BİS(2-İZOBUTİRİLAMİDOFENİL)AMİN BİLEŞİĞİNİN TİTREŞİM SPEKTRUMUNUN İNCELENMESİ

EMRAH ASLANTATAR

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANA BİLİM DALI

YÜKSEK LİSANS TEZİ

MERSİN ARALIK - 2013

BİS(2-İZOBUTİRİLAMİDOFENİL)AMİN BİLEŞİĞİNİN TİTREŞİM SPEKTRUMUNUN İNCELENMESİ

EMRAH ASLANTATAR

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANA BİLİM DALI

YÜKSEK LİSANS TEZİ

Danışman Prof. Dr. Hakan ARSLAN

MERSİN ARALIK - 2013

Emrah ASLANTATAR tarafından Prof. Dr. Hakan ARSLAN danışmanlığında hazırlanan "*Bis*(2-izobutirilamidofenil)amin Bileşiğinin Titreşim Spektrumunun İncelenmesi" başlıklı bu çalışma aşağıda imzaları bulunan jüri üyeleri tarafından oy birliği ile yüksek lisans tezi olarak kabul edilmiştir.

Prof. Dr. Hakan ARSLAN

Yrd. Doç. Dr. Gün BİNZET

Yrd. Doç. Dr. Göktürk AVŞAR

İmza

Yukarıdaki Jüri kararı Fen Bilimleri Enstitüsü Yönetim Kurulu'nun 27./.12../2013..tarih ve2013..26.../. So2..... sayılı kararıyla onaylanmıştır.

Doç. Dr. Mehmet KÜÇÜKASLAN Enstitü Müdürü

Bu tezde kullanılan özgün bilgiler, şekil, çizelge ve fotoğraflardan kaynak göstermeden alıntı yapmak 5846 sayılı Fikir ve Sanat Eserleri Kanunu hükümlerine tabidir.

BİS(2-İZOBUTİRİLAMİDOFENİL)AMİN BİLEŞİĞİNİN TİTREŞİM SPEKTRUMUNUN İNCELENMESİ

Emrah ASLANTATAR

ÖZ

Bis(2-izobutirilamidofenil)amin bileşiğinin kristal ve moleküler yapısı X-ışınları tek kristal difraksiyon tekniği ile aydınlatıldı. Kristal triklinik uzay grubuna ait olup, *P-1*, Z = 2, a = 9.5377(9) Å, b = 10.9710(10) Å, c = 18.6693(15) Å, $a = 76.644(6)^\circ$, $\beta = 80.010(6)^\circ$, $\gamma = 81.379(7)^\circ$, ve $D_{calc} = 1.212$ mg/m³ hücre parametrelerine sahiptir. *Bis*(2-izobutirilamidofenil)amin bileşiğinin molekül yapısı, titreşim frekansları ve infrared pik şiddetleri 6-31G(d,p) temel seti kullanılarak ab-initio Hartree-Fock ve yoğunluk fonksiyonel teorik metotları DFT(BLYP, B3PW91 ve B3LYP) ile hesaplandı. Hesaplanan geometrik parametreler molekülün tek kristal yapı parametreleri ile karşılaştırıldı. Bu bileşik için B3LYP/6-31G(d,p) metodu ile hesaplanan harmonik titreşimler ile gözlenen titreşim bandlarının birbirleri ile iyi bir uyum içinde olduğu bulunmuştur. Molekülün teorik titreşim spektrumu SQM 2.0 programı kullanarak hesaplanan PED ile yorumlandı. İncelenen metotların hesaplama performansları PAVF 1.0 programı ile incelendi.

Anahtar Kelimeler: B3PW91, BLYP, B3LYP, 6-31G(d,p) Temel seti, IR, *Bis*(2-izobutirilamidofenil)amin, SQM 2.0 programı, PAVF 1.0 programı, PED.

Danışman: Prof. Dr. Hakan ARSLAN, Mersin Üniversitesi, Kimya Ana Bilim Dalı.

THE INVESTIGATION OF THE VIBRATIONAL SPECTRUM OF *BIS*(2-ISOBUTYRYLAMIDOPHENYL)AMINE MOLECULE

Emrah ASLANTATAR

ABSTRACT

The crystal and molecular structure of *bis*(2-isobutyrylamidophenyl)amine has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group *P-1*, Z = 2 with a = 9.5377(9) Å, b = 10.9710(10) Å, c = 18.6693(15) Å, $\alpha = 76.644(6)^\circ$, $\beta = 80.010(6)^\circ$, $\gamma = 81.379(7)^\circ$, and $D_{calc} = 1.212$ mg/m³. The molecular structure, vibrational frequencies and infrared intensities of *bis*(2-isobutyrylamidophenyl)amine were calculated by ab-initio Hartree-Fock and Density Functional Theory methods DFT(BLYP, B3PW91 and B3LYP) using the 6-31G(d,p) basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. The harmonic vibrations computed for this compound by the B3LYP/6-31G(d,p) method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the SQM 2.0 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.

Keywords: B3PW91, BLYP, B3LYP, 6-31G(d,p) basis set, IR, *Bis*(2-isobutyrylamidophenyl)amine, SQM 2.0 program, PAVF 1.0 program, PED.

Advisor: Prof. Dr. Hakan ARSLAN, Department of Chemistry, Mersin University.

TEŞEKKÜR

Kimya eğitimim ve akademik çalışmalarım boyunca her konuda benden desteğini esirgemeyen, tez çalışmam süresince yapmış olduğum araştırmalarda değerli yardım ve katkılarıyla beni yönlendiren tez yöneticim sayın Prof. Dr. Hakan Arslan'a, mevcut olanaklardan yararlanmamı sağlayan Kimya Bölüm Başkanı Prof. Dr. Nevzat Külcü'ye, Yrd. Doç. Dr. Gün Binzet'e, Kimya Bölümü öğretim üyelerine, Arş. Gör. Erdal Yabalak'a, Uzm. Tuncay İnce'ye, Uzm. İlkay Gümüş'e, Ümmühan Kurt'a ve tüm çalışma arkadaşlarıma, Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi'ne (Proje no: BAP-FBE KB (EA) 2012-2 YL) ve TÜBİTAK'a (Proje no: 112T322) değerli katkılarından dolayı teşekkürlerimi sunarım.

Tüm yaşamımda beni maddi, manevi hep destekleyen, çok değerli aileme, beni hiçbir zaman yalnız bırakmayan, destek ve ilgilerini eksik etmeyen eşim Meryem ESEN ASLANTATAR'a teşekkür ederim.

> 2013 EMRAH ASLANTATAR

İÇİNDEKİLER

Sayfa

ÖZ	İ
ABSTRACT	İİ
TEŞEKKÜR	İİİ
İÇİNDEKİLER	İV
ÇİZELGELER DİZİNİ	Vİİ
ŞEKİLLER DİZİNİ	Vİİİ
SİMGELER VE KISALTMALAR	X

1. GİRİŞ	1
1.1. MOLEKÜLER TİTREŞİM SPEKTROSKOPİSİ	3
1.1.1. Moleküler Titreşimler	3
1.1.2. İnfrared Spektroskopisi	5
1.1.3. Raman Spektroskopisi	7
1.1.4. Çok Atomlu Moleküllerin Titreşimleri	9
1.2. MOLEKÜLER SİMETRİ	9
1.2.1. Moleküler Simetri	9
1.2.2. Molekül Gruplarında Titreşim Türleri	10
1.2.2.1. Gerilme titreşimleri	10
1.2.2.2. Düzlem içi bükülme titreşimleri	11
Sallanma	11
Makaslama	11
Dalgalanma	11

Kıvırma	
1.2.2.3. Düzlem dışı bükülme titreşimleri	
1.2.2.4. Burulma titreşimleri	
1.2.2.5. Grup frekansları	
1.3. KURAMSAL TEMELLER	
1.3.1. Hesaplamalı Kimya Yöntemleri	
1.3.1.1. Moleküler mekanik yöntemler	
1.3.1.2. Semi empirical yöntemler	14
1.3.1.3. Ab initio yöntemler	
1.3.2. Schrödinger Eşitliği	16
1.3.3. Born-Oppenheimer Yaklaşımı	16
1.3.4. Hartree-Fock Teori	
1.3.5. Yoğunluk Fonksiyonu Teorisi (DFT)	
1.3.6. B3LYP Karma Yoğunluk Fonksiyonu Teorisi	
1.3.7. Temel Setler ve 6-31 G(d) Temel Seti	
1.3.8. Geometrik Optimizasyon	
1.3.9. SQM Metodu	
2. KAYNAK ARAŞTIRMALARI	
3. MATERYAL VE YÖNTEM	
3.1. KULLANILAN KIMYASALLAR	
3.2. KULLANILAN CİHAZLAR	
3.3. YÖNTEM	
3.3.1. Bis(2-nitrofenil)amin Bileşiğinin Sentezi	

3.3.2. Bis(2-aminofenil)amin Bileşiğinin Sentezi	
3.3.3. Bis(2-izobutirilamidofenil)amin Bileşiğinin Sentezi	
3.4. X-IŞINLARI TEK KRİSTAL DİFRAKSİYON ANALİZİ	
3.5. TEORİK HESAPLAMALAR	
3.5.1. Gaussian 03W	
3.5.2. Gauss View 3.0	
3.5.3. Hesaplama Detayları	
	20
4. BULGULAR VE TAKTIŞMA	
4.1 SENTEZ	38
4.1.1. Bis(2-nitrofenil)amin	
4.1.2. Bis(2-aminofenil)amin	
4.1.3. Bis(2-izobutirilamidofenil)amin	
4.2. KRİSTALLOGRAFİK BULGULAR	
4.3. TEORİK HESAPLAMALAR	
4.3.1. Geometri Optimizasyonu	
4.3.2. Titreşim Frekansları	56
5. SUNUÇLAK	72
ΚΑΥΝΑΚΙΑΡ	72
ÖZGECMİS	
, , , · · · · · · · · · · · · · · · · ·	

ÇİZELGELER DİZİNİ

Çizelge 1.1. Elektromanyetik spektrum bölgeleri4
Çizelge 1.2. İnfrared spektral bölge6
Çizelge 1.3. Raman spektroskopisi ve infrared spektroskopisi
Çizelge 1.4. Bazı grup frekansları
Çizelge 2.1. Bazı maddelerin titreşim spektrumunda kullanılan
metodlar ve karakterizasyonunda kullanılan cihazlar
Çizelge 4.1. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin kristalografik verileri
ve parametreien45
Çizelge 4.2. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları
Çizelge 4.3. Bis(2-izobutirilamidofenil)amin bileşiğinin bağ açıları
Çizelge 4.4. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin torsiyon açıları
Çizelge 4.5. Bis(2-izobutirilamidofenil)amin bileşiğinin molekül içi ve
moleküller arası hidrojen bağları48
Çizelge 4.6. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin optimize
edilmiş bağ uzunlukları
Çizelge 4.7. Bis(2-izobutirilamidofenil)amin bileşiğinin optimize
edilmiş bağ açıları 50
Çizelge 4.8. Bis(2-izobutirilamidofenil)amin bileşiğinin hesaplanmış
dalga sayılar
Çizelge 4.9. Bis(2-izobutirilamidofenil)amin bileşiğinin hesaplanmış
dalga sayıları 64
Çizelge 4.10. Bis(2-izobutirilamidofenil)amin bileşiğine ait bazı
termodinamik parametreler67

ŞEKİLLER DİZİNİ

Sayfa

Şekil 1.1. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiği2
Şekil 1.2. Elektromanyetik ışıma molekül ile etkileşmesi
Şekil 1.3. İki atomlu bir molekülde elektronik enerjinin atomlar arası
mesafeye bağımlılığı
Şekil 1.4. İki boyutta potansiyel enerji yüzeyi
Şekil 3.1. <i>Bis</i> (2-nitrofenil)amin bileşiğinin sentez reaksiyonu
Şekil 3.2. <i>Bis</i> (2-aminofenil)amin bileşiğinin sentez reaksiyonu
Şekil 3.3. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin sentez reaksiyonu
Şekil 4.1. <i>Bis</i> (2-nitrofenil)amin bileşiği
Şekil 4.2. <i>Bis</i> (2-aminofenil)amin bileşiği
Şekil 4.3. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiği
Şekil 4.4. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin ¹ H NMR spektrumu
Şekil 4.5. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin ¹³ C NMR spektrumu
Şekil 4.6. Bis(2-izobutirilamidofenil)amin bileşiğinin LC/MS/MS spektrumu 41
Şekil 4.7. Bis(2-izobutirilamidofenil)amin bileşiğinin fragment dağılımı
Şekil 4.8. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin kristal yapısı
Şekil 4.9. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin kristal yapısı
Şekil 4.10. <i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin birim hücre yapısı
Şekil 4.11. Bis(2-izobutirilamidofenil)amin bileşiğinin birim hücre yapısı
Şekil 4.12. Bis(2-izobutirilamidofenil)amin bileşiğinin optimize
edilmiş geometrik yapısı 49

Şekil 4.13.	Bis(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları	
	korelasyon grafiği (B3LYP)	52
Şekil 4.14.	<i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları	50
	korelasyon grafigi (B3P w 91)	52
Şekil 4.15.	<i>Bis</i> (2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları	
	korelasyon grafiği (BLYP)	53
Şekil 4.16.	Bis(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları	
	korelasyon grafiği (HF)	53
Şekil 4.17.	Bis(2-izobutirilamidofenil)amin bileşiğinin bağ açıları	
	korelasyon grafiği (B3LYP)	54
Şekil 4.18.	Bis(2-izobutirilamidofenil)amin bileşiğinin bağ açıları	
	korelasyon grafiği (B3PW91)	54
Şekil 4.19.	Bis(2-izobutirilamidofenil)amin bileşiğinin bağ açıları	
	korelasyon grafiği (BLYP)	55
Şekil 4.20.	Bis(2-izobutirilamidofenil)amin bileşiğinin bağ açıları	
	korelasyon grafiği (HF)	55
Şekil 4.21.	Bis(2-izobutirilamidofenil)amin bileşiğinin deneysel IR spektrumu	69
Şekil 4.22.	Bis(2-izobutirilamidofenil)amin bileşiğinin teorik	
	(B3LYP/6-31G(d,p) IR spektrumu	69
Şekil 4.23.	Bis(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel	
	titreşim frekanslarının korelasyon grafiği (B3LYP)	70
Şekil 4.24.	Bis(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel	
	titreşim frekanslarının korelasyon grafiği (B3PW91)	70
Şekil 4.25.	Bis(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel	
	titreşim frekanslarının korelasyon grafiği (BLYP)	71
Şekil 4.26.	Bis(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel	
	titreşim frekanslarının korelasyon grafiği (HF)	71

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama		
μ:	Dipol moment		
υ:	Titreşim dalga sayısı		
υ ^{XC} :	Değiş tokuş ve korelasyon operatörü		
φμ:	Atomik orbital, moleküler orbital, dalga fonksiyonu		
υ:	Gerilme		
δ:	Bükülme		
δ:	Düzlem içi bükülme		
γ:	Düzlem dışı bükülme		
τ:	Burulma		
Kısaltmalar	Açıklama		
B:	Dönüşüm matrisi		
B3LYP:	3 Parametreli Becke karma metodu		
DFT:	Yoğunluk fonksiyon teorisi		
E:	Molekülün toplam enerjisi		
Ec:	Korelasyon enerjisi		
E _{B3LYP} :	B3LYP enerjisi		
E ^{XC} B3LYP:	B3YLP değiş tokuş ve korelasyon enerjisi		
E ^C _{LYP} :	LYP korelasyon enerjisi		
E ^C _{VWN} :	Vosko, Wilk, Nussair korelasyonu		
E _J :	Coulumb enerjisi		
E ₀ :	Sıfır nokta enerjisi		
E^{T} :	Kinetik enerji		
E^X :	Değiş tokuş enerjisi		
X:	Kartezyen koordinat matrisi		

A:	Kutuplanabirlik katsayısı		
E_{H28}^{T}	Hartree kinetik enerjisi		
E^{V} :	Nükleer çekim enerjisi		
F _{KS} :	Kohn Sham operatörü		
g:	Gaussian fonksiyonlar, gradyent vektörü		
HF:	Hartree Fock metodu		
H:	Moleküler hamiltoniyen		
I:	Titreşim bantlarının şiddeti		
SQM:	Ölçekleme metodu		
V:	Potansiyel enerji		
CNDO:	Diferansiyel çakışmanın tamamen ihmali		
INDO:	Diferansiyel çakışmanın iç çekişmesinin ihmali		
SCF:	Self consistent field		
LYP:	Lee, Yang ve Parr korelasyon enrjisi		
VWN:	Vosko-Wilk-Nusair korelasyon enerjisi		
PES:	Potansiyel enerji yüzeyi		
NMR:	Nükleer manyetik rezonans		
IR:	İnfrared		
GAUSSIAN 03:	GAUSSIAN 03 Paket programı		
LC/MS:	Kütle spektroskopisi		
NQR:	Nükleer dört kutuplu rezonans		

1. GİRİŞ

Bir metal atomunun veya iyonunun bir ya da daha çok ligandla oluşturduğu bileşiklere "koordinasyon bileşikleri" denir. Koordinasyon bileşiklerini inceleyen bilim dalına ise "koordinasyon kimyası" denir.

Koordinasyon bileşiğinin merkezinde yer alan ve diğer yan gruplara bağlı olan atom veya iyona "merkez atomu" veya "merkez iyonu" denir. Koordinasyon bileşiklerinde katyon veya merkez atomuna bağlı olan yüklü ve yüksüz gruplara ise "ligand" denir. Yüklü ligandlara CN^- , OH^- ve $C_2O_4^{2-}$ gibi iyonlar, yüksüz ligandlara ise NH₃, H₂O ve CO gibi moleküller örnek verilebilir. Ligand moleküllerinde merkez atomuna bağlanan atoma "donör atom" denir. Bir ligandda bir ya da daha çok sayıda donör atom bulunabilir. Tek donör atomlu ligandlar (NH₃), sadece bir atom ile merkez atomuna bağlanacaklarından böyle ligandlara tek dişli veya monodentat ligandlar denir. Bazı ligandlar ise iki veya daha çok sayıda atom üzerinden merkez atomuna bağlanabileceklerinden iki dişli (Etilendiamin), üç dişli veya çok dişli ligandlar olarak adlandırılırlar. Merkez atomuna bağlı donör atomlarının sayısına (1-12) "koordinasyon" sayısı denir. En yaygın olarak rastlanılan koordinasyon sayısı dört ve altı'dır.

Koordinasyon bileşiklerinin sanayide kullanım alanları da gün geçtikçe artmaktadır. Günümüzde tekstil, gıda, plastik, boya ve daha birçok alanda koordinasyon bileşikleri kullanılmaktadır. İyon değiştiriciler ve otooksidasyon katalizörlerinin birçoğu da koordinasyon bileşikleri sınıfına girerler [1].

Kompleksin yapısını ve özelliklerini belirleyen ligandlardır. Özellikle yeni ligandların hazırlanmasıyla, farklı özelliklere ve uygulama alanlarına sahip yeni kompleks bileşikler sentezlenmiştir. Biyolojik sistemlerde pek çok koordinasyon bileşiğinin bulunmasından dolayı koordinasyon bileşiklerinin önemi gün geçtikçe daha da artmakta ve bu alandaki çalışmalar hız kazanmaktadır. Bundan dolayı gün geçtikçe uygulama alanı artan koordinasyon kimyası alanında çalışan kimyacıların sayısı da artmıştır.

Koordinasyon kimyacıları ve spektroskopicileri, redoks aktif ligandlar ile farklı metal kompleksleri sentezlemişlerdir ve 60 yıldan fazla bir süredir, redoks aktif ligandların kompleksleşme reaksiyonları üzerinde çalışmışlardır [2-4]. Sentezlenen bu komplekslerin karakterizasyonu yapılmış ve uygulama alanları üzerinde çalışmalar yapılmıştır [5-8].

Son zamanlarda aerobik oksidasyon katalizörlerinin sentez çalışmaları üzerinde yapılan çalışmalar neticesinde, çok elektronlu redoks aktif ligand sistemlerinin bu alandaki önemi daha iyi anlaşılır hale gelmiştir. Çünkü bu türev ligandlar metal iyonları ile bağlandıkları zaman, bileşikler farklı yük bölgelerine ve elektronik hallere sahip olabilmektedirler. Bu ligandlar genellikle genişlemiş π bağı ağlarına sahiptir ki bu da ligand radikallerinin karalılıklarını arttırmaktadır. Ayrıca sentetik çalışmalar metal kompleksleri ihtiva eden redoks aktif ligandların katalitik dioksijen aktivasyonunun mümkün olduğunu göstermiştir [9-14].

Bu çalışma bünyesinde incelenen *bis*(2-izobutirilamidofenil)amin bileşiği de bir redoks aktif ligand'dır (Şekil 1.1). Bu bileşik ilk defa Dr. Cora E. MacBeth ve ark. tarafından sentezlenmiş ve tam karakterizasyonu 2010 yılında yapılmıştır [15].

Bu çalışmanın amacı, *bis*(2-izobutirilamidofenil)amin bileşiğinin moleküler yapısını, moleküller arası etkileşimlerini ve titreşim spektrumunu teorik olarak incelemektir.

Şekil 1.1. Bis(2-izobutirilamidofenil)amin bileşiği.

1.1. MOLEKÜLER TİTREŞİM SPEKTROSKOPİSİ

1.1.1. Moleküler Titreşimler

Moleküler titreşim spektroskopisi, maddenin elektromagnetik dalgalarla karşılıklı olarak etkileşmesini inceler [16]. Bu incelemeler sonucunda moleküldeki bağlar arasındaki açılar, bağ uzunluğu, molekül simetrisi ve molekül yapısı ile ilgili bilgiler elde edilir. Ayrıca infrared ve Raman spektroskopi yöntemleri kullanılarak moleküllerin fiziksel ve kimyasal özellikleri olan bağ kuvvetleri, molekül içi ve moleküller arasındaki kuvvetler ve elektronik dağılım ile ilgili bilgiler elde edilebilir [17].

Molekül üzerine elektromagnetik dalga gönderildiğinde, elektromagnetik dalga ile molekül arasındaki etkileşme sonucunda molekülün enerji düzeyleri arasında geçişler meydana gelir.

$$\Delta E = E^{**} - E^* = h.\,\Delta\nu\tag{1.1}$$

Burada;

 ΔE : İki seviye arasındaki enerji farkını, E^{**} : Üst titreşim seviyesinin enerjisini, Joule, E^{*} : Alt titreşim seviyesinin enerjisini, Joule, h: Plank sabitini, 6,626.10⁻³⁴ J.s

v: Elektromagnetik dalganın frekansını, cm⁻¹, ifade eder.

Molekülün titreşim enerji seviyeleri arasındaki geçişler düşünüldüğünde E^* enerji seviyesinden E^{**} enerji seviyesine geçilmesi, moleküldeki ışığın soğurulmasına neden olur.

Elektromagnetik dalganın, maddeyi oluşturan moleküllerle etkileşmesi sonucunda, molekülün değişik enerji düzeyleri arasındaki geçişe sebep olur. Bu geçişler gelen elektromagnetik dalganın enerjisine bağlı olarak değişik spektrum bölgelerine ayrılır (Çizelge 1.1) [18].

Bölgesi	Spektroskopisi	Frekans (Hz)
Radyo dalgaları	Nükleer manyetik rezonans	$1.10^6 - 1.10^8$
	ve NQR	
Mikrodalga	Elektron spin rezonans	1.10^{10} - 1.10^{12}
	ve moleküler dönme	
İnfrared	Moleküler dönme	1.10^{12} - 3.10^{14}
	ve titreșim	
Görünür veya	Elektronik geçişler dış	3.10^{14} - 1.10^{16}
mor ötesi (UV)	elektronlar	
X-Işınları	Elektronik geçişler iç	3.10^{16} - 1.10^{19}
	elektronlar	
	Bölgesi Radyo dalgaları Mikrodalga İnfrared Görünür veya mor ötesi (UV) X-Işınları	BölgesiSpektroskopisiRadyo dalgalarıNükleer manyetik rezonans ve NQRMikrodalgaElektron spin rezonans ve moleküler dönmeİnfraredMoleküler dönme ve titreşimGörünür veyaElektronik geçişler dış nor ötesi (UV)X-IşınlarıElektronik geçişler iç elektronlar

Çizelge 1.1. Elektromanyetik spektrum bölgeleri.

Radyo dalgaları bölgesi: Çekirdeğin spininin veya elektronun işaret değiştirmesi nedeniyle meydana gelen enerji değişimlerinin spektrumu radyo dalgaları bölgesinde gözlenir.

Mikrodalga bölgesi: Molekülün dönmesi bu bölgede incelenir. Mikrodalga bölgesinde dönme enerjileri arasındaki geçişlerin spektrumu meydana gelir. Çiftlenmemiş elektrona sahip bir sistemin magnetik özelliklerindeki değişmeler de bu bölgede incelenir.

Infrared bölgesi: Bir molekülün dönme ve titreşim enerji seviyeleri arasındaki geçişlerin incelendiği bölgedir.

Görünür veya morötesi bölgesi: Atom veya moleküldeki dış kabuktaki elektronların yer değiştirmesi bu bölgede incelenir. Bu bölgedeki spektroskopi, molekül veya atomun en dış orbitalindeki elektronlarının çeşitli enerji düzeyleri arasındaki geçişlere dayanmaktadır.

X-ışınları bölgesi: Bir atom veya molekülde iç kabuktaki elektronların geçişleri X-ışınları bölgesinde olur ve bu bölgedeki spektroskopi türü X-ışınları spektroskopisi olarak adlandırılır [17].

