LANTANOİD İYONLARIYLA KATKILANMIŞ YENİ TOPRAK ALKALİ ORTOTUNGSTAT IŞILDARLARININ HAZIRLANMASI VE FİZİKSEL ÖZELLİKLERİNİN İNCELENMESİ

RAMAZAN ALTINKAYA

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANA BİLİM DALI

YÜKSEK LİSANS TEZİ

MERSİN MART – 2014

LANTANOİD İYONLARIYLA KATKILANMIŞ YENİ TOPRAK ALKALİ ORTOTUNGSTAT IŞILDARLARININ HAZIRLANMASI VE FİZİKSEL ÖZELLİKLERİNİN İNCELENMESİ

RAMAZAN ALTINKAYA

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANA BİLİM DALI

YÜKSEK LİSANS TEZİ

Danışman Prof. Dr. Nevzat KÜLCÜ

> MERSİN MART – 2014

Ramazan ALTINKAYA tarafından Prof. Dr. Nevzat KÜLCÜ danışmanlığında hazırlanan "Lantanoid İyonlarıyla Katkılanmış Yeni Toprak Alkali Ortotungstat Işıldarlarının Hazırlanması ve Fiziksel Özelliklerinin İncelenmesi" başlıklı bu çalışma aşağıda imzaları bulunan jüri üyeleri tarafından oy birliği ile Yüksek Lisans Tezi olarak kabul edilmiştir.

Prof. Dr. Nevzat KÜLCÜ

Prof. Dr. Hakan ARSLAN

Doç. Dr. Fatih Mehmet EMEN

İmza

Yukarıdaki Jüri kararı Fen Bilimleri Enstitüsü Yönetim Kurulu'nun 18.../3/4.../20./4..tarih ve 2014..03...../.2.7.1...... sayılı kararıyla onaylanmıştır.

Bu tezde kullanılan özgün bilgiler, şekil, çizelge ve fotoğraflardan kaynak göstermeden alıntı yapmak 5846 sayılı Fikir ve Sanat Eserleri Kanunu hükümlerine tabidir.

LANTANOİD İYONLARIYLA KATKILANMIŞ YENİ TOPRAK ALKALİ ORTOTUNGSTAT IŞILDARLARININ HAZIRLANMASI VE FİZİKSEL ÖZELLİKLERİNİN İNCELENMESİ

Ramazan ALTINKAYA

ÖΖ

Bu çalışmada farklı alanlarda kullanılabilen yeni ışıldar malzemeler sentezlendi. $M_2M'WO_6$ (M=Ca²⁺, Sr²⁺, Ba²⁺; M'=Ca²⁺, Sr²⁺, Ba²⁺; Mg²⁺, Zn²⁺) konut fazlarına lantan grupları katkılandı. Konut yapılarına lantanit serisi iyonlarından Eu³⁺, Pr³⁺, Tb³⁺, Dy³⁺ iyonları %2 oranında katkılandı. Işıldar fazların sentezi için Katı Hal Yöntemi ve Hidrotermal Yöntem kullanıldı. Farklı katı karışımları 1350, 1250, 1200 ve 1000 °C'de olmak üzere farklı sıcaklıklarda 5 saat süre ile açık atmosferde ve yüksek sıcaklık fırınında ısıl işleme tabi tutularak tepkime gerçekleştirildi. Elde edilen ürünlerin kristal sistemleri X-ışını toz difraksiyonu (XRD) yöntemi ile araştırıldı. Birbirinden farklı kristal sisteminde kristallendiği belirlenen ışıldar fazların hücre parametreleri belirlendi. Oluşan ürünlerin ışıma özellikleri fotolüminesans spektrofotometresi ile araştırıldı.

Anahtar Kelimeler: Katı Hal Tepkimesi, Lüminesans, Hidrotermal Yöntem, Fosfor

Danışman: Prof. Dr. Nevzat KÜLCÜ, Kimya Ana Bilim Dalı, Mersin Üniversitesi

NEW RARE EARTH TUNGSTATE PHOSPHORS DOPED WITH LANTANOID IONS AND INVESTIGATION OF THEIR PHYSICAL PROPERTIES

Ramazan ALTINKAYA

ABSTRACT

New phosphors which are used for different areas were synthesized. The lanthanide group ions were doped to $M_2M'WO_6$ (M=Ca²⁺, Sr²⁺, Ba²⁺; M'=Ca²⁺, Sr²⁺, Ba²⁺; Mg²⁺, Zn²⁺) host crystals. The Eu³⁺, Pr³⁺, Tb³⁺ and Dy³⁺ ions were doped to host crystals in %2 ratios. New phosphors were synthesized by solid state and hydrothermal methods. The mixtures to achieve a solid state reaction were heated in air in high tempereratur oven at different temperatures, 1350, 1250, 1200 and 1000 °C for 5 hours. Crystal system of the reaction products were characterized by X-ray powder diffraction techique (XRD). Photoluminescence spectrophotometer instrument was used for the observation of the excitation and emission spectras.

Keywords: Solid State Method, Luminescence, Hydrothermal Methods, Phosphor

Advisor: Prof. Dr. Nevzat KÜLCÜ, Department of Chemistry, Mersin University

TEŞEKKÜR

Yüksek lisans çalışmam süresince bilgi ve deneyimlerinden yararlandığım danışman hocam Prof. Dr. Nevzat KÜLCÜ'ye teşekkürlerimi sunarım.

Çalışmalarım süresince tecrübelerinden yararlandığım, beni yönlendiren ve SEM-EDX analiz sonuçlarının yorumlanmasında yardımlarını esirgemeyen Mehmet Akif Ersoy Üniversitesi, Kimya Bölümü öğretim üyesi Doç. Dr. Fatih Mehmet EMEN'e teşekkür ederim.

Termolüminesans ölçüm çalışmalarında laboratuvar imkânlarını sağlayan ve yardımlarını esirgemeyen, Gaziantep Üniversitesi, Fizik Mühendisliği Bölümü öğretim üyeleri Prof. Dr. A. Necmettin YAZICI'ya ve Yrd. Doç. Dr. Vural Emir KAFADAR'a teşekkür ederim.

Ayrım gücü yüksek fotolüminesans ölçüm çalışmalarında laboratuvar imkânlarını sağlayan ve yardımlarını esirgemeyen, Karamanoğlu Mehmetbey Üniversitesi Malzeme Bilimi ve Mühendisliği Bölümü öğretim üyesi Yrd. Doç. Dr. Esra ÇIRÇIR'a teşekkür ederim.

Çalışmaya maddi destek sağlayan Mersin Üniversitesi Araştırma Fonuna ve imkânlarından yararlandığım Mersin Üniversitesi İleri Teknoloji Eğitim, Araştırma ve Uygulama Merkezine teşekkür ederim.

Öğrenimim süresince sıkıntılarımı paylaşan ve maddi manevi desteğini esirgemeyen sevgili aileme sonsuz teşekkürlerimi sunarım.

İÇİNDEKİLER

ÖZ .i ABSTRACT .ii TEŞEKKÜR .iii İÇİNDEKİLER .iv ÇİZELGELER DİZİNİ .viii ŞEKİLLER DİZİNİ .ix EKLER DİZİNİ .xi SİMGE VE KISALTMALAR .xii
1. GİRİŞ1
2. KAYNAK ARAŞTIRMALARI
2.1. LÜMİNESANS OLAYI
2.1.1. Lüminesans Tanımı ve Çeşitleri
2.2. IŞIMA MODELLERİ9
2.2.1. Enerji Konfigürasyon Diyagramı
2.3. IŞILDAR MADDELERİN KULLANIM ALANLARI11
2.3.1. Aydınlatma112.3.1.1. Floresan lambalar11Tungstat bazlı ışıldarlar122.3.1.2. Yüksek basınçlı civa lambaları132.3.1.3. UV lambaları142.3.1.4. Yüksek voltaj reklam ışıklandırma tüpleri142.3.2. X-Işınları ile Görüntüleme Teknikleri142.3.3. Katot Işını Tüpleri152.3.4. Optoelektronik Görüntü Dönüştürücü152.3.5. Ürün Kodlama152.3.6. Güvenlik ve Kaza Önleme162.3.7. Dişçilik16
2.3.8. LED Uygulamalari
3.1. MATERYAL
3.1.1. Kullanılan Kimyasallar

3.1.2. Kullanılan Cihazlar	18
3.2. YÖNTEM	19
3.2.1. Sentez Yöntemleri	19
3.2.1.1. Katıhal sentez yöntemi	
3.2.1.2. Hidrotermal sentez vöntemi	19
3.2.2. Yapısal Tanımlama Yöntemi	19
3.2.3. Optik Özelliklerin İncelenmesi	20
3.2.3.1. Fotolüminesans spektrometresi	20
3 2 3 2 Termolüminesans spektrometresi	20
3.2.4 Isıldar Fazların Sentezi	
3.2.4.1. Isıldar fazların katı hal yöntemi ile sentezi	22
Sr_3WO_6 ·Ln Ca_3WO_6 ·Ln Ba_3WO_6 ·Ln $(Ln \cdot Eu^{3+} Dv^{3+} Pr^{3+} Tb^{3+})$	
ısıldar fazlarının katı hal vöntemi ile sentezi	22
Sr2CaWO6:Ln Ca2SrWO6:Ln Ca2BaWO6:Ln Ba2CaWO6:Ln	
$Ba_2SrWO_6:Ln$, $Sr_2BaWO_6:Ln$, $(Ln:Eu^{3+})$, Dv^{3+} , Pr^{3+} , Th^{3+}) isildar	
fazlarının katı hal vöntemi ile sentezi	23
Ca_2MgWO_6 : $Ln_Sr_2MgWO_6$: $Ln_Ba_2MgWO_6$: $Ln_(Ln:Eu^{3+},Dv^{3+},Pr^{3+})$	0
Tb^{3+}) isildar fazlarının katı hal vöntemi ile sentezi	23
$Ca_2 ZnWO_6 \cdot Ln Sr_2 ZnWO_6 \cdot Ln Ba_2 ZnWO_6 \cdot Ln (Ln \cdot Eu^{3+}) Dv^{3+} Pr^{3+}$	0
Th^{3+}) isildar fazlarının katı hal yöntemi ile sentezi	23
3 2 4 2 Isıldar fazların hidrotermal vöntem ile sentezi	.24
$Sr_3WO_6:Ln, Ca_3WO_6:Ln, Ba_3WO_6:Ln (Ln: Eu^{3+}, Dv^{3+}, Pr^{3+}, Th^{3+})$	
ısıldar fazlarının hidrotermal vöntem ile sentezi	24
Sr2CaWO6:Ln. Ca2SrWO6:Ln. Ca2BaWO6:Ln. Ba2CaWO6:Ln.	
$Ba_2SrWO_6:Ln, Sr_2BaWO_6:Ln (Ln: Eu3+, Dv^{3+}, Pr^{3+}, Tb^{3+}) isildar$	
fazlarının hidrotermal vöntem ile sentezi	24
Ca_2MgWO_6 : $Ln_Sr_2MgWO_6$: $Ln_Ba_2MgWO_6$: $Ln_(Ln:Eu^{3+},Dv^{3+},Pr^{3+})$	
Th^{3+}) isildar fazlarının hidrotermal vöntem ile sentezi	25
$Ca_2 ZnWO_6 \cdot Ln Sr_2 ZnWO_6 \cdot Ln Ba_2 ZnWO_6 \cdot Ln (Ln \cdot Eu^{3+} Dv^{3+} Pr^{3+})$	
Th^{3+}) isildar fazlarının hidrotermal vöntem ile sentezi	25
10) işindar yazıdı min marotermai yontem ne semezi	
4. BULGULAR VE TARTIŞMA	27
4.1. TANIMLAMA ÇALIŞMALARI	28
4.1.1. Sr ₂ CaWO ₆ :Eu ³⁺ , Ca ₂ BaWO ₆ :Ln, Ba ₂ CaWO ₆ :Ln, (Ln: Eu ³⁺ , Dv^{3+})	
Isıldarlarını Tanımlama Calısmaları	28
4.1.1.1, Sr ₂ CaWO ₆ konut fazinin vapi analizi	
4.1.1.2. Sr ₂ CaWO ₆ :Eu ³⁺ isildarinin fotolüminesans calismalari	
4.1.1.3. Hidrotermal vöntemle hazırlanan Sr ₂ CaWO ₆ ·Eu ³⁺ ısıldarının	
SEM-EDX analizleri	
4.1.1.4. Ca ₂ BaWO ₆ konut fazının yapı analizi	32

4.1.1.5. Ca ₂ BaWO ₆ :Ln (Ln: Eu ³⁺ , Dy ³⁺) ışıldarlarının fotolüminesans	
çalışmaları	.33
Ca_2BaWO_6 : Eu^{3+} ışıldarının fotolüminesans çalışmaları	.33
$Ca_2BaWO_6:Dy^{3+}$ ışıldarının fotolüminesans çalışmaları	.35
4.1.1.6. Ca ₂ BaWO ₆ :Dy ³⁺ ışıldarının termolüminesans çalışmaları	.37
4.1.1.7. Hidrotermal yöntemle hazırlanan Ca ₂ BaWO ₆ :Ln (Ln: Eu ³⁺ , Dy ³⁺)	
ışıldarlarının SEM-EDX analizleri	.38
Ca2BaWO6:Eu ³⁺ ışıldarının SEM-EDX analizleri	.38
Ca ₂ BaWO ₆ :Dy ³⁺ ışıldarının SEM-EDX analizleri	.39
4.1.1.8. Ba ₂ CaWO ₆ konut fazının yapı analizi	.41
4.1.1.9. Ba ₂ CaWO ₆ :Ln (Ln: Eu ³⁺ , Dy ³⁺) ışıldarlarının fotolüminesans	
çalışmaları	.42
Ba_2CaWO_6 : Eu^{3+} ışıldarının fotolüminesans çalışmaları	.42
$Ba_2CaWO_6:Dy^{3+}$ ışıldarının fotolüminesans çalışmaları	.43
4.1.1.10. Hidrotermal yöntemle hazırlanan Ba ₂ CaWO ₆ :Ln (Ln: Eu ³⁺ , Dy ³⁺)	
ışıldarlarının SEM-EDX analizleri	.45
Ba2CaWO6:Eu ³⁺ ışıldarının SEM-EDX analizleri	.45
Ba ₂ CaWO ₆ :Dy ³⁺ ışıldarının SEM-EDX analizleri	.46
4.1.2. Ca ₂ MgWO ₆ :Ln, Sr ₂ MgWO ₆ :Ln', Ba ₂ MgWO ₆ :Ln" (Ln: Eu ³⁺ , Dy ³⁺ ;	
Ln': Eu ³⁺ , Dy ³⁺ , Pr ³⁺ , Tb ³⁺ ; Ln": Eu ³⁺ , Pr ³⁺) Işıldarlarını Tanımlama	
Çalışmaları	.48
4.1.2.1. Ca ₂ MgWO ₆ konut fazının yapı analizi	.48
4.1.2.2. Ca ₂ MgWO ₆ :Ln (Ln: Eu ³⁺ , Dy ³⁺) ışıldarlarının fotolüminesans	
çalışmaları	.49
$Ca_2MgWO_6:Eu_3^{+}$ ışıldarının fotolüminesans çalışmaları	.49
Ca2MgWO6:Dy ³⁺ ışıldarının fotolüminesans çalışmaları	.50
4.1.2.3. Sr ₂ MgWO ₆ konut fazinin yapı analizi	.52
4.1.2.4. Sr ₂ MgWO ₆ :Ln (Ln: Eu ³⁺ , Dy ³⁺ , Pr ³⁺ , Tb ³⁺) ışıldarlarının fotolüminesans	5
çalışmaları	.53
$Sr_2M_gWO_6$: Eu^{3+} ışıldarının fotolüminesans çalışmaları	.53
$Sr_2MgWO_6:Dy^{3+}$ ışıldarının fotolüminesans çalışmaları	.54
$Sr_2M_gWO_6$: Pr^{3+} ışıldarının fotolüminesans çalışmaları	.56
Sr_2MgWO_6 : Tb^{3+} işildarının fotolüminesans çalışmaları	.56
4.1.2.5. Ba ₂ MgWO ₆ konut fazinin yapi analizi	.58
4.1.2.6. Ba ₂ MgWO ₆ :Ln (Ln: Eu ³⁺ , Pr ³⁺) ışıldarlarının fotolüminesans	-
çalışmaları	.59
$Ba_2MgWO_6:Eu^{3+}$ işildarının fotolüminesans çalışmaları	.59
Ba_2MgWO_6 : Pr^{3+} işildarının fotolüminesans çalışmaları	.60
4.1.3. Ba ₂ ZnWO ₆ ve Ba ₂ ZnWO ₆ :Eu ^{-1} Işildarlarını Tanımlama Çalışmaları	.61
4.1.3.1. Ba ₂ ZnWO ₆ konut fazinin yapi analizi	.61
4.1.3.2. $Ba_2 Ln W U_6$ ve $Ba_2 Ln W U_6$: Eu ⁻¹ işildarlarının fotoluminesans	\sim
	.62
$Ba_2 LnWO_6$ işildarinin jololuminesans çalışmaları	.62
<i>Ba</i> ₂ <i>Lnw0</i> ₆ : <i>Eu</i> ⁻¹ <i>işliaarının Jotoluminesans çalışmaları</i>	.04
A = 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	.65

5. SONUÇLAR VE ÖNERİLER	66
KAYNAKLAR	67
EKLER	72
ÖZGEÇMİŞ	83

ÇİZELGELER DİZİNİ

Çizelge 2.1. Floresan lambalarda kullanılan halofosfat bazlı ışıldarlar	12
Çizelge 2.2. Floresan lambalarda kullanılan tungstat bazlı ışıldarlar	12
Çizelge 2.3. Yüksek basınçlı civa lambalarında kullanılan bazı ışıldarlar	13
Çizelge 2.4. Yüksek voltaj reklam ışıklandırma tüplerinde kullanılan ışıldarlar	14
Çizelge 3.1. Sentezlenmesi hedeflenen ışıldarlar	22
Çizelge 4.1. Sentezlenen ışıldar fazlar	27
Çizelge 4.2. Sr ₂ CaWO ₆ konut fazının XRD verileri	29
Cizelge 4.3. Ca2BaWO6 konut fazının XRD verileri	33
Çizelge 4.4. Ca ₂ BaWO ₆ :Dy ³⁺ ışıldarının termolüminesans veriler	37
Cizelge 4.5. Ba2CaWO6 konut fazının XRD verileri	41
Çizelge 4.6. Ca ₂ MgWO ₆ konut fazının XRD verileri	48
Cizelge 4.7. Sr ₂ MgWO ₆ konut fazının XRD verileri	52
Cizelge 4.8. Ba ₂ MgWO ₆ konut fazının XRD verileri	58
Çizelge 4.9. Ba ₂ ZnWO ₆ konut fazının XRD verileri	62
Çizelge 4.10. Ba ₂ ZnWO ₆ ışıldarının termolüminesans verileri	65
· -	

