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ABSTRACT

AN INVESTIGATION OF THE EFFECTS OF HUMAN
DYNAMICS ON SYSTEM STABILITY AND

PERFORMANCE

Ehsan Yousefi

M.S. in Mechanical Engineering

Advisor: Yıldıray Yıldız

August 2018

Considered as a challenging element of closed-loop structures, the human oper-

ator, and his/her interactions with the underlying system, should be carefully

analyzed to obtain a safe and high performing system. In this thesis, the in-

teraction between human dynamics and the closed loop system is investigated

for two different scenarios. The first scenario consists of a flight control system

controlled by an adaptive controller. A telerobotic system where the controllers

are conventional linear controllers is analyzed in the second scenario. Although

model reference adaptive control (MRAC) offers mathematical design tools to

effectively cope with many challenges of the real world control problems such

as exogenous disturbances, system uncertainties, and degraded modes of opera-

tions, when faced with human-in-the-loop settings, these controllers can lead to

unstable system trajectories in certain applications. To establish an understand-

ing of stability limitations of MRAC architectures in the presence of humans, a

mathematical framework is developed for the first scenario, whereby an MRAC

is designed in conjunction with a class of linear human models including human

reaction delays. This framework is then used to reveal, through stability analysis

tools, the stability limit of the MRAC-human closed loop system and the range

of model parameters respecting this limit. An illustrative numerical example of

an adaptive flight control application with a Neal-Smith pilot model is utilized to

demonstrate the effectiveness of the developed approaches. The effect of a linear

filter, inserted between the human model and MRAC, on the closed loop stabil-

ity is also investigated. Related to this, a mathematical approach to study how

the error dynamics of MRAC could favorably or unfavorably influence human

operator’s error dynamics in performing a certain task is analyzed. An illustra-

tive numerical example concludes the study. For the second scenario, stability

properties of three different human-in-the-loop telerobotic system architectures
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are comparatively investigated, in the presence of human reaction time-delay and

communication time-delays. The challenging problem of stability characteriza-

tion of systems with multiple time-delays is addressed by implementing rigorous

stability analysis tools, and the results are verified via numerical illustrations.

Practical insights about the results of the stability investigations are also pro-

vided. Finally, apart from these scenarios, after the observation that a simple

linear transfer function model for a real force reflecting haptic device, which is

used in telerobotics applications, is missing, a data-driven and first principles

modeling of the Geomagic R© TouchTM (formerly PHANToM R© Omni R©) haptic de-

vice is considered. A simple linear model is provided for one of the degrees of

freedom based on fundamental insights into the device structure and in light of

experimental observations.

Keywords: Human-in-the-Loop Systems, Model Reference Adaptive Control,

Closed-Loop System Stability, Telerobotics, Time-Delay Systems, Modelling,

PHANToM R© Omni R©.



ÖZET

İNSAN DİNAMİĞİNİN SİSTEM KARARLILIĞI VE
PERFORMANSINA ETKİLERİNİN İNCELENMESİ

Ehsan Yousefi

Makine Mühendisliği, Yüksek Lisans

Tez Danışmanı: Yıldıray Yıldız

Ağustos 2018

Kapalı devre yapıların zorlayıcı bir unsuru olarak düşünülen insan dinamik-

leri ve bu dinamiklerin sistemle olan etkileşimleri, güvenli ve yüksek perfor-

manslı bir sistem elde etmek için dikkatlice analiz edilmelidir. Bu tezde, in-

san dinamikleri ile kapalı döngü kontrol sistemi arasındaki etkileşim iki farklı

senaryo için incelenmiştir. İlk senaryo, uyarlamalı kontrolör tarafından kon-

trol edilen bir uçuş kontrol sisteminden oluşmuştur. İkinci senaryoda ise, kon-

vansiyonel doğrusal kontrolcüler tarafından kontrol edilen bir telerobotik sistem

analiz edilmiştir. Her ne kadar model referans uyarlamalı kontrol (MRAC) dış

bozucu etkiler, sistem belirsizlikleri ve bozulmuş operasyon modları gibi gerçek

kontrol problemlerinin birçok zorluğu ile etkili bir şekilde başa çıkabilmek için

matematiksel tasarım araçları sunsa da, insanın döngü içinde olduğu sistem-

lerde, bu kontrolcüler kararsız sistem yörüngelerine yol açabilir. Bu sebeple,

insanın döngü içinde etkin olduğu sistemlerde, MRAC mimarilerinin kararlılık

limitleri hakkında bir kavrayış geliştirebilmek için, ilk senaryoda MRAC ve tepki

gecikmesine sahip bir insan modelinden oluşan bir sistem oluşturulmuştur. Daha

sonra bu yapı, kararlılık analiz araçları kullanılarak incelenmiş ve sistem parame-

trelerinin kararlılık sınırları içinde kalan aralıkları tespit edilmiştir. Geliştirilen

yaklaşımların etkinliğini göstermek için bir Neal-Smith pilot modeli ile uyarla-

malı bir uçuş kontrol sisteminden oluşan bir numerik benzetim örneği kul-

lanılmıştır. İnsan modeli ile MRAC arasına yerleştirilen doğrusal bir filtrenin,

kapalı döngü kararlılığı üzerindeki etkisi de araştırılmıştır. Bununla ilgili olarak,

MRAC’ın hata dinamiğinin, belirli bir görevi yerine getirirken insan operatörünün

hata dinamiklerini olumlu veya olumsuz yönde nasıl etkilediği incelenmiş ve nu-

merik bir örnek verilmiştir. İkinci senaryo için, üç farklı insanın-döngü-içinde-

olduğu telerobotik sistem mimarisinin kararlılık özellikleri, insan tepkisi zaman

gecikmesi ve iletişim zaman gecikmelerinin mevcudiyetinde karşılaştırmalı olarak
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araştırılmıştır. Çoklu zaman gecikmeli sistemlerin kararlılık karakteristiklerinin

çıkarılması problemi, titiz kararlılık analiz araçlarının uygulanmasıyla ele alınmış,

sonuçlar nümerik benzetimlerle doğrulanmış, ve bu kararlılık araştırmalarının

pratik sonuçları da verilmiştir. Son olarak, bu senaryoların yanı sıra, teler-

obotik uygulamalarında kullanılan Geomagic R© TouchTM (eskiden, PHANToM R©

Omni R©) haptik cihazının modellenmesi problemi ele alınmıştır. Cihazın yapısı ve

deneysel gözlemler ışığında temel prensiplere dayanan doğrusal bir model, serbest-

lik derecelerinden birisi için geliştirilmiştir.

Anahtar sözcükler : Döngü İçinde İnsan Sistemleri, Model Referans Uyarlamalı

Kontrol, Kapalı-döngü Sistem Kararlılığı, Telerobotik, Zaman Gecikmeli Sistem-

ler, Modelleme, PHANToM R© Omni R©.
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Chapter 1

Introduction

Human operator as an element of the overall system plays a crucial role in closed

loop settings [1], where she/he is in control of a system with which she/he is

exchanging information in various forms whether visual or haptic. In this thesis,

stability and performance of two human-in-the-loop systems, an adaptive control

system and a telerobotic system are investigated. Each of these systems should

be analyzed separately due to the inherent subtleties of each structure, which,

in turn, reflects the fundamental challenges in analyzing human-in-the-loop dy-

namics in a mathematically rigorous manner. In terms of mathematical modeling

of human behavior, many studies focus on developing a representative transfer

function of the human in a specific task within a certain frequency band. Three

key models, i) human driver models [2], ii) McRuer crossover model [3], and iii)

Neal-Smith pilot model [4–8] can be given as examples for these models. Human

driver models are proposed in the context of car driving, specifically in longi-

tudinal car-following tasks in a fixed lane. While these models vary depending

on the degree of their complexity (see [9]), their simplest form is a pure time

delay representing the dead time between arrival of stimulus and reaction pro-

duced by the driver. McRuer’s model, on the other hand, is proposed to capture

human pilot behavior, to further understand flight stability and human-vehicle

integration. Among many of its variations, this model is essentially an integrator

dynamics with a time lag to capture human reaction delays and a gain modulated

1



to maintain a specific bandwidth. Similarly, the Neal-Smith pilot model, which

is essentially a first order lead-lag type compensator with a gain and time lag,

can be utilized to study the behavior of human pilots [4–8].

Achieving stability and desired performance are the major challenges in control

theory when dealing with uncertain dynamical systems. While fixed-gain robust

control design approaches [10–13] can deal with such dynamical systems, the

knowledge of system uncertainty bounds is required and characterization of these

bounds is not trivial in general due to practical constraints such as extensive

and costly verification and validation procedures. Furthermore, robust control

approaches generally provide conservative control inputs. On the other hand,

adaptive control design approaches [14–17] can effectively cope with the effects of

system uncertainties and require less modeling work while providing “need based”

control effort [18,19]. One of the well-known and important class of adaptive con-

trollers is called a model reference adaptive controller (MRAC) [20,21], where the

architecture includes a reference model, a parameter adjustment mechanism, and

a controller. In this setting, a desired closed-loop dynamical system behavior is

captured by the reference model, where its output (respectively, state) is com-

pared with the output (respectively, state) of the uncertain dynamical system.

This comparison yields a system error signal, which is used to drive an online

parameter adjustment mechanism. Then, the controller adapts feedback gains

to minimize this error signal using the information received from the parameter

adjustment mechanism. As a consequence, under proper settings, the output of

the uncertain dynamical system converges to the output of the reference model

asymptotically in a stable manner.

While MRAC offers mathematical design tools to effectively cope with sys-

tem uncertainties, the capabilities of MRAC when interfaced with human oper-

ators can be limited. Indeed, in certain applications when humans are in the

loop [6,8,22,23], the closed loop system with MRAC can become unstable. As a

matter of fact, such problems are not only limited to MRAC-human interactions

and have been reported to arise in various human-in-the-loop control problems

including, for example, pilot-induced oscillations [24, 25]. To address these is-

sues, novel control design ideas are proposed and experimentally tested including

2



adaptive control as well as smart-cue/smart-gain concepts [24,26]. On the other

hand, an analytical framework aimed at understanding these phenomena and

that can ultimately be used to drive rigorous control laws is currently lacking.

These observations motivate this thesis where the main objective is to develop

comprehensive models from a system-level perspective and analyze such models

to develop a strong understanding of the aforementioned stability limits. The first

scenario used in this thesis for this purpose is analyzed within the framework of

human-in-the-loop MRAC architectures.

One critical parameter added to the control problem that can be responsible

for instabilities of the human-in-the-loop systems is the human reaction delay —

a topic which has long been investigated in the literature [2, 9, 27–29], but not

treated in the context of human-in-the-loop adaptive control. It is known that the

presence of time delays is a source of instability, which must be carefully dealt with

and explicitly addressed in any control design framework [30,31]. Delay-induced

instability phenomenon has been recognized in numerous applications including

robotics, physics, cyber-physical systems, and operational psychology [32]. For

example, in physics literature, effects of human decision making process and

reaction delays are studied to understand the arising car driving patterns, traffic

flow characteristics, traffic jams, and stop-and-go waves [2, 33]. Therefore, it is

of strong interest to understand the limitations of MRAC when coupled with

human operators in a closed-loop setting. For this purpose, in this thesis, MRAC

is first incorporated into a general linear human model with reaction delays.