Serbest bir molekülün toplam enerjisi; E_{Oteleme} , $E_{\text{Nükleer dönme}}$, $E_{\text{Dönme}}$, $E_{\text{Titreşim}}$ ve $E_{\text{Elektronik}}$ şeklinde farklı kısımların toplamından oluşur. Etoplamın hesaplanmasında öteleme enerjisi sürekli bir enerji olduğundan spektroskopide göz önüne alınmaz. Nükleer dönme enerjisi ise diğer enerjilerle karşılaştırıldığında çok

küçük olduğundan ihmal edilebilir. Sonuç olarak:

$$E_{toplam} = E_{elektronik} + E_{titresim} + E_{dönme}$$
(1.2)

Bir molekülün titreşim enerji seviyelerini incelemek için en çok tercih edilen iki önemli teknik vardır. Birincisi infrared bölgede (1300 - 30 cm⁻¹) bulunan ve pratikte 4000-10 cm⁻¹ bölgesinde kullanılan infrared soğurma spektroskopisi; ikincisi ise, görünür bölgede kullanılan ve moleküler sistemin genel olarak 4000-2 cm⁻¹ bölgesine düşen titreşimlerini inceleyen Raman saçılma spektroskopisidir.

1.1.2. İnfrared Spektroskopisi

İnfared (Titreşim) spektroskopisi, maddenin infrared ışınlarını absorplaması üzerine kurulmuş olan bir spektroskopi dalıdır. Infrared spektroskopisinde, numune infrared bölgede tüm frekansları içeren bir elektromanyetik dalga ile ışınlanır ve geçen veya soğurulan ışık incelenir. Molekül, v frekanslı bir ışın soğurduğunda, molekülün μ elektriksel dipol momentinin bileşenlerinden en az biri bu frekansta titreşecektir. Bu titreşim spektrumda infrared bölgede gözlenebilir.

Bir molekülün kızılötesi ışımasını absorblayabilmesi için dipol momentinde bir değişim olması gerekmektedir. Molekül üzerine gönderilen kızılötesi ışımasının frekansı, molekülün titreşim frekansına eşit olduğu zaman ancak bir absorbsiyon söz konusu olabilir. Homonükleer moleküllerde titreşim ve dönme hareketleri sırasında net bir dipol moment değişimi olmadığı için kızılötesi ışımasını absorblayamazlar.

Elektromanyetik ışıma molekül ile üç şekilde etkileşir (Şekil 1.2).

Şekil 1.2. Elektromanyetik ışıma molekül ile etkileşmesi.

Moleküller üzerlerine düşen elektromanyetik enerjiyi absorplar. Bu arada bağın gerilmesi sonucu atomlar birbirine yaklaşır veya uzaklaşır. Eğer atom sayısı ikiden fazla ise bağlar arasındaki açı değişir. Moleküldeki bağlar, açılar ve kütleler (atomlar) farklı olduğu için her birinin titreşim enerjisi de farklıdır. Daha doğrusu bir moleküldeki gerilme ve bükülme titreşim enerjileri molekül üzerine düşen elektromanyetik ışınların uygun frekansta olanları molekül tarafından absorplanır.

Infrared ışınlarının dalga boyları 1000-300.000 nm olmasına rağmen infrared spektroskopisinde genellikle dalga boyları 2500 ile 25.000 nm arasındaki ışınlardan yararlanılır. Infrared spektroskopisinde ışınlar dalga boylarıyla değil dalga sayılarıyla verildiğinden bu aralık dalga sayısı cinsinden 400-4000 cm⁻¹'e karşılık gelir ve yakın dalga boylu kızıl ötesi, orta dalga boylu kızıl ötesi ve uzak dalga boylu kızıl ötesi olmak üzere üç ana bölgeden oluşmaktadır (Çizelge 1.2).

Çizelge 1.2. İnfrared spektral bölge.

Bölge	λ (μm)	v (cm ⁻¹)	v (Hz)
Yakın infrared	0.78 - 2.50	12800 - 4000	$3.8.10^{14} - 1.2.10^{14}$
Orta infrared	2.5 - 50.0	4000 - 200	$1.2.10^{14}$ - $6.0.10^{12}$
Uzak infrared	50 - 1000	200 - 10	$6.0.10^{12} - 3.0.10^{11}$

I. Yakın infrared bölge: Molekül titreşimlerinin üst ton ve harmoniklerinin gözlendiği bölgedir.

II. Orta infrared bölge: Moleküllerin hemen hemen bütün titreşimleri bu bölgede gözlenmektedir. Bu bölge grup frekansı bölgesi ve parmak izi bölgesi olmak üzere ikiye ayrılmıştır.

III. Uzak infrared bölge: Ağır atomların titreşimleri ile örgü titreşimlerinin incelendiği bölgedir. Mikrodalga bölgesine yakın olduğu için moleküllerin dönüş hareketleri de incelenebilir. Uzak IR bölgesi metal-ametal bağlarını içerdiği için özellikle anorganik bileşiklerin (Koordinasyon bileşikleri) yapılarının aydınlatılması açısından önemlidir.

Titreşim spektroskopisi genellikle organik bileşiklerin tanınmasında kullanılır. Optik izomerler dışında hiçbir bileşiğin titreşim spektrumu birbirinin eşdeğeri değildir. Ayrıca titreşim spektroskopisi ile nicel analiz de yapılabilir. Fakat genellikle daha uygun ve daha keskin bir nicel analiz yöntemi bulunabileceğinden nicel uygulamalar nitel olanlara göre daha önemsizdir.

1.1.3. Raman Spektroskopisi

Raman spektroskopisi, infrared spektroskopisine çok benzer ve çoğu kez onu tamamlar. Raman spektroskopisi ile maddenin tek frekanslı ışınım üzerinde oluşturduğu saçılma incelenir. Raman spektroskopisi inorganik, organik ve biyolojik sistemlerin kalitatif ve kantitatif analizine uygulanır.

Raman spektroskopisi, infrared spektroskopisi gibi bir titreşim spektroskopisidir. Her iki spektroskopi de molekülün titreşim seviyeleri arasındaki enerji farkına dayanır. Buna göre bir grubun Raman kaymasının enerjisi, o grubun IR absorpsiyon bandının pikinin enerjisine eşittir. Ancak, söz konusu grubun Raman ve IR aktif olması gerekir. Bir moleküldeki tüm gruplar Raman ve IR aktif değildir. Başka bir deyimle bir maddenin Raman ve IR spekrumlarının aynı ve farklı frekansta olan pikler vardır. Bundan başka aynı frekansta olan piklerinin şiddetleri de birbirinden farklı olabilir. IR spektroskopisi, uyarıcı ışınla molekülün dipol

7

momentinin değişmesi üzerine kurulduğu halde, Raman spektroskopisi molekülün polarlığının değişmesi üzerine kurulmuştur [19]. Raman spektroskopisi ve infrared spektroskopisi Çizelge 1.3'de detaylı olarak karşılaştırılmıştır.

Karşılaştırılan	IR	Raman
parametere		
Etkileşim	Absorpsiyon	Saçılma
(molekül+ışık)		
Titreşim uyarma	Polikromatik IR ışık	Monokromatik görünür bölge
kaynağı		ışık
Frekans ölçümü	Mutlak	Uyarma frekansına bağlı
Bir titreşimi aktive etme koşulu	Dipol moment değişimi $\partial \mu / \partial Q \neq 0$	Polarlaşabilme değişimi ∂α/∂Q≠0
Kullanım alanı	Rutin analizlerde ve gaz analizlerinde	Sulu çözeltilerin, tek kristallerin ve polimerlerin incelenmesinde

Çizelge 1.3. Raman spektroskopisi ve infrared spektroskopisi.

Bir maddeden ışık saçıldığında frekansta bir değişme meydana gelir. Frekanstaki bu değişim titreşim frekansına eşittir. Organik veya inorganik bir molekülün bir fotonla Raman türü saçılma etkileşmesine girebilmesi için molekülün titreşimi sırasında etkileştiği fotonun elektrik alanı tarafından periyodik ve fotonun frekansına eşit frekanslı olarak polarlanabilmesi yani periyodik ve geçici bir dipol momentinin oluşması gereklidir. Raman hatlarının şiddeti, titreşen molekülün fotonla etkileşirken oluşan polarlanabilme değişim hızının karesi ile orantılıdır.

Raman spektroskopisi bir numunenin görünür bölge veya yakın IR monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Moleküllerin şiddetli bir monokromatik ışın demeti ile etkileşmesi sırasında ışık absorpsiyonu olayı gerçekleşmiyorsa ışık saçılması olayı meydana gelir. Işık saçılması sırasında saçılan ışığın büyük bir kısmının enerjisi madde ile etkileşen ışığın enerjisine eşit olur ve bu tür elastik saçılma olayına "Rayleigh saçılması" denir. Elastik saçılma olayının yanı sıra, saçılan ışığın çok az bir kısmı elastik olmayan saçılma olayı ise "Raman saçılması" adını alır.

Rayleigh saçılması olayında Raman saçılmasına göre 10⁴ - 10⁵ kez daha şiddetli bir saçılmış ışık oluşur. Ancak Rayleigh saçılması tek bir pik verir ve titreşim geçişleri hakkında bilgi vermez. Raman saçılması sırasında saçılan ışığın enerjisinde molekül ile etkileşen ışığınkine göre oluşan fazlalık veya azlık ışıkla etkileşen molekülün titreşim enerji düzeyleri arasındaki enerji farkları kadardır. Bu nedenle Raman saçılmasının spektroskopik incelenmesi ile de moleküllerin titreşim enerji düzeyleri hakkında bilgi edinilebilir. Bu tür bir spektroskopik yöntem "Raman spektroskopisi" adını alır. Bu yöntemde molekül ile etkileşen ışığın dalga boyuna göre saçılan ışığın dalga boyunda oluşan farklar ölçülür. Bu farklar "Raman kayması" olarak adlandırılır.

1.1.4. Çok Atomlu Moleküllerin Titreşimleri

Bir molekülün tüm atomlarının aynı frekans ve aynı fazda (Genlikleri farklı olabilir) yaptıkları titreşimlere temel titreşimler veya normal titreşimler denir. N atom sayısı olmak üzere bir molekülün 3N serbestlik derecesi vardır. Üç eksen etrafında ötelenme ve üç eksen etrafında dönme serbestlik çıkartılırsa, lineer olmayan moleküllerde 3N-6, lineer moleküllerde ise 3N-5 temel titreşim serbestlik derecesi vardır. Kapalı bir halka teşkil etmeyen N atomlu molekülün N-1 bağ gerilmesi, 2N-5 açı bükülme (lineer ise 2N-4) temel titreşimi vardır.

Çok atomlu moleküllerin herhangi bir titreşim hareketi, 3N-6 temel titreşiminden bir veya bir kaçının üst üste binmesi şeklinde tanımlanabilir [20, 21, 22].

1.2. MOLEKÜLER SİMETRİ

1.2.1. Moleküler Simetri

Moleküler simetri, bir molekülü oluşturan atomların uzaydaki geometrik düzenidir. Nokta, eksen ve düzlem gibi geometrik simetri elemanları moleküle uygulandığında molekül ilk durumuna göre değişmeden kalır. Bir molekülün bütün simetri elemanları bir grup oluşturur. Simetri işlemlerinin uygulanmasıyla molekülün en az bir noktası (simetri elemanlarının kesiştiği nokta veya kütle merkezi) yer değiştirmemiş olarak kaldığından bu gruplara "nokta grubu" denir. Moleküllerin bu simetri özelliklerinden faydalanılarak karakter tabloları hazırlanmıştır.

Moleküller simetri özelliğine göre belirli gruplar içinde sınıflandırılmıştır. Grup ya da gruplar teorisi kullanılarak, karakter tabloları yardımıyla, herbir temel titreşimin indirgenemez gösterimlerinden hangisine temel oluşturduğu ve hangi simetri türünde olduğu bulunabilir. Ayrıca simetrisi bilinen bir molekülün 3N-6 titreşimlerinden hangilerinin infrared, hangilerinin de Raman aktif olduğu bulunabilir.

Çok atomlu moleküllerin temel titreşimleri sırasında geçiş momentinin sıfırdan farklı olup olmadığı grup teorisi yardımıyla belirlenebilir.

Genel olarak, bir temel titreşim infrared aktif olabilmesi için dipol momentin x, y ve z bileşenlerinden birinin simetrisi ile normal modların simetrileri aynı olmalıdır. Moleküler titreşimlerin Raman aktif olabilmesi için ise α kutuplanma yatkınlığı tensörünün α_{xx} , α_{yy} , α_{zz} , α_{xy} , α_{xz} ve α_{yz} bileşenlerinden en az biri ile normal modların simetrileri aynı türden olmalıdır.

İnfrared ve Raman aktiflik şartları farklı olduğundan, molekülün simetrisine bağlı olarak infrared spektroskopisinde gözlenemeyen bir titreşim frekansı Raman spektroskopisinde gözlenebilir. Bunun tersi de olabileceği gibi, bazı titreşim frekansları, her ikisinde de aktif olmayabilir. Özel olarak, eğer bir molekülün *i* simetri merkezi varsa infrared spektroskopisinde gözlenen titreşimleri, Raman spektroskopisinde, Raman spektroskopisinde gözlenen titreşimleri de infrared spektroskopisinde gözlenemez. Bu "karşılıklı dışlama kuralı" olarak bilinir [23].

1.2.2. Molekül Gruplarında Titreşim Türleri

Çok atomlu moleküllerin titreşimleri genel olarak dört temel türe ayrılır [24].

1.2.2.1. Gerilme titreşimleri

Bağıl ekseni doğrultusunda periyodik olarak tüm bağların uzaması veya kısalması hareketine simetrik gerilme, bağların bir veya bir kaçının uzarken

diğerlerinin kısalma hareketine de asimetrik gerilme titreşimi denir. Titreşim v ile gösterilir.

1.2.2.2. Düzlem içi bükülme titreşimleri

İki bağ arasındaki açının periyodik olarak değişim hareketidir. δ ile gösterilir ve 4'e ayrılır.

Sallanma

Açı bükülmesinin özel bir şeklidir. Atomlar arasındaki açının değişmeden bir grup atomla bir bağ arasındaki veya iki bağ arasındaki açının bükülmesidir, pr ile gösterilir.

Makaslama

Yer değiştirme vektörlerinin sayfa düzleminde birbirine doğru olan hareketleridir. Açı bükülmesinin bir başka şeklidir, δ_s ile gösterilir

Dalgalanma

Bir bağ ile iki bağ tarafından tanımlanan bir düzlem arasındaki açının değişim hareketidir. Molekülün tüm atomları denge konumunda ve düzlemde iken bir atomun bu düzleme dik hareket etmesidir, w ile gösterilir.

Kıvırma

Bir bağ ile düzlem arasındaki açı değişimidir. Bu olayda yer değiştirme vektörleri bağ doğrultusuna diktir ve t ile gösterilir.

1.2.2.3. Düzlem dışı bükülme titreşimleri

En yüksek simetriye sahip bir düzleme dik doğrultudaki açı değişimidir. Düzlem dışı açı bükülmesi γ ile gösterilir.

1.2.2.4. Burulma titreşimleri

İki düzlem arasındaki açının bir bağ veya açıyı bozarak periyodik olarak değişmesi hareketidir. Düzlem dışı olan burulma hareketi τ ile gösterilir.

1.2.2.5. Grup frekansları

Moleküllerin IR ve Raman spektrumları incelenirken bazı grupların, moleküllerin geri kalan kısmı ne olursa olsun yaklaşık aynı frekansta soğurma verdikleri saptanmıştır [24]. Molekülün tüm atomlarının aynı frekans ve aynı fazdaki hareketlerine "normal titreşimler" denir. Genlikleri farklı olabilir bu fark molekülün içindeki bazı atom gruplarının molekülün geri kalan kısmından bağımsız olarak hareket etmelerine neden olur. Böyle gruplar molekülün diğer atomların kıyasla hafif (OH, NH, CH₂ ve NH₂) veya ağır atomlar (Cl ve Br) içeren gruplardır. Bazı grup frekansları Çizelge 1.4'de verilmiştir [25]. Bir molekülün IR ve Raman spektrumlarının analizinde grup frekanslarından büyük ölçüde yararlanılmaktadır [26].

Grup	Gösterim	Titreşim dalga sayısı aralığı (cm ⁻¹)
O-H gerilme	υ(OH)	3640-3600
N-H gerilme	υ(NH)	3500-3380
C-H gerilme (Aromatik halka)	υ(CH)	3100-3000
C-H gerilme	υ(CH)	3000-2900
CH ₃ gerilme	υ(CH ₃)	2962±10 ve 2872±5
CH ₂ gerilme	υ(CH ₂)	2926+10 ve 2853+10
C=C gerilme	υ(CC)	2260-2100
C=N gerilme	υ(CN)	2200-2000
NH2 düzlem içi bükülme	$\delta(NH_2)$	1600-1540
CH ₂ düzlem içi bükülme	$\delta(CH_2)$	1465-1450
CH3 düzlem içi bükülme	δ(CH ₃)	1450-1375
C-S gerilme	v(CS)	1200-1050
C-H düzlem dışı bükülme	γ(CH)	650-800

Çizelge 1.4. Bazı grup frekansları.

1.3. KURAMSAL TEMELLER

1.3.1. Hesaplamalı Kimya Yöntemleri

Teorik kimya, kimyayı matematiksel yöntemlerle tanımlar. Kimyasal yapıları ve tepkimeleri temel fizik kanunlarına dayanarak açıklamaya çalışır. Hesaplamalı kimya ise teorik kimyacılar tarafından geliştirilmiş matematiksel yöntemleri uygular ve elde edilen sonuçları yorumlar, böylece deneysel kimya ile teorik kimya arasında bir köprü kurar. Hesaplamalı kimya ile sadece kararlı molekülleri değil, aynı zamanda kısa-ömürlü, kararsız ara ürünler ve geçiş hallerinide çalışmak mümkündür. Bu şekilde, gözlem yolu ile elde edilmesi mümkün olmayan moleküller ve tepkimeler hakkında bilgi sahibi olunabilir. Bu hesaplamalar ile elde edilen nitel veya nicel sonuçlar, kimyacıların çok faydalı öngörülerde bulunmasını sağlar.

Son yıllarda, pek çok araştırmacı tarafından deneysel çalışmaları desteklemek ya da deneysel çalışma yapmadan elde edilecek sonuçları önceden tahmin edebilmek amacıyla hesaplamalı kimya yöntemleri kullanılmaya başlanmıştır. Hesaplamalı kimya yöntemleri moleküler mekanik yöntemler, semi emperical yöntemler ve ab-initio yöntemler olarak üç temel bölüme ayrılabilir.

1.3.1.1. Moleküler mekanik yöntemler

Moleküler mekanik yöntemler bir kimyasal sistemde atomlar arasındaki etkileşmeleri klasik fizik kuralları ile tanımlar. Moleküler mekanik yöntemlerde atomlar birer küre, bağlar ise birer yay gibi düşünülür.

Moleküler mekanik yöntemlerde bağ yapan atomlar arasındaki etkileşimler, aşağıdaki gibi tanımlanabilir;

- Bağ gerilmesinden kaynaklanan $E_{\rm str}$,
- Açı bükülmesinden kaynaklanan *E*_{bend},
- Torsiyon açılarındaki değişimden kaynaklanan E_{tor} , ve
- ilk üç terimin birlikte görülmesinden kaynaklanan çapraz etkileşimler (E_{cross})

Moleküler mekanik yöntemlerde bağ yapmayan atomlar arasındaki etkileşimler ise;

Elektrostatik etkileşimden kaynaklanan E_{el} ve Van der Waals etkileşimlerinden kaynaklanan E_{vdw} ile tanımlanabilir.

Moleküler mekanik yöntemlerde sistemin toplam enerjisi (E_t): $E_t = E_{str} + E_{bend} + E_{tor} + E_{cross} + E_{el} + E_{vdw}$ (1.3)

Moleküler bir sistem için hesaplanan bu değer gerçek enerjiyi değil, atomların birbirlerine göre konumlarından kaynaklanan konformasyon enerjisi'ni verir. Burada molekülün farklı konformasyonlarına karşılık gelen enerji farkları önemlidir. Moleküler mekanik yöntemler oldukça basit hesaplama teknikleri kullandıkları için, çok büyük moleküllere dahi hiçbir sınırlama olmaksızın uygulanabilirler. MM+, AMBER ve CHARM moleküler mekanik yöntem kullanan paket programlardan bazılarıdır.

1.3.1.2. Semi empirical yöntemler

Semi empirical yöntemlerde gerçek moleküler hamiltoniyen operatörü yerine daha basit bir hamiltoniyen yazılır ve deneysel verilerden veya ab initio hesaplamalardan elde edilmiş bazı düzeltme parametreleri kullanılır.

Extend Hückel teorisi yönteminden kısa bir süre sonra Pople ve yardımcıları Coulomb ve overlap (örtüşme) terimlerinden oluşan seküler determinanttan overlap integrallerini çıkararak işlem yükünü hafifletmenin mümkün olduğunu fark etmelerinin ardından bu varsayım CNDO (Complete Neglect of Differential Overlap) yönteminin geliştirilmesine sebep olmuştur.

Daha sonra ise elektron integrallerinin, aynı atom üzerindeki elektronların farklı (Differential) örtüşmelerinin bir düzeltme faktörü olarak CNDO'ya eklenmesiyle INDO (Intermediate Neglect of Differential Overlap) yöntemi geliştirildi.

Daha sonra da bu metotlara yeni düzeltme parametrelerinin eklenmesiyle

MINDO (Modified INDO), AM1 (Austin Model1), PM3 (Parameterized Austin Model3), ZINDO (Michael Zerner's INDO) gibi modeler geliştirildi. Bu yöntemleri yapısında bulunduran paket programlarından bazıları MOPAC, AMPAC, GAUSSIAN ve HYPERCHEM'dir.

1.3.1.3. Ab initio yöntemler

Ab initio yöntemleri kuantum mekaniğine dayanır, bu yöntemler ile molekül yapısı ve buna bağlı tüm özellikler hesaplanabilir. Moleküllerin sadece kararlı yapıları değil farklı yapılar arasındaki geçiş halleri veya bir tepkimenin mekanizması modellenebilir. Ab initio Latince kökenli bir kelime olup "başlangıçtan itibaren" anlamına gelir. Bu yöntemler moleküler mekanik ve semi emperical yöntemlerden farklı olarak deneysel parametre kullanmazlar. Buna bağlı olarak hesaplama süreleri moleküler mekanik yöntemlere göre daha fazladır. Bu yöntemler Schrödinger dalga denkleminin çözümüne dayanır. Tek elektronlu hidrojen atomu için bu denklemi çözmek mümkün olsa da çok elektronlu sistemlerde çözüm çok zor olduğundan; Hartree - Fock Self Consistent Field (HF-SCF) ve Density Functional Theory (DFT) gibi farklı matematiksel yaklaşımlar kullanılır.

Hartree-Fock (HF) modelinde enerji molekül dalga fonksiyonu Ψ 'ye göre ifade edilir. HF modeli korelasyon yani etkileşim enerjisini dikkate almaz. Yoğunluk Fonksiyonel Teorisinde (DFT) enerji, elektron yoğunluğu ρ 'ya göre ifade edilir.

Ab initio ve semi emprical molekül orbital yöntemlerinin her ikisi de orbitalleri hidrojen benzeri orbitaller olarak tanımlar. Dalga fonksiyonlarında Slater veya Gaussian tipi orbitalleri kullanırlar. Bir sistemin değişim (varyasyon) yöntemi ile hesaplanması; sistem için bir Hamiltoniyen (H) yazılır, değişken parametreler içeren bir dalga fonksiyonu (Ψ) seçilir ve enerjinin minimuma ulaşmasını sağlama, basamaklarını içerir.

1.3.2. Schrödinger Eşitliği

Kuantum mekaniği ile bir molekülün enerjisini ve buna bağlı diğer fiziksel özelliklerini tayin etmek için aşağıdaki Schrödinger eşitliğini çözmek gerekir.

$$H\Psi = E\Psi \tag{1.4}$$

Burada, Ψ dalga fonksiyonu, H hamiltoniyen işlemcisi, E hamiltoniyen işlemcisinin özdeğeridir. İzole edilmiş bir molekül için tam hamiltoniyen işlemcisi (H) çekirdeklerin ve elektronların kinetik enerji operatörlerini, tüm yüklü parçacıklar arasındaki etkileşimleri ve çekirdeklerle elektronların spinlerine bağlı tüm manyetik moment etkileşimlerini içerir. Bu yüzden Schrödinger eşitliği birden fazla elektron içeren bir sistem için tam olarak çözülemez. Çözüm için bazı yaklaşımlara ihtiyaç duyulur.

Hamiltoniyen işlemcisi, çekirdek ve elektronların kinetik ve potansiyel enerjileri cinsinden şöyle yazılabilir;

$$E_{\rm T} = T_{\rm c} + T_{\rm e} + V_{\rm ce} + V_{\rm ee} + V_{\rm cc}$$
(1.5)

Burada;

E_T: Sistemin toplam enerjisi
Tç: Çekirdeğin kinetik enerjisi
Te: Elektronların kinetik enerjisi
Vçe: Çekirdek-elektronlar arasındaki çekim enerjisi
Vee: Elektron-elektronlar arasındaki itme enerjisi
Vçç: Çekirdek-çekirdek arasındaki itme enerjisidir.

