presented in Figure 2.3.

Given that bit masking and multiplexing are fast operations, we assume that the critical path

of FSR (bit masking, 3-in-1 addition and bit selection) does not necessarily increase cycle

time.

2.2. SET CLASSIFIER

Cache partitioning mechanisms consist of two major components: an allocation policy,

which decides the amount of cache space each core can receive, and an enforcement policy,

which realizes these decisions as faithfully as possible. When these policies work in

harmony, near-optimal performance gains can become attainable. Since Set Partitioning is a

set-based enforcement policy, we also need a complementary set-based allocation policy.

Here, we propose a classification-based policy, which is similar to previous work that solely

17

based on way partitioning [12]. To make allocation decisions about reference streams, Set

Classifier classifies them into four predefined classes: Null (threads which are not interested

in the cache), Very Harmful (threads which have destructive cache behavior), Harmful

(threads which are mildly destructive, but also benefit from the cache) and Harmless (threads

that benefit from the cache greatly). The classification is done periodically in epochs by

utilizing run-time statistics. These statistics are the traffic rate, miss rate and cache decay

rate.1

Figure 2.3. Logic design of Fast Set Redirection.

Traffic rates of threads are determined by dividing the number of cache accesses in one

epoch to the duration of the epoch (Equation 2.4). Miss rate is determined by dividing the

number of cache misses to the number of cache accesses in one epoch (Equation 2.5).

1 In our work, we assume a fixed one thread per core configuration. Hence, we refer to reference streams as
threads in this section. However, the same allocation policy can be easily applied to reference streams with
multiple threads by using their cumulative statistics.

18

Finally, the cache decay rate is determined by dividing the number of cache decays in one

epoch to the number of maximum possible cache decays in one epoch (Equation 2.6).

݁ݐܴܽܶ ൌ
ே௨ ௦௦௦

ா ௗ௨௧
 (2.4)

݁ݐܴܽܯ ൌ
ே௨ ௦௦௦

ே௨ ௦௦௦
 (2.5)

݁ݐܴܽܦ ൌ
ே௨ ௗ௬௦

ே௨ ௫௨ ௦௦ ௗ௬௦
 (2.6)

Lookahead allocation policy exploits the stack property of LRU to determine the exact

contribution of each allocated way in terms of cache hits that are gained [3]. However, the

set-based approach lacks such property and observing the contribution of extra sets on cache

hits gained for a particular thread is not as simple as it is done in way partitioning

mechanisms. Here, the use of cache decay statistics to gain similar information is proposed.

Cache decay is a metric used to determine whether a given cache set (or line) has been idle

for a certain amount of time and it is mainly used for reducing the energy consumption of

caches [7].

In order to track how long each set has been idle for, per-set decay counters are implemented.

Since updating these counters on a per-cycle basis would cause higher complexity and

energy dissipation, decay counters are usually implemented in a more coarse-grain fashion.

In this research's setup, 3-bit counters per set are implemented. Whenever a set is accessed

its decay counter is reset to a decay reset value. All counters are decremented by one at the

end of a smaller period called decay period. In this scheme, a set with a decay value of zero

is marked as decayed and the set preserves its decay status until an access occurs to that set.

Maximum possible cache decay represents the case where all sets of a thread are decayed

throughout the epoch. This value is calculated using Equation 2.7.

ݕܽܿ݁݀ ݈ܾ݁݅ݏݏ ݉ݑ݉݅ݔܽܯ ൌ ݏݐ݁ݏ ݂ ݎܾ݁݉ݑܰ ∙
ா ௗ௨௧

௬ ௗ ௧
 (2.7)

In order to keep the future calculations simple, the statistics collected are classified into 0, 1

and 2 by comparing these values with low and high thresholds. Traffic (T), miss (M) and

decay (D) classes of a thread are determined as shown in Equation 2.8, 2.9, and 2.10.

19

ܶ ൌ ቐ

0, ݁ݐܴܽܶ < ܶܶℎݏ݁ݎℎ௪
1, ܶܶℎݏ݁ݎℎ௪ ≤ > ݁ݐܴܽܶ ܶܶℎݏ݁ݎℎ

2, ܶܶℎݏ݁ݎℎ ≤ ݁ݐܴܽܶ
 (2.8)

ܯ ൌ ቐ

0, ݁ݐܴܽܯ < ℎ௪ݏ݁ݎℎܶܯ
1, ℎ௪ݏ݁ݎℎܶܯ ≤ > ݁ݐܴܽܯ ℎݏ݁ݎℎܶܯ

2, ℎݏ݁ݎℎܶܯ ≤ ݁ݐܴܽܯ
 (2.9)

ܦ ൌ ቐ

0, ݁ݐܴܽܦ < ℎ௪ݏ݁ݎℎܶܦ
1, ℎ௪ݏ݁ݎℎܶܦ ≤ > ݁ݐܴܽܦ ℎݏ݁ݎℎܶܦ

2, ℎݏ݁ݎℎܶܦ ≤ ݁ݐܴܽܦ
 (2.10)

The purpose of Set Classifier is to classify threads according to their cache behavior: threads

with high miss rate and/or high decay rate should be classified as Harmful or Very Harmful

classes, whereas threads with good cache behavior should be classified as Harmless and

threads with no interest in the cache should be classified as Null. After T, M and D classes

are determined, each thread is assigned ThreadValues (TV) using the formula in Equation

2.11, to determine how bad their cache behavior is.

ܸܶ ൌ ܶ ∙ (1 + ܯ + 2 ∙ (2.11) (ܦ

The traffic class is multiplied by other statistics since the traffic rate of a thread determines

how big the impact of the miss rate and the decay rate is. A thread with a high miss rate will

be much more destructive if it also has a high traffic rate.

Similarly, it is much worse if a thread has a high decay rate even though it has a high number

of cache accesses (i.e. high traffic rate). One may expect traffic rate and decay rate to have

a negative correlation, but this may not be the case with a non-uniform access pattern. If a

thread has both high traffic and decay rates, it means that the thread is accessing a subset of

cache sets allocated to it very frequently, while accessing the rest of its sets rarely. A thread

with a high decay rate is a better candidate for giving away cache space compared to a thread

with a high miss rate. Therefore, decay classes of threads are multiplied by 2 to punish

threads with high decay rates.

If a thread has a low traffic rate, then, miss rate and decay rate of that thread become

insignificant for performance. Such threads are classified as Null (i.e. no interest in any cache

resource) and their TV becomes 0. However, Null threads and Harmless threads with good

cache behavior (M = 0, D = 0) should be distinguished. Hence, a constant value of 1 is added

20

to TV computation. This way, threads with high traffic but low miss/decay rates will have a

different score than threads with no cache interest.

Once the TV of a thread is determined, ThreadClass (TC) computation determines which

category the thread should fall into (Equation 2.12). Reflecting the theory behind Equation

2.11, threads with higher TV's are classified into classes with worse cache behavior.

ܥܶ ൞

,݈݈ݑܰ ܸܶ ൌ 0
,ݏݏ݈݁݉ݎܽܪ 0 < ܸܶ < 4
,݈ݑ݂݉ݎܽܪ 4 ≤ ܸܶ < 6

,݈ݑ݂݉ݎܽܪ ݕݎܸ݁ 6 ≤ ܸܶ

 (2.12)

In Set Classifier, threads, which are classified as Null or Very Harmful, are not given any

cache resources since Null threads do not utilize the cache and Very Harmful threads do not

gain any performance, similar to previous work by Ovant et al. [12]. As a result, the entire

LLC is partitioned among Harmless and Harmful threads. Although it is possible to

differentiate the amount of cache space allocated to threads of the same class, it would

require dividing these classes into additional subclasses. Thus, all threads of the same class

are allocated equal cache space to keep the mechanism simple enough to be implemented in

hardware. Since Harmless threads are expected to utilize cache resources more efficiently,

they are provided with proportionally (twice, in this study) more cache resources than

Harmful threads. How much cache resource a thread should receive is calculated according

to Equations 2.13, 2.14 and 2.15.

ݐℎ݃݅݁ݓ ݈ܽݐܶ ൌ 2 ∙ ݏ݀ܽ݁ݎℎݐ ݏݏ݈݁݉ݎܽܪ ݂ ݎܾ݁݉ݑܰ + ݏ݀ܽ݁ݎℎݐ ݈ݑ݂݉ݎܽܪ ݂ ݎܾ݁݉ݑܰ

(2.13)

ܷ ൌ
ே௨ ௦௧௦

்௧ ௪
 (2.14)

݊݅ݐ݈݈ܽܿ ൌ {
∙ 2)ݎ݈݂ ܷ), ݏݏ݈݁݉ݎܽܪ ݏ݅ ݀ܽ݁ݎℎݐ ݂݅

,(ܷ)ݎ݈݂ ݈ݑ݂݉ݎܽܪ ݏ݅ ݀ܽ݁ݎℎݐ ݂݅
 (2.15)

Note that the floor function is used in Equation 2.15, and there might be some leftover sets

after partitioning. Leftovers are given to arbitrary threads (these sets are always given to the

last thread in this study). In case there are no Harmless or Harmful threads, all cache

resources are equally partitioned among Very Harmful threads.

21

The Set Classifier requires a negligible amount of time to carry out necessary computations.

Equations presented in this section are presented with theoretical reasons in mind, but these

computations can be simplified in practice. For example, considering Equation 2.4 and 2.8

together, Equation 2.4 can be eliminated by multiplying traffic thresholds by the period

length of the classifier. In short, each core must execute 9 comparison operations (6 for

determining T, M and D classes; 3 for determining TC value), 2 addition operations (for TV

computation) and 3 shift operations (2 for TV computation and 1 for allocation computation

in Equation 2.15). Additionally, one core requires to execute 1 shift operation (for Total

Weight computation), 1 division operation (for computing U), 35 addition operations (1 for

Total Weight computation, 32 for computing total number of sets allocated, 1 for computing

number of leftover sets and 1 for adding the leftover sets to a core). In total, Set Classifier

imposes a latency of 37 addition, 4 shift, 1 division and 9 comparison operations. When

using instruction latencies from Intel Skylake architecture, total latency imposed by these

computations is under 100 cycles [13]. Furthermore, the complexity of the Set Classifier is

not affected by the associativity of the cache and increases linearly as the number of threads

increases.

22

3. SET PARTITIONING AS AN ENERGY-SAVING TECHNIQUE

This chapter investigates the characteristics of Set Partitioning as an energy-saving

technique. Chapter 3.1. motivates by describing energy consumption in caches and

comparing a simplified version of Set Partitioning to Cache Decay and Drowsy Cache.

Chapter 3.2. discusses the additional energy consumption caused by the implementation of

Set Partitioning itself. Chapter 3.3. proposes a new energy-saving allocation policy for Set

Partitioning by modifying the existing allocation policy.

3.1. MOTIVATION

Although Set Partitioning is essentially a cache partitioning mechanism, it can also be

leveraged as an energy-saving technique. Two important features of Set Partitioning are its

ability to isolate cores to a certain cache area and to grow/shrink the area dedicated to a core.

When combined, these two features can be exploited to reduce the energy consumption of

the cache. The main idea is to power off as many cache sets as possible without hurting

performance in order to save energy or follow a more aggressive approach to turn off even

more cache sets in exchange for performance loss. Energy saving is then reduced to

modifying the allocation policy.

Energy consumption on a cache can be examined in two categories: static and dynamic

energy consumption, and the total energy spent by a cache can be expressed as a sum of

these two consumption types (Equation 3.1). Static energy consists of the energy spent in

order to keep the cache powered on (leakage) and dynamic energy spent consists of the

energy spent due to switching of transistor states during a cache access. Dynamic energy

spent by a cache can be further broken down into energy spent due to cache reads and energy

spent due to cache writes (Equation 3.2).

ܧ ൌ ௦௧௧ܧ + ௗ௬ܧ (3.1)

ௗ௬ܧ ൌ ∙ ݏ݀ܽ݁ݎ ℎ݁ܿܽܿ ݂ ݎܾ݁݉ݑ݊ ௗܧ + ∙ ݏ݁ݐ݅ݎݓ ℎ݁ܿܽܿ ݂ ݎܾ݁݉ݑ݊ ௪௧ܧ

(3.2)

If a partitioning mechanism supports explicit partitioning, static energy consumption of a

shared level cache can be expressed as a sum of static energy consumed by all partitions as

23

shown in Equation 3.3 where S denotes the cache size, Ei denotes the size of ith partition and

Estatic_i denotes the static energy spent by ith partition.

௦௧௧ܧ ൌ ∑ ௦௧௧ܧ ∙
ௌ

ௌ
ൌ ∑ ௦௧௧_ܧ

ே
=

ே
= (3.3)

The same rule applies for dynamic energy consumption as well: dynamic energy spent by a

shared level cache can be expressed as a sum of dynamic energy spent by all partitions.