Through the use of Lyapunov stability theory, this model is then studied to

reveal its fundamental stability limit, and the parameter space of the model where

such limit is respected, producing stable trajectories. An illustrative numerical

example of an adaptive flight control application with a Neal-Smith pilot model is

utilized to demonstrate the effectiveness of the developed approaches. The main

contribution of this part of the study is the development of a comprehensive

control-theoretic modeling approach, where the dynamic interactions between a

class of human models and MRAC framework can be investigated. Understanding

how an ideal MRAC would perform in conjunction with a human model including

human reaction delays and how such delays could pose strong limitations to the
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stabilization and performance of the closed-loop human-MRAC architecture is

the main focus of this part of the study.

Delay-induced instability is a major problem in human-in-the-loop systems,

and it is of strong interest to address this problem within the MRAC framework.

In this thesis, it is proposed to insert a linear filter in between the human model

and MRAC, to be designed strategically with the aim to enhance both stability

and performance characteristics of the combined MRAC-human-filter closed-loop

dynamics. Moreover, the coupling between MRAC and the human model creates

an interesting coupling, which must be carefully studied for the overall synergistic

collaboration between MRAC and the human. Therefore, the effects of a linear

filter on stability limits of human-in-the-loop MRAC systems is also investigated

in this study. It is found that the proposed filter can effectively increase stability

limits of the overall closed-loop system. Moreover, the effect of the error dynamics

of MRAC on the error dynamics arising in the response of human while trying

to achieve a certain task (for example, step input tracking) is investigated. The

result of this study shows that the proposed filter can also be useful in reducing

the critical frequency of the error dynamics (that the human operator sees and

acts based upon) up to an order of magnitude less than its original value.

Teleoperation is an enabler of interaction between a local operator and a distant

environment, and therefore, another venue where humans interact with closed

loop control systems. Application areas of this technology includes underwater

operations, space explorations, telediagnosis and telesurgery, and even education

[34,35]. While relaying human operator’s orders from the local side (master side)

to the remote side (slave side), a teleoperation system can provide the operator

with a feeling of the remote environment with visual, auditory, and haptic signals

that are fed back from the remote site [36]. This architecture, in which there

is a two way communication between the master and the slave sides, is called a

bilateral teleoperation system. The purpose of the study conducted in this thesis

about teleoperation is to comparatively analyze the stability characteristics of

three different human-in-the loop telerobotic schemes with different remote signal

feedback structures, in the presence of human operator and communication time-

delays.
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It is well-known that time-delays could result in system instability, and also

degrade operator’s performance, hence can jeopardize the purpose of teleoper-

ation as a human-in-the-loop system [37–39]. Other examples of detriments of

time-delays, including undesired oscillations and limited parameter space of stable

operation, are discussed in [32].

Human as an element of the telerobotic system has been investigated in the

literature. In [40], authors incorporated the minimum jerk model [41] to predict

the future inputs of the human operator. They experimentally showed that the

system has improved performance when this prediction is used in the controller

development. In [42], authors conducted an experimental study in which they

considered a linear model for the human operator, and showed its effectiveness

in both stability and performance of the system. However, in their analysis,

they did not consider the human operator reaction time-delay. In [43], authors

considered a model of human operator in stability analysis and their PD-like

controller design, where human reaction time-delay is considered. Indeed, it is

well known in other research domains that human operator reaction time-delays

play a crucial role in closed loop settings, e.g., car driving [44] and pilot induced

oscillations [45–47].

From an architectural point of view, a bilateral telerobotic system can be cat-

egorized based on the transmitted signals between the master and slave systems.

Position-position [48] and position-force [49] architectures are the very fundamen-

tal ones, and more complex multichannel architectures are also used for obtaining

higher transparency and performance [34, 50]. Needless to say, the selection of

the architecture is critical as it will affect the closed-loop dynamics and how well

the human operator will utilize the teleoperation system to perform tasks.

In the second part of this thesis, human models with reaction time-delay (τh)

are considered as an element of a teleroperation system with inherent commu-

nication time-delays (τc). The main objective of this study is to investigate the

stability of the human-in-the-loop system with respect to these delays. Need-

less to say, this characterization can be quite difficult since the corresponding

eigenvalue problem becomes challenging to handle due to time-delays [1,32]. We
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rigorously compare the stability and performance of the telerobotic system at

hand using [51,52], for three different practically-important configurations which

differ from each other based on the communicated signals and controller usage.

Specifically, the point of interest is understanding how communication and hu-

man reaction time-delays affect closed-loop stability properties. To this end, two

different human-in-the-loop architectures are investigated, namely configurations

1 and 2, each with two independent time-delays, and compare their stability and

performance characteristics with those of the baseline.

The final part of this thesis is related to modeling of a haptic device which

is frequently used in telerobotics applications. The PHANToM R©, which is a 3-

dimensional (3D) force-reflecting haptic device, was originally designed by Massie

and Salisbury [53] and commercialized by SensAble Technologies, Inc. and later

by Geomagic R©, Inc. Although PHANToM R© Omni R©, one of the most cost-

effective haptic devices, has been widely used in the haptics and teleoperations

fields for research and education purposes [54–58], a simple and easy-to-use linear

mathematical model of this device has not been made publicly available, to the

best of the author’s knowledge. This model, especially in the pitch axis, can be

difficult to obtain due to nonlinearities originating from the gravitational effects

on the rotating arm whose dynamics is inherently unstable.

Authors of [59] and [60] studied the mechanical and electrical properties of

PHANToM R© model 1.5, and were able to provide a transfer function model.

However, this model has different technical properties than PHANToM R© Omni R©

(or Geomagic R© TouchTM) device. In [61], a second-order linear model of

PHANToM R© Omni R© with varying coefficients was developed using the general

form of dynamic analysis of robots and manipulators. As noted in [61], the result-

ing model complexity was a serious issue for controller development. In [62], the

authors provided forward and inverse kinematic models of position and velocity of

the PHANToM R© Omni R© device. They, therefore, could also provide kinesthetic

force feedback model, i.e., the generalized torque needed to be exerted at each

joint to provide a haptic sense of a virtual object. While the above mentioned

studies successfully provided useful models, currently an experimentally validated

model of the device, especially for the pitch axis, that can be used for controller
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design and closed loop system analysis is not available.

To address the above need, in this thesis, a linear model for PHANToM R©

Omni R© is provided, which is simple enough to be employed for controller design.

This model is focused on the pitch axis motion which is harder to model due

to nonlinear gravitational effects and inherently unstable behavior. Both the

physical device structure and experimental data are utilized to build a satisfactory

model. Another experimentally verified modeling study can be found in [63],

where an energy based system identification methodology was given. In [63], the

nonlinear inertia, damping and the actuator gains were also identified. There

are two main differences between this work and [63]. First, a minimal second-

order state space differential equation model for the system is not assumed in

this study. This assumption results in a model with time varying coefficients,

which in turn could complicate controller design and implementation. Second,

unlike [63], where the motion about the yaw axis is modeled, the motion about

the pitch axis is modeled. It is noted that the motion about the pitch axis which

experiences nonlinear gravitational effects while the motion in the yaw axis is not

effected by these nonlinear forces.
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This thesis includes four chapters. In Chapter 2, the human-MRAC interac-

tions problem is investigated. In Chapter 3, human-control system interactions

are analyzed in the domain of telerobotics. Chapter 4 is dedicated to the mod-

eling of the PHANToM R© Omni R© device. Finally, Chapter 5 concludes the work

by providing a summary of the discussions and the future directions.
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Chapter 2

An Analysis of Stability and

Performance in

Human-in-the-Loop Model

Reference Adaptive Control

Architectures

Although model reference adaptive controllers offer mathematical tools to ef-

fectively cope with system uncertainties arising from idealized assumptions, lin-

earization, model order reduction, exogenous disturbances, and degraded modes

of operations, they can lead to unstable system trajectories in certain applica-

tions when humans are in the loop. In this chapter, stability of human-in-the-loop

model reference adaptive control architectures is analyzed. For a general class of

linear human models with time-delay, a fundamental stability limit of these ar-

chitectures is established, which depends on the parameters of this human model

as well as the reference model parameters of the adaptive controller. It is shown

that when the given set of human model and reference model parameters satisfy

this stability limit, the closed-loop system trajectories are guaranteed to be sta-

ble. Improving the stability and performance of this structure is then realized by
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Figure 2.1: Block diagram of the human-in-the-loop model reference adaptive
control architecture.

inserting a linear filter between the human operator and MRAC.

The notation used in this work is standard. Specifically, R denotes the set

of real numbers, Rn denotes the set of n × 1 real column vectors, Rn×m denotes

the set of n×m real matrices, R+ (resp., R+) denotes the set of positive (resp.,

nonnegative-definite) real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the set of n × n
positive-definite (resp., nonnegative-definite) real matrices, Sn×n denotes the set

of n × n symmetric real matrices, Dn×n denotes the n × n real matrices with

diagonal scalar entries, (·)T denotes transpose, (·)−1 denotes inverse, and “,”

denotes equality by definition. In addition, we write λmin(A) (resp., λmax(A)) for

the minimum (resp., maximum) eigenvalue of the Hermitian matrix A, tr(·) for

the trace operator, vec(·) for the column stacking operator, ||·||2 for the Euclidian

norm, ||·||∞ for the infinity norm, and ||·||F for the Frobenius matrix norm.

2.1 Problem Formulation

In order to study human-in-the-loop model reference adaptive controllers, the

block diagram configuration is given in Figure 2.1. In the figure, the outer loop

architecture includes the reference that is fed into the human dynamics to gen-

erate a command for the inner loop architecture in response to the variations
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resulting from the uncertain dynamical system. In this setting the, the reference

input is what the human aims to achieve in a task, and the uncertain dynamical

system is the machine on which this task is being performed. The inner loop ar-

chitecture includes the uncertain dynamical system as well as the model reference

adaptive controller components (i.e., the reference model, the parameter adjust-

ment mechanism, and the controller). Specifically, at the outer loop architecture,

a general class of linear human models with constant time-delay is considered

given by

ξ̇(t) = Ahξ(t) +Bhθ(t− τ), ξ(0) = ξ0, (2.1)

c(t) = Chξ(t) +Dhθ(t− τ), (2.2)

where ξ(t) ∈ Rnξ is the internal human state vector, τ ∈ R+ is the internal human

time-delay, Ah ∈ Rnξ×nξ , Bh ∈ Rnξ×nr , Ch ∈ Rnc×nξ , Dh ∈ Rnc×nr , and c(t) ∈ Rnc

is the command produced by the human, which is the input to the inner loop

architecture as shown in Figure 2.1. Here, input to the human dynamics is given

by

θ(t) , r(t)− Ehx(t), (2.3)

where θ(t) ∈ Rnr , with r(t) ∈ Rnr being the bounded reference. Here x(t) ∈ Rn

is the state vector (further details below) and Eh ∈ Rnr×n selects the appropri-

ate states to be compared with r(t). Note that the dynamics given by (2.1),

(2.2), and (2.3) is general enough to capture, for example, widely studied linear

time-invariant human models with time-delay including Neal-Smith model and

its extensions [4–8].