1.3.3. Born-Oppenheimer Yaklaşımı

Protonun kütlesi $(1.673 \times 10^{-24} \text{ g})$ elektronun kütlesinden $(0.109 \times 10^{-28} \text{ g})$ 1840 kat daha fazladır. Bu nedenle elektronun hareketi çekirdekten çok daha hızlıdır. Bu durumda çekirdeğin kinetik enerjisi elektronun kinetik enerjisi yanında ihmal edilebilir. Bu yaklaşımda çekirdekler arası etkileşim nükleer hamiltoniyene dahil edilir. Nükleer hamiltoniyen dışında kalan kısım elektronik hamiltoniyen (H_e) olarak adlandırılır ve çekirdeğin etkisinde hareket eden elektronlar ile elektronlar arasındaki etkileşimleri göz önüne alır. Bu durumda Schrödinger eşitliği şu şekilde yazılabilir;

$$H_e \Psi_e = E_e \Psi_e \tag{1.6}$$

ve sistemin toplam enerjisi şöyle ifade edilebilir:

$$\mathbf{E}_{\mathbf{e}} = \mathbf{E}^T + \mathbf{E}^{\mathbf{V}} + \mathbf{E}^{\mathbf{J}} + \mathbf{E}^{\mathbf{XC}} \tag{1.7}$$

Burada E^T Elektronların hareketinden kaynaklanan kinetik enerji, E^V Çekirdek - elektron çekim ve çekirdek çiftleri arasındaki itme potansiyel enerjisidir, E^J elektron-elektron itme terimi (elektron yoğunluğunun Coulomb öz etkileşimi olarak tanımlanır), $E^{XC} = E^X + E^C$ ise değiş tokuş (E^X) ve korelasyon (E^C) terimidir ve elektron - elektron etkileşimlerinin geri kalan kısmını kapsar. Daha doğrusu değiş tokuş (exchange) enerjisi aynı spinli elektronlar arasındaki etkileşim enerjisidir. Kuantum mekaniksel dalga fonksiyonunun antisimetrikliğinden ortaya çıkar. Korelasyon enerjisi ise farklı spinli elektronlar arsındaki etkileşim enerjisidir.

Örneğin Ne atomunun enerjileri şöyledir: $E_e = -129$. 4 au, $E^T = 129$ au, $E^V = -312$ au, $E^J = 66$ au, $E^X = -12$ au, $E^C = -0.4$ au'dur.

Çekirdek ve elektronların hareketi birbirinden bağımsız varsayılırsa, çok elektronlu sistemin toplam dalga fonksiyonu, Ψ , elektron ve çekirdek dalga fonksiyonlarının çarpımı şeklinde yazılabilir.

$$\Psi = \Psi_e. \Psi_c \tag{1.8}$$

Born-Oppenheimer yaklaşımından doğan hatalar, ilk üç periyodda ki atomlar için göz ardı edilebilir (Z < 36) ancak dördüncü ve beşinci periyodlar ile geçiş metalleri için önemli hale gelir.

1.3.4. Hartree-Fock Teori

Ab initio yöntemlerinin ve yarı deneysel kuantum mekaniksel yöntemlerin çoğunun başlangıç noktası Hartree-Fock teorisidir. Bazı geçiş yapılarının ve kararlı moleküllerin yapılarını ve titreşim frekanslarını hesaplamada oldukça iyidir. Hartree-Fock teorisinin dayandığı yaklaşım, moleküldeki bir elektronun, diğer elektronların ve çekirdeklerin etkilerinden doğan enerjinin ortalaması kadar enerjili küresel bir alan içinde hareket ettiğidir. Bu yaklaşım kullanılarak Schrödinger denklemi sadece bu elektron ve ortalama potansiyel enerji için çözülür.

Hartree-Fock (HF) teorisinin en önemli problemi, moleküler bir sistem içindeki özellikle karşıt spinli elektronlar arasındaki korelasyonları tanımlamada yetersiz oluşudur. Elektron korelasyonu, elektronların birbiriyle etkileşmesinden gelen enerji katkıları olarak tanımlanır. HF dalga fonksiyonu, elektron korelasyonunu antisimetri nedeniyle kısmen göz önüne alır. SCF (Self consistend field) metodunda elektronların, diğer elektronların ortalama bir potansiyeli içinde hareket ettiği kabul edilir ve bir elektronun anlık konumu bir komşu elektronun varlığından etkilenmez. Gerçekte HF enerjisi, en düşük enerji ya da en doğru enerji değildir. Sistemin nonrölativistik enerjisi (Deneysel enerji) ile HF enerjisi arasındaki fark korelasyon enerjisi olarak tanımlanır.

Elektron korelasyonun ihmali bu teoriyi bazı amaçlar için uygunsuz yapar. Örneğin, korelasyonun ihmal edildiği bir hesaplama, H₂ tamamıyla ayrışmış olsa da, H₂ molekülündeki elektronların her iki çekirdek etrafında eşit zaman geçirdiğini öngörür.

Denge yapıları için HF geometrileri ve enerjileri genellikle deneysel sonuçlarla uyum içindedir. Dengedeki türlerle ilgilenildiğinde korelasyon etkileri çok önemli değildir.

Fakat yine de kantitatif sonuçlar gerektiğinde elektron korelasyon etkilerini hesaba katmak gerekir. Elektron korelasyon metotları post-SCF (Variasyon teorisi) metotları olarak adlandırılır. Çünkü onlar, temel HF modeline korelasyon düzeltmeleri ekler.

Hartree-Fock yaklaşımı, N elektronun ortalama potansiyelinde elektronun enerji seviyeleri hesabıdır. Bu matematiksel olarak, elektronların dalga fonksiyonu, N elektronun tek elektron fonksiyonlarının çarpımı olarak alınmasıdır.

N elektronlu bir sistem için Hamiltonianin genel formu:

$$H = \left(-\frac{1}{2}\sum_{i=1}^{N}\nabla^{2} - \frac{1}{r_{1A}} - \frac{1}{r_{1B}} \dots \dots + \frac{1}{r_{12}} + \frac{1}{r_{13}} + \dots\right)$$
(1.9)

Burada elektronlar 1, 2, 3, ..., çekirdekler A, B, C,... olarak işaretlenmiştir.

Enerji ifadesini, sistemin toplam elektronik enerjisine katkıda bulunan üç tip etkileşimin genel bir formu şeklinde yazmak daha uygun olacaktır. Bunlardan ilki, çekirdek alanında hareket eden her bir elekronun potansiyel enerjisi vardır. Enerjiye ikinci katkı, elektron çiftleri arasındaki elektrostatik itmelerden gelir. Bu etkileşimler, elektron-elektron arasındaki uzaklığa bağlıdır. Enerjiye üçüncü katkı ise değiş tokuş etkileşimidir.

1.3.5. Yoğunluk Fonksiyonu (DFT)

Yoğunluk fonksiyonu teorisinde sık kullanılan iki kavram vardır:

I. Elektron yoğunluğu $\rho = \rho(r)$;

Herhangi bir noktadaki yoğunluğudur.

II. Tek düze elektron gazı modeli;

Bir bölgedeki yük dağılımının sisteme düzgün olarak dağılmış n tane elektrondan ve sistemi nötralize edecek kadar pozitif yükten oluştuğu varsayıma dayanan bir modeldir.

Klasik DFT modellerinde enerji ifadeleri elde edilirken elektron dağılımının V hacimli bir küp içinde olduğu, elektron yoğunluğunun $\rho = n/V$ ile verildiği ve sistemde n, $V \rightarrow \infty$ olduğu varsayımı yapılmıştır.

Yani ρ sabit kabul edilmiştir. Bir de fonksiyonel kavramı vardır. Bir F fonksiyonunun f(x)'e bağımlılığını ifade eder ve F(f) ile gösterilir. n elektronlu sistemin E tam taban elektronik enerjisi;

$$E(\rho) = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \int \Psi_i^*(r_1) \nabla_1^2 \Psi_i(\vec{r_1}) d\vec{r_1} - \sum_{I=1}^N \int \frac{Z_1 e^2}{4\pi\varepsilon_o r_{\pm 1}} \rho(\vec{r_1}) d\vec{r_1} + \frac{1}{2} \int \frac{\rho(\vec{r_1})\rho(\vec{r_2})}{4\pi\varepsilon_o r_{12}} d\vec{r_1} d\vec{r_2} + E_{xc}(\rho)$$
(1.10)

Taban durumun yük yoğunluğu,

$$\rho(\vec{r}) = \sum_{i=1}^{N} |\Psi_i(\vec{r})|^2 \tag{1.11}$$

elektron boyutsal orbitalleri (Kohn-Sham orbitalleri),

$$\Psi_i = (i = 1, 2, 3, ..., n)$$
 (1.12)
İle verilir.

Eşitlikteki ilk terim elektronların kinetik enerjisi, ikinci terim atom numarası ZI ve I indeksiyle N tane çekirdeğin tamamı üzerinden toplam alınmasıyla elektronçekirdek çekimini temsil eder. Üçüncü terim r_1 ve r_2 'de toplam yük dağılımı (tüm orbitaller üzerinden) ile Coulomb etkileşimini temsil eder, son terim sistemin değiş tokuş karşılıklı etkileşim enerjisidir.

Aynı zamanda sistemin fonksiyonel bir yoğunluğudur ve klasik olmayan elektron-elektron etkileşmelerinin tamamını hesaba katar. Dördüncü terim E_{xc} 'nin tam olarak nasıl elde edildiğini bilmiyoruz.

Kohn-Sham (KS) orbitalleri KS eşitliklerinin çözümüyle bulunur. Bir elektron orbitalleri için KS eşitlikleri $\Psi_i(r_1)$

$$\left[-\frac{\hbar^2}{2m_e}\nabla_1^2 - \sum_{I=1}^N \frac{Z_1 e^2}{4\pi\varepsilon_o r_{\pm 1}} + \int \frac{\rho(\vec{r_2})e^2}{4\pi\varepsilon_o r_{12}} d\vec{r_2} + V_{XC}(\vec{r_1})\right] \Psi_i(\vec{r_1}) = \varepsilon_i \Psi_i(\vec{r_1})$$
(1.13)

formuna sahiptir. Burada ε_i , KS orbital enerjisidir ve değiş tokuş karşılıklı etkileşim potansiyeli $V_{\rm XC}$ değiş tokuş karşılıklı etkileşim enerjisinin fonksiyonel türevidir:

$$V_{XC}[\rho] = \frac{\delta E_{XC}[\rho]}{\delta \rho} \tag{1.14}$$

 $E_{XC} = \int \rho\left(\vec{r}\right) \varepsilon_{XC}[\rho(\vec{r})] d\vec{r} \tag{1.15}$

Burada $\varepsilon_{XC}[\rho(\vec{r})]$ sabit yoğunluklu bir elektron gazında, her bir elektronun değiş tokuş karşılıklı etkileşme enerjisidir. Bu ifade açık şekilde bir yaklaşımdır. Çünkü ne pozitif yük ne de elektronik yük gerçek moleküllerde eşit olarak dağılmamıştır [27].

1.3.6. B3LYP Karma Yoğunluk Fonksiyonu Teorisi

Dalga mekaniğine dayanan HF teorisi, değiş tokuş enerjisi için iyi bir sonuç vermez. Bu teori korelasyon enerjilerini hesaplayamaz. Ancak kinetik enerji için uygun bir ifade verir. Sadece DFT modellerinin değiş tokuş ve korelasyon enerjilerini daha iyi vermesi nedeni ile tam enerji ifadesi için yalnız HF veya DFT modelleri yerine bu modellerin her ikisinin de enerji ifadeleri toplam elektronik enerji ifadesinde kullanılmıştır.

Bunun sonucunda da karma modeller üretilmiştir. Bu modeller, toplam enerji, bağ uzunlukları ve iyonizasyon enerjileri gibi birçok büyüklüğü saf modellerden daha iyi hesaplamaktadır.

Kinetik enerji fonksiyoneli: H28, TF27 Değiş-tokuş enerji fonksiyoneli: F30, D30 Korelasyon enerji fonksiyoneli: LYP, VWN, ...

gibi enerji fonksiyonelleri çok sık karşılaşılan fonksiyonellerdir. Bir karma model, bu enerji ifadeleri birleştirilerek yeni bir enerji ifadesi elde edilebilir. Becke, değiş-tokuş ve korelasyon enerjisi E^{xc} için aşağıdaki karma modeli çıkarmıştır.

$$E_{karma}^{XC} = C_{HF}E_{HF}^X + C_{DFT}E_{DFT}^{XC}$$
(1.16)

c ifadeleri sabittir. Becke'nin önerdiği karma modeller BLYP ve B3LYP'dir. Bu karma modellerinden en iyi sonuç verenlerinden biri olan LYP korelasyon enerjili üç parametreli Becke karma metodu olan B3LYP'dir. Bu modelde değiş-tokuş ve korelasyon enerjisi,

$$E_{B3LYP}^{XC} = E_{LDA}^X + C_0 (E_{HF}^X - E_{LDA}^X) + C_1 \Delta E_{B88}^X + E_{VWN3}^C + C_2 (E_{LYP}^C + E_{VWN3}^C)$$
(1.17)

ifadesi ile verilmektedir. $C_0 = 0.2$ $C_1 = 0.7$ $C_2 = 0.8$ 'dir. Dolayısıyla B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi,

$$E_{B3LYP} = E_V + E_J + E_{B3LYP}^{XC}$$
(1.18)

biçiminde ifade edilir. Burada E_j elektron-elektron itme terimi E_{B3LYP}^{XC} : B3LYP değiştokuş ve korelasyon enerjisi; E_v çekirdek-elektron çekimi ya da çekirdekler arası itme potansiyel enerjisidir [28,29].

1.3.7. Temel Setler ve 6-31G(d) Temel Seti

Atomik orbitallerin matematiksel ifadesine "temel set" denir. Moleküllerin atomlardan oluşması ve aynı cins atomların farklı moleküllerde benzer özellikler göstermelerinden dolayı moleküler orbital atomik orbitallerin lineer toplamları olarak yazılabilir. Ψ_i moleküler orbitali, ϕ_{μ} de atomik orbitali göstermek üzere aralarında

$$\Psi i = \sum^{N} C_{\mu i} \phi_{\mu} \tag{1.19}$$

bağıntısı vardır. Burada $C_{\mu i}$ moleküler orbital açılım katsayıları; ϕ_{μ} atomik orbitalleri ise temel fonksiyonları olarak adlandırılır. Gaussian tipi atomik fonksiyonlar aşağıdaki ifadeyle verilir.

$$g(\alpha, \mathbf{r}) = C\chi^n \gamma^m Z^I e^{-\alpha r^2}$$
(1.20)
Burada a fonksiyonun genişliğini ifade eden bir sabit, c ise α , l, m ve n ye bağlı sabittir. s, p_y ve d_{xy} tipi gaussian fonksiyonlar;

$$g_s(\alpha, \vec{r}) = \left(\frac{2a}{\pi}\right)^{3/4} e^{-ar^2}$$
(1.21)

$$g_s(\alpha, \vec{r}) = \left(\frac{128a^5}{\pi^3}\right)^{1/4} ye^{-ar^2}$$
 (1.22)

$$g_{XY}(\alpha, \vec{r}) = \left(\frac{204a^7}{\pi^3}\right)^{1/4} xy e^{-ar^2}$$
(1.23)

Şeklinde gösterilir. Bunlara ilkel gaussianlar denir.

Sınırlandırılmış gaussianlar ise;

ifadesi ile verilmekte olup $d_{\mu p}$ 'ler herhangi bir temel set için sınırlı sayıdaki sabitlerdir.

Sonuçta bir moleküler orbital;

$$\Psi_{\nu} = \sum^{N} C_{\omega} \phi_{\mu} = \sum_{\mu} \left(\sum_{p} d_{\mu p} g_{p} \right)$$
(1.25)

ile verilmektedir. Burada $C_{\mu i}$ lineer açılım katsayısının her bir orbital için tekrar hesaplanması bizim için önemli bir sorun yaratır.

Atomik orbitaller için birçok temel set önerilmiştir. Bunlardan minimal temel setler; herhangi bir atom için gerektiği sayıda temel fonksiyon içerir. Örneğin;

Split valans temel setleri ise bir valans orbitali için farklı büyüklükte (a) iki veya daha çok temel fonksiyon içerirler. Örneğin;

H:1s, 1s C:1s, 2s, 2s, 2px, 2py, 2px, 2py, 2pz (1.27)

Burada işaretli ve işaretsiz orbitallerin büyüklükleri farklıdır. 3-21G, 4-21G, 6-31G setleri temel minimal setlerdir. Split valans temel setler orbitallerin büyüklüğünü değiştirir fakat şeklini değiştirmez. Polarize temel setler ise bir atomun taban durumunu tanımlamak için gerekenden daha fazla açısal momentumu orbitallere ekleyerek orbitallerin şeklini değiştirir. Örneğin temel polarize setler karbon atomları için d: fonksiyonlarını da göz önüne alır. 4-21G* (4-21G(d)), 6-31G* (6-31G(d)) şeklinde ifade edilir [30,31].

Hesaplamalarda kullanılan 6-31G(d) temel seti için ifadeler aşağıda verilmiştir. Hidrojen atomu için S atomik orbitalleri aşağıdaki gibi verilir.

$$\phi_{1s}(\vec{r}) = \sum_{k=1}^{3} d_k g_s(a_k \vec{r}) \ ve \ \phi_{1s}(\vec{r}) = \sum_{k=1}^{3} d_k g_s(a_k \vec{r})$$
(1.28)

Karbon ve azot atomları için s ve p atomik orbitaller,

$$\phi_{1s}(\vec{r}) = \sum_{k=1}^{3} d_{2p,k} g_s(a_{1k}, \vec{r}) , \\ \phi_{2s}(\vec{r}) = \sum_{k=1}^{3} d_{2s,k} g_s(a_{k,r}'' \vec{r})$$
(1.29)

$$\emptyset_{2px}^{\prime\prime}(\vec{r}) = \sum_{k=1}^{3} d_{2p,k} g_{px}(a_{2k}^{\prime\prime}, \vec{r})$$
(1.30)

$$\phi_{2s}^{-}(\overline{r}) = \sum_{k=1}^{N} d_{2s,k}^{"} g_{s}(a_{2k}^{"},\overline{r}) , \\ \phi_{2pxs}^{"}(\overline{r}) = \sum_{k=1}^{N} d_{2p,k}^{"} g_{px}(a_{2k}^{"},\overline{r})$$
(1.31)

şeklinde yazılabilir.

Karbon ve azot atomları için d orbitali sanal bir orbital olup kısıtlanmamıştır. Yani $\emptyset_d = g_d(a_d)$ ifadesi ile verilmektedir. Ø've Ø'' fonksiyonları valans kabuğunun iç ve dış kısımlarına karşılık gelir [32,33,34].

1.3.8. Geometrik Optimizasyon

Molekülün minimum enerjili (denge durum) geometrisini hesaplayabilmek için Gradyent metodu (Kuvvet metodu) kullanılır. Hesaplamalar moleküle ait belirli bir geometri oluşturularak başlar. Bir koordinat sistemindeki atomlar arasındaki yer değiştirmeler, molekülün enerjisiyle birlikte diğer birçok özelliklerinde değişmelere neden olur. Molekülün yapısındaki değişiklikler sonucunda enerjinin koordinata bağımlılığı sonucuna varılır. Bu bağımlılık moleküler yapı ile molekülün enerjisi arasındaki ilişkidir. Bu ilişki "potansiyel enerji yüzeyi" olarak adlandırılır.

İki atomlu moleküllerde bağ gerilmesine karşılık gelen elektronik enerji grafiği Şekil 1.3'de verilmiştir. Burada; E_m minimum enerjili nokta, X_m minimum enerjiye karşılık gelen koordinant noktadır.

Şekil 1.3. İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye bağımlılığı.

Bir molekül için önce potansiyel enerji yüzeyi doğru tanımlanır ve bu tanımdan yararlanılarak denge geometrisine karşılık gelen minimum enerjili noktası hesaplanır. Hesaplamalarda önce gradient vektörü hesaplanır.

$$\langle \mathbf{g} | \equiv \mathbf{g} = \left(\frac{\partial E}{\partial X_1}, \frac{\partial E}{\partial X_2}, \dots\right)$$
 (1.32)

Daha sonra gradyent vektörünün sıfır olduğu noktalar hesaplanır.

$$\langle g| = (0,0,...)$$
 (1.33)

Çünkü Gradyent vektörünün sıfır olduğu noktalar minimum enerjili duruma karşılık gelir. Bu geometri molekülün minimum enerji geometrisi olarak tanımlanır.

Bir molekülün potansiyel enerji yüzeyi birçok maksimum ve minimum bölgeler içerir. Sistemin dengede olduğu yerler potansiyel enerji yüzeyindeki minimumlardır. Bir molekül için birçok farklı minimumlar bulunabilir ve bu minimumlar molekülün farklı konfigürasyonlarına karşılık gelir. Bu hesaplamalar yapılırken bazen bir sırt bölgesinde bir yönde yerel minimum, diğer yönden bir maksimuma karşılık gelir. Bu tür noktalar eyer noktalar olarak tanımlanır. E_{yer} noktaları iki denge nokta sırasındaki geçişlere karşılık gelir (Şekil 1.4).

Şekil 1.4. İki boyutta potansiyel enerji yüzeyi.

Genel olarak geometrik optimizasyon potansiyel enerji yüzeyindeki minimumları araştırarak moleküler sistemlerin denge yapılarını tahmin eder. Optimizasyon geometrisi hesaplanırken geçiş yapıları hesaplanabilir.

Geometrik optimizasyon, tanımlanan giriş geometrisindeki moleküler yapı ile başlar ve potansiyel enerji yüzeyini dolaşarak devam eder. Dolaştığı noktalardaki enerji ve gradyenti hesap ederek hangi yöne doğru ne kadar gidileceğine karar verir. Minimumlarda ve eyer noktalarında enerjinin birinci türevi yani gradient sıfırdır. Potansiyel enerji yüzeyinde gradient vektörü g'nin sıfır olduğu noktalara "kararlı noktalar" denir.

Enerjinin atomik koordinatlara göre ikinci türevi kuvvet sabitini verir. Optimizasyon logoritmaları genellikle kuvvet sabitleri matrisinide hesaplar. Kuvvet sabitleri ve bir noktadaki yüzeyin eğriliğini tanımlar ve böylece bir sonraki aşamanın belirlenmesini sağlar. Optimizasyonun tamamlanabilmesi için; bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir derecede olmalıdır [35, 36, 37].

1.3.9. SQM Metodu

SQM metodunda kullanılan işlem sırası aşağıda verilmiştir.

- Molekülün yaklaşık geometrisi veri olarak girilir.

- Geometrik optimizasyon ve kullanılacak temel set seçilerek, seçilen model çerçevesinde enerjinin birinci analitik türevleri alınarak hesap edilir. Bu hesaplama sonucunda molekülün minimum enerjiye sahip geometrisi elde edilmiş olur.

 Molekülün titreşim frekansını hesaplamak için geometrik optimizasyon sonucunda elde edilen geometri veri olarak girilerek hesaplama modeli seçilir.
 Seçilen model enerjinin ikinci analitik türevini kullanarak kuvvet sabitlerini hesaplar.
 Bu kuvvet sabitleri kullanılarak titreşim frekansları harmonik yaklaşım metodu ile hesaplanır.

- Elde edilen titreşim frekansları deneysel değerlerle uyum sağlaması için uygun ölçekleme faktörleri kullanılarak ölçeklenir.

Çok atomlu moleküllerin kuvvet sabitlerinin ilk sistematik hesaplamaları gradyentin numerik türevi hesaplanarak yapılmıştır.

1970'li yıllarda özellikle HF modeli ile yapılan hesaplamalar kuvvet sabitleri ve titreşim frekansları ile ilgili olarak aşağıdaki sonuçları vermiştir [38].

Hesaplanan kuvvet sabitlerini incelediğimizde;

- Teorik hesaplar, gerilme kuvvet sabitlerini sistematik olarak deneysel değerlerden %10-15 büyük hesaplar.

- Teorik hesaplar, bükülme kuvvet sabitleri sistematik olarak deneysel değerlerden %20-30 büyük hesaplar. Program tarafından hesaplanan kuvvet sabitleri deneysel değerler ile karşılaştırıldığı zaman kuvvet sabitlerindeki hata oranı %10-30 arasında değişebilmektedir.

- Hesap edilen kuvvet sabitlerindeki hata oranı doğal olarak titreşim frekanslarını etkileyecektir.

- Deneysel olarak gözlenen frekans değerleri ile hesaplanan frekans değerleri arasındaki farkı gidermek amacıyla ölçekleme metodu geliştirilmiştir. Bu alanda ilk ciddi çalışma Pulay ve Meyer tarafından etilen ve asetilen molekülleri için yaptıkları kuvvet alanı çalışmalarında kullandıkları basit ölçekleme yöntemidir [39].

- Bu çalışmada hesaplanan değerler ile teorik değerler karşılaştırılarak sabit ölçekleme faktörleri çıkartılmıştır.

Hesaplamalar ile ilgili benzer çalışmalar da eş zamanlı olarak diğer gruplar tarafından yapılmıştır [38]. Blom ve Altona tarafından teorik kuvvet alanının daha doğru elde edilmesi için ölçekleme metodu kullanılmıştır. Bu çalışmada kuvvet sabitlerinin hesabının tümünde farklı ölçekleme metodu kullanılmıştır. Örneğin kuvvet sabitleri ile hesaplanırken; C-C gerilme, C-H gerilme, bükülme, sallanma, burulma ve CH₂ dalgalanma degerlerinin her biri için farklı ölçekleme kullanılmıştır. Köşegen dışı kuvvet sabitlerinden elde edilen titreşim hareketleri için farklı ölçekleme metodu kullanmışlardır [40]. Bugün yapılan çalışmalarda ölçekleme için sistematik bir model geliştirilmiştir. Örneğin, Pulay ve arkadaşları HF/4-31G ve HF/4-21G* metodları için ölçeklemeyi sistematik hale getirmişlerdir. Bu şekilde yapılan çalışmalar eş zamanlı yapılan çalışmalar ile kıyaslandığında ölçekleme metodunda çok daha başarılı sonuçlar elde edilmiştir.