Therefore, the total energy spent by a cache can be expressed as a sum of energy spent by

all partitions in the cache. The implication is that any reduction of energy in a single partition

can be translated into a reduction of energy in a multi-partition environment. This allows us

to simplify the investigation of energy-saving techniques for an explicit partitioning

mechanism by investigating in a single-core configuration rather than in a multi-core

environment.

One of the properties of an explicit partitioning scheme is that partitions can have a variable

amount of cache area allocated only to them. Applied in a single-core configuration, this

allows only a subset of cache area to be allocated for work and the rest to be powered off in

order to save energy. Gated Vdd can be used to power off individual cache lines [14], and a

similar approach is used for instruction caches by Powell et al. [15].

Reducing energy consumption usually results in decreasing performance. In this section, we

focus only on the energy consumed by the cache and ignore extra energy costs induced by

decreased performance, such as extra energy spent by the processor due to the increased

duration of execution, or by main memory due to increased traffic. Still, decreased

performance will also induce an increase in static energy dissipated by the cache due to

increased execution time, and a lower cache hit rate will mean more dynamic energy will be

spent due to the increased number of cache insertions. Moreover, saving energy at the

expense of too much performance degradation is not desired, and keeping performance loss

within bounds is also an important factor.

Energy-saving techniques will be evaluated using the following metrics: throughput

produced by the processor (IPC), total energy spent and energy-saving efficiency. While IPC

(and the hit rate of the cache) directly measure system performance, efficiency will indicate

how much energy was saved at the cost throughput loss. Traditionally, energy-delay product

or energy-delay2 product is used to measure energy efficiency. However, these two metrics

24

are not suitable for measuring the energy efficiency of different cache mechanisms. The

reason behind this is that the terms are not comparable to each other: the energy term includes

the energy spent by the cache only, whereas the delay (or delay2) term includes processor

performance too.

If a mechanism can both decrease energy consumption and increase performance, it is

immediately a better solution (or worse if increases energy and decreases performance). The

purpose of using an efficiency metric is to measure the efficiency of energy usage in the case

of trade-offs. Ideally, not using the hardware in question should not be an option. For

example, the energy-delay product is a popular metric for evaluating transistor efficiency. In

that case, spending no energy at all causes the transistor to not work, making the delay term

infinite, and the energy-delay product becomes undefined. However, when measuring

caches, turning off the cache does not make delay infinite as the processor can continue

working even if there were no cache. Therefore, turning off the cache always becomes the

most efficient energy-saving technique, as the energy-delay product always equals zero

(instead of an undefined value).

Another option to make the energy-delay product work with cache efficiency would be to

include the energy spent by the processor to the total energy spent by the system. That would

prevent the energy term from becoming zero when the cache is turned off and solve the

previous problem, but this also introduces the energy efficiency of the cache into the

measurement instead of comparing the efficiency of different cache mechanisms only.

Consider this case, two different cache mechanisms provide the same processor throughput

(therefore having equal delays), but one of them can save 90 percent energy whereas the

other one can save 10 percent energy. If the energy spent by the processor is too dominant,

the energy-delay product of these two example mechanisms would become very similar

although there is a very significant efficiency difference between them.

In order to evaluate the efficiency of cache mechanisms while leaving external factors

outside and turning the whole cache off out of the question, we use a modified version of the

energy-delay product shown in Equation 3.4 [16]. In this formula, the E term represents the

energy spent by the cache only. The second term represents the performance lost due to the

cache performance. The third term is essentially a constant term which normalizes the

second term.

25

Table 3.1. Simulated system specifications

Number of instructions simulated 100M
Processor frequency 2GHz
Processor width 4
Instruction scheduling Out-of-order
Reorder buffer size 128 Entries
Register file size 128 INT, 128 FP
L1 i- and d-cache 16KB, 4-way, 4 cycle latency
L2 cache 256, 128, 64 and 32KB, 8-way, 64-

byte line size, 15 cycle latency
Maim memory 64-bit bus width, FRFCFS

scheduling policy, 2KB row
buffer, 12.8 GB/s bandwidth, 11-
cycle column, 25-cycle activate,
10-cycle precharge

ݕ݂݂ܿ݊݁݅ܿ݅ܧ ൌ ∙
ଵ

ூ− ூ_ೌ
 ∙ ௦ܥܲܫ) െ _) (3.4)ܥܲܫ

The following subsections compare turning off portions of cache completely with other static

energy-saving techniques in the literature and motivate using an explicit set-based

partitioning technique as an energy reduction mechanism. Table 3.1. shows the

specifications of the simulated system used to obtain empirical results.

Table 3.2. Power/energy requirements of the simulated L2 caches

Configuration Static energy Read energy Write energy
512-8 326.363 mW 1.36356 nJ 1.46549 nJ
256-8 169.223 mW 1.33042 nJ 1.38199 nJ
128-8 90.5569 mW 1.311 nJ 1.34737 nJ
64-8 52.2441 mW 1.29917 nJ 1.31484 nJ

For the motivation study, which compared Set Partitioning to other energy-saving

techniques, four different cache sizes for the L2 cache is used: 256KB (512 sets), 128KB

(256 sets), 64KB (128 sets) and 32 KB (64 sets). These configurations are represented by

the number of sets they include. Baseline configuration is selected as the largest one among

them (512), and all other configurations are compared against the baseline to evaluate their

performance in terms of the metrics discussed above.

26

Table 3.2. shows the energy specifications of the simulated configurations, which were

obtained using CACTI 7.0 [17] with a 32nm transistor technology is assumed. Although

dynamic energy costs (read/write energy) decrease as cache size decreases, this is mainly

due to shortening routes between components and reducing selection complexity. Since

dynamically turning off portions of the cache will not allow such drops, all configurations

will be evaluated using dynamic energy costs of the baseline configuration.

3.1.1. Cache Decay

Cache Decay is an energy-saving technique that turns off unused cache lines to reduce

leakage [7]. In general, cache lines that do not generate a cache hit for a certain time are

considered unused and powered off.

In our comparison, Cache Decay is implemented in set granularity and no adaptive

approaches were used for simplicity. To reduce complexity and extra power dissipation, we

follow the methodology by Kaxiras et al. and implement a global counter which controls the

decay mechanism [7]. At every tick of the global counter, per-set decay counters are

decremented by one and sets whose decay counters reach zero are considered decayed and

powered down. Whenever a cache access (whether it results in a hit or miss) or insertion

occurs, the decay counter of the set is reset to a certain value.

After a cache set is decayed and powered down, any access to this set results in a cache miss.

Furthermore, cache lines will require a certain amount of time for stabilizing after re-

opening. We also evaluated delaying insertion of new lines until decayed lines are stable to

be written into, but simulation results showed that this approach causes huge performance

losses (up to 50 percent IPC loss) due to stalling. Therefore, a bypass mechanism is assumed

for Cache Decay when a new cache line is supposed to be inserted into a decayed set.

Table 3.3. shows the parameters used for evaluating Cache Decay. Decay period represents

the duration required for a cache set to be considered inactive and decayed, and the activation

period represents the duration required before a decayed set becomes stabilized. As a global

counter is used, the activation and decay periods refer to an interval rather than an exact

amount of time. For example, a global counter period of 64 cycles and an activation period

27

of 4 global cycles means that the stabilization of the cache line will occur after 4 ticks of the

global counter, which can happen anytime between 192 cycles and 256 cycles.

Table 3.3. Cache Decay parameters

Global counter period 64 cycles
Activation period 4 global cycles
Decay period 4, 128 and 512 global cycles

For each cache size included in Chapter 3.1., four following configurations were simulated:

no decay and decay periods of 4, 128 and 512 global cycles (256, 8K, and 32K cycles).

Configurations are represented as "number of sets-decay period". For example, 512

represents an L2 cache with 512 sets without Cache Decay, whereas 256-128 represents an

L2 cache with 256 sets and a decay period of 128 global cycles.

Applying energy-saving techniques that cause a drop in performance also causes an increase

in energy cost as a side effect. This happens due to two reasons: first, decreasing performance

causes the execution to take longer, increasing the static energy required to complete a

program block. Second, increasing the number of misses causes an increase in the number

of cache lines inserted into the cache, therefore causes an increase in dynamic energy.

Indeed, the static power requirement of 64-set configuration is 16 percent of the baseline

(512-set) configuration. However, simulation results show that the average amount of static

energy spent by the 64-set configuration is 20 percent of the baseline, and goes up to 43

percent.

On dynamic energy, shrinking the cache to 64 sets increases dissipation by 27 percent on

average, and up to 79 percent. Similarly, applying Cache Decay increases dynamic energy

dissipation by 68 percent on average, and up to 141 percent. However, the dominance of

static energy dissipation in total energy budget can hide the increase in dynamic energy: the

percentage of static energy in total energy consumed varies between 73 percent and 99

percent, with an average of 90 percent.

The average energy spent by all configurations simulated is presented in Figure 3.1. It can

be seen from the results that in terms of overall energy reduction, Cache Decay greatly

outperforms shrinking cache size: best performing configuration reduces energy

28

consumption by 70 percent on average (64-set configuration), whereas applying Cache

Decay reduces energy consumption by 84 percent. This is to be expected since the reduction

achievable by shrinking the cache is limited by the number of sets turned off, while Cache

Decay can potentially turn the whole cache off. It is worth noting that Set Partitioning can

turn off a variable number of cache sets and overcome this limitation.

Figure 3.1. The average rate of energy spent by various configurations.

An interesting observation is that applying both techniques can also achieve an energy

reduction rate almost equal to the maximum reduction available by these techniques.

Applying Cache Decay in 512-, 256- and 128-set configurations reduce the total energy

spent by 84 percent. In this sense, it can be said that turning off cache sets does not

necessarily impede the energy-saving potential if applied along with Cache Decay.

Applying Cache Decay causes further throughput loss compared to turning off cache sets,

which can be seen in Figure 3.2. For all configurations, no-decay achieves the lowest amount

of throughput loss in 24 out of 25 benchmarks compared to the baseline configuration.

Increasing decay period reduces IPC loss, as it increases the probability of cache lines being

reused before decaying, but also reduces energy savings since cache lines will stay on for

longer periods once they are accessed and their decay counter is reset. One exception to this

29

is the case where prolonging the decay period reduces energy savings but does not reduce

IPC loss. This exception occurs when cache lines have a reuse distance longer than the decay

period and are not accessed before they decay. In this case, keeping cache lines on for a

longer time does not improve the cache hit ratio, but increases energy spent to keep those

lines on.

Figure 3.2. Average throughput loss of various configurations.

The trade-off between turning off cache sets and applying Cache Decay is higher throughput

of the former and higher energy saving of the latter. Throughput advantage of turning off

cache sets comes from its ability to keep data indefinitely, allowing the workload to benefit

from these data in a distant future whereas Cache Decay prevents any benefit beyond a

certain time. In certain access patterns, especially when the working set of the workload can

fit into a portion of the cache, turning off cache sets can outperform Cache Decay beyond

dispute by achieving much better throughput while achieving the same level of energy

reduction. For example, when running the benchmark bwaves, 512-set configuration with a

Cache Decay of 512 global cycles decreases throughput by 9.2 percent while reducing

energy by 71.2 percent compared to the baseline. On the other hand, 64-set configuration

with no decay decreases throughput by only 0.7 percent while reducing energy by 72.1

percent.

30

All in all, in terms of energy reduction and throughput loss, applying Cache Decay or not is

a question of priority: if reducing energy is more important than achieving high throughput,

Cache Decay serves this purpose much better than turning off cache sets. If one's purpose is

to save as much energy as possible while keeping throughput high, turning off cache sets is

a much more viable option compared to Cache Decay as simulation results show that for 7

benchmarks out of 25, turning off cache sets without applying Cache Decay does save energy

while keeping the throughput intact, and 3 benchmarks decrease throughput less than 1

percent compared to baseline. However, applying both techniques constitutes an important

option: turning off cache sets while keeping decay period fixed either improves energy

savings or keeps it at a similar level, while either decreasing throughput loss or keeping it at

a similar level.

Figure 3.3. The average efficiency of various configurations.

Figure 3.3. shows the normalized average energy efficiency of the simulated configurations.

An efficiency value of 1 represents that the given configuration is equally energy-efficient

as the baseline. Any value greater than 1 indicates worse efficiency, and any value lower

than 1 indicates better efficiency compared to the baseline. Some configurations provide a

throughput equal to the no-cache configuration for some workloads, producing an efficiency

31

value of infinity. To be able to obtain average efficiency values of configurations while being

fair, these cases are replaced with an efficiency equal to the worst efficiency produced among

the non-infinite configurations (which works for Cache Decay and against turning off cache

sets). The number of workloads each configuration produces an infinite energy efficiency

can be seen inside the parentheses in the x-axis labels of Figure 3.3.

The efficiency results show that the only configurations that can provide better efficiency

than the baseline are the 256- and 128-set configurations without Cache Decay. 64-set

configuration has a worse efficiency due to the increased number of conflict misses. Decay

configurations produce much worse efficiency due to high throughput losses, close to the

no-cache throughput. A decay period of 512 global cycles works more decently compared

to the other decay configurations due to its ability to retain data for longer periods of time.