Next, at the inner loop architecture, the considered uncertain dynamical sys-

tem is given by

ẋp(t) = Apxp(t) +BpΛu(t) +Bpδp(xp(t)), xp(0) = xp0 , (2.4)

where xp(t) ∈ Rnp is the accessible state vector, u(t) ∈ Rm is the control input,

δp : Rnp → Rm is an uncertainty, Ap ∈ Rnp×np is a known system matrix, Bp ∈
Rnp×m is a known control input matrix, and Λ ∈ Rm×m

+ ∩ Dm×m is an unknown

control effectiveness matrix. Furthermore, it is assumed that the pair (Ap, Bp) is
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controllable and the uncertainty is parameterized as

δp(xp) = W T
p σp(xp), xp ∈ Rnp , (2.5)

where Wp ∈ Rs×m is an unknown weight matrix and σp : Rnp → Rs is a known

basis function of the form σp(xp)= [σp1(xp), σp2(xp), . . . , σps(xp)]
T . Note for the

case where the basis function σp(xp) is unknown, the parameterization in (2.5)

can be relaxed [64,65] without significantly changing the results of this paper by

considering

δp(xp) = W T
p σ

nn
p (V T

p xp)+ε
nn
p (xp), xp ∈ Dxp , (2.6)

where Wp ∈ Rs×m and Vp ∈ Rnp×s are unknown weight matrices, σnnp : Dxp → Rs

is a known basis composed of neural networks function approximators, εnnp :

Dxp → Rm is an unknown residual error, and Dxp is a compact subset of Rnp .

To address command following at the inner loop architecture, let xc(t) ∈ Rnc

be the integrator state satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0 , (2.7)

where Ep ∈ Rnc×np allows to choose a subset of xp(t) to be followed by c(t). Now,

(2.4) can be augmented with (2.7) as

ẋ(t) = Ax(t) +BΛu(t) +BW T
p σp(xp(t))+Brc(t), x(0) = x0, (2.8)

where

A ,

[
Ap 0np×nc

Ep 0nc×nc

]
∈ Rn×n, (2.9)

B , [BT
p , 0

T
nc×m]T ∈ Rn×m, (2.10)

Br , [0Tnp×nc ,−Inc×nc ]
T ∈ Rn×nc . (2.11)

and x(t) , [xTp (t), xTc (t)]T ∈ Rn is the augmented state vector, x0 , [xTp0 , x
T
c0

]T ∈
Rn, and n = np + nc. In this inner loop architecture setting, it is practically

reasonable to set Eh = [Ehp, 0nr×nc ], Ehp ∈ Rnr×np , in (2.3) without loss of theo-

retical generality since a subset of the accessible state vector is usually available
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and/or sensed by the human at the outer loop (but not the states of the integra-

tor).

Finally, consider the feedback control law at the inner loop architecture given

by

u(t) = un(t) + ua(t), (2.12)

where un(t) ∈ Rm and ua(t) ∈ Rm are the nominal and adaptive control laws,

respectively. Furthermore, let the nominal control law be

un(t) = −Kx(t), (2.13)

with K ∈ Rm×n, such that Ar , A−BK is Hurwitz. For instance, such K exists

if and only if (A,B) is a controllable pair. Using (2.12) and (2.13) in (2.8) next

yields

ẋ(t) = Arx(t) +Brc(t) +BΛ[ua(t) +W Tσ(x(t))], (2.14)

where W T , [Λ−1W T
p , (Λ

−1 − Im×m)K]∈ R(s+n)×m is an unknown aggregated

weight matrix and σT (x(t)) , [σTp (xp(t)), x
T (t)]∈ Rs+n is a known aggregated

basis function. Considering (2.14), let the adaptive control law be

ua(t) = −Ŵ T (t)σ(x(t)), (2.15)

where Ŵ (t) ∈ R(s+n)×m is the estimate of W satisfying the parameter adjustment

mechanism

˙̂
W (t) = γσ(x(t))eT (t)PB, Ŵ (0) = Ŵ0, (2.16)

where γ ∈ R+ is the learning rate, and system error reads,

e(t) , x(t)− xr(t), (2.17)

with xr(t) ∈ Rn being the reference state vector satisfying the reference system

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0 , (2.18)

and P ∈ Rn×n
+ ∩ Sn×n is a solution of the Lyapunov equation

0 = ATr P + PAr +R, (2.19)
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with R ∈ Rn×n
+ ∩ Sn×n. Since Ar is Hurwitz, it follows from [66] that there

exists a unique P ∈ Rn×n
+ ∩ Sn×n satisfying (2.19) for a given R ∈ Rn×n

+ ∩ Sn×n.

Although a specific yet widely studied parameter adjustment mechanism given by

(2.16) is considered, one can also consider other types of parameter adjustment

mechanisms [67–80] without changing the essence of this study.

Based on the given problem formulation, the next section analyzes the stability

of the coupled inner and outer loop architectures depicted in Figure 2.1 in order

to establish a fundamental stability limit for guaranteeing the closed-loop system

stability (when this limit is satisfied by the given human model at the outer loop

and the given adaptive controller at the inner loop).

2.2 Fundamental Stability Limit

To analyze the stability of the coupled inner and outer loop architectures intro-

duced in the previous section, the system error dynamics is derived first using

(2.14), (2.15), and (2.18) as

ė(t) = Are(t)−BΛW̃ T (t)σ(x(t)), e(0) = e0, (2.20)

where

W̃ (t) , Ŵ (t)−W ∈ R(s+n)×m, (2.21)

is the weight error and e0 , x0 − xr0 . In addition, using (2.16), the weight error

dynamics is written as

˙̃W (t) = γσ(x(t))eT (t)PB, W̃ (0) = W̃0, (2.22)

where W̃0 , Ŵ (0)−W . The following lemma is now immediate.

Lemma 1 Consider the uncertain dynamical system given by (2.4) subject to

(2.5), the reference model given by (2.18), and the feedback control law given by

(2.12), (2.13), (2.15), and (2.16). Then, the solution (e(t), W̃ (t)) is Lyapunov

stable for all (e0, W̃0)∈ Rn × R(s+n)×m and t ∈ R+.
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Proof. To show Lyapunov stability of the solution (e(t), W̃ (t)) given by (2.20)

and (2.22) for all (e0, W̃0)∈ Rn × R(s+n)×m and t ∈ R+, consider the Lyapunov

function candidate

V(e, W̃ )= eTPe+ γ−1tr(W̃Λ
1
2 )T (W̃Λ

1
2 ). (2.23)

Note that V(0, 0)= 0, V(e, W̃ )> 0 for all (e, W̃ ) 6= (0, 0), and V(e, W̃ ) is radially

unbounded. Differentiating (2.23) along the trajectories of (2.20) and (2.22) yields

V̇(e(t), W̃ (t))= −eT (t)Re(t) ≤ 0, (2.24)

where the result is now immediate. �

Since the solution (e(t), W̃ (t)) is Lyapunov stable for all (e0, W̃0)∈ Rn ×
R(s+n)×m and t ∈ R+ from Lemma 1, this trivially implies that e(t) ∈ L∞ and

W̃ (t) ∈ L∞. At this stage of the analysis, it should be noted that one cannot use

the Barbalat’s lemma [81] to conclude limt→∞ e(t) = 0. To elucidate this point,

one can write

V̈(e(t), W̃ (t)) = −2eT (t)R
[
Are(t)−BΛW̃ T (t)σ(e(t) + xr(t))

]
, (2.25)

where since xr(t) can be unbounded due to the coupling between the inner and

outer loop architectures, one cannot conclude the boundedness of (2.25), which

is necessary for utilizing the Barbalat’s lemma in (2.24). Motivated from this

standpoint, the conditions to ensure the boundedness of the reference model

states xr(t) are provided, which also reveal the fundamental stability limit (FSL)

for guaranteeing the closed-loop system stability. Using (2.2) in (2.18), it can be

written that

ẋr(t) = Arxr(t) +Br(Chξ(t) +Dhθ(t− τ)),

= Arxr(t)−BrDhEhxr(t− τ) +BrChξ(t)−BrDhEhe(t− τ)

+BrDhr(t− τ). (2.26)

Next, it follows from (2.1) that

ξ̇(t) = Ahξ(t)−BhEhxr(t− τ)−BhEhe(t− τ) +Bhr(t− τ). (2.27)
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Finally, by letting φ(t) , [xTr (t), ξT (t)]T , and using (2.26) and (2.27), one can

write

φ̇(t) = A0φ(t) +Aτφ(t− τ) + ϕ(·), φ(0) = φ0, (2.28)

where

A0 ,

[
Ar BrCh

0nξ×n Ah

]
∈ R(n+nξ)×(n+nξ), (2.29)

Aτ ,

[
−BrDhEh 0n×nξ

−BhEh 0nξ×nξ

]
∈ R(n+nξ)×(n+nξ), (2.30)

ϕ(·) ,

[
−BrDhEhe(t− τ) +BrDhr(t− τ)

−BhEhe(t− τ) +Bhr(t− τ)

]
∈ Rn+nξ . (2.31)

As a consequence of Lemma 1 and the boundedness of the reference r(t), one can

conclude that ϕ(·) ∈ L∞. Next, the following lemma is provided:

Lemma 2 Consider the following system dynamics given by

ż(t) = Fz(t) +Gz(t− τ) + h(t, z(t)), z(0) = z0, (2.32)

where z(t) ∈ Rn is the state vector, F ∈ Rnxn and G ∈ Rnxn are constant matri-

ces, τ is the time delay and h(t, z(t)) is piecewise constant and bounded nonlinear

forcing term, which is in general a function of state z. If the homogeneous dy-

namical system given by

ż(t) = Fz(t) +Gz(t− τ) (2.33)

is asymptotically stable, then the states of the original inhomogeneous dynamical

system given by (2.32) remains bounded for all times.

Proof. Since h(t, z(t)) is piecewise continuous and bounded, this signal can be

considered as an exogenous input to the system with the transfer function

G(s) =

(
sI − (F +Ge−τs)

)−1
. (2.34)
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Under the assumption that the homogeneous system (2.33) is asymptotically

stable, then all of the infinitely many roots of the characteristic equation are

known

det

(
sI − (F +Ge−τs)

)
= 0, (2.35)

of the system (2.34), have strictly negative real parts. Therefore, the output z(t)

of the dynamical system remains bounded. �

Theorem 1 Consider the uncertain dynamical system given by (2.4) subject to

(2.5), the reference model given by (2.18), the feedback control law given by (2.12),

(2.13), (2.15), and (2.16), and the human dynamics given by (2.1), (2.2), and

(2.3). Then, e(t) ∈ L∞ and W̃ (t) ∈ L∞. If, in addition, the real parts of all the

infinitely many roots of the following characteristic equation

det

(
sI − (A0 +Aτe−τs)

)
= 0, (2.36)

have strictly negative real parts, then xr(t) ∈ L∞, ξ(t) ∈ L∞, and limt→∞ e(t) = 0.

Proof. As a consequence of Lemma 1, recall that e(t) ∈ L∞ and W̃ (t) ∈ L∞.