SQM yönteminde moleküler geometri doğal iç koordinatlar kullanılarak hesap edilir.

Doğal iç koordinatlarda temel olarak;

Gerilme koordinatları (bağ değişimleri), deformasyon koordinatları (burulmalar ve bağ açıları) hesap edilir. Grup teorisi yardımı ile bunun dışında kalan titreşim hareketleri (bükülme ve burulmalar) çizgisel kombinasyonlarından elde edilir. Orta büyüklükteki moleküller için doğal iç kordinatlarda gruplandırılarak her bir grup için ölçekleme faktörlerinin oluşturulması Pulay ve Fogarasi tarafından önerilmiştir [37, 39, 40].

Ölçekleme doğal koordinatlardaki kuvvet sabiti matrisinin elemanlarına aşağıdaki şekilde uygulanır. F_{ij}^{SQM} her hangi bir model ile (HF, DFT, ...) hesaplanmış teorik kuvvet sabiti F_{ij}^{SQM} ölçeklenmiş kuvvet sabiti olmak üzere aralarında ilişki aşağıda verilmiştir.

$$F_{ij}^{SQM} = \left(S_i S_j\right)^{1/2} F_{ij}^{teo} \tag{1.34}$$

Burada S_i ve S_j sırası ile *i*. ve *j*. doğal iç koordinatlara karşılık gelen ölçekleme faktörleridir. Ölçekleme yöntemi ile hesaplanan değerler ile deneysel değerler karşılaştırıldığında uyum içinde olması gerekir [41, 42, 43, 44].

P. Pulay ve G. Rauhut tarafından DFT/B3LYP 6-31G* modeli için SQM metodu geliştirilmiştir. Bu çalışmada yirmi tane basit organik molekül (C, H, N, O, ...içeren) için geometrik optimizasyonu DFT/B3LYP 6-31G* metodu kullanılarak yapılmıştır. Bu moleküle ait 347 tane temel titreşim frekansı hesaplanarak bu değerler deneysel değerler ile karşılaştırılıp ölçekleme faktörleri belirlenmiştir.

Bu çalışmanın sonucunda farklı tipte on bir tane ölçekleme faktörü önermişlerdir. Daha sonra orta büyüklükteki 309 tane test molekülüne ait temel titreşim frekansları ve infrared spektrumları incelenerek test edilmiştir. Hesaplamalar DFT/B3LYP/6-31G* düzeyindeki bir teori ile yapılan frekans hesaplarının deneysel değerlerden ortalama %5 daha büyük olarak hesaplandığını göstermiştir. Bunun temel nedeni anharmonik yaklaşım modelin eksikliği ve molekül geometrisinden kaynaklanan hatalardan ortaya çıkmaktadır [45].

2. KAYNAK ARAŞTIRMALARI

Maddelerin titreşim spektrumu analizi ile ilgili çalışmalara bakıldığında <u>www.sciencedirect.com</u> adlı sitede DFT metodu ile yaklaşık 2500 çalışmanın yapıldığı, B3LYP metodu ile 1000 çalışmanın yapıldığı, HF metodu ile ise yaklaşık 11000 çalışmanın yapıldığı görülmektedir.

Kullanılan Metodlar ve Temel Setler ile ilgili kaynak çalışması Çizelge 2.1'de verilmiştir.

Çizelge 2.1. Bazı maddelerin titreşim spektrumunda kullanılan metodlar ve karakterizasyonunda kullanılan cihazlar.

Bileşiğin adı	Metod	Temel set	IR	Raman	NMR	X RAY	Ref. No
2-(4-Methoxyphenyl)-1H-benzo[d]	B3LYP BLYP,	6-311G**	+	-	-	-	46
<i>tert</i> -Butyl <i>N</i> -(2-bromocyclohex-2- enyl)- <i>N</i> -(2-furylmethyl)carbamate	HF, B3LYP BLYP	6-31G [*] 6-31G ^{**}	+	-	-	-	47
2-Chloro- <i>N</i> - (diethylcarbamothioyl)benzamide	HF, B3LYP	3-21G 6-31G(d)	+	-	-	+	48
O-Ethyl benzoylthiocarbamate	HF, B3LYP	3-21G 6-31G(d)	+	-	-	+	49
3-(6-Benzoyl-5-chloro-2- benzoxazolinon-3-yl) propanoic acid	HF, B3LYP	6-31G(d)	+	-	-	-	50
5-Chloro-10-oxa-3-thia- tricyclo[5.2.1.01,5]dec-8-ene-3,3- dioxide	HF, B3LYP	6-31G(d,p) 6-311G(d,p)	+	-	-	-	51
3-(6-Benzoyl-2-oxobenzo[d]oxazol- 3(2H)-yl)propanoic acid,	HF, DFT	6-31G(d)	+	-	-	+	52
<i>N</i> -(2,2-Diphenylacetyl)- <i>N</i> '-(naphthalen- 1yl)-thiourea	BLYP, B3LYP	6-31G*	+	-	+	+	53
Thioxanthone	B3LYP	6-31+G(d,p)	+	-	+	-	54
2,3-Naphthalenediol	HF, B3LYP	6-31+G(d,p) 6-311+G(d,p)	+	+	-	-	55
Pentacarbonyl(4- methylpyridine)chromium(0)	B3LYP B3PW91	6-311G, 6-31G(d,p)	+	-	+	-	56
Chlorobenzene	HF, B3LYP	6-311+G(d,p)	+	+	-	-	57
4-Allyl-5-(2-hydroxyphenyl)-2,4- dihydro-3 <i>H</i> -1,2,4-triazole-3-thione	HF, B3LYP	6-31G(d)	+	-	+	+	58
<i>p</i> -Toluenesulfonyl isocyanate	HF, B3LYP	6-311+G(d,p)	+	+	-	-	59

Çizelge 2.1. devamı.

Bileşiğin adı	Metod	Temel set	IR	Raman	NMR	X RAY	Ref. No
4-Chloro-2-fluoro tolüene	HF, B3LYP	6-311++G 6-311++G(d,p)	+	+	-	-	60
<i>p</i> -Fluoronitrobenzene	HF, B3LYP	6-31++G(d,p) 6-311+G(d,p)	+	+	-	-	61
8-Hydroxyquinoline	HF, B3LYP	6–31G(d)	+	-	-	-	62
4-Chloro-3-nitrotoluene	HF, B3LYP	6-311++G(d,p)	+	+	-	-	63
<i>N</i> -Diethylendiamine	HF, B3LYP	(6-31G(d))	-	+	-	-	64
1,1'-Diethyl-2,2'-carbocyanine iodide	HF, B3LYP	6-31+G(d,p) 6-31G(d)	-	-	+	-	65
4-Chloro-3-nitrobenzaldehyde	HF, B3LYP	6-311+G(d,p)	+	+	-	-	66
Methyl 5β-cholan-24-oates	HF, B3LYP	6-31G* 6-311G*	-	-	+	+	67
3-(2-Hydroxyphenyl)-4-phenyl-1 <i>H</i> - 1,2,4-triazole-5-(4 <i>H</i>)-thione	BLYP, B3LYP	6–31G(d)	+	-	+	-	68
6-Quinolinecarboxaldehyde	HF, B3LYP	6-311++G(d,p)	+	+	-	-	69
Melaminium phthalate	HF, B3LYP	6-31G(d)	-	-	-	+	70
Dioxamic acid	HF, B3LYP	3-21G [*] 6-31G [*]	+	-	+	+	71
Methyl benzoate	HF, B3LYP	6-311+G(d,p)	+	+	-	-	72
[2.2.1] Hept-2'-en-2'-amino-N- azatricyclo [3.2.1.02,4] octane	HF, B3LYP	6-31G*	-	-	+	-	73
2-Chloro-5-methylaniline	HF, B3LYP	6-31G(d), 6-31G(d,p), 6-31+G(d,p),	+	+	-	-	74
m-Xylol	HF, B3LYP	6-31+G(d,p) 6-31++G(d,p)	+	+	-	-	75
4-Nitrotoluene	HF, B3LYP	6-31G (d, p) 6-31+G*(d,p)	+	+	-	-	76
Xanthine	HF, DFT	6-311++G(d,p)	+	+	-	-	77
<i>P-N,N-</i> Dimethylaminobenzylidenemalononitrile	HF, DFT	6-31++G(d,p) 6-311++G(d,p)	+	+	-	-	78
2-Bromo-4-methylaniline	HF, B3LYP	6-311+G*(d,p) 6311++G*(d,p)	+	+	-	-	79
Chlorotoluene, <i>m</i> -chlorotoluene,	HF, B3LYP	6-311++G(d,p)	+	+	-	-	80
2-Amino-4 <i>H</i> -chromene-3-carbonitrile	HF, B3LYP	6-311++G(d,p)	+	-	+	-	81
5-Chloro-1-methyl-4-nitro-1 <i>H</i> -imidazole	HF, B3LYP	6-311+G(d,p)	+	+	+	-	82

Çizelge 2.1. devamı.

Bileşiğin adı	Metod	Temel set	IR	Raman	NMR	X	Ref.
						RAY	No
<i>N</i> -[acetylamino-(3-	HF,	6-311++G(d,p)	-	-	+	-	83
nitrophenyl)methyl]-acetamide	B3LYP						
<i>N</i> , <i>N</i> '-di(2-Methoxyphenyl)	HF,	6-311+G(d,p)	+	+	+	+	84
formamidine	B3LYP						
2-[(5-Methylisoxazol-3-yl)amino]-	HF,	6-31G(d,p)	+	+	-	+	85
2-oxo-ethyl methacrylate,	B3LYP	6-311G(d,p)					
	B3PW91						
Benzimidazole	HF,	6-31G(d,p)	+	+	-	-	86
	B3LYP	6-311G(d,p)					
4- <i>N</i> , <i>N</i> '-Dimethylamino pyridine	HF,	6-31G(d,p)	+	+	-	-	87
	B3LYP	6-311++G(d,p)					
α, α, α -Trichlorotoluene	HF,	6-311++G(d,p)	+	+	-	-	88
	B3LYP						
α-Chlorotoluene	HF,	6-311G(d)	+	+	-	-	89
	B3LYP	6-311++G(d)					
4-N-Pentylphenyl-4'-N-	HF,	6-31+G(d)	+	+	-	-	90
octyloxythiobenzoate	B3LYP	6-311+G(d,p)					
	B3PW91	_					
3-Bromo phenol	HF,	6-31G (d, p)	+	+	-	-	91
-	B3LYP	6-311G (d, p)					
1,3-Dichlorobenzene	HF,	6-31++G (d, p)	+	+	-	-	92
	B3LYP	6-311++G (d, p)					
Thiotriazinone	HF,	6-	+	-	+	+	93
	DFT	311++G(2d,2p)					
2-Nitroanisole	HF,	6-311+G (d,p)	+	+	-	-	94
	B3LYP	6-311++G (d,p)					
	B3PW91						

3. MATERYAL VE YÖNTEM

3.1. KULLANILAN KIMYASALLAR

Bu tez çalışmasında kullanılan kimyasallar;

- 2-Nitroanilin
- 1-Floro-2-nitrobenzen
- Potasyum *tert*-bütoksit
- İzobütiril klorür
- Pd/C
- Sodyum bikarbonat çözeltisi
- Magnezyum sülfat
- Trietilamin
- Dimetil sülfoksit
- Metanol
- Tetrahidrofuran
- Eter
- Diklorometan

3.2. KULLANILAN CİHAZLAR

Bu tez çalışmasındaki sentezlenen ligandın karakterizasyon çalışmaları Emory Üniversitesi Kimya Bölümü laboratuarlarında mevcut olan İnfrared spektroskopisi (FT-IR), ¹H NMR, ¹³C NMR ve HRESI-MS cihazları ile Sharma ve arkadaşları tarafından yapılmıştır [15]. Ayrıca laboratuarımızda sentezlenen maddelerin analizi Mersin Üniversitesi İleri Teknoloji Araştırma Merkezi'nde (MEITAM) bulunan FT-IR, NMR ve LC MS cihazları ile de yapılmıştır.

Bu tez çalışmasında kullanılan cihazlar;

• ¹H NMR Varian Mercury 300 ve Inova 400 MHz spektrometresi (Emory Üniversitesi)

• ¹³C NMR Varian Mercury 300 ve Inova 400 MHz spektrometresi (Emory Üniversitesi)

Mass (HRESI-MS) JEOL JMS-SX102/SX102A/E mass spektrometresi (Emory Üniversitesi)

• IR Varian Scimitar 800 Series FT-IR spektofotometresi (Emory Üniversitesi)

• X-Işınları Tek Kristal Kırınım Analizleri (XRD), Bruker marka SMART CCD model XRD cihazı (Emory Üniversitesi).

 ¹H NMR BRUKER AVANCE III 400MHz NaNoBay FT-NMR spektrometresi (MEİTAM)

• ¹³C NMR AVANCE III 400MHz NaNoBay FT-NMR spektrometresi (MEİTAM)

• Perkin Elmer IR/FIR/NIR Spektrometresi Frontier, ATR (MEİTAM)

• Agilent Sıvı Kromatografisi / Kütle / Kütle Spektrometresi LC/MS/MS 6460 (MEİTAM)

3.3. YÖNTEM

Bis(2-izobutirilamidofenil)amin bileşiğinin sentezi üç basamakta gerçekleşmektedir.

3.3.1. Bis(2-nitrofenil)amin Bileşiğinin Sentezi

2-Nitroanilin (2.0 g, 14.1 mmol) ve 1-floro-2-nitrobenzen (1.5 mL, 14.1 mmol) oda sıcaklığında tamamen çözünene kadar dimethyl sulfoxide (DMSO) (40 mL) içerisinde karıştırıldı. Potasyum *tert*-bütoksit (KOtBu) (3.3 g, 29.0 mmol) oda sıcaklığında karışıma ilave edildi ve N_2 atmosferi altında 24 saat karıştırıldı. Reaksiyon karışımı 200 mL su ile seyreltildi ve elde edilen katı ürün süzülerek ayrıldı ve daha sonra 500 mL metanol içerisinde soğukta kristallendirildi. Elde edilen katı ürün vakum altında kurutuldu (Şekil 3.1).

Şekil 3.1. Bis(2-nitrofenil)amin bileşiğinin sentez reaksiyonu.

3.3.2. Bis(2-aminofenil)amin Bileşiğinin Sentezi

Tetrahidrofuran (THF) (50 mL) içerisinde çözülmüş bis(2-nitrofenil)amin (2.0 g, 7.7 mmol) üzerine %5 Pd/C (1.0 g, 0.5 mmol, 6 mol%) ilave edildi. Reaksiyon karışımı 50 psi H₂ gazı altında 45 dakika karıştırıldı ve elde edilen karışım celite üzerinden süzüldü. Süzüntü vakum altında çözücüsü uçurularak kurutuldu. Elde edilen yağımsı ürün eter üzerinden kristallendirildi (Şekil 3.2).

Şekil 3.2. Bis(2-aminofenil)amin bileşiğinin sentez reaksiyonu.

3.3.3. Bis(2-izobutirilamidofenil)amin Bileşiğinin Sentezi

Bis(2-aminofenil)amin'in (1.32 g) diklorometan (DCM) (50 mL) içerisindeki süspansiyonu N₂ atmosferi altında 0 °C'ye soğutuldu. Daha sonra üzerine trietilamin (Et₃N) (2.02 mL) ve izobutiril klorür (1.53 mL) ilave edildi. Karışım 0 °C'de bir saat karıştırıldı ve karışımın yavaşça oda sıcaklığına çıkması sağlandı. Bu karışım oda sıcaklığında 20 saat karıştırıldı. Elde edilen çözelti doymuş NaHCO₃ çözeltisi (3x30 mL) ile ekstrakte edildi ve organik tabakalar birleştirilerek MgSO₄ üzerinden kurutuldu ve vakumda konsantre hale getirildi. Elde edilen ürünün DCM içerisindeki konsantre çözeltisi hekzan üzerinden kristallendirildi (Şekil 3.3) [15].

Şekil 3.3. Bis(2-izobutirilamidofenil)amin bileşiğinin sentez reaksiyonu.

3.4. X-IŞINLARI TEK KRİSTAL DİFRAKSİYON ANALİZİ

Yapılan çalışmalar sonucunda, X-ışınları tek kristal difraksiyonu analizine uygun *bis*(2-izobutirilamidofenil)amin bileşiğinin kristalleri elde edilmiştir. Bu bileşiğin yapısı, X-ışınları tek kristal difraksiyonu tekniği ile aydınlatılmıştır.

3.5. TEORİK HESAPLAMALAR

3.5.1. Gaussian 03W

Bu çalışmada Gaussian 03W paket programı kullanılmıştır [95]. Gaussian 03W moleküler mekanik, yarı-denel ve ab initio yöntemleri içeren oldukça kapsamlı bir programdır. Her üç yöntem içinde çok sayıda teori ve temel set seçeneğine sahiptir. Gaussian 03W program ile atom ve moleküllerin enerjileri hesaplanabilir, geometrik optimizasyonları yapılabilir ve enerjiye bağlı olan titreşim frekansları, kuvvet sabitleri ve dipol momentleri hesaplanabilir. Program potansiyel enerji yüzeyinde dolaşarak minimumlar, geçiş halleri ve tepkime güzergahını tarayabilir. Molekül dalga fonksiyonunun kararlılığını test edebilir. Ayrıca IR ve Raman spektrumları, termokimyasal özellikleri, bağ ve tepkime enerjileri, molekül orbitalleri, atom yükleri, çok kutuplu momentler, NMR ve manyetik duyarlılık, titreşimsel şiddetleri, elektron ilgisi ve iyonlaşma enerjileri, kutuplanabilirlik ve hiper kutuplanma, elektrostatik potansiyel ve elektron yoğunluğu gibi pekçok özelliğin atomlar ve moleküller için hesaplanmasına olanak tanır. Tüm bu özellikler gaz fazında, çözelti içinde ve kristal yapılarında hesaplanabilir. Hesaplamalarda atom veya molekülün temel hali ya da uyarılmış hali kullanılabilir [96].

3.5.2. Gauss View 3.0

Gauss View 3.0 Gaussian paket programları için giriş (input) dosyaları hazırlamak ve gaussian çıktılarını görselleştirmek için hazırlanmış bir grafik ara yüzdür [97]. Gauss view molekülleri görsel hale getirir onları istediğimiz gibi döndürmemize, hareket ettirmemize ve moleküllerde değişiklik yapmamıza olanak sağlar. Ayrıca karmaşık hesaplamalar için dahi kolaylıkla giriş dosyaları hazırlamamızı sağlar. Gaussian programı tarafından hesaplanan sonuçları grafiksel olarak incelememize olanak sağlar. Bu sonuçlar; optimize edilmiş moleküler yapılar, moleküler orbitaller, elektrostatik potansiyel yüzeyi, atomik yükler, IR, Raman, NMR, spektrumları, titreşim frekanslarına bağlı normal mod animasyonları gibi sıralanabilir [96].

3.5.3. Hesaplama Detayları

Bu çalışmada, *bis*(2-izobutirilamidofenil)amin bileşiğinin moleküler yapısı, moleküler çizim programı olan Gauss View 3.0 kullanılarak üç boyutlu olarak çizildi. Çizilen bu yapının geometrik parametreleri Gaussian 03W paket programına otomatik olarak giriş verileri olarak girildi. Daha sonra 6-31G(d,p) baz setinde HF, B3LYP, B3PW91 ve BLYP yöntemleri kullanılarak optimize edildi. Optimize edilen geometriye ait parametreler *bis*(2-izobutirilamidofenil)amin bileşiğinin X-ışınları tek kristal difraksiyon verileri ile karşılaştırıldı. Optimize edilen konfigürasyonun titreşim frekanslarıda yukarıda verilen metotlar için hesaplandı. Elde edilen teorik veriler deneysel değerler ile uyumlu hale getirilebilmek için ölçekleme faktörleriyle çarpılarak düzeltildi.

4. BULGULAR VE TARTIŞMA

4.1. SENTEZ

4.1.1. Bis(2-nitrofenil)amin

Bis(2-nitrofenil)amin bileşiğine ait karakterizasyon sonuçları aşağıda verilmiştir. Elde edilen analiz sonuçları literatür verileri ile uyumlu olup hedef bileşik başarı ile sentezlenmiştir (Şekil 4.1).

Bis(2-nitrofenil)amin: Verim: 57%. ¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 10.64 (s, 1H, NH), 8.21 (dd, 2H, Ar-H), 7.71 (td, 2H, Ar-H), 7.63 (dd, 2H, Ar-H), 7.23 (td, 2H, Ar-H). ¹³C NMR (100 MHz, DMSO-*d*₆, δ, ppm): 138.10, 136.74, 135.50, 126.20, 122.24, 120.57. IR (ATR, cm⁻¹): 3304 v(NH), 3098, 3077 v(Ar-CH),1603, 1574, 1332 v(NO₂).

Şekil 4.1. Bis(2-nitrofenil)amin bileşiği.

4.1.2. Bis(2-aminofenil)amin

Bis(2-aminofenil)amin bileşiğine ait karakterizasyon sonuçları aşağıda verilmiştir. Elde edilen analiz sonuçları literatür verileri ile uyumlu olup hedef bileşik başarı ile sentezlenmiştir (Şekil 4.2).

Bis(2-aminofenil)amin: Verim: 96%. ¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 6.71 (dd, 4H, Ar-H), 6.60 (d, 2H, Ar-H), 6.49 (m, 2H, Ar-H), 6.08 (s, 1H, NH), 4.67 (s, 4H, NH). ¹³C NMR (100 MHz, DMSO-*d*₆, δ, ppm): 140.23, 130.73, 122.19, 119.66, 117.30, 115.43. FT-IR (ATR, cm⁻¹): 3414, 3375, 3339 v(NH), 3056, 3015 v(Ar-H), 1620, 1497.

Şekil 4.2. Bis(2-aminofenil)amin bileşiği.

4.1.3. Bis(2-izobutirilamidofenil)amin

Bis(2-izobutirilamidofenil)amin bileşiğine ait karakterizasyon sonuçları aşağıda verilmiştir. Elde edilen analiz sonuçları literatür verileri ile uyumlu olup hedef bileşik başarı ile sentezlenmiştir (Şekil 4.3).

Bis(2-izobutirilamidofenil)amin: Verim: 92%. ¹H NMR (400 MHz, DMSOd₆, δ, ppm): 9.38 (s, 2H, NH(CO)), 7.39 (dd, 2H, Ar-H), 7.05 (td, 2H, Ar-H), 6.92 (m, 4H, Ar-H), 6.86 (s, 1H, NH), 2.62 (m, 2H, CH), 1.07 (s, 12H, CH₃). ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 175.54, 137.27, 128.78, 125.49, 125.35, 120.81, 119.01, 34.30, 19.31. FT-IR (ATR, cm⁻¹): 3406, 3398, 3367 v(NH), 3118, 3115, 3099, 3059, v(Ar-H), 3035, 3001, 2966, 2964, 2938, 2929, v(CH₃), 2958, v(CH), 1695 v(CO).

Şekil 4.3. Bis(2-izobutirilamidofenil)amin bileşiği.

Bis(2-izobutirilamidofenil)amin bileşiğinin ¹H NMR, ¹³C NMR ve LC-MS spektrumları Şekil 4.4-6'da verilmiştir. Ayrıca LC-MS/MS tekniği kullanılarak *bis*(2-izobutirilamidofenil)amin bileşiğinin molekül ağırlığı ve fragmentleri belirlenmiştir.

Şekil 4.4. *Bis*(2-izobutirilamidofenil)amin bileşiğinin ¹H NMR spektrumu.

Şekil 4.5. *Bis*(2-izobutirilamidofenil)amin bileşiğinin ¹³C NMR spektrumu.

Şekil 4.6. Bis(2-izobutirilamidofenil)amin bileşiğinin LC/MS/MS spektrumu.

Şekil 4.7. Bis(2-izobutirilamidofenil)amin bileşiğinin fragment dağılımı.

4.2. KRİSTALLOGRAFİK BULGULAR

Yapılan kristallendirme çalışmalar sonucunda, X-ışınları tek kristal difraksiyonu analizine uygun *bis*(2-izobutirilamidofenil)amin bileşiğinin kristalleri elde edilmiştir. Bu bileşiğin yapısı, X-ışınları tek kristal difraksiyonu tekniği ile aydınlatılmıştır. Bileşiğin, triklinik uzay grubunda ve yapının da *P-1*, *a* = 9.5377(9) Å, *b* = 10.9710(10) Å, *c* = 18.6693(15) Å, α = 76.644(6)°, β = 80.010(6)°, γ = 81.379(7)°, *Z* = 2, *D*_{calc} = 1.212 mg/m³ olduğu tespit edilmiştir. Bileşiğin kristal yapısı ve birim hücre içerisindeki yerleşimi Şekil 4.8-11'de verilmiştir. Bu kristale ait kristallografik veriler Çizelge 4.1'de seçilmiş bağ uzunlukları, açıları, torsiyon açıları ve hidrojen bağlarına ait veriler ise Çizelge 4.2-5'de verilmiştir. Tüm elde edilen veriler değerlendirildiğinde sentezlenen bileşiğinin tek kristal yapısı başarı ile aydınlatılmış olup elde edilen yapı, önerilen molekül formülü ile uyumludur.