Still, all decay configurations perform worse than the baseline configuration in terms of

efficiency.

An interesting observation is that Cache Decay with a decay period of 4 always yields a

similar level of efficiency. The reason is that the average duration between two accesses to

cache lines is greater than the decay period of 4 global cycles for the simulated workloads.

This causes lines to decay before they are accessed, converging the hit rate of the cache to

0. This result is the equivalent of having no cache in terms of throughput. Even in that case,

a decay period of 4 seems to work more efficiently compared to the other decay

configurations, but that is due to the infinite efficiency values being replaced.

One observation is that given any fixed decay period, shrinking the cache size decreases total

energy spent by the cache while also decreasing throughput loss. This result is due to the

cache access pattern of the simulated benchmarks and the nature of set-based Cache Decay.

With a larger cache, accesses spread over a larger area whereas with a smaller cache accesses

tend to concentrate on a smaller area. In the absence of a high rate of conflict misses,

concentrating accesses to a smaller area works better with set-based Cache Decay. This

allows sets to be kept alive for longer and allows benchmarks to benefit from the data

retained. This also explains the increase in efficiency as the cache size decreases except 64-

128, where conflict misses and data loss works hand in hand to destroy efficiency. However,

all configurations still fall short of the efficiency of the 128-set no-decay configurations.

32

128-set configuration also provides the highest geometric and harmonic mean in terms of

1/efficiency2.

To summarize, both turning off cache sets and Cache Decay have their own set of advantages

over one each other. One advantage of Cache Decay is that it is a more flexible approach: if

necessary conditions are met, Cache Decay can adaptively turn off cache sets without

affecting the hit rate. On the other hand, turning off cache sets can store data indefinitely and

is invulnerable to very long reuse distances. Another difference between the two techniques

is that turning off cache sets is more predictable in terms of throughput loss and energy

savings, whereas Cache Decay is more susceptible to the access pattern of the instruction

stream. Empirically, simulation results imply that Cache Decay is a better option for

achieving a greater reduction in energy savings, and turning off cache sets is a better option

for maintaining throughput and achieving a higher level of efficiency.

An important intrinsic difference between Set Partitioning and Cache Decay is that although

Cache Decay is an energy-saving technique, it is not a cache partitioning mechanism and

cannot replace Set Partitioning altogether. In the end, the two techniques are not rival

mechanisms, but rather orthogonal techniques which can be applied together.

3.1.2. Drowsy Cache

Drowsy Cache is an energy-saving technique similar to Cache Decay [8]. The difference

between the two is that Drowsy Cache can keep the data indefinitely by putting cache lines

in a low-power (drowsy) mode rather than turning them off. Although consuming much less

energy than traditional cache lines, drowsy lines do dissipate energy unlike decayed cache

lines, which are completely powered off. Moreover, drowsy lines must be put back into the

awake state before they can be accessed again, which induces an additional latency.

We follow the methodology from Flautner et al. and use the simple policy for evaluating

Drowsy Cache [8]. In simple policy, all cache lines are put into drowsy mode periodically.

We again follow the original research on Drowsy Cache and use 4000 cycles as the period

duration. Whenever a cache hit or an insertion occurs to a drowsy mode, it is restored to the

2 Geometric and harmonic means are vulnerable to few but low instances. Since efficiency is a lower-is-good
metric, using these means directly on efficiency yields misleading results. For the geometric and harmonic
means, we invert the efficiency metric, turning it into higher-is-better, and then apply the means.

33

awake mode and stays awake until it is put back into drowsy mode at the beginning of the

next period.

Whenever a cache access occurs, all drowsy lines in the set must be awakened to determine

whether the requested address is present or not. Similarly, whenever an insertion occurs, all

drowsy lines in the set must be awakened to find out which line is going to be evicted.

Another approach that alleviates this problem is to decouple the drowsiness of data and tags.

This approach allows only tags to be restored in case of a cache access/insert and data to be

left untouched, avoiding unnecessary data awakening. The downside of this approach is that

it induces another level of latency: upon a cache access, all tags must be awakened (first

latency), and then the target line must be awakened according to the tag/recency data

comparisons (second latency).

As for timing and energy consumption values, since our simulated configuration and the one

in Flautner et al.'s work are different, we use the ratios they provide in their research: the

additional latency incurred by the transition from drowsy mode to awake is taken as half the

time required for a cache access (both for tag and data). Similarly, the amount of energy

dissipated by a drowsy line is roughly 16 percent of an awake line.

Figure 3.4. shows the average energy spent by cache configurations with and without

Drowsy Cache. All results presented in this section are in comparison with the baseline

configuration. Similar to Cache Decay, Drowsy Cache can reduce energy consumption far

more than turning off cache sets (to an extent) can. However, the energy reduction achieved

by Drowsy Cache is less than what is achievable by Cache Decay, mainly due to Drowsy

Cache, spending some energy to retain data in lines. It can also be seen that the tag-decoupled

policy does not provide a significant reduction in energy compared to the Drowsy Cache.

This partly due to the increased execution time due to throughput loss, and partly due to the

access pattern of the benchmarks. If a benchmark has a low rate of cache access or has a

poor distribution over sets, it means that most cache lines will not be awakened anyway.

Drowsy Cache causes a higher throughput loss compared to turning off cache sets on the

average, as shown in Figure 3.5. The benchmarks can be divided into two categories for this

matter: for the first set of benchmarks, Drowsy Cache can provide a lower throughput loss

due to its ability to retain more data. For example, for astar, 512-set Drowsy Cache causes a

2 percent throughput loss whereas halving the cache size causes the 256-set no-drowsy

34

configuration to cause an 11 percent throughput loss. On the other hand, for the second set

of benchmarks where the working set can mostly fit into the cache, Drowsy Cache causes

greater throughput loss than turning off cache sets due to the additional access latency it

incurs. For example, 128-set configuration provides the same throughput as the baseline for

libquantum, whereas 64-set configuration causes a mere 2 percent throughput loss. Applying

Drowsy Cache however causes libquantum to achieve 26 percent lower throughput on the

best-performing configuration, compared to the baseline.

Figure 3.4. The average rate of energy spent by various configurations.

Although omitted, geometric and harmonic means of throughput loss also yield similar

results, proving that the higher throughput loss caused by Drowsy Cache is not due to few

but very malevolent instances. Even when benchmarks with zero throughput loss are left out

(which works against turning sets off), Drowsy Cache causes a greater throughput loss, using

either arithmetic, geometric, or harmonic mean.

Results obtained from the simulations show that Drowsy Cache provides less energy

reduction, but also causes less throughput loss. This supports the claim that unless there is a

leftover area from the working set which can be safely turned off without affecting

35

performance, there exists a trade-off between energy reduction and throughput. Unless one

aims energy reduction or maximum throughput only, the difference emerges in the efficiency

of energy reduction.

Figure 3.5. The average throughput loss of various configurations.

Figure 3.6. presents the energy efficiency of simulated configurations. The configurations

are named using the following convention: configurations which have a “dr” in their name

represent the configurations that utilize Drowsy Cache. Configurations which have a “tag”

in their name represent the configurations which decouple the drowsiness of tag and data.

The numbers inside the parentheses represent how many workloads produce an undefined

efficiency value due to division by zero.

In some cases, Drowsy Cache may cause a throughput lower than the no-cache configuration

due to higher latency. To obtain valid efficiency values, these configurations are assumed to

have a throughput equal to the no-cache configuration. In these cases, the efficiency becomes

infinity. To be able to obtain average efficiency values of configurations while being fair,

these cases are replaced with an efficiency equal to the worse efficiency produced among

the non-infinite configurations (which works for Drowsy Cache and against turning off

36

cache sets). The number of workloads each configuration produces an infinite energy

efficiency can be seen inside the parentheses in the x-axis labels of Figure 3.6.

256- and 128-set non-drowsy configurations provide the best efficiency values. 512-set

Drowsy Cache can also provide better efficiency than the baseline, due to its high energy

saving and mediocre throughput loss. 256-set Drowsy Cache also provides worse but similar

efficiency compared to the baseline. As cache size shrinks even further, the increase in

conflict misses combined by the increased latency causes these configurations to degrade in

terms of efficiency. This can also be supported by the efficiency difference between drowsy

and tag-decoupled configurations: although tag-decoupled configurations provide slightly

higher energy savings, the increase in access latency causes greater throughput losses, and

eventually worse efficiency levels. 128-set also provides the best geometric and harmonic

means in terms of inverse efficiency (see the efficiency discussion in Chapter 3.1.1. for more

detail).

Drowsy Cache yields similar advantages/disadvantages compared to Cache Decay compared

to turning off cache sets and is somewhat placed in between those two. The Drowsy Cache

provides higher energy savings compared to turning off cache, but less compared to Cache

Decay. It also provides lower throughput loss compared to Cache Decay and higher

compared to turning off cache sets, albeit Drowsy Cache can provide a throughput even

worse than having no cache. Larger configurations of Drowsy Cache provide much better

efficiency compared to Cache Decay. The presented results may be misleading for smaller

configurations where Drowsy Cache seems more efficient, but that is due to infinite values

being replaced. In fact, Cache Decay is more efficient than Drowsy Cache in 64-set

configurations where it spends less energy and provides greater or equal throughput.

Drowsy Cache and turning cache sets off are not rival, but orthogonal techniques. A smart

cache mechanism can utilize both techniques hand-to-hand in order to maximize energy

savings and/or efficiency. At worst, such a smart policy can choose to disable one technique

while the other is active if it deems utilizing both techniques simultaneously is harmful. In

the end, the Drowsy Cache is not a cache partitioning technique and cannot replace Set

Partitioning altogether.

37

Figure 3.6. The average efficiency of various configurations.

3.2. ADDITIONAL ENERGY COSTS OF SET PARTITIONING

This section examines the additional energy consumption caused by the implementation of

Set Partitioning to a cache. Section 3.2.1 examines the characteristics of the Fast Set

Redirection hardware in terms of energy consumption and latency. Section 3.2.2 discusses

the additional energy cost caused by the Double Access mechanism and manual

invalidations.

3.2.1. Fast Set Redirection Hardware

The Set Partitioning mechanism requires the mapping function of cache addresses to cache

sets to be altered in a way that supports set-based partitioning. In previous sections, a small

circuit named Fast Set Redirection (FSR) was proposed for carrying out the necessary

computation to re-map incoming memory addresses. The FSR computation consists of two

38

parts: shrinking the set index if it is greater than partition size and adding the set index to the

beginning set. The algorithm for FSR is shown in Algorithm 3.1.

The FSR computation must be carried out for each cache access, as the memory address

must be re-mapped to a new set according to the beginning set and the size of the partition.

This causes additional energy consumption for Set Partitioning. The amount of energy spent

by the FSR hardware directly affects the energy consumption of Set Partitioning, and thus,

its ability to save energy.

In order to derive the energy spent by FSR, the circuit is implemented in Verilog, including

the hardware required to synchronize it with the clock signal. Then, the design is synthesized

using the Synopsys Design Compiler RTL Synthesis Tool3.

Algorithm 3.1. Fast Set Redirection

 set index = (address) mod (rounded up partition size)

 if set index ≥ partition size then

 set index = set index – partition size

 end if

 set index = set index + beginning set of partition

The result of the synthesis shows that the FSR computation can be completed in 0.5ns time

(equal to a one-cycle delay) and requires 0.2pJ to complete. According to the energy figures

obtained from CACTI (shown in Table 3.2., this amounts to a less than 0.02 percent increase

in dynamic energy per access. Similarly, the FSR hardware dissipates around 48uW static

power, which is less 0.1 percent compared to the smallest cache configuration evaluated (64-

8 configuration in Table 3.2.).

Abousamra et al. propose a similar set-based cache partitioning mechanism, which uses per-

core lookup tables in order to redirect incoming addresses to set-based partitions [18]. The

structure of such lookup tables is configured in CACTI and static and dynamic energy

3 The sc12mc_cln40g_base_rvt_c40_ss_typical_max_0p81v_125c library was used for synthesis. This library
uses the TSMC 40nm CLN40G transistor model with a nominal voltage of 0.81V. Although the transistor
model used by the synthesis tool is slightly different from the one used by CACTI, the energy cost of the FSR
circuitry is so small compared to the cache access energy, these differences can be ignored.

39

consumption caused by these lookup tables are estimated. According to these estimations, a

single lookup table causes a 4.4mW static energy, while spending 15pJ for reading an entry.

The proposed FSR circuitry spends 75 times less dynamic energy to compute the new set

index while dissipating 91 times less power compared to a single lookup table. For the

simulated environment, 16 lookup tables will be required, as each core will need a separate

table. For this configuration, FSR requires less than 0.1 percent power compared to the

lookup table approach. This amount also approaches to the leakage power of a 44KB cache,

which is greater than the smallest cache configuration evaluated, and still a considerable

amount for large caches.