In addition, note that ϕ(·) ∈ L∞ in (2.28). Therefore, if all of the roots of the

characteristic equation given by (2.36) have strictly negative real parts, making

the homogeneous equation

φ̇(t) = A0φ(t) +Aτφ(t− τ) (2.37)

asymptotically stable, then, per Lemma 2, φ(t) , [xTr (t), ξT (t)]T ∈ L∞. Finally,

since e(t) ∈ L∞, xr(t) ∈ L∞, and W̃ (t) ∈ L∞ ensure the boundedness of (2.25),

it now follows from the Barbalat’s lemma that limt→∞ e(t) = 0. �

Note that there are several methods in the literature for the analysis of the

root locations of (2.36). The four most-used methods are TRACE-DDE [82],

DDE-BIFTOOL [83], QPMR [84], and Lambert-W function [85]. In essence,
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one provides the matrices A0 and Aτ as well as the delay τ to these methods,

which then return the numerical values of the rightmost root locations of (2.36).

In some sense, these methods perform a nontrivial approximation with which

they are able to identify the most relevant roots — the rightmost roots. In the

illustrative numerical example provided below, TRACE-DDE is employed, read-

ily available for download at https://users.dimi.uniud.it/~dimitri.breda/

research/software/.

Lemma 3 Consider the control error e(t) in Eqn. (2.17) with Laplace transform

E(s) and r(t) with Laplace transform R(s) as the reference input. Then, the

human error θ(t) in Eqn. (2.3) is determined in Laplace domain by

Θ(s) = (I + EhG1)
−1R(s)− (I + EhG1)

−1EhE(s), (2.38)

where

G1 , (sI − Ar)−1(BrCh(sI − Ah)−1Bh +BrDh)e
−τs. (2.39)

Proof. Considering the human dynamics given by Eqn. (2.1) and Eqn. (2.2),

and reference model dynamics given by Eqn. (2.18), one can write

Xr(s) = (sI − Ar)−1Br(Chξ(s) +Dhe
−τsΘ(s)). (2.40)

Moreover, notice that, using Eqn. (2.1), it can be written that

ξ(s) = (sI − Ah)−1Bhe
−τsΘ(s). (2.41)

Hence, combining Eqn. (2.40) and Eqn. (2.41), transfer function G1 in Eqn.

(2.39) follows. Next, with human error defined as

θ(t) = r(t)− Ehx(t), (2.42)

and, considering the error equation given by (2.17),

θ(t) = r(t)− Ehxr(t)− Ehe(t). (2.43)

By simple manipulations, Eqn. (2.38) follows. �
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Table 2.1: Numerical data used in illustrative numerical example

Tz 1
Tp 5
kp 5
τ 0.5

Ap


−0.0030 0.0390 0 −0.3220
−0.0650 −0.3190 7.7400 0
0.0201 −0.1010 −0.4290 0

0 0 1 0


Bp [0.0100 − 0.1800 − 1.1600 0]T

Ep [0 0 0 1]
Eh [0 0 0 1 0]
Br [0 0 0 0 1]T

Q diag([0 0 0 1 2.5])

Notice that the relationship between θ(t), r(t), and e(t) is important for two

reasons. Firstly, it allows to estimate the steady state error in θ(t) given r(t) since

limt→∞ e(t)→ 0, when the system is stable. Secondly, even if MRAC is properly

designed, and its error dynamics e(t) goes to zero in steady state, this dynamics

can influence the human error dynamics θ(t) in an undesirable way. Specifically,

certain frequency content in e(t) may excite θ(t) causing poor performance at the

human end.

Based on the given problem formulation, the next section analyzes the stability

of the closed-loop system depicted in Fig. 2.1 for various filter parameters to study

the performance of MRAC-human and MRAC-human-filter dynamics as well as

to better understand the error dynamics Θ(s) in (2.38).

2.3 Illustrative Numerical Example

Consider the longitudinal motion of a Boeing 747 airplane linearized at an altitude

of 40 kft and a velocity of 774 ft/sec with the dynamics given by [86]

ẋ(t) = Apx(t) +Bp(u(t) +W Tσ(x(t)), x(0) = x0, (2.44)
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where x(t) = [x1(t), x2(t), x3(t), x4(t)]
T is the state vector. Note that (2.44)

can be equivalently written as (2.4) with Λ = I. Here, x1(t), x2(t), and x3(t)

respectively represent the components of the velocity along the x, z and y axes of

the aircraft with respect to the reference axes (in crad/sec), and x4(t) represents

the pitch Euler angle of the aircraft body axis with respect to the reference axes

(in crad). Recall that 0.01 radian = 1 crad (centriradian). In addition, u(t) ∈ R
represents the elevator control input (in crad). Finally, W ∈ R3 is an unknown

weighting matrix and σ(x(t)) = [1, x1(t), x2(t)]
T is a known basis function. In

the following simulations, W = [0.1 0.3 − 0.3]T . The dynamical system given

in (2.44) is assumed to be controlled using a model reference adaptive controller,

the details of which are explained in Section 2.1. In addition, the aircraft is

assumed to be operated by a pilot whose Neal-Schmidt Model [4] is given by

Gh = kp
Tps+ 1

Tzs+ 1
e−τs, (2.45)

where kp is the positive scalar pilot gain, Tp and Tz are positive scalar time

constants, and τ is the pilot reaction time delay. The values of the parameters

used in the simulations are provided in Table 2.1. Consider next a linear filter of

the form

Gf =
F1s+ 1

F2s+ 1
, (2.46)

attached in series to the human model, when necessary, as shown in Fig. 2.1,

where scalars F1 and F2 are filter time constants. In this case, human-filter

transfer function becomes

Gh,f = kpe
−τsTzs+ 1

Tps+ 1

F1s+ 1

F2s+ 1
, (2.47)

which is equivalent to the human-filter state space in Eqn. (2.1) and Eqn. (2.2).

To obtain the nominal controller K, a linear quadratic regulator (LQR) ap-

proach is utilized with the following objective function to be minimized

J(·) =

∫ ∞
0

(xT (t)Qx(t) + µu2(t))dt, (2.48)

where Q is a positive-definite weighting matrix of appropriate dimension and µ is

a positive weighting scalar. Notice that the framework developed in Section 2.1
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is not limited to a particular design method for the nominal controller. To this

end, this task can be handled by a number of different ways. Here LQR is utilized

for convenience reasons. In this setting, the selection of the weighing matrices,

as expected, will affect the resulting nominal controller gain K in (2.13), which

in turn will determine the reference model dynamics (2.18). In the following

simulation studies, the effect of the weighting matrices, and thus the effects of

reference model parameters on system stability are investigated for various values

of pilot model parameters. To facilitate the analysis, reference model parameter

variations is achieved mainly by manipulating the control penalty variable µ.

Note that the purpose of the numerical examples provided in this section is to

verify the theoretical stability predictions of the proposed framework. Therefore,

the simulation results are created to present the stability/instability of the closed

loop system without paying attention to enhanced transient response character-

istics.

2.3.1 Effect of Control Penalty on System Stability for

Different Pilot Reaction Time Delays

To investigate the effects of the reference model parameter variations on the sta-

bility of the closed loop system, the control weight µ is manipulated by assigning

values in the range [0, 50]. Then, the rightmost pole (RMP) of the system, whose

characteristic equation is given by (2.36), is plotted against these µ values. This

procedure is repeated for various pilot reaction time delays and the results are

presented in Figure 2.2.

Figure 2.2 reveals several interesting results. First, it is shown that if the ref-

erence model dynamics is not chosen carefully with an appropriate µ value, then

the human-in-the-loop adaptive control system can be indeed unstable. Second,

it is seen that the closed loop system can be stable for small and large values

of the parameter µ and be unstable in between. Third, it is observed that as

the pilot reaction time delay increases, the unstable region of µ gets larger as
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Figure 2.2: The location of the right most pole of (2.37) with respect to the
control penalty variable µ, for different pilot reaction time delays.

indicated by RMP > 0.

It is predicted in Figure 2.2 that for µ = 10, pilot reaction time delays τ = 0.2

and τ = 0.5 results in a stable and unstable system, respectively. Time domain

tracking and control signal plots presented in Figure 2.3 confirm this prediction.

As noted earlier, the simulation results are employed to verify the theoretical

stability predictions of the proposed method and therefore controllers are not

tuned to obtain the best transient response. The investigation of the effect of

the human-controller interactions on the transient response will be addressed in

future research.

2.3.2 Effect of Control Penalty on System Stability for

Different Values of Pilot Model Poles

The poles of the pilot model (2.45) represent how fast the pilot responds to

changes in the aircraft pitch angle, which can also be interpreted as pilot aggres-

siveness. In this section, the effect of pilot aggressiveness on system stability is
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Figure 2.3: Tracking and control signal curves for two different values of the pilot
reaction time delays, τ = 0.2 and τ = 0.5, when µ = 10.

investigated while assigning values to the control penalty µ from 0 to 50.

Figure 2.4 depicts the effect of the pilot pole locations on the RMP. The zero

location and the time-delay of the pilot model, are kept at their nominal values of

-1 and 0.5, respectively. It is seen from the figure that, in general, unstable-stable-

unstable transition is observed for increasing values of µ and, as expected, higher

values of poles, corresponding to faster pilot response, decrease the µ region of

stability. Figure 2.5 depicts the tracking and control signal curves for two pilot

model pole locations; that is, -0.175 and -0.2, when µ = 10. As predicted in

Figure 2.4, the closed loop system remains stable when the pole is located at

-0.175 and becomes unstable when the pole is at -0.2.

2.3.2.1 Effect of Control Penalty on System Stability for Different

Values of Pilot Model Zeros

In this section, the effect of zeros of the pilot transfer function (2.45) on system

stability is investigated when control penalty µ takes values in the range [0,50].
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Figure 2.4: The location of the right most pole of (2.37) with respect to the
control penalty variable µ, for different pilot transfer function pole locations.

The pole location and the time delay of the pilot transfer function are kept at

their nominal values of -0.2 and 0.5, respectively. Changes in the zero location of

the model can be interpreted as an adjustment to the “lead” nature of the pilot,

which is related to pilot’s anticipation capabilities.

As seen in Figure 2.6, stable-unstable-stable transition structure still exists,

in general, for increasing µ values. Furthermore, it is seen that when the pilot

transfer function does not have a zero, a large µ region of instability arises.

It is noted that for the given nominal values of the system parameters, no

value of zero can make the system always stable, regardless of the µ value, since

delay-independence is determined only by the pilot’s gain kp.

Figure 2.7 presents tracking and control signal curves for pilot model zero

locations -0.2 and -0.909, for the case when µ = 1. As predicted in Figure 2.6,

the closed loop system becomes stable for the former and unstable for latter zero

value.
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Figure 2.5: Tracking and control signal curves for two different values of the pilot
transfer function pole locations, p = −0.175 and p = −0.2, when µ = 10.

2.3.3 Effect of Control Penalty on System Stability for

Different Values of Pilot Model Gains

The pilot gain in kp in (2.45) determines the intensity of the response that the

pilot gives to the pitch angle deviations in the aircraft. In some sense, this gain

also represents the aggressiveness of the pilot.

Stability properties of the pilot-in-the-loop system depending on the nominal

control penalty µ and the pilot gain kp is presented in Figure 2.8, where the

RMP vs µ is plotted for certain values of kp. In these analyses, the pole and zero

locations and time-delay of the pilot transfer function are kept at their nominal

values of -0.2, -1, and 0.5, respectively. From the figure, stable-unstable-stable

stability transition is once again observed for increasing values of µ. On the

other hand, it is seen that, similar to the trend for the pilot pole location, as

the pilot gain increases, the µ stability region shrinks. These results confirm

the well-known adverse effects of high gain of pilots on system stability, such as

pilot-induced oscillations [25, 45,87].
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Figure 2.6: The location of the right most pole of (2.37) with respect to the
control penalty variable µ, for different pilot transfer function zero locations.