Bileşikteki karbonil gruplarının bağ uzunlukları yapıda tipik çift bağların varlığını göstermektedir, C7-O1 = 1.226(3) Å ve C17-O2 = 1.231(3) Å. Bununla birlikte, bileşikteki C-N bağlarının tümünün uzunluğu ortalama bir C-N tek bağı uzunluğundan (1.48 Å) daha kısadır, N1-C1 = 1.395(3) Å, N1-C11 = 1.389(3) Å, N3-C16 = 1.424(3) Å, N3-C17 = 1.355(3) Å, N2-C6 = 1.428(3) Å ve N2-C71.352(3) Å. Bu bilgiler, molekül içerisinde C(O)-NH-Ph-NH-Ph-NH-C(O) fragmentleri arasında kısmi bir elektron delokalizasyonun varlığını gösterir. Bu sonuçlar, beklenen elektron delokalizasyonu ile uyum içinde olup, molekül icerisindeki C7-N2-C6 = $125.9(2)^{\circ}$, C1-N1-C11 = $130.1(2)^{\circ}$ ve C17-N3-C16 = $124.6(2)^{\circ}$ bağ açıları ve N1, N2 ve N3 atomlarının sp^2 hibrit yapısına sahip olmaları ile doğrulanmaktadır. Bileşikteki diğer tüm bağ uzunlukları beklenen aralıktadırlar [98]. Kristal yapı içerisinde moleküller arası hidrojen bağları mevcuttur: N2-H2B…O1B^{*i*}, ile N-H 0.86 Å, H-O 1.91 Å, N-H…O 176.4[°], N3-H3B…O2B, ile N-H 0.86 Å, H-O 2.01 Å, N-H···O 170.7[°], N2B-H2BB···O1, ile N-H 0.86 Å, H-O 1.95 Å, N-H···O 175.8°, ve N3B-H3BB···O2^{*ii*}, ile N-H 0.86 Å, H-O 2.02 Å, N-H···O 167.2° [Simetri kodlar1: (i) 1+x, +y, +z; (ii) -1+x, +y, +z] (Sekil 4.8-4.11)

Şekil 4.8. Bis(2-izobutirilamidofenil)amin bileşiğinin kristal yapısı.

Şekil 4.9. Bis(2-izobutirilamidofenil)amin bileşiğinin kristal yapısı.

Şekil 4.10. Bis(2-izobutirilamidofenil)amin bileşiğinin birim hücre yapısı.

Şekil 4.11. Bis(2-izobutirilamidofenil)amin bileşiğinin birim hücre yapısı.

Ampirik formül	$C_{40}H_{50}N_6O_4$
Molekül ağırlığı	678.86
Sıcaklık /K	273(2)
Kristal sistemi	Triclinic
Uzay grubu	P-1
a/Å	9.5377(9)
b/Å	10.9710(10)
c/Å	18.6693(15)
α/°	76.644(6)
β/°	80.010(6)
$\gamma/^{\circ}$	81.379(7)
Hacim /Å ³	1859.5(3)
Ζ	2
Yoğunluk, ρ_{calc} mg/mm ³	1.212
Absorpsiyon Sabiti /mm ⁻¹	0.633
F(000)	728.0
Kristal Boyutu /mm ³	$0.35 \times 0.06 \times 0.03$
Veri Toplama 20 Aralığı	8.34 - 138.86°
İndeks Aralığı	$-11 \le h \le 11, -13 \le k \le 12, -21 \le l \le 17$
Toplam Yansıma	15746
Veri/sınırlamalar/parametreler	6081/0/452
Final R Değerleri [I>=2 σ (I)]	$R_1 = 0.0626, wR_2 = 0.1479$
Final R Değerleri [tüm değerler]	$R_1 = 0.1137, wR_2 = 0.1735$
En büyük fark pik/hole / e Å ⁻³	0.25/-0.24

Çizelge 4.1. *Bis*(2-izobutirilamidofenil)amin bileşiğinin kristalografik verileri ve parametreleri.

Çizelge 4.2. Bis(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları.

Atom	Atom	Bağ uzunluğu /Å	Atom	Atom	Bağ uzunluğu /Å
C1	C2	1.393(3)	C1B	C2B	1.391(3)
C1	C6	1.399(3)	C1B	C6B	1.403(3)
C1	N1	1.395(3)	C1B	N1B	1.394(3)
C2	C3	1.382(3)	C2B	C3B	1.380(3)
C3	C4	1.371(3)	C3B	C4B	1.382(4)
C4	C5	1.388(3)	C4B	C5B	1.387(3)
C5	C6	1.384(3)	C5B	C6B	1.376(3)
C6	N2	1.428(3)	C6B	N2B	1.429(3)
C7	C8	1.509(3)	C7B	C8B	1.512(3)
C7	N2	1.352(3)	C7B	N2B	1.334(3)
C7	01	1.226(3)	C7B	O1B	1.226(3)
C8	C9	1.521(3)	C8B	C9B	1.528(3)
C8	C10	1.511(3)	C8B	C10B	1.521(3)
C11	C12	1.399(3)	C11B	C12B	1.386(3)
C11	C16	1.408(3)	C11B	C16B	1.398(3)

Atom	Atom	Bağ uzunluğu /Å	Atom	Atom	Bağ uzunluğu /Å
C11	N1	1.389(3)	C11B	N1B	1.395(3)
C12	C13	1.374(3)	C12B	C13B	1.380(4)
C13	C14	1.378(4)	C13B	C14B	1.380(3)
C14	C15	1.386(3)	C14B	C15B	1.383(3)
C15	C16	1.377(3)	C15B	C16B	1.378(3)
C16	N3	1.424(3)	C16B	N3B	1.435(3)
C17	C18	1.504(3)	C17B	C18B	1.502(3)
C17	N3	1.355(3)	C17B	N3B	1.362(3)
C17	O2	1.231(3)	C17B	O2B	1.231(3)
C18	C19	1.517(3)	C18B	C19B	1.518(4)
C18	C20	1.537(3)	C18B	C20B	1.513(3)

Çizelge 4.2'nin (devamı).

Çizelge 4.3. Bis(2-izobutirilamidofenil)amin bileşiğinin bağ açıları.

Atom	Atom	Atom	Bağ acısı /°	Atom	Atom	Atom	Bağ acısı /°
C2	C1	C6	118.2(2)	C2B	C1B	C6B	118.0(2)
C2	C1	N1	123.8(2)	C2B	C1B	N1B	123.7(2)
N1	C1	C6	117.9(2)	N1B	C1B	C6B	118.3(2)
C3	C2	C1	120.6(3)	C3B	C2B	C1B	120.8(3)
C4	C3	C2	121.0(3)	C2B	C3B	C4B	120.8(3)
C3	C4	C5	119.2(2)	C3B	C4B	C5B	119.0(3)
C6	C5	C4	120.5(3)	C6B	C5B	C4B	120.6(3)
C1	C6	N2	118.5(2)	C1B	C6B	N2B	119.1(2)
C5	C6	C1	120.5(3)	C5B	C6B	C1B	120.8(2)
C5	C6	N2	121.0(2)	C5B	C6B	N2B	120.1(2)
N2	C7	C8	115.1(2)	N2B	C7B	C8B	116.5(2)
01	C7	C8	123.0(2)	O1B	C7B	C8B	122.2(3)
01	C7	N2	121.9(3)	O1B	C7B	N2B	121.3(3)
C7	C8	C9	110.2(2)	C7B	C8B	C9B	109.7(2)
C7	C8	C10	112.0(2)	C7B	C8B	C10B	111.1(2)
C10	C8	C9	110.6(2)	C10B	C8B	C9B	112.0(2)
C12	C11	C16	118.0(2)	C12B	C11B	C16B	117.8(2)
N1	C11	C12	123.5(2)	C12B	C11B	N1B	123.9(2)
N1	C11	C16	118.4(2)	N1B	C11B	C16B	118.3(2)
C13	C12	C11	120.7(2)	C13B	C12B	C11B	121.2(3)
C12	C13	C14	121.2(2)	C12B	C13B	C14B	120.7(3)
C13	C14	C15	118.8(2)	C13B	C14B	C15B	118.6(3)
C16	C15	C14	121.2(3)	C16B	C15B	C14B	121.0(3)
C11	C16	N3	118.8(2)	C11B	C16B	N3B	119.4(2)
C15	C16	C11	120.1(2)	C15B	C16B	C11B	120.6(3)
C15	C16	N3	121.0(2)	C15B	C16B	N3B	120.0(2)
N3	C17	C18	115.8(2)	N3B	C17B	C18B	115.7(2)
O2	C17	C18	122.3(3)	O2B	C17B	C18B	122.5(2)
O2	C17	N3	121.8(2)	O2B	C17B	N3B	121.7(3)

Atom	Atom	Atom	Bağ acısı /°	Atom	Atom	Atom	Bağ acısı /°
C17	C18	C19	111.3(2)	C17B	C18B	C19B	108.1(2)
C17	C18	C20	108.3(2)	C17B	C18B	C20B	112.3(2)
C19	C18	C20	112.0(2)	C20B	C18B	C19B	111.3(2)
C11	N1	C1	130.1(2)	C1B	N1B	C11B	129.0(2)
C7	N2	C6	125.9(2)	C7B	N2B	C6B	122.8(2)
C17	N3	C16	124.6(2)	C17B	N3B	C16B	123.6(2)

Çizelge 4.3'ün (devamı).

Çizelge 4.4. *Bis*(2-izobutirilamidofenil)amin bileşiğinin torsiyon açıları.

Α	В	С	D	Torsiyon	Α	В	С	D	Torsiyon
				acısı /°					acısı /°
C1	C2	C3	C4	0.4(4)	C1B	C2B	C3B	C4B	-0.2(4)
C1	C6	N2	C7	127.6(2)	C1B	C6B	N2B	C7B	-113.7(3)
C2	C1	C6	C5	0.0(4)	C2B	C1B	C6B	C5B	-2.6(4)
C2	C1	C6	N2	179.3(2)	C2B	C1B	C6B	N2B	176.9(2)
C2	C1	N1	C11	-19.3(4)	C2B	C1B	N1B	C11B	37.7(4)
C2	C3	C4	C5	-0.1(4)	C2B	C3B	C4B	C5B	-1.2(4)
C3	C4	C5	C6	-0.2(4)	C3B	C4B	C5B	C6B	0.6(4)
C4	C5	C6	C1	0.3(4)	C4B	C5B	C6B	C1B	1.3(4)
C4	C5	C6	N2	-179.0(2)	C4B	C5B	C6B	N2B	-178.2(2)
C5	C6	N2	C7	-53.1(3)	C5B	C6B	N2B	C7B	65.8(3)
C6	C1	C2	C3	-0.4(4)	C6B	C1B	C2B	C3B	2.0(4)
C6	C1	N1	C11	164.1(2)	C6B	C1B	N1B	C11B	-145.6(3)
C8	C7	N2	C6	-175.3(2)	C8B	C7B	N2B	C6B	179.4(2)
C11	C12	C13	C14	1.9(4)	C11B	C12B	C13B	C14B	0.5(4)
C11	C16	N3	C17	134.8(3)	C11B	C16B	N3B	C17B	-130.0(2)
C12	C11	C16	C15	-0.1(4)	C12B	C11B	C16B	C15B	0.3(4)
C12	C11	C16	N3	180.0(2)	C12B	C11B	C16B	N3B	-179.8(2)
C12	C11	N1	C1	-22.5(4)	C12B	C11B	N1B	C1B	4.4(4)
C12	C13	C14	C15	-0.5(4)	C12B	C13B	C14B	C15B	0.3(4)
C13	C14	C15	C16	-1.1(4)	C13B	C14B	C15B	C16B	-0.8(4)
C14	C15	C16	C11	1.4(4)	C14B	C15B	C16B	C11B	0.5(4)
C14	C15	C16	N3	-178.6(2)	C14B	C15B	C16B	N3B	-179.4(2)
C15	C16	N3	C17	-45.2(3)	C15B	C16B	N3B	C17B	49.9(3)
C16	C11	C12	C13	-1.6(4)	C16B	C11B	C12B	C13B	-0.8(4)
C16	C11	N1	C1	160.3(2)	C16B	C11B	N1B	C1B	-178.0(2)
C18	C17	N3	C16	171.5(2)	C18B	C17B	N3B	C16B	-166.2(2)
N1	C1	C2	C3	-177.0(2)	N1B	C1B	C2B	C3B	178.7(2)
N1	C1	C6	C5	176.9(2)	N1B	C1B	C6B	C5B	-179.5(2)
N1	C1	C6	N2	-3.8(3)	N1B	C1B	C6B	N2B	0.0(4)
N1	C11	C12	C13	-178.8(2)	N1B	C11B	C12B	C13B	176.9(2)
N1	C11	C16	C15	177.3(2)	N1B	C11B	C16B	C15B	-177.5(2)
N1	C11	C16	N3	-2.7(4)	N1B	C11B	C16B	N3B	2.4(3)
N2	C7	C8	C9	74.8(3)	N2B	C7B	C8B	C9B	-77.8(3)

Α	В	С	D	Torsiyon	Α	В	С	D	Torsiyon
				acısı /°					acısı /°
N2	C7	C8	C10	-161.6(2)	N2B	C7B	C8B	C10B	157.8(2)
N3	C17	C18	C19	151.0(2)	N3B	C17B	C18B	C19B	83.4(3)
N3	C17	C18	C20	-85.5(3)	N3B	C17B	C18B	C20B	-153.5(2)
O1	C7	C8	C9	-103.8(3)	O1B	C7B	C8B	C9B	100.1(3)
O1	C7	C8	C10	19.8(3)	O1B	C7B	C8B	C10B	-24.2(3)
O1	C7	N2	C6	3.3(4)	O1B	C7B	N2B	C6B	1.4(4)
O2	C17	C18	C19	-31.4(3)	O2B	C17B	C18B	C19B	-93.5(3)
O2	C17	C18	C20	92.1(3)	O2B	C17B	C18B	C20B	29.7(4)
02	C17	N3	C16	-6.1(4)	O2B	C17B	N3B	C16B	10.7(4)

Çizelge 4.4'ün (devamı).

Çizelge 4.5. *Bis*(2-izobutirilamidofenil)amin bileşiğinin molekül içi ve moleküller arası hidrojen bağları.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2	H2B	$O1B^i$	0.86	1.91	2.768(3)	176.4
N3	H3B	O2B	0.86	2.01	2.861(3)	170.7
N2B	H2BB	01	0.86	1.95	2.807(3)	175.8
N3B	H3BB	$O2^{ii}$	0.86	2.02	2.867(3)	167.2

Simetri kodları: $^{i}1+x$, +y, +z; $^{ii}-1+x$, +y, +z.

4.3. TEORİK HESAPLAMALAR

4.3.1. Geometri Optimizasyonu

Bis(2-izobutirilamidofenil)amin bileşiğinin moleküler yapısının C_s nokta grubuna ait olduğu belirlenmiştir. Bileşiğin optimize edilmiş geometrik yapısı Şekil 4.12'de gösterilmiştir. Elde edilen teorik geometrik parametreler ilgili bileşiğin tek kristal yapısına ait geometrik veriler Çizelge 4.6-4.7'de karşılaştırmalı olarak verilmiştir. Ayrıca teorik ve deneysel geometrik parametrelere ait korelasyon değerleride ilgili çizelgelerin sonunda verilmiştir. Yapılan incelemede elde edilen teorik yapı ile deneysel yapı birbiri ile uyum içerisindedir. Bağ uzunluğu hesaplamalarında en iyi korelasyon (r = 0.9929) HF metodu için bulunmuş olup teorik ve deneysel bağ uzunlukları arasındaki maksimum fark ise 0.03 Å'tur. Bağ açıları hesaplamalarında ise en iyi korelasyon (r = 0.8727) B3LYP metodu için

bulunmuş olup teorik ve deneysel bağ açıları arasındaki maksimum fark ise 6.05 °'dir (Şekil 4.13-20). Bu küçük farklar molekül içi ve moleküller arası etkileşimlerden kaynaklanmaktadır. Unutulmamalıdır ki teorik hesaplamalarda, molekül gaz fazında izole bir molekül olarak kabul edilerek hesaplamalar yapılırken, X-ışıları tek kristal difraksiyonu verileri molekül katı halde ve molekül içi ve dışı etkileşimler varken elde edilmektedir.

Bileşiğin sıfır nokta titreşim enerjisi, HF, BLYP, B3LYP ve B3PW91/6-31G(d,p) metotları için sırasıyla 2828046, 2566969, 2647935 ve 2653738 kcal/mol olarak hesaplanmıştır. Bileşiğin geometrik optimizasyonu sonucu elde edilen minimum enerji B3LYP metodu için -1092 a.u., HF metodu için ise -1085 a.u. olarak hesaplanmıştır. Metodlar arasındaki enerji farkı ise sadece 7 a.u. kadar bulunmuştur.

Şekil 4.12. *Bis*(2-izobutirilamidofenil)amin bileşiğinin optimize edilmiş geometrik yapısı.

No Tanımlama		Doromotoro	Donovcol	Teorik						
140		1 al ametel e	Deneysei	B3LYP	B3PW91	BLYP	HF			
1	R(1,2)	C1-C2	1.382(3)	1.393	1.391	1.403	1.382			
2	R(1,6)	C1-C6	1.371(3)	1.395	1.393	1.405	1.384			
3	R(2,3)	C2-C3	1.393(3)	1.406	1.403	1.417	1.394			
4	R(3,4)	C3-C4	1.399(3)	1.418	1.415	1.431	1.403			
5	R(4,5)	C4-C5	1.395(3)	1.395	1.394	1.406	1.385			
6	R(4,23)	C4-N23	1.428(3)	1.431	1.424	1.442	1.423			
7	R(5,6)	C5-C6	1.388(3)	1.395	1.393	1.405	1.383			
8	R(11,12)	C11-C12	1.408(3)	1.418	1.415	1.431	1.403			
9	R(11,13)	C11-C13	1.399(3)	1.406	1.403	1.417	1.394			
10	R(11,21)	C11-N21	1.389(3)	1.390	1.385	1.400	1.388			
11	R(12,14)	C12-C14	1.377(3)	1.395	1.394	1.406	1.385			
12	R(12,25)	C12-N25	1.424(3)	1.431	1.424	1.442	1.423			
13	R(13,15)	C13-C15	1.374(3)	1.393	1.391	1.403	1.382			
14	R(14,17)	C14-C17	1.386(3)	1.395	1.393	1.405	1.383			
15	R(15,17)	C15-C17	1.378(3)	1.395	1.393	1.405	1.384			
16	R(23,28)	N23-C28	1.352(3)	1.393	1.388	1.409	1.373			
17	R(25,27)	N25-C27	1.355(3)	1.393	1.388	1.409	1.373			
18	R(27,31)	C27-C31	1.504(3)	1.536	1.531	1.550	1.529			
19	R(27,49)	C27-O49	1.231(3)	1.223	1.222	1.236	1.201			
20	R(28,29)	C28-C29	1.509(3)	1.536	1.531	1.550	1.529			
21	R(28,50)	C28-O50	1.226(3)	1.223	1.222	1.236	1.201			
22	R(29,41)	C29-C41	1.521(3)	1.541	1.536	1.554	1.535			
23	R(29,45)	C29-C45	1.511(3)	1.536	1.530	1.547	1.533			
24	R(31,33)	C31-C33	1.537(3)	1.541	1.536	1.554	1.535			
25	R(31,37)	C31-C37	1.517(3)	1.536	1.530	1.547	1.533			
r	-	-	-	0.9904	0.9901	0.9886	0.9929			

Çizelge 4.6. *Bis*(2-izobutirilamidofenil)amin bileşiğinin optimize edilmiş bağ uzunlukları.

Çizelge 4.7. Bis(2-izobutirilamidofenil)amin bileşiğinin optimize edilmiş bağ açıları.

No	Tanımlama	Parametere	Deneysel	Teorik			
				B3LYP	B3PW91	BLYP	HF
1	A(2,1,6)	C2-C1-C6	121.00(3)	120.88	120.86	120.86	120.83
2	A(1,2,3)	C1-C2-C3	120.60(3)	120.58	120.58	120.56	120.64
3	A(2,3,4)	C2-C3-C4	118.20(2)	118.45	118.49	118.48	118.55
4	A(2,3,21)	C2-C3-N21	123.80(2)	123.83	123.70	123.88	122.96
5	A(4,3,21)	C4-C3-N21	117.90(2)	117.64	117.73	117.56	118.44
6	A(3,4,5)	C3-C4-C5	120.50(3)	119.99	119.99	119.97	119.81
7	A(3,4,23)	C3-C4-N23	118.50(2)	118.45	118.31	118.22	119.17
8	A(5,4,23)	C5-C4-N23	121.00(2)	121.46	121.61	121.72	120.84
9	A(4,5,6)	C4-C5-C6	120.50(3)	121.04	121.01	120.97	121.31
10	A(1,6,5)	C1-C6-C5	119.20(2)	119.00	119.02	119.13	118.79
11	A(12,11,13)	C12-C11-C13	118.00(2)	118.45	118.49	118.48	118.55

Çizelge 4.7'nin (devamı).

No	Tanımlama	Parametere	Deneysel	Teorik			
				B3LYP	B3PW91	BLYP	HF
12	A(12,11,21)	C12-C11-N21	118.40(2)	117.64	117.73	117.56	118.44
13	A(13,11,21)	C13-C11-N21	123.50(2)	123.83	123.70	123.88	122.96
14	A(11,12,14)	C11-C12-C14	120.10(2)	119.99	119.99	119.97	119.81
15	A(11,12,25)	C11-C12-N25	118.80(2)	118.45	118.31	118.22	119.17
16	A(14,12,25)	C14-C12-N25	121.00(2)	121.46	121.61	121.72	120.84
17	A(11,13,15)	C11-C13-C15	120.70(2)	120.58	120.58	120.56	120.64
18	A(12,14,17)	C12-C14-C17	121.20(2)	121.04	121.01	120.97	121.31
19	A(13,15,17)	C13-C15-C17	121.20(3)	120.88	120.86	120.86	120.83
20	A(14,17,15)	C14-C17-C15	118.80(2)	119.00	119.02	119.13	118.79
21	A(3,21,11)	C3-N21-C11	130.10(2)	130.62	130.06	130.86	129.57
22	A(4,23,28)	C4-N23-C28	125.90(2)	130.28	129.95	130.63	132.35
23	A(12,25,27)	C12-N25-C27	124.60(2)	130.28	129.95	130.63	132.34
24	A(25,27,31)	N25-C27-C31	115.80(2)	121.15	121.15	121.23	122.27
25	A(25,27,49)	N25-C27-O49	121.80(2)	118.54	118.64	118.44	118.05
26	A(31,27,49)	C31-C27-O49	122.30(3)	120.22	120.12	120.21	119.64
27	A(23,28,29)	N23-C28-C29	115.10(2)	121.15	121.15	121.23	122.27
28	A(23,28,50)	N23-C28-O50	121.90(3)	118.54	118.64	118.44	118.04
29	A(29,28,50)	C29-C28-O50	123.00(2)	120.22	120.12	120.21	119.64
30	A(28,29,41)	C28-C29-C41	110.20(2)	111.74	111.27	111.29	113.42
31	A(28,29,45)	C28-C29-C45	112.00(2)	115.88	116.55	116.69	114.03
32	A(41,29,45)	C41-C29-C45	110.60(2)	112.13	112.21	112.26	112.10
33	A(27,31,33)	C27-C31-C33	108.30(2)	111.74	111.27	111.29	113.42
34	A(27,31,37)	C27-C31-C37	111.30(2)	115.88	116.55	116.69	114.03
35	A(33,31,37)	C33-C31-C37	112.00(2)	112.13	112.21	112.26	112.10
r	-	-	-	0.8727	0.8696	0.8600	0.8181

Şekil 4.13. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları korelasyon grafiği (B3LYP).

Şekil 4.14. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları korelasyon grafiği (B3PW91).

Şekil 4.15. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları korelasyon grafiği (BLYP).

Şekil 4.16. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ uzunlukları korelasyon grafiği (HF).

Şekil 4.17. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ açıları korelasyon grafiği (B3LYP).

Şekil 4.18. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ açıları korelasyon grafiği (B3PW91).

Şekil 4.19. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ açıları korelasyon grafiği (BLYP).

Şekil 4.20. *Bis*(2-izobutirilamidofenil)amin bileşiğinin bağ açıları korelasyon grafiği (HF).

4.3.2. Titreşim Frekansları

Bis(2-izobutirilamidofenil)amin molekülünün nokta grubu C₁ olup 144 tane normal titreşim modu vardır, bunların hepsi IR ve Raman aktiftir. Titreşim frekanslarının hesaplanmasında optimize edilmiş geometriler kullanılmıştır. Bis(2-izobutirilamidofenil)amin bileşiğinin titreşim frekanslar sırasıyla B3LYP, B3PW91, BLYP ve HF/6-31G(d,p) metodları ile hesaplanmıştır. Deneysel frekans değerleri ile hesaplanan teorik frekans değerleri birbirleri ile karşılaştırılmış ve elde edilen tüm veriler Çizelge 4.8-4.9'da karşılaştırmalı olarak verilmiştir. Çizelge 4.8-4.9 incelendiğinde düzeltme faktörü kullanıldığı takdirde gaz fazında hesaplanan sayılarının deneysel sonuçlara iyi uyum gösterdiği dalga görülmüştür. Bis(2-izobutiril amidofenil)amin bileşiğine ait bazı termodinamik parametreler ise Cizelge 4.10'da verilmiştir. Hesaplanan korelasyon verileri incelendiğinde B3LYP/6-31G(d,p) metodu ile yapılan hesaplamada elde edilen verilerin deneysel veriler ile en iyi uyumu sağladığı tespit edilmiştir.

Şekil 4.21 ve 4.22'de sırasıyla deneysel ve teorik IR spektrumları karşılaştırmalı olarak verilmiştir. *Bis*(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel titreşim frekanslarının korelasyon grafikleri ise Şekil 4.23-26'da verilmiştir.