Both approaches cause an additional one cycle delay, so neither mechanism outperforms one

another in terms of additional access delay. The lookup tables will require updates after each

allocation, which will cause an extra latency for allocation. However, since the duration of

these updates is negligible compared to the partitioning period and can be overlapped with

the invalidation process, this negative aspect of lookup tables is ignored.

3.2.2. Other Energy Costs

One element which contributes significantly to the energy consumption is the Double Access

(DA) mechanism. At the end of each repartitioning period, the mapping function of any

given partition can potentially change, effectively rendering the old data inaccessible. In

order to mitigate the performance problems, DA lets the partition try to access the data using

the previous mapping function if the access with current mapping function misses. This

inevitably causes an increase in the number of cache accesses, also increasing the dynamic

energy consumption.

Dynamic energy consumption constitutes only a small fraction of total energy consumption

in large caches (as discussed in Chapter 3.1.1., dynamic energy uses only between 1 percent

and 27 percent of total energy for the benchmarks tested with the configuration discussed in

Chapter 3.1.1.). The DA mechanism doubles a fraction of total cache accesses, therefore

doubling a fraction of total dynamic energy consumption. The experimental results show

that the DA mechanism causes a 3.88 percent increase in total energy consumption for the

simulations discussed in Chapter 4.1.2.4.

40

Another issue regarding energy is the writebacks caused by bulk invalidations at the end of

each repartitioning period. However, due to the length of the repartitioning periods and the

low percentage of forced invalidations, these writebacks cause an insignificant increase in

total energy consumption, which amounts to less than 0.01 percent of the total energy budget.

All things considered, Set Partitioning causes less than 4 percent increase in total energy

spent by the last level cache simulated, while providing a throughput gain of 5.6 percent and

a fairness gain of 4.8 percent over Vantage. It is worth noting that the increase in energy is

compared to the baseline configuration, where no partitioning is applied, whereas the

throughput and fairness gains are compared to Vantage.

Most of the energy cost increase of Set Partitioning comes from the DA mechanism. It can

be predicted that as time progresses, more leftover sets from previous periods may get

evicted, and the benefits of DA in terms of throughput may diminish. Considering this idea,

one may contemplate a modified DA mechanism in which secondary accesses are abandoned

after a threshold amount of cycles. However, such an approach would be infeasible since

DA also serves a secondary purpose: by utilizing DA, Set Partitioning can access lines which

are inserted in the previous period, i.e. it helps to prevent cache lines from becoming lost. If

DA is abandoned mid-period, some lines which are retained in the cache may become

inaccessible, hurting coherency as discussed in Chapter 2.1.3. Therefore, it is not possible to

abandon DA mid-period to mitigate energy losses since it would require Set Partitioning to

initiate a new partitioning period along with cache flushes.

3.3. A RULE-BASED APPROACH FOR SET PARTITIONING

Energy-saving techniques for cache structures can be examined under two major classes:

dynamic and allocation-based. Dynamic techniques such as Cache Decay and Drowsy Cache

can alter the state of cache lines/sets/ways independently upon the occurrence of an event

(i.e. cache set not being used for a certain amount of time). On the other hand, allocation-

based techniques decide to not use a portion of the cache at allocation time, considering

overall system behavior. The proposed allocation mechanism for Set Partitioning is a rule-

based one. Hence, the modified Set Partitioning mechanism which also considers energy

consumption also becomes a rule-based one (which will be referred to as Energy Classifier

from now on).

41

Set Classifier, the previous allocation policy, aims to optimize overall throughput and does

not consider energy consumption. Therefore, it allocates the whole cache space to cores,

regardless of energy efficiency. Energy Classifier aims to save energy as much as possible

without hurting the throughput and fairness improvements achieved by the Set Partitioning

mechanism.

Set Classifier classifies instruction streams into four categories and appoints weights to the

cores according to their classes. The classifier appoints one weight to harmful streams and

two weights to harmless streams (Equation 3.5). Then, the cache space is divided into total

weight, calculating how much cache space will be allocated to a single unit of weight

(Equation 3.6). Lastly, all cores are allocated cache space according to their weights

(Equation 3.7).

ݐℎ݃݅݁ݓ ݈ܽݐܶ ൌ 2 ∙ ݏ݀ܽ݁ݎℎݐ ݏݏ݈݁݉ݎܽܪ ݂ ݎܾ݁݉ݑܰ + ݏ݀ܽ݁ݎℎݐ ݈ݑ݂݉ݎܽܪ ݂ ݎܾ݁݉ݑܰ

(3.5)

ܷ ൌ
ே௨ ௦௧௦

்௧ ௪௧
 (3.6)

݊݅ݐ݈݈ܽܿ ൌ {
2)ݎ݈݂ ∙ ܷ), ݏݏ݈݁݉ݎܽܪ ݏ݅ ݀ܽ݁ݎℎݐ ݂݅

,(ܷ)ݎ݈݂ ݈ݑ݂݉ݎܽܪ ݏ݅ ݀ܽ݁ݎℎݐ ݂݅
 (3.7)

The difference between Energy Classifier and Set Classifier is that Energy Classifier applies

a lower bound to the total weight, which will be referred to as LIMIT from on. If the total

weight is smaller than LIMIT, it is replaced with that value (Equation 3.8).

ݐℎ݃݅݁ݓ ݈ܽݐܶ ൌ {
,ܶܫܯܫܮ ≥ ݐℎ݃݅݁ݓ ݈ܽݐܶ ݂݅ ܶܫܯܫܮ
ܷ݊ܿℎܽ݊݃݁݀, ݁ݏ݅ݓݎℎ݁ݐ

 (3.8)

If the total weight at allocation decision is already equal to or greater than LIMIT, it is

assumed that there is sufficient need for cache space to keep the whole cache powered, and

Energy Classifier behaves exactly as the Set Classifier. The difference between the two

allocation policies emerges when the total weight is smaller than LIMIT. In that case, it is

assumed that there is not sufficient need to use the whole cache, and the cache will be divided

into more sub-portions than the initial total weight. Since cache space is allocated to cores

based on their weight, some portions will be left unallocated, allowing them to be powered

down until the next allocation decision.

42

An example of Energy Classifier is given as follows: assume the cache is partitioned among

two cores, which are classified as harmless and harmful, respectively. The total weight of

the cores will then become 3 (2 for the harmless, 1 for the harmful core). If the LIMIT is 4,

the cache space is divided into four equal units. Since the harmless core has a weight of two,

it gets two units of space, effectively allocation half of the cache space to it. The harmful

core gets one unit of space, allocating it one-fourth of the cache. The remaining one-fourth

of the cache is left unallocated and is powered down until the next allocation decision in

order to save power.

The value of LIMIT determines how aggressive Energy Classifier is in terms of trading

throughput over power. If LIMIT is equal to the number of cores, it means that the allocation

policy assumes a baseline cache need where all cores are running harmful-class applications

and will save power only when the total cache need is lower than that. If the LIMIT is equal

to twice the number of cores, it means that the baseline cache need is assumed to be equal to

the case where all cores are running harmless-class applications, and so on. In general, a

lower LIMIT value will make it more unlikely for the initial total weight to be smaller than

that, meaning the allocation policy will be less likely to save power by not allocating cache

space.

43

4. TESTS AND RESULTS

This chapter presents the empirical results obtained by simulation which evaluates Set

Partitioning int terms of throughput, fairness and energy consumption. Section 4.1 presents

and discusses the results for evaluating Set Partitioning in terms of throughput and fairness.

Section 4.2 evaluates a modified version of Set Partitioning as an energy-saving technique

in terms of throughput and energy efficiency.

4.1. SET PARTITIONING

This section presents the simulation results obtained for evaluating Set Partitioning. Section

4.1.1 describes the experimental methodology used for obtaining the empirical data. Section

4.1.2 discusses the simulation results that show the impact of Set Classifier, Double Access

mechanism, manual invalidations and Fast Set Redirection hardware in terms of throughput

and fairness, as well as the overall impact of Set Partitioning in comparison with Vantage

partitioner, state-of-the-art in the literature.

4.1.1. Experimental Methodology

Set Partitioning is tested in MacSim simulation environment [19]. Thirty 32-core workloads

are created, twenty-five workloads are constructed by randomly selecting four benchmarks

and repeating each benchmark eight times, and five workloads are constructed by randomly

selecting eight benchmarks and repeating each benchmark four times. Intel Pin tool is used

to create executable traces for SPEC2006 benchmarks [20,21]. List of workloads used are

given in Table 4.1.4 All benchmarks which did not produce any errors in MacSim simulation

environment are used. The excluded benchmarks are perlbench, gcc and cactusADM.

Benchmarks start running from their respective regions of interest. When a benchmark

finishes executing its region of interest, it is re-run from the beginning of its trace.

4 Benchmark abbreviations are: astar(A), bwaves(B), bzip2(BZ), calculix(C), deal(D), games(G), gems(E),
gobmk(K), gromacs(R), hmmer(H), href264(F), lbm(L), leslie3d(L3), libquantum(Q), mcf(M), milc(I),
namd(N), omnetpp(O), povray(P), sphinx(S), sjeng(J), soplex(SO), tonto(T), wrf(W), xalanc(X), and
zeusmp(Z).

44

Table 4.1. Workloads

1 T-X-O-W 16 B-R-Z-L3
2 T-P-N-X 17 D-R-L-G
3 T-H-K-M 18 J-T-G-W
4 C-X-W-SO 19 A-H-T-D
5 W-S-L-O 20 SO-H-D-P
6 P-I-C-D 21 O-M-D-W
7 N-J-G-S 22 N-M-SO-BZ
8 D-R-O-C 23 C-T-Z-L3
9 H-B-X-D 24 D-R-X-M
10 F-BZ-K-L 25 C-M-B-SO
11 H-E-R-C 26 C-H-M-L3-B-X-SO-K
12 C-E-P-L 27 F-E-BZ-S-A-K-D-L
13 C-M-F-P 28 D-K-T-R-H-O-J-C
14 K-P-G-S 29 Q-B-BZ-R-BZ-Z-W-L
15 T-L3-K-E 30 W-T-Z-P-I-N-SO-X

In the simulated configuration, each processor core has private L1 instruction and data

caches, and all cores share a single L2 cache. As L1 caches are private, no partitioning is

needed there. The study focuses only on a shared L2 cache. Simulated processor

configuration is shown in Table 4.2., and partitioning algorithm parameters are given in

Table 4.3.. Simulations are carried out for 100M cycles where the warmup duration is 10M

cycles and classifier period length is 5M cycles for evaluating individual mechanisms

(Chapter 4.1.2.1., Chapter 4.1.2.2., Chapter 4.1.2.3.). Simulations for obtaining the results

presented in Chapter 4.1.2.4. are carried out for 500M cycles where warmup duration and

classifier period length are 50M cycles each.

Table 4.2. Processor configurations

Number of cores 32
Processor core 8-wide, 256 entry ROB, 1 thread per core
Private L1 icache and dcache 64 sets, 4 ways, 64-byte line size, 3 cycle access latency
Shared L2 cache size 2048 sets, 16 ways, 64-byte line size, 23 cycle access

latency, non-inclusive-non-exclusive
Main memory 4-wide bus, 9 columns, 90 cycle activation, 90 cycle

precharge, 16 banks, 8 channels, 2048 byte rowbuffer
size, FRFCFS scheduling policy

Simulation duration 100M (500M) cycles
Warmup duration 10M (50M) cycles

45

Table 4.3. Parameters of the partitioning algorithm

Classifier period length 5M (50M) cycles
Traffic rate lower threshold 0.001
Traffic rate upper threshold 0.006
Miss rate lower threshold 0.5
Miss rate upper threshold 0.75
Decay rate lower threshold 0.5
Decay rate upper threshold 0.75
Decay reset value 4
Decay period length 5000 cycles

Set Partitioning is evaluated based on two metrics: throughput and fairness. Throughput

represents cumulative IPC of all cores, whereas fairness represents the harmonic mean of all

applications' rate of throughput compared to their standalone performance, as shown in

Equation 4.1 [22].

݊ܽ݁݉ ܿ݅݊݉ݎܽܪ ൌ

∑
ುೞೌೌ

ುೞೌೝ

సభ

 (4.1)

Lookahead is used as the allocation policy when evaluating Set Partitioning against Vantage

partitioning, as well as evaluating the proposed Set Classifier [5]. For Vantage and Set

Classifier evaluations, 16-way UMON data is interpolated to 256 data points for as proposed

by Sanchez and Kozyrakis [5].

4.1.2. Results and Discussion

The proposed Set Partitioning has three major improvements over naive set-based

partitioning: Set Classifier (SC), Double Access (DA) and Fast Set Redirection (FSR)

mechanisms. The former two aim to improve the performance of Set Partitioning whereas

the latter one is required for making Set Partitioning feasible. In this section, the individual

contribution of each improvement is analyzed. Then, an empirical analysis of FSR's ability

to distribute accesses, in addition to the simulation results is presented. Finally, to show

overall performance gains and to compare Set Partitioning against other work proposed in

the literature, Set Partitioning is compared against the Vantage scheme.