ŞEKİLLER DİZİNİ

Şekil 2.1. Termolüminesans eğrisinin klasik bir gösterimi	7
Şekil 2.2. Molekül içerisinde spinlerin olası konumları	8
Şekil 2.3. Enerji konfigürasyon diyagramı	9
Şekil 2.4. Enerji band modeli	10
Şekil 2.5. CaWO4 ve MgWO4 ışıldarlarının ışıma spektrumu	13
Şekil 4.1. Şekil 4.1. a) Katı hal yöntemi ile b) Hidrotermal yöntem ile	
sentezlenen Sr ₂ CaWO ₆ konut fazının X-ışını toz deseni	29
Şekil 4.2. Katı hal ve hidrotermal yöntem ile hazırlanmış Sr ₂ CaWO ₆ :Eu ³⁺	
ışıldarının uyarma ve ışıma spektrumları	30
Şekil 4.3. Katı hal ve hidrotermal yöntem ile hazırlanmış Sr ₂ CaWO ₆ :Eu ³⁺	
ışıldarının sönüm eğrileri	31
Şekil 4.4. Sr ₂ CaWO ₆ :Eu ³⁺ ışıldarının EDX grafiği	31
Şekil 4.5. Sr ₂ CaWO ₆ :Eu ³⁺ ışıldarına ait SEM görüntüleri	32
Şekil 4.6. a) Katı Hal Yöntemi ile b) Hidrotermal Yöntem ile sentezlenen	
Ca ₂ BaWO ₆ konut fazının X-ışını toz deseni	33
Şekil 4.7. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca ₂ BaWO ₆ :Eu ³⁺	
ışıldarının uyarma ve ışıma spektrumları	34
Şekil 4.8. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca ₂ BaWO ₆ :Eu ³⁺	
ışıldarının sönüm eğrileri	35
Şekil 4.9. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca ₂ BaWO ₆ :Dy ³⁺	
ışıldarının uyarma ve ışıma spektrumları	36
Şekil 4.10. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca ₂ BaWO ₆ :Dy ³⁺	
ışıldarının sönüm eğrileri	36
Şekil 4.11. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca ₂ BaWO ₆ :Dy ³⁺	
ışıldarının termolüminesans eğrisi	37
Şekil 4.12. Ca ₂ BaWO ₆ :Eu ³⁺ ışıldarının EDX grafiği	38
Şekil 4.13. Ca ₂ BaWO ₆ :Eu ³⁺ ışıldarına ait SEM görüntüleri	39
Şekil 4.14. Ca ₂ BaWO ₆ :Dy ³⁺ ışıldarının EDX grafiği	40
Şekil 4.15. Ca ₂ BaWO ₆ :Dy ³⁺ ışıldarına ait SEM görüntüleri	40
Şekil 4.16. a) Katı hal yöntemi ile b) Hidrotermal yöntem ile sentezlenen	
Ba_2CaWO_6 konut fazinin X-işini töz deseni	41
Şekil 4.17. Kati hal ve hidrotermal yöntem ile hazırlanmış Ba ₂ CaWO ₆ :Eu ³⁴	10
işildarinin uyarma ve işima spektrumlari	42
Şekil 4.18. Kati hal ve hidrotermal yöntem ile hazırlanmış Ba ₂ CaWO ₆ :Eu ³⁴	10
işildarinin sonum egrileri	43
Şekil 4.19. Kati hal ve hidrotermal yontem ile hazirlanmış $Ba_2CawO_6:Dy^{-1}$	4.4
uyarma ve işima spektrumları	44
Şekil 4.20. Kati hal ve hidrotermal yontem ile hazirlanmış Ba ₂ CawO ₆ : Dy	4.4
ışıldarinin sonum egrileri.	44
Sekil 4.21. Ba2CaWO (Eu ³) işildarinin EDX grafigi	45
Sekil 4.22. Ba2CaWO (Du ³⁺ usildarinin EDV croftici	40
Sekil 4.23. Ba2CaWO (5:Dy ⁻¹ Işildarinin EDA grangi	4/
Sekil 4.24. Ba2CawO6:Dy ⁻¹ Işlidarina alt SEIVI goruntuleri	4/
\mathcal{S} ckii 4.25. Ca ₂ ivig w O ₆ konut iazinin A-işini toz deseni	48

Şekil 4.26. Ca ₂ MgWO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	49
Şekil 4.27. Ca ₂ MgWO ₆ :Eu ³⁺ ışıldarının sönüm eğrisi	50
Şekil 4.28. Ca ₂ MgWO ₆ :Dy ³⁺ ışıldarlarının uyarma ve ışıma spektrumu	51
Şekil 4.29. Ca2MgWO6:Dy ³⁺ ışıldarlarının sönüm eğrisi	51
Şekil 4.30. Sr ₂ MgWO ₆ konut fazının X-ışını toz deseni	52
Şekil 4.31. Sr ₂ MgWO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	53
Şekil 4.32. Sr ₂ MgWO ₆ :Eu ³⁺ ışıldarının sönüm eğrisi	54
Şekil 4.33. Sr ₂ MgWO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	55
Şekil 4.34. Sr ₂ MgWO ₆ :Dy ³⁺ ışıldarının sönüm eğrisi	55
Şekil 4.35. Sr ₂ MgWO ₆ :Pr ³⁺ ışıldarının uyarma ve ışıma spektrumu	56
Şekil 4.36. Sr ₂ MgWO ₆ :Tb ³⁺ ışıldarının uyarma ve ışıma spektrumu	57
Şekil 4.37. Sr ₂ MgWO ₆ :Tb ³⁺ ışıldarının sönüm eğrisi	57
Şekil 4.38. Ba2MgWO6 konut fazının X-ışını toz deseni	58
Şekil 4.39. Ba ₂ MgWO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	59
Şekil 4.40. Ba2MgWO6:Eu3+ ışıldarının sönüm eğrisi	60
Şekil 4.41. Ba ₂ MgWO ₆ :Pr ³⁺ ışıldarının uyarma ve ışıma spektrumu	61
Şekil 4.42. Ba ₂ ZnWO ₆ konut fazının X-ışını toz deseni	62
Şekil 4.43. Ba ₂ ZnWO ₆ ışıldarının uyarma ve ışıma spektrumu	63
Şekil 4.44. Ba ₂ ZnWO ₆ ışıldarının sönüm eğrisi	63
Şekil 4.45. Ba ₂ ZnWO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	64
Şekil 4.46. Ba ₂ ZnWO ₆ :Eu ³⁺ ışıldarının sönüm eğrisi	65
Şekil 4.47. Ba ₂ ZnWO ₆ ışıldarının termolüminesans eğrisi	65

EKLER DİZİNİ

Ek-1. Ca ₃ WO ₆ konut fazının X-ışını toz deseni	.72
Ek-2. Ca ₃ WO ₆ konut fazının XRD verileri	.72
Ek-3. Ca ₃ WO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	.73
Ek-4. Ca ₃ WO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	.73
Ek-5. Sr ₃ WO ₆ konut fazının X-ışını toz deseni	.74
Ek-6. Sr ₃ WO ₆ konut fazının XRD verileri	.74
Ek-7. Sr ₃ WO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	.75
Ek-8. Ba ₃ WO ₆ konutunun X-ışını toz deseni	.75
Ek-9. Ba ₃ WO ₆ konutunun XRD verileri	.76
Ek-10. Ba ₃ WO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	.76
Ek-11. Ca ₂ SrWO ₆ konutunun X-ışını toz deseni	.77
Ek-12. Ca ₂ SrWO ₆ konutunun indislenmiş XRD verileri	.77
Ek-13. Ca ₂ SrWO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	.78
Ek-14. Ca ₂ SrWO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	.78
Ek-15. Ba ₂ SrWO ₆ konutunun X-ışını toz deseni	.79
Ek-16. Ba ₂ SrWO ₆ konutunun XRD verileri	.79
Ek-17. Ba ₂ SrWO ₆ :Eu ³⁺ ışıldarının uyarma ve ışıma spektrumu	.80
Ek-18. Ba ₂ SrWO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	.80
Ek-19. Sr ₂ CaWO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	.81
Ek-20. Ba ₂ MgWO ₆ :Tb ³⁺ ışıldarının uyarma ve ışıma spektrumu	.81
Ek-21. Ba ₂ MgWO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	.82
Ek-22. Ba ₂ ZnWO ₆ :Dy ³⁺ ışıldarının uyarma ve ışıma spektrumu	.82
· · · · -	

SİMGE VE KISALTMALAR DİZİNİ

UV	Mor ötesi
LED	Işık Yayan Diyot
SEM	Taramalı elektron mikroskopu
EDX	Enerji dağılımlı x-ışınları floresans spektrometresi
XRD	X-Işını Kırınımı
JCPDS	Toz kırınım standartları ortak komitesi
$ au_{ m c}$	Gecikme süresi
ms	Mili saniye
τ	Sönüm süresi (ms)
Ι	Lüminesans şiddeti
t	Zaman
eV	Elektron Volt
b	Kinetik mertebe
E	Tuzak derinliği
S	Frekans faktörü
Т	Mutlak Sıcaklık
nm	Nanometre

1. GİRİŞ

17. yüzyılın başlarında İtalya'lı kimyager Casciarolo'nun barit(BaSO₄) mineralini ısıtarak BaS elde etmesiyle fosforlar ortaya çıkmıştır [1]. Bu keşiften sonra Avrupa'da birçok yerde benzerleri de bulunmuş ve ışıma yapan bu taşlara "fosforlar", yani ışıldarlar adı verilmiştir.

Lüminesans terimi ilk olarak 1888 yılında Alman fizikçi E. Wiedemann tarafından kullanılmaya başlanmıştır [1]. Lüminesans özelliği gösteren malzemeler soğurdukları enerjiyi ısı üretmeksizin ışık olarak yaymakta ve uyarıcı kaynaklarına göre fotolüminesans, katodolüminesans, iyonolüminesans, tribolüminesans, kimyasal lüminesans ve biyolüminesans şeklinde sınıflandırılmaktadırlar. Lüminesans malzemeler ışımanın süresine göre floresans (gecikme süresi $\tau_c \le 10^{-8}$ s) ve fosforesans ($\tau_c \ge 10^{-8}$ s) olarak iki alt gruba ayrılırlar.

Işıldar maddeler, genelde sülfür, selenür, oksisülfür, borat, aluminat, gallat, arsenat, niobat, fosfat, silikat, aluminosilikat, sülfat ve halojenür gibi iyonları içeren çok sayıda anorganik tuzları kapsayan kristalin maddelerdir. Kristalin katı içerisine yasak enerji aralığında kalan ek enerji seviyeleri oluşturmak için düşük derişimlerde aktivatör atomları yerleştirilir. Uyarma ve ışıma süreçlerine aktivatör atomları katılır. Etkili bir ışıma için, konut kristal içine çok düşük derişimlerde aktivatör iyonları katkılanır ve bunların örgü içinde mümkün olduğunca düzenli dağılması sağlanır. Yüksek derişimlerde katkılanan aktivatör atomları söndürücü gibi davranır ve ışımayı söndürmeye yönelik bir rol de üstlenirler [1].

Uzun süreli ışıldarların elde edilebilmesi için aktivatörün yanında, birlikte katkı atomları da (co-activatör) kullanılmaktadır. Genelde bu atomlar "verici", aktivatörler ise "alıcılar" olarak tanımlanır. Yapıya bir veya üç değerlikli safsızlık iyonlarının eklenmesiyle konut kristalde oluşan pozitif yük eksikliği sodyum tiyosülfat veya borik asit gibi ergitici (flux) bileşikler tarafından denkleştirilir. Ergitici, fırınlama esnasında aktivatörün konut kristal içerisinde dağılmasını kolaylaştırır. Ergitici iyonları her zaman kristal hücresine girmese de, birlikte katkılama atomunun yük denkliğini sağlamakta ve aynı zamanda tuzaklama merkezlerinin oluşmasına neden olmaktadır [2].

Etkili bir ışıma için konut kristalin kimyasal bileşimi, aktivatörün ve birlikte katkı iyonunun cinsi ve katkı oranı, sıcaklık ve kristalleşme süreci ve süresi önemli parametrelerdir [1].

Ortotungustat bazlı toprak alkali bileşikleri kararlı olmaları ve çeşitli kristal yapılara sahip bulunmaları ve gösterdikleri fiziksel özellikleri nedeniyle geniş şekilde incelenmişlerdir [3]. Nadir toprak elementi ortotungstatları üzerinde yapılan ilk çalışmalar 1960'larda Blasse, Bril ve Borchardt tarafından yapılmıştır [4,5]. Ancak ortotungustatların ışıldar malzeme olarak kullanımı hakkında hemen hiç bir çalışma yapılmamıştır.

Bu çalışmada WO_6^{6-} grubunu içeren iki değerlikli katyonların önce ortotungustatları sentezlenmeye çalışılacak, ardından bunlar lantanoid iyonlarıyla katkılanarak, bunların uyarma ve ışıma spektrumları yanında, renkleri, tuzak derinlikleri ve sönüm süreleri gibi lüminesans özelliklleri incelenecektir.

2. KAYNAK ARAŞTIRMALARI

İnorganik ışıldar maddeler birçok kullanım alanı yanında civa buhar lambaları ve LED lambalarında aydınlatma amacı ile kullanılmaktadır. Civa buhar lambalarında, bir inert gaz ve civa buharından meydana gelen bir plazma elde edilir. Plazma, civanın buhar basıncına bağlı olarak yoğun bir UV ışığı yayımlar. UV ışığının görünür ışığa dönüşümü, lamba camının iç cidarına film olarak kaplanmış ışıldar madde tarafından sağlanır.

Floresan lambalarında ışıldar madde, civanın 185 ve 254 nm'deki rezonans çizgileriyle uyarılır. Bu amaçla yıllardır kullanılan en önemli ışıldar maddeler halofosfatlardır. Halofosfatların kararlılıkları düşüktür ve kuantum verimleri 10.000 saat kullanıldıktan sonra üç katı kadar azalmaktadır. Bunun önüne geçmek için floresan tüplerinin çapları küçültülmeye çalışılmaktadır; bu da lamba çapları 38 mm'den 26 mm'ye düşürülerek yapılmaktadır [6].

 $Sr_2ZnWO_6:Eu^{3+}$ fazı Xueliang Zhang ve arkadaşları tarafından Pechini yöntemiyle sentezlenmiştir. Bu çalışmada $Sr_{2-2x}Eu_xNa_xZnWO_6$ (x = 0.00, 0.02, 0.05, 0.08, 0.10 ve 0.15) fazının katkısız veya Eu^{3+} katkılı olarak fotolüminesans özellikleri incelenmiştir. Malzeme 371 nm dalga boyunda uyarıldığında WO_6^{6-} grubunun yük transfer geçişlerinden kaynaklanan 523 nm'de mavi-yeşil bir ışıma yaptığı gözlenmiştir. Sr^{2+} iyonları Eu^{3+} iyonları ile yer değiştirdiğinde 523 nm'deki ışıma bandından ayrı olarak 617 nm'de de kırmızı bir ışıma bandı gözlenmiştir. Bunun bir sonucu olarak beyaz ışıma elde edilmiştir. Farklı oranlarda Eu^{3+} iyonları katkılanarak iyonun sönüm süresi üzerine etkisi incelenmiş; ayrıca WO_6^{6-} ve Eu^{3+} iyonları arasındaki enerji aktarımından bahsedilmiştir [7].

Jinping Huang ve arkadaşları katı hal yöntemiyle tetragonal Y₂WO₆ fazını 750 °C'de sentezlemişler, yapının karakterizasyonu XRD yöntemi ile yapılmış ve lüminesans özellikleri de incelenmiştir. Yapıya Eu³⁺ iyonları katkılandığında Y³⁺ iyonları ile kısmen yer değiştirdiği gözlenmiştir. Bu durumu 466 ve 535 nm dalga boylarındaki iki uyarma bandının varlığı ile de desteklendiği belirtilmiştir [8].

Ba_{2-z}Sr_zCa_{0.80}Eu_{0.10}Li_{0.10}Mo_{1-y}W_yO₆ ışıldar yapısı Song ve arkadaşları tarafından katı hal sentez yöntemi ile sentezlenmiştir. Sentezlenen yapıların fotolüminesans özellikleri ve enerji transfer sürecinin daha iyi anlaşılması için Raman spektroskopisi kullanılmıştır ve belirlenen örnekler için bant yapılarının hesaplamaları birinci dereceden gerçekleştirilmiştir. Bu fosfor serisinde UV bölge aralığındaki uyarma bandı MoO₆ yük transfer geçişinden kaynaklandığı belirtilmektedir. Turuncu-kırmızı ışımayı gösteren 595 nm dalga boyundaki band Eu^{3+} iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ geçişinden kaynaklanmaktadır [9].

Lu₂WO₆ fazının kristal yapısı, Zhang ve arkadaşları tarafından toz XRD örneğinden Rietveld yöntemi kullanılarak belirlenmiştir. Çalışmada yapıya UV bölgesinde uyarılabilen Eu³⁺ ve Pr³⁺ iyonları ana faza katkılanarak oluşan Lu₂WO₆:Eu³⁺ ve Lu₂WO₆:Pr³⁺ fazlarının lüminesans özellikleri incelenmiştir. Lu₂WO₆:Eu³⁺ fosforunun parlak kırmızı ışıma yaptığı ve bu parlak ışımanın WO₆ grubundan Eu³⁺ iyonlarına yeterli miktarda yük transferinin meydana gelişinden kaynaklandığı belirtilmektedir. Pr³⁺ iyonlarının absorbladıkları WO₆ emisyon bandı tarafından daha yüksek enerjili 4f seviyelerine uyarılmasından dolayı bu iyonların sadece zayıf turuncu ışıma yapabildiği belirtilmektedir [10].

Sr₃WO₆, Sr₂CaWO₆ ve Sr₂MgWO₆ fazları katı hal yöntemi kullanılarak çift perovskit olarak sentezlenmişlerdir. Bunların yapıları XRD yöntemiyle aydınlatılmıştır [11,12,19,20].

 M_2MgWO_6 (M=Ba²⁺ ve Sr²⁺) yapısı Patwe ve arkadaşları tarafından sentezlenmiş ve XRD yöntemiyle yapıları aydınlatılmıştır. Malzeme önce 850 °C'de 24 saat ısıtılmış ve daha sonra düğme haline getirilerek önce 1175 °C'de 20 h; sonra da 1200 °C'de 24 saat ısıtılarak hazırlanmıştır. Ba₂MgWO₆ fazının kristal sistemi kübik, Sr₂MgWO₆ fazınınki ise tetragonal olarak belirlenmiştir [13].

BaSrMWO₆ (M=Ni, Co, Mg) fazları Ezzahi ve arkadaşları tarafından katı hal sentez yöntemi ile sentezlenmiş, malzemelerin kristal yapısı XRD ile incelenmiş ve yapılarının kübik olduğu belirlenmiştir. BaSrNiWO₆ yapısının yüksek sıcaklık Raman spektroskopisi ile incelenmesi sonucu sıcaklığın artmasıyla dalga boyunda çizgisel bir azalmanın olduğu belirlenmiştir [14].

W.T. Fu ve arkadaşları Ba₂Sr_{1-x}Ca_xWO₆ fazını katı hal sentez yöntemiyle sentezlemişler ve kristal yapının Ca derişimi arttıkça monoklinik yapıdan kübik yapıya dönüştüğünü XRD yöntemiyle belirlemişlerdir [15].

F. Lei ve B. Yan Ca₂MgWO₆:Eu³⁺ ışıldar fazını katı hal yöntemiyle sentezlemişlerdir. Yaptıkları TG-DSC çalışmasıyla ışıldar fazın 1224 °C'de oluştuğunu belirlemişlerdir. Fotolüminesans ölçümü ile 535, 613, 651 ve 700 nm

dalgaboylarında gözlenen ve Eu³⁺ iyonlarına ait karakteristik bantların yanısıra 465 ve 487 nm'de WO_6^{6-} gurubuna ait yük transfer geçişlerinden kaynaklanan bantlar gözlemlemişlerdir [16].

Anchary ve arkadaşları Sr₂MgWO₆ yapısını katı hal yöntemiyle 1200 °C'de sentezlemişlerdir. Rietveld yöntemiyle yapının tetragonal olduğunu belirlemişlerdir [17].

Bugaris ve arkadaşları tek kristal kübik çift perovskit Ba₂MgWO₆ ve Ba₂ZnWO₆ yapılarını ilk defa katı hal sentez yöntemi kullanarak sentezlemişlerdir. Ba₂MgWO₆ fazının yeşil ve Ba₂ZnWO₆ fazının sarı ışıma yaptığını tespit etmişlerdir [18].

 $M_xM'_{3-x}WO_6$ (M=Ba²⁺, Ca²⁺; M'= Sr²⁺, Ca²⁺; x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) tipindeki ortotungustat bileşikleri 1350 °C'de sentezlenerek yapıları X-ışınları toz difraksiyon yöntemiyle belirlenmiştir [19]. Bu bileşiklerden Sr₃WO₆, Sr_{1,5}Ca_{1,5}WO₆ ve Ca₃WO₆ fazlarının yüksek sıcaklıklarda toz difraksiyonu ölçülerek faz dönüşümleri incelenmiştir. Oda sıcaklığıdan 718 °C'ye kadar yapılan ölçümlerde Sr₃WO₆ ve Ca₃WO₆ fazlarının monoklinik olduğu ve faz değiştirmediği belirtilmiştir. Sr_{1,5}Ca_{1,5}WO₆ fazlarının hücre parametrelerinin genleşmesine ait regresyon eğrilerinden yola çıkılarak yapılan hesaplamada 818 °C'de monoklinik sistemden tetragonal sisteme faz değiştireceği hesaplanmıştır [20].