Titreşim bandlarının tanımlanması için Gauss View 5.0 [99] ve SQM 2.0 programları kullanılmıştır [100]. Tüm hesaplanan ve deneysel spektrumlar birbirleri ile iyi bir uyum içindedir.

Heterosiklik bileşikler için vN-H titreşimi 3500-3000 cm⁻¹ bölgesinde gözlenir. Bu çalışmada ise, vN-H gerilme titreşim modu IR spektrumunda 3406, 3398 ve 3367 cm⁻¹'de gözlendi. Bu titreşim modları B3LYP metodu ile 3451, 3404 ve 3404 cm⁻¹'de hesaplanmıştır. Deneysel ve DFT/B3LYP/6-31G(d,p) metodu ile hesaplanan vN-H gerilme modları arasındaki fark yaklaşık sırasıyla 45, 6, ve 37 cm⁻¹'dir. Gözlenen bu farklar yapı içerisindeki moleküller arası hidrojen bağlarından kaynaklanmaktadır. Bu sonuç vC=O gerilme titreşim modu ile doğrulanmıştır. Deneysel (1695 ve 1679 cm⁻¹) ve hesaplanan (1707 ve 1704 cm⁻¹) vC=O gerileme modları arasındaki fark sırasıyla yaklaşık 12 ile 25 cm⁻¹'dir. Bu sonuçlar bileşiğin tek kristal yapısında mevcut olan moleküller arası hidrojen bağlarının N2–H2B…O1B,

N3–H3B····O2B, N2B–H2BB····O1, ve N3B–H3BB····O2 (Şekil 4.8- 4.11) varlığı ile de doğrulanmaktadır.

Aromatik yapıya ait karakteristik gerilme titreşimlerinin vC-H 3100-3000 cm⁻¹ frekans aralığında gözlenmesi beklenir [101, 102]. İncelenen bileşik için bu aralıkta sekiz titreşim bandı hesaplanmasına rağmen bileşiğe ait IR spektrumunda sadece dört gerilme titreşimi vC-H gözlemlenmiştir. Teorik ve gözlenen titreşim frekanslarının sayıları arasındaki bu fark, bazı gerilme titreşim frekanslarının üstüste gelmesinden kaynaklanmaktadır. Spektrumda gözlen ilk iki bant (3118 ve 3115 cm⁻¹) simetrik vC-H gerilme titreşimleri ve diğerleri (3099 ve 3059 cm⁻¹) ise olan aromatik yapının asimetrik vC-H gerilme titreşimlerine aittir [103].

CH₃ grup frekansları için toplam 39 temel titreşim modu hesaplanmıştır. Bunların 12 tanesi gerilme, 9'u deformasyon, 6'sı sallanma, 5'şemsiye ve 7'si ise burulma titreşim modları olarak tanımlanmıştır. Bileşiğin IR spektrumunda CH₃ grubunun asimetrik ve simetrik frekansları 3035, 3001, 2966, 2964, 2938, ve 2929 cm⁻¹'de gözlenmiştir. 1382 ve 1357 cm⁻¹'de gözlenen bandlar ise CH₃ grubu şemsiye titreşim moduna aittir [104]. 1109, 1049 ve 902 cm⁻¹'de gözlenen bandlar ise CH₃ grubunun sallanma titreşimleridir.

Bir bileşiğin titreşim spektrumunda *v*C-N titreşim bandalarının tespiti oldukça zordur. Ancak, bu çalışma bünyesinde GaussView 3.0 ve SQM 2.0 programlarının yardımıyla, incelen bileşiğin *v*C-N titreşim modları tespit edilmiştir [100]. Bileşiğin IR spektrumunda 1421 ve 1049 cm⁻¹ arasında gözlenen bazı frekanslar *v*C-N gerilme titreşim modu olarak tanımlanmıştır, detaylar Çizelge 4.8'de verilmiştir. Tüm bu sonuçlar Sundaraganesan ve ark bulguları ile örtüşmektedir [105].

Genel olarak, aromatik C=C çift bağının gerilme titreşimleri 1650-1430 cm⁻¹ bölgesinde gözlenir [106, 107]. İncelenen bileşiğin IR spektrumunda C=C bağlarının gerilme titreşimleri 1608, 1597, 1579, 1568, 1527, 1490, 1436 ve 1421 cm⁻¹'de gözlemlenmiştir. Literatür değerleri ile karşılaştırıldığında bütün bandlar, tahmin edilen aralık içerisinde yer almaktadır [108]. Düzlem içi CCC bükülme titreşimleri, 879 ve 520 cm⁻¹ arasında ve düzlem-dışı bükülme titreşimleri 737 ve 466 cm⁻¹ arasında hesaplanmıştır.

B3LYP metodunun diğer metotlara göre üstünlüğü, gözlenen ve hesaplanan titreşim frekanslarının ortalama mutlak yüzde hata, kareköklerin ortalaması (RMS) ve korelasyon katsayılarının hesaplanmasıyla nicel olarak belirlenmesidir. Tüm bu değerler, Scott ve Radom'un metoduna göre çalışan, PAVF 1.0 programı ile hesaplanmıştır [109]. Tüm DFT yöntemleri için r değerleri 0.9993'den daha büyük olarak elde edildi. Elde edilen bu değerler literatür verileri ile uyumludur [110, 111].

Hesaplanan ve gözlenen IR bandları arasındaki fark için hesaplanan RMS değerleri B3LYP, B3PW91, BLYP ve HF/6-31G(d,p) yöntemleri için sırasıyla 13.49, 14.57, 15.48, ve 31.06 olarak bulunmuştur. Bu sonuçlar, B3LYP, BLYP ve B3PW91 metodları ile hesaplanmış frekanslar ve gözlenen deneysel değerler arasında iyi bir uyumun olduğunu göstermektedir. Özellikle, B3LYP/6-31G(d,p) metodunun en iyi performansı gösterdiği bulunmuştur. Deneysel ve hesaplanan titreşim modları arasında gözlenen küçük farklar ise molekül içi ve moleküller arası hidrojen bağı oluşumundan kaynaklanmaktadır. Ayrıca, deneysel sonuçların katı faza ait olduğunu ve teorik hesaplamaların ise gaz fazına ait olduğunu unutmamak gerekir.

Ayrıca PAVF 1.0 programı kullanarak IR spektrum analizi için önemli olan uygun ölçekleme faktörleri hesaplanmıştır [109]. Elde edilen ölçekleme faktör değerleri B3LYP, BLYP, B3PW91 ve HF yöntemleri için sırasıyla 0.9606, 0.9576, 0.9895 ve 0.9034 olarak belirlenmiştir. Değerler Scott ve Radom tarafından tavsiye edilen (0.9614, 0.9573, 1.0072 ve 0.8992,) ölçekleme faktör değerlerine çok yakın olduğu görülmektedir [112]. Sonuç olarak, bileşiğin bilinmeyen türevlerinin gelecekteki IR spektrum analizleri için, sırasıyla B3LYP, BLYP, B3PW91, HF yöntemleri ve 0.9606, 0.9576, 0.9895 ve 0.9034 ölçeklendirme faktörleri kullanılması tavsiye edilebilir.
No	Simetri	IR (cm ⁻¹)	B3LYP (cm ⁻¹)	B3LYP x SF (cm ⁻¹)	B3LYP x SF (cm ⁻¹)	IR Şiddeti (km/mol)	B3PW91 (cm ⁻¹)	B3PW91 x SF (cm ⁻¹)	B3PW91 x SF (cm ⁻¹)	IR Şiddeti (km/mol)	Titreșim modu * TED, (%)
1	А	3406	3589	3451	3448	63.43	3595	3441	3442	65.74	100 v(N ₁ -H)
2	А	3398	3541	3404	3401	0.47	3565	3412	3413	0.21	$100 v (N_{2,3}-H)$
3	А	3367	3541	3404	3401	35.13	3565	3412	3413	43.65	$100 v (N_{2,3}-H)$
4	А	3118	3232	3107	3105	5.33	3236	3098	3099	6.28	94 v(CH), sym, Ar-H
5	А	3118	3223	3099	3096	1.42	3231	3093	3094	2.13	92 v(CH), sym, Ar-H
6	А	3115	3215	3091	3088	2.10	3226	3089	3089	1.26	97 v(CH), sym, Ar-H
7	А	3115	3214	3090	3088	33.69	3225	3087	3088	27.28	97 v(CH), sym, Ar-H
8	А	3099	3201	3077	3075	21.96	3212	3075	3076	18.48	98 v(CH), asym, Ar-H
9	А	3099	3201	3077	3075	2.03	3212	3075	3076	1.69	97 v(CH), asym, Ar-H
10	А	3059	3189	3066	3063	5.58	3201	3064	3065	3.96	92 v(CH), asym, Ar-H
11	А	3059	3188	3065	3063	3.25	3200	3063	3064	3.58	90 v(CH), asym, Ar-H
12	А	3035	3141	3019	3017	63.58	3156	3021	3022	41.68	87 v(CH ₃), asym
13	А	3035	3140	3019	3017	1.78	3156	3021	3022	4.12	87 v(CH ₃), asym
14	А	3001	3135	3014	3012	17.46	3151	3016	3017	11.14	95 v(CH ₃), asym
15	А	3001	3135	3014	3012	8.52	3151	3016	3017	16.22	95 v(CH ₃), asym
16	А	2966	3120	2999	2997	41.55	3138	3004	3005	18.86	98 v(CH ₃), asym
17	А	2966	3120	2999	2997	6.51	3138	3004	3005	29.74	98 v(CH ₃), asym
18	А	2964	3112	2992	2990	4.55	3131	2998	2999	5.52	98 v(CH ₃), asym
19	А	2964	3112	2992	2989	51.28	3131	2998	2998	46.73	98 v(CH ₃), asym
20	А	2958	3072	2954	2951	7.76	3080	2948	2949	6.91	95 v(CH)
21	А	2958	3072	2954	2951	0.32	3080	2948	2949	0.96	95 v(CH)
22	А	2938	3051	2934	2931	0.02	3060	2929	2930	29.56	99 v(CH ₃), sym
23	А	2938	3051	2934	2931	31.13	3060	2929	2930	0.33	99 v(CH ₃), sym
24	А	2929	3049	2931	2928	52.46	3058	2927	2928	1.18	98 v(CH ₃), sym
25	А	2929	3049	2931	2928	1.60	3058	2927	2928	53.51	99 v(CH ₃), sym
26	А	1695	1776	1707	1706	495.87	1792	1715	1716	506.21	82 v(C=O)
27	А	1679	1773	1704	1703	139.36	1789	1713	1713	162.12	82 v(C=O)
28	А	1608	1662	1597	1596	2.25	1675	1604	1604	1.63	66 v(C=C)
29	А	1597	1649	1585	1584	200.24	1662	1591	1591	226.88	66 v(C=C)
30	А	1579	1637	1574	1573	111.12	1646	1576	1577	102.99	$54 v(C=C) + 18 \delta(CNH)$
31	А	1568	1628	1565	1564	0.69	1640	1570	1571	1.84	62 v(C=C)
32	А	1527	1574	1513	1512	486.94	1582	1515	1515	523.32	50 ν(C=C) + 17 δ(CNH)
33	А	1490	1534	1474	1473	84.39	1539	1473	1474	109.3	$35 v(C=C) + 17 \delta_d(CH_3)$
34	А	1472	1530	1471	1469	5.69	1522	1457	1457	17.52	81 $\delta(CH_3)$, deform.
35	А	1472	1529	1470	1469	30.21	1521	1456	1457	34.92	89 δ(CH3), deform.

Çizelge 4.8. *Bis*(2-izobutirilamidofenil)amin bileşiğinin hesaplanmış dalga sayıları.

No	Simetri	IR	B3LYP	B3LYP x SF	B3LYP x SF	IR Şiddeti	B3PW91	B3PW91 x SF	B3PW91 x SF	IR Şiddeti	Titreșim modu *
		(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	TED , (%)
36	А	1458	1522	1463	1462	1.55	1515	1450	1451	3.89	89 δ(CH3), deform.
37	А	1458	1521	1463	1461	29.05	1515	1450	1451	22.61	83 δ(CH3), deform.
38	А	1454	1513	1455	1454	0.02	1509	1444	1445	0.14	90 δ(CH3), deform.
39	А	1454	1513	1455	1453	0.74	1504	1440	1440	0.56	90 δ(CH3), deform.
40	А	1447	1506	1448	1447	0.08	1504	1440	1440	0.10	70 δ(CH3), deform.
41	А	1446	1506	1448	1447	2.97	1501	1436	1437	89.63	83 δ(CH3), deform.
42	А	1446	1505	1447	1445	0.44	1497	1433	1433	1.43	50 δ (CH3), deform. + 19 δ (CCH)
43	А	1436	1498	1440	1439	101.95	1497	1433	1433	11.75	66 δ(CCH) + 24 ν(C=C)
44	А	1421	1474	1417	1416	31.67	1476	1413	1414	38.65	29 δ (CNH) + 11 v(C=C) + 10 v(NC) +
											10 δ(CCH)
45	А	1406	1440	1385	1383	41.14	1444	1382	1383	63.68	$50 \delta(CNH) + 15 v(NC)$
46	А	1392	1440	1384	1383	38.26	1442	1380	1380	41.67	$50 \delta(CNH) + 16 \delta(CH3)$, umbrella
47	А	1382	1435	1380	1378	2.34	1429	1368	1368	8.87	55 δ (CH3) umbrella + 17 δ (CNH)
48	А	1382	1433	1378	1377	4.49	1427	1366	1367	17.02	46 δ (CH3) umbrella + 23 δ (CNH)
49	А	1357	1411	1356	1355	2.07	1403	1343	1344	3.79	69 δ (CH3) umbrella
50	А	1357	1411	1356	1355	6.47	1403	1343	1344	12.75	69δ (CH3) umbrella
51	А	1325	1375	1322	1321	107.77	1384	1325	1325	65.21	$34 v(CN) + 30 \delta(CH3) + 16 v(C=C)$
52	А	1307	1360	1308	1307	0.29	1371	1312	1312	3.25	65 δ(CCH)
53	А	1307	1360	1308	1307	6.14	1361	1303	1303	315.67	71 δ(CCH)
54	А	1305	1357	1305	1304	113.42	1356	1298	1299	91.52	44 δ (CCH) + 13 v(NC)
55	А	1305	1354	1302	1301	65.15	1353	1295	1295	29.47	65 δ(CCH)
56	А	1288	1348	1296	1295	5.51	1352	1294	1294	109.6	$61 v(C=C) + 15 \delta(CCH)$
57	А	1286	1338	1286	1285	303.84	1339	1282	1282	43.84	40 v(CC) + 19 v(CN)
58	А	1286	1335	1283	1282	2.94	1339	1281	1282	29.46	53 δ (CCH) +18 v(C=C)
59	А	1263	1333	1281	1280	164.54	1334	1277	1277	0.06	50 v(CC) + 29 v(CN)
60	А	1263	1321	1270	1269	0.52	1329	1272	1273	5.73	$39 v(C=C) + 28 \delta(CCH)$
61	А	1249	1288	1238	1237	16.47	1296	1241	1241	16.04	$26 v(C=C) + 18 \delta(CCH) + 17 v(CN)$
62	А	1213	1279	1230	1229	3.52	1291	1236	1236	2.15	$34 v(CN) + 20 v(C=C) + 18 \delta(CCH)$
											Ring breathing
63	А	1195	1227	1179	1178	4.51	1229	1177	1177	3.43	$25 \delta(CCH) + 20 v(CN) + 10 v(C=C)$
64	А	1126	1222	1174	1174	3.38	1222	1170	1170	3.02	$21 \delta(CCH) + 15 v(CN) + 14 v(C=C)$
65	А	1109	1197	1150	1150	16.2	1195	1144	1144	7.24	51 δ (CH3), rocking
66	А	1109	1197	1150	1149	5.34	1195	1144	1144	20.00	50δ (CH3), rocking
67	А	1109	1191	1145	1144	1.83	1188	1137	1138	1.08	72 δ(CCH)

No	Simetri	IR (arr ⁻¹)	B3LYP	B3LYP x SF	B3LYP x SF	IR Şiddeti	B3PW91	B3PW91 x SF	B3PW91 x SF	IR Şiddeti	Titreşim modu *
69	•	(cm)	(cm)	(cm)	(cm)	(KIII/III01)	(CM)	(cm) 1126	(cm) 1126	(KM/MOI)	TED , (%)
08 60	A	1007	1189	1143	1142	5.55 10.22	1180	1130	1130	2.87	730(CCH)
09 70	A	1097	1133	1090	1089	10.55	1144	1095	1093	0.04	$40 V(CC) + 10 \delta(CCH)$
70	A	1097	1133	1089	1088	2.87	1144	1095	1095	1.00	40 V(CC) + 10 0(CCH)
/1	A	1097	1132	1089	1088	18.44	1155	1085	1085	24.20	$34 V(CC) + 10 \delta(CCH)$
12	A	1097	1130	1086	1085	12.78	1131	1083	1083	14.24	$38 V(C=C) + 10 \delta(CCH)$
/3	A	1049	1102	1060	1059	102.26	1102	1055	1056	90.41 50.60	$3/\delta(CH3)$, rocking + 12 v(CN)
/4	A	1049	1099	1057	1056	61.96	1099	1052	1052	58.68	$35 \delta(CH3)$, rocking + 12 v(CN)
75	A	1039	1077	1035	1035	2.06	1079	1033	1034	3.84	$59 v(C=C) + 10 \delta(CCH)$, Ring breathing
76	A	1039	1069	1028	1027	10.41	1072	1026	1026	10.78	67 v(C=C)
77	А	964	990	952	951	0.03	990	948	948	0.01	74 γ(CH)
78	А	952	981	943	943	1.06	982	940	940	0.98	63 γ(CH)
79	А	950	978	940	939	0.98	979	937	937	1.71	$34 \delta(CCH) + 30 v(CC)$
80	А	950	977	939	939	0.67	978	936	936	1.11	$30 \delta(CCH) + 27 \nu(CC)$
81	А	931	963	925	925	0.10	962	921	921	0.27	73 γ(CH)
82	А	929	957	920	919	5.25	956	915	915	7.15	75 γ(CH)
83	А	902	942	905	905	0.05	940	900	900	0.06	66 δ(CH3), rocking
84	А	902	942	905	905	2.95	940	900	900	7.03	65 δ(CH3), rocking
85	А	902	937	900	900	7.90	936	896	897	0.10	$31 \delta(CCC) + 16 v(C=C)$
86	А	902	934	898	897	0.09	936	896	896	2.10	40 v(CC)
87	А	879	912	876	876	1.66	915	876	876	3.76	$37 v(CC) + 10 \delta(CCC)$
88	А	877	902	867	866	0.23	907	868	869	0.67	$40 v(CC) + 15 \gamma(CH)$
89	А	856	886	852	851	3.31	890	852	852	4.94	42 y(CH)
90	А	856	885	850	850	4.03	886	849	849	2.72	31 v(C=C) + 10 v(CC), Ring breathing
91	А	835	868	834	834	2.79	867	830	830	2.26	54 v(CH)
92	А	804	828	796	795	2.92	831	796	796	2.87	$21 v(C=C) + 13 v(CN) + 10 \delta(CCC) +$
											10 δ(CNC)
93	А	756	781	751	750	0.78	782	748	749	0.31	55 y(CH)
94	А	756	773	743	742	6.34	777	744	744	10.49	28γ (CH) + 10 γ (CC)
95	А	748	767	737	737	2.43	772	739	739	5.09	$41 \gamma(CO) + 18 \gamma(CH)$
96	А	748	765	736	735	100.42	766	734	734	109.94	31γ (CH)
97	А	737	752	723	722	61.50	754	722	722	63.62	$41 \gamma(CO) + 16 \gamma(CH) + 13 \gamma(C)$
98	Ā	721	748	719	719	4.35	750	718	718	4.01	$41 \gamma(CO) + 16 \gamma(CH) + 12 \gamma(C)$
99	A	702	704	677	676	0.18	707	677	677	67.44	$13 v(CC) + 14 \delta(CCC) + 12 v(NC) + 11$
//		,02	/01	5.7	0.0	0.10		5.7	0.1	57.11	$\delta(CNC)$
100	А	702	703	676	675	52.32	706	676	676	0.08	$22 v(CC) + 10 v(NC) + 11 \delta(CCC)$

No	Simetri	IR (cm-1)	B3LYP (cm-1)	B3LYP x SF (cm-1)	B3LYP x SF (cm-1)	IR Şiddeti (km/mol)	B3PW91 (cm-1)	B3PW91 x SF (cm-1)	B3PW91 x SF (cm-1)	IR Şiddeti (km/mol)	Titreşim modu * TED, (%)
101	А	667	697	670	670	0.05	699	669	669	0.10	$17 \delta(CNC) + 10 \delta(CCN) + 10 \gamma(NH)$
102	А	650	682	656	655	49.71	684	655	655	46.68	$16 \delta(CCC) + 10 \gamma(NH)$
103	А	621	650	625	624	0.95	648	620	620	1.19	$25 \delta(CCC) + 12 v(C=C) + 10 \delta(CCN)$
104	А	594	632	608	607	122.25	635	608	608	100.83	48 γ(NH)
105	А	586	604	581	581	3.14	602	576	576	5.68	65 δ(CCC)
106	А	568	582	559	559	0.87	588	563	563	0.09	59 γ(NH)
107	А	543	558	537	536	5.19	561	537	537	6.35	$34 \gamma(C) + 10 \delta(CCC)$
108	А	543	558	536	536	4.04	560	536	536	4.68	$36 \gamma(C) + 10 \delta(CCC)$
109	А	520	542	521	520	12.08	542	519	519	11.79	$30 v(CC) + 15 \delta(CCC)$
110	А	520	533	513	512	1.56	534	511	511	1.55	$20 v(CC) + 16 \delta(CCC) + 10 \delta(CCN)$
111	А	489	501	482	481	3.75	502	480	480	2.19	$40 \delta(\text{CCN}) + 10 \delta(\text{OCN})$
112	А	474	488	469	469	36.84	486	465	465	36.81	$40 \gamma (NH) + 23 \gamma (C)$
113	А	466	485	466	466	7.61	483	462	462	9.06	67 γ(C)
114	А	457	474	456	456	37.23	469	449	450	37.38	49 γ (NH) + 10 δ (OCN)
115	А	414	444	427	427	9.53	441	423	423	7.76	41 δ(CCN)
116	А	414	439	422	422	8.02	441	422	422	15.90	$20 \delta(CCN) + 11 v(NC) + 10 \delta(CCO)$
117	А	-	400	384	384	3.54	398	381	381	3.33	$11 v(NC) + 10 \delta(CCN) + 10 \delta(CCO) +$
											10 δ(OCN)
118	А	-	360	346	345	5.02	358	343	343	0.19	28 δ((H ₃ C)-C-(CH ₃))
119	А	-	358	345	344	0.21	358	343	343	4.93	$32 \delta((H_3C)-C-(CH_3))$
120	А	-	322	310	309	0.79	321	307	307	1.03	32 δ((H ₃ C)-C-(CH ₃))
121	А	-	311	299	299	1.72	311	298	298	2.02	23 $\delta((H_3C)-C-(CH_3)) + 13 \gamma(C)$
122	А	-	288	277	276	0.99	287	275	275	0.99	$21 \delta(\text{NCC}) + 18 \gamma(\text{Ph-N-Ph})$
123	А	-	274	264	263	1.89	276	264	264	5.16	52 τ(CH ₃)
124	А	-	270	260	259	0.75	263	252	252	0.18	87 τ(CH ₃)
125	А	-	268	258	258	2.60	261	250	250	0.44	33 τ(CH ₃)
126	А	-	262	252	252	0.10	253	242	242	1.23	77 τ(CH ₃)
127	А	-	261	251	251	1.11	251	240	240	0.70	$56 \tau (CH_3) + 10 \delta (CCN)$
128	А	-	244	234	234	3.57	247	237	237	4.07	43 δ(NCC)
129	А	-	236	227	227	1.06	231	221	221	0.89	$34 \tau (CH_3) + 20 \delta (CCC) + 10 \delta (CCN)$
130	А	-	218	210	209	0.26	216	206	207	0.42	58 τ (CH ₃) + 30 δ (CCC)
131	А	-	215	207	206	0.01	215	206	206	0.06	$11 \delta(CCC) + 10 v(NC) + 15 \tau(CN)$
132	А	-	188	180	180	0.82	189	181	181	0.70	$10 \delta(CCN) + 10 \tau(CC) + 20 \tau(CN)$
133	А	-	165	159	158	0.73	163	156	156	0.71	$22 \delta(CCN) + 20 \tau(CC) + 11 \tau(CN)$
134	А	-	115	111	110	0.02	113	108	108	0.04	$32 \delta(CNC) + 13 \tau(CC) + 12 \tau(CN)$

No	Simetri	IR	B3LYP	B3LYP x SF	B3LYP x SF	IR Şiddeti	B3PW91	B3PW91 x SF	B3PW91 x SF	IR Şiddeti	Titreşim modu *
		(cm-1)	(cm-1)	(cm-1)	(cm-1)	(km/mol)	(cm-1)	(cm-1)	(cm-1)	(km/mol)	TED , (%)
135	А	-	84	81	80	0.39	82	79	79	0.42	$28 \delta(CNC) + 23 \tau(CC)$
136	А	-	78	75	74	2.40	78	74	74	2.63	53 τ(CN)
137	А	-	66	64	64	0.52	65	62	62	0.54	$48 \tau(NC) + 20 \tau(CC)$
138	А	-	57	55	55	0.34	58	55	55	0.47	59 τ(CN)
139	А	-	44	43	43	1.29	52	49	49	1.03	71 τ (CN) +16 τ (CC)
140	А	-	37	36	36	0.10	38	36	36	3.20	18 τ(OCNC) +16 τ(CNCCH3) + 10
											δ(CNC)
141	А	-	37	35	35	1.90	36	34	34	0.10	58τ (CNCCH3) + 26 τ (CC) + 14
											τ(СССО)
142	А	-	23	22	22	0.05	24	23	23	0.06	48τ (CNCCH3) + 21 τ (HNCC) + 12
											τ(CCCO)
143	А	-	23	22	22	0.94	18	17	17	0.12	48τ (HNCCH3) + 40 τ (CNCC)
144	А	-	19	18	18	0.13	17	16	16	0.18	53 τ (CN) + 47 τ (CCCO)
R			0.9999	0.9999	0.9999	-	0.9998	0.9998	0.9998	-	
Ortala	ma mutlak ha	ata yüzdesi	3.9443	0.8635	0.8833	-	4.1349	1.0078	0.9955	-	
Ortala	ma mutlak ha	ata	60.1664	10.7877	10.9685	-	64.0697	12.8383	12.7073	-	
RMS	v		64.9521	13.5503	13.4905	-	70.1891	14.5769	14.5704	-	
RMS	nol		72.6186	15.1497	15.0829	-	78.4738	16.2975	16.2902	-	
Düzel	tme faktörü (SF)	1.0000	0.9614	0.9606	-	1.0000	0.9573	0.9576	-	

^{*} v, gerilme; δ , düzlem içi bükülme; γ , düzlem dışı bükülme; τ , torsiyon.