46

4.1.2.1. Set Classifier

Throughput and fairness gains of Set Classifier compared to interpolated Lookahead is

shown in Figure 4.1. Set Partitioning performs better in terms of throughput compared to

interpolated Lookahead on 18 workloads out of 25, achieving a throughput gain of 8.1

percent on the average, peaking at 33.3 percent. In terms of fairness, average and peak gains

reach 5.6 percent and 53.9 percent, respectively.

Set Classifier works better than interpolated Lookahead since it is a tailor-made design

targeting Set Partitioning. UMON structures in the Lookahead algorithm exploits the fact

that LRU obeys stack property [23]. That allows Lookahead to find out how many cache hits

an application will gain when additional cache ways are allocated. However, the same rule

does not apply to cache sets, and Lookahead cannot determine cache hit gain per allocated

sets as accurately as it does for cache ways. Besides, in addition to cache access and miss

information, Set Classifier also leverages decay information, which provides hints on what

portion of a cache area is being actively used. In other words, decay information gives the

classifier hints on when it is safe to take cache sets away from cores. The number of cache

accesses shows how intensively an application uses the cache but does not provide

information on how diverse these accesses are. Decay information, on the other hand, is

affected by the distribution of accesses among sets. For example, two applications may

heavily access the cache, but accesses of one application may be concentrated on a handful

of sets whereas accesses of the other may be distributed more evenly. In such a case, while

taking sets away from the first application may be considered safe (since it is not using all

of its sets anyway), taking sets away from the second application may severely degrade

overall system performance. Decay information allows Set Classifier to distinguish

application behavior in such cases.

4.1.2.2. Double Access Mechanism

Dynamic partitioning of caches requires partition sizes (or their equivalent terms, such as

the insertion position in PIPP [2]) to be periodically changed. With Set Partitioning, this

means changing the number of sets dedicated to a partition is quite common. Therefore,

whenever partition sizes are changed, the mapping function also changes, and all data

47

suddenly become inaccessible to all partitions. The only exception is when a threads both

beginning set and partition size remains unchanged.

Figure 4.1. Throughput and fairness gain of Set Classifier.

DA mechanism allows partitions to retain access to their old data until they are evicted by

the new owner of their respective positions. DA initiates a secondary access if a line cannot

be found upon the initial access. Naturally, if a line is found during secondary access, its

latency becomes twice the regular latency of the cache.

DA reclaims some of the throughput loss caused by the artificial flushes which take place at

the end of each period. Figure 4.2. shows the throughput and fairness gains of Set

Partitioning when DA is utilized. 24 out of 25 workloads perform better when DA is utilized,

and Set Partitioning performs 2.4 percent better with DA, on the average, peaking around at

9.4 percent. DA also provides an extra 3 percent fairness on average and a peak fairness gain

of 18.5 percent.

The effect of extra latency induced by secondary access can be examined by comparing the

DA mechanism with an idealistic mechanism called DA-Parallel, which simultaneously

initiates both primary and secondary accesses without any penalties. As expected, DA-

Parallel performs better than DA, but only 0.4 percent better in throughput and 0.1 percent

in fairness on average. However, since DA-Parallel initiates two accesses at the same time,

it would require the cache to have twice as many ports to carry out these simultaneous

48

accesses. Hence, DA-Parallel becomes an infeasible option when its greater complexity and

very limited gains are considered.

Figure 4.2. Throughput and fairness gain of Set Partitioning with DA over without DA.

In order to examine the effect of cache lines becoming inaccessible due to repartitioning,

another idealistic mechanism is also investigated, which copies all data in the cache to a

buffer and reinserts all lines into the cache using the new access functions with zero time

penalty. This mechanism provides a 2.8 percent throughput gain. The throughput gain

obtained by DA, which is 2.4 percent, shows that DA can reclaim most of the throughput

loss caused by changing the access function at each repartitioning period. Interestingly, this

reinsertion mechanism provides a 2.3 percent gain in fairness compared to the 3 percent gain

provided by DA. This is caused by the nature of both mechanisms: reinsertion mechanism

may evict some data without the immediate need if the space allocated to a partition shrinks

after repartitioning, while DA helps partitions to virtually have greater cache space than they

are allocated by allowing them to access data from other partitions until these lines are

evicted gradually.

49

4.1.2.3. Fast Set Redirection

The proposed FSR mechanism computes the set index by rounding partition size up to the

closest power of two and applying a bitmask. Resulting values, which are greater than or

equal to the partition size, are directed back inside to the partition by subtracting the partition

size from them. This causes first power - size sets to be accessed twice as much compared

to the rest due to accesses to the interval [size, power] being directed to [0, power - size],

under the assumption of a uniform distribution of addresses.

Set Partitioning preserves associativity by partitioning the cache by sets. The number of

additional conflicts caused by both decreasing number of sets and FSR is usually not high

enough to cause a significant throughput loss. Figure 4.3. shows the throughput and fairness

gains of Set Partitioning with FSR. Note that both Set Classifier and DA are utilized in these

tests. According to these results, FSR causes a throughput loss of 0.7 percent and a fairness

loss of 0.4 percent, on the average. 16 out of 25 workloads perform worse with FSR. As

expected, throughput loss caused by FSR is small and certainly worth making the sacrifice

for the throughput gain obtained by utilizing Set Partitioning. It is worth noting that six

workloads perform better when FSR is utilized. FSR can lead to throughput gains by either

a) redirecting accesses to different sets where evicted lines will be less critical than where

modulo operation would direct to, or b) causing allocation decisions to change because some

applications perform worse in previous epochs. Although both cases are possible as seen in

Figure 4.3., these phenomena are purely coincidental and are not to be relied upon.

In addition to IPC gains obtained from simulation runs, the results of a statistical analysis of

FSR is also presented. In this analysis, 30 different cache sizes (in terms of the number of

sets) in the interval [1, 10, 24] were picked, where all sizes are generated randomly except

for the 30th, which was hand-picked as 384 as it is right in the middle of two full exponents

of two. Under the assumption that addresses of cache accesses are uniformly distributed in

the address space, 100K 32-bit addresses were generated randomly for each cache size.

To compare the effectiveness of the modulo operator and FSR, two metrics were used: the

entropy of the cache and the number of conflicts that occurred. The entropy of an operator

is computed using Equation 4.2 where pi represents the probability of an address being

mapped to ith set and is calculated as in Equation 4.3.

50

Figure 4.3. Throughput and fairness gain of Set Partitioning with FSR over without FSR.

ݕݎݐ݊ܧ ൌ ∑ ∙ ()ଶ݈݃
௨ ௦௧௦−ଵ
= (4.2)

 ൌ
ே௨ ௗௗ௦௦௦ ௗ ௧ ௦௧

ே௨ ௦௦௦
 (4.3)

Higher entropy means addresses are mapped out to available sets in a more uniform fashion,

whereas a lower entropy means addresses tend to be mapped in fewer sets with a higher

density. The purpose of the mapping function is to reduce conflicts as much as possible by

using all sets equally. Therefore, mapping functions seek out to maximize the entropy value.

Hence, entropy can be regarded as a good indicator of a mapping function's performance.

Figure 4.4. and Figure 4.5. show the entropy gain and the increase in the number of conflicts

of FSR compared to the modulo operator for an artifical input set. Results presented in Figure

4.4. and Figure 4.5. are sorted in an ascending fashion.

Results show that the highest entropy loss is 1.4 percent. However, when addresses are

generated randomly in a 32-bit address space, it is highly unlikely to have two consecutive

accesses to a set will have the same address. Therefore results obtained from this approach

resemble the behavior of a direct-mapped cache and do not consider associativity. The fact

is that even if unique addresses may be distributed uniformly, uniform distribution of cache

accesses can only be assumed for applications which have a streaming-like behavior.

Applications that leverage caches have patterns in their cache access footprint.

51

Figure 4.4. Entropy gain for FSR compared to modulo operator.

In the light of these observations, 11 benchmarks were selected and addresses of first 100K

cache accesses were used to perform the entropy and cache miss gain tests for caches with

associativity of 4 and 8. For each benchmark, the same set of 30 cache sizes were tested.

Figure 4.6. and Figure 4.7. show entropy gain and increase in cache misses. Note that entropy

is only affected by the number of sets and the mapping function, thus entropy results for

associativity values 4 and 8 are the same.

Figure 4.5. Additional conflicts for FSR compared to modulo operator.

52

On average, FSR has 1.5 percent less entropy than the modulo operator, where the peak loss

is 7.3 percent with astar. The increase in the number of cache misses are 9.6 percent and 5.1

percent where associativity is 4 and 8, respectively. Again, peak losses are experienced in

astar with 66.2 percent and 49.4 percent. The reason for astar having significantly high

entropy loss and an increase in cache misses is that astar has significantly lower entropy in

moduli of powers of two after offset bits are eliminated. Especially in cases where the

number of sets is a prime number, the modulo operator can leverage the primeness of cache

size whereas FSR still uses a power of two for mapping. Indeed, all extreme cases take place

where cache size is prime (308 percent increase in cache misses for 19 cache sets, 166

percent for 197 and 548 percent for 97, 708 percent for 37 and 168 percent for 183). When

only even cache sizes are considered, the average increase in cache misses becomes 4.8

percent and 0.03 percent for astar, and 4 percent and 0.03 percent for all benchmarks, where

associativity is 4 and 8, respectively. It is worth noting that these entropy loss and increase

in cache misses are relative to an unrealistic case where the modulo operator for prime

numbers is utilized with a latency equal to the bit masking.

Figure 4.6. Average entropy gain for FSR compared to modulo operator.

53

4.1.2.4. Set Partitioning

For the workloads tested, Set Partitioning performs better than Vantage in 25 out of 30

workloads in terms of throughput and 23 out of 30 workloads in terms of fairness, as

presented in Figure 4.8. The throughput gain of Set Partitioning is 5.6 percent compared to

Vantage on the average and reaches up to 33.2 percent, whereas fairness gain is 4.8 percent

on the average with the peak gain of 23.3 percent.

Vantage achieves target partitioning by demoting one cache line per miss on the average and

adjusting demotion probabilities for applications according to their actual and target sizes.

However, this does not guarantee that the number of eviction candidates will be equal to the

associativity of cache, as opposed to Set Partitioning. In some cases where no demoted cache

lines are found, data from an application whose actual size is smaller than its target size may

be evicted. Set Partitioning, on the other hand, guarantees explicit partitioning where data of

an application is safe from eviction by other applications.

Figure 4.7. Average increase in cache misses for FSR compared to modulo operator.

The purpose of partitioning techniques is to enforce a cache allocation decision upon cores.

It goes against this purpose when a core which has less actual size than it's target size loses

cache lines. Let unfair evictions denote such evictions where the evicted line belongs to a

54

core that is under its target size. Unfair evictions include evictions caused by both other cores

and the core itself. A high number of unfair evictions imply that lines belong to a core are

continuously evicted despite allocation decisions try to assign more resources to the same

core. Thus, a high number of unfair evictions is a negative indicator of how well a

partitioning technique fulfills the allocation decision.

A case study reveals that although there are other factors such as the ability of an allocation

policy to make good decisions, cache behavior of the application and the cache usage pattern

of concurrently running applications; performance loss of Vantage compared to Set

Partitioning is mostly related to unfair evictions. Vantage does not take into consideration

whether the evicted line belongs to a core under or over its target size and it simply evicts

one of the demoted lines, which is expected to enforce allocation decisions on the average.

For the workloads examined, for almost all cores where Vantage performs worse than Set

Partitioning, the ratio of unfair evictions to the total number of evictions is much higher than

the cores where Vantage performs better. For example, in workload 1, average unfair

evictions to total evictions rate has an average of 57 percent for the 14 cores that Set

Partitioning improves performance and the average rate for the remaining 18 cores where

Vantage performs better is only 1 percent. Unfair eviction rate varies in a large interval

between 40 percent and 75 percent in our case studies.

Figure 4.8. Throughput and fairness gains of Set Partitioning over Vantage.

55

Performance results presented in Figure 4.8. include the cost of invalidations and evictions

carried out at the end of each repartitioning period. During this process, every cache line is

sequentially checked for invalidation/eviction. One cycle latency for each check is assumed,

and the process completes when all dirty stale lines are written back to the main memory.

To mitigate the effects of evictions, the length of repartitioning periods is kept relatively

high. In the simulated configuration, in the worst-case scenario (where every line in the cache

is written back to the main memory), the time required for invalidation and eviction process

takes only 3 percent of the repartitioning period. Set Partitioning remains viable even in such

a worst-case scenario: throughput and fairness gain of it over Vantage becomes 3.1 percent

and 4.5 percent (compared to 5.6 percent and 4.8 percent), on the average, respectively.