Sr₃WO₆:Eu³⁺ ışıldar fazı katı hal sentez yöntemiyle 1350 °C'de 6 saat fırınlanarak sentezlenmiştir. XRD yöntemiyle yapının triklinik olduğu belirlenmiş ve fotolüminesans ölçümleri sonucu Eu³⁺ iyonlarına ait karakteristik ⁵D₀ \rightarrow ⁷F_j (*j*=0-4) geçişlerine ait 595, 616, 652 ve 708 nm dalga boylarında ışıma bantları gözlenmiştir [19,20]. Ayrıca ışıldar faz 254 nm'de UV ışınına maruz bırakılarak termolüminesans ölçümü yapılmıştır. Ölçüm sonucu 56 °C'de bir ışıma bandı gözlenmiş ve termolüminesans eğrileri üç nokta metodu ile analiz edilerek aktivasyon enerjisi (*E_a*) 0,2 eV, kinetik mertebesi (*b*) 1,2 olarak belirlenmiştir [21,22].

LED uygulamalarında kullanılmak üzere $Sr_3WO_6:Eu^{3+},M^+$ [23] ve $Ca_3WO_6:Eu^{3+},M^+$ [24] (M: Li, Na, K) ışıldarları katı hal yöntemiyle sentezlenmiştir. Yapılan çalışmalarda 550-750 nm dalgaboyu aralığında Eu^{3+} iyonlarına ait karakteristik ${}^5D_0 \rightarrow {}^7F_j$ (*j*=0-4) geçişleri gözlenmiştir. Alkali metallerin Li⁺, Na⁺ ve K⁺ iyonları ışıldar fazın hazırlanmasında birlikte katkı iyonu olarak kullanılmıştır. $Sr_3WO_6:Eu^{3+},M^+$ [23] yapısında K^+ ve $Ca_3WO_6:Eu^{3+},M^+$ [24] yapısında da Na⁺ iyonlarının ışıma şiddettini artırdığı gözlenmiştir.

2.1. LÜMİNESANS OLAYI

2.1.1. Lüminesans Tanımı ve Çeşitleri

Işıma; katı, sıvı veya gaz fazında bulunan madde üzerine herhangi bir enerji verildiğinde, maddenin görünür bölgede, UV bölgesinde veya IR bölgesinde ışıma yapması ile anlaşılır. Ancak burada, ısıtma sonucu kızarmadan kaynaklanan ışıma ile optik bir uyarı halinde gözlenen koherent saçılma olayını bunun dışında tutmak gerekir.

Işıma olayı her zaman bir üst enerji düzeyindeki uyarılmış elektronun, enerjisi daha düşük boş bir düzeye geçişi sonucu ortaya çıkar. Işıma aynı zamanda pozitif bir delik olarak düşünülen boş elektron konumlarının bir elektronla birleşmesi olarak da düşünülebilir. Bu elektron-pozitif delik çiftinin birleşmesi sırasında açığa çıkan enerjinin bir kısmı ışık kuantları (fotonlar) yayılarak kullanılır.

Bu üst ışıma kavramı, bazı bilimsel disiplinlerde floresans ışıma ve fosforesans ışıma diye ikiye ayrılır. Ayrıca ışıma olayı, uyarıcı enerjinin veriliş şekline bağlı olarak da aşağıdaki şekillerde gruplandırılabilir:

Optik ışıma (fotolüminesans): Elektronların optik ışınlarla bir üst enerji seviyesine yükseltilmesiyle gerçekleşmektedir. Bu uyarma, ara enerji düzeyleri üzerinden geçerek bir, iki veya çok kademeli olarak da gerçekleşebilir. Uyarılan elektronun pozitif delikle birleşmesi faz içi çarpışmalar ve muhtemel enerji kayıpları yüzünden gecikmeli olarak yürüyebilir. Uyarıcı ışınla koherent (aynı dalga boylu) olan ve/veya birkaç kademe üzerinden gerçekleşen emisyonlar ışıma sayılmazlar; örneğin Raman, Brillouin ve Rayleigh saçılmaları, üst dalga üretimleri (overtones) gibi. Stokes kuralına göre, genelde emisyon ışınlarının dalga boyu uyarıcı kaynağınkinden daha uzun boyludur; iki veya çok kuantlı ya da kademeli uyarmalar buna dahil değildir.

Kimyasal Işıma (Chemical luminescence): Kimyasal bir tepkime sırasında molekül uyarılmış hale geçebilir. Bu molekül uyarılmış halden temel hale geçerken bünyesinde bulundurduğu fazla enerjiyi ışık olarak geri verebilir. Eğer bu olay ateş böcekleri ve algler gibi bazı deniz bitkilerinde gözlemlenirse olay *biyo-ışıma* olarak

isimlendirilir. Ayrıca bitkiler de fotosentez işlemi sırasında kızıl ötesi veya yakın IR bölgesinde ışıma yaparlar.

Isıl ışıma (Termolüminesans): Uyarılmış, uzun ömürlü kararsız bir yük taşıyıcı, madde sıcaklığının arttırılması ile uyarılabilir (örneğin bir yalıtkan veya yarı iletkenin iletkenlik bandına taşınabilir) ve ışıma yaparak bir merkezle birleşebilir. Işıma eşliğinde gerçekleşen birleşme süreçleri, taşıyıcı yükün tutunduğu merkezler hakkında sıcaklığa bağlı olarak bir grafiğe geçirilir. Bu grafik ışıma spekturumu olarak isimlendirmektedir. Şekil 2.1'de şiddetin sıcaklığa karşı bir grafiği bulunmaktadır ve bu grafik termolüminesans işlemi sonucunda elde edilen ışıma spektrumunu göstermektedir.

Şekil 2.1. Termolüminesans eğrisinin klasik bir gösterimi [25].

Işın Işıması (Radyo-lüminesans: katodo-lüminesans, X-ray-lüminesans v.s.): Madde, elektronlar, α -tanecikleri, özellikle de iyonlar veya γ -kuantları gibi ışınlar ile ışınlanır.

Diğer taraftan bir yarıiletken veya yalıtkana elektrik akımı verildiğinde (elektrolüminesans), bazı kristaller mekanik olarak öğütülür veya ezilirken (tribolüminesans), eriyikler (NaOH veya As₂O₃ gibi) kristallendirilirken (kristalo-

lüminesans), kristalleri çözerken (aquo-lüminesans), elektroliz sırasında (galvanolüminesans) ışımalar da gözlenebilir.

2.1.2. Floresans ve Fosforesans

Floresans olayı, sönüm süresi sıcaklıktan bağımsız olan ve molekül uyarıldığı süre boyunca devam eden ışıma olayıdır. Floresans olayında elektronlar uyarma boyunca bir üst enerji seviyesinde bulunurlar ve uyarma kesildikten sonra görünür bölge ışığı yayarak tekrar temel seviyeye geçiş yaparlar. Floresans ışımada elektronlar temel seviyede ters spinli olarak yerleşmiş olan elektronlar uyarma sırasında singlet konumuna geçerler ve uyarma kesildikten sonra tekrar temel duruma geçerler [25].

Floresans olayında yayılan ışığın dalga boyu uyaran ışığın dalga boyundan daha büyüktür. Enerjinin bir kısmının ısı enerjisine dönüştüğü için yayılan ışığın enerjisi daha küçüktür [26].

Uyarılmış bir elektronun enerjisini kaybetmesi fosforesans olayıyla da gerçekleşir. Fosforesans olayında elektronlar herhangi bir ışın kaynağı ile uyarılmanın ardından uyarma kesilince dahi ışıma devam edebilmektedir. Çünkü fosforesans olayında elektronlar uyarılmış singlet durumunda uyarılmış triplet durumuna geçebilirler. Bir triplet \rightarrow singlet geçişi, singlet \rightarrow singlet dönüşümüne göre çok daha az olasıdır; bu nedenle, uyarılmış triplet halin ortalama ömrü, ışımaya göre 10⁻⁴ s'den daha fazla sürebilir. Bu yüzden fosforesans ışıma, floresans ışımaya göre çok daha uzun sürelidir. Şekil 2.2'de ise organik moleküllerde floresans ve fosforesans olayında gerçekleşen singlet ve triplet durumları gösterilmektedir [25].

Şekil 2.2. Molekül içerisinde spinlerin olası konumları [25].

2.2. IŞIMA MODELLERİ

2.2.1. Enerji Konfigürasyon Diyagramı

Bu modelde, atom ve moleküllerin enerji seviye diyagramları temel alınmıştır. Bu model, gazlar ve organik moleküllere uygulanabileceği gibi, uyarma ve ışıma süreçlerinin, aynı ışıma merkezinde meydana geldiği kristalin fazlara da uygulanabilir. Bu ışıma işleminde, enerji bağıntısı aşağıdaki gibi bir konfigürasyonel koordinat diyagramında gösterilebilir (Şekil 2.3).

Şekil 2.3. Enerji konfigürasyon diyagramı [27].

Bu model, ışıma merkezinin potansiyel enerjisi (E) ile uzay koordinatı arasındaki ilintiyi gösterir. Alttaki eğri titreşim seviyeleri ile ışıma merkezinin temel halini, üstteki eğri ise titreşim seviyeleri ile uyarılmış hali temsil eder. Uyarıcı ışığı soğuran elektronlar temel halden uyarılmış hale geçer. Bu geçişler oldukça hızlıdır (10⁻⁹ s) ve atom çekirdeklerinden tamamen bağımsız olarak gerçekleşir (Fank-Condon İlkesi) [28]. Uzay koordinatı bu yüzden sabit kalır ve geçişler dikey çizgilerle temsil edilir. Uyarılmış sistem enerji soğurmasından sonra çabucak denge konumuna dönemez. İlk hareket hücrede iç durulma ile en düşük titreşim seviyesine doğrudur. Buradan elektronlar ışık yayarak temel halin titreşim seviyelerinden birine geri döner ve sonuçta denge konumuna gelirler. Model, ışımasız durulma süreci ile Stoke kayması, soğurma ve ışıma bandı oluşumunu açıklar. Bir elektron, termal aktivasyon ve soğurmaya karşılık gelen, uyarılmış ve temel hal eğrilerinin kesişme noktası x'e (Şekil 2.3) uygun bir enerji ile uyarılırsa, temel haldeki aynı enerji seviyesine geçebilir ve durulma ışımasız olur. Bundan dolayı daha yüksek sıcaklıklarda ışımanın kuantum verimi azalır.

2.2.2. Enerji-Band Modeli

Birçok ışıldar maddede, uyarma ve ışıma yalnızca bir atom veya molekülde meydana gelmez. Böyle durumlarda enerji band modeli kullanılır.

Bir kristalde en dıştaki elektronlar, yalnızca ait olduğu atomlara değil, aynı zamanda kristal hücresinin tamamına aitmiş gibi de dikkate alınır. Kristaldeki etkileşimler, enerji bantları oluşturan atomik orbitallerin yarılmasına neden olur. İdeal kristallerde, düşük sıcaklıklarda, en yüksek dolu değerlik bandı ile en düşük boş iletkenlik bandının arası yasaklanmış bölge ile birbirinden ayrılmıştır. Kristal birim hücrelerinin periyodik olarak düzenlendiği gerçek kristallerde, hücre kusurları veya safsızlık iyonları ara enerji seviyelerinin oluşmasına neden olurlar (Şekil 2.2). Değerlik bandı yakınındaki enerji seviyeleri verici seviyeleri olarak, iletkenlik bandı yakınındakiler ise alıcı veya tuzaklar olarak adlandırılırlar.

Şekil 2.4. Enerji band modeli [29]

Etkili bir enerjiye sahip bir ışın absorpsiyonu ile bir elektron değerlik bandından iletkenlik bandına geçer (a). Buradan enerji kaybı ile band kenarına ışımasız olarak durulur (d). Değerlik bandındaki geriye kalan pozitif boşluk derhal verici seviyeden bir elektron ile doldurulur (b, c, i). İletkenlik bandından bir elektronun aktivatör seviyede yer alan pozitif boşluğa ışıma yaparak geçmesi floresansı oluşturur (e). Işıma dalga boyu, aktivatör seviye ve iletkenlik band kenarı arasındaki enerji farkı ile verilir. Uzun dalga boylu ışın absorpsiyonu veya termal enerji ile iletkenlik bandına yakın tuzaklardaki elektronlar iletkenlik bandına geçer (g) ve burada boşluk oluşur, iletkenlik bandı kenarındaki elektron, boşalmış olan tuzak tarafından yakalanabilir (f). Daha sonra gecikmiş olarak, verici seviyedeki boşluğa ışıma yaparak geçebilir (h). Doldurulmamış tuzaklar söndürme merkezl olarak görev yaparlar ve ışımanın şiddetini azaltırlar. Bu tip söndürme merkezlerinin oluşma nedeni özellikle kristaldeki safsızlıklar veya mekanik olarak meydana gelmiş hücre deformasyonlarıdır.

Sülfür bileşiklerinin birçoğu bu sınıfa aittir ve bunlara band modeli uygulanabilir[29].

2.3. IŞILDAR MADDELERİN KULLANIM ALANLARI

2.3.1. Aydınlatma

İnorganik ışıldar maddelerin çoğu civa buhar lambalarında kullanılır. Bu ışık kaynaklarında, bir inert gaz ve civa buharından meydana gelen bir plazma elde edilir. Plazma, dalga boyu civanın buhar basıncına bağlı olarak yoğun bir UV ışığı yayımlar. UV ışığının görünür bir ışığa dönüşümü, lamba camının iç cidarına ince film olarak kaplanmış ışıldar madde tarafından sağlanır. İki tip civa deşarj lambası vardır: Yüksek basınç ve düşük basınç civa lambaları.

2.3.1.1. Floresan lambalar (Düşük basınçlı civa lambaları)

Floresan lambalarda ışık kaynağı olarak ışıldarların yaygın bir şekilde kullanıldığı bilinmektedir. Floresan lambalarında ışıldar maddeler 185 ve 254 nm'deki civa rezonans çizgileriyle uyarılır. Bu amaçla yıllardır kullanılan en önemli ışıldar maddeler halofosfatlardır. Floresan lambalarda kullanılan halofosfat bazlı

ışıldarlar Çizelge 2.1'de verilmektedir. Ancak halofosfatlara ek olarak fosfatlar, silikatlar, aluminatlar, boratlar, tungstatlar ve diğer birçok bileşik grubu kullanılmaktadır [30].

Kimyasal Bileşim	Lüminesans Işımanın Rengi	Işımanın Dalgaboyu (nm)	Uygulama Alanı
3Ca ₃ (PO ₄).Ca(F,Cl) ₂ :Sb ³⁺	Mavi-Beyaz	480	Renkli Lambalarda
3Ca ₃ (PO ₄).Ca(F,Cl) ₂ :Sb ³⁺	Parlak Beyaz	480-580	Standart Lambalarda
$Sr_{10}(PO_4)_6Cl_2:Eu^{2+}$	Mavi	447	3 Band Lambalarda
(Sr,Ca,Mg) ₁₀ (PO ₄) ₆ Cl ₂ :Eu ²⁺	Mavi-Yeşil	483	Geniş Görüntü Alanlı Renk Uygulamalarında

Çizelge 2.1. Floresan lambalarda kullanılan halofosfat bazlı ışıldarlar [31].

Tungstat bazlı ışıldarlar [31]

Tungstat bazlı ışıldarlar kendi kendini aktive edebilen bir ışıldar bileşik grubudur. Saf tungstat ve molibdat kristalleri UV ışınlarıyla uyarılarak parlak bir iç lüminesans oluştururlar. Işıma sırasıyla WO₄²⁻ ve MoO₄²⁻ iyonlarıyla oluşmaktadır. Tungstat bazlı ışıldarlar için en ideal örnekler; uzun zamandır yaygın bir kullanım alanına sahip olan CaWO₄ ve MgWO₄ ışıldarlarıdır. Tungstat bileşimindeki ışıldar fazlar Çizelge 2.2'de verilmektedir.

Kimyasal	Lüminesans	Işımanın	Uvgulama Alani
Bileşim	Işıma Rengi	Dalgaboyu (nm)	Oygulallia Alalli
CaWO ₄	Mavi	415	Renk Düzenlemede
(Ca,Pb)WO ₄	Mavi	435	Renk Düzenlemede
MgWO ₄	Mavi-Beyaz	480	Renk Düzenlemede

Çizelge 2.2. Floresan lambalarda kullanılan tungstat bazlı ışıldarlar [31].

Şekil 2.5. CaWO4 ve MgWO4 ışıldarlarının ışıma spektrumu

Tungstat grupları Şekil 2.5'de de görüldüğü gibi 480 nm civarında ışıma yapmaktadırlar. Işıma oktahedral geometrili boşluklardaki tungstat grupları arasındaki yük aktarım geçişlerinden kaynaklanmaktadır [32].

2.3.1.4. Yüksek basınçlı civa lambaları

Yüksek basınçlı civa lambası, güç derecesine bağlı olarak 150-300 °C aralığında bir uygulama sıcaklığına ulaşır. Bu nedenle burada kullanılacak ışıldar maddeler çok yüksek sönüm sıcaklığına sahip olmalıdır ve uzun dalga boylu UV ile kolayca uyarılabilmelidir. Çoğu madde yüksek basınç lambalarında kullanılmak için bu kriterleri taşımaz. Çizelge 2.3'de yüksek basınç civa lambalarında kullanılan ışıldar maddelere örnekler verilmiştir.

Kimyasal Bileşim	Lüminesans Işıma Rengi	Işıma Dalgaboyu (nm)	Uygulama Alanı
$Y(V,P)O_4:Eu^{3+}$	Kırmızı	619	Sıradan Lambalarda
$(Sr,Mg)_3(PO_4)_2:Sn^{2+}$	Turuncu	620	Renkli Lamba geliştirme
$Y_2O_3.Al_2O_3:Tb^{3+}$	Yeşil	545	Renkli Lamba geliştirme
$Y_{3}Al_{15}O^{12}:Ce^{3+}$	Yeşilimsi sarı	540	Düşük renk ısılı lambalarda
$Sr_{10}(PO_4)_6Cl_2:Eu^{2+}$	Mavi	447	Renkli Lamba geliştirme
$(Sr,Mg)_3(PO_4)_2:Cu^{2+}$	Mavi-Yeşil	490	Renkli Lamba geliştirme

Çizelge 2.3. Yüksek basınçlı civa lambalarında kullanılan bazı ışıldarlar [31].

2.3.1.3. UV lambaları

UV lambaları başta tıp alanında olmak üzere fotokopi makinelerinde, solaryum merkezlerinde ve fotokimyasal uygulamalarda geniş kullanım alanı bulmaktadır. Aluminatlar bu alanda kullanılan başlıca ışıldar fazlar olarak belirtilmektedirler [33].

2.3.1.4. Yüksek voltaj reklam ışıklandırma tüpleri

Yüksek voltajlı reklam ışıklandırma tüplerindeki renklenme, tüplerin içine doldurulan gazlar (neon, helyum, argon-civa) gibi gazlar ve tüp cidarına kaplanan ışıldar maddeler tarafından sağlanmaktadır. Yüksek voltaj reklam ışıklandırma tüplerinde kullanılan ışıldar maddelere bazı örnekler Çizelge 2.4'de verilmektedir.

Çizelge 2.4. Yüksek voltaj reklam ışıklandırma tüplerinde kullanılan ışıldarlar [34].

Bileşim	Işımanın rengi
Zn ₂ SiO ₄ :Mn	Yeşil
CaWO ₄ :Pb ²⁺	Mavi
CaWO ₄ :Sm ³⁺	Pembe
Halofosfatlar	Bütün beyaz-ışık renkleri
$Y_2O_3:Eu^{3+}$	Kırmızı
MgWO ₄	Mavi
$Ba_2P_2O_7:Ti^{4+}$	Mavi-yeşil

2.3.2. X-Işınları ile Görüntüleme Teknikleri

Bir nesnenin içinden geçen X-ışınlarının oluşturduğu görülemez gölge şekillerini görülebilir hale getirerek incelemek için ışıldar maddeler kullanılır. Bu amaçla kullanılan ışıldar maddeler enerjice zengin X-ışınları için (20-60 keV) etkili bir kuantum absorbsiyonuna sahip olmalıdır. Bu yüzden yüksek atom numaralı elementlerin bileşikleri kullanılır. Görüntünün hareketli kısımlarına ait fotoğrafın çekiminde kısa süreli ışıma olmalı ve görüntüyü bulanıklaştırmamalıdır. Çeşitli Xışınları teknikleri için farklı kalite gereksinimleri vardır. Bundan dolayı ışıldar maddeler özel uygulamalara uygun olarak seçilirler [1].

