ÇİNKO KATKILI ANTİBAKTERİYEL ÖZELLİKTE HİDROKSİAPATİT ÜRETİMİ VE KARAKTERİZASYONU

SÜLEYMAN ÇINAR ÇAĞAN

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MAKİNE MÜHENDİSLİĞİ ANA BİLİM DALI

YÜKSEK LİSANS TEZİ

MERSİN ARALIK - 2014

ÇİNKO KATKILI ANTİBAKTERİYEL ÖZELLİKTE HİDROKSİAPATİT ÜRETİMİ VE KARAKTERİZASYONU

SÜLEYMAN ÇINAR ÇAĞAN

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MAKİNE MÜHENDİSLİĞİ ANA BİLİM DALI

YÜKSEK LİSANS TEZİ

Danışman Yrd. Doç. Dr. Önder ALBAYRAK

MERSİN ARALIK - 2014

Süleyman Çınar ÇAĞAN tarafından Yrd. Doç. Dr. Önder ALBAYRAK danışmanlığında hazırlanan "Çinko Katkılı Antibakteriyel Özellikte Hidroksiapatit Üretimi ve Karakterizasyonu" başlıklı bu çalışma aşağıda imzaları bulunan jüri üyeleri tarafından oy birliği ile Yüksek Lisans Tezi olarak kabul edilmiştir.

Prof. Dr. Derya Ümit TALAS

Doç. Dr. İbrahim SEVİM

Yrd. Doç. Dr. Önder ALBAYRAK

Kurulu'nun Enstitüsü Yönetim Bilimleri Fen Yukarıdaki Jüri kararı .23/01/2015 tarih ve 2015 01 / 79 sayılı kararıyla onaylanmıştır.

ASLAN Doç. Dr

Bu tezde kullanılan özgün bilgiler, şekil, çizelge ve fotoğraflardan kaynak göstermeden alıntı yapmak 5846 sayılı Fikir ve Sanat Eserleri Kanunu hükümlerine tabidir.

İmza

ÇİNKO KATKILI ANTİBAKTERİYEL ÖZELLİKTE HİDROKSİAPATİT ÜRETİMİ VE KARAKTERİZASYONU Süleyman Çınar ÇAĞAN

ÖΖ

Bu tez çalışmasında, yaş kimyasal yöntem içinde yer alan asit-temelli metot kullanılarak katkısız hidroksiapatit (HA) ve farklı oranlarda çinko (Zn) katkılı HA sentezlenmiş; sentezleme aşamasında kullanılan Zn katkısının, parçacık boyutu ve morfolojisi üzerindeki etkileri belirlenmiştir. Ayrıca Zn katkısının (ağ. % 1, ağ. % 2 ve ağ. % 4) ve sinterleme sıcaklığının (1000 °C, 1100 °C, 1200 °C); HA ve yan faz oluşumu, sinterlenebilirlik, yoğunluk ve mikrosertlik üzerindeki etkileri incelenmiş; Zn katkısının yapıya dahil olup olmadığı belirlenmiştir. Asit-temelli yöntem kullanılarak sentezlenen katkısız tozlarının taramalı elektron mikroskobu (SEM) görüntülerinden, parçacık boyutunun yaklaşık 150 nm uzunluğunda, 40 nm genişliğinde ve parçacıkların iğne uçlu olduğu; sentezleme aşamasında kullanılan farklı oranlarda çinkonun parçacık boyutu ve morfolojisi üzerinde belirgin bir etkisi olmadığı sonucuna varılmıştır. X-ışını kırınımı (XRD), Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ve enerji dağılımlı X-ışını spektroskopisi (EDAX) analizleri sonucunda, katkısız ve çinko katkılı olarak sentezlenen tozların HA olduğu ve yapıya çinkonun dahil olduğu belirlenmiştir. Sinterleme sıcaklığının artması ile daha yoğun bir yapı elde edilmiş olup; sentezleme aşamasında kullanılan çinko katkısının, voğunluk ve mikrosertlik üzerinde belirgin bir etkisi olmadığı sonucuna varılmıştır.

Anahtar Kelimeler: Hidroksiapatit, Çinko katkısı, Sinterleme, XRD, Mikrosertlik, Mekanik özellikler.

Danışman: Yrd. Doç. Dr. Önder ALBAYRAK, Mersin Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü.

SYNTHESIS AND CHARACTERIZATION OF ZINC-DOPED ANTIBACTERIAL HYDROXYAPATITE Süleyman Çınar ÇAĞAN

ABSTRACT

In this study, undoped hydroxyapatite (HA) and doped HA including different contents of zinc (Zn) were synthesized by using the acid-base method which is one of the wet chemical methods. The effects of Zn content used in the synthesis stage on particle size and morphology were determined. Moreover, the effects of Zn content (wt. 1 %, wt. 2 %, wt. 4 %) and sintering temperatures (1000 °C, 1100 °C, 1200 °C) on the formation of HA and Zn-related minor phases, sinterability, density and microhardness were investigated; and it was determined that whether Zn is doped to the structure. The scanning electron microscope (SEM) observations of the undoped powders synthesized by using the acid based method revealed that needle-like particles with the length of approximately 150 nm and width of approximately 40 nm were obtained. It was determined that different contents of Zn used in the synthesis stage has no prominent effect on the particle size and morphology. The results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive X-ray analyses (EDAX) indicated the presence of Zn in the primary HA structure. It has been observed that density increases with the sintering temperature as expected; and it has been concluded that the content of zinc used in the synthesis phase has no prominent effect on both of the density and microhardness.

Keywords: Hydroxyapatite, Zinc doped, Sintering, XRD, Microhardness, Mechanical properties.

Advisor: Asst. Prof. Dr. Önder ALBAYRAK, Mersin University, Faculty of Engineering, Department of Mechanical Engineering.

TEŞEKKÜR

Bu tez çalışmam boyunca bilgi birikimiyle bana her konuda yardımcı olan, tecrübeleriyle bana yol gösteren ve karşılaştığım sorunlarda desteğini esirgemeyen tez danışmanım Yrd. Doç. Dr. Önder ALBAYRAK'a sonsuz teşekkür ederim.

Deneysel çalışmalarımda bana yardımcı olan ve sürekli fikir alışverişinde bulunduğum Arş. Gör. Mustafa UĞURLU'ya; yüksek lisans eğitimimin ilk yıllarında hep yanımda olan ve her konuda yardımlarını benden esirgemeyen dostum Arş. Gör. Görkem ŞİMŞEK'e, çalışma arkadaşlarım Arş. Gör. Hasan İBİLOĞLU, Arş. Gör. Burhan BAYHAN'a ve dostluklarıyla bana destek olan Arş. Gör. Hasan ATEŞ, Arş. Gör. Yasin ÖZAY'a teşekkürü borç bilirim.

Mersin Üniversitesi İleri Teknoloji Eğitim, Araştırma ve Uygulama Merkezinde (MEİTAM) tez kapsamında gerçekleştirilen deneysel çalışmalar sırasında yardımlarını esirgemeyen Prof. Dr. Ali DÖNDAŞ, Dr. M. Serkan YALÇIN ve Uzman Aynur GÜRBÜZ'e teşekkürlerimi sunarım.

Her zaman yanımda olan ve bana her türlü konuda bana destek olan sevgili aileme; başta annem Selma ÇAĞAN ve babam Recep ÇAĞAN'a, kardeşim Çağrı ÇAĞAN'a, yengem Özlem ÇAĞAN'a ve son olarak benim her zaman yüzümü güldüren sevgili yeğenim Bengisu ÇAĞAN'a sonsuz teşekkürlerimi sunarım.

Bu çalışma Mersin Üniversitesi Bilimsel Araştırmalar Projesi (BAP) tarafından "BAP-FBE MMB (SÇÇ) 2013-3 YL" proje numarası altında desteklenmiştir.

İÇİNDEKİLER

<u>Sayfa</u>

ÖZi
ABSTRACTii
TEŞEKKÜRiii
İÇİNDEKİLERiv
ÇIZELGELER DIZINI
ŞEKILLER DIZINI
SIMGE VE KISAL I MALAR DIZINI viii
1.GİRİŞ1
2. KAYNAK ARAŞTIRMALARI3
2 1 BİYOMALZEMELER 3
2.2 HİDROKSİAPATİT (HA)
2.2.1. Hidroksiapatitin Kullanım Alanları
3. MATERYAL VE YONTEM
3.1. KATKISIZ VE CİNKO KATKILI HİDROKSİAPATİTİN
SENTEZLENMESİ
3.1.1. Zn Katkılı HA Tozu Üretilmesi:
3.1.2. Üretilen Tozların Pelet Yapılması ve Sinterlenmesi
3.2. KARAKTERIZASYON
3.2.1 X Isini Kirinimi (XPD) 20
3 2 2 Fourier Dönüsümlü Kızılötesi Snektroskonisi (FTIR) 29
3.2.3. Taramalı Elektron Mikroskobu (SEM)
3.2.4. Vickers Mikrosertlik
3.2.5. Yoğunluk Hesabı 30
4. BULGULAR VE TARTIŞMA
5. SONUÇLAR ve ÖNERİLER49
KAYNAKLAR
ÖZGEÇMİŞ VE ESERLER LİSTESİ58