In the studied workloads, the average number of cache lines which are forcefully evicted at

the end of repartitioning periods amount to 2 percent of the cache, whereas the maximum

value reaches 35 percent. The cost of invalidations are negligible: average throughput and

fairness of Set Partitioning would be only 0.05 percent higher if invalidations and evictions

caused no latency, and the workload which suffered the highest amount of dirty stale lines

lost only 0.2 percent throughput and fairness.

Set Partitioning requires incoming memory addresses to be remapped to the owners partition.

To carry out the remapping, Fast Set Redirection (FSR) is introduced. FSR requires an

additional 12-bit addition and a layer of parallel 2-to-1 multiplexers. Set Partitioning is

evaluated with the assumption that the additional computation required for FSR does not

increase cycle time or access latency. However, Set Partitioning is also evaluated for the

case where FSR increases access latency from 23 cycles to 25 cycles. The additional two-

cycle latency introduced to access latency causes Set Partitioning to perform 0.27 percent

and 0.22 percent worse on the average, in terms of throughput and fairness respectively.

4.2. ENERGY CLASSIFIER

This section presents and discusses the impact of Energy Classifier in terms of energy

consumption, throughput, energy spent per instruction and energy efficiency. Section 4.2.1

presents the experimental methodology used for obtaining the empirical data presented in

this section. Section 4.2.2 presents and discusses the empirical results.

56

4.2.1. Experimental Methodology

The proposed Energy Classifier is evaluated in terms of throughput, energy consumption

and energy efficiency compared to the Set Classifier. The difference between Set Classifier

and Energy Classifier yields in the LIMIT. In the experiments, the evaluated LIMIT values

are 1x, 2x and 4x the number of cores. The specifications for the simulation environment are

given in Table 4.4.

The workloads are generated from all SPEC2006 benchmarks which did not produce errors

running in the MacSim simulation environment [19,21]. The excluded benchmarks are

perbench, gcc, mcf and cactusADM. The list of workloads is shown in Table 4.5.

Table 4.4. Specifications of the simulation environment

Number of cores 16
Warmup duration 50M cycles
Total duration 500M cycles
Partitioning period 50M cycles
Private L1 i- and d-caches 64KB, 4-way, 4 cycle latency
Shared L2 cache 2MB, 8-way, 26 cycle latency
Main memory 4-wide bus, 9 columns, 90 cycle

activation, 90 cycle precharge, 6
banks, 8 channels, 2048 byte row-
buffer size, FRFCFS scheduling
policy

Processor core 2GHz clock frequency, 4-wide issue,
256 entry ROB, out-of-order
execution

Measuring the total energy spent by a configuration for a certain number of cycles does not

yield any meaningful results: a configuration can turn the whole cache off and provide the

maximum possible energy saving. What is relevant is how much energy a configuration

spends in order to finish a task (i.e. in order to complete a certain number of instructions).

However, the simulations are chosen to be run for a certain amount of simulated cycles

instead of being run until all benchmarks complete a certain number of instructions for this

study. The reason behind this choice is the time limitation. There is a significant variation

between the throughputs of the benchmarks, and most benchmarks provide a low throughput

when in this study's experimental setup. These factors cause a great increase in simulation

57

times if one chooses to simulate the system until all benchmarks complete a meaningful

amount of instructions in all workloads.

Table 4.5. List of workloads

zeusmp-sjeng-sphinx-hmmer deal-zeusmp-namd-gamess
lbm-bwaves-bzip2-libquantum gromacs-omnetpp-zeusmp-milc
namd-bwaves-bzip2-gems calculix-gromacs-zeusmp-omnetpp
gamess-namd-gems-bzip2 deal-astar-lbm-omnetpp
bwaves-soplex-wrf-libquantum calculix-xalanc-lbm-leslie3d
gobmk-lbm-leslie3d-wrf gobmk-deal-gamess-sphinx
gromacs-soplex-gems-wrf astar-gobmk-sjeng-leslie3d
omnetpp-lbm-namd-sjeng gobmk-astar-calculix-xalanc
zeusmp-omnetpp-libquantum-hmmer deal-gromacs-calculix-gobmk
games-leslie3d-namd-sjeng astar-gromacs-xalanc-zeusmp
astar-calculix-milc-milc calculix-gobmk-xalanc-gamess
zeusmp-omnetpp-lbm-lbm astar-deal-gromacs-soplex
xalanc-lbm-sjeng-leslie3d

Therefore, simulations are run for a certain number of cycles in order to be able to finish

those simulations in a feasible amount of time. Then, the amount of energy spent by each

configuration is evaluated by finding how much energy is spent per instruction (Equation

4.4). By using this metric, a rough estimation of energy spent by each benchmark until a

certain task is completed can be achieved.

ൌ ݐݏ݊ܫ/ܧ
்௧ ௬ ௦௧

ே௨ ௦௧௨௧௦ ௧ௗ
 (4.4)

4.2.2. Results and Discussion

In this section, the results obtained from simulation for Energy Classifier in terms of energy,

throughput and efficiency are presented and discussed. The primary goal of Energy

Classifier is to save energy by turning off unneeded portions without hurting the throughput.

Figure 4.9. shows how much energy is spent by Set Partitioning when Energy Classifier is

utilized as the allocation policy, compared to the baseline Set Partitioning where the

allocation policy is the Set Classifier. Five different LIMIT values are evaluated.

Configurations are represented with the letter L followed by a coefficient, which is

58

multiplied by the number of cores. For example, L2 represents the configuration where the

LIMIT is equal to twice the number of cores.

The expected outcome is that as the LIMIT value increases, the energy consumption should

decrease due to Energy Classifier. This is because as LIMIT increases, Energy Classifier

divides the cache into more sub-partitions, increasing the chance of leaving leftover sub-

partitions not allocated, thus not spending energy. It can be seen from the results that for all

workloads simulated, L0.5 achieves a 2.15 percent decrease in energy, while L1, L1.5, L2

and L4 achieve 9.68 percent, 20.89 percent, 32.45 percent and 54.17 percent energy savings,

respectively.

Figure 4.9. The average energy spent by Energy Classifier with various LIMIT values.

Again, as expected, the decrease in total energy spent comes from mitigating static power

consumption. On the other hand, shrinking cache size causes more conflicts, and therefore

more cache misses and cache writes. This is also what causes the L4 configuration to spend

more than 50 percent of baseline energy in some cases, contrary to what one might think

would happen. When the LIMIT value is equal to four times the number of cores, as in L4,

Energy Classifier cannot allocate more than half of the cache. The reason is that, even in the

most cache-demanding scenario, where all applications are classified as harmless and are

given two units of cache space, the maximum total weight which can be achieved will be

equal to the half of LIMIT. However, the results show that L4 spends more than 50 percent

59

of baseline energy in some workloads. The difference is caused by the increase in dynamic

energy consumption, as described above. This also demonstrates why having a LIMIT value

greater than twice the number of cores is not a viable option.

As discussed in Chapter 4.2.1., when the simulations are run for a fixed number of cycles

instead of a fixed number of instructions, measuring the total energy spent can be misleading.

Therefore, analyzing the energy spent per instruction can be a more accurate way of

comparing different configurations.

Figure 4.10. shows the average energy per instruction gain for all configurations compared

to the baseline Set Partitioning. It can be seen from the results that the E/IPC figures follow

the same trends with total energy results. Moreover, E/IPC gains are almost identical to

energy gains as throughput losses for these configurations are small.

The E/IPC and efficiency results of the Energy Classifier is tightly coupled with the

throughput loss. The empirical results are close to the theoretical expectations: as the LIMIT

value increases, Energy Classifier starts turning off bigger portions of the cache, causing

greater throughput losses. However, there are some exceptional workloads where this

relationship works in the opposite direction. For example, L1 performs 5.51 percent better

than Set Classifier in workload 23. The reason behind this unexpected behavior is the decay

rate metric used during thread classification. The decay metric measures how many lines

would decay due to inactivity if Cache Decay was applied. The number of cache decays is

related to the uniformity of accesses and the availability of cache space: if a partition has a

much higher number of sets than it needs, accesses would be distributed more sparsely

throughout sets, increasing inactivity even if the distribution was uniform. Similarly, the

non-uniformity caused by the application behavior and Fast Set Redirection (FSR) circuitry

also helps accesses concentrate on some sets while leaving the others inactive.

In workload 23, the discrepancy in throughput begins at the end of the third epoch. The

throughputs are identical for the first epoch due to a cold start. Both policies make the same

allocation decision at the end of the first epoch as they use identical runtime statistics. At the

end of the second period, throughputs of Set Classifier and L1 are similar (L1 causes a 0.5

percent loss) since cache space is under-utilized and the system can endure a reduction in

cache size. However, even though the throughput is not affected greatly in the second period,

the change in partition sizes skew the decay statistics in favor of less inactivity. In the second

60

period, L1 turns off 25 percent of the cache, causing all partitions to become 25 percent

smaller than what they would be under Set Classifier. With a smaller number of sets, access

distribution becomes more uniform, lowering the decay metric. While some threads are

classified as Very Harmful with Set Classifier due to high decay rates, these same threads

are classified as Harmless with L1 due to their low decay rates. As a result, these threads get

cache space in L1 as opposed to getting no cache space in Set Classifier. This change in

classification causes a significant throughput difference: L1 performs 6.72 percent better

than Set Classifier in the third epoch.

Figure 4.10. The average energy spent per instruction by Energy Classifier.

It must be noted that Energy Classifier is not an allocation policy that was designed

specifically to provide high throughput and efficiency. It is merely a slightly modified

version of Set Classifier, and should be taken as a proof-of-concept policy that shows Set

Partitioning can be utilized as an energy-saving technique. Despite its shortcomings, Energy

Classifier does not cause great throughput losses as shown in Figure 4.11.: 0.01 percent, 0.04

percent, -0.34 percent, 0.83 percent and 5.06 percent compared to baseline Set Classifier in

L0.5, L1, L1.5, L2 and L4 respectively. Even when the anomalous workloads such as

workload 23 are discarded throughput losses are still at reasonable levels: -0.01 percent, 0.42

percent, 0.37 percent, 1.62 percent and 6.19 percent.

61

The energy-saving and throughput loss results show that Energy Classifier can decrease

energy consumption by 20 percent while degrading the throughput less than 1 percent with

L2 configuration. Figure 4.12. shows that L2 can achieve an efficiency gain of 28 percent

compared to the baseline Set Classifier. The L4 can achieve an efficiency gain of 37 percent

but has a relatively high throughput loss (5 percent). The throughput loss can be traded away

with the throughput gain Set Partitioning provides, turning the partitioning mechanism into

one which is focused solely on energy-saving rather than improving the throughput. Still, L4

is not a feasible option since it never utilizes at least half of the cache, which does not indicate

that L4 is a good configuration, but indicates that the benchmarks used for evaluation fail to

generate a sufficient demand on cache resources and use the cache do not use these resources

efficiently in terms of energy. However, the L2 configuration presents a good choice due to

its low throughput loss and high energy savings, while never dismissing any portion of the

cache indefinitely. It is also worth noting that the reported decrease in energy consumption

focuses only on the cache, and further energy reduction in the processor can be achieved

through a decrease in execution time.

Figure 4.11. The average throughput loss caused by Energy Classifier.

62

Figure 4.12. The average energy efficiency gain of Energy Classifier.

63

5. RELATED WORKS

Earlier work in cache partitioning focus on partitioning a shared cache among different

reference streams of a single application, or among applications which run sequentially in a

single processing core [24,25]. With the increased availability of multicore processors, work

in this field shifted towards partitioning the cache among multiple concurrently running

applications.

Brock et al. showed that the optimal partitioning-only solution is the optimal partition-

sharing solution, and the problem of sharing partitions among programs can be reduced to

the problem of partitioning-only [1]. Partitioning a shared cache can be done either implicitly

by altering the line replacement policy [2,26-29] or explicitly by restraining the number of

cache lines an application can have [3,5,18,30-36]. Explicit cache partitioning techniques

require allocation policies [3,9,37-39] to determine how much cache space each partition

should have. Recently, El-Sayed et al. present a partition-sharing mechanism which works

on a commodity multicore system with a way partitioning scheme [40].

Most set partitioning techniques use a software approach known as page coloring [41-46],

which is a technique of altering the way operating system allocates memory pages so that

pages from different partitions map to different cache sets.

Our set-based partitioning scheme requires changes in how memory addresses are mapped

to cache sets. Zarandi et al. propose a mechanism in which different sets have different

associativity [47]. Sanchez and Kozyrakis utilize hash functions and multi-level searches to

increase effective associativity [48]. Ranganathan et al. examine partitioning the cache based

on sets in general terms [49]. Varadarajan et al. describe an architecture where caches consist

of small, direct-mapped caching units [50].