No	Simetri	IR (cm ⁻¹)	BLYP (cm ⁻¹)	BLYP x SF	BLYP x SF (cm ⁻¹)	IR Şiddeti (km/mol)	HF (cm ⁻¹)	HF x SF (cm^{-1})	HF x SF (cm ⁻¹)	IR Şiddeti (km/mol)	Titreșim modu * TFD (%)
1	A	3406	3455	3480	3418	59 54	3918	3523	3540	59.25	$100 v(N_1-H)$
2	A	3398	3414	3439	3378	1.00	3819	3434	3451	3.15	$100 v(N_{2} - H)$
3	A	3367	3414	3439	3378	17.78	3819	3434	3451	70.83	$100 v (N_{2,3}-H)$
4	A	3118	3150	3173	3117	7.90	3394	3052	3066	6.42	94 v(CH), svm. Ar-H
5	А	3118	3141	3163	3108	1.54	3388	3046	3061	3.05	92 v(CH), sym, Ar-H
6	А	3115	3134	3156	3101	0.80	3379	3038	3053	1.88	97 v(CH), sym, Ar-H
7	А	3115	3133	3156	3100	41.86	3378	3038	3052	47.05	97 v(CH), sym, Ar-H
8	А	3099	3120	3143	3087	27.26	3363	3024	3038	28.11	98 v(CH), asym, Ar-H
9	А	3099	3120	3142	3087	4.77	3363	3024	3038	4.27	97 v(CH), asym, Ar-H
10	А	3059	3106	3128	3074	7.40	3348	3011	3025	6.11	92 v(CH), asym, Ar-H
11	А	3059	3106	3128	3073	3.27	3348	3010	3025	3.10	90 v(CH), asym, Ar-H
12	А	3035	3064	3086	3031	51.72	3290	2958	2972	113.33	87 v(CH ₃), asym
13	А	3035	3063	3085	3031	3.88	3289	2958	2972	3.93	87 v(CH ₃), asym
14	А	3001	3054	3076	3022	28.39	3278	2947	2961	21.70	95 v(CH ₃), asym
15	А	3001	3054	3076	3022	11.58	3278	2947	2961	4.95	95 v(CH ₃), asym
16	А	2966	3041	3063	3009	19.35	3255	2927	2941	9.09	98 v(CH ₃), asym
17	А	2966	3041	3063	3009	40.07	3255	2927	2941	99.92	98 v(CH ₃), asym
18	А	2964	3032	3054	3000	5.95	3252	2924	2938	0.10	98 v(CH ₃), asym
19	А	2964	3032	3054	3000	56.67	3251	2924	2937	20.71	98 v(CH ₃), asym
20	А	2958	2983	3005	2952	9.89	3246	2919	2933	0.78	95 v(CH)
21	А	2958	2983	3005	2952	1.28	3246	2919	2932	4.96	95 v(CH)
22	А	2938	2977	2998	2945	38.30	3193	2871	2885	0.02	99 v (CH ₃), sym
23	А	2938	2977	2998	2945	0.27	3193	2871	2885	28.19	99 v (CH ₃), sym
24	A	2929	2973	2995	2942	53.82	3190	2868	2882	2.30	98 v (CH ₃), sym
25	А	2929	2973	2995	2942	3.53	3190	2868	2882	66.66	99 v (CH ₃), sym
26	A	1695	1691	1703	1673	417.05	1947	1750	1759	651.67	82 v(C=O)
27	A	1679	1689	1701	1671	131.10	1944	1748	1757	260.70	82 v(C=O)
28	A	1608	1594	1606	1578	1.54	1811	1629	1636	1.80	66 v(C=C)
29	A	1597	1583	1594	1566	222.46	1799	1617	1625	10.42	66 v(C=C)
30	A	1579	1572	1583	1555	63.67	1787	1607	1615	277.73	$54 v(C=C) + 18 \delta (CNH)$
31	A	1568	1562	1574	1546	0.22	1774	1596	1603	0.50	62 v(C=C)
32	A	1527	1516	1527	1500	421.46	17/08	1535	1543	362.88	$50 v(C=C) + 17 \delta(CNH)$
55	A	1490	1491	1502	14/6	18.29	16/0	1502	1509	149.17	$35 \text{ V(C=C)} + 1 / \delta_{d}(CH_{3})$
34	A	1472	1490	1501	1475	28.97	1646	1480	1487	41.41	$\delta 1 \delta(CH_3)$, deform.
35	А	1472	1485	1496	1470	1.33	1644	1479	1486	23.16	$89 \circ (CH_3)$, deform.

Çizelge 4.9. Bis(2-izobutirilamidofenil)amin bileşiğinin hesaplanmış dalga sayıları.

No	Simetri	IR (cm ⁻¹)	BLYP (cm ⁻¹)	BLYP x SF (cm ⁻¹)	BLYP x SF (cm ⁻¹)	IR Şiddeti (km/mol)	HF (cm ⁻¹)	HF x SF (cm ⁻¹)	HF x SF (cm ⁻¹)	IR Şiddeti (km/mol)	Titreșim modu * TED, (%)
36	А	1458	1485	1496	1469	3.47	1636	1471	1478	14.49	89 δ(CH3), deform.
37	А	1458	1478	1488	1462	41.75	1636	1471	1478	1.08	83 δ(CH3), deform.
38	А	1454	1476	1487	1461	3.66	1628	1464	1471	0.68	90 δ(CH3), deform.
39	А	1454	1475	1486	1460	22.67	1628	1464	1471	0.02	90 δ(CH3), deform.
40	А	1447	1469	1480	1454	0.85	1624	1461	1467	0.15	70 δ(CH3), deform.
41	А	1446	1469	1480	1454	1.68	1624	1460	1467	8.60	83 δ(CH3), deform.
42	А	1446	1457	1467	1442	0.61	1621	1457	1464	0.03	50 δ (CH3), deform. + 19 δ (CCH)
43	А	1436	1451	1462	1436	85.73	1620	1457	1464	56.00	66 δ (CCH) + 24 ν(C=C)
44	А	1421	1423	1434	1409	31.29	1615	1453	1459	119.87	29 δ (CNH) + 11 ν (C=C) + 10 ν (NC) +
											10 δ(CCH)
45	А	1406	1398	1408	1383	17.78	1600	1438	1445	22.98	$50 \delta(\text{CNH}) + 15 v(\text{NC})$
46	А	1392	1397	1407	1383	22.99	1582	1423	1429	18.13	$50 \delta(\text{CNH}) + 16 \delta(\text{CH3})$, umbrella
47	А	1382	1384	1394	1369	15.11	1562	1404	1411	13.09	55 δ (CH3) umbrella + 17 δ (CNH)
48	А	1382	1384	1394	1369	5.68	1561	1404	1411	11.79	46 δ (CH3) umbrella + 23 δ (CNH)
49	А	1357	1373	1383	1358	1.14	1541	1386	1392	0.59	69 δ(CH3) umbrella
50	А	1357	1373	1382	1358	4.97	1540	1385	1392	3.15	69 δ(CH3) umbrella
51	А	1325	1333	1343	1319	124.57	1486	1337	1343	246.25	$34 v(CN) + 30 \delta(CH3) + 16 v(C=C)$
52	А	1307	1321	1330	1307	0.77	1485	1335	1342	19.40	65 δ(CCH)
53	А	1307	1319	1328	1305	17.27	1482	1333	1339	0.32	71 δ(CCH)
54	А	1305	1317	1327	1304	4.51	1482	1333	1339	0.65	$44 \delta(CCH) + 13 v(NC)$
55	А	1305	1310	1320	1297	43.29	1476	1328	1334	0.75	65 δ(CCH)
56	А	1288	1309	1319	1296	35.86	1475	1326	1333	291.37	61 v(C=C) + 15 δ(CCH)
57	А	1286	1297	1306	1283	14.77	1447	1301	1308	348.05	40 v(CC) + 19 v(CN)
58	А	1286	1288	1297	1274	11.10	1442	1296	1303	5.29	53 δ(CCH) +18 ν(C=C)
59	А	1263	1270	1279	1257	363.41	1407	1265	1271	22.05	50 v(CC) + 29 v(CN)
60	А	1263	1264	1273	1250	171.17	1381	1242	1248	3.99	39 v(C=C) + 28 δ(CCH)
61	А	1249	1246	1255	1233	18.33	1331	1197	1203	13.58	$26 v(C=C) + 18 \delta(CCH) + 17 v(CN)$
62	А	1213	1231	1240	1219	1.29	1324	1191	1196	18.55	$34 v(CN) + 20 v(C=C) + 18 \delta(CCH),$
											Ring breathing
63	А	1195	1186	1195	1174	3.67	1315	1183	1188	0.81	$25 \delta(CCH) + 20 v(CN) + 10 v(C=C)$
64	А	1126	1180	1189	1168	4.59	1303	1172	1177	2.91	$21 \delta(CCH) + 15 v(CN) + 14 v(C=C)$
65	А	1109	1162	1170	1149	5.15	1297	1166	1171	8.61	51 δ(CH3), rocking
66	А	1109	1160	1168	1148	16.70	1296	1166	1171	3.56	50 δ(CH3), rocking
67	А	1109	1159	1167	1147	2.60	1226	1102	1107	44.60	72 δ(CCH)
68	А	1109	1159	1167	1147	7.41	1222	1099	1104	47.38	73 δ(CCH)

No	Simetri	IR (cm ⁻¹)	BLYP (cm ⁻¹)	BLYP x SF (cm ⁻¹)	BLYP x SF (cm ⁻¹)	IR Şiddeti (km/mol)	HF (cm ⁻¹)	HF x SF (cm ⁻¹)	HF x SF (cm ⁻¹)	IR Şiddeti (km/mol)	Titreşim modu * TED, (%)
69	А	1097	1097	1105	1086	34.14	1219	1096	1101	0.76	$40 v(CC) + 10 \delta(CCH)$
70	А	1097	1095	1103	1084	13.58	1219	1096	1101	8.59	$46 v(CC) + 10 \delta(CCH)$
71	А	1097	1093	1101	1082	3.09	1212	1090	1095	1.17	$34 v(CC) + 10 \delta(CCH)$
72	А	1097	1093	1101	1082	4.60	1197	1077	1082	17.22	38 ν(C=C) + 10 δ(CCH)
73	А	1049	1067	1075	1056	111.22	1194	1074	1079	108.32	37 δ (CH3), rocking + 12 v(CN)
74	А	1049	1063	1071	1052	76.01	1188	1068	1073	23.73	35 δ (CH3), rocking + 12 v(CN)
75	А	1039	1043	1050	1032	2.98	1151	1035	1039	1.26	59 v(C=C) + 10 δ (CCH), Ring breathing
76	А	1039	1035	1043	1024	10.04	1146	1030	1035	10.45	67 v(C=C)
77	А	964	949	955	939	0.71	1119	1006	1011	0.42	74 γ(CH)
78	А	952	948	955	938	0.44	1113	1001	1006	1.85	63 γ(CH)
79	А	950	946	953	937	0.53	1092	982	987	0.01	$34 \delta(CCH) + 30 v(CC)$
80	А	950	937	944	927	1.52	1087	978	982	3.01	$30 \delta(CCH) + 27 v(CC)$
81	А	931	921	928	911	0.09	1049	944	948	0.16	73 γ(CH)
82	А	929	919	925	909	6.37	1049	944	948	0.18	75 γ(CH)
83	А	902	915	921	905	0.38	1018	915	919	0.04	66 δ(CH3), rocking
84	А	902	912	919	902	2.65	1018	915	919	1.15	65 δ(CH3), rocking
85	А	902	904	911	895	5.89	1014	912	916	10.84	$31 \delta(CCC) + 16 v(C=C)$
86	А	902	898	905	889	0.02	1012	910	914	0.17	40 v(CC)
87	А	879	878	884	869	0.72	997	897	901	0.40	$37 v(CC) + 10 \delta(CCC)$
88	А	877	866	873	857	0.28	984	885	889	2.32	$40 v(CC) + 15 \gamma(CH)$
89	А	856	852	858	843	2.22	971	873	877	5.02	42 γ(CH)
90	А	856	851	857	842	6.84	962	865	869	6.62	31 v(C=C) + 10 v(CC), Ring breathing
91	А	835	832	838	823	1.76	949	854	858	4.53	54 γ(CH)
92	А	804	800	806	792	2.19	897	806	810	9.21	21 ν(C=C) + 13 ν(CN) + 10 δ(CCC) + 10 δ(CNC)
93	А	756	752	757	744	0.70	864	777	781	4.64	55 γ(CH)
94	А	756	743	749	736	13.10	855	769	773	60.73	28γ (CH) + 10 v(CC)
95	А	748	735	740	727	4.01	842	757	761	94.24	41 γ (CO) + 18 γ (CH)
96	А	748	735	740	727	78.72	842	757	760	0.11	31 γ(CH)
97	А	737	718	723	711	61.77	831	748	751	54.09	$41 \gamma(CO) + 16 \gamma(CH) + 13 \gamma(C)$
98	А	721	715	720	707	2.22	821	739	742	5.47	41 γ (CO) + 16 γ (CH) + 12 γ (C)
99	А	702	681	686	674	90.01	759	682	685	0.20	$13 v(CC) + 14 \delta(CCC) + 12 v(NC) +$
											11 δ(CNC)
100	Α	702	677	682	670	0.22	757	681	684	12.71	$22 v(CC) + 10 v(NC) + 11 \delta(CCC)$
101	А	667	675	679	668	0.01	748	673	676	0.71	$17 \delta(CNC) + 10 \delta(CCN) + 10 \gamma(NH)$

No	Simetri	IR (cm ⁻¹)	BLYP (cm ⁻¹)	BLYP x SF (cm ⁻¹)	BLYP x SF (cm ⁻¹)	IR Şiddeti (km/mol)	HF (cm ⁻¹)	HF x SF (cm ⁻¹)	HF x SF (cm ⁻¹)	IR Şiddeti (km/mol)	Titreșim modu * TED (%)
102	А	650	662	667	655	18 47	724	651	654	13.82	$16\delta(CCC) + 10\gamma(NH)$
103	A	621	631	636	624	1.20	695	625	628	2.26	$25 \delta(CCC) + 12 v(C=C) + 10 \delta(CCN)$
104	А	594	623	627	616	57.74	651	586	588	57.20	48 γ(NH)
105	А	586	587	591	581	3.41	646	581	584	188.26	65 δ(CCC)
106	А	568	565	569	559	0.02	625	562	565	0.83	59 γ(NH)
107	А	543	539	542	533	4.44	604	543	546	9.32	$34 \gamma(C) + 10 \delta(CCC)$
108	А	543	538	542	533	4.81	603	542	545	4.83	$36 \gamma(C) + 10 \delta(CCC)$
109	А	520	522	526	517	9.59	585	526	529	23.41	$30 v(CC) + 15 \delta(CCC)$
110	А	520	514	518	509	1.32	577	519	522	2.56	$20 v(CC) + 16 \delta(CCC) + 10 \delta(CCN)$
111	А	489	485	489	480	2.86	538	483	486	17.57	$40 \delta(\text{CCN}) + 10 \delta(\text{OCN})$
112	А	474	478	481	473	46.43	526	473	475	34.08	$40 \gamma (NH) + 23 \gamma (C)$
113	А	466	467	470	462	8.76	525	472	474	1.05	67 γ(C)
114	А	457	461	464	456	37.38	492	443	445	0.86	$49 \gamma(\text{NH}) + 10 \delta(\text{OCN})$
115	А	414	431	434	427	1.31	459	413	415	5.35	41 δ(CCN)
116	А	414	425	428	420	12.29	437	393	395	6.00	$20 \delta(CCN) + 11 \nu(NC) + 10 \delta(CCO)$
117	А	-	382	385	378	3.01	385	346	348	10.90	11 ν(NC) + 10 δ(CCN) + 10 δ(CCO) + 10 δ(OCN)
118	А	-	349	351	345	0.15	380	342	343	0.34	28 δ((H3C)-C-(CH3))
119	А	-	348	351	345	4.98	365	328	330	81.18	32 δ((H3C)-C-(CH3))
120	А	-	313	315	310	1.12	340	306	307	2.15	32 δ((H3C)-C-(CH3))
121	А	-	303	305	300	1.98	329	296	297	0.71	23 $\delta((H3C)-C-(CH3)) + 13 \gamma(C)$
122	А	-	277	279	274	1.39	309	277	279	1.56	$21 \delta(\text{NCC}) + 18 \gamma(\text{Ph-N-Ph})$
123	А	-	267	269	264	5.63	289	260	261	3.41	52 τ(CH3)
124	А	-	258	260	255	0.12	279	251	252	1.18	87 τ(CH3)
125	А	-	257	259	254	0.93	276	248	249	0.02	33 τ(CH3)
126	А	-	247	249	245	0.69	275	247	248	0.19	77 τ(CH3)
127	А	-	246	248	244	1.62	273	246	247	0.84	$56 \tau (CH3) + 10 \delta (CCN)$
128	А	-	241	242	238	2.91	257	231	232	1.73	43 δ(NCC)
129	А	-	228	230	226	0.86	248	223	224	0.29	34τ (CH3) + 20 δ (CCC) + 10 δ (CCN)
130	А	-	213	214	210	0.33	225	203	204	2.28	$58 \tau (CH3) + 30 \delta (CCC)$
131	А	-	209	211	207	0.02	218	196	197	0.05	$11 \delta(CCC) + 10 v(NC) + 15 \tau(CN)$
132	А	-	182	184	180	0.59	200	179	180	0.72	$10 \delta(CCN) + 10 \tau(CC) + 20 \tau(CN)$
133	А	-	159	160	157	0.62	176	158	159	0.91	$22 \delta(CCN) + 20 \tau(CC) + 11 \tau(CN)$
134	А	-	114	115	113	0.05	120	108	109	0.05	$32 \delta(CNC) + 13 \tau(CC) + 12 \tau(CN)$
135	А	-	82	82	81	0.49	92	83	83	0.45	$28 \delta(CNC) + 23 \tau(CC)$

No	Simetri	IR	BLYP	BLYP x SF	BLYP x SF	IR Şiddeti	HF	HF x SF	HF x SF	IR Şiddeti	Titreşim modu *
		(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(km/mol)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(km/mol)	TED, (%)
136	А	-	77	77	76	2.41	89	80	80	1.60	53 τ(CN)
137	А	-	62	62	61	0.58	72	65	65	0.86	$48 \tau(NC) + 20 \tau(CC)$
138	А	-	57	58	57	0.33	59	53	53	0.42	59 τ(CN)
139	А	-	52	52	51	0.68	38	34	35	0.92	71 τ(CN) +16 τ(CC)
140	А	-	39	39	39	2.50	38	34	34	0.01	18 τ(OCNC) +16 τ(CNCCH3) +
											10 δ(CNC)
141	А	-	36	36	36	0.02	24	22	22	0.14	$58 \tau (CNCCH3) + 26 \tau (CC) +$
											14 τ(CCCO)
142	А	-	27	27	27	0.03	21	19	19	0.67	48 τ(CNCCH3) + 21 τ(HNCC) +
											12 τ(CCCO)
143	А	-	25	25	25	0.48	18	16	16	0.02	48 τ(HNCCH3) + 40 τ(CNCC)
144	А	-	22	22	21	0.23	13	11	11	5.19	$53 \tau(CN) + 47 \tau(CCCO)$
R			0.9998	0.9998	0.9998	-	0.9993	0.9993	0.9993	-	
Ortala	ıma mutlak ha	ata yüzdesi	1.2304	1.5806	1.1821	-	11.6621	1.7227	1.8599	-	
Ortala	ıma mutlak ha	ata	18.0533	25.3724	13.7327	-	167.1961	26.9652	27.3415	-	
RMS	v		22.5719	31.7346	15.4776	-	168.4846	31.8998	31.0622	-	
RMS ₁	nol		25.2361	35.4804	17.3045	-	188.3715	35.6651	34.7286	-	
Düzel	tme faktörü (SF)	1.0000	1.0072	0.9895	-	1	0.8992	0.9034	-	

^{*} v, gerilme; δ , düzlem içi bükülme; γ , düzlem dışı bükülme; τ , torsiyon.

Çizelge 4.10. *Bis*(2-izobutirilamidofenil)amin bileşiğine ait bazı termodinamik parametreler.

Thermodynamik parametreler (298 K)	B3LYP	B3PW91	BLYP	HF
SCF enerji (a.u.)	-1091.96	-1091.55	-1091.49	-1085.07
Toplam enerji (Termal) E _{total} (kcal/mol)	280.443	281.057	272.755	297.75
Isı kapasitesi C _v (cal/mol.K)	95	94.973	97.989	89.04
Entropi S (cal/mol.K)	175.668	176.464	177.338	173.679
Titreșim enerjisi $E_{\rm vib}$ (kcal/mol)	278.666	279.279	270.978	295.973
Sıfır noktası titreşim enerjisis E_{o} (kcal/mol)	264.7935	265.3738	256.6969	282.8046
Dipol moment (Debye)				
$\mu_{\rm x}$	0	0	0	-0.0001
$\mu_{\rm y}$	5.2655	5.1142	4.8185	5.9072
μ_z	0	0	-0.0001	-0.0001
μ_{Toplam}	5.2655	5.1142	4.8185	5.9072

Şekil 4.21. Bis(2-izobutirilamidofenil)amin bileşiğinin denyesel IR spektrumu.

Şekil 4.22. *Bis*(2-izobutirilamidofenil)amin bileşiğinin teorik (B3LYP/6-31G(d,p) IR spektrumu.

Şekil 4.23. *Bis*(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel titreşim frekanslarının korelasyon grafiği (B3LYP).

Şekil 4.24. *Bis*(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel titreşim frekanslarının korelasyon grafiği (B3PW91).

Şekil 4.25. *Bis*(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel titreşim frekanslarının korelasyon grafiği (BLYP).

Şekil 4.26. *Bis*(2-izobutirilamidofenil)amin bileşiğinin teorik ve deneysel titreşim frekanslarının korelasyon grafiği (HF).

5. SONUÇLAR

Bu çalışmada,

1. *Bis*(2-nitrofenil)amin, *bis*(2-aminofenil)amin ve *bis*(2-izobutirilamidofenil)amin bileşikleri literatürde verilen yönteme göre üç basamakta sentezlenmiş ve karakterizasyonları yapılmıştır.

2. *Bis*(2-izobutirilamidofenil)amin bileşiğinin kristal ve moleküler yapısı X-ışınları tek kristal difraksiyonu tekniği kullanılarak aydınlatılmıştır.

3. *Bis*(2-izobutirilamidofenil)amin bileşiğinin geometrik parametreleri ve titreşim frekansları Gaussian 03W paket proğramı kullanılarak hesaplanmıştır.

4. Tüm hesaplamalarda B3LYP, B3PW91, BLYP ve HF metodları için 6-31G(d,p) baz seti kullanılmıştır.

5. Tüm hesaplamalarda elde edilen geometrik parametreler tek kristal yapı parametreleri ile karşılaştırılmış ve en iyi korelasyon bağ uzunlukları için HF ve bağ açıları için ise B3LYP metodu için bulunmuştur.

6. *Bis*(2-izobutirilamidofenil)amin bileşiğinin titreşim frekansları teorik olarak hesaplanmış ve deneysel frekans değerleri ile karşılaştırılarak korelasyon değerleri hesaplanmıştır.

7. Bileşiğin hesaplanan IR spektrumu ile gözlenen FT-IR spektrumu ile iyi bir uyum içindedir.

8. Elde edilen korelasyon verileri karşılaştırıldığında B3LYP metod ile yapılan frekans hesaplamalarının çok uyumlu sonuçlar verdiği gözlenmiştir.

9. TED analizi yapılarak deneysel IR spektrumunda gözlenen tüm bandların tanımlamaları ve hangi moddan kaynaklandıkları hesaplanarak aydınlatılmış ve böylece *bis*(2-izobutirilamidofenil)amin bileşiğinin tam bir titreşim mod analizi yapılmıştır.

10. Sonuç olarak, bileşiğin ileride sentez edilebilecek yeni türevlerinin IR spektral tahminleri için, sırasıyla B3LYP, BLYP, B3PW91, HF yöntemleri ile 0.9606, 0.9576, 0.9895 ve 0.9034 ölçeklendirme faktörlerinin kullanımı önerilebilir.