ÇİZELGELER DİZİNİ

<u>Sayfa</u>

Çizelge 2.1.	Farklı malzeme türlerinin biyomalzeme olarak üstünlükleri ve zayıflıkları					
Çizelge 2.2.	Biyomalzemelerin uygulama alanlarına göre malzeme türleri 6					
Çizelge 2.3.	HA'in fizikokimyasal, mekanik ve biyolojik özellikleri	9				
Çizelge 2.4.	Hidroksiapatit sentez yöntemleri	10				
Çizelge 2.5.	Katkısız ve katkılı HA'in mekanik özellikleri	13				
Çizelge 2.6.	Üretim aşamasında HA'e farklı oranda Mg, Zn ve Ti katkısının, sertlik üzerindeki etkisi.	16				
Çizelge 2.7.	Kimyasal kompozisyonlarına göre Zn ve Ag içeren numuneler	17				
Çizelge 2.8.	1100 °C'de 1 saat sinterlenmiş katkısız HA'in FTIR absorbans aralıklarının belirlenmesi	24				
Çizelge 2.9.	HA'nin kristal yapı parametrelerinin Rietveld analiziyle düzeltilmiş hali	25				
Çizelge 3.1.	Üretimdeki parametreler ve kodları	29				
Çizelge 4.1.	Katkısız HA tozlarının FTIR analizi	33				
Çizelge 4.2.	Sentezlenen katkısız ve Zn katkılı HA tozlarının kafes parametreleri.	39				
Çizelge 4.3.	Numunelerin sinterleme öncesi ve sinterleme sonrası EDAX analizinden elde edilen Ca, P, O, Zn katkı oranları	40				
Çizelge 4.4	Katkısız HA ve Zn katkılı HA numunelerin 1000 °C, 1100 °C, 1200 °C sinterleme sonrası mikrosertlik değerleri	47				

ŞEKİLLER DİZİNİ

<u>Sayfa</u>

a 1 1 a 4		~
Şekil 2.1	1900 ile 2000 yıllarındaki insanların yaşam süreleri	3
Şekil 2.2	Hidroksiapatitin kristal yapısı (Ca (yeşil), O (kırmızı), P (mor), H (beyaz) renklerle gösterilmektedir.)	8
Şekil 2.3.	Sol-jel metotla üretilmiş tozların TEM görüntüsü: (a) Saf HA, (b) MgO katkılı HA, (c) ZnO katkılı HA	12
Şekil 2.4.	Sinterlenmiş katkısız ve katkılı nanokristal HA'nin Vickers sertlik değeri; (A1.0: % 1 MgO; B1.0: % 1 ZnO)	13
Şekil 2.5.	Zn kullanılmadan sentezlenen katkısız HA tozların TEM görüntüsü .	14
Şekil 2.6.	(a) % 2 Zn katkılı HA, (b) % 3 Zn katkılı HA, (c) % 4 Zn katkılı HA, (d) % 5 Zn katkılı HA tozların TEM görüntüsü	14
Şekil 2.7.	Üretim aşamasında kullanılan Zn oranına göre Vickers mikrosertlik değerleri	15
Şekil 2.8	Numunenin sinterleme işleminden sonraki basma mukavemet değerleri değişim grafiği	16
Şekil 2.9.	XRD görüntüsü: HA, Z25, A15, ve (Zn + Ag)-HA numuneleri (•) Hydroxyapatite; (\diamond) β -tricalcium phosphate; (•) Ag fazı	18
Şekil 2.10.	Zn ve Ag içeren HA numunelerin FTIR grafiği	19
Şekil 2.11.	SEM görüntüsü (a) HA, (b) Z25, (c) A15, (d) Z25A15, (e) Z20A3, (f) Z15A6, (g) Z10A9, (h) Z5A12	19
Şekil 2.12.	HA ve katkılı numunelerin XRD analiz grafikleri	20
Şekil 2.13.	HA ve katkılı numunelerin FTIR analiz grafikleri	21
Şekil 2.14.	(a) HAP, (b) ZnHAP2, (c) CuHAP1 ve (d) CuHAP2'ye ait SEM görüntüleri	21
Şekil 2.15.	Katkısız HA'in FTIR analiz grafiği	23
Şekil 2.16.	0.25 mol Zn katkılı HA'in XRD grafiği, ana faz HA, yan fazlar +, *, ", ° sırasıyla ZnO, α -TCP, CaO, β -TCP	24
Şekil 3.1.	Çinko katkılı HA ve katkısız HA üretim akış şeması	28
Şekil 4.1	Katkısız HA'in SEM görüntüsü	31
Şekil 4.2	% 1 Zn katkılı HA numunenin SEM görüntüsü	32
Şekil 4.3	% 2 Zn katkılı HA numunenin SEM görüntüsü	32
Şekil 4.4.	% 4 Zn katkılı HA numunenin SEM görüntüsü	33

Şekil 4.5.	Katkısız HA ve tozlarının sinterleme öncesi FTIR grafiği	34
Şekil 4.6.	Katkısız HA 1000 °C sinterleme sonrası FTIR grafiği	34
Şekil 4.7.	Katkısız HA 1100 °C sinterleme sonrası FTIR grafiği	35
Şekil 4.8.	Katkısız HA tozlarının 1200 °C sinterleme sonrası FTIR grafiği	35
Şekil 4.9.	Katkısız HA ve Zn katkılı HA tozlarının sinterleme öncesi XRD grafiği (a ZnO pikini göstermektedir.)	36
Şekil 4.10.	Katkısız HA ve Zn katkılı HA tozlarının 1000 °C sinterleme sonrası grafiği (\blacksquare ZnO pikini ve \bullet β -TCP göstermektedir.)	37
Şekil 4.11.	Katkısız HA ve Zn katkılı HA tozlarının 1100 °C sinterleme sonrası XRD grafiği (\blacksquare ZnO pikini ve \bullet β -TCP göstermektedir.)	38
Şekil 4.12.	Katkısız HA ve Zn katkılı HA tozlarının 1200 °C sinterleme sonrası XRD grafiği (\blacksquare ZnO pikini ve \bullet β -TCP göstermektedir.)	38
Şekil 4.13.	% 2 Zn katkılı HA tozlarının sinterleme öncesi ve sonrası XRD grafiği	39
Şekil 4.14.	Pelet haline getirilip farklı sıcaklıklarda sinterlenmiş katkısız HA numunelerin yüzey SEM görüntüleri (a) 1000 °C, (b) 1100 °C, (c) 1200 °C	41
Şekil 4.15.	Pelet haline getirilip 1200 °C'de sinterlenmiş katkısız HA numunenin yüzey SEM görüntüsü	42
Şekil 4.16.	Pelet haline getirilip 1200 °C'de sinterlenmiş % 1 Zn katkılı HA numunenin SEM görüntüsü	42
Şekil 4.17.	Pelet haline getirilip 1200 °C'de sinterlenmiş % 2 Zn katkılı HA numunenin SEM görüntüsü	43
Şekil 4.18.	Pelet haline getirilip 1200 °C'de sinterlenmiş % 4 Zn katkılı HA numunenin SEM görüntüsü	43
Şekil 4.19.	(a) Saf HA, (b) % 2 mol Zn katkılı HA, (c) % 2 mol Zn ve % 1 mol F katkılı HA, (d) % 2 mol Zn ve % 2,5 mol F katkılı HA, (e) % 2 mol Zn ve % 5 mol F katkılı HA (Ölçek çubuğu 2 μ m, büyütme 30K X)	44
Şekil 4.20.	Saf, Zn ve Cu katkılı HA tozlarının SEM grafiği (a) Saf HA, (b) ZnHA2, (c) CuHA1 (d) CuHA2	45
Şekil 4.21.	Farklı Zn kesitlerinin Sem görüntüsü, (a) HA, (b) % 5 mol Zn katkılı HA, (c) % 10 mol Zn katkılı HA, (d) % 15 mol Zn katkılı HA, (e) % 20 mol Zn katkılı HA	46
Şekil 4.22.	Katkısız HA ve Zn katkılı HA numunelerin yoğunluk hesabı	46
Şekil 4.23.	Katkısız HA ve Zn katkılı HA numunelerin mikrosertlik değerleri	48

SİMGE VE KISALTMALAR DİZİNİ

ağ.	Ağırlıkça
β-ΤСΡ	Beta Trikalsiyum Fosfat
Ca	Kalsiyum
Ca(OH) ₂	Kalsiyum Hidroksit
EDAX	Enerji Dağılımlı X-ışını Spektroskopisi
FTIR	Fourier Dönüşümlü Kızılötesi Spektroskopisi
HA	Hidroksiapatit
H ₃ PO ₄	Fosforik asit
HV	Vickers sertlik değeri
ОН	Hidroksil
Р	Posfor
PO ₄	Fosfat
SEM	Taramalı Elektron Mikroskobu
ТСР	Trikalsiyum Fosfat
XRD	X-ışını Kırınımı
Zn	Çinko
ZnO	Çinko oksit

1.GİRİŞ

Günümüzde öncelikli çalışma konuları arasında olan biyomalzeme bilimi, sağlık sektöründe yaygın olarak kullanılan implantların çeşitli tedavi yöntemlerinin yetersiz ve etkisiz kaldığı durumlarda hastayı tekrar normal hayatına döndürmeleri ve gerek fiziksel gerekse psikolojik açıdan tekrar topluma uyum sağlamaları açısından büyük önem taşımaktadır. İmplantlarda kullanılan biyomalzemeler, sağlıklı bir hayat sürdürebilmek için hastalık ve sakatlık gibi durumlarda tedavi amacıyla kullanılmakta olup, uygulama alanları gün geçtikçe artmaktadır.

Ekonomik yönden biyomalzeme pazarı 2012 yılı verilerine göre; 44,0 milyar \$'dan fazladır. 2017 yılına kadar da bu biyomalzeme pazarı hacminin 88,4 milyar \$'ı geçeceği öngörülmektedir [1]. Günümüzde, yüzlerce firma tarafından çok sayıda biyomalzeme üretilmektedir. Tüm dünyada yaklaşık 2700'den fazla çeşitte tıbbi cihaz, 2500 kadar farklı teşhis ürünü ve yaklaşık 39000 civarında değişik eczacılık ürünü, bu teknolojinin en büyük pazarını oluşturduğu belirtilmektedir [1]. Biyomalzeme pazarı içinde ise ortopedi ve diş implant uygulamalarının payının % 55 civarında olduğu belirtilmektedir [1].