2.3.3. Katot Işını Tüpleri

Renkli katot ışını tüpleri, televizyon ve bilgisayar ekranlarında kullanılır. Üç elektron tabancasından çıkan akımlar tüpün ön yüzeyinde üç farklı noktanın ayarlanmasıyla odaklanır. Fosforlu noktalar üç farklı fosforun yerleştirilmesiyle üretilir. Bu üç fosforun her biri temel renkler olan kırmızı, yeşil ve mavi renklerden birinde ışıma yapar. Her bir fosfor ayrı ayrı yerleştirilmiş ve yerleştirilen her bir fosfordaki üç nokta arası, anlaşılır biçimde aralık bırakılmıştır. Böylece üç ana renk normal bakış uzaklığından birbirinden ayrıştırılamaz. Dışarıdan bakan bir kişinin izlenimi sadece bir rengin olduğudur. Bu renk üçana rengin birlikte eklenmesiyle ortaya çıkar [35].

Renkli televizyonlarda kırmızı ışık kaynağı olarak kullanılan ilk ışıldar madde Mn²⁺ katkılanmış Zn₃(PO₄)₂'dir. Daha sonraki gelişmelerle (Zn,Cd)S:Ag⁺ kullanılırken son yıllarda ise YVO₄:Eu³⁺ bileşiği kullanılmaktadır. Yeşil ışık kaynağı olarak (Zn,Cd)S:Cu⁺,Al³⁺ fazı kullanılırken, mavi ışık kaynağı olarak ise ZnS:Ag⁺,Al³⁺ışıldar fazı kullanılmaktadır [36].

2.3.4. Optoelektronik Görüntü Dönüştürücü

Görüntü dönüştürücüler, bir elektronun yol açtığı görüntüyü insanların görebileceği bir görüntüye dönüştürmektedirler. Görüntü dönüştürücüler, insanların göremediği mor ötesi, kızıl ötesi ve X-ışını bölgelerinin insanlar tarafından görünebilmesini mümkün kılmaktadır [37].

Görüntü dönüştürücülerde bir nesneden yayılan ışık fotokatottan elektron koparır. Açığa çıkan elektronlar elektron-optik bir sistemde hızlandırılır ve ışıldar ekrana odaklanırlar. Burada elde edilen görüntü göz, kamera veya film ile incelenebilir. Sistemin kalitesi, kullanılan ışıldar maddeye bağlıdır. Kullanılacak ışıldar maddenin quantum veriminin yüksek, alkali buharına ve bombardımanına dayanıklı olması gerekir.

2.3.5. Ürün Kodlama

Işıldar maddeler büyük miktarlarda üretilmiş ürünlerin veya piyasa değeri olan ürünlerin kodlanmasında yaygın olarak kullanılmaktadır. Büyük ölçekte

üretilmiş ürünler için, belirli türleri ayırmak veya daha sonra kontrol etmek amacıyla kullanılır.

Paketleme kağıdı veya floresan etiketler için kullanılan floresan fiberler kodlamanın daha ileri bir şeklidir. Uzun dalga boylu UV ışığı altında kolayca tanımlanabilen ve dar band ışıması yapan ışıldarlar tercih edilirler. Genelde beyaz renkli bileşikler olan çinko sülfür ve toprak alkali bileşikleri kullanılır [1].

2.3.6. Güvenlik ve Kaza Önleme

Uzun süreli ışıma yapan inorganik ışıldar maddeler, tehlikeli alanlar, acil çıkış yolları ve elektrik şalterlerinde kullanılmaktadır.

Güvenlik amacıyla en çok kullanılan ışıldar maddeler bakır katkılanmış çinko sülfürlerdir. Spektrumları gözün spektral duyarlılığına uyar ve gün ışığı ve yapay ışık ile uyarılabilir ve uyarmadan sonra 30 saat ışımaya yapabilirler [1].

2.3.7. Dişçilik

Doğal dişler uzun dalga boylu UV ışığı altında mavi-beyaz ışıma yaparlar. Işıldama kollajen içerisindeki bazı bileşenlerin doğal yapısından kaynaklanmaktadır.

Kozmetik sonuçlar için bu göz önüne alınarak, yapay dişler hazırlanırken seramik hamuru içerisine ışıldar maddeler de ilave edilir. Başlangıç kullanılan uranil tuzlarının radyoaktif etkisinden dolayı, aktivatör olarak eser element tuzlarının kullanıldığı ışıldar maddelerle çalışılmaya başlanmıştır. Burada seryum, terbiyum ve mangan katkılanmış itriyum silikatlar en iyi sonuçları vermektedir [1].

2.3.8. LED Uygulamaları

LED'ler(Işık Yayan Diyot), Galyum-Arsenur, Galyum-Fosfit ve Galyum-Nitrit gibi yarı-iletken maddeler kullanılarak yapılan diyot temelli ışık yayan elektronik devre elemanlarıdır. LED'lerin günümüzde lamba, ekran, ilan panoları, uyarı ışıkları, mimari aydınlatma gibi çok çeşitli uygulama alanları bulunmaktadır.

LED'ler ile beyaz ışık elde etmek için kullanılan yöntemlerden biri de ışıldar malzemelerin yarı-iletken diyotlar üzerine kaplanarak uygulanmasıdır. Kısa dalgaboyunda ışıma yapan diyotlar ışıldarlarla kaplandığında daha uzun dalga boyunda ışık elde edilmektedir [38].

3. MATERYAL VE YÖNTEM

3.1. MATERYAL

3.1.1. Kullanılan Kimyasallar

Tungsten oksit (WO₃):Aldrich firmasından % 99.00 saflıkta temin edilen madde, ışıldar konut kristallerin katı hal yöntemi ile sentezi için kullanılmıştır.

Sodyum tungstat dihidrat (Na₂WO₄.2H₂O): Sigma-Aldrich firmasından % 99.00 saflıkta temin edilen madde, ışıldar konut kristallerin hidrotermal yöntemle sentezinde kullanılmıştır.

Kalsiyum karbonat (CaCO₃): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin katı hal yöntemi ile sentezi için kullanılmıştır.

Stronsiyum karbonat (SrCO₃): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin katı hal yöntemi ile sentezi için kullanılmıştır.

Baryum karbonat (BaCO₃): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin katı hal yöntemi ile sentezi için kullanılmıştır.

Magnezyum hidroksitkarbonat (4MgCO₃.Mg(OH)₂.5H₂O): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin katı hal ve hidrotermal yöntem ile sentezleri için kullanılmıştır.

Çinko oksit (ZnO): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin katı hal yöntemi ile sentezi için kullanılmıştır.

Kalsiyum nitrat (Ca(NO_3)₂): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin hidrotermal yöntemle sentezi için kullanılmıştır.

Stronsiyum nitrat (Sr(NO₃)₂): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin hidrotermal yöntemle sentezi için kullanılmıştır.

Baryum nitrat (Ba(NO_3)₂): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin hidrotermal yöntemle sentezi için kullanılmıştır.

Çinko nitrat (Zn(NO₃)₂): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin hidrotermal yöntemle sentezi için kullanılmıştır.

Magnezyum nitrat (Mg(NO₃)₂): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerin hidrotermal yöntemle sentezi için kullanılmıştır.

*Europyum oksit (Eu*₂ O_3): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerde aktivatör iyonları olarak kullanılmıştır.

Terbiyum oksit (Tb $_2O_3$): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerde aktivatör iyonları olarak kullanılmıştır.

Disprozyum oksit (Dy $_2O_3$): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerde aktivatör iyonları olarak kullanılmıştır.

*Praseodim oksit (Pr*₂ O_3): Merck firmasından % 99.90 saflıkta temin edilen madde, ışıldar konut kristallerde aktivatör iyonları olarak kullanılmıştır.

Nitrik asit (HNO₃): Merck firmasından % 65 saflıkta temin edilen madde, lantan oksitlerini nitratlarına dönüştürmek amacıyla kullanılmıştır.

Sitrik asit monohidrat ($C_6H_8O_7.H_2O$): Merck firmasından % 99.90 saflıkta temin edilen madde, hidrotermal sentez yönteminde şelat oluşturmak için kullanılmıştır.

Sodyum Hidroksit (NaOH): Merck firmasından % 99.90 saflıkta temin edilen madde, hidrotermal sentez yönteminde çözelti ortamını bazikleştirmek için kullanılmıştır.

3.1.2. Kullanılan Cihazlar

Hidrotermal Ünite: Hidrotermal sentez yönteminde Berghof marka DAB-3 model hidrotermal ünite kullanılmıştır.

Ultra-Santrifüj Cihazı: Sulu ortamda kalan partiküllerin tam olarak çöktürülebilmesi için Hettich marka Rotina 420 model santrifüj cihazı kullanılmıştır.

Yatay tüp firin: Yüksek sıcaklık tepkimeleri için 25-1500 °C aralığında çalışabilen Protherm marka PTF 15/75/610 model yatay tüp firin kullanılmıştır.

X-Işınları Toz Diffraktometresi: Bruker marka D8 model cihaz sentezlenen maddelerin faz analizleri için kullanılmıştır.

Fotolüminesans Spektrometresi: Varian Marka Cary Eclipse model fotolüminesans spektrometresi, ışıldar maddelerin uyarma ve ışıma spektrumlarının alınması, elektron tuzaklama sürelerinin (lüminesans life time) hesaplanması için

kullanılmıştır. PTI marka QM-30 ayrım gücü yüksek fotolüminesans spektrometresi ışıma şiddeti çok düşük olan Pr³⁺ iyonu katkılanmış ışıldarların ışıma özelliklerinin ölçülmesinde kullanılmıştır.

Termolüminesans Okuyucu: Harshaw QS Termoluminesans Okuyucu, ışıldar bileşiklerin tuzak parametrelerinin hesaplanması için kullanılmıştır.

Taramalı Elektron Mikroskobu(SEM): Carl Zeiss marka Supra 55 model elektron mikroskobu tanecik boyutu ve element analizleri için kullanılmıştır.

3.2. YÖNTEM

3.2.1. Sentez Yöntemleri

3.2.1.1. Katıhal sentez yöntemi

Metal karbonat ve/veya oksitleri uygun stokiyometrik oranlarda tartılarak agat bir havanda öğütülüp yatay tüp fırında açık atmosferde ve yüksek sıcaklıkta (~1000-1350 °C) fırınlanarak kristalin ışıldar maddeler hazırlanmıştır.

3.2.1.2. Hidrotermal sentez yöntemi

Metal tuzlarının sulu çözeltilerine şelat görevi yapan organik maddeler eklenerek sulu ve bazik bir ortamda, sıcaklık ile birlikte yükselen kendi iç basıncı altında mikro boyutta tozlar olarak çökelmiştir. Hidrotermal üniteden alınan çözeltideki bütün partiküllerin çökelmesi için santrifüjleme yapıldıktan sonra çökelek kurutularak (~120°C) yatay tüp fırında açık atmosferde ve yüksek sıcaklıkta (~1000-1350 °C) fırınlanıp ışıldar malzemeler elde edilmiştir [39].

3.2.2. Yapısal Tanımlama Yöntemi

Sentezlenen ışıldarların toz desenleri X-ışınları toz diffraksiyonu tekniği ile ölçülmüş ve yapısal çözümlemelerde WinXpow paket programı kullanılmıştır.

3.2.3. Optik Özelliklerin İncelenmesi

3.2.3.1. Fotolüminesans spektrometresi

Modern fotolüminesans spektrometrelerinde floresans, fosforesans, biyolüminesans modları için uyarma ve ışıma spektrumları kaydedilebilmektedir. Yine bu cihazlar kullanılarak lüminesans sönüm süreleri tespit edilebilmektedir.

Uyarma spektrumu alınırken, uyarma kromatörü ile belirli bir ışımanın dalgaboyu sabit tutularak dalga boyu taraması yapılır. Işıma spektrumunun ölçülmesi esnasında ise uyarma dalga boyu sabit tutularak ışıma monokromatörü ile dalgaboyu taraması yapılır. Fotolüminesans tekniği Soğurma Spektrometresine göre daha duyarlıdır. Uyarma spektrumundan enerji transferi gibi süreçler hakkında değerlendirilebilir bilgiler elde edilir [2].

3.2.3.2. Termolüminesans spektrometresi

Maddelerin radyoaktif bir ışınla enerji depoladıktan sonra (yarı iletken ve yalıtkanlar) çizgisel olarak artan bir sıcaklığa karşı yaydığı ışımalara termolüminesans (TL) denir. Yayımlanan ışık şiddetinin, örnek sıcaklığının bir fonksiyonu olarak grafiğe geçirilmesi "TL Işıma Eğrisi" olarak bilinir.

TL ışıma eğrilerinin ölçülmesi ve analizinin yapılmasındaki temel amaç, malzemedeki TL sürecini tanımlamakta kullanılan parametreleri tespit etmektir. Bu parametreler; TL tuzakları için aktivasyon enerjisi *E* (aynı zamanda tuzak derinliği olarak da bilinir), frekans faktörü *s*, TL sürecinin kinetik mertebesi *b*, tuzaklara ve yeniden birleşme merkezlerine yakalanma tesir kesitleri ve bu tuzak ve yeniden birleşme merkezlerinin derişimi veya sayısıdır [40]. Verilen bu parametrelerin hesaplanmasında "Pik Biçimi Yöntemi" kullanılmıştır.

Pik biçimi yöntemi

Pik maksimum sıcaklığı T_m, yarı pik yüksekliğindeki tam genişlik ω =T₂-T₁, pikin yüksek sıcaklık tarafındaki yarı genişlik δ =T₂-T_m, düşük sıcaklık tarafındaki yarı genişlik τ =T_m-T₁, ve geometrik faktör olarak adlandırılan μ _g= δ/ω gibi pik yapı parametrelerinden tuzak de rinliği, E hesaplanmaktadır.

Kinetik mertebe(b), yapı parametrelerinden hesaplanabilmektedir. Geometrik faktörün (μ_g), tuzak derinliği (*E*) ve frekans faktöründeki(*s*) değişikliklerden etkilenmediği fakat kinetik mertebe ile değiştiği belirlenmiştir [40]. Çizgisel ısıtma hızı ile μ_g değeri 0.42 ve *b*=1, 0.52 olduğunda *b*=2 değerini almaktadır.

Hesaplanan E değerleri [40];

$$E_{\tau} = \left[1.51 + 3(\mu_g - 0.42)\right] \frac{kT_m^2}{\tau} - \left[1.58 + 4.2(\mu_g - 0.42)\right] 2kT_m$$

$$E_{\delta} = \left[0.976 + 7.3(\mu_g - 0.42)\right] \frac{kT_m^2}{\delta}$$

$$E_{\omega} = \left[2.52 + 10.2(\mu_g - 0.42)\right] \frac{kT_m^2}{\omega} - 2kT_m$$
(3.1)

Aktivasyon enerjisi ve kinetik mertebenin tespitinden sonra frekans faktörü (ön üstel faktör), *s* birinci ve genel mertebe için sırasıyla [40]:

$$s = \frac{\beta E}{kT_m^2} \exp\left[\frac{E}{kT_m}\right]$$

$$s = \frac{\beta E}{kT_m^2} \left[\exp(-\frac{E}{kT_m})(1+(b-1)\frac{2kT_m}{E})\right]^{\frac{b}{b-1}}$$
(3.2)

eşitlikleri kullanılarak hesaplanmaktadır.

3.2.4. Işıldar Fazların Sentezi

Yapılan çalışmada konut kristallere lantanit iyonları katkılanarak ışıldarlar sentezlenmeye çalışılmıştır. Katı hal ve hidrotermal sentez yöntemleri kullanılarak sentezlenmesi hedeflenen ışıldarlar Çizelge 3.1'de verilmiştir.
Ňo	Konut	Katkı İyonla	rı		
1	Ca ₃ WO ₆	Eu ³⁺	Pr ³⁺	Tb ³⁺	Dy ³⁺
2	Sr ₃ WO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy ³⁺
3	Ba ₃ WO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
4	Sr ₂ CaWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy ³⁺
5	Ca ₂ SrWO ₆	Eu ³⁺	Pr ³⁺	Tb^{3+}	Dy^{3+}
6	Sr ₂ BaWO ₆	Eu ³⁺	Pr ³⁺	Tb^{3+}	Dy^{3+}
7	Ba ₂ SrWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
8	Ba ₂ CaWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
9	Ca ₂ BaWO ₆	Eu ³⁺	Pr ³⁺	Tb^{3+}	Dy^{3+}
10	Ca ₂ MgWO ₆	Eu ³⁺	Pr ³⁺	Tb^{3+}	Dy ³⁺
11	Sr ₂ MgWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
12	Ba ₂ MgWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
13	Ca ₂ ZnWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
14	Sr ₂ ZnWO ₆	Eu^{3+}	Pr^{3+}	Tb^{3+}	Dy^{3+}
15	Ba ₂ ZnWO ₆	Eu ³⁺	Pr ³⁺	Tb ³⁺	Dy ³⁺

Çizelge 3.1. Sentezlenmesi hedeflenen ışıldarlar.

3.2.4.1. Işıldar fazların katı hal yöntemi ile sentezi

 Sr_3WO_6 :Ln, Ca_3WO_6 :Ln, Ba_3WO_6 :Ln (Ln: Eu^{3+} , Dy^{3+} , Pr^{3+} , Tb^{3+}) ışıldar fazlarının katı hal yöntemi ile sentezi

MCO₃(M: Ca, Sr, Ba), WO₃ ve Ln₂O₃ başlangıç maddeleri uygun stokiyometrik oranlarda karıştırılarak yüksek sıcaklıkta sentezlenmiştir.

Başlangıç maddeleri, mol oranları 2,94MCO₃:1WO₃:0,03Ln₂O₃ olacak şekilde tartıldı. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba) iyonlarının %2 molü kadar hesaplanarak eklendi. Başlangıç maddeleri agat havanda 30 dk süreyle öğütüldükten sonra platin kayıklara alınarak 1350 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [19,20]. $Sr_2CaWO_6:Ln$, $Ca_2SrWO_6:Ln$, $Ca_2BaWO_6:Ln$, $Ba_2CaWO_6:Ln$, $Ba_2SrWO_6:Ln$, $Sr_2BaWO_6:Ln$ ($Ln: Eu^{3+}$, Dy^{3+} , Pr^{3+} , Tb^{3+}) işildar fazlarının katı hal yöntemi ile sentezi

MCO₃(M: Ca, Sr, Ba), WO₃ ve Ln₂O₃ başlangıç maddeleri uygun stokiyometrik oranlarda karıştırılarak yüksek sıcaklıkta sentezlenmiştir.

Başlangıç maddeleri, mol oranları 2,94MCO₃:1WO₃:0,03Ln₂O₃ olacak şekilde tartıldı. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba) iyonlarının %2 molü kadar hesaplanarak eklendi. Başlangıç maddeleri agat havanda 30 dk süreyle öğütüldükten sonra platin kayıklara alınarak 1250 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [19,20].

 Ca_2MgWO_6 :Ln, Sr_2MgWO_6 :Ln, Ba_2MgWO_6 :Ln (Ln: Eu^{3+} , Dy^{3+} , Pr^{3+} , Tb^{3+}) ışıldar fazlarının katı hal yöntemi ile sentezi

MCO₃(M: Ca, Sr, Ba), 4MgCO₃.Mg(OH)₂.5H₂O, WO₃ ve Ln₂O₃ başlangıç maddeleri uygun stokiyometrik oranlarda karıştırılarak yüksek sıcaklıkta sentezlenmiştir.

Başlangıç maddeleri, mol oranları 1,96MCO₃:0,196[4MgCO₃.Mg(OH)₂.5H₂O]:1WO₃:0,03Ln₂O₃ olacak şekilde tartıldı. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba, Mg) iyonlarının %2 molü kadar hesaplanarak eklendi. Başlangıç maddeleri agat havanda 30 dk süreyle öğütüldükten sonra platin kayıklara alınarak 1200 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat firinlanarak ışıldar fazlar sentezlendi [13].