It is predicted in Figure 2.8 that the closed loop system will be stable for kp = 4

and unstable for kp = 5, when µ = 10. This is confirmed by the results presented

in Figure 2.9, where time domain tracking and control signal curves are plotted

for these gain values.

2.3.4 Human-Pilot Dynamics with a Linear Filter

To study the effects of the filter on the stability of the nominal linear closed-loop

system Eqn. (2.28) with ϕ(·) = 0, the real part of the rightmost pole (RMP)

of this system is first computed using TRACE-DDE on the plane of the filter

parameters F1 and F2. Fig. 2.10 depicts the effect of F1 and F2 on the location

of RMP, where only blue areas indicate stability with negative real part of the

rightmost pole, RMP< 0. In this figure, it can be seen that to avoid the boundary

of instability when RMP = 0, the condition of F2 > F1 needs to be satisfied;

therefore, lag compensator, which is essentially a low-pass filter is needed (see,

for example, [88]).
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Figure 2.7: Tracking and control signal curves for two different values of the pilot
transfer function zero locations, z = −2 and z = −0.909, when µ = 10.

To decide on the optimal F1 and F2 values, and explore them in a larger

range, Simulated Annealing (SA) method is incorporated next (see, for example,

[89–91]). The optimization or energy function for this case is considered to be

JSA = RMP, (2.49)

as this study concerns the stability of the system. The method is initialized from

an unstable point with F1 = F2 = 1, which corresponds to no-filter case. Fig.

2.11 depicts how Simulated Annealing finds the optimal filter parameters, which

are F1 = 71.448 and F2 = 152.051. As the iterations progress, it is observed that

in most of the steps, F2 > F1, indicating consistency with the initial findings in

Fig. 2.10. For this filter parameters, RMP is computed to be = −0.012. One

point to note is that in designing the filter parameters using simulated annealing,

one has to be careful that Ar of the reference model remains Hurwitz, otherwise

it will violate the conditions of Theorem 1 and will result in instability of inner

loop, and therefore instability the overall close-loop system. This is the reason

why the filter cannot optimize the the energy function (2.49) further especially

for higher values of µ (see Fig. 2.12).
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control penalty variable µ, for different pilot transfer function gain values.

One key utility of the designed filter is that it is possible to stabilize an unstable

MRAC-human closed-loop system. Specifically, considering Fig. 2.12, one can

see that with the value of µ = 15 and pilot model settings as in Table 2.1,

the nonlinear closed-loop system is unstable; and, when the linear filter with the

parameters obtained by simulated annealing method is inserted in the closed-loop

system, stability can be recovered. Fig. 2.13 and its zoom-in version in Fig. 2.14

depict the time domain response of the system, for both unstable and stabilized

systems1. Note that the filter is ineffective on the stability of the closed-loop

system for µ > 22, although it improves the transience, see Fig. 2.15.

Moreover, as previously mentioned, LQR method is used to design the nominal

controller K in (2.13). Since Ar = A − BK, the designed K will determine the

reference model dynamics. As shown in Fig. 2.12, for the values of µ < 20,

prescribed performance for a given Ar matrix is not attainable, since the overall

system becomes unstable; for example, as Figure 2.16 depicts, attaining faster

reference system, i.e. rise of the reference system tr < 3.423 seconds, is not

1It is worth noting that for the sake of consistency, an unstable case is selected for the
without-filter plots, that was stabilized using linear filter.
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Figure 2.9: Tracking and control signal curves for two different values of the pilot
transfer function gain values, kp = 4 and kp = 5, when µ = 10.

feasible with the current structure; but, by simply inserting a linear filter, faster

reference system performance becomes attainable.

2.3.5 Human error vs. MRAC error

As discussed in the stability analysis, it is critical to study how human error Θ(s)

is related to the control error signal E(s). Therefore, the effect of the presence

of a linear filter on this relationship is next studied. Fig. 2.17 depicts the Bode

plots of the transfer function derived in (2.38), assuming R(s) = 0, for the same

pilot model settings as in Table 2.1. Here, it is observed that the filter suppresses

undesired peak of 35.854 dB at ω = 0.800 rad/sec down to 6.191 dB at ω = 0.71

rad/sec, achieving a 26.663 dB reduction. This indicates that any excitation from

MRAC error dynamics e(t) on θ(t) error of the human at ω = 0.8 rad/sec can be

reduced more than an order of magnitude, thereby causing much less detrimental

effects on the human error dynamics when a lag filter is utilized within the MRAC

scheme.
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Figure 2.10: Comparison of the effect of F1 and F2 on the color-coded real part
of the rightmost pole (RMP) of the nominal linear system for different penalty
gains µ of LQR. the system is stable for RMP < 0, otherwise unstable.
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Figure 2.11: F1 and F2 Vs. iterations of the simulated annealing method.

Figure 2.12: The effect of designed linear filter on stability of the linear nominal
system with respect to penalty gain µ of LQR.
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Figure 2.13: Response of the closed-loop nonlinear system with and without using
the designed linear filter for µ = 15.

Figure 2.14: Close-up response of the closed-loop nonlinear system obtained in
Fig. 2.13.
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Figure 2.15: Response of the closed-loop nonlinear system with and without using
the designed linear filter for µ = 40.

Figure 2.16: Change of the rise time (tr) of the reference system with respect to
the penalty gain µ.
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Figure 2.17: Bode plots of the transfer function between the input E(s) and
output Θ(s) derived in (2.38) for the case with and without the designed linear
filter. Here reference input R(s) is assumed to be zero.
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Chapter 3

Stability of Human-in-the-Loop

Telerobotics in the Presence of

Time-Delays

In this chapter, stability of various architectures of human-in-the-loop telerobotic

system with force feedback and communication delays is investigated. A general

linear time-invariant time-delayed mathematical model of the human operator

is incorporated into the system dynamics based on the interaction of the hu-

man operator with the rest of the telerobotic system. The resulting closed loop

dynamics contains two independent time-delays mainly due to back and forth

communication delay and human reaction time delay. Stability of this dynamics

is characterized next on the plane of the two delays by rigorous mathematical

investigation using Cluster Treatment of Characteristic Roots (CTCR). An illus-

trative numerical example is further provided in the results section along with

interpretations.
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Figure 3.1: Block Diagram of the overall human-in-the-loop telerobotic: baseline
when the controller = 1; otherwise: configuration 1.

3.1 Problem Formulation

3.1.1 Baseline

3.1.1.1 Baseline System Analysis

The human-in-the-loop telerobotic system shown in Figure 3.1 depicts the base-

line architecture when the controller = 1 in the frequency domain. This archi-

tecture is assumed to be in free motion state (disturbance = 0) Specifically, a

human operator with the following linear time-invariant model is considered in

the closed-loop analysis,

ẋh(t) = Ahxh(t) +Bhθ1(t− τh), xh(0) = 0 (3.1)

Fh(t) = Chxh(t) +Dhθ1(t− τh), (3.2)

where xh(t) ∈ Rnh is the human state vector, τh ∈ R+ is the human reaction

time-delay, Ah ∈ Rnh×nh , Bh ∈ Rnh×nθ1 , Ch ∈ RnFh×nh , and Dh ∈ RnFh×nθ1 are

“human operator system” matrices, and Fh(t) ∈ RnFh is the human operator’s

force command. The input to the human dynamics is given by

θ1 , r(t)− ym(t), (3.3)
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where θ1(t) ∈ Rnr is the error vector with r(t) ∈ Rnr defined as the reference

input, and ym(t) as the output of the master robot.

Master robot is considered to be a system with the following dynamics

ẋm(t) = Amxm(t) +BmFm(t), xm(0) = 0 (3.4)

ym(t) = Cmxm(t) +DmFm(t), (3.5)

where xm(t) ∈ Rnm is the master robot state vector, ym(t) ∈ Rnym is the output

of the master robot, and Am ∈ Rnm×nm , Bm ∈ Rnm×nFm , Cm ∈ Rnym×nm , and

Dm ∈ Rnym×nFm are the master robot system matrices. Fm(t) ∈ RnFh is the force

input applied to the master robot, given by

Fm(t) = Fh(t)− Fc(t− τ2), (3.6)

where Fc(t) is the output of the slave-side controller, and τ2 ∈ R+ is the feedback

communication time-delay.

The slave robot dynamics is governed by

ẋs(t) = Asxs(t) +BsFc(t), xs(0) = 0 (3.7)

ys(t) = Csxs(t) +DsFc(t), (3.8)

where xs(t) ∈ Rns is the slave robot state vector, ys(t) ∈ Rnys is the output of the

slave robot, and As ∈ Rns×ns , Bs ∈ Rns×nFc , Cs ∈ Rnys×ns , and Ds ∈ Rnys×nFc

are the slave robot system matrices.

The slave-side controller dynamics is in the following general form

ẋc(t) = Acxc(t) +Bcθ2(t), xc(0) = 0 (3.9)

Fc(t) = Ccxh(t) +Dcθ2(t), (3.10)

where xc(t) ∈ Rnc is the controller state vector, and Ac ∈ Rnc×nc , Bc ∈ Rnc×nθ2 ,

Cc ∈ RnFc×nc , and Ds ∈ RnFc×nθ2 are the controller system matrices. The tracking

error on the slave side is given as

θ2(t) , ym(t− τ1)− ys(t), (3.11)

where θ2(t) ∈ Rnym , and τ1 ∈ R+ is the feedforward communication time-delay.
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3.1.1.2 Baseline Stability Analysis

Using (3.3) and (3.5), one obtains

θ1(t) , r(t)− Cmxm(t), (3.12)

and using (3.5), (3.8), and (3.11), the slave side tracking error is expressed as

θ2(t) = G0Cmxm(t− τ1)−G0Csxs −G0DsCcxc, (3.13)

where the existence of G0 = (I + DsDc)
−1 is assumed implicitly. Considering

(3.2), (3.6), and (3.9), it can be written that

Fm(t) = Chxh(t) +Dhθ1(t− τh)− Ccxc(t− τ2)−Dcθ2(t− τ2). (3.14)

By letting φ(t) , [xTh (t), xTm(t), xTc (t), xTs (t)] ∈ Rn, and using (3.4), (3.7), (3.9),

(3.12), (3.13) and (3.14), the augmented state space representation of the dynam-

ics in Figure 3.1 is obtained as

φ̇(t) = A0φ(t) +Aτhφ(t− τh) +Aτ1φ(t− τ1) +Aτ2φ(t− τ2) +Aτ1τ2φ(t− τ1− τ2)

+ Bτhr(t− τh), (3.15)

where n = nh + nm + nc + ns. A0, Aτh , Aτ1 , Aτ2 , Aτ1τ2 ∈ Rn×n, and Bτh ∈ Rn×nh

are augmented system matrices defined as

A0 ,


Ah ~0 ~0 ~0

BmCh Am ~0 ~0

~0 Ac −BcG0Cs ~0 −BcG0Cs
~0 ~0 BsCc As −BsDcG0Cs

 , (3.16)