Biyomalzemeler içinde hidroksiapatit (HA), Ca₁₀(PO₄)₆(OH)₂, ortopedi ve diş implant uygulamalarında yaygın olarak kullanılmaktadır. HA yüksek biyouyumluluğu ve kimyasal açıdan kemik ile benzerliği dolayısıyla öne çıkmakta olup; implant malzemesi olarak kullanılması durumunda, implantın kemiğe daha hızlı ve kararlı tutunması, kemik ile implant arasında güçlü bir bağ oluşturması ve kemik yapıya uyum sağlaması gibi avantajları bulunmaktadır.

Hidroksiapatitin sahip olduğu yüksek biyouyumluluğu, iyi derecede katyon değişim oranına sahip oluşu ve patojenik mikro organizmalara daha çok benzerliğinden dolayı gelecek vaat etmektedir [2]. HA; genellikle ortopedik cerrahi alanında dolgu malzemesi ve kaplama olarak metalik protezlerin biyolojik özelliklerini arttırmak için kullanılmaktadır [3]. Ortopedide karşılaşılan sorunlardan birisinin de, ameliyat sonrası implantasyon bölgesinde daha kolay enfeksiyon oluşturması olduğu belirtilmektedir [4]. Yapılan çalışmalarda, çinko, gümüş ve bakır iyonlarının implant

kaplanmasında kullanılmasının implant yüzeyinde bakteriyel tutunmanın başlamasını azalttığı ya da önlediği belirtilmektedir [5-7]. Canlı organizmaların çoğunda çeşitli metabolik proseslerde az miktarda çinko ve bakır iyonları mevcutken, çok miktarda bulunması durumunda toksik etki yaratmaktadır. Ayrıca çinkonun in-vivo ve in-vitro deneylerde kemik oluşumuna pozitif bir etki yaptığı belirtilmektedir [8].

İmplantasyon ardından, vücuda yerleştirilen implant üzerinde meydana gelebilecek bakteriyel aktivitenin kontrol edilmesi ve önlenmesi, implantın başarısı açısından önem taşımaktadır. HA'e üretim aşamasında antibakteriyel özellik kazandırılması, yüksek biyouyumluluk ile antibakteriyel etkinin aynı anda sergilenebileceği HA toz elde edilmesine imkan sağlayabilmektedir. HA sentezlenmesi aşamasında eklenen Ag, Zn, Cu, Mg'un üretilen tozun antibakteriyel aktivitesi üzerindeki etkisinin belirlenmesi ile ilgili çalışmalar literatürde bulunmasına karşın [2, 9-12]; bu konu ile ilgili olarak yapılan çalışmalar halen geliştirilme aşamasındadır. Literatürde, üretim aşamasında hidroksiapatite Zn iyonlarının eklenmesi ile üretilen tozların bakteri kolonilerini önemli ölçüde azalttığı belirtilmekte; tozların antibakteriyel özelliğinin metal iyonlarının çeşit ve kalitesine bağlı olduğu vurgulanmaktadır [2, 9-12]. Zhou ve çalışma arkadaşları, Zn katkılı nano boyutlu HA tozlarının, Escherichia Coli ve Staphylococcus Aureus bakterilerine karşı biyouyumluluk özelliğini kaybetmeden çok iyi antibakteriyel özellik gösterdiğini belirtilmişlerdir [12].

Bu tez çalışmasında, yaş kimyasal yöntem içinde yer alan asit-temelli metot kullanılarak sentezlenen katkısız HA'e farklı oranlarda Zn katkısının; HA tozlarının parçacık boyutuna ve morfolojisine, HA ve yan faz oluşumuna etkilerinin yanı sıra, tozların pelet haline getirildikten sonra farklı sıcaklıklarda sinterlenmesiyle elde edilen tozların mekanik özellikleri (mikrosertlik) üzerine etkileri incelenmiştir.

2. KAYNAK ARAŞTIRMALARI

2.1. BİYOMALZEMELER

Biyomalzemeler, insan vücudundaki canlı dokuların işlevlerini yerine getirmek ya da desteklemek amacıyla kullanılan doğal ya da sentetik malzemelerdir [13]. Biyomalzemeler, doku veya organların fonksiyonlarını tamamlama veya yerine geçme amacıyla fizyolojik sisteme dahil edilen, vücudun tepki vermesine sebep olmayan ilaç dışı maddeler olarak da tanımlanmaktadır.

Biyomalzemelerin geliştirilmesi ile insanların yaşam kalitelerinin yükseleceği öngörülmektedir. Şekil 2.1.'de görüldüğü üzere 1900'lü yıllarda insanların yaşam süreleri 70 yıldan az olmasına rağmen çeşitli ilaçların (antibiyotik, aşı vb.) kullanımıyla 2000'li yıllarda 90-100 yaşına kadar uzadığı tespit edilmiştir [14]. Yaşam süresindeki bu artış 21. yüzyılda, insanların biyomalzemelere olan ihtiyacını artıracağı düşünülmektedir [14]. İnsanlar yaşlandıkça vücut yapıları ve bağ dokularının yapısı (özellikle de iskelet kas sistemi dokularının) bozulur, kemiklerin dayanıklılığı da azalır. Bu da biyomalzemelerin önemini vurgulamaktadır.

Şekil 2.1. 1900 ile 2000 yıllarındaki insanların yaşam süreleri [14]* * (Elsevier'den alınan izin ile [14] numaralı kaynaktan kullanılmıştır)

Nanoteknoloji, bilişim teknolojilerindeki gelişmelere paralel olarak, üretim yöntemlerinin de geliştirilmesiyle birlikte daha işlevsel biyomalzemeler geliştirilmeye

başlanmıştır [13]. Biyomalzemeler temel olarak tıbbi uygulamalarda kullanılmalarına karşın, biyoteknoloji alanında da kullanılmaktadır. Bunlar; hücre teknolojisinde hücre ve hücresel ürün üretiminde destek malzemesi olarak, atık su arıtımında yakalayıcı tutucu malzeme olarak, biyoayırma işlemlerinde, enzim, hücre, doku gibi biyoaktif maddelerin immobilizasyonunda ve biyoçiplerde kullanılmaktadırlar.

Biyolojik uygulamalar açısından malzeme seçimi diğer birçok tasarım işleminde olduğu gibi implant ve diğer tıbbi cihazların tasarımında da çok önemlidir. Biyomalzemeler; metaller, seramikler, polimerler ve kompozitler olmak üzere 4 ana gruba ayrılırlar [15]. Çizelge 2.1.'de biyomalzeme üretiminde kullanılan malzemelerin türleri, avantajları, dezavantajları ve kullanıldıkları yerler sunulmaktadır [16,17].

İmplantasyonda kullanılan biyomalzemelerin en önemli özelliklerinden birisi biyouyumluluktur. Biyouyumluluk; uygulama sırasında malzemenin vücut sistemine uygun cevap verebilme yeteneği olarak tanımlanmıştır. Biyouyumlu bir biyomalzeme, kendisini çevreleyen dokuların normal değişimlerine engel olmayan ve dokuda istenmeyen tepkiler (iltihaplanma, pıhtı oluşumu, vb.) meydana getirmeyen malzemedir [18].

İnsan vücudunda biyomalzemelerin kullanılmasının en önemli özellikleri; biyomalzemelerin biyouyumlu özellik göstermesi ve uygun mekanik dayanıma sahip olmasına bağlıdır. Biyouyumluluk, yapısal ve yüzey uyumluluğu olmak üzere iki şekilde incelenebilir. Yüzey uyumluluğu, biyomalzemenin vücut dokularına fiziksel, kimyasal ve biyolojik olarak uygun olması; yapısal uyumluluk ise, malzemenin vücut dokularının mekanik davranışına sağladığı optimum uyumdur [19]. Biyoseramikler biyouyumluluğu çok yüksek olan, vücudun zarar gören veya işlevini yitiren organlarının onarımı, yeniden yapılandırılması veya yerini alması amacıyla özel olarak tasarlanan seramiklerdir [20, 21]. Vücudumuzun çeşitli yerlerine implantasyonda kullanılan yapay ve doğal biyomalzemeler Çizelge 2.2.'de gösterilmektedir [18].

Biyomalzemelerden beklenen gerekliliklerin başında gelen biyouyumluluğun dışında mekanik dayanım şartını da taşıması sayesinde klinik uygulamalarda başarılı bir profile sahip olan biyoseramik malzemelerin ayrıntılı olarak incelenebilmesi gerekmekte olup; seramik malzemeler, inorganik ve metalik olmayan bileşime sahip, atomları arasında iyonik, kovalent veya her ikisini birden bulundurabilen kompleks kristal yapılar olarak tanımlanabilmektedir. Seramik malzemelerin termal genleşme katsayıları, metallere nazaran genellikle daha küçüktür ve ısı ve elektrik iletiminde zayıf oldukları için ısı ve elektrik yalıtım uygulamalarında kullanılabilmektedir [22].