 $Ca_2ZnWO_6:Ln, Sr_2ZnWO_6:Ln, Ba_2ZnWO_6:Ln (Ln: Eu^{3+}, Dy^{3+}, Pr^{3+}, Tb^{3+})$ ışıldar fazlarının katı hal yöntemi ile sentezi

MCO₃(M: Ca, Sr, Ba), ZnO, WO₃ ve Ln₂O₃ başlangıç maddeleri uygun stokiyometrik oranlarda karıştırılarak yüksek sıcaklıkta sentezlenmiştir.

Başlangıç maddeleri mol oranları 1,96MCO₃:0,98ZnO:1WO₃:0,03Ln₂O₃ olacak şekilde tartıldı. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba, Zn) iyonlarının %2 molü kadar hesaplanarak eklendi. Başlangıç maddeleri agat havanda 30 dk süreyle öğütüldükten sonra platin kayıklara alınarak 1000 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [18].

3.2.4.2. Işıldar fazların hidrotermal yöntem ile sentezi

 $Sr_3WO_6:Ln, Ca_3WO_6:Ln, Ba_3WO_6:Ln (Ln: Eu^{3+}, Dy^{3+}, Pr^{3+}, Tb^{3+})$ ışıldar fazlarının hidrotermal yöntem ile sentezi

M(NO₃)₂ (M: Ca, Sr, Ba), Na₂WO₄.2H₂O ve Ln₂O₃ başlangıç maddeleri kullanıldı. Suda çözünmeyen Ln₂O₃ bileşikleri 1:1 oranında H₂O ve HNO₃ çözeltisi karışımı kullanılarak çözünür hale getirildi. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba) iyonlarının %2 molü kadar hesaplanarak eklendi. Yapılan tartımlar 2,94M(NO₃)₂:1Na₂WO₄.2H₂O:0,03Ln₂O₃ oranına göre hesaplandı.

Başlangıç maddelerinden M(NO₃)₂ ve Ln(NO₃)₃ çözeltilerinin karışımı üzerine şelat oluşturması amacı ile metal iyonlarının 2 katı kadar mol içerecek şekilde sitrik asit çözeltisi eklendi. Homojen karışım oluştuktan sonra Na₂WO₄.2H₂O çözeltisi yavaş yavaş karışıma eklendi. Oluşan çözelti 1 saat karıştırıldıktan sonra 250 mL'lik teflon kaplara alınarak çözelti miktarı 170 mL olacak şekilde saf su ile tamamlanıp 180 °C'de 12 saat bekletildi. Çöken ışıldarlar su ve etanolde yıkanarak santrifüjlendi. 120 °C'de kurutlan tozlar platin kayıklara alındı. 1350 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [19,20,39].

 $Sr_2CaWO_6:Ln$, $Ca_2SrWO_6:Ln$, $Ca_2BaWO_6:Ln$, $Ba_2CaWO_6:Ln$, $Ba_2SrWO_6:Ln$, $Sr_2BaWO_6:Ln$ ($Ln: Eu^{3+}$, Dy^{3+} , Pr^{3+} , Tb^{3+}) işildar fazlarının hidrotermal yöntem ile sentezi

M(NO₃)₂ (M: Ca, Sr, Ba), Na₂WO₄.2H₂O ve Ln₂O₃ başlangıç maddeleri kullanıldı. Suda çözünmeyen Ln₂O₃ bileşikleri 1:1 oranında H₂O ve HNO₃ çözeltisi karışımı kullanılarak çözünür hale getirildi. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba) iyonlarının %2 molü kadar hesaplanarak eklendi. Yapılan tartımlar 2,94M(NO₃)₂:1Na₂WO₄.2H₂O:0,03Ln₂O₃ oranına göre hesaplandı.

Başlangıç maddelerinden M(NO₃)₂ ve Ln(NO₃)₃ çözeltilerinin karışımı üzerine şelat oluşturması amacı ile metal iyonlarının 2 katı kadar mol içerecek şekilde sitrik asit çözeltisi eklendi. Homojen karışım oluştuktan sonra Na₂WO₄.2H₂O çözeltisi yavaş yavaş karışıma eklendi. Oluşan çözelti 1 saat karıştırıldıktan sonra 250 mL'lik teflon kaplara alınarak çözelti miktarı 170 mL olacak şekilde saf su ile tamamlanıp 180 °C'de 12 saat bekletildi. Çöken ışıldarlar su ve etanolde yıkanarak santrifüjlendi. 120 °C'de kurutlan tozlar platin kayıklara alındı. 1250 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [19,20,39].

 $Ca_2MgWO_6:Ln, Sr_2MgWO_6:Ln, Ba_2MgWO_6:Ln (Ln: Eu^{3+}, Dy^{3+}, Pr^{3+}, Tb^{3+})$ ışıldar fazlarının hidrotermal yöntem ile sentezi

M(NO₃)₂ (M: Ca, Sr, Ba, Mg), Na₂WO₄.2H₂O ve Ln₂O₃ başlangıç maddeleri kullanıldı. Suda çözünmeyen Ln₂O₃ bileşikleri 1:1 oranında H₂O ve HNO₃ çözeltisi karışımı kullanılarak çözünür hale getirildi. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba, Mg) iyonlarının %2 molü kadar hesaplanarak eklendi. Yapılan tartımlar 2,94M(NO₃)₂:1Na₂WO₄.2H₂O:0,03Ln₂O₃ oranına göre hesaplandı.

Başlangıç maddelerinden M(NO₃)₂ ve Ln(NO₃)₃ çözeltilerinin karışımı üzerine şelat oluşturması amacı ile metal iyonlarının 2 katı kadar mol içerecek şekilde sitrik asit çözeltisi eklendi. Homojen karışım oluştuktan sonra Na₂WO₄.2H₂O çözeltisi yavaş yavaş karışıma eklendi. Oluşan çözelti 1 saat karıştırıldıktan sonra 250 mL'lik teflon kaplara alınarak çözelti miktarı 170 mL olacak şekilde saf su ile tamamlanıp 180 °C'de 12 saat bekletildi. Çöken ışıldarlar su ve etanolde yıkanarak santrifüjlendi. 120 °C'de kurutlan tozlar platin kayıklara alındı. 1200 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [13,39].

$Ca_2ZnWO_6:Ln, Sr_2ZnWO_6:Ln, Ba_2ZnWO_6:Ln (Ln: Eu^{3+}, Dy^{3+}, Pr^{3+}, Tb^{3+})$ ışıldar fazlarının hidrotermal yöntem ile sentezi

M(NO₃)₂ (M: Ca, Sr, Ba, Zn), Na₂WO₄.2H₂O ve Ln₂O₃ başlangıç maddeleri kullanıldı. Suda çözünmeyen Ln₂O₃ bileşikleri 1:1 oranında H₂O ve HNO₃ çözeltisi karışımı kullanılarak çözünür hale getirildi. Aktivatör iyonları (Ln³⁺) toplam M²⁺ (M: Ca, Sr, Ba, Zn) iyonlarının %2 molü kadar hesaplanarak eklendi. Yapılan tartımlar 2,94M(NO₃)₂:1Na₂WO₄.2H₂O:0,03Ln₂O₃ oranına göre hesaplandı.

Başlangıç maddelerinden M(NO₃)₂ ve Ln(NO₃)₃ çözeltilerinin karışımı üzerine şelat oluşturması amacı ile metal iyonlarının 2 katı kadar mol içerecek şekilde sitrik asit çözeltisi eklendi. Homojen karışım oluştuktan sonra Na₂WO₄.2H₂O çözeltisi yavaş yavaş karışıma eklendi. Oluşan çözelti 1 saat karıştırıldıktan sonra 250 mL'lik teflon kaplara alınarak çözelti miktarı 170 mL olacak şekilde saf su ile tamamlanıp 180 °C'de 12 saat bekletildi. Çöken ışıldarlar su ve etanolde yıkanarak santrifüjlendi. 120 °C'de kurutlan tozlar platin kayıklara alındı. 1000 °C'de 2,5 saatte bir öğütülüp toplamda 5 saat fırınlanarak ışıldar fazlar sentezlendi [18,39].

4. BULGULAR VE TARTIŞMA

Ortotungstat bazlı ışıldarlar katı hal yöntemi ve hidrotermal yöntem kullanılarak sentezlenmiştir. Sentezlenen ışıldar fazlar Çizelge 4.1'de verilmektedir. Işıma şiddeti düşük olan ışıldarların tanımlamaları ekte verilmiştir.

No	Konut Faz	Literatür (JCPDS No)	Sentez Yöntemi	Katkı İyonu*	Işıma Rengi
1	Ca ₃ WO ₆	22-0541	Katı hal	Eu ³⁺ [23]	Kırmızı
2			Katı hal	Dy^{3+}	Sarı
3	Sr ₃ WO ₆	28-1259	Katı hal	$Eu^{3+}[22]$	Kırmızı
4	Ba ₃ WO ₆	33-0182	Katı hal	Eu^{3+}	Kırmızı
5	Sr ₂ CaWO ₆	76-1983	Katı hal, Hidrotermal	Eu ³⁺ [9]	Kırmızı
6			Katı hal	Dy^{3+}	Sarı
7	Ca ₂ SrWO ₆	[19]	Katı hal	Eu^{3+}	Kırmızı
8			Katı hal	Dy^{3+}	Açık Sarı
9	Ba_2SrWO_6	26-0190	Katı hal	Eu^{3+}	Kırmızı
10			Katı hal	Dy^{3+}	Açık Sarı
11	Ba ₂ CaWO ₆	22-0509	Katı hal, Hidrotermal	Eu ³⁺ [9]	Kırmızı
12			Katı hal, Hidrotermal	Dy ³⁺	Açık Sarı
13	Ca ₂ BaWO ₆	18-0164	Katı hal, Hidrotermal	Eu ³⁺	Kırmızı
14			Katı hal, Hidrotermal	Dy ³⁺	Açık Sarı
15	Ca ₂ MgWO ₆	48-0108	Katı hal	$Eu^{3+}[16]$	Kırmızı
16			Katı hal	Dy^{3+}	Açık Sarı
17	Sr ₂ MgWO ₆	74-8160	Katı hal	Eu^{3+}	Kırmızı
18			Katı hal	Dy ³⁺	Sarı
19			Katı hal	Tb^{3+}	Koyu Yeşil
20			Katı hal	Pr^{3+}	Pembe-Turuncu

Çizelge 4.1. Sentezlenen ışıldar fazlar.

21	Ba ₂ MgWO ₆	73-2404	Katı hal	Eu^{3+}	Kırmızı
22			Katı hal	Dy^{3+}	Açık Sarı
23			Katı hal	Tb^{3+}	Açık Yeşil
24			Katı hal	Pr^{3+}	Açık Pembe
25	Ba ₂ ZnWO ₆	73-0134	Katı hal	- [18]	Yeşil
26			Katı hal	Eu^{3+}	Kırmızı
27			Katı hal	Dy^{3+}	Açık Sarı

Cizelge 4.1 (devamı)

*Katkı oranı: Lantanoid iyonları Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺ ve Zn²⁺ iyonlarının konuttaki toplam mollerine %2 oranla katkılanmıştır. Ayrıca literatürde sentezlenmiş olan malzemelerin literatür numarası da verilmiştir.

4.1. TANIMLAMA ÇALIŞMALARI

4.1.1. Sr₂CaWO₆:Eu³⁺, Ca₂BaWO₆:Ln, Ba₂CaWO₆:Ln, (Ln: Eu³⁺, Dy³⁺) Işıldarlarını Tanımlama Çalışmaları

4.1.1.1. Sr₂CaWO₆ konut fazının yapı analizi

Sr₂CaWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.1'de; toz deseni verileri de Çizelge 4.2'de verilmektedir. Analizi yapılan toz desenlerinin Sr₂CaWO₆ (JCPDS no: 76-1983) yapısına ait olduğu belirlenmiştir. Malzemenin kristal sistemi ortorombik; uzay grubu, Pmm2 (25) ve hücre parametreleri de a=8.203 b=5.767 c=5.848 Å ve $\alpha=\beta=\gamma=90^{\circ}$ olarak verilmektedir.

Şekil 4.1. a) Katı hal yöntemi ile b) Hidrotermal yöntem ile sentezlenen Sr₂CaWO₆ konut fazının X-ışını toz deseni (JCPDS no: 76-1983)

_	, 0			-					· · ·			/			
	20	Şiddet	h	k	l	20	Şiddet	h	k	l	20	Şiddet	h	k	l
	18,62	29	1	0	1	44,07	33	0	2	2	64,58	4	0	4	0
	18,79	25	1	1	0	48,18	3	3	1	2	67,56	3	3	3	2
	21,62	9	2	0	0	54,44	14	2	1	3	72,77	6	2	3	3
	30,54	26	0	0	2	54,61	8	4	0	2	72,86	7	6	1	1
	30,78	100	2	1	1	54,89	10	4	2	0	73,12	3	0	4	2
	30,99	28	0	2	0	54,99	17	2	3	1	81,54	3	4	4	0
	36,11	7	1	1	2	58,50	3	1	3	2	89,01	3	6	1	3
	36,24	4	3	0	1	63,58	3	0	0	4	89,46	4	6	3	1
	36,39	9	1	2	1	64,13	13	4	2	2	89,83	3	5	0	4

Çizelge 4.2. Sr₂CaWO₆ konut fazının XRD verileri (JCPDS no: 76-1983).

4.1.1.2. Sr₂CaWO₆:Eu³⁺ ışıldarının fotolüminesans çalışmaları

Sr₂CaWO₆:Eu³⁺ ışıldarının uyarma spektrumu Şekil 4.2'de verilmektedir. Uyarma spektrumunda 299 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bandı konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca Eu³⁺-O²⁻ arasındaki yük transfer geçişine ait bantlar ve Eu³⁺ aktivatör iyonunun ⁷F₀→⁵L_j (*j*=0-6) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır. Sr₂CaWO₆:Eu³⁺ ışıldarının ışıma spektrumunda 594 ve 616 nm'de gözlenen şiddetli ışıma bantları Eu³⁺ iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ve ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ geçişlerine aittir. Ayrıca 650-750 nm arasında gözlenen ışıma bantları ise Eu³⁺ iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (*j*=3, 4) geçişlerini göstermektedir [22].

Şekil 4.2. Katı hal ve hidrotermal yöntem ile hazırlanmış $Sr_2CaWO_6:Eu^{3+}$ ışıldarının uyarma ve ışıma spektrumları.

Işıldar faza ait sönüm eğrileri Şekil 4.3'de verilmektedir. Sönüm eğrilerinden elde edilen verilere göre katı hal yöntemi ve hidrotermal yöntemle hazırlanan ışıldar fazın sönüm süreleri (τ) sırasıyla 2.6 ve 2.80 ms olduğu belirlenmiştir.

Şekil 4.3. Katı hal ve hidrotermal yöntem ile hazırlanmış Sr_2CaWO_6 : Eu³⁺ışıldarının sönüm eğrileri.

4.1.1.3. Hidrotermal yöntemle hazırlanan Sr₂CaWO₆:Eu³⁺ ışıldarının SEM-EDX analizleri

Sr₂CaWO₆:Eu³⁺ ışıldarının EDX grafiği Şekil 4.4'de verilmiştir. EDX ölçümleri 0-20 keV aralığında yapılmıştır. Yapılan analizde Ca, Sr, O, W ve Eu elementlerinin yapıda bulunduğu tespit edilmiştir. Bu da XRD sonuçları ile birlikte öngörülen yapının oluştuğunu kanıtlamaktadır. Malzemeler platin kaplanarak analiz edildiği için Pt elementinin varlığı da gözlenmektedir.

Şekil 4.4. Sr₂CaWO₆:Eu³⁺ ışıldarının EDX grafiği.

Sr₂CaWO₆:Eu³⁺ ışıldarına ait SEM görüntüleri Şekil 4.5'de verilmektedir. SEM görüntülerinden taneciklerin serbest halde olmayıp, topaklanma oluştuğu gözlenmiştir. Tanecik boyutu dağılımı homojen olmayıp 2-20 µm aralığındadır.

Şekil 4.5. Sr₂CaWO₆:Eu³⁺ ışıldarına ait SEM görüntüleri

4.1.1.4. Ca2BaWO6 konut fazının yapı analizi

Ca₂BaWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.6'da; toz deseni verileri de Çizelge 4.3'de verilmektedir. Toz deseni daha önce yapılmış olan çalışmada monoklinik olarak kısmen indislenebilmiştir [19]. Analizi yapılan toz desenlerinde, Ca₂BaWO₆ (JCPDS no: 18-0164) yapısının yanında Ca₃WO₆ (JCPDS no: 22-0541) yapısının da oluştuğu belirlenmiştir. Malzemenin kristal sistemi kübik; uzay grubu, Fm<u>3</u>m ve hücre parametreleri de a=b=c=8.380 Å ve $\alpha=\beta=\gamma=90^{\circ}$ olarak verilmektedir.

Şekil 4.6. a) Katı hal yöntemi ile b) Hidrotermal yöntem ile sentezlenen Ca₂BaWO₆ konut fazının X-ışını toz deseni (JCPDS no: 18-0164; Ca₃WO₆ JCPDS no: 22-0541).

20	Şiddet	h	k	1	20	Şiddet	h	k	1	20	Şiddet	h	k	l
18,33	10	1	1	1	53,55	60	4	2	2	79,12	10	4	4	4
30,12	100	2	2	0	57,15	10	5	1	1	82,34	5	7	1	1
35,48	5	3	1	1	62,67	40	4	4	0	86,92	50	6	4	2
37,16	5	2	2	2	65,94	5	5	3	1	89,90	5	7	3	1
43,18	40	4	0	0	71,13	40	6	2	0					
47,27	5	3	3	1	74,95	5	6	2	2					

Cizelge 4.3. Ca₂BaWO₆ konut fazının XRD verileri (JCPDS no: 18-0164).

4.1.1.5. Ca₂BaWO₆:Ln (Ln: Eu³⁺, Dy³⁺) ışıldarlarının fotolüminesans çalışmaları

*Ca*₂*BaWO*₆:*Eu*³⁺ ışıldarının fotolüminesans çalışmaları

Ca₂BaWO₆:Eu³⁺ışıldarının uyarma spektrumu Şekil 4.7'de verilmektedir. Uyarma spektrumunda 308 nm'de geniş uyarma bandı gözlenmektedir. 308 nm'de gözlenen bu şiddetli ve geniş uyarma bandı konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca Eu³⁺-O²⁻ arasındaki yük transfer geçişine bantlar ve Eu³⁺ aktivatör iyonunun⁷F₀ \rightarrow ⁵L_{*j*} (*j*=0-6) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır.

Ca₂BaWO₆:Eu³⁺ ışıldarının ışıma spektrumunda 595 ve 616 nm'de gözlenen şiddetli ışıma bantları Eu³⁺ iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ve ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ geçişlerine aittir. Ayrıca 650-750 nm arasında gözlenen ışıma bantları ise Eu³⁺ iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (*j*=3, 4) geçişlerini göstermektedir [22].

Şekil 4.7. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca₂BaWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumları.

Işıldar faza ait sönüm eğrileri Şekil 4.8'de verilmektedir. Sönüm eğrilerinden elde edilen verilere göre katı hal yöntemi ve hidrotermal yöntemle hazırlanan ışıldar fazın sönüm süreleri (τ) sırasıyla 3.39 ve 3.15 ms olduğu belirlenmiştir.

Şekil 4.8. Katı hal ve hidrotermal yöntem ile hazırlanmış Ca₂BaWO₆:Eu³⁺ ışıldarının sönüm eğrileri.

Ca₂BaWO₆:Dy³⁺ ışıldarının fotolüminesans çalışmaları

Ca₂BaWO₆:Dy³⁺ ışıldarlarının uyarma ve ışıma spektrumu Şekil 4.9'da verilmektedir. Uyarma spektrumunda 310 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bandı konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca Dy³⁺-O²⁻ arasındaki yük transfer geçişine ait bantlar ve Dy³⁺ aktivatör iyonunun ${}^{6}H_{15/2} \rightarrow {}^{4}M_{17/2}$, geçişine ait bantlar bu geniş uyarma bandı altında kalmaktadır. Ayrıca ${}^{6}H_{15/2} \rightarrow {}^{4}M_{15/2}$ ve ${}^{6}H_{15/2} \rightarrow {}^{6}P_{7/2}$ geçişlerine ait uyarma bandı 357 nm'de ve ${}^{6}H_{15/2} \rightarrow {}^{4}I_{11/2}$ geçişine ait uyarma bandı ise 370 nm'de düşük şiddetli olarak gözlenmektedir.