Aτh ,


~0 −BhCm ~0 ~0

~0 −BmDhCm ~0 ~0

~0 ~0 ~0 ~0

~0 ~0 ~0 ~0

 , (3.17)

Aτ1 ,


~0 ~0 ~0 ~0

~0 ~0 ~0 ~0

~0 BcG0Cm ~0 ~0

~0 BsDcG0Cm ~0 ~0

 , (3.18)
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Aτ2 ,


~0 ~0 ~0 ~0

~0 ~0 −BmCc BmDcG0Cs
~0 ~0 ~0 ~0

~0 ~0 ~0 ~0

 , (3.19)

Aτ1τ2 ,


~0 ~0 ~0 ~0

~0 −BmDcG0Cm ~0 ~0

~0 ~0 ~0 ~0

~0 ~0 ~0 ~0

 , (3.20)

Bτh ,


Bh

BmDh

~0

~0

 . (3.21)

Assuming identical time-delays in the back and forth communication, τ1 = τ2 = τc

holds, then the following state space representation follows

φ̇(t) = A0φ(t) +Aτhφ(t− τh) +Aτcφ(t− τc) +Aτcτcφ(t− 2τc) + Bτhr(t− τh),
(3.22)

where Aτc , Aτ1 + Aτ2 and Aτcτc , Aτ1τ2 . Characteristic equation of (3.22) is

given by

CE = det(sI −A0 −Aτhe−τhs −Aτce−τcs −Aτcτce−2τcs) = 0. (3.23)

which, when expanded, follows the general form

CE =
n∑
k=0

n−k∑
j=0

n−k−j∑
l=0

akjl(s)e
−(kτh+(j+2l)τc)s, (3.24)

where akjl(s) are polynomials in “s”. Next, the Rekasius substitution is utilized1

e−τjs =
1− Tjs
1 + Tjs

, Tj ∈ R, j = h, c, (3.25)

1Note that this substitution for single delay systems was proposed in [92], its extensions to
multiple delays as well as developments in the single delay case can be found in [52].
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which is an exact substitution for s = jωc roots of the characteristic equation.

Then, a polynomial in Tj is obtained, which is given as

CE =
n∑
k=0

n−k∑
j=0

n−k−j∑
l=0

akjl(s)

(
1− Ths
1 + Ths

)k (
1− Tcs
1 + Tcs

)j+2l

. (3.26)

Furthermore, (3.26) can be simplified by expanding it by (1 + Ths)
n(1 + Tcs)

n−k,

which does not bring any artificial s = jωc roots, since Tc and Th are both real.

Next, it can be shown that using the phase condition in (3.25), the following

mapping between Tj and τj values holds:

τj =
2

ωc

[
tan−1(ωcTj + kπ)

]
, k = 0, 1, ... ; j = h, c. (3.27)

It is important to note that s = jωc roots of (3.23) and (3.26) one to one

match [52] [51]. Since the transformed characteristic equation is provided in

the polynomial form in (3.26), which is simpler than (3.23), all the imaginary

axis crossings s = jωc are first calculated in terms of Tc ∈ R and Th ∈ R from

(3.26), for example, using Routh’s array. Using these Tc and Th values obtained

from Routh’s array, (3.27) can then be used to calculate the delays τj for which

(3.23) has crossings at the same crossing s = jωc.

Note that there are infinitely many delays corresponding to each pair (Tc,

ωc) and (Th, ωc) due to the counter k. The smallest positive of the delays and

the corresponding imaginary axis crossings ωc ∈ Ω construct the so-called “ker-

nel curves”, and the remaining positive delays construct the so-called “offspring

curves”. In this problem, offspring curves follow the corresponding kernel curve

in terms of stabilizing or destabilizing behavior of the root s = jωc, which is

associated with the property called “Root Tendency (RT) invariance”. RT for

the specific problem at hand is calculated for s = jωc using

RT |τcs=ωci= sgn{Im [H(s, τh)]}, (3.28)

where

H(s, τh) =

∑n
k=0

∑n−k
j=0

∑n−k−j
l=0 ((

dakjl(s)

ds
)kjl − (2l + j)τcakjl)∑n

k=0

∑n−k
j=0

∑n−k−j
l=0 (−akjlk)

. (3.29)
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In order to check the stability of a region on the plane of delays, one keeps τc

fixed and uses the invariance property of RT with respect to time-delay τh to

determine the number of unstable roots of the system on τc − τh, see details in

the above-cited references.

3.1.2 Configuration 1

3.1.2.1 System Analysis

Figure 3.1 also depicts a human-in-the-loop telerobotic system with controller in

effect. In this configuration, compared to the baseline, the environment effects

(disturbances) are included, which means that the slave system touches an ob-

stacle, say a tissue. Also, a master-side controller is considered to obtain force

convergence. Therefore, the master-side controller dynamics is given as

ẋcm(t) = Acmxcm(t) +BcmFm(t), xcm(0) = 0 (3.30)

Fcm(t) = Ccmxcm(t) +DcmFm(t), (3.31)

where xcm(t) ∈ Rncm is the master side controller state vector, and Acm ∈
Rncm×ncm , Bcm ∈ Rncm×nFm , Ccm ∈ RnFcm×ncm , and Dcm ∈ RnFcm×nFm are the

master side controller system matrices. Here, Fm(t) ∈ RnFh is the force input

applied to the master-side controller, and is defined similar to (3.14).

The slave robot dynamics is given by:

ẋs(t) = Asxs(t) +Bs(Fcs(t) +D), xs(0) = 0 (3.32)

ys(t) = Csxs(t) +Ds(Fcs(t) +D), (3.33)

where xs(t) ∈ Rns is the slave robot state vector, ys(t) ∈ Rnys is the output of the

slave robot, and As ∈ Rns×ns , Bs ∈ Rns×nFc , Cs ∈ Rnys×ns , and Ds ∈ Rnys×nFc

are the slave robot system matrices, and τ2 ∈ R+ is the feedback communication

time-delay. Moreover, the environment effect D is considered as disturbance

with the dynamics given by D = −W Tσ, where W is the weight vector defined

as [ke;Be], and σ is a known basis function defined as [xs; ẋs]. Hence, ke and
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Be are respectively stiffness and damping coefficients of the environment model.

Finally, the slave side controller is formulated in view of (3.9) and (3.10).

3.1.2.2 Stability Analysis

θ1(t) and θ2(t) are defined similar to (3.12) and (3.13). Moreover, using the

incorporated disturbance model, it can be written that

D = G1(−ke −BeAs)xs +G1(−BeBs)Fcs, (3.34)

where the existence of G1 = (I+BeBs)
−1 is assumed implicitly. Now, considering

(3.2), (3.6), and (3.9), it can be written that

Fm(t) = Chxh(t) +Dhθ1(t− τh)− Ccxc(t− τ2)−Dcθ2(t− τ2). (3.35)

Finally, by using the previously defined φ(t), and using (3.4), (3.9), (3.12), (3.13),

(3.32), and (3.35), the augmented state space representation of the dynamics is

obtained as

φ̇cf1(t) = Acf10 φcf1(t) +Acf1τh
φcf1(t− τh) +Acf1τ1

φcf1(t− τ1) +Acf1τ2
φcf1(t− τ2)

+Acf1τ1τ2
φcf1(t− τ1 − τ2) + Bcf1τh

r(t− τh), (3.36)

where Acf10 , Acf1τh
, Acf1τ1

, Acf1τ2
, Acf1τ1τ2

∈ Rn×n, and Bcf1τh
∈ Rn×nh are augmented

system matrices. To be consistent with the previous case, τc = τ1 = τ2 is assumed,

as the communication time-delay while human operator reaction time-delay τh is

in general different from τc, i.e., τh 6= τc. This then leads to the following state

space representation

φ̇cf1(t) = Acf10 φcf1(t) +Acf1τh
φcf1(t− τh) +Acf1τc φ

cf1(t− τc) +Acf1τcτcφ
cf1(t− 2τc)+

Bcf1τh
r(t− τh),

(3.37)

where Acf1τc , A
cf1
τ1

+ Acf1τ2
and Acf1τcτc , A

cf1
τ1τ2

. The dynamics (3.37) is a lin-

ear time-invariant multiple-time-delay system, similar to (3.22), and its stability

characteristics for various time-delay values can be investigated using the same

method summarized in Section 3.1.1.2.
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Figure 3.2: Block Diagram of the overall human-in-the-loop configuration 2 teler-
obotic system

3.1.3 Configuration 2

3.1.3.1 System Analysis

Human-in-the-loop telerobotics system with the block diagram depicted in Figure

3.2 is considered. In this set-up, compared to the baseline and configuration 1,

see Figure 3.1, a visual feedback signal, that the human operator receives, is also

considered. This is considered to represent a more practical scenario. Therefore,

the input to the human dynamics is given by

θ1 , r(t)− ys(t− τ3), (3.38)

where θ1(t) ∈ Rnr is the error vector with r(t) ∈ Rnr defined as the reference

input, and ys(t − τ3) as the delayed output of the slave robot. The rest of the

dynamics is the same as that of the previous configurations.
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3.1.3.2 Stability Analysis

Using the same approach in Section 3.1.1.2, along with (3.38), the previously

defined φ(t), and Equations (3.4), (3.7), (3.9), (3.12), (3.13) and (3.14), the aug-

mented state space representation of the dynamics is obtained as

φ̇cf2(t) = Acf20 φcf2(t) +Acf2τh
φcf2(t− τh) +Acf2τ1

φcf2(t− τ1) +Acf2τ2
φcf2(t− τ2)

+Acf2τ1τ2
φcf2(t− τ1 − τ2) +Acf2τ3τh

φcf2(t− τh − τ3) + Bcf2τh
r(t− τh), (3.39)

where Acf20 , Acf2τh
, Acf2τ1

, Acf2τ2
, Acf2τ1τ2

∈ Rn×n, and Bcf2τh
∈ Rn×nh are augmented

system matrices. Similarly, it is assumed that communication time-delays in

both directions are identical, for consistency with respect to previous cases, τ1 =

τ2 = τ3 = τc. This then leads to the following state space representation

φ̇cf2(t) = Acf20 φcf2(t) +Acf2τh
φcf2(t− τh) +Acf2τc φ

cf2(t− τc) +Acf2τcτcφ
cf2(t− 2τc)

+Acf2τcτh
φcf2(t− τc − τh) +Acf2τcτcτh

φcf2(t− 2τc − τh) + Bcf2τh
r(t− τh),

(3.40)

where Acf2τc , A
cf2
τ1

+ Acf2τ2
, Acf2τcτc , A

cf2
τ1τ2

, Acf2τcτh
, Acf2τ3τh

, Acf2τcτcτh
, Acf2τ1τ3τh

. The

dynamics (3.40) is a linear time-invariant multiple-time-delay system, similar

to (3.22), and its stability characteristics for various time-delay values can be

investigated using the same method summarized in Section 3.1.1.2.

3.2 Results and Discussions

3.2.1 Preliminaries

For the telerobotic system architectures introduced above, a PI controller at the

slave side is considered in order to synchronize the master and slave robots’

velocities. When applicable, depending on the configuration, the controller at

the master side is also a PI controller.