Malzemeler	Üstünlükleri	Zayıflıkları	Uygulamaları
Polimerler: Naylon, Teflon, Polipropilen, Poliüretan, PTFE, Poliamid, Polistiren, PMMA, Silikon, Kauçuk, Polietilen, vb.	Esneklik, kolay üretim, düşük yoğunluk, biyouyumlu, ucuz, kolay şekillendirebilme, steril,	Düşük mekanik dayanım, düşük elastik modulü, genellikle biyoaktif değil, bozunarak toksik ürünler verebilmesi, düşük kimyasal inertlik	Kulak ve burun implantları, kan damarı protezleri, kalp kapakçıkları ecza şişesi, katater, ortopedik implantlar kan ve çözelti poşeti, cerrahi ambalaj, diyaliz gereçleri, bağlantı, sonda, eklemler, kalça protezi, yapay damar şırınga, dikiş ipi
Metaller ve Metal Alaşımları: Titanyum ve alaşımları, Paslanmaz çelik, Dental Metaller (Cu, Ag, Zn vb.)	Düşük aşınma direnci, kolay üretim, yüksek mekanik dayanım, şekillendirilebilir, yıpranmaya karşı dirençli	Düşük biyouyumluluk, yüksek yoğunluk, biyoaktif değil, toksik salınım yapması, düşük kimyasal inertlik	Kemik plakaları ve vidaları, kırık klişeleri, kalça çivileri, dental uygulamalar, ortopedik protezler, kalp pili elektrotları, eklemler
Seramikler: Alumina, Zirkonya, Hidroksiapatit, Biyoaktif cam seramikler, Trikalsiyum fosfat vb.	Biyouyumlu, biyoinert, biyoaktif, biyobozunur, yüksek kimyasal dayanım, aşınma direnci	Düşük kırılma toklukları (gevrek olmaları), zor üretim yüksek yoğunluk elastik değil, düşük yorulma dayanımları,	Kalça protezleri, Dental uygulamalar, kemik dolgu maddesi, yapay tendon ve bağlar, göz lensi, kulak implantleri, çene ve omurga cerrahisi
Kompozitler: HA-PE Alumina- Zirkonya vb.	Kontrol edilebilen mikroyapı ve mekaniksel özellikler, yüksek biyoaktivite, iyi yorulma dayanımı, aşınma direnci, steril, kararlı inert	Üretimi zor, pahalı	Kalp damarları, eklem protezleri, kemik protezi.

Çizelge 2.1. Farklı malzeme türlerinin biyomalzeme olarak üstünlükleri ve zayıflıkları [16, 17]

Seramik malzemeler, korozyon gibi kimyasal ve sürtünme gibi mekanik etkilerden ötürü oluşabilecek aşınma durumlarına karşı direnç göstermektedir. Gevrek dolayısıyla kırılgan yapıları, seramik malzemelerin darbeye dayanımın gerekli olduğu alanlardaki fonksiyonelliklerini kısıtlamaktadır. Bu bakımdan seramik malzemeler, basma mukavemetleri iyi olmasına rağmen plastik deformasyon davranışı göstermeden kırılmaktadır. Seramik malzemelerin yüzey düzgünlüğü (yüzey pürüzsüzlüğü) ve ıslatılabilirlik özelliklerinin çok iyi olması, doku ile malzeme arasındaki biyolojik tepki gelişimlerinin olumlu yönde ilerlemesini sağlamaktadır [23].

Uygulama Alanları	Malzeme Türü
İskelet Sistemi	
Eklemler;	Ti, Ti6Al4V
Kırık kemik uçlarının tespitinde	Paslanmaz çelik, Co-Cr alaşımları;
kullanılan ince metal levhalar;	
Kemik dolgu malzemesi ve	Poli(metil metakrilat) ve
kemikte oluşan şekil	hidroksiapatit;
bozukluklarının tedavisinde;	
Diş İmplantları	Ti, alümina, kalsiyum fosfat
Kalp damar sistemi	
Kan damarı protezleri;	Polietilen, poliüretan, teflon;
Kalp kapakçıkları;	Paslanmaz çelik, karbon;
Kataterler	Silikon kauçuk, teflon
Organlar	
Yapay Kalp;	Poliüretan;
Yapay Böbrek	Selüloz, Poliakrilonitrit
Duyu organları	
Göz içi lensler;	Silikon kauçuk, hidrojeller;
İç Kulak kanalında;	Platin elektrotlar;
Kornea bandajı	Kollajen, hidrojeller

Çizelge 2.2. Biyomalzemelerin uygulama alanlarına göre malzeme türleri [18]

2.1. HİDROKSİAPATİT (HA)

Biyoseramik malzemeler (hidroksiapatit, trikalsiyum fosfat, titanyum dioksit, alüminyum oksit, zirkonyum oksit, ...) içinde HA yüksek biyouyumluluğu ve kimyasal açıdan kemik ile benzerliği dolayısıyla öne çıkmakta olup kaplama malzemesi olarak kullanılması durumunda, implantın kemiğe daha hızlı ve kararlı tutunması, kemik ile implant arasında güçlü bir bağ oluşturması ve kemik yapıya uyum sağlaması gibi üstünlüklerinden dolayı kullanılmaktadır [24, 25].

HA tümör cerrahisinde kemikte oluşan boşlukta dolgu materyali olarak, kırık kemik onarımında kemikteki kusuru kapamak için köprü olarak, dişçilikte diş kökünü beslemede ve implant kaplamalarında kullanılmaktadır. Yumuşak doku biyoaktif davranış gösteren HA ile bağlanarak yapışır ve implantın kaymasını engeller. Aynı zamanda vücut, implantı yabancı madde olarak algılamaz. Kemik dolgu materyali olarak toz ya da gözenekli blok şeklinde kullanılan HA kemikteki boşluğu doldurarak boşlukta ödem oluşumunu ve yumuşak dokunun boşluğa girmesini engeller. Bir başka önemli görevi ise kalsiyum ve fosfat kaynağı olmasıdır. HA'nın yüksek osteoiletkenliği (yüzeyinde kemik oluşumuna izin verme) ve düşük bozunma hızı vardır.

HA kemiğin temel inorganik bileşenidir ve iskelet sisteminin yeniden yapılanması için bir implant maddesidir. HA biyoimplant maddesi olarak kendisi tek başına ya da bir kompozit malzemesi olarak ilgi çekmektedir [26]. Mükemmel biyouyumluluğu ve biyoaktifliği nedeni ile kaplama olarak birçok biyolojik uygulamada kullanılmakta olan HA, kemik implant bağlanma süresini kısaltmakta ve kemik oluşumunu artırmaktadır. HA sadece biyoaktif değil aynı zamanda osteoiletkenlik, toksik olmayan bir madde olup; fizikokimyasal, mekanik ve biyolojik özelikleri Çizelge 2.3.'te sunulmaktadır [27].

HA, hekzagonal rombik kafes yapısında olup, birim hücre boyutları a=b=9,432 Å ve c=6,881 Å'dür. HA'in teorik yoğunluğu 3,16 g/cm³'tür. HA'in $Ca_{10}(PO_4)_6(OH)_2$ Ca/P mol oranı 1,67 ve ağırlıkça (ağ.) % 39,9 Ca, % 18,5 P ve % 3,38 OH içermektedir [16]. Şekil 2.2.'de HA'in kristal yapısına ait bir gösterim sunulmaktadır [28].

HA'e birçok anyon ve katyon katışık olarak eklenebilmektedir [29]. Apatitlerin genel formülünün $X_{10}(TO_4)_6Z_2$ olduğu düşünülürse X yerine Ca, Sr, Pb, Cd, ve Ba; T yerine P ve As; Z yerine de OH, F, Cl gelebilmektedir. HA kompozitlerinin yüksek sıcaklıklara daha fazla dayanıklı olması istenilirse yapıya az

miktarda empürite eklenmelidir [29]. Na/(CO₃)²⁻, Mg²⁺/(CO₃)²⁻, CaO⁺, F⁻ bu empüriteleri bunlara örnek verilebilir [29].

Şekil 2.2. Hidroksiapatitin kristal yapısı (Ca (yeşil), O (kırmızı), P (mor), H (beyaz) renklerle gösterilmektedir.) [28]

2.1.1. Hidroksiapatitin Kullanım Alanları

HA; kemikte oluşan boşlukta dolgu materyali, kırık kemik onarımında kemikteki noksanı kapamak için köprü, ortopedik kaplamalarda, diş implantlarında, yüz kemiklerinde, kulak kemiklerinde, kalça ve diz protezleri gibi çeşitli tıbbi uygulamalarda kullanılabilmesine karşın biyoteknolojik alandaki kullanımı da göz ardı edilmemelidir. Hidroksiapatit birçok madde için iyi bir adsorban özeliğine sahip ve canlı vücuduyla uyumlu yapıda olmasından dolayı vücut içerisinde çeşitli kullanım alanları bulmasına neden olmuştur. Bunlar arasında, hücre teknolojisinde hücre ve hücresel ürün üretiminde destek malzeme olarak, kontrollü salınım sistemlerinde, biyo algılayıcılarda, biyoayırma işlemlerinde, enzim, doku, hücre gibi biyoaktif maddelerin tutulmasında, biyoçiplerde kullanımları sayılabilir [18].