KAYNAKLAR

- Mohamed, G. G. "Synthesis, Characterization and Biological Activity of Bis(phenylimine) Schiff Base Ligands and Their Metal Complexes", Spectrochimica Acta, 64: 188-195, (2006).
- [2] Gray, H. B., Williams, R., Bernal, I., and Billig, E. A. "spin-free square planar cobaltous complex", J. Am. Chem. Soc., 84: 3596-7, (1962).
- [3] Billig, E., Williams, R., Bernal, I., Waters, J. H. and Gray, H. B. "Electronic structures of square-planar metal complexes. II. Complexes of maleonitriledithiolate with copper (II), nickel (II), palladium (II), and platinum (II)", Inorg. Chem., 3(5): 663-6, (1964).
- [4] Pierpont, C. G. and Lange, C. W. "The chemistry of transition metal complexes containing catechol and semiquinone ligands", *Prog.* Inorg. Chem., 41: 331-442, (1994).
- [5] Pierpont, C. G. and Buchanan, R. M. "Transition metal complexes of obenzoquinone, o-semiquinone, and catecholate ligands", Coord. Chem. Rev., 38(1): L45-87, (1981).
- [6] Pierpont, C. G. "Unique properties of transition metal quinone complexes of the MQ3 series", Coord. Chem. Rev., 219-221, 415-433, (2001).
- [7] Chirik, P. J. and Wieghardt, K. "Radical ligands confer nobility on base-metal catalysts", Science, 327(5967): 794-795, (2010).
- [8] Wile, B. M., Trovitch, R. J., Bart, S. C., Tondreau, A. M., Lobkovsky, E., Milsmann, C., Bill, E., Wieghardt, K. and Chirik, P. J. "Reduction Chemistry of Aryl- and Alkyl-Substituted Bis(imino)pyridine Iron Dihalide Compounds: Molecular and Electronic Structures of [(PDI)2Fe] Derivatives", Inorg. Chem., 48(9): 4190-4200, (2009).
- [9] Carter, S. M., Sia, A., Shaw, M. J. and Heyduk, A. F. "Isolation and Characterization of a Neutral Imino-semiquinone Radical", *J. Am. Chem. Soc.*, 130, (18): 5838-5839, (2008).
- [10] Mukherjee, C., Pieper, U., Bothe, E., Bachler, V., Bill, E., Weyhermuller, T. and Chaudhuri, P. "Ligand-derived oxidase activity. Catalytic aerial oxidation of alcohols (including methanol) by Cu(II)-diradical complexes", Inorg Chem, 47, (19): 8943-56, (2008).

- [11] Bill, E., Bothe, E., Chaudhuri, P., Chlopek, K., Herebian, D., Kokatam, S., Ray, K., Weyhermueller, T., Neese, F. and Wieghardt, K. "Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine or two o-aminophenol-type ligands at various oxidation levels: An experimental, density functional, and correlated ab initio study", Chem. Eur. J., 11, (1): 204-224, (2005).
- [12] Chun, H., Verani, C. N., Chaudhuri, P., Bothe, E., Bill, E., Weyhermuller, T. and Wieghardt, K. "Molecular and electronic structure of octahedral o-aminophenolato and o-iminobenzosemiquinonato complexes of V(V), Cr(III), Fe(III), and Co(III). Experimental determination of oxidation levels of ligands and metal ions", Inorg Chem, 40, (17): 4157-66, (2001).
- [13] Chun, H., Verani, C. N., Chaudhuri, P., Bothe, E., Bill, E., Weyhermueller, T. and Wieghardt, K. "Molecular and Electronic Structure of Octahedral o-Aminophenolato and o-Iminobenzosemiquinonato Complexes of V(V), Cr(III), Fe(III), and Co(III). Experimental Determination of Oxidation Levels of Ligands and Metal Ions", Inorg. Chem., 40, (17): 4157-4166, (2001).
- [14] Lippert, C. A., Arnstein, S. A., Sherrill, C. D. and Soper, J. D. "Redox-Active Ligands Facilitate Bimetallic O2 Homolysis at Five-Coordinate Oxorhenium(V) Centers", J. Am. Chem. Soc., 132, (11): 3879-3892, (2010).
- [15] Sharma, S. K., May, P. S., Jones, M. B., Lense, S., Hardcastle, K. I. and MacBeth, C. E. "Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold", Chem. Commun., 47: 1827–1829, (2011)
- [16] Woodward, L. A. "Introduction to the Theory and Molecular Vibration Spectroscopy", Oxford University Press, New York, 1-55, (1972).
- [17] Chang, R. "Basic Principles of Spectroscopy", Mc Graw-Hill, New York, 1-50, (1971).
- [18] Chang, R. "Basic Principles of Spectroscopy", Mc Graw-Hill, New York 50-100, (1971).
- [19] Gündüz T. "İnstrümental Analiz", Gazi Kitapevi, Ankara, 323: (2002)
- [20] Wilson, E. B. and Deicus, J. C., "MolecularVibrationstheTheoryof Infraredand RamanVibrationalSpectra", Mc GRAW-HILL, Newyork, (1995).
- [21] Bonwel, C. N., Fundemantals of MolecularSpectroscopy, 3nd ed. ", Mc Graw

Hill, London, (1983).

- [22] Borrow, G. M. "MolecularSpectroscopy ed.", Mc graw-hill, London, (1962).
- [23] Sertbakan, T. R. "Bazı konak konuk bileşiklerinin titreşim spektroskopisi ile incelenmesi", Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 26-50, (2000).
- [24] Colthup, N. B., Daly L. H. and Wiberlays, E. "Introduction to Infrared and Raman Spectroscopy", Academic Pres, New York, (1964).
- [25] Gündüz, T. "Enstrümental Analiz", Ankara, (1988).
- [26] Nakamato, K. "Infrared and Raman Spectra of Inorganik and Coordination Compounds 4th Ed.", Wiley, New York (1986).
- [27] Parr, R. G. And Yang, W. "Density Functional theory of Atoms and Molecules", Oxford University Pres, Oxford (1989).
- [28] Bahat, M., DoktoraTezi-Gazi Üniversitesi Fen Bilimileri Enstitüsü, Ankara, (2000).
- [29] Becke, A. D., Density Functional thermo Chemistry 3. ", the Roleof Exact Exchange, J. Chem. Phys 98: 5648, (1993).
- [30] Bahat, M. "Kinazolin Molekülünün Kuvvet Alanının DFT-B3LYP 6-31 G*Tabanlı SQM Metodu ile Hesabı ve Bazı Hoffman Tipi Komplekslerin Titreşimsel Spektroskopi ile İncelenmesi", Doktora tezi, Gazi Üniversitesi FenBilimleri Enstitüsü, Ankara, 3-55, (2000).
- [31] Levine, I. N. "Quantum Chemistry", Prentice-Hall, USA, 201-217 (1991)
- [32] Gill, P. M. W. "DFT, HF and self consident field, Enc, of comp. Chemistry", John-Wiley and Sons Inc. New York, 214-260 (2003).
- [33] Hariharan P. C., Pople J. A. "The influence of polarization functions on molecular orbital hydrogenations energies", Theoret. Chim. Acta, 28: 213 (1973).
- [34] Csizmadia G. L. "Computational Adv. in Inorganic Chem. Molecular Str. Nd Reactivity", Ed. by Öğretir C., Csizmadia G. L., NATO ASI series, KluwerAcademic Publishers, USA, 33-64 (2000).
- [35] Jensen, F. "Introduction to Computational Chemistry", John Wiley & Sons Ltd, 440- 462 (1999).

- [36] Pulay, P. "Analytical Dervative Methods in Quantum Chemistry, Ab Initio Methods in Quantum Chemistry, By K. P. Lavvley 11nd ed.", John Wiley & Sons Ltd., 118-143 (1987).
- [37] Csizmadia, G. L. "Computational Adv. In organic chem., Molecular str. And reactivity, Ed. by Öğretir. ", C., Csizmadia, G. L., NATO ASI series. Kluwer Academic Publishers, USA. 15-74 (1981).
- [38] Pulay, P., Fogorasi, G., Pang, F., Bogs, J. E. "Systematic ab initio gradient calculation of molecular geometries, force constants and dipol moment derivates" J. Am. Chem. Soc., 105: 7037-7040 (1979).
- [39] Bleicher, W., Botschvina, P. "Quantum chemical calculations of formyl radicals II. Ground state of the fluoroformyl radical", Mol. Phys., 30: 1029-1036 (1979).
- [40] Blom, C. E., Altona, C. "Application of self-consistent field ab initio calculations to organic molecules II. Scale factor method for the calculation of vibrational frequencies from ab initio force constants: ethane, propane and cyclopropane", Mol. Phys., 31: 1377 (1976).
- [41] Fogorasi, G., Zhou, X., Taylor, P. W., Pulay, P. "The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and emprical correction by offset forces", J. Am. Chem. Soc., 114(21): 8191 (1992).
- [42] Pulay, P. "Combitation of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (SQM) force fields for glyoxal, acrolein, butadien, formaldehyde and ethylene", J. Am. Chem. Soc., 105: 7037 (1983).
- [43] Fogorasi, G., PULAY, P. "Vibrational spectra and structure, Ed. During", J. R., Elsevier Pub., 14: 125 (1985).
- [44] Pongor, G., Fogorasi, G., Magdo, I., Boggs, J. E., Keresztury, G., Ignatyev, I.
 S. "Theoretical prediction of vibrational spectra. The a prior Scaled mechanical (SQM) force field and vibrational spectra of pyrimidine" quantum, Spectrochim. Acta., 48A: 1-11 (1992).
- [45] Rauhut, G., Pulay, P. "Trasferable scaling factors for density fuctional derived vibrational force fields", J. Phys. Chem., 99(10): 3094-3097 (1995).

- [46] Arslan, H. and Algül, Ö. "Vibrational spectrum and assignments of 2-(4methoxyphenyl)-1H-benzo[d]imidazole by ab initio Hartree–Fock and density functional methods, "Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(1): 109-116, (2008).
- [47] Arslan, H. and Demircan, A. "Structure and Vibrational Spectra of tert-butyl N-(2-bromocyclohex-2-enyl)-N-(2-furylmethyl)carbamate", Acta Physico-Chimica Sinica, 23(11): 1683-1690, (2007).
- [48] Arslan, H. and Flörke, U. "The molecular structure and vibrational spectra of 2-chloro-N-(diethylcarbamothioyl)benzamide by Hartree–Fock and density functional methods", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(5): 1347-1355, (2007).
- [49] Arslan, H., Flörke, U. and Külcü, N. "Theoretical studies of molecular structure and vibrational spectra of O-ethyl benzoylthiocarbamate", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4): 936-943, (2007).
- [50] Arslan, H., Algül, Ö. and Dündar, Y. "Structural and spectral studies on 3-(6benzoyl-5-chloro-2-benzoxazolinon-3-yl) propanoic acid", Vibrational Spectroscopy, 44(2): 248-255, (2007).
- [51] Arslan, H., Demircan, A. and Göktürk, E. "Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 5-chloro-10-oxa-3-thia-tricyclo[5. 2. 1. 01, 5]dec-8-ene-3, 3dioxide", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(1): 105-112, (2008).
- [52] Arslan, H., Algül, Ö. and Önkol, T. "Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-(6benzoyl-2-oxobenzo[d]oxazol-3(2H)-yl)propanoic acid", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(3): 606-614, (2008).
- [53] Arslan, H., Mansuroglu, D. S., Van Derveer, D. and Binzet, G. "The molecular structure and vibrational spectra of N-(2, 2-diphenylacetyl)-N'-(naphthalen-1yl)-thiourea by Hartree–Fock and density functional methods", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(3): 561-571, (2009).

- [54] Beni, A. S., Chermahini, A. N., Sharghi, H. and Monfared, S. M. "MP2, DFT and ab initio calculations on thioxanthone", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1): 49-55, (2011).
- [55] Shoba, D., Periandy, S., Karabacak, M. and Ramalingam, S. "Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2, 3-naphthalenediol", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1): 540-552, (2011).
- [56] Morkan, İ. A. and Morkan, A. U. "Characterization of pentacarbonyl(4methylpyridine)chromium(0) complex using density functional theory (DFT) and Hartree–Fock (HF) computational methods", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5): 1715-1721, (2011).
- [57] Govindarajan, M., Karabacak, M., Udayakumar, V. and Periandy, S. "FT-IR, FT-Raman and UV spectral investigation: Computed frequency estimation analysis and electronic structure calculations on chlorobenzene using HF and DFT", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 88: 37-48, (2012).
- [58] Karakurt, T., Dinçer, M., Çetin, A. and Şekerci, M. "Molecular structure and vibrational bands and chemical shift assignments of 4-allyl-5-(2hydroxyphenyl)-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione by DFT and ab initio HF calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(1): 189-198, (2010).
- [59] Parimala, K. and Balachandran, V. "Vibrational spectroscopic (FTIR and FT Raman) studies, first order hyperpolarizabilities and HOMO, LUMO analysis of p-toluenesulfonyl isocyanate using ab initio HF and DFT methods", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1): 711-723, (2011).
- [60] Ramalingam, S., Periandy, S., Elanchezhian, B. and Mohan, S. "FT-IR and FT-Raman spectra and vibrational investigation of 4-chloro-2-fluoro toluene using ab initio HF and DFT (B3LYP/B3PW91) calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1): 429-436, (2011).

- [61] Udayakumar, V., Periandy, S., Karabacak, M. and Ramalingam, S. "Experimental (FT-IR, FT-Raman) and theoretical (HF and DFT) investigation and HOMO and LUMO analysis on the structure of p-fluoronitrobenzene", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1): 575-586, (2011).
- [62] Arici, K., Yurdakul, M., and Yurdakul, Ş. "HF and DFT studies of the structure and vibrational spectra of 8-hydroxyquinoline and its mercury(II) halide complexes", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61: 1-2, 37-43, (2005).
- [63] Govindarajan, M., Karabacak, M., Suvitha, A., and Periandy, S. "FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO–LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89: 137-148, (2012).
- [64] Elleuch, S., Feki, H., and Abid, Y. "HF, MP2 and DFT calculations and spectroscopic study of the vibrational and conformational properties of Ndiethylendiamine", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(3): 942-947, (2007).
- [65] Kim, S. M. and Kim, D. H. "Determination of the structure of 1, 1'-diethyl-2, 2'-carbocyanine iodide using NMR spectra and GIAO-HF/DFT calculations," Dyes and Pigments, 79(1): 1-6, (2008).
- [66] Karunakaran, V. and Balachandran, V. "FT-IR, FT-Raman spectra, NBO, HOMO–LUMO and thermodynamic functions of 4-chloro-3nitrobenzaldehyde based on ab initio HF and DFT calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2012).
- [67] Virtanen, E., Valkonen, A., Tamminen, J. and Kolehmainen, E. "Comparison of calculated DFT/B3LYP and experimental ¹³C and ¹⁷O NMR chemical shifts, ab initio HF/6-31G* optimised structures, and single crystal X-ray structures of some substituted methyl 5β-cholan-24-oates", Journal of Molecular Structure, 650: 1-3, 201-212, (2003).
- [68] Avcı, D., Atalay, Y., Şekerci, M. and Dinçer, M. "Molecular structure and vibrational and chemical shift assignments of 3-(2-Hydroxyphenyl)-4-phenyl-1H-1, 2, 4-triazole-5-(4H)-thione by DFT and ab initio HF calculations",

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(1): 212-217, (2009).

- [69] Kumru, M., Küçük, V. and Kocademir, M. "Determination of structural and vibrational properties of 6-quinolinecarboxaldehyde using FT-IR, FT-Raman and Dispersive-Raman experimental techniques and theoretical HF and DFT (B3LYP) methods", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96: 242-251, (2012).
- [70] Tarcan, E., Altındağ, Ö., Avcı, D. and Atalay, Y. "Molecular structure and vibrational assignment of melaminium phthalate by density functional theory (DFT) and ab initio Hartree-Fock (HF) calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(1): 169-174, (2008).
- [71] Souza, G. P., Konzen, C., Simões, T. R. G., Rodrigues, B. L., Alcântara, A. F. C. and Stumpf, H. O. "Structural characterization of a new dioxamic acid derivative by experimental (FT-IR, NMR, and X-ray) analyses and theoretical (HF and DFT) investigations", Journal of Molecular Structure, 1016: 13-21, (2012).
- [72] Sundaraganesan, N. and Dominic Joshua, B. "Vibrational spectra and fundamental structural assignments from HF and DFT calculations of methyl benzoate", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(3): 771-777, (2007).
- [73] Teimouri, A., Emami, M., Chermahini, A. N. and Dabbagh, H. A. "Spectroscopic, quantum chemical DFT/HF study and synthesis of [2. 2. 1] hept-2'-en-2'-amino-N-azatricyclo [3. 2. 1. 02, 4] octane", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5): 1749-1755, (2009).
- [74] Karabacak, M., Karagöz, M. and Kurt, M. "Experimental (FT-IR and FT-Raman spectra) and theoretical (ab initio HF, DFT) study of 2-chloro-5methylaniline", Journal of Molecular Structure, 892: 1-3, 25-31, (2008).
- [75] Prabhu, T., Periandy, S. and Ramalingam, S. "FT-IR and FT-Raman investigation, computed vibrational intensity analysis and computed vibrational frequency analysis on m-Xylol using ab-initio HF and DFT calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 7(5): 948-955, (2011).

- [76] Ramalingam, S. Periandy, S., Govindarajan, M. and Mohan, S. "FTIR and FTRaman spectra, assignments, ab initio HF and DFT analysis of 4nitrotoluene", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(4): 1308-1314, (2010).
- [77] Arivazhagan, M., and Jeyavijayan, S. "FTIR and FT-Raman spectra, assignments, ab initio HF and DFT analysis of xanthine", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(1): 161-168, (2011).
- [78] El-Nahass, M. M., Kamel, M. A., El-deeb, A. F., Atta, A. A. and Huthaily, S. Y. "Ab initio HF, DFT and experimental (FT-IR) investigation of vibrational spectroscopy of P-N, N-dimethylaminobenzylidenemalononitrile (DBM)", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3): 443-450, (2011).
- [79] Ramalingam, S., Periandy, S., Narayanan, B. and Mohan, S. "FTIR and FTRaman spectroscopic investigation of 2-bromo-4-methylaniline using ab initio HF and DFT calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(1): 84-92, (2010).
- [80] Wang, J., Ren, M., Wang, S. and Qu, Y. "Molecular structure and vibrational spectra of o-chlorotoluene, m-chlorotoluene, and p-chlorotoluene by ab initio HF and DFT calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(3): 1126-1132, (2011).
- [81] Sridevi, C., Shanthi, G. and Velraj, G. "Structural, vibrational, electronic, NMR and reactivity analyses of 2-amino-4H-chromene-3-carbonitrile (ACC) by ab initio HF and DFT calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89: 46-54, (2012).
- [82] Sridevi, C., and Velraj, G. "Investigation of molecular structure, vibrational, electronic, NMR and NBO analysis of 5-chloro-1-methyl-4-nitro-1H-imidazole (CMNI) using ab initio HF and DFT calculations", Journal of Molecular Structure, 1019: 50-60, (2012).
- [83] Sridevi, C., Panneer Selvam, N., Shanthi, G. and Velraj, G. "Tautomeric stability, vibrational, electronic, NBO, and NMR analyses of N-[acetylamino-(3-nitrophenyl)methyl]-acetamide (ANPMA) by ab initio HF and DFT calculations", Journal of Molecular Structure, 1030: 46-56, (2012).

- [84] Rofouei, M. K., Sohrabi, N., Shamsipur, M., Fereyduni, E., Ayyappan, S. and Sundaraganesan, N. "X-ray crystallography characterization, vibrational spectroscopy, NMR spectra and quantum chemical DFT/HF study of N, N'di(2-methoxyphenyl)formamidine", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(2): 182-190, (2010).
- [85] Karabacak, M., Şahin, E., Çınar, M., Erol, İ. and Kurt, M. "X-ray, FT-Raman, FT-IR spectra and ab initio HF, DFT calculations of 2-[(5-methylisoxazol-3yl)amino]-2-oxo-ethyl methacrylate", Journal of Molecular Structure, 886: 1-3 148-157, (2008).
- [86] Sundaraganesan, N., Ilakiamani, S., Subramani, P. and Joshua, B. D. "Comparison of experimental and ab initio HF and DFT vibrational spectra of benzimidazole", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67: 3-4 628-635, (2007).
- [87] Sundaraganesan, N., Kalaichelvan, S., Meganathan, C., Joshua, B. D. and Cornard, J. "FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 4-N, N'-dimethylamino pyridine", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(3): 898-906, (2008).
- [88] Govindarajan, M., Karabacak, M., Periandy, S. and Xavier, S. "Vibrational spectroscopic studies, NLO, HOMO–LUMO and electronic structure calculations of α, α, α-trichlorotoluene using HF and DFT", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 94: 53-64, (2012).
- [89] Nagabalasubramanian, P. B., Periandy, S. and Mohan, S. "Ab initio HF and DFT simulations, FT-IR and FT-Raman vibrational analysis of αchlorotoluene", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(1): 150-159, (2010).
- [90] Drużbicki, K., Mikuli, E. and Ossowska-Chruściel, M. D. "Experimental (FT-IR, FT-RS) and theoretical (DFT) studies of vibrational dynamics and molecular structure of 4-n-pentylphenyl-4'-n-octyloxythiobenzoate (80S5)", Vibrational Spectroscopy, 52(1): 54-62, (2010).
- [91] Mahadevan, D., Periandy, S. and Ramalingam, S. "Vibrational spectroscopy (FTIR and FTRaman) investigation using ab initio (HF) and DFT (B3LYP) calculations on the structure of 3-Bromo phenol", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(2): 575-581, (2011).

- [92] Mahadevan, D., Periandy, S. and Ramalingam, S. "FT-IR and FT-Raman, vibrational assignments, molecular geometry, ab initio (HF) and DFT (B3LYP) calculations for 1, 3-dichlorobenzene", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5): 962-969, (2011).
- [93] Wang, S., He, Q., Wang, J. and Qu, Y. "Molecular structural, IR and NMR spectroscopic studies on the four isomers of thiotriazinone by DFT and HF calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 87: 179-189, (2012).
- [94] Prabhu, T., Periandy, S. and Ramalingam, S. "FT-IR and FT-Raman spectroscopic investigation, computed vibrational frequency analysis and IR intensity and Raman activity peak resemblance analysis on 2-nitroanisole using HF and DFT (B3LYP and B3PW91) calculations", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1): 8-16, (2011).
- [95] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., BurantJ. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., . Daniels A. D, Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al- Laham M. A., Peng C. Y., Nanayakkara A., Challa combe M., GillP. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A., Gaussian 03W (Revision B. 04), Gaussian, Inc., Pittsburgh PA, (2003).
- [96] Özdemir, M. "Benzensolfonikasit hidrazit'in konformasyon analizi, titresim ve kimyasal kayma degerlerinin dft metodu ile hesaplanması", Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 39-40 s., (2007).
- [97] Foresman B. J. "Exploring Chemistry with Electronic Structure Methods 2nd

Ed.", Gaussian, Inc. Pittsburgh (1996).

- [98] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. J. Chem. Soc. Perkin Trans, 2: S1-S19, (1987).
- [99] Dennington, R., Keith, T., Millam, J., Eppinnett, K., Hovell, W.L. and Gilliland, R., GaussView, Version 3.07, Semichem, Inc., Shawnee Mission, KS, (2003).
- [100] SQM Version 1.0, Scaled Quantum Mechanical Force Field, Green Acres Road, Fayetteville, Arkansas 72703, (2013).
- [101] Arivazhagan, M., Jeyavijiyan, S. and Indian J. Pure Ap. Phy. 49: 516-522 (2011).
- [102] Krishnakumar, V. and. John, X.R., Spectrochim. Acta A 61: 1799-1809 (2005).
- [103] Arslan, H., Sezgin, D.M., Van Derveer, D. and Binzet, G., Spectrochim. Acta A 72: 561-571 (2009).
- [104] Arslan, H. and Demircan, A., Acta Phys.-Chim. Sin. 23(11): 1683-1690 (2007).
- [105] Sundaraganesan, N., Ilakiamani, S., Subramani, P. and Joshua, B.D., Spectrochim. Acta 67(3-4): 628-635 (2007).
- [106] Krishna Kumar, V., John Xavier, R. and Indian J., Pure Ap. Phy. 41: 95-99 (2003).
- [107] Sathyanarayana, D.N., Vibrational Spectroscopy-Theory and Applications, second ed., New Age International (P) Limited Publishers, New Delhi, (2004).
- [108] Kalsi, P. S., Spectroscopy of Organic Compounds, Wiley Eastern Limited, New Delhi, (1993).
- [109] Arslan, H., Performance Analysis of Vibrational Frequencies, PAVF 1.0, Mersin, Turkey, (2007).
- [110] Arslan, H., Flörke, U. and Külcü, N., Spectrochim. Acta A, 67(3-4): 936-943 (2007).
- [111] Hanuza, J., Sasiadek, W., Michalski, J., Lorenc, J., Maczka, M., Kaminskii,A.A., Butashin, A.V. and Klapper, H., Vib. Spectrosc. 34: 253-268 (2004).
- [112] Scott, A.P. and Radom, L., J. Chem., 100: 16502-16513 (1996).

ÖZGEÇMİŞ

Adı ve Soyadı	: Emrah ASLANTATAR
Doğum Tarihi	: 24/06/1985
Öğrenim Durumu	: YÜKSEK LİSANS

Derece	Bölüm / Program	Üniversite	Yıl
Lisans	Kimya Bölümü	Mersin Üniversitesi	2004-2009
Yüksek Lisans	Kimya Bölümü	Mersin Üniversitesi	2009-2013

Görevler:

Görev Unvanı	Görev Yeri	Yıl
-	-	-