Moreover, a Neal-Schmidt Model [4] is considered to capture human operator’s

dynamics given by Gh = kp
αs+1
βs+1

e−τhs, where kp ∈ R+ is the human operator’s
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Table 3.1: Numerical data used in all scenarios

Human model gain (kp) 1 [Nsec/m]
Human time constant (α) 10 [sec]
Human time constant (β) 1 [sec]

Slave-side controller proportional gain (Bcs) 5 [Nsec/m]
Slave-side controller integral gain (Kcs) 10 [N/m]

Master-side controller proportional gain (Bcm) 0.1 [Nsec/m]
Master-side controller integral gain (Kcm) 0.2 [N/m]
Master and salve robot mass (mm and ms) 1 [kg]

Stiffness of the environment model (ke) 0.1 [N/m]
Damping of the environment model (Be) 0.2 [Nsec/m]

gain, α ∈ R+ and β ∈ R+ are time constants, and τh ∈ R+ is the human operator

reaction time-delay.

The master and slave robot dynamics are given as

mmv̇m(t) = Fcm, vm(0) = 0, (3.41)

msv̇s(t) = Fcs +D, vs(0) = 0, (3.42)

where vm(t) = ẋm(t) ∈ R and vs(t) = ẋs(t) ∈ R. Therefore, master and slave

robots transfer functions are given by Gm = 1
mms

and Gs = 1
mss

. The slave- and

master-side PI controllers dynamics are given by Bcss+Kcs
s

and Gcm = Bcms+Kcm
s

,

respectively, where Bcs, Kcs, Bcm, Kcm ∈ R+ are the associated controller param-

eters.

Numerical values of the parameters used in all the scenarios are provided in

Table 3.1.

3.2.2 Stability Analysis of the Baseline Configuration

For the baseline telerobotic configuration depicted in Figure 3.1, the complete

stability picture is provided in Figure 3.3 for a range of time-delays. Note that

the gray area marks the stable region, and red and blue curves, which correspond

to kernel and offspring curves, respectively, construct the boundaries where the
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Figure 3.3: Stability characterization of the baseline architecture of the human-
in-the-loop telerobotic system in terms of the communication time-delay τc and
the human operator reaction time-delay τh. Red line is the kernel curve, and blue
lines are the offspring curves. Gray shaded region shows the stable areas.

Figure 3.4: Output of the master system in the baseline configuration for the
case of τh = 0.15s and four different τc values for which the stable-unstable-
stable-unstable transition is observed.
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Figure 3.5: Comparison of stability characterization of the human-in-the-loop
configuration 1 telerobotic system in terms of communication τc and human op-
erator reaction time-delays τh with respect to the baseline. Light purple area
marks the stable region gained by utilizing this configuration, which is beyond
the gray area obtained in Figure 3.3 in the baseline configuration and is stable in
configuration 1 as well.

system has at least one imaginary pole at s = jω. It is noted that the area

where the human reaction time-delay is less than 0.1 seconds indicates a stable

region regardless of the communication time-delay τc showing that τc may not be

the main concern for stability. Determining factor is rather the human operator

reaction time-delay, which causes instability even at very small values compared

to what the actual human operator reaction time-delays might be (for example

0.3 seconds in [4]) for a given τc. Therefore, this baseline architecture may not be

feasible and can easily lead to instability for the considered system characteristics.

Figure 3.4 depicts the output of the master for the baseline configuration at

different communication time-delay values. The results are in agreement with

the stability picture provided in Figure 3.3.

3.2.3 Stability Analysis of Configuration 1

Figure 3.5 shows how stability limits change with the consideration of environ-

ment effects and master-side controller. Note that the red lines depict the kernel
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Figure 3.6: The synchronization of the master (ym) and slave (ys) outputs, to-
gether with the reference trajectory, for configuration 1, provided in Figure 3.1,
for τc = 0.1 [sec] and τh = 0.8 [sec]. The synchronization error (θ2) converges to
zero.

Figure 3.7: The response of configuration 1 presenting the stable-to-unstable and
unstable-to-stable transitions as τc increases, for a fixed τh.

48



Figure 3.8: Comparison of stability characterization of the configuration 2 in
terms of communication τc and human operator reaction time-delays τh with
respect to the baseline and configuration 1. The green area marks the stable
region added to that in baseline but with a loss of gray stable regions above the
green boundary (originally stable in the baseline architecture).

and offspring curves of the baseline system a part of which was provided in Figure

3.3, and the thick purple curve depicts those of the configuration 1, where the

region on the left of this curve shows the stable region (light purple and gray

shaded areas). It can be seen that configuration 1 can accommodate much larger

human operator reaction time-delays τh.

Next, a set of simulations is performed. Figure 3.6 depicts system output for

the master and slave systems. Figure 3.7 shows the response of the slave robot

to a step reference input for a range of time-delay values. Note the transition

from stability to instability and vice versa for a single value of human operator

reaction time-delay, τh = 0.8s, which is in agreement with the stability picture

given in Figure 3.5.

3.2.4 Stability Analysis of Configuration 2

Figure 3.8 shows how the visual feedback affects the stability of the closed loop

system compared to that of the baseline and configuration 1 systems. Note that
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Figure 3.9: Master and slave systems output, and θ2 signals of the human-in-the-
loop configuration 2 telerobotic system for τc = 0.1 and τh = 0.4 seconds.

Figure 3.10: Response of configuration 2 showing the stable-to-unstable transition
for different τc values given a fixed value of τh.

50



the dark green curves depict the kernel and offspring curves for this configuration,

and the light shaded green region indicates the stability region added to that in the

baseline architecture. Although this configuration can accommodate considerably

larger human operator reaction time-delays (area below the green boundary)

compared to the baseline, one can see how limited the stability region becomes,

compared to configuration 1, especially along τc axis.

Figure 3.9 depicts the outputs of the master and slave systems for τc = 0.1 and

τh = 0.4 seconds. Figure 3.10 shows stable to unstable transition for increasing

values of τc. It is noted that a stable-unstable-stable transition is not observed for

configuration 2, which means that stability cannot be recovered for larger delays

once the system enters the unstable zone in the delay parameter space.
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Chapter 4

Control-Oriented Mathematical

Modeling of the Geomagic R©

TouchTM (PHANToM R© Omni R©)

In this chapter, a data driven and first principles modeling of the Geomagic R©

TouchTM (formerly PHANToM R© Omni R©) device is considered. A simple linear

model is provided for one of the degrees of freedom based on fundamental in-

sights into the device structure and in light of experimental observations. The

parameters of the model are estimated through extensive tests.

4.1 Device Dynamics

Fig. 4.1 shows the Geomagic R© TouchTM (formerly PHANToM R© Omni R©), a

schematic of which is shown in Fig. 4.2. In this device, in order to prevent back-

lash, a preloaded tendon cable is used whose length is adjusted by a setscrew [93].

Moreover, as shown in Figs. 4.3-4.6, the arm, whose moment of inertia will be

∗ Readily available at www.hizook.com/blog/2012/04/22/two-more-robotics-companies-get-
acquired-my-robot-nation-and-sensable-technologies. Permission to use these figures is pending.
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Figure 4.1: Geomagic R© TouchTM (formerly, PHANToM R© Omni R©) device.

Figure 4.2: A schematic of Geomagic R© TouchTM (formerly, PHANToM R© Omni R©)
device.
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Figure 4.3: Internal parts of the Geomagic R© TouchTM (formerly PHANToM R©

Omni R©) device∗: cable.

Figure 4.4: Internal parts of the Geomagic R© TouchTM (formerly PHANToM R©

Omni R©) device∗: connection of the cable and the rotor shaft.
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Figure 4.5: Internal parts of the Geomagic R© TouchTM (formerly PHANToM R©

Omni R©) device∗: connection of the arm and rotor shaft.

Figure 4.6: Internal parts of the Geomagic R© TouchTM (formerly PHANToM R©

Omni R©) device∗: the actuator and encoder connection.
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Figure 4.7: Schematic showing the system elements and their connections for the
Geomagic R© TouchTM (formerly PHANToM R© Omni R©) device while all degrees of
freedom are constrained except θ2.

Figure 4.8: Interim schematic showing the system elements and their connections
for the Geomagic R© TouchTM (formerly PHANToM R© Omni R©) device.

Figure 4.9: Simplified Schematic showing the system elements and their connec-
tions for the Geomagic R© TouchTM (formerly PHANToM R© Omni R©) device.
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called as J1, is connected to the rotor shaft, whose moment of inertia will be

called as J2, by torsional spring, the stiffness of which will be represented by

k1. A damping element with a coefficient b1, representative of possible viscous

friction at the arm-rotor connection, is also considered (see Fig. 4.7). The rotor

shaft also experiences a resisting damping force, with a coefficient of b3, due to

the back-EMF effect [94]. The rotor shaft is connected to the encoder using a stiff

spring k3. The encoder assembly, whose inertia is given as J3, is assumed to be

experiencing a spring-damper effect with coefficients k2 and b
′
2, respectively. Since

the spring k3 is thought to be relatively stiff to minimize measurement errors, it is

assumed that its deflection is negligible, which helps simplify the structure given

in Fig. 4.7 and obtain the configuration given in Fig. 4.8, where b2 = b
′
2 + b3.

Moreover, it is assumed that the springs, dampers, and the rotor are of negligible

weight, which provides an even simpler structure given in Fig. 4.9, where there is

only one inertia, J1. The only degree of freedom of the main arm in our analysis

is the movement along the pitch axis, which is represented by the change of angle

β. The remaining degrees of freedom of the device, i.e., the motions around the

roll and yaw axes, are assumed to be constrained.

Under the above assumptions, the differential equation representing the dy-

namics of the device is given by

J1
d2β(t)

dt2
= u2 − Tw − k1(β(t)− θ2(t))− b1(

dβ(t)

dt
− dθ2(t)

dt
), (4.1)

where u2 ∈ R and Tw ∈ R are the input to the device and gravitational torque,

respectively. Since it is assumed that the inertia of the rotor is much smaller

than that of the main arm, the forces acting through the spring-damper blocks

(b1− k1, b2− k2) can be taken as equal:

k1(β(t)− θ2(t)) + b1(
dβ(t)

dt
− dθ2(t)

dt
) = k2θ2(t) + b2

dθ2(t)

dt
. (4.2)

Taking the Laplace transform of (4.1) and (4.2) and equating the common terms

yields the following transfer function between θ2, the rotation measured by the

device sensors, and the net input is obtained

G =
Θ2(s)

Us(s)
=
N(s)

D(s)
, (4.3)
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where N(s) = b1s+ k1 and D(s) = J1(b1 + b2)s
3 + (J1(k1 + k2) + b1b2)s

2 + (b1k2 +

b2k1)s+ k1k2.