Özellik	Değer
Molekül Formülü	Ca ₁₀ (PO ₄) ₆ (OH) ₂
Ca/P	1,67
Kristal Yapı	Hekzagonal
Young modülü (GPa)	80-110
Elastiklik Modülü (GPa)	114
Basma dayanımı (MPa)	400-900
Gerilme dayanımı (MPa)	115-200
Yoğunluk (g/m ³)	3,16
Kırılma tokluğu (MPa.m ^{1/2}	0,7-1,2
Sertlik (HV)	600
Biyoaktiflik	Yüksek
Biyouygunluk	Yüksek
Biyobozunma	Düşük
Hücresel uygunluk	Yüksek
Kemik iletkenliği	Yüksek

Çizelge 2.3. HA'in fizikokimyasal, mekanik ve biyolojik özellikleri [27]*

* (Elsevier'den alınan izin ile [27] numaralı kaynaktan kullanılmıştır)

Asit temelli yöntem; HA üretiminde, kimyasal sentez (kimyasal çöktürme), sol-jel, sprey-piroliz, hidrotermal sentez, emülsiyon işlemi ve mekanokimyasal yöntem gibi birçok yöntem kullanılmasına karşın, bunlar içinde kimyasal sentez, işlemlerin sadeliği, düşük işlem sıcaklığı, ürün kalitesi ve verim açısından en öne

çıkanıdır [30-32]. Asit-temelli yöntem sıvı içinde kimyasal çöktürme yöntemleri arasında en yaygın olarak kullanılanıdır [32]. Bu yöntemin avantajı kalsiyum hidroksit ile fosforik asit reaksiyonu sonucu yabancı elementler oluşmaması; çıktı olarak HA haricinde sadece su bulunmasıdır [33, 34]:

$$10Ca(OH)_2 + 6H_3PO_4 \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 18H_2O$$
 [2.1]

Yöntem	Başlangıç Malzemesi	Sentez Koşulları	Sonuçlar
Katı hal reaksiyonu	$\begin{array}{c} Ca_3(PO_4)_2 + CaCO_3\\ Ca_2P_2O_2 + CaCO_3 \end{array}$	900-1300 °C arasında genellikle su buharı	Ca/P: 1,67, iri tane boyutu, düzensiz form, homojen olmayan ürün
Yaş Kimyasal Yöntem	$\begin{array}{c} Ca(NO_3)_2 + (NH_4)_2 \\ HPO_4 \\ Ca(OH)_2 + H_3PO_4 \end{array}$	Oda sıcaklığı- 100 °C; ph 7-12	Ca/P: 1,67 homojen olmayan kristallinitesi düşük ince kristaller
Hidrotermal Yöntem	Yaş kimyasal metotla hazırlanmış HA, diğer kalsiyum fosfatlar	100-200 °C (1-2 MPa); 300-600 °C (1-2Kbar)	Ca/P: 1,67 homojen, düzgün tane yapısı, tek kristal yapı
Jel büyütme Yöntemi	Jel + Ca ⁺² +PO ₄ ⁻³	Oda sıcaklığı- 60 °C; pH 7-10	Elde edilen fazın düşük miktarı HA
Çoklu Emülsiyon Yöntemi	Ca(NO ₃) ₂ .4H ₂ O+ K ₂ HPO ₄	50 °C'de 24 saat pH 12	Poroz 3 mikrondan küçük mikro küreler

Çizelge 2.4. Hidroksiapatit sentez yöntemleri [35]

Elde edilen HA tozlarının şekli ve yüzey alanı fosforik asit ilavesinin oranına ve reaksiyon sıcaklığına bağlı olarak değişim göstermektedir. Fosforik asit ilave oranı reaksiyon sonundaki pH ile ilgili olarak süspansiyonun kararlılığını değiştirmektedir. Bouyer ve çalışma arkadaşları [36]; hazırlanan karışımın pH değerinin amonyak çözeltisi ilavesi ile 10,5'in üzerinde olması gerektiğini belirtmişlerdir. Asit çözeltisi hızlı bir şekilde ilave edilir ise pH ayrışma sabitini düşürmekte, H₃PO_{4'}ün ayrışması tamamlanamadığı için kalsiyumca eksik HA elde edilmektedir [36, 37]. Reaksiyon sıcaklığı ise elde edilen sentetik HA kristallerinin monokristalin veya polikristalin

olmasını belirlemekte, eğer sentezleme sıcaklığı 60 °C'nin altında olur ise elde edilen HA tozları monokristalin yapılı olmaktadır [38]. Sıcaklık parçacıkların morfolojisi ve yüzey alanı ile ilgili bir faktördür. Sentezleme sıcaklığı 35 °C olduğunda iğne şekilli ve yüksek yüzey alanına sahip HA tozları üretilebilir, sıcaklık artırılarak 80°C'ye çıkarıldığında ise küresel yapıya benzer düşük yüzey alanına sahip HA tozları üretilebilir, sıcaklık artırılarak 80°C'ye çıkarıldığında ise küresel yapıya benzer düşük yüzey alanına sahip HA tozları üretilebilir [37]. HA tozlarının sentezi sırasında HA'e Ag ve Zn iyonlarının eklenmesi ile bakteri kolonilerinin önemli ölçüde azaldığı ve antibakteriyel özelliği arttırdığı belirtilmektedir [37].

Hidroksiapatitin sahip olduğu yüksek biyouyumluluk; vücut tarafından kolayca kabul edilmesini sağladığı gibi aynı zamanda başka biyolojik yapı olan bakterilerin üremesi için de uygun ortam oluşturabilmektedir. İmplantasyon ardından, vücuda yerleştirilen implant üzerinde meydana gelebilecek bakteriyel aktivitenin kontrol edilmesi ve önlenmesi, implantın başarısı açısından önem taşımaktadır. HA'e üretim aşamasında antibakteriyel özellik kazandırılması, yüksek biyouyumluluk ile antibakteriyel etkinin aynı anda sergilenebileceği HA toz elde edilmesine imkân sağlayabilmektedir. HA sentezlenmesi aşamasında eklenen Ag, Zn, Cu, Mg'un üretilen tozun antibakteriyel aktivitesi üzerindeki etkisinin belirlenmesi ile ilgili çalışmalar literatürde bulunmasına karşın [2, 9-12]; bu konu ile ilgili olarak yapılan çalışmalar halen geliştirilme aşamasındadır. Literatürde, üretim aşamasında hidroksiapatite Zn iyonlarının eklenmesi ile üretilen tozların bakteri kolonilerini önemli ölçüde azalttığı belirtilmekte; tozların antibakteriyel özelliğinin metal iyonlarının çeşit ve kalitesine bağlı olduğu vurgulanmaktadır [2, 9-12]. Zhou ve çalışma arkadaşları, Zn katkılı nanoboyutlu HA tozlarının, Escherichia Coli ve Staphylococcus Aureus bakterilerine karşı biyouyumluluk özelliğini kaybetmeden çok iyi antibakteriyel özellik gösterdiğini belirtilmişlerdir [15].

Antibakteriyel özellik kazandırmak amacıyla kullanılan parametrelerin mekanik özellikler üzerinde etkisi ile ilgili çalışmalar literatürde sınırlı sayıda olup; halen üzerinde çalışmaya devam edilmektedir. Çizelge 2.5'te, farklı yöntemlerle sentezlenip farklı işlemlere tabi tutulmuş katkısız HA veya katkılı HA'in mekanik

özelliklerinin belirlenmesi ile ilgili çalışmalar ve bu çalışmalardan elde edilmiş sonuçlar sunulmuştur.

Kalita ve Bhatt'ın yaptığı çalışmada [39], nanoboyutta HA sentezlenmesi aşamasında metal iyon (Zn ve Mg) katkılarının; morfoloji ve mekanik özellikler (sinterleme sonrası mikrosertlik ve basma testi) üzerindeki etkileri incelenmiştir. Sentezlenen tozların ortalama parçacık boyutunun 2-10 nm aralığında olduğu belirtilmiş olup; sentezlenen tozların TEM görüntüleri Şekil 2.3.'te sunulmaktadır.

Şekil 2.3. Sol-jel metotla üretilmiş tozların TEM görüntüsü: (a) Saf HA, (b) MgO katkılı HA, (c) ZnO katkılı HA [39]* * (Elsevier'den alınan izin ile [39] numaralı kaynaktan kullanılmıştır)

Kalita ve Bhatt tarafından yapılan çalışmada [39], % 1 Mg katkısının numunenin sertliğini yaklaşık % 20, % 1 Zn katkısının ise yaklaşık % 6 arttırdığı belirtilmektedir. Sentezlenen saf HA için mikrosertlik değeri 323,6±10,0 HV iken, % 1 Mg katkılı HA için bu değer 387,5±6,2 HV, % 1 Zn katkılı HA için ise 342,9±11,1 HV olarak belirlenmiş olup elde edilen sonuçlar grafiksel olarak Şekil 2.4.'te sunulmaktadır. Basma testi sonucunda ise % 1 Mg katkısının basma gerilimini yaklaşık % 34; % 1 Zn katkısının ise yaklaşık % 6 arttırdığı belirtilmektedir [39].

Venkatasubbu ve çalışma arkadaşlarının yaptığı çalışmada [40], nanoboyutta HA sentezlenmesi aşamasında kullanılan farklı oranlarda Zn'nin parçacık morfolojisi ve sinterleme sonrası sertlik üzerindeki etkileri incelenmiştir. Zn kullanılmadan sentezlenen katkısız HA tozların parçacık boyutu ve morfolojisi Şekil 2.5.'te, farklı oranlarda Zn kullanılarak sentezlenen HA tozların parçacık boyutu ve morfolojisi ise Şekil 2.6.'da sunulmaktadır. Venkatasubbu ve çalışma arkadaşları [40], üretim aşamasında kullanılan Zn'nin ağırlıkça yüzdesi arttıkça, üretilen tozların topaklaşma eğilimlerinin arttığını belirtmektedirler.

Şekil 2.4. Sinterlenmiş katkısız ve katkılı nanokristal HA'nin Vickers sertlik değeri; (A1.0: % 1 MgO; B1.0: % 1 ZnO) [39]* * (Elsevier'den alınan izin ile [39] numaralı kaynaktan kullanılmıştır)

Ŧ	(Elsevier	den	alinan	1Z1N 1	11e [39] numarali	kaynaktan	kullani	lmıştır

Çizelge 2.5	. Katkısız	ve katkılı	HA'in	mekanik	özellikleri	[39]*
-------------	------------	------------	-------	---------	-------------	-------

	Basma mukavemeti (MPa)	Sertlik (GPa)	Elastik modül (GPa)
Basınçsız sinterleme (tek eksenli ya da izostatik presleme, farklı sinterleme sıcaklıkları)	509 158	5,0 3,2	81,4
Sıcak preslenmiş, ağırlıkça % 1,5 Zr katkılı HA	766		149
Sıcak preslenmiş nanokristal HA	183		130
İzostatik preslenmiş nanokristal HA (1200 °C)		5,1	
Basınçsız 1300 °C'de sinterlemiş ağırlıkça %2,5: "% 30 CaO + % 40 Na ₂ O + % 30 P ₂ O ₅ katkılı HA"	178	4,3	
Basınçsız 1300 °C'de sinterlenmiş % 1 MgO katkılı nanokristal HA	281	4,3	

* (Elsevier'den alınan izin ile [39] numaralı kaynaktan kullanılmıştır)

Venkatasubbu ve çalışma arkadaşları yaptıkları çalışmada [40] Zn katkısının sinterleme (900 °C'de 1 saat) sonrasında sertlik üzerindeki etkilerini incelemişler;

vickers mikrosertlik ölçümleri sonucunda, Şekil 2.7.'de üretim aşamasında kullanılan Zn oranının arttırılmasıyla sertlik değerinin de arttığı belirtilmiştir [40].