5.1. SIMILAR WORK

Large cache structures can be examined broadly under two categories: Uniform Cache

Architecture (UCA) and Non-Uniform Cache Architecture (NUCA) designs [51]. UCA

caches consist of one monolithic block of cache space where all data is stored and every

cache access is directed to. NUCA caches consist of several banks that can be placed

64

physically away from each other. NUCA caches can improve performance due to two main

reasons: 1) each cache bank is smaller than the UCA block, decreasing complexity, latency

and power consumption for each bank compared to the UCA design and 2) wire delays can

be mitigated by placing cache lines in banks which are physically closer to their owning

cores. NUCA architectures also require an interconnect circuitry so that cores can access

cache banks which they are not directly connected to.

NUCA caches can be partitioned statically (SNUCA) or dynamically (DNUCA). SNUCA

caches use a fixed hashing function, therefore the partition sizes can not be changed

dynamically according to the workload's needs. DNUCA, on the other hand, require tag-

lookups in multiple cache banks and may increase the energy consumption of the cache

greatly.

5.1.1. DR-SNUCA

Gupta et al. propose an improved DNUCA architecture called DR-SNUCA which decreases

energy consumption greatly while mostly attaining system throughput compared to DNUCA

architectures [52]. DR-SNUCA decouples tags and data in cache lines, placing these on

separate tag arrays data arrays. Least significant bits of tag field of a memory address serves

as an index for the tag array. If there is a tag match, the least significant bits stored in the tag

array then serve as the index of the cache line in the data arrays. This allows DR-SNUCA to

place cache lines anywhere in the data array without worrying about moving the data around.

Whenever the size of a partition is changed, tags that are responsible for pointing to the data's

index are moved to their new location in the tag array, reducing the cache line migration

problem to a simpler tag migration one. During transitions, tags are checked in both old and

new locations, and the older one is invalidated to preserve the coherency.

There are some similarities between the DR-SNUCA and Set Partitioning designs, as they

both partition a shared cache among many cores dynamically, in a set-based fashion.

However, these designs differ from each other in several ways:

 DR-SNUCA aims to decrease the energy consumption of DNUCA caches, while Set

Partitioning can be applied to both NUCA and UCA caches.

65

 DR-SNUCA does not partition the cache in set granularity, but it partitions the cache

in cache arrays, and cache arrays are allocated to applications in powers of two. Set

Partitioning can shift as small as one cache set from one partition to another.

 How the allocation policy proposed in DR-SNUCA exactly works is unclear. The

optimization goal of the allocation policy is stated clearly, but how the optimal

partitioning solution will be found (i.e. a greedy approach) is unclear, as well as what

the complexity and cost of running the policy will be in many-core systems.

 Benchmarks are classified into three groups. One of these groups, stream is classified

as benchmarks that do not experience a drop in miss rate when the cache size is

increased. However, the results presented in the study show that when compared to

the case where benchmarks are run alone, overall system throughput can drop by 80

percent when workloads which consist of only stream-type benchmarks are run.

5.1.2. Fair and Adaptive Online Set-based Cache Partitioning

The set-based cache partitioning design proposed by Abousamra et al. is the closest match

to Set Partitioning mechanism proposed and examined in this research [18]. Both

partitioning mechanisms work on a UCA cache, can work on set-granularity, utilize a similar

redirection method and apply secondary accesses for searching the cache line in the domain

of the previous partition. Set Partitioning differs from the aforementioned study in the

following ways:

 Set Partitioning utilizes a hardware circuitry (FSR) which computes the redirected

set index to a certain partition, whereas Abousamra et al. propose using lookup

tables. FSR circuitry consumes much less energy while providing equal latency,

which is discussed in Chapter 3.2.1.

 The allocation policies discussed in Set Partitioning are different from the ones

proposed by Abousamra et al.

 Set Partitioning also considers using the partitioning mechanism as an energy-saving

technique whereas the proposed design by Abousamra et al. focuses only on

performance.

 Set Partitioning is evaluated in a many-core system, whereas the other work evaluates

the design in only two- or four-core configurations. Set Partitioning is also evaluated

66

against another partitioning mechanism instead of being compared to the

unpartitioned LRU policy.

 Submechanisms, including the ones that are common in both studies, are evaluated

and discussed more thoroughly.

The work by Sahu and Ramakrishna is also close to Fair and Adaptive Online Set-based

Cache Partitioning [53]. Although there are some differences between the two works

such as the allocation policies, the two works are very similar in the fundamentals

proposed for a set-based cache partitioning. Therefore, the differences and criticisms

mentioned above also apply to Sahu and Ramakrishna's work too.

5.1.3. Jigsaw

Jigsaw is a NUCA cache management mechanism that supports data placement and partition

sizing at the hardware level but leaves the decisions about these aspects to the software [9].

In addition to the proposed Share Translate Buffer, Jigsaw utilizes hashing and page table

support to map data to shares. Shares are defined as partitions that consist of multiple bank

partitions.

The research also proposes a novel partitioning algorithm that considers reduction both in

cache misses and network latency due to multiple cache banks and cores. Jigsaw and Set

Partitioning are different mechanisms in the following aspects:

 Jigsaw utilizes per-core Share Translation Buffers (STB), which operate similarly to

Translation-Lookaside Buffers. Each STB has can support a small number of entries.

On an STB miss, software refills the STB entries. Set Partitioning has dedicated

registers for storing the beginning set and partition size for each partition.

 Jigsaw hashes the incoming address and uses the hash value to pick the array entry

used. The STB translation latency is ignored as it is initiated speculatively on an L2

access. Set Partitioning implements a Fast Set Redirection circuitry for address

translation, which incurs one cycle delay, and performance evaluation is done

without disregarding the increase critical path delay.

 Jigsaw focuses on partitioning the cache in a NUCA configuration. The research's

evaluation concludes that Jigsaw and Vantage achieve a similar reduction in overall

67

cache misses, the superiority of Jigsaw over Vantage is in reducing network delays.

Set Partitioning does not focus on NUCA architectures, and outperforms Vantage,

which provides similar performance to Jigsaw in non-NUCA caches.

5.2. VANTAGE

In this section the inner workings of the Vantage partitioning mechanism are explained in

detail, as Set Partitioning is evaluated by comparing performance and fairness outputs to of

Vantage [5].

Vantage is a scalable line-based partitioning mechanism that aims to allocate cache lines

equal to their target allocation throughout the cache. To do this, Vantage utilizes several

mechanisms. The first mechanism Vantage utilizes is a variation of a pseudo-LRU

replacement policy. In this policy, each partition has two 8-bit timestamps called SetpointTS

and CurrentTS. Whenever a new line is inserted into the cache, its timestamp is set to the

CurrentTS of the inserting partition. Both timestamps are increased by one when the number

of cache accesses reaches one-sixteenth of the lines the partition has in the cache.

Before a cache line is inserted into a set, all lines in that set are examined. If an examined

cache line belongs to a partition that has more lines in the cache than allocated, and the

timestamp is not between CurrentTS and SetpointTS, that line is demoted to the unmanaged

partition. The unmanaged partition is a virtual partition that represents an additional partition

to mark cache lines for eviction. After all lines are examined, the evicted line is selected

from the unmanaged partition with the oldest timestamp value. If no unmanaged lines are

found, a line is selected for eviction at random.

After 256 candidates have been examined in multiple cache accesses, Vantage consults a

table to find out if the partition has demoted sufficient lines throughout these accesses. If it

did, SetpointTS is decremented by one, expanding the interval between SetpointTS and

CurrentTS, allowing the partition to demote fewer lines in the future. If the partition did not

demote enough lines in the last 256 candidate examinations, SetpointTS is incremented by

one to force the partition to demote more lines in the future. The threshold number of

demotions in the table is calculated at the beginning of each repartitioning period according

68

to the target size of the partition and the theoretical size determined for the unmanaged

partition.

Vantage aims to allocate cache space to partitions by guiding the system towards the target

allocation by increasing/decreasing the likelihood of partitions evicting lines. This is

achieved by contracting/expanding the interval between the two timestamps. The system

requires a set amount of cache space to be allocated to the unmanaged partition. Increasing

the size of the unmanaged partition improves isolation and reduces inter-partition

interference, but reduces the amount of cache space which can be dedicated to partitions. In

fact, the unmanaged partition acts as an additional partition that is shared among all other

partitions.

Vantage partitioning fails to provide sufficient associativity at times. There may be several

reasons that can cause this: the unique memory behavior of the workload mix, non-uniform

distribution of cache accesses and low unmanaged partition size. Set Partitioning guarantees

full associativity provided by the set-associative structure of the cache and complete

isolation. Empirical results presented in Chapter 4.1.2.4. show that cache lines evicted from

partitions that are under their target allocation can reach up to 75 percent of all evictions,

and the workloads/benchmarks that perform better with Set Partitioning share a high rate of

such eviction with Vantage.

69

6. CONCLUSIONS AND FUTURE WORK

As the number of real and virtual cores in a single processor increase, scalable cache

partitioning methods become even more important. A set-based, scalable mechanism that

can provide higher performance and fairness than Vantage is described in this research.

We start by describing the basics of a set-based partitioning mechanism, how should Set

Partitioning redirect the accesses to an interval of sets dedicated to a partition and how to

overcome the problem of inaccessible dirty lines. Then, we propose a simple circuit (Fast

Set Redirection) that will carry out the set index computation, and propose storing access

information for the previous period to initiate a secondary access that can retrieve lines which

become inaccessible due to the last change in allocation decision (Double Access).

Secondly, an allocation policy (Set Classifier) that is designed with set-based partitioning in

mind is proposed. The traffic (based on number of accesses), miss and decay (number of sets

unused for a set amount of time) statistics are collected during execution, and Set Classifier

classifies partitions into four categories based on these metrics. The four classes are Null

(not interested in cache), Harmless (utilizes the cache well), Harmful (benefits less from

cache space, slightly hurts other partitions) and Very Harmful (significantly harmful to the

other applications). Due to the low benefit obtained Set Classifier does not allocate any cache

space to these classes. Harmless partitions receive double the amount of cache space

Harmful partitions do.

We then evaluate our design in a 32-core configuration in simulation. We begin by analyzing

the contribution of each sub-mechanism (Fast Set Redirection, Double Access, Set Classifier

and the modified set index computation) in terms of performance and fairness. We then

compare Set Partitioning to Vantage [5]. Set Partitioning provides around 5 percent

improvement for both performance and fairness.

We also investigate the possibility of using Set Partitionng as an energy-saving technique.

Set Partitioning is abstracted as shrinking the cache size dynamically, and a semi-theoretical

analysis is conducted by comparing it with similar energy-saving techniques. Then, an

example allocation policy is proposed to prove the viability of utilizing Set Partitioning as

an energy-saving method. With the simple modifications in Set Classifier, Set Partitioning

provides a 28 percent reduction in energy spent per instruction and energy efficiency at the

70

cost of less than 1 percent loss in performance. The effects of Set Partitioning itself is also

examined in terms of energy (Fast Set Redirection circuitry, Double Access, and the cost of

flushing cache lines after repartitioning).

The importance of cache partitioning has been shown many times in the literature. Modern

partitioning mechanisms should be scalable, as the number of partitions increases due to the

increase in the number of cores. Another aspect which is also of great importance is

protecting associativity, which is the main motivation for this research. Associativity plays

a key role in cache performance and many previous schemes hurt the associativity due to the

nature of the schemes themselves. Set Partitioning can provide explicit partitioning, strong

isolation, high scalability while protecting associativity. Additionally, Set Partitioning can

be modified to act also as an energy-saving technique.

Both the enforcement mechanism and the allocation policies described in this research are

proposed as proof-of-concept designs with the purpose of investigating the viability of set-

based cache partitioning as a means of improving performance, fairness and energy

efficiency. Possible future work includes further improvements both in minor and major

aspects of the design. These improvements include:

 Investigation of a new sub mechanism which gradually traverses sets throughout a

re-partitioning period and writes back dirty stale lines. This approach can help

mitigate the harmful effects of re-partitioning and allow Double Access mechanism

to be limited to a certain interval at the beginning of a re-partitioning period, reducing

additional energy consumed by Double Access mechanism.

 Investigation of the application of orthogonal techniques. For example, Talus

doubles the number of partitions to remove cliffs in miss curves [4]. Doubling the

number of partitions in a many-core configuration such as 32 cores requires a highly

scalable partitioning mechanism that can provide high performance, such as Set

Partitioning. Similarly, ZCache is a technique that can improve associativity beyond

the number of set-associative ways inside the cache [48]. Set Partitioning is a design

which does not conflict with such mechanisms, and can be adapted to support these

other mechanisms to further improve system performance.

 Investigation of different allocation policies. Energy Classifier is an introduction-

level policy with only simple modifications to the baseline Set Classifier. Energy

71

Classifier can be further improved by either implementing a dynamic LIMIT value

that can adapt to the workload or by being redesigned to optimize the energy

efficiency of the system.

 Investigation of new structures that can collect valuable runtime statistics. Utility

Monitors can still provide useful information, but the statistics gathered from these

structures have limited benefit to Set Partitioning as Utility Monitors provide hit

curves for cache ways whereas Set Partitioning allocates sets [3]. A new structure

that can provide similar information for sets can help improve the allocation policy

greatly.