Ca₂BaWO₆:Dy³⁺ışıldarının ışıma spektrumunda 594 ve 616 nm'de gözlenen şiddetli ışıma bantları Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ve ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ geçişlerine aittir. Ayrıca 650-800 nm arasında gözlenen düşük şiddetli ışıma bantları ise Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{j}$ (*j*=11/2, 9/2) geçişlerine aittir [41].

Şekil 4.9. Katı hal ve hidrotermal yöntem ile hazırlanmış $Ca_2BaWO_6:Dy^{3+}$ ışıldarının uyarma ve ışıma spektrumları.

Işıldar faza ait sönüm eğrileri Şekil 4.10'da verilmektedir. Sönüm eğrilerinden elde edilen verilere göre katı hal yöntemi ve hidrotermal yöntemle hazırlanan ışıldar fazın sönüm süreleri (τ) sırasıyla 14.65 ve 5.19 ms olduğu belirlenmiştir.

Şekil 4.10. Katı hal ve hidrotermal yöntem ile hazırlanmış $Ca_2BaWO_6:Dy^{3+}$ ışıldarının sönüm eğrileri

4.1.1.6. Ca₂BaWO₆:Dy³⁺ ışıldarının termolüminesans çalışmaları

Ca₂BaWO₆:Dy³⁺ ışıldarı 5 dk β -ışını ile uyarıldıktan sonra 25-400 °C aralığında termolüminesans (TL) ölçümleri yapılmıştır. Katı hal yöntemi ile sentezlenen ışıldarda ışıma gözlenmezken hidrotermal yöntem ile sentezlenen ışıldar şiddetli ışıma yaptığı gözlenmektedir(Şekil 4.11). Yapılan ölçümde bant maksimum sıcaklığı 155 °C olarak belirlenmiştir. Elde edilen verilerden pik biçimi yöntemiyle aktivasyon enerjisi (E_{ort}), frekans faktörü (s) ve kinetik mertebesi (b) hesaplanarak Çizelge 4.4'de verilmiştir.

Çizelge 4.4. Ca₂BaWO₆:Dy³⁺ ışıldarının termolüminesans verileri.

b	E_{τ} (eV)	E _δ (eV)	$E_{\omega}(eV)$	Eort (eV)	S
2	0,087	0,204	0,147	0,146	0,009

Şekil 4.11. Katı hal ve hidrotermal yöntem ile hazırlanmış $Ca_2BaWO_6:Dy^{3+}$ ışıldarının termolüminesans eğrisi.

4.1.1.7. Hidrotermal yöntemle hazırlanan $Ca_2BaWO_6:Ln$ (Ln: Eu^{3+} , Dy^{3+}) ışıldarlarının SEM-EDX analizleri

Ca₂BaWO₆:Eu³⁺ ışıldarının SEM-EDX analizleri

Ca₂BaWO₆:Eu³⁺ ışıldarının EDX grafiği Şekil 4.12'de verilmiştir. EDX ölçümleri 0-20 keV aralığında yapılmıştır. Yapılan analizde Ca, Ba, O, W ve Eu elementlerinin yapıda bulunduğu tespit edilmiştir. Bu da XRD sonuçları ile birlikte öngörülen yapının oluştuğunu kanıtlamaktadır. Malzemeler platin kaplanarak analiz edildiği için Pt elementinin varlığı da gözlenmektedir.

Şekil 4.12. Ca2BaWO6:Eu3+ ışıldarının EDX grafiği.

Ca₂BaWO₆:Eu³⁺ ışıldarına ait SEM görüntüleri Şekil 4.13'de verilmektedir. SEM görüntülerinden taneciklerin bir kısmının serbest halde olduğu, bir kısmının da topaklandığı gözlenmiştir. Serbest tanecikler için, tanecik boyutu dağılımı homojen olmayıp 2-16 µm aralığındadır.

Şekil 4.13. Ca₂BaWO₆:Eu³⁺ ışıldarına ait SEM görüntüleri

*Ca*₂*BaWO*₆:*Dy*³⁺ *işildarının SEM-EDX analizleri*

Ca₂BaWO₆:Dy³⁺ ışıldarının EDX grafiği Şekil 4.14'de verilmiştir. EDX ölçümleri 0-20 keV aralığında yapılmıştır. Yapılan analizde Ca, O, W ve Dy elementlerinin yapıda bulunduğu tespit edilmiştir. Ancak Ba elementine rastlanmamıştır. Buna karşın XRD sonuçları yapının oluştuğunu kanıtlamaktadır. Malzemeler platin kaplanarak analiz edildiği için Pt elementinin varlığı da gözlenmektedir.

Şekil 4.14. Ca2BaWO6:Dy3+ ışıldarının EDX grafiği.

Ca₂BaWO₆:Dy³⁺ ışıldarına ait SEM görüntüleri Şekil 4.15'de verilmektedir. SEM görüntülerinden taneciklerin bir kısmının serbest halde olduğu, bir kısmının da topaklandığı gözlenmiştir. Serbest tanecikler için, tanecik boyutu dağılımı homojen olmayıp 2-8 µm aralığındadır.

Şekil 4.15. Ca₂BaWO₆:Dy³⁺ ışıldarına ait SEM görüntüleri.

4.1.1.8. Ba₂CaWO₆ konut fazının yapı analizi

Ba₂CaWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.16'da; toz deseni verileri de Çizelge 4.5'de verilmektedir. Analizi yapılan toz deseninin Ba₂CaWO₆ (JCPDS no: 22-0509) yapısına ait olduğu belirlenmiştir. Malzemenin kristal sistemi kübik; uzay grubu, Fm<u>3</u>m (225) ve hücre parametreleri de a=b=c=8.384 Å ve $\alpha=\beta=\gamma=90^{\circ}$ olarak verilmektedir.

Şekil 4.16. a) Katı hal yöntemi ile b) Hidrotermal yöntem ile sentezlenen Ba₂CaWO₆ konut fazının X-ışını toz deseni (JCPDS no: 22-0509)

20	Şiddet	h	k	l	20	Şiddet	h	k	l	20	Şiddet	h	k	l
18,28	25	1	1	1	47,23	4	3	3	1	71,05	16	6	2	0
30,06	100	2	2	0	53,51	40	4	2	2	79,08	6	4	4	4
35,48	10	3	1	1	57,01	6	5	1	1	86,86	14	6	4	2
37,1	4	2	2	2	62,63	16	4	4	0					
43,12	30	4	0	0	65,86	4	5	3	1					

Çizelge 4.5. Ba₂CaWO₆ konut fazının XRD verileri (JCPDS no: 22-0509).

4.1.1.9. Ba₂CaWO₆:Ln (Ln: Eu³⁺, Dy³⁺) ışıldarlarının fotolüminesans çalışmaları

Ba2CaWO6:Eu³⁺ ışıldarının fotolüminesans çalışmaları

Ba₂CaWO₆:Eu³⁺ışıldarının uyarma spektrumu Şekil 4.17'de verilmektedir. Uyarma spektrumunda 300 nm'de geniş uyarma bandı gözlenmektedir. 300 nm'de gözlenen bu şiddetli ve geniş uyarma bandı konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca Eu³⁺-O²⁻ arasındaki yük transfer geçişine ait bantlar ve Eu³⁺ aktivatör iyonunun ⁷F₀→⁵L_{*j*} (*j*=0-5) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır. 395 nm'deki uyarma bandı da Eu³⁺ aktivatör iyonunun ⁷F₀→⁵L₆ geçişine aittir.

Ba₂CaWO₆:Eu³⁺ ışıldarının ışıma spektrumunda 595 ve 617 nm'de gözlenen şiddetli ışıma bantları Eu³⁺ iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ve ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ geçişlerine aittir. Ayrıca 650-750 nm arasında gözlenen ışıma bantları ise Eu³⁺ iyonlarının ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (*j*=3, 4) geçişlerini göstermektedir [22].

Şekil 4.17. Katı hal ve hidrotermal yöntem ile hazırlanmış $Ba_2CaWO_6:Eu^{3+}$ ışıldarının uyarma ve ışıma spektrumları.

Işıldar faza ait sönüm eğrileri Şekil 4.18'de verilmektedir. Sönüm eğrilerinden elde edilen verilere göre katı hal yöntemi ve hidrotermal yöntemle hazırlanan ışıldar fazın sönüm süreleri (τ) sırasıyla 3.13 ve 4.79 ms olduğu belirlenmiştir.

Şekil 4.18. Katı hal ve hidrotermal yöntem ile hazırlanmış Ba₂CaWO₆:Eu³⁺ ışıldarının sönüm eğrileri.

$Ba_2CaWO_6:Dy^{3+}$ ışıldarının fotolüminesans çalışmaları

Katı hal yöntemi ve hidrotermal yöntemle sentezlenmiş Ba₂CaWO₆:Dy³⁺ ışıldarlarının uyarma ve ışıma spektrumu Şekil 4.19'da verilmektedir. Uyarma spektrumunda katı hal yöntemi ile sentezlenen malzeme için 298 nm'de, hidrotermal yöntem ile sentezlenen malzeme için 316 nm'de geniş uyarma bantları gözlenmektedir. Bu şiddetli ve geniş uyarma bantları konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca Dy³⁺-O²⁻ arasındaki yük transfer geçişine ait bantlar ve Dy³⁺ aktivatör iyonunun ${}^{6}H_{15/2} \rightarrow {}^{4}M_{17/2}$, geçişine ait bantlar bu geniş uyarma bandı altında kalmaktadır. Dy³⁺ iyonunun ${}^{6}H_{15/2} \rightarrow {}^{4}M_{15/2}$ ve ${}^{6}H_{15/2} \rightarrow {}^{6}P_{7/2}$ geçişlerine ait uyarma bandı 360 nm'de gözlenmektedir.

Ba₂CaWO₆:Dy³⁺ ışıldarının ışıma spektrumunda 492 ve 585 nm'de gözlenen şiddetli ışıma bantları Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ve ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ geçişlerine aittir. Ayrıca 650-800 nm arasında gözlenen düşük şiddetli ışıma bantları ise Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{j}$ (*j*=11/2, 9/2) geçişlerine aittir [41].

Şekil 4.19. Katı hal ve hidrotermal yöntem ile hazırlanmış $Ba_2CaWO_6:Dy^{3+}$ uyarma ve ışıma spektrumları.

Işıldar faza ait sönüm eğrileri Şekil 4.20'de verilmektedir. Sönüm eğrilerinden elde edilen verilere göre katı hal yöntemi ve hidrotermal yöntemle hazırlanan ışıldar fazın sönüm süreleri (τ) sırasıyla 0.86 ve 1.51 ms olduğu belirlenmiştir.

Şekil 4.20. Katı hal ve hidrotermal yöntem ile hazırlanmış $Ba_2CaWO_6:Dy^{3+}$ ışıldarının sönüm eğrileri.

4.1.1.10. Hidrotermal yöntemle hazırlanan Ba_2CaWO_6 :Ln (Ln: Eu^{3+} , Dy^{3+}) ışıldarlarının SEM-EDX analizleri

Ba₂CaWO₆:Eu³⁺ ışıldarının SEM-EDX analizleri

Ba₂CaWO₆:Eu³⁺ ışıldarının EDX grafiği Şekil 4.21'de verilmiştir. EDX ölçümleri 0-20 keV aralığında yapılmıştır. Yapılan analizde Ca, Ba, O, W ve Eu elementlerinin yapıda bulunduğu tespit edilmiştir. Bu da XRD sonuçları ile birlikte öngörülen yapının oluştuğunu kanıtlamaktadır. Malzemeler platin kaplanarak analiz edildiği için Pt elementinin varlığı da gözlenmektedir.

Şekil 4.21. Ba2CaWO6:Eu3+ ışıldarının EDX grafiği.

Ba₂CaWO₆:Eu³⁺ ışıldarına ait SEM görüntüleri Şekil 4.22'de verilmektedir. SEM görüntülerinden topaklanma oluştuğu ve taneciklerin serbest halde olmadıkları anlaşılmaktadır. Tanecik boyutu dağılımı homojen olmayıp 2-30 μm aralığındadır.

Şekil 4.22. Ba₂CaWO₆:Eu³⁺ışıldarına ait SEM görüntüleri.

Ba₂CaWO₆:Dy³⁺ ışıldarının SEM-EDX analizleri

Ba₂CaWO₆:Dy³⁺ ışıldarının EDX grafiği Şekil 4.23'de verilmiştir. EDX ölçümleri 0-20 keV aralığında yapılmıştır. Yapılan analizde Ca, Ba, O, W ve Dy elementlerinin yapıda bulunduğu tespit edilmiştir. Bu da XRD sonuçları ile birlikte öngörülen yapının oluştuğunu kanıtlamaktadır. Malzemeler platin kaplanarak analiz edildiği için Pt elementinin varlığı da gözlenmektedir.

Şekil 4.23. Ba₂CaWO₆:Dy³⁺ ışıldarının EDX grafiği.

Ba₂CaWO₆:Dy³⁺ ışıldarına ait SEM görüntüleri Şekil 4.24'de verilmektedir. SEM görüntülerinden taneciklerin serbest halde olmayıp, topaklanma oluştuğu gözlenmiştir. Tanecik boyutu dağılımı homojen olmayıp 2-16 µm aralığındadır.

Şekil 4.24. Ba₂CaWO₆:Dy³⁺ ışıldarına ait SEM görüntüleri.

4.1.2. Ca₂MgWO₆:Ln, Sr₂MgWO₆:Ln', Ba₂MgWO₆:Ln" (Ln: Eu³⁺, Dy³⁺; Ln': Eu³⁺, Dy³⁺, Pr³⁺, Tb³⁺; Ln": Eu³⁺, Pr³⁺) Işıldarlarını Tanımlama Çalışmaları

4.1.2.1. Ca2MgWO6 konut fazının yapı analizi

Ca₂MgWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.25'de; toz deseni verileri de Çizelge 4.6'da verilmektedir. Analizi yapılan toz deseninin Ca₂MgWO₆ (JCPDS no: 48-0108) yapısına ait olduğu belirlenmiştir. Malzemenin kristal sistemi ortorombik; uzay grubu, Pmm2 (25) ve hücre parametreleri de a=7.71 b=5.41 c=5.54 Å ve $\alpha=\beta=\gamma=90^{\circ}$ olarak verilmektedir.

Şekil 4.25. Ca₂MgWO₆ konut fazının X-ışını toz deseni (JCPDS no: 48-0108).

<u>, 20</u>	Şiddet	h	k	l	20	Şiddet	h	k	Ì	20	Şiddet	h	k	l
19,76	60	1	0	1	46,84	45	0	2	2	62,44	11	5	0	1
20,03	52	1	1	0	50,83	3	1	0	3	68,54	18	4	2	2
22,97	57	0	1	1	50,77	10	3	1	2	69,35	4	0	4	0
25,67	3	1	1	1	51,28	6	3	2	1	71,28	3	1	1	4
32,32	25	0	0	2	51,80	6	0	1	3	72,10	6	2	0	4
32,74	100	2	1	1	52,90	14	4	1	1	72,40	8	1	4	1
33,04	26	0	2	0	57,76	14	2	1	3	73,02	3	1	3	3
38,27	18	1	1	2	58,18	8	4	0	2	78,19	10	2	3	3
38,56	10	3	0	1	58,80	24	4	2	0					
38,77	35	3	1	0	61,83	6	3	0	3					

Çizelge 4.6. Ca2MgWO6 konut fazının XRD verileri (JCPDS no: 48-0108).

4.1.2.2. Ca₂MgWO₆:Ln (Ln: Eu³⁺, Dy³⁺) ışıldarlarının fotolüminesans çalışmaları

Ca₂MgWO₆:Eu³⁺ ışıldarının fotolüminesans çalışmaları

Ca₂MgWO₆:Eu³⁺ ışıldarının uyarma spektrumu Şekil 4.26.'da verilmektedir. Uyarma spektrumunda 295 nm'de gözlenen şiddetli ve geniş uyarma bandı konut karistalin yük transfer geçişine karşılık gelmektedir. Eu³⁺-O²⁻ arasındaki yük transfer geçişine bantlar ve Eu³⁺ aktivatör iyonunun ⁷F₀ \rightarrow ⁵L_{*j*} (*j*=0-5) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır. 393 nm'deki uyarma bandı da Eu³⁺ aktivatör iyonunun ⁷F₀ \rightarrow ⁵L₆ geçişine aittir.

Ca₂MgWO₆:Eu³⁺ ışıldarının ışıma spektrumunda 593, 616, 662 ve 697 nm'de dört ışıma bandı görülmektedir. En şiddetlisi 616 nm'de ${}^{5}D_{1} \rightarrow {}^{7}F_{2}$ geçişine ait olan bu ışıma bantları Eu³⁺ iyonlarının ${}^{5}D_{1} \rightarrow {}^{7}F_{j}$ (*j*=1-4) geçişlerine karşılık gelmektedir [22].

Şekil 4.26. Ca₂MgWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu

Işıldar faza ait sönüm eğrisi Şekil 4.27'de verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 9.84 ms olduğu belirlenmiştir.

Şekil 4.27. Ca₂MgWO₆:Eu³⁺ ışıldarının sönüm eğrisi.

$Ca_2MgWO_6:Dy^{3+}$ ışıldarının fotolüminesans çalışmaları

Ca₂MgWO₆:Dy³⁺ ışıldarlarının uyarma ve ışıma spektrumu Şekil 4.28'de verilmektedir. Uyarma spektrumunda 287 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bantları konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca Dy³⁺-O²⁻ arasındaki yük transfer geçişine ait bantlar ve Dy³⁺ aktivatör iyonunun ${}^{6}H_{15/2} \rightarrow {}^{4}M_{17/2}$, geçişine ait bantlar bu geniş uyarma bandı altında kalmaktadır. Dy³⁺ iyonunun ${}^{6}H_{15/2} \rightarrow {}^{4}M_{15/2}$ ve ${}^{6}H_{15/2} \rightarrow {}^{6}P_{7/2}$ geçişlerine ait uyarma bandı 355 nm'de gözlenmektedir.

Ca₂MgWO₆:Dy³⁺ ışıldarının ışıma spektrumunda 482 ve 575 nm'de gözlenen şiddetli ışıma bantları Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ve ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ geçişlerine aittir. Ayrıca 650-800 nm arasında gözlenen düşük şiddetli ışıma bantları ise Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{j}$ (*j*=11/2, 9/2) geçişlerine aittir [41].

Şekil 4.28. Ca₂MgWO₆:Dy³⁺ ışıldarlarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.29'da verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 3.90 ms olduğu belirlenmiştir.

Şekil 4.29. Ca2MgWO6:Dy3+ ışıldarlarının sönüm eğrisi.

4.1.2.3. Sr₂MgWO₆ konut fazının yapı analizi

Sr₂MgWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.30'da; toz deseni verileri de Çizelge 4.7'de verilmektedir. Analizi yapılan toz deseninde Sr₂MgWO₆ (JCPDS no: 74-8160) yapısının yanında SrWO₄ (JCPDS no: 08-0490), Sr₂WO₅ (JCPDS no: 25-0810) ve Sr₃WO₆ (JCPDS no: 28-1259) yapılarına ait piklerin varlığı gözlenmiştir. PDF kartında referans alınan ve literatürde yapılmış olan çalışmada da karışım elde edilmiştir [13]. Malzemenin kristal sistemi tetragonal; uzay grubu, I4/m ve hücre parametreleri de a=b=5.587 c=7.949 Å ve α = β = γ =90° olarak verilmektedir.

Şekil 4.30. Sr₂MgWO₆ konut fazının X-ışını toz deseni (JCPDS no: 74-8160).