Şekil 2.5. Zn kullanılmadan sentezlenen katkısız HA tozların TEM görüntüsü [40]* * (Springer'den alınan izin ile [40] numaralı kaynaktan kullanılmıştır)

(c) (d)
Şekil 2.6. (a) % 2 Zn katkılı HA, (b) % 3 Zn katkılı HA, (c) % 4 Zn katkılı HA, (d) % 5 Zn katkılı HA tozların TEM görüntüsü [40]*
* (Springer'den alınan izin ile [40] numaralı kaynaktan kullanılmıştır)

Ashuri ve çalışma arkadaşları [41], farklı oranlarda Mg+Zn içeren HA sentezleyip, 1100 °C'de yaptıkları sinterleme işlemi sonrasında elde ettikleri numunelerin basma dayanımlarını incelemişler; sentezleme aşamasında HA'e farklı oranlarda eklenen Mg+Zn'nun basma dayanımı üzerindeki etkilerini belirlemişlerdir. Mg+Zn oranına göre basma dayanımı değişimini gösteren grafik Şekil 2.8.'de sunulmaktadır [41].

Şekil 2.7. Üretim aşamasında kullanılan Zn oranına göre Vickers mikrosertlik değerleri [40]*

* (Elsevier'den alınan izin ile [40] numaralı kaynaktan kullanılmıştır)

Bhattacharjee ve çalışma arkadaşları [42], HA sentezleme aşamasında kullandıkları farklı oranlarda Zn, Mg, Ti iyonlarının sertlik üzerindeki etkilerini belirlemek amacıyla; ürettikleri tozları 1250 °C'de 1 saat sinterlemiş ve elde ettikleri numunelerin Vickers mikrosertlik değerlerini belirlemişlerdir. Yapılan çalışma sonucunda, % 2 katkılı Mg, Zn, Ti iyonlarının mikrosertliği arttırdığı; buna karşın % 5 katkılı Mg, Zn, Ti iyonlarının mikrosertliği azalttığı belirtilmekte olup, sertlik değerleri Çizelge 2.6'da sunulmuştur [42].

Samani ve çalışma arkadaşlarının yaptığı çalışmada [9]; kaplama sol-gel metodu ile yapılmış olunup, kullanılan farklı numunelere farklı miktarlarda Ag ve Zn iyonları eklenerek XRD ve SEM analizleri yapılmıştır. HA kaplamalar; Ca(NO₃)₂·4H₂O ve Zn(NO₃)₂·6H₂O kullanılarak Ca ve P öncülleri gibi ayrı ayrı sentezlenmiştir. Zn(NO₃)₂·6H₂O ve AgNO₃; HA yapısının içindeki Ca gibi elementlerin yerine koyarak kullanılmıştır. Hesaplanan miktarda Ca(NO₃)₂·4H₂O, Zn(NO₃)₂·6H₂O ve AgNO₃ karıştırılmış ve susuz etanol içinde çözünmüş. 8 numune sentezlenmiş bunlar Çizelge 2.7.'de gösterilmektedir. Bununla birlikte P₂O₅'de susuz

etanol içinde çözünmüştür. Fosfor solüsyonu (Zn + Ag)Ca solüsyonuyla yavaşça karıştırılmış. Karışım ortam sıcaklığında 30 dakika daha karıştırılmaya devam edilmiş ve elde edilen sol 48 saat yaşlandırma işlemine tabi tutulmuştur.

Şekil 2.8. Numunenin sinterleme işleminden sonraki basma mukavemet değerleri değişim grafiği [41]

* (Elsevier'den alınan izin ile [41] numaralı kaynaktan kullanılmıştır)

Çizelge 2.6. Üretim aşamasında	HA'e farklı	oranda Mg,	Zn ve 7	Fi katkısının,	sertlik
üzerindeki etkisi [42]					

Kompozisyon (bileşim)	Ortalama Sertlik	Sertlik %'si (artma-azalma)
Katkısız HA	374,31	Kontrol numunesi
% 2 Mg katkılı HA	399,42	% 6.71 artma
% 5 Mg katkılı HA	365,54	% 2,34 azalma
% 2 Zn katkılı HA	399,71	% 6.78 artma
% 5 Zn katkılı HA	320,59	% 14,35 azalma
% 2 Ti katkılı HA	378,78	% 1,19 artma
% 5 Ti katkılı HA	311,78	% 16,7 azalma

Numune	Zn (ağ.%)	Ag (ağ.%)	Numune isimleri
1	0	0	НА
2	2,5	0	Z25
3	0	1,5	A15
4	2,5	1,5	Z25A15
5	2,0	0,3	Z20A3
6	1,5	0,6	Z15A6
7	1,0	0,9	Z10A9
8	0,5	1,2	Z5A12

Çizelge 2.7. Kimyasal kompozisyonlarına göre Zn ve Ag içeren numuneler [9]*

* (John Wiley and Sons'dan alınan izin ile [9] numaralı kaynaktan kullanılmıştır)

HA, Z25, A15, ve (Zn + Ag)-HA numuneleri (•) Hydroxyapatite; (\Diamond) β tricalcium phosphate; (•) Ag fazlarının XRD görüntüsü Sekil 2.9.'da, HA olusumun varlığını destekleyen FTIR grafiği Şekil 2.10.'da ve HA, Z25, A15, Z25A15, Z20A3, Z15A6, Z10A9, Z5A12 numunelerinin SEM görüntüsü Şekil 2.11.'de gösterilmektedir [39]. XRD ve FTIR grafikleri yapının HA olduğu belirtilmektedir. SEM görüntülerinde de metal iyonlarının katkısının yüzeyde iyileşmeye neden olduğunu kanıtlamaktadır. HA yapının içine birlikte ilave edilen Zn ve Ag iyonlarının yüzey özelliklerini geliştirdiği ve daha iyi yüzey karakteristiği eldesine imkan sağladığı gözlemlenmektedir. Katkısız HA kaplama yüzeyleri üzerinde 60 dakikadan sonra gözle görülür bir düşüş olmadığı ancak Ag ve Zn iyonlarının birlikte eklenmesi ile bakteri kolonilerinin önemli ölçüde azaldığı gözlenmektedir [9].

Stanic ve çalışma arkadaşlarının yaptığı çalışmada [2]; HA içine Zn, Cu farklı oranlarda katkı yapılarak XRD, FTIR ve SEM analizleri incelenmiştir. Başlangıç malzemeleri CaCO₃, CuO, H₃PO₄ ve ZnO'dir. Bütün deney boyunca iki aşamalı saf su kullanılmıştır. Katkısız HA ve değişik konsantrasyonlardaki Cu ve Zn katkılı HA değiştirilmiş nötralizasyon metodu kullanılarak inert atmosferde hazırlanmıştır. Ca(OH)₂ süspansiyonu; 95 °C'deki 500 mL su içerisinde CaCO₃ kalsinasyonuyla elde edilen belirli miktardaki CaO karışımının 300 rpm'de karıştırılmasıyla hazırlanmıştır. Gerekli miktarda CuO ve ZnO, 300 mL 0,5 M H₃PO₄ içinde çözünmüştür. Elde edilen karışım 0,5 mL/dk oranında Ca(OH)₂ süspansiyonuna eklenerek HA sentezlenmiştir.

Şekil 2.9. XRD görüntüsü: HA, Z25, A15, ve (Zn + Ag)-HA numuneleri.
(●) Hydroxyapatite; (◊) β-tricalcium phosphate; (♦) Ag fazı [9]*
* (John Wiley and Sons'dan alınan izin ile [9] numaralı kaynaktan kullanılmıştır)

Sentezlenen HA ve katkılı numunelerin XRD analiz grafikleri Şekil 2.12.'de, HA oluşumunun varlığını destekleyen FTIR grafiği Şekil 2.13.'te, ZnHAP2, CuHAP1 ve CuHAP2 numunelerine ait SEM görüntüleri de Şekil 2.14.'te sunulmaktadır [2]. XRD grafiklerinden numunelerin iyi derecede kristallendiği belirtilmektedir. XRD ve SEM görüntüleri birlikte değerlendirilerek numunelerin homojen bir yapıda olduğu söylenebilmektedir.

Tan ve çalışma arkadaşları [43] tarafından, HA üretim aşamasında MgO katkısının numunelerin mekanik özellikleri üzerine etkisini araştırmak için 1000 °C'den 1350 °C'ye kadar 50 °C aralıklarla sinterleme yapılmış olup; % 1 MgO katkılı HA numune için 1150 °C'de sinterleme işlemi sonrasında en yüksek kırılma tokluğu değerine ulaşıldığı belirtilmiştir.

Şekil 2.10. Zn ve Ag içeren HA numunelerin FTIR grafiği [9]* * (John Wiley and Sons'dan alınan izin ile [9] numaralı kaynaktan kullanılmıştır)

Şekil 2.11. SEM görüntüsü (a) HA, (b) Z25, (c) A15, (d) Z25A15, (e) Z20A3, (f) Z15A6, (g) Z10A9, (h) Z5A12 [9]*

* (John Wiley and Sons'dan alınan izin ile [9] numaralı kaynaktan kullanılmıştır)

Şekil 2.12. HA ve katkılı numunelerin XRD analiz grafikleri [2]* * (Elsevier'den alınan izin ile [2] numaralı kaynaktan kullanılmıştır)

Ayrıca nano boyutta HA ve MgO katkılı HA'in Vickers sertlik değerinin ve Elastisite modülü değerinin katkısız HA'e göre büyük oranda arttığı belirtilmektedir. HA'in mekanik özelliklerinin, üretilen nano tozların kristalliliğine ve sentezleme metoduna bağlı olarak değiştiği söylenmiştir. Yaş kimyasal metotla sentezlenen HA tozlarının mekanik özellikleri Vickers sertlik ve Elastisite modülü yanında kırılma tokluğunun da dikkate değer bir artış gösterdiği belirtilmiştir.