 Investigation of the utilization of Set Partitioning as a security technique. Currently,

Set Partitioning can provide strict isolation and can be used to provide security

against side-channel attacks with minor modifications. For example, some cores may

be marked as critical cores that only applications that are selected by the OS can run

on. In such a system, malignant applications can't run on the critical cores, and due

to strict isolation of Set Partitioning can't access/flush lines from the cache space

dedicated to these cores. Alternatively, additional partitions may be defined where

only certain applications determined by the OS are allowed to use.

72

7. LIMITATIONS

Processor development is a long, complicated and costly process. It is not possible for

researchers to always manufacture their designs as physical processors and evaluate them in

a real system. Therefore, researchers tend to use software simulators that imitate real

processors to some extent.

Naturally, the cost of using a simulator increases as the level of accuracy increases (cost of

development, execution time). Simulators don't aim to produce results that would be exactly

the same with a real processor, they rather aim to balance the tradeoff between the cost and

the accuracy so that researchers can gather empirical data for evaluation in a feasible way.

This research is also subject to these conditions and utilizes a software-based simulator

called Macsim to collect data [19]. Every simulator has its strengths and weaknesses, and

the results presented in this research is only as good as the simulator can provide.

The empirical data and the evaluation is also dependant on the applications used as

benchmarks. Diversity among benchmarks is an important factor in providing reliable

results. We utilize the SPEC2006 benchmark suite based on its diversity, wide acceptance

in the computer architecture community and availability to us during the research [21]. We

utilize all benchmarks except the ones that produced errors when executed in the simulator

(perlbench, gcc and cactusADM).

This research focuses on multi-core configurations and the number of possible workloads

increases drastically in such configurations. Due to time constraints, only a small number of

workloads were used for evaluation. For the same reason, the amount of simulated time for

each run if the simulation is also limited.

The simulated benchmarks, and therefore workloads, produce a relatively low demand in

cache memory. When there is a larger cache space available than the combined needs of all

applications in the workload, the system can provide high performance even without a

partitioning mechanism to regulate the cache usage. The purpose of this research is to

investigate and evaluate a set-based partitioning mechanism when there is sufficient

competition for the cache. The simulated cache configurations are chosen to strike a balance

73

between realistic configurations and small enough cache sizes to generate competition

among applications.

74

REFERENCES

1. Brock J, Ye C, Ding C, Li Y, Wang X, Luo Y. Optimal cache partition-sharing.

Proceedings of the International Conference on Parallel Processing (ICPP); 2015:

IEEE.

2. Xie Y, Loh GH. PIPP: Promotion/insertion pseudo-partitioning of multi-core shared

caches. International Symposium on Computer Architecture (ISCA); 2009: IEEE/ACM.

3. Qureshi MK, Patt YN. Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches. Proceedings of Annual

International Symposium on Microarchitecture (MICRO); 2006: IEEE.

4. Beckmann N, Sanchez D. Talus: A simple way to remove cliffs in cache performance.

International Symposium on High Performance Computer Architecture (HPCA); 2015:

IEEE.

5. Sanchez D, Kozyrakis C. Vantage: Scalable and efficient fine-grain cache partitioning.

Proceedings of the International Symposium on Computer Architecture (ISCA); 2011:

IEEE/ACM.

6. Andrea A, Edler T. On global electricity usage of communication technology: Trends

to 2030. Challenges. 2015;6(1):117-57.

7. Kaxiras S, Hu Z, Martonosi M. Cache-decay: Exploiting generational behavior to

reduce cache leakage power. Proceedings of the Annual International Symposium on

Computer Architecture (ISCA); 2011: IEEE.

8. Flautner K, Kim NS, Martin S, Blaauw D, Mudge T. Drowsy caches: Simple techniques

for reducing leakage power. Proceedings of the Annual International Symposium on

Computer Architecture (ISCA); 2002: IEEE.

75

9. Beckmann N, Sanchez D. Jigsaw: Scalable software-defined caches. Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques

(PACT); 2013: IEEE.

10. Qureshi MK. CEASER: Mitigating conflict-based cache attacks via encrypted-address

and remapping. Proceedings of Annual International Symposium on Microarchitecture

(MICRO); 2018: IEEE.

11. Vassiliadis S, Phillips J, Blaner B. Interlock collapsing ALU's. IEEE Transactions on

Computers. 1993;42(7):825-839.

12. Ovant BS, Güney IA, Savaş ME, Kücük G. Last level cache partitioning via multiverse

thread classification. Turkish Journal of Electrical Engineering and Computer Science.

2018;26(1):220-233.

13. Fog A. Instruction tables: Lists of instruction latencies, throughputs and micro-

operation breakdowns for Intel, AMD and VIA CPUs; [cited 2019 1 December].

Available from: https://www.cs.utexas.edu/~hunt/class/2016-

spring/cs350c/documents/Agner-Fog/instruction_tables.pdf.

14. Powell M, Yang SH, Falsafi B, Roy K, Vijaykumar TN. Gated-Vdd: A circuit technique

to reduce leakage in deep-submicron cache memories. Proceedings of the International

Symposium on Lower Power Electronics and Design (ISPLED); 2000.

15. Powell M, Yang SH, Falsafi B, Roy K, Vijaykumar TN. Reducing leakage in a high-

performance deep-submicron instruction cache. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems. 2001;9(1):77-89.

16. Laros III JH, Pedretti K, Kelly SM, Shu W, Ferreira K, Vandyke J, Vaughan C. Energy

delay product. Energy-Efficient High Performance Computing. 2013:51-55.

76

17. Balasubramonian R, Kahng AB, Muralimanohar N, Shafiee A, Srinivas V. CACTI 7:

New tools for interconnect exploration in innovative off-chip memories. ACM

Transactions on Architecture and Code Optimization. 2017;14(2):1-25.

18. Abousamra S, El-Mahdy A, Selim S. Fair and adaptive online set-based cache

partitioning. The International Conference on Computer Engineering & Systems; 2011:

IEEE.

19. Kim H, Lee J, Lakshminarayana NB, Sim J, Lim J, Pro T. MacSim: A CPU-GPU

heterogeneous simulation framework; [cited 2019 1 December]. Available from:

http://comparch.gatech.edu/hparch/macsim/macsim.pdf.

20. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, et al. Pin: Building

customized program analysis tools with dynamic instrumentation. ACM SIGPLAN

Notices. 2005;40(6):190-200.

21. Henning JL. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer

Architecture News. 2006;34(4):1-17.

22. Vandierendonck H, Seznec A. Fairness metrics for multi-threaded processors. IEEE

Computer Architecture Letters. 2011;10(1):4-7.

23. Mattson RL, Gecsei J, Slutz DR, Traiger IL. Evaluation techniques for storage

hierarchies. IBM Systems Journal. 1970;9(2):78-117.

24. Stone HS, Turek J, Wolf JL. Optimal partitioning of cache memory. IEEE Transactions

on Computers. 1992;41(9):1054-1068.

25. Suh GE, Kurian G, Devadas S, Rudolph L. Analytical cache models with applications

to cache partitioning. Proceedings of the International Conference on Supercomputing

(ICS); 2001: ACM.

77

26. Qureshi MK, Jaleel A, Patt YN, Steely SC, Emer J. Adaptive insertion policies for high

performance caching. ACM SIGARCH Computer Architecture News. 2007;35(2):381-

391.

27. Jaleel A, Hasenplaugh W, Qureshi M, Sebot J, Steely S, Emer J. Adaptive insertion

policies for managing shared caches. Proceedings of the International Conference on

Parallel Architectures and Compilation Techniques (PACT); 2008: IEEE.

28. Duong N, Zhao D, Kim T, Cammarota R, Valero M, Veidenbaum AV. Improving cache

management policies using dynamic reuse distances. Proceedings of Annual

International Symposium on Microarchitecture (MICRO); 2012: IEEE.

29. Li L, Lu J, Cheng X. Block value based insertion policy for high performance last-level

caches. Proceedings of the ACM international conference on Supercomputing (ICS);

2014: ACM.

30. Chiou D, Devadas S, Rudolph L, Ang BS. Dynamic cache partitioning via

columnization. Proceedings of the Annual Design Automation Conference (DAC);

2000.

31. Suh GE, Rudolph L, Devadas S. Dynamic partitioning of shared cache memory. The

Journal of Supercomputing. 2004;28(1):7-26.

32. Wang X, Martinez JF. XChange: A market-based approach to scalable dynamic multi-

resource allocation in multicore architectures. Proceedings of the International

Symposium on High Performance Computer Architecture (HPCA); 2015: IEEE.

33. Wang R, Chen L. Futility Scaling: High-associativity cache partitioning. Proceedings

of Annual International Symposium on Microarchitecture (MICRO); 2015: IEEE.

34. Chang J, Sohi GS. Cooperative cache partitioning for chip multiprocessors.

Proceedings of the Annual International Conference on Supercomputing (ICS); 2007:

ACM.

78

35. Manikantan R, Rajan K, Govindarajan R. Probabilistic shared cache management

(PriSM). Proceedings of the Annual International Symposium on Computer

Architecture (ISCA); 2012: IEEE.

36. Sundararajan KT, Porpodas V, Jones TM, Topham NP, Franke B. Cooperative

partitioning: Energy-efficient cache partitioning for high-performance CMPs.

Proceedings of the International Symposium on High Performance Computer

Architecture (HPCA); 2012: IEEE.

37. Kim S, Chandra D, Solihin Y. Fair cache sharing and partitioning in a chip

multiprocessor architecture. Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques (PACT); 2004: IEEE.

38. Guney IA, Yildiz A, Bayindir IU, Serdaroglu KC, Bayik U., Kucuk G. A machine

learning approach for a scalable, energy-efficient utility-based cache partitioning.

Proceedings of the International Conference on High Performance Computing (HPC);

2015: Springer.

39. Lin X, Balasubramonian R. Refining the utility metric for utility-based cache

partitioning. Proceedings of the Workshop on Duplicating, Deconstructing, and

Debunking; 2011.

40. El-Sayed N, Mukkara A, Tsai PA, Kasture H, Ma X, Sanchez D. KPart: A hybrid cache

partitioning-sharing technique for commodity multicores. Proceedings of the

International Symposium on High Performance Computer Architecture (HPCA); 2018:

IEEE.

41. Wang X, Chen S, Setter J, Martinez JF. SWAP: Effective fine-grain management of

shared last-level caches with minimum hardware support. Proceedings of the

International Symposium on High Performance Computer Architecture (HPCA); 2017:

IEEE.

79

42. Ye Y, West R, Cheng Z, Li Y. COLORIS: A dynamic cache partitioning system using

page coloring. Proceedings of the International Conference on Parallel Architectures

and Compilation Techniques (PACT); 2014: IEEE.

43. Lin J, Lu Q, Ding X, Zhang Z, Zhang X, Sadayappan P. Gaining insights into multicore

cache partitioning: Bridging the gap between simulation and real systems. Proceedings

of the International Symposium on High Performance Computer Architecture (HPCA);

2008: IEEE.

44. Sherwood T, Calder B, Emer J. Reducing cache misses using hardware and software

page placement. Proceedings of the Annual International Conference on

Supercomputing (ICS); 2008: ACM.

45. Tam D, Azimi R, Soares L, Stumm M. Managing shared L2 caches on multicore

systems in software. Workshop on the Interaction between Operating Systems and

Computer Architecture; 2007.

46. Zhang L, Liu Y, Wang R, Qian D. Lightweight dynamic partitioning for last level cache

of multicore processor on real system. Proceedings of the International Conference on

Parallel and Distributed Computing (PDCAT); 2012: IEEE.

47. Zarandi HR, Sarbazi-Azad H. Hierarchical binary set partitioning in cache memories.

Journal of Supercomputing. 2005;31(2):185–202.

48. Sanchez D, Kozyrakis C. The zcache: Decoupling ways and associativity. Proceedings

of Annual International Symposium on Microarchitecture (MICRO); 2010: IEEE.

49. Ranganathan P, Adve S, Jouppi NP. Reconfigurable caches and their application to

media processing. ACM SIGARCH Computer Architecture News. 2000;28(2):214-24.

50. Varadarajan K, Nandy SK, Sharda V, Bharadwaj A, Iyer R, Makineni S, et al. Molecular

caches: A caching structure for dynamic creation of application-specific heterogeneous

80

cache regions. Proceedings of Annual International Symposium on Microarchitecture

(MICRO); 2006: IEEE.

51. Kim C, Burger D, Keckler SW. An adaptive, non-uniform cache structure for wire-

delay dominated on-chip caches. Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS);

2002.

52. Gupta A, Sampson J, Taylor MB. DR-SNUCA: An energy-scalable dynamically

partitioned cache. Proceedings of the International Conference on Computer Design

(ICCD); 2013: IEEE.

53. Sahu A, Ramakrishna S. Creating heterogeneity at run time by dynamic cache and

bandwidth partitioning schemes. Proceedings of the Annual Symposium on Applied

Computing (SAC); 2014.