20	Şiddet	h	k	l	20	Şiddet	h	k	l	20	Şiddet	h	k	l
19,44	61	1	0	1	45,98	29	2	2	0	67,02	7	4	0	0
22,36	2	0	0	2	50,22	10	1	2	3	70,19	3	1	2	5
22,48	3	1	1	0	50,38	5	3	0	1	70,35	3	2	3	3
31,96	100	1	1	2	56,92	18	2	0	4	70,46	3	4	1	1
32,04	60	2	0	0	57,10	34	3	1	2	75,72	6	1	1	6
37,63	12	1	0	3	60,57	3	1	0	5	76,27	9	3	3	2
37,76	23	1	2	1	60,80	3	3	0	3	79,51	2	4	1	3
39,47	2	2	0	2	60,97	5	2	3	1	84,87	6	4	0	4
45,68	16	0	0	4	66,80	15	2	2	4	88,36	2	5	0	1

Çizelge 4.7. Sr₂MgWO₆ konut fazının XRD verileri (JCPDS no: 74-8160).

4.1.2.4. Sr₂MgWO₆:Ln (Ln: Eu³⁺, Dy³⁺,Pr³⁺, Tb³⁺) ışıldarlarının fotolüminesans çalışmaları

Sr₂MgWO₆:Eu³⁺ ışıldarının fotolüminesans çalışmaları

Sr₂MgWO₆:Eu³⁺ ışıldarının uyarma spektrumu Şekil 4.31'de verilmektedir. Uyarma spektrumunda 286 nm'de gözlenen şiddetli ve geniş uyarma bandı konut karistalin yük transfer geçişine karşılık gelmektedir. Eu³⁺-O²⁻ arasındaki yük transfer geçişine bantlar ve Eu³⁺ aktivatör iyonunun ⁷F₀ \rightarrow ⁵L_{*j*} (*j*=0-5) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır.

 $Sr_2MgWO_6:Eu^{3+}$ ışıldarının ışıma spektrumunda 596, 618, 665 ve 722 nm'de dört ışıma bandı görülmektedir. En şiddetlisi 596 nm'de ${}^5D_1 \rightarrow {}^7F_1$ geçişine ait olan bu ışıma bantları Eu^{3+} iyonlarının ${}^5D_1 \rightarrow {}^7F_j$ (*j*=1-4) geçişlerine karşılık gelmektedir [22].

Şekil 4.31. Sr₂MgWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.32'de verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 3.17 ms olduğu belirlenmiştir.

Şekil 4.32. Sr₂MgWO₆:Eu³⁺ ışıldarının sönüm eğrisi.

*Sr*₂*MgWO*₆:*Dy*³⁺ ışıldarının fotolüminesans çalışmaları

 $Sr_2MgWO_6:Dy^{3+}$ ışıldarının uyarma ve ışıma spektrumu Şekil 4.33.'de verilmektedir. Uyarma spektrumunda 294 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bantları konut kristalin yük transfer geçişine karşılık gelmektedir. Ayrıca $Dy^{3+}-O^{2-}$ arasındaki yük transfer geçişine ait bantlar ve Dy^{3+} aktivatör iyonunun ${}^{6}H_{15/2} \rightarrow {}^{4}M_{17/2}$, ${}^{6}H_{15/2} \rightarrow {}^{4}M_{15/2}$ ve ${}^{6}H_{15/2} \rightarrow {}^{6}P_{7/2}$ geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır.

Sr₂MgWO₆:Dy³⁺ ışıldarının ışıma spektrumunda 480 ve 574 nm'de gözlenen şiddetli ışıma bantları Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ve ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ geçişlerine aittir. Ayrıca 650-800 nm arasında gözlenen düşük şiddetli ışıma bantları ise Dy³⁺ iyonlarının ${}^{4}F_{9/2} \rightarrow {}^{6}H_{j}$ (*j*=11/2, 9/2) geçişlerine aittir [41].

Şekil 4.33. Sr₂MgWO₆:Dy³⁺ ışıldarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.34'de verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 4.97 ms olduğu belirlenmiştir.

Şekil 4.34. Sr₂MgWO₆:Dy³⁺ ışıldarının sönüm eğrisi.

*Sr*₂*MgWO*₆:*Pr*³⁺ ışıldarının fotolüminesans çalışmaları

 $Sr_2MgWO_6:Pr^{3+}$ ışıldarının uyarma ve ışıma spektrumu Şekil 4.35'de verilmektedir. Uyarma spektrumunda 296 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bandı $W^{6+}-O^{2-}$ arasındaki yük transfer geçişine aittir.

Sr₂MgWO₆:Pr³⁺ ışıldarının ışıma spektrumunda 492 ve 648 nm'de gözlenen şiddetli ışıma bantları Pr³⁺ iyonlarının ³P₀→³H₄ ve ³P₀→³F₂ geçişlerine aittir. Bu 2 şiddetli bandın yanı sıra 467 nm'de ³P₀→³H₆, 637 ve 690 nm'de ¹D₂→³H_j (*j*=4,5) geçişlerine ait bantlar gözlenmektedir [42].

Şekil 4.35. Sr₂MgWO₆:Pr³⁺ ışıldarının uyarma ve ışıma spektrumu.

*Sr*₂*MgWO*₆:*Tb*³⁺ ışıldarının fotolüminesans çalışmaları

 $Sr_2MgWO_6:Tb^{3+}$ ışıldarının uyarma ve ışıma spektrumu Şekil 4.36'da verilmektedir. Uyarma spektrumunda 293 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bantları konut kristalin yük transfer geçişine ve Tb^{3+} iyonunun 4f \rightarrow 5d geçişine karşılık gelmektedir.

Sr₂MgWO₆:Tb³⁺ ışıldarının ışıma spektrumunda 491 ve 545 nm'de gözlenen şiddetli ışıma bantları Tb³⁺ iyonlarının ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ ve ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ geçişlerine aittir. Ayrıca 587 ve 622 nm'de gözlenen düşük şiddetli ışıma bantları ise Tb³⁺ iyonlarının ${}^{5}D_{4} \rightarrow {}^{7}F_{j}$ (*j*=4, 3) geçişlerine aittir [43].

Şekil 4.36. Sr₂MgWO₆:Tb³⁺ ışıldarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.37'de verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 4.17 ms olduğu belirlenmiştir.

Şekil 4.37. Sr₂MgWO₆:Tb³⁺ ışıldarının sönüm eğrisi.
4.1.2.5. Ba₂MgWO₆ konut fazının yapı analizi

Ba₂MgWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.38'de; toz deseni verileri de Çizelge 4.8'de verilmektedir. Analizi yapılan toz deseninin Ba₂MgWO₆ (JCPDS no: 73-2404) yapısına ait olduğu belirlenmiştir. Malzemenin kristal sistemi kübik; uzay grubu, Fm<u>3</u>m ve hücre parametreleri de a=b=c=8.112 Å ve $\alpha=\beta=\gamma=90^{\circ}$ olarak verilmektedir.

Şekil 4.38. Ba₂MgWO₆ konut fazının X-ışını toz deseni (JCPDS no: 73-2404).

, ,		<u> </u>												
20	Şiddet	h	k	1	20	Şiddet	h	k	1	20	Şiddet	h	k	1
18,95	32	1	1	1	49,08	4	3	3	1	73,94	12	6	2	0
31,20	100	2	2	0	55,51	32	4	2	2	82,39	4	4	4	4
36,78	13	3	1	1	59,18	5	5	1	1	85,58	2	5	5	1
38,46	5	2	2	2	65,06	14	4	4	0					
44,70	27	4	0	0	68,44	4	5	3	1					

Çizelge 4.8. Ba₂MgWO₆ konut fazının XRD verileri (JCPDS no: 73-2404).

4.1.2.6. Ba₂MgWO₆:Ln (Ln: Eu³⁺, Pr³⁺) ışıldarlarının fotolüminesans çalışmaları

$Ba_2MgWO_6:Eu^{3+}$ ışıldarının fotolüminesans çalışmaları

Ba₂MgWO₆:Eu³⁺ ışıldarının uyarma spektrumu Şekil 4.39'da verilmektedir. Uyarma spektrumunda 300 nm'de gözlenen şiddetli ve geniş uyarma bandı konut karistalin yük transfer geçişine karşılık gelmektedir. Eu³⁺-O²⁻ arasındaki yük transfer geçişine bantlar ve Eu³⁺ aktivatör iyonunun ⁷F₀ \rightarrow ⁵L_{*j*} (*j*=0-5) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır.

Ba₂MgWO₆:Eu³⁺ ışıldarının ışıma spektrumunda 596, 618, 665 ve 720 nm'de dört ışıma bandı görülmektedir. En şiddetlisi 596 nm'de ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ geçişine ait olan bu ışıma bantları Eu³⁺ iyonlarının ${}^{5}D_{1} \rightarrow {}^{7}F_{j}$ (*j*=1-4) geçişlerine karşılık gelmektedir [22].

Şekil 4.39. Ba₂MgWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.40'da verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 3.27 ms olduğu belirlenmiştir.

Şekil 4.40. Ba2MgWO6:Eu3+ ışıldarının sönüm eğrisi.

$Ba_2MgWO_6: Pr^{3+}$ ışıldarının fotolüminesans çalışmaları

 $Ba_2MgWO_6:Pr^{3+}$ ışıldarlarının uyarma ve ışıma spektrumu Şekil 4.41'de verilmektedir. Uyarma spektrumunda 290 nm'de geniş uyarma bandı gözlenmektedir. Bu şiddetli ve geniş uyarma bandı W⁶⁺-O²⁻ arasındaki yük transfer geçişine aittir.

Ba₂MgWO₆:Pr³⁺ ışıldarının ışıma spektrumunda 488 ve 644 nm'de gözlenen şiddetli ışıma bantları Pr³⁺ iyonlarının ${}^{3}P_{0}\rightarrow{}^{3}H_{4}$ ve ${}^{3}P_{0}\rightarrow{}^{3}F_{2}$ geçişlerine aittir. Bu iki şiddetli bandın yanı sıra 467 nm'de ${}^{3}P_{0}\rightarrow{}^{3}H_{6}$, 630 ve 684 nm'de ${}^{1}D_{2}\rightarrow{}^{3}H_{j}$ (*j*=4,5) geçişlerine ait bantlar gözlenmektedir [42]. Altınkaya, R. 2014. Lantanoid İyonlarıyla Katkılanmış Yeni Toprak Alkali Ortotungstat Işıldarlarının Hazırlanması ve Fiziksel Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi

Şekil 4.41. Ba₂MgWO₆:Pr³⁺ ışıldarının uyarma ve ışıma spektrumu.

4.1.3. Ba₂ZnWO₆ ve Ba₂ZnWO₆:Eu³⁺ Işıldarlarını Tanımlama Çalışmaları

4.1.3.1. Ba₂ZnWO₆ konut fazının yapı analizi

Ba₂ZnWO₆ konutunun tanımlama çalışmaları Winxpow paket programıyla gerçekleştirilmiştir. Ölçülen XRD spektrumu Şekil 4.42'de; toz deseni verileri de Çizelge 4.9'da verilmektedir. Analizi yapılan toz deseninin Ba₂ZnWO₆ (JCPDS no: 73-0134) yapısına ait olduğu belirlenmiştir. Malzemenin kristal sistemi kübik; uzay grubu, Fm<u>3</u>m (225) ve hücre parametreleri de a=b=c=8.118 Å ve $\alpha=\beta=\gamma=90^{\circ}$ olarak verilmektedir.

Şekil 4.42. Ba₂ZnWO₆ konut fazının X-ışını toz deseni (JCPDS no: 73-0134).

20	Şiddet	h	k	1	20	Şiddet	h	k	l	20	Şiddet	h	k	l
19,03	17	1	1	1	44,71	25	4	0	0	68,30	2	5	3	1
31,23	100	2	2	0	55,47	30	4	2	2	73,82	11	6	2	0
36,76	5	3	1	1	59,14	2	5	1	1	82,25	3	4	4	4
38 4 5	2	2	2	2	64 98	12	4	4	0					

Çizelge 4.9. Ba₂ZnWO₆ konut fazının XRD verileri (JCPDS no: 73-0134).

4.1.3.2. Ba₂ZnWO₆ ve Ba₂ZnWO₆:Eu³⁺ ışıldarlarının fotolüminesans çalışmaları

Ba₂ZnWO₆ ışıldarının fotolüminesans çalışmaları

Ba₂ZnWO₆ ışıldarının uyarma ve ışıma spektrumu Şekil 4.43'de verilmektedir. Uyarma spektrumunda tepe noktaları 255, 309 ve 377 nm ve ışıma spekturumunda da tepe noktaları 486, 526 ve 579 nm olan şiddetli ve çok sayıda bant gözlenmiştir. Bu bantların WO_6^{6-} grubunun ligant-metal yük transfer geçişine ait oldukları belirlenmiştir [7,18].

Şekil 4.43. Ba₂ZnWO₆ ışıldarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.44'de verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 2.16 ms olduğu belirlenmiştir.

Şekil 4.44. Ba₂ZnWO₆ ışıldarının sönüm eğrisi.

Ba₂ZnWO₆:Eu³⁺ ışıldarının fotolüminesans çalışmaları

Ba₂ZnWO₆:Eu³⁺ ışıldarının uyarmave ışıma spektrumu Şekil 4.45'de verilmektedir. Uyarma spektrumunda 305 nm'de gözlenen şiddetli ve geniş uyarma bandı konut karistalin yük transfer geçişine karşılık gelmektedir. Eu³⁺-O²⁻ arasındaki yük transfer geçişine bantlar ve Eu³⁺ aktivatör iyonunun ⁷F₀ \rightarrow ⁵L_{*j*} (*j*=0-5) geçişlerine ait bantlar bu geniş uyarma bandı altında kalmaktadır.

Ba₂ZnWO₆:Eu³⁺ ışıldarının ışıma spektrumunda 596, 618, 666 ve 720 nm'de dört ışıma bandı görülmektedir. En şiddetlisi 596 nm'de ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ geçişine ait olan bu ışıma bantları Eu³⁺ iyonlarının ${}^{5}D_{1} \rightarrow {}^{7}F_{j}$ (*j*=1-4) geçişlerine karşılık gelmektedir [22].

Şekil 4.45. Ba₂ZnWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu.

Işıldar faza ait sönüm eğrisi Şekil 4.46'da verilmektedir. Sönüm eğrisinden elde edilen verilere göre ışıldar fazın sönüm süresinin (τ) 3.23 ms olduğu belirlenmiştir.

Şekil 4.46. Ba₂ZnWO₆:Eu³⁺ ışıldarının sönüm eğrisi.

4.1.3.3. Ba₂ZnWO₆ ışıldarının termolüminesans çalışmaları

Ba₂ZnWO₆ ışıldarı 5 dk β -ışını ile uyarıldıktan sonra 25-400 °C aralığında termolüminesans (TL) ölçümleri yapıldı (Şekil 4.47) Band maksimum sıcaklığı 98 °C olarak belirlendi. Elde edilen verilerden pik biçimi yöntemiyle aktivasyon enerjisi (E_{ort}), frekans faktörü (s) ve kinetik mertebesi (b) hesaplanarak Çizelge 4.10'da verilmiştir.

Şekil 4.47. Ba₂ZnWO₆ ışıldarının termolüminesans eğrisi.

Çizelge 4.10. Ba₂ZnWO₆ ışıldarının termolüminesans verileri.

b	E_{τ} (eV)	E _{\delta} (eV)	$E_{\omega} (eV)$	Eort (eV)	S
2	0,207	0,288	0,250	0,248	0,021

5. SONUÇ VE ÖNERİLER

- Tez kapsamında hedeflenen, ortotungustat bazlı yeni ışıldarlar Katı Hal ve Hidrotermal Sentez yöntemleriyle sentezlendi ve karakterize edildi. Konut fazlara lantanoid iyonları katkılanarak yeni ışıldar fazlar sentezlendi. Sentezlenen tüm ışıldarlar Çizelge 4.1'de verilmektedir.
- Yapısal tanımlama çalışmalarında X-ışını toz kırınımı tekniği kullanılmış; elektronik tanımlama çalışmalarında ise ışıma özelliklerinin incelenmesi için fotolüminesans ve tuzak parametrelerinin hesaplanması için termoluminesans teknikleri kullanılmıştır. Tanecik boyutları ise SEM tekniği ile incelenmiştir.
- Katkılanan lantanoid iyonlarından, Eu³⁺ iyonlarının 570-750 nm aralığında ⁵D₀→⁷F_j (*j*=0-4) [22]; Pr³⁺ iyonlarının 450-700 nm aralığında ³P₀→³F₂ ve ¹D₂→³H_j (*j*=4-6) [42]; Tb³⁺ iyonlarının 450-650 nm aralığında ⁵D₄→⁷F_j (*j*=3-6) [43] ve Dy³⁺ iyonlarının 450-800 nm aralığında ⁴F_{9/2}→⁶H_j (*j*=15/2-9/2) [41] geçişlerinden dolayı karakteristik ışıma bantları gözlenmektedir.
- LED'lerde kullanılan ışıldarlara yeni bileşimlere sahip ışıldarlar ilave edilmiştir. Bu yeni ışıldar fazların LED'lere uygulanması üzerine çalışmalar yapılması planlanmaktadır.

KAYNAKLAR

- [1] Emen F. M., "Silikat ve Aluminat Bazlı Yeni Işıldarın Hazırlanması ve Karakterizasyonu", Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 2s., (2009).
- [2] Paulose, P.I., "Luminescence Studies of Certain Doped Phosphors and Glassy Materials", Phd. Thesis, School of Pure&Applied Physics, Mahatma Gandhi University, Kottayam-686 560, India, 137pp, (2002).
- [3] Blistanov, A. A., Zadneprovski, B. I., Ivanov, M. A., Kochurikhin, V. V., Petrakov, V. S. and Yakimova, I. O., "Luminescence of Crystals of Divalent Tungstates", Crystallography Reports, 50: 284-290, (2005).
- [4] Blasse, G., Bril, A., "On the Eu³⁺ Fluorescence in Mixed Metal Oxides. III. Energy Transfer in Eu³⁺-Activated Tungstates and Molybdates of the Type Ln₂WO₆ and Ln₂MoO₆", The Journal of Chemical Physics, 45: 2350, (1966).
- [5] Borchardt, H. J., "Rare-Earth Tungstates and 1:1 Oxytungstates", The Journal of Chemical Physics, 39: 504, (1963).
- [6] Emen, F. M., "Silikat ve Aluminat Bazlı Yeni Işıldarın Hazırlanması ve Karakterizasyonu", Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 18 s., (2009).
- [7] Zhang, X., Li, Z., Zhang, H., Ouyanga, S., Zoua, Z., "Luminescence Properties of Sr₂ZnWO₆:Eu³⁺ Phosphors", Journal of Alloys and Compounds, 469: L6–L9, (2009).
- [8] Huang, J., Xu, J., Li, H., Luo, H., Yu, X., Li, Y., "Determining The Structure of Tetragonal Y₂WO₆ and The Site Occupation of Eu³⁺ Dopant", Journal of Solid State Chemistry, 184: 843–847, (2011).
- [9] Ye, S., Wang, C. H., Liu, Z. S., Lu, J., Jing, X. P., "Photoluminescence and Energy Transfer of Phosphor Series Ba_{2-z}Sr_zCaMo_{1-y}W_yO₆:Eu,Li for White Light UVLED Applications", Applied Physics B, 91: 551–557, (2008).

- [10] Zhang, Z., Zhang, H., Duana, C., Yuan, J., Wang, X., Xiong, D., Chena, H., Zhaoa, J., "Structure Refinement of Lu₂WO₆ and Luminescent Properties of Eu³⁺, Pr³⁺ Doped Lu₂WO₆", Journal of Alloys and Compounds, 466: 258– 263, (2008).
- King, G., Abakumov, A. M., Hadermann, J., Alekseeva, A. M., Rozova, M. G., Perkisas, T., Woodward, P. M., Tendeloo, G. V., and Antipov, E. V., "Crystal Structure and Phase Transitions in Sr₃WO₆", Inorganic Chemistry, 49: 6058–6065, (2010).
- [12] Gateshki, M. and Igartua, J. M., "Crystal Structures and Phase Transitions of The Double-Perovskite Oxides Sr₂CaWO₆ and Sr₂MgWO₆" Journal of Physics, 16: 6639–6649, (2004).
- Patwe, S.J., Achary, S.N., Mathews, M.D., Tyag, A.K., "Synthesis, Phase Transition and Thermal Expansion Studies on M₂MgWO₆ (M=Ba²⁺ and Sr²⁺) Double Perovskites", Journal of Alloys and Compounds, 390: 100–105, (2005).
- [14] Ezzahi, A., Manoun, B., Ider, A., Bih, L., Benmokhtar, S., Azrour, M., Azdouz, M., Igartua, J.M., Lazor, P., "X-ray Diffraction and Raman Spectroscopy Studies of BaSrMWO₆ (M=Ni, Co, Mg) Double Perovskite Oxides", Journal of Molecular Structure, 985: 339–345, (2011)
- [15] Fu, W.T., Akerboom, S., Ijdo, D. J. W., "Crystal Structures Of The Double Perovskites Ba₂Sr_{1-x}Ca_xWO₆", Journal of Solid State Chemistry, 180: 1547-1552, (2007).
- [16] Lei, F., Yan, B., "Synthesis and Photoluminescence of Perovskite-type Ca₂MgWO₆:Eu³⁺ Micrometer Phosphor", Journal of Optoelectronics and Advanced Materials, 10: 158-163, (2008).
- [17] Achary, S.N., Chakraborty, K.R., Patwe, S.J., Shinde, A.B., Krishna, P.S.R., Tyagi, A.K., "Anisotropic Thermal Expansion Behavior in Tetragonal Sr₂MgWO₆", Materials Research Bulletin, 41: 674–682, (2006).

- [18] Bugaris, D. E., Hodges, J. P., Huq, A., Loye, H. C. Z., "Crystal Growth, Structures and Optical Properties Of The Cubic Double Perovskites Ba₂MgWO₆ and Ba₂ZnWO₆", Journal of Solid State Chemistry, 184: 2293– 2298, (2011).
- [19] Özpozan, N.; "M_xM'_{3-x}WO₆ Tipi Toprakalkali Ortotungustatlarının X-Işınları Toz Difraksiyonu Yöntemi İle İncelenmesi", Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 5 s., (1987).
- [20] Özpozan, N.; "Dörtlü Toprak Alkali Ortotungstat ve Telluratlarında Yeni fazların Sentezi ve Faz Dönüşümlerinin İncelenmesi", Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 86-88 s., (1992).
- [21] Emen, F. M., Altinkaya, R., Sonmez, S. and Kulcu, N., "Synthesis, Characterization and Luminescence Properties of Sr₃WO₆:Eu³⁺ Phosphor", Acta Physica Polonica A, 121: 249-250, (2012)
- [22] Emen, F. M., Altinkaya, R., "Luminescence and Thermoluminescence Properties of Sr₃WO₆:Eu³⁺ Phosphor", Journal of Luminescence, 134: 618-621, (2013)
- [23] Zhao, X., Ding, Y., Li, Z., Yu, T., Zou, Z., "An efficient charge compensated red phosphor Sr₃WO₆:K⁺,Eu³⁺ – For white LEDs", Journal of Alloys and Compounds, 553:221–224, (2013)
- [24] Zhang, S., Hu, Y., Chen, L., Wang, X., Ju, G., Fan, Y., "Photoluminescence properties of Ca₃WO₆:Eu³⁺ red phosphor", Journal of Luminescence, 142:116–121, (2013)
- [25] Anna Vanya Uluç, "Synthesis And Characterization of Phosphorescent Strontium Aluminate Compounds", Sabancı Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, (2008).
- [26] Fluorescence and Phosphorescence Analysis Principle and Application, New York Interscience Publishers, 48-53.
- [27] Vij, D. R., "Photoluminescence" Shionoya, S., (ed), "Luminescence of Solids", Plenum Press, New York and London, 95-133, (1998).

- [28] Heller, E. J., "The Semiclassical Way to Molecular Spectroscopy", Accounts of Chemical Research, 14: 368-375, (1981).
- [29] Emen F. M., "Silikat ve Aluminat Bazlı Yeni Işıldarın Hazırlanması ve Karakterizasyonu", Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 14s., (2009).
- [30] Sevda SÖNMEZ, "Aydınlatmada Kullanılan Işıldar Maddelerin Sentezi ve İncelenmesi", Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 18 s., (2011).
- [31] William M.Yen, Shigeo Shionoya, Hajime Yamamoto, "Phosphor Handbook", (2007).
- [32] G. Blasse, B.C. Grabmaier, "Lüminescent Materials", (1994).
- [33] Smets BMJ., "Advances in nonradiative processes in solids", Materials Chemistry and Physics, 16:283, (1992).
- [34] Franz, K. A., Kehr, W. K., Siggel, A., Wieczoreck, J., Adam, W.,
 "Ullmann's Encyclopedia of Industrial Chemistry", Wiley-VCH Verlag
 GmbH & Co. KGaA, Weinheim, 10.1002/14356007.a15 519, (2005).
- [35] Esra ÇIRÇIR, "Alüminasilikat Bazlı Yeni ışıldar Maddelerin Sentezi ve Karakterizasyonu", Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, (2011).
- [36] Kırk-Othmer., Encyclopedia of Chemical Technology, Wiley-Interscience Publication, New York, Fourth Edition, 15: 562-583, (1998).
- [37] Zang, C., "Reduction of Eu³⁺ to Eu²⁺ in MAl₂Si₂O₈ (M=Ca, Sr, Ba) in air condition", Journal of Solid State Chemistry, 182 (7): 1673-1678, (2009).
- [38] Niyazi GÜNDÜZ, "Led Işık Kaynaklı Enerji Verimli Endüstriyel Aydınlatma Armatürü Optik Tasarımı", İstanbul Teknik Üniversitesi, Enerji Enstitüsü, Yüksek Lisans Tezi, 11-13 s., (2012).
- [39] Liao, J., Qiu, B., Wen, H., Li, Y., Hong, R., You, H., "Luminescence properties of monodispersed spherical BaWO₄:Eu³⁺ microphosphors for

white light-emitting diodes", Journal of Materials Science, 46:1184–1189, (2011).

- [40] Emen F. M., "Silikat ve Aluminat Bazlı Yeni Işıldarın Hazırlanması ve Karakterizasyonu", Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 60-62s., (2009).
- [41] Sun, X., Wu, S., Liu, X., Gao, P., Huang, S., "Intensive white light emission from Dy³⁺-doped Li₂B₄O₇ glasses", Journal of Non-Crystalline Solids, 368:51–54, (2013).
- [42] Noto, L. L., Chitambo, M. L., Ntwaeaborva, O. M., Swart, H. C.,
 "Photoluminescence and thermoluminescence properties of Pr³⁺ doped ZnTa₂O₆ phosphor", Powder Technology, 247:147–150, (2013).
- [43] Jin, Y., Hu, Y., Chen, L., Wang, X., Ju, G., Mu, Z., "Luminescent properties of Tb³⁺-doped Ca₂SnO₄ phosphor", Journal of Luminescence, 138:83–88, (2013).

Altınkaya, R. 2014. Lantanoid İyonlarıyla Katkılanmış Yeni Toprak Alkali Ortotungstat Işıldarlarının Hazırlanması ve Fiziksel Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi

EKLER

Ek-1. Ca₃WO₆ konut fazının X-ışını toz deseni (JCPDS no: 22-0541, Monoklinik, P21/n, a=5,55 b=5,81 c=8,00, $\alpha=\beta=\gamma=90^{\circ}$).

Ek-2.	Ca ₃ WO ₆ k	onut fazının	toz deseni	verileri(JCPD	S no: 22-0541).
-------	-----------------------------------	--------------	------------	---------------	-----------------

20	Şiddet	h	k	l	20	Şiddet	h	k	l	20	Şiddet	h	k	l
18,99	60	0	1	1	45,28	30	2	2	0	59,37	8	-2	3	1
19,61	45	-1	0	1	45,42	30	0	0	4	60,02	4	0	1	5
22,26	65	1	1	0	46,77	3	2	2	1	60,48	4	-1	0	5
24,94	4	-1	1	1	48,47	4	0	3	1	60,93	4	-3	2	1
30,87	30	0	2	0	49,30	8	-1	2	3	61,58	3	-3	0	3
31,72	100	-1	1	2	49,97	12	-2	1	3	64,16	3	0	4	0
32,36	30	2	0	0	50,95	6	-3	0	1	65,90	8	-2	2	4
36,76	16	-1	2	1	51,16	17	-1	1	4	66,08	10	2	2	4
37,19	7	0	1	3	51,98	4	3	1	0	67,58	6	4	0	0
37,54	16	1	0	3	55,31	18	1	3	2	67,77	6	-1	4	1
37,71	20	-2	1	1	55,88	14	0	2	4	68,81	6	-2	3	3
38,38	4	0	2	2	56,92	8	-2	0	4	69,12	6	-1	2	5
39,70	4	2	0	2	57,13	13	2	0	4	69,68	8	-4	1	0
40,76	4	1	1	3	57,26	20	-3	1	2	70,46	4	-4	1	1
41,81	3	-1	2	2	57,43	19	3	1	2	73,66	10	-1	1	6

Ek-3. Ca₃WO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu.

Ek-4. Ca₃WO₆:Dy³⁺ ışıldarının uyarma ve ışıma spektrumu.

Ek-5. Sr₃WO₆ konut fazının X-ışını toz deseni (JCPDS no: 28-1259, Triklinik, P-1, a=8,37 b=8,30 c=8,21, α =89,81° β =89,91° γ =89,67°).

20	Şiddet	h	k	l	20	Şiddet	h	k	1	20	Şiddet	h	k	1
18,44	10	1	1	1	36,07	2	1	1	3	49,56	3	0	2	4
18,53	30	1	1	1	36,17	7	1	1	3	53,70	5	4	2	2
21,22	20	2	0	0	37,62	3	2	2	2	53,96	25	4	2	2
21,42	20	0	2	0	43,25	50	4	0	0	54,22	25	2	4	2
21,65	20	0	0	2	43,65	50	0	4	0	54,52	25	2	2	4
30,26	50	2	2	0	44,07	50	0	0	4	57,36	4	5	1	1
30,40	100	2	2	0	47,76	8	3	1	3	57,82	10	1	5	1
30,56	100	2	0	2	48,10	3	1	3	3	58,28	4	1	1	5
30,70	50	0	2	2	48,66	3	4	2	0	62,98	3	4	4	0
35,62	5	3	1	1	48,86	3	4	2	0	63,28	7	4	4	0
35,73	7	3	1	1	49,10	5	2	4	0	63,62	7	0	4	4
35,93	7	1	3	1	49,40	3	0	2	4	63,92	3	0	4	4

Ek-6. Sr₃WO₆ konut fazının XRD verileri (JCPDS no: 28-1259).

Ek-7. Sr_3WO_6 : Eu^{3+} ışıldarının uyarma ve ışıma spektrumu.

Ek-8. Ba₃WO₆ konutunun X-ışını toz deseni (JCPDS no: 33-0182, Kübik, Fm3m, a=b=c=17,18, $\alpha=\beta=\gamma=90^{\circ}$).

20	Şiddet	h	k	l	20	Şiddet	h	k	l	20	Şiddet	h	k	l
18,06	9	2	2	2	37,54	3	5	5	1	55,48	9	9	5	1
20,92	5	4	0	0	40,44	14	7	3	1	55,74	6	10	2	2
22,74	3	3	3	1	42,23	17	8	0	0	61,12	7	8	8	0
25,58	5	4	2	2	44,78	3	6	6	0	63,83	3	9	7	3
27,14	25	5	1	1	45,85	5	7	5	1	64,22	7	10	6	2
29,57	100	4	4	0	46,21	5	6	6	2	66,97	3	10	6	4
31,38	3	6	0	0	47,48	4	8	4	0	69,26	7	9	9	1
34,38	2	5	3	3	50,83	4	9	3	1	71,87	2	13	1	1
37,76	8	6	2	2	52,30	21	8	4	4					

Ek-9. Ba₃WO₆ konutunun XRD verileri (JCPDS no: 33-0182).

Ek-10. Ba₃WO₆: Eu^{3+} ışıldarının uyarma ve ışıma spektrumu.

Ek-11. Ca₂SrWO₆ konutunun X-ışını toz deseni (Ortorombik, Pmm2, a=8,09 b=5,83 c=5,65, α = β = γ =90°) [19].

20	Şiddet	h	k	1	20	Şiddet	h	k	l	20	Şiddet	h	k	l
18,76	54	1	1	0	44,74	29	4	0	0	64,98	9	1	4	0
19,14	41	1	0	1	46,06	2	1	2	2	67,22	2	1	0	4
21,90	24	0	1	1	48,12	3	1	3	0	68,02	3	3	3	2
24,54	5	1	1	1	48,70	4	3	2	1	68,94	4	4	3	1
30,66	27	0	2	0	49,18	4	3	1	2	73,00	3	0	4	2
31,20	100	2	1	1	49,66	5	1	0	3	73,80	5	2	3	3
31,62	21	0	0	2	50,34	7	4	1	1	73,96	8	6	1	1
36,38	11	1	2	1	50,86	5	0	1	3	77,23	3	2	4	2
36,68	6	3	1	0	54,78	16	2	3	1	81,26	2	4	4	0
36,88	10	3	0	1	56,02	16	2	1	3	83,56	3	7	0	0
37,02	12	1	1	2	58,74	3	1	3	2	88,88	2	2	3	4
40,06	2	3	1	1	59,36	4	5	0	1					
44,60	29	0	2	2	63,81	2	0	4	0					

Ek-12. Ca₂SrWO₆ konutunun indislenmiş XRD verileri.

Ek-13. Ca₂SrWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu.

Ek-14. $Ca_2SrWO_6:Dy^{3+}$ ışıldarının uyarma ve ışıma spektrumu.

Ek-15. Ba₂SrWO₆ konutunun X-ışını toz deseni (JCPDS no: 26-0190, Monoklinik, I2/m, a=6,11 b= 6,03 c= 8,55, $\alpha=\gamma=90^{\circ}\beta=91,57^{\circ}$).

20	Şiddet	h	k	l	20	Şiddet	h	k	l	20	Şiddet	h	k	l
17,94	60	0	1	1	42,31	80	0	0	4	61,42	80	0	4	0
20,72	20	1	1	0	45,92	10	-1	2	3	64,12	10	-1	2	5
29,27	10	2	0	0	46,36	10	0	3	1	64,60	10	1	4	1
29,42	10	0	2	0	47,56	10	1	3	0	68,92	60	-4	0	3
29,59	10	1	1	2	51,86	80	-2	0	4	69,11	80	-1	1	6
34,77	60	2	1	1	52,15	100	-1	3	2	69,42	60	2	4	0
36,03	10	-2	0	2	52,48	100	3	1	2	76,39	40	2	1	6
35,56	10	0	2	2	60,66	60	4	0	0	77,00	40	-4	2	3
42,08	100	2	2	0	61,04	80	-4	0	1	77,39	40	0	4	4

Ek-16. Ba₂SrWO₆ konutunun XRD verileri (JCPDS no: 26-0190).

Ek-17. Ba₂SrWO₆:Eu³⁺ ışıldarının uyarma ve ışıma spektrumu.

Ek-18. Ba₂SrWO₆:Dy³⁺ ışıldarının uyarma ve ışıma spektrumu.

Ek-19. Sr₂CaWO₆:Dy³⁺ ışıldarının uyarma ve ışıma spektrumu.

Ek-20. Ba₂MgWO₆: Tb^{3+} ışıldarının uyarma ve ışıma spektrumu.

Ek-21. Ba₂MgWO₆: Dy^{3+} ışıldarının uyarma ve ışıma spektrumu.

Ek-22. Ba₂ZnWO₆:Dy³⁺ ışıldarının uyarma ve ışıma spektrumu.

ÖZGEÇMİŞ

Adı Soyadı: Ramazan ALTINKAYA

Doğum Tarihi: 02/02/1985

Öğrenim Durumu:

Derece	Bölüm/Program	Üniversite	Yıl
Lisans	Kimya	Mersin Üniversitesi	2004 - 2011
Yüksek Lisans	Anorganik Kimya	Mersin Üniversitesi	2011 - 2014

ESERLER (Makaleler ve Bildiriler)

- F.M. Emen, R. Altinkaya, "Luminescence and thermoluminescence properties of Sr₃WO₆:Eu³⁺ phosphor" Journal of Luminescence 134 (2013) 618–621.
- F.M. Emen, R. Altinkaya, S. Sonmez, N. Kulcu, "Synthesis, Characterization and Luminescence Properties of Sr₃WO₆:Eu³⁺ Phosphor" Acta Physica Polonica A Vol. 121 (2012) 249-250.
- **3.** F.M.Emen, R. Altınkaya, S. Sönmez, N. Külcü "Synthesis, Characterization And Luminescence Properties of Sr₃WO₆:Eu³⁺ Phosphor", Advances in Applied Physics & Materials Science Congress, 12-15 May 2011, Antalya.
- 4. F. M. Emen, S. Sönmez, R. Altınkaya, G. Yıldız, M. Yeşildağ, N. Külcü "Comparation Of Luminescence Properties Of Phosphor Y₂O₃:Eu³⁺ Which Prepared By Solid State And Hydrothermal Methods" 8. Nanobilim ve Nanoteknoloji Konferansı, NANOTR 8, p.047, 25-29 Haziran 2012, Ankara.
- N. Külcü, F. M. Emen, S. Sönmez, R. Altınkaya
 "Comparation Of Luminescence Properties Of Phosphor CeMgAl₁₁O₁₇:Tb³⁺ Which Prepared By Solid State And Hydrothermal Methods" 8. Nanobilim ve Nanoteknoloji Konferansı, NANOTR 8, p.046, 25-29 Haziran 2012, Ankara.
- **6.** S. Sönmez, R. Altınkaya, F. M. Emen, N. Külcü "Synthesis, Characterization And Lüminescence Properties Of CeMgAl₁₁O₁₇:Dy³⁺

Phosphor" 8. Nanobilim ve Nanoteknoloji Konferansı, NANOTR 8, p.045, 25-29 Haziran 2012, Ankara.

- S. Sönmez, R. Altınkaya, T. Çetin, F. M. Emen, N. Külcü "Y₂O₃:Sm³⁺ Işıldarının Hazırlanması ve Lüminesans Özelliklerinin İncelenmesi" III. Ulusal Anorganik Kimya Kongresi, p.268, 19-22 Mayıs 2011, Çanakkale.
- R. Altınkaya, S. Sönmez, F. M. Emen, T. Çetin, N. Külcü "Ca₃WO₆:Eu³⁺ Işıldar Fazının Sentezi, Karakterizasyonu ve Lüminesans Özelliklerinin İncelenmesi" III. Ulusal Anorganik Kimya Kongresi, p.244, 19-22 Mayıs 2011, Çanakkale.
- R. Altınkaya, F. M. Emen, E. Ekdal, K. Ocakoğlu, T. Karalı, N. Külcü "SrMgZnSi₂O₇:Eu³⁺ Işıldar Nanotozlarının Termolüminesans Özellikleri" IV. Lüminesans Dozimetri Kongresi, LÜMİDOZ IV, p.4, 20-22 Eylül 2010, Gaziantep.
- F. M. Emen, A. Ege, E. Ekdal, S. Sönmez, R. Altınkaya, L. Türkler, N. Külcü "Hidrotermal Yöntemle Hazırlanan SrZnMgSi₂O₇:Mn²⁺ Işıldarının Termolüminesans Özellikleri" IV. Lüminesans Dozimetri Kongresi, LÜMİDOZ IV, s.16, 20-22 Eylül 2010, Gaziantep.
- Nevzat Külcü, Fatih Mehmet Emen, Ramazan Altınkaya, Sevda Sönmez, Aynur Gürbüz, Tülay Çetin "Hydrothermal Synthesis of SrMgZnSi₂O₇:Eu³⁺ Phosphor" 6. Nanobilim ve Nanoteknoloji Konferansı, NANOTR 6, p.303, 15-18 June 2010, İzmir.
- R. Altınkaya, M. Alkan, F.M. Emen, N. Külcü, V. E. Kafadar ve A.N. Yazıcı "Sol -Jel Yöntemiyle Zn₂SiO₄:Eu³⁺,Gd³⁺ Işıldarının Sentezi ve Işıma Özelliklerinin İncelenmesi" III. Lüminesans Dozimetri Kongresi, LÜMİDOZ III, 28-30 Eylül 2009, Bodrum/Muğla.
- R. Altınkaya, F. M. Emen ve N. Külcü "CdSiO₃:Eu³⁺,Y³⁺ Fazının Sentezi ve Işıma Özelliklerinin İncelenmesi" II. Ulusal Anorganik Kimya Kongresi, p.107, 16-19 Mayıs 2009, Elazığ.