Ergun ve çalışma arkadaşlarının yaptığı çalışmada [44] HA üretim aşamasında katkı malzemesi olarak Mg, Zn, Cd ve Y katyonlarının tuzlarını eklemiş ve numuneleri 1100 °C sıcaklıkta 1 saat sinterlemişlerdir. XRD analizi yaparak, katkıların HA'in kafes parametrelerine olan etkisini incelemişlerdir. Elde ettikleri XRD grafiklerinde ikinci bir faza rastlamamışlardır. İkinci bir faza rastlamamalarının sebebini de XRD grafiklerinde gözlenebilirliliğin % 0,5 ile sınırlandırılmış olmasına bağlamışlardır. Bu görüşlerini de eklenen katkıların etkisini kafes parametrelerini inceleyerek bulmuşlardır. Katkılı HA'lerin kafes parametrelerinde (a ve c parametreleri) katkısız HA'e göre azalma gözlemişlerdir. Ekledikleri Cd²⁺, Mg²⁺, Zn²⁺ ve Y⁺³ iyonlarının hepsi de kalsiyum iyonlarına göre daha küçük olduğundan dolayı kafes parametrelerinin değiştiği sonucunu çıkarmışlardır [44].

Şekil 2.13. HA ve katkılı numunelerin FTIR analiz grafikleri [2]* * (Elsevier'den alınan izin ile [2] numaralı kaynaktan kullanılmıştır)

Şekil 2.14. (a) HAP, (b) ZnHAP2, (c) CuHAP1 ve (d) CuHAP2'ye ait SEM görüntüleri [2]*

* (Elsevier'den alınan izin ile [2] numaralı kaynaktan kullanılmıştır)

Evis ve çalışma arkadaşlarının yaptığı çalışmada [45] çökelme yöntemiyle katkısız HA ve Zn^{2+} ve F⁻¹ katkılı HA sentezleyip, 1100 °C'de 1 saat sinterlemişlerdir. Sentezlenen numuneleri FTIR analizini yaparak Zn^{2+} ve F⁻¹ iyonlarının yapıya katılıp katılmadığını tespit etmeye çalışmışlardır. Yapılan FTIR analizinin grafiği Şekil 2.15.'te sunulmuştur. Yapılan analiz sonucunda da Zn^{2+} ve F⁻¹ iyonlarının yapıya başarılı bir şekilde katıldığını belirtmektedirler. Aynı zamanda; yapıya katılan iyonların oranlarının ve iyon tiplerinin doğru tespit edebilmenin, HA'e mekanik ve biyolojik özellik kazandırmak için önemli olduğunu vurgulamışlardır [45]. Çizelge 2.8.'de; Tank ve çalışma arkadaşlarının yaptığı çalışmalar [46, 47] ve Evis ve çalışma arkadaşlarının yaptığı çalışmadan elde edilen FTIR analiz sonuçları sunulmaktadır.

Gomes ve çalışma arkadaşlarının yaptığı çalışmada [48] katkısız HA ve farklı oranlarda Zn katkılı HA sentezlenip farklı sıcaklıklarda ısıl işleme tabi tutulmasıyla; Zn katkısının ve sıcaklığın HA tozlar üzerindeki yapısal etkisi incelenmiştir. XRD analizi yapılarak oluşan fazlar ve kafes parametreleri belirlenmiştir. Şekil 2.15.'te katkısız HA'in FTIR analiz grafiği ve Şekil 2.16.'da 0,25 mol Zn katkılı HA'in XRD analiz grafiği sunulmaktadır. Isıl işlem boyunca HA fazının bir kısmının β-TCP'a dönüştüğü gözlenmektedir. β-TCP'ye ait pikler 500 °C'deki ısıl işlem ardından görülmemesine karşın; 600 °C sonrasında piklerin oluşmaya başladığı, 900 °C'ye kadar pik boylarının arttığı, ileriki sıcaklık değerlerinde ise pik boylarında azalma olduğu Şekil 2.16'da görülmektedir.

Şekil 2.15. Katkısız HA'in FTIR analiz grafiği [45] * * (Elsevier'den alınan izin ile [45] numaralı kaynaktan kullanılmıştır)

Gomes ve çalışma arkadaşlarının yaptığı çalışmada [48] Zn katkısının HA içine katıldığı 1000 °C'de açıkça görülmektedir. 600 °C'den itibaren β-TCP pikleri görülmesine karşın ZnO pikleri 1000 °C'nin altında çok zayıf pik değerlerine sahiptir. HA'nin kristal yapı parametrelerinin Rietveld analizi sonuçları Çizelge 2.9.'da sunulmaktadır. 900 °C'den daha düşük sıcaklıklarda katkısız HA ve Zn katkılı HA'nin kafes parametrelerinde HA'in yapısının içinde Zn'nin hemen hemen hiç olmadığı gözlemlenmekte ve 900-1000 °C'de arasında ağ. % ZnO fazının en yüksek değere ulaştığı belirtilmektedir.

Pik no.	Fonksiyonel Grup	Titreşim modu	Dalga sayısı (cm ⁻¹)
1	(PO ₄) ⁻³	ν1	960-970
2	(PO ₄) ⁻³	ν2	472-530
3	(PO ₄) ⁻³	v3	1036-1042
4	(PO ₄) ⁻³	ν4	562-570
5	(OH) ⁻¹	Salınım	630-632
6	(OH) ⁻¹	Titreșim	3448-3571

Çizelge 2.8. 1100 °C'de 1 saat sinterlenmiş katkısız HA'in FTIR absorbans aralıklarının belirlenmesi [45-47]

Şekil 2.16. 0.25 mol Zn katkılı HA'in XRD grafiği, ana faz HA, yan fazlar +, *, ", ° sırasıyla ZnO, α -TCP, CaO, β -TCP [48] *

* (Elsevier'den alınan izin ile [48] numaralı kaynaktan kullanılmıştır)

Series	Samples	НАр					
		a (Å)	с (Å)	V (ų)	Zn (%)*	Crystal size	
						[hh0] (Å)	[00/] (Å)
Zn _{o.oo}	Zn _{o.oo} -500	9.4263 (1)	6.8815(1)	529.53 (1)	-	240	310
	Zn _{0.00} -600	9.4190 (1)	6.88315 (8)	528.85 (1)	-	260	320
	Zn _{o.oo} -700	9.41782 (7)	6.88401 (6)	528.778 (7)	-	310	370
	Zn _{o.oo} -800	9.4182 (1)	6.8825 (1)	528.70(1)	-	450	500
	Zn _{o.oo} -900	9.42052 (3)	6.88127 (3)	528.870 (3)	-	620	670
	Zn _{0.00} -1000	9.42048 (2)	6.88158 (2)	528.889 (3)	-	820	850
	Zn _{e.co} -1100	9.42016 (2)	6.88203 (2)	528.888 (2)	-	910	930
Zn _{0.25}	Zn _{0.25} -500	9.4235 (1)	6.8845(1)	529.46(1)	3.6 (3)	260	320
	Zn _{0.25} -600	9.4166 (1)	6.8853 (1)	528.74(1)	3.0 (3)	290	350
	Zn _{0.25} -700	9.41629 (8)	6.88425 (7)	528.624 (8)	3.0 (3)	320	370
	Zn _{0.25} -800	9.41864 (6)	6.88276 (5)	528.773 (6)	3.0 (3)	470	490
	Zn _{0.25} -900	9.41854 (4)	6.88548 (4)	528.971 (5)	5.4 (3)	630	650
	Zno.25-1000	9.41717 (3)	6.89363 (2)	529.444 (3)	9.6 (3)	770	780
	Zno25-1100	9.41272 (2)	6.90081 (2)	529.494 (2)	10.8 (3)	860	870
Zno.se	Zn _{0.50} -500	9.4228 (1)	6.8849(1)	529.41 (1)	3.6 (3)	270	340
	Zn _{0.50} -600	9.4173 (1)	6.8857 (1)	528.85(1)	4.2 (3)	300	370
	Zn _{0.50} -700	9.41654 (9)	6.88526 (8)	528.730 (9)	3.6 (3)	330	390
	Zno 10-800	9.41815 (7)	6.88370 (3)	528.791 (8)	3.6 (3)	480	510
	Zno - 900	9.41909 (5)	6.88605 (4)	529.077 (5)	5.4 (3)	600	620
	Zn _{0.50} -1000	9.41665 (3)	6.89355 (3)	529.378 (3)	9.0 (3)	760	770
	Zn _{0.50} -1100	9.41153 (4)	6.90100 (3)	529.375 (4)	11.2 (3)	870	870
Zn _{1.00}	$Zn_{100} - 500$	9.4242 (2)	6.8863 (1)	529.68 (2)	4.2 (3)	270	340
	Zn1.00-600	9.4170(1)	6.88611 (9)	528.85(1)	4.8 (3)	290	360
	Zn _{1.00} -700	9.41677 (8)	6.88440 (7)	528.535 (9)	3.0 (3)	400	470
	Zn _{1 m} -800	9.41833 (7)	6.88249 (6)	528.718 (8)	3.6 (3)	520	550
	Zn _{1.00} -900	9.41882 (5)	6.88520 (4)	528.981 (5)	4.2 (3)	620	650
	Zn _{1.00} -1000	9.41762 (3)	6.89376 (3)	529.504 (3)	8.4 (3)	760	770
	Zn1.00-1100	9,41382 (4)	6.90157 (4)	529.676 (4)	12.6 (3)	880	880

Çizelge 2.9. HA'nin kristal yapı parametrelerinin Rietveld analiziyle düzeltilmiş hali [48] *

* (Elsevier'den alınan izin ile [48] numaralı kaynaktan kullanılmıştır)

3. MATERYAL VE YÖNTEM

3.1. KATKISIZ VE ÇİNKO KATKILI HİDROKSİAPATİTİN SENTEZLENMESİ

Bu tez çalışmasında, asit-temelli metot kullanılarak HA sentezinde kullanılacak farklı oranlarda Zn katkısının elde edilecek tozların parçacık boyutuna, morfolojisine, kararlılığına etkilerinin yanı sıra, tozların farklı sıcaklıklarda sinterlenerek Zn katkısının; elde edilen tozların mekanik özellikleri (mikrosertlik) üzerine etkileri incelenmiştir.

Asit-temelli yöntem sıvı içinde kimyasal çöktürme yöntemleri arasında en yaygın olarak kullanılanıdır [31]. Bu yöntemin avantajı kalsiyum hidroksit ile fosforik asit reaksiyonu sonucu yabancı elementler oluşmaması; çıktı olarak HA haricinde sadece su bulunmasıdır [32, 33]:

$$10Ca(OH)_2 + 6H_3PO_4 \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 18H_2O$$
 [3.1]

Yapılan tez çalışması kapsamında öngörülen başlıca aşamalar aşağıda sunulmuştur:

- Zn katkılı HA tozu üretilmesi:
 - Farklı üretim parametreleri (Zn oranı) kullanılarak asit-temelli metot ile HA tozu üretimi.
 - Üretim parametrelerinin sentezlenen tozun parçacık boyutuna ve morfolojisine etkisinin belirlenmesi.
 - Üretilen HA tozlarda HA haricinde oluşum olup olmadığının belirlenmesi.
- Üretilen tozların pelet haline getirip sinterlenmesi ve kararlılıklarının (bozunma olup olmadığının) belirlenmesi:
 - Üretilen tozların belirli basınç altında tek eksenli preste pelet haline getirilmesi (ön şekil verilmesi).
 - Elde edilen peletlerin farklı sıcaklıklarda sinterlenmesi.
 - Sinterleme sonrasında HA kararlılığının (yapıda bozunma olup olmadığının) belirlenmesi.

- Üretim parametrelerinin mekanik özellikler üzerindeki etkisinin belirlenmesi:
 - Sinterleme işlemi sonrasında mekanik özelliklerin (mikrosertlik) belirlenmesi.

3.1.1. Zn Katkılı HA Tozu Üretilmesi:

Zn katkılı HA tozu üretilmesinde; cam balon önceden hazırlanmış manyetik karıştırıcının üzerindeki 40°C sıcaklıktaki yağ bulunan kabın içine yerleştirilir. 10.02 g kalsiyum hidroksit, Ca(OH)₂ (% 99 Merck, Germany), içinde 400 ml deiyonize su bulunan cam balon içine dökülür ve 30 dk manyetik karıştırıcıda karıştırılır. Bu karışımın içine de pH 9.80'de sabitlenecek şekilde fosforik asit, H₃PO₄ (%85, Merck, Germany) eklenir. Asit eklendikten sonra 1 saat pH kontrolü yapılır. 1 saat sonunda belirli oranlarda ağırlıkça ağ. % 1, 2, 4 ZnO tozları (Sigma Aldrich, USA) eklenilir ve 40°C'de 24 saat yaşlandırma işlemine bırakılır.

Kontrol numunesi olan katkısız HA cam balon önceden hazırlanmış manyetik karıştırıcının üzerindeki 40°C sıcaklıktaki yağ bulunan kabın içine yerleştirilir. 10,02 g kalsiyum hidroksit Ca(OH)₂ (% 99 Merck, Germany), içinde 400 ml deiyonize su bulunan cam balon içine dökülür ve 30 dk manyetik karıştırıcıda karışması için beklenilir. Bu karışımın içine pH 9,80'de sabitlenecek şekilde fosforik asit H₃PO₄ (%85, Merck, Germany) eklenir. Asit eklendikten sonra 1 saat pH kontrolü yapılır. 40°C'de 24 saat yaşlandırma işlemine bırakılır. Yaşlandırma işleminden sonra sırasıyla 5 sefer dekantasyon ve santrifüj işlemi tekrarlanır. Bu işlemlerden sonra elde edilen çözelti 110°C sıcaklığındaki etüvde 48h kurutulur. Kuruma işleminin ardından elde edilen tozlar tartılır ve Zn katkısı oranlarına göre kodlanarak kahverengi amber şişelerde saklanır. Zn katkılı ve katkısız HA üretim akış şeması Şekil 3.1'de sunulmaktadır.

3.1.2. Üretilen Tozların Pelet Yapılması ve Sinterlenmesi

Katkısız HA ve Zn katkılı olarak üretilen HA tozları 1000, 1100 ve 1200 °C sıcaklıkta sinterleme işlemi öncesi şekil vermek amacıyla pelet haline getirilir. Üretilen tozlar 1,4'er gram tartılarak, 10mm çapındaki kalıba yerleştirilir ve tek eksenli manuel pres cihazıyla 100MPa basınçta 90s uygulanarak pelet haline getirilir. Elde edilecek tozların hesabı; Zn oranı, yaşlandırma süresi ve sinterleme sıcaklıklarına göre hesaplanan parametreler ve kodlar Çizelge 3.1'de sunulmuştur.

Şekil 3.1. Çinko katkılı HA ve katkısız HA üretim akış şeması

Parametre	Kodlar	Zn katkı oranı (ağ. %)	Yaşlandırma Süresi (gün)	Sinterleme Sıcaklığı (°C)
1	Zn0HA-0000	0	1	-
2	Zn0HA-1000	0	1	1000
3	Zn0HA-1100	0	1	1100
4	Zn0HA-1200	0	1	1200
5	Zn1HA-0000	1	1	-
6	Zn1HA-1000	1	1	1000
7	Zn1HA-1100	1	1	1100
8	Zn1HA-1200	1	1	1200
9	Zn2HA-0000	2	1	-
10	Zn2HA-1000	2	1	1000
11	Zn2HA-1100	2	1	1100
12	Zn2HA-1200	2	1	1200
13	Zn4HA-0000	4	1	-
14	Zn4HA-1000	4	1	1000
15	Zn4HA-1100	4	1	1100
16	Zn4HA-1200	4	1	1200

Çizelge 3.1. Üretimdeki parametreler ve kodları

3.2. KARAKTERİZASYON

3.2.1. X-Işını Kırınımı (XRD)

Sentezlenen katkısız HA ve Zn katkılı HA tozları sinterleme öncesi ve 3 farklı sıcaklıkta sinterlendikten sonra (1000 °C, 1100 °C, 1200 °C); XRD cihazı (SmartLab, Rigaku, Japan) kullanılarak, HA haricinde farklı bir oluşum olup olmadığı incelenmiştir. XRD analizleri oda sıcaklığında 0,02 tarama hızında 2-theta boyunca 6°-80° aralığında ve "paralel ışın metodu" ile yapılmıştır.

3.2.2. Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR)

Sentezlenen katkısız HA ve Zn katkılı HA tozları sinterleme öncesi ve sinterleme sonrası (1000 °C, 1100 °C, 1200 °C) FTIR analizleri (PerkinElmer, USA),

HA'in yapısındaki OH^{-1} ve PO_4^{-3} bant aralıklarını tespit etmek ve HA'in oluşumunu desteklemek amacıyla 4000-450 cm⁻¹ aralığında yapılmıştır.

3.2.3. Taramalı Elektron Mikroskobu (SEM)

Tozların parçacık boyutu ve morfolojisinin belirlenmesi aşamasında SEM (Supra 55, Zeiss, Germany) kullanılmıştır. Sentezlenen katkısız HA ve Zn katkılı HA tozları 0.5 g tartılarak 10mm çapındaki tek eksenli pres cihazında 100 MPa basınçta 90 s uygulanarak pelet haline getirilmiştir. Pelet halindeki numuneler sinterleme öncesi ve 3 farklı sıcaklıkta sinterlendikten sonra (1000 °C, 1100 °C, 1200 °C), SEM analizi için iletkenliklerinin sağlanması için yüksek vakum sputter kaplama cihazı (Q150R ES, Quorum, UK) kullanılarak karbon veya platin kaplama yapılmıştır.

Yapılan SEM analizlerine ek olarak enerji dağılımlı X-ışını spektroskopisi (EDAX) kullanılarak numune içindeki Ca, P, O, Zn oluşumlarının miktarları belirlenmiştir.

3.2.4. Vickers Mikrosertlik

Pelet halindeki numuneler farklı sıcaklıklarda sinterleme işlemine tabi tutulmuşlardır. Sinterleme sonrası elde edilen numunelerin yüzeyleri zımparalanıp parlatılmış; ardından numuneler 300 g yüke 15 s maruz bırakılarak mikrosertlik testi yapılmıştır. Aynı sinterleme sıcaklığına sahip (1000 °C, 1100 °C, 1200 °C) 3'er numuneden 3'er ölçüm alınarak (her bir parametre için toplam 9 ölçüm) numunelerin mikrosertlik değerleri belirlenmiştir.

3.2.5. Yoğunluk Hesabı

Farklı sıcaklık değerlerinde (1000 °C, 1100 °C, 1200 °C) yapılan sinterleme işleminden sonra pelet halindeki numunelerin boyutları (çapı-yüksekliği) ve kütleleri ölçülerek yoğunlukları hesaplanmıştır. Numunelerin