Considering the general governing third order dynamics of the device, which

could be deduced from (4.3), it can be written

P1
d3θ2
dt3

+ P2
d2θ2
dt2

+ P3
dθ2
dt

+ P4θ2 = u2 + (b1/k1)
du2
dt

+ P4u2 − Tw, (4.4)

where P1−4 ∈ R could be easily evaluated compared to (4.3). When the device

arm is freely released to reach its equilibrium point, P4θ2eq = −Tw, and therefore,

θ2eq = −Tw/P4. Defining θ̄2 = θ2 − θ2eq, and substituting into (4.4), it can be

obtained that

P1
d3θ̄2
dt3

+ P2
d2θ̄2
dt2

+ P3
dθ̄2
dt

+ P4θ̄2 = u2 + (b1/k1)
du2
dt
. (4.5)

Writing the initial condition of θ̄2 as θ̄2(t = 0) = θ̄2,0, and defining α = θ̄2 − θ̄2,0,
it can be obtained that

P1
d3α

dt3
+ P2

d2α

dt2
+ P3

dα

dt
+ P4α = u2 + (b1/k1)

du2
dt
− P4θ̄2,0. (4.6)

P4θ̄2,0 can be obtained using (4.5) in a static test, in which a torque is gradually

applied, the very first sign of motion is spotted, and the associated torque value

is recorded. This value is found to be approximately 0.24 Nm. It is noted that

the transfer function (4.3) is derived assuming zero initial conditions. This as-

sumption is no longer needed by defining the input as u2 − 0.24 and the output

as α.

4.2 Parameter Estimation

4.2.1 Preliminaries

The experimental setup is given in Fig. 4.2. For parameter estimation, an upward

step torque input is first exerted with different input amplitudes long enough for
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it to reach various steady state values, αss, scanning a range of about 2-23 de-

grees in the device workspace, and then, let the arm fall freely. These two stages

are called upward and downward motions throughout this chapter. The posi-

tion sensing/input is done using the x, y, z digital encoders of the device, which

has resolution of ∼ 0.055 millimeters according to the manufacturer. For the up-

ward motion, using the step-response input/output data, a transfer function with

three poles and one zero, similar to (4.3) is fitted using standard Matlab system

identification toolbox using discrete time domain transfer function fitting with no

preprocessing. Totally 7 tests were conducted for a range of inputs from u2 = 0.25

[Nm] to u2 = 0.36 [Nm]. A similar procedure is followed for the downward motion

using the free fall data of the arm for a number of distinct initial angular deflec-

tions (totally 7 tests). Accordingly, an experimentally derived transfer function

is obtained for each upward/downward test similar to the following

Gexp =
a0s+ a1

s3 + a2s2 + a3s+ a4
. (4.7)

Using (4.3)-(4.7), it can be shown that the parameters of (4.3) represent the

following physical quantities:

a0 =
b1

J1(b1 + b2)
, (4.8)

a1 =
k1

J1(b1 + b2)
, (4.9)

a2 =
k1 + k2
b1 + b2

, (4.10)

a3 =
b1k2 + b2k1
J1(b1 + b2)

, (4.11)

a4 =
k1k2

J1(b1 + b2)
. (4.12)

In order to check the accuracy of the results, the relative error vector between

the recorded experimental and the predicted trajectory vectors of the arm, αexp

and αth, is used which is defined as

erel =
||e||
||αexp||

, (4.13)

where e = αexp − αth.
∗https://www.3dsystems.com/haptics-devices/touch/specifications
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Figure 4.10: Very first moments of the response of the device with the considered
threshold.

Figure 4.11: Test of successive step inputs.

4.2.2 A Discussion on the Technical Issues

In the experiments, a delay of about 0.4 seconds is experienced at the beginning

of the device operation (device API build time) and a period of about 1 second

of sedentariness while the clock is ticking (see Fig. 4.10). However, it is observed

that this issue is not persistent after the initial device operation. In Fig. 4.11,

two consecutive responses of the device to step inputs is shown. Although the

problematic delay occurs in the first response, the device responds almost im-

mediately in the second run at t = 15 seconds. Therefore, a delay term in the

response is not taken into account and it is assumed that the initial response

starts at α = 0.08 degrees. This α threshold is shown in Fig. 4.10.
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Figure 4.12: How sampling time changes over the course of a typical experiment.
Same trend is observed in all experiments.

Table 4.1: Transfer functions of Fig. 4.13.

a 6614
s3+3.548s2+54.9s+52.69

b 0.0009573s+5504
s3+4.667s2+24.94s+32.27

c 0.0005488s+6776
s3+5.284s2+24.25s+39.86

d 0.002028s+7242
s3+4.628s2+26.67s+37.61

e 0.001107s+8860
s3+5.569s2+27.24s+46.76

f 0.002731s+6619
s3+4.764s2+21.92s+32.41

g 0.00135s+8700
s3+5.631s2+27.22s+46.99

Another technical issue is that the sampling rate during the data acquisition

is not constant during the experiments, it increases gradually from around 0.004

seconds at the beginning to around 0.02 seconds at the end, as revealed by Fig.

4.12, for a typical test. To obtain an evenly spaced (in-time) data, linear inter-

polation is deployed assuming an 0.004 seconds data collection interval Ts.

4.2.3 Transfer Functions Modeling the Upward Motion

Fig. 4.13 shows the output of each transfer function fitted to the data. Transfer

functions are provided in Table. 4.1.
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Figure 4.13: Output of each transfer function (solid curves) specific to each test
data (dashed curves). The associated relative error of the data for the interval
between t = 0 and t = ts (1% settling time), obtained using (4.13), are 0.0303
(a), 0.0426 (b), 0.1485 (c), 0.0611 (d), 0.1506 (e), 0.1062 (f), and 0.1383 (g).

,
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Figure 4.14: Output of (4.14) (solid curve) for a typical test data (dashed curve).
The associated relative error of the data for the interval between t = 0 and t = ts
(1% settling time), obtained using (4.13), is 0.1473.

Table 4.2: Transfer functions of Fig. 4.15.

a 0.0008822s+2.466e6
s3+517.4s2+1.704e4s+7.927e4

b 6.134e−5s+2.45e6
s3+759.9s2+7970s+4.663e4

c 2.598e6
s3+594.5s2+8686s+4.303e4

d 5.034e−5s+3.114e6
s3+653.5s2+8603s+2.334e4

e 0.01295s+2.709e6
s3+674.5s2+3135s+7495

f 2.784e6
s3+461.9s2+4894s+7485

g 2.887e6
s3+544.6s2+4055s+6711

Next, an average transfer function of all those transfer function is provided as

Gup =
0.001246s+ 7188

s3 + 4.87s2 + 29.59s+ 41.23
. (4.14)

Fig. 4.14 shows an example output of (4.14) for a typical test.

4.2.4 Transfer Functions Modeling the Downward Motion

In this section, transfer functions estimated using each and every downward mo-

tion test data are provided. Fig. 4.15 shows output of each of those transfer

functions for each test data. The transfer functions used in these results are pro-

vided in Table 4.2. Similarly, an average transfer function of all those transfer
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Figure 4.15: Output of each transfer function (solid curves) and the test data
(dashed curves) estimated using downward data. The associated relative error of
the data, obtained using (4.13), are 0.0360 (a), 0.0170 (b), 0.0742 (c), 0.0140 (d),
0.0498 (e), 0.0340 (f), and 0.0150 (g).
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Figure 4.16: Output of (4.15) (solid curve) for a typical test data (dashed curve).
The associated relative error of the data, obtained using (4.13), is 0.0288.

Table 4.3: Transfer functions of Fig. 4.17.

a 3991s+1.177e04
s3+9.367s2+97.13s+93.76

b 4547s+1.172e04
s3+13.2s2+52.37s+68.39

c 3521s+1.089e04
s3+6.729s2+33.94s+64.15

d 1337s+1100
s3+4.785s2+10.23s+5.725

e 3541s+1.45e04
s3+7.185s2+38.73s+76.6

f 1713s+4417
s3+5.453s2+16.13s+21.76

g 3596s+1.389e04
s3+7.154s2+37.97s+75.07

function is provided as

Gdown =
0.001992s+ 2.715e06

s3 + 600.9s2 + 7769s+ 3.056e04
. (4.15)

Fig. 4.16 shows an example output of (4.15) for a typical test.

4.2.5 A single transfer function for the whole motion

To obtain a single transfer function for the whole motion, containing both up-

ward and downward motions, a similar approach as in the previous subsections is

followed; however, a transfer function is fitted to the both upward and downward

motions data, i.e., the whole motion data. Fig. 4.17 shows the output of all
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Figure 4.17: Output of each transfer function (solid curves) specific to each test
data (dashed curves). The associated relative error of the data for the interval
between t = 0 and t = ts (1% settling time), obtained using (4.13), are 0.1284
(a), 0.1910 (b), 0.5137 (c), 0.0863 (d), 0.5564 (e), 0.2212 (f), and 0.5497 (g).
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Figure 4.18: Output of (4.16) (solid curve) for a typical test data (dashed curve).
The associated relative error of the data for the interval between t = 0 and t = ts
(1% settling time), obtained using (4.13), is 0.3848.

transfer functions fitted to the individual experimental data, when the sampling

rate is selected as 0.004. Associated transfer functions are provided in Table 4.3.

The average of those transfer functions, obtained at different operating regions,

is calculated as

G =
3178s+ 9755

s3 + 7.697s2 + 40.93s+ 57.92
. (4.16)

It is noted that the average transfer function is obtained by averaging the coeffi-

cients. An example response of (4.16) is given in Fig. 4.18.
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Chapter 5

Conclusion and Future Work

With the recent developments in the systems architecture and design, and increas-

ingly interlinked design of the systems where human operators are elements of the

overall closed loop system, analyzing the interactions between human operators

and the other system elements and design of effective schemes of such interac-

tions are of crucial importance. In this thesis, two human-in-the-loop systems

are analyzed from stability and performance points of view. In the first case,

human-in-the-loop model reference adaptive control architectures are analyzed

and fundamental stability limits are explicitly derived. Specifically, this stability

limits result from the coupling between outer and inner loop architectures, where

the outer loop portion includes the human dynamics modeled as a linear dynam-

ical system with time delay and the inner loop portion includes the uncertain

dynamical system, the reference model, the parameter adjustment mechanism,

and the controller. It is shown that when the given set of human model and

reference model parameters satisfy this stability limit, the closed-loop system

trajectories are guaranteed to be stable. The theoretical stability predictions of

the proposed approach were verified via several simulation studies. The effects

of linear filtering on the human-in-the-loop model reference adaptive control ar-

chitectures is also analyzed to study the stability and performance of the overall

closed loop system in the presence of human reaction time delays. Specifically,

the filter parameters are designed to stabilize the closed-loop, MRAC-human-filter
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dynamics. Moreover, a key transfer function between the MRAC error singnal

and the human error signal (input signal to the human block) arising in the task

execution was developed to study how MRAC and human model interact with

each other. This study shows that the proposed filter is effective in suppressing

undesirable oscillations, enabling a more effective and synergistic MRAC-human

integration.

Telerobotic systems are analyzed in the other scenario. It is shown how the

stability of a human-in-the-loop telerobotic system is affected by the communica-

tion architecture between the master and the slave sides. Considering the human

operator with reaction time-delay as an element of the bilateral telerobotic system

that naturally comes with communication time-delays, the stability of the closed-

loop system with multiple time-delays is investigated via using rigorous stability

analysis tools. The stability characteristics of three different telerobotic system

architectures are provided, together with a discussion on the implementation chal-

lenges. In the final part of the thesis, the problem of modeling of PHANToM R©

Omni R© haptic device, a relatively common device employed in haptics and tele-

operations studies, is investigated. First principles modeling approach together

with experimental observations resulted in linear models of the device. Deriving

a more general model of the device is considered to be a future research direction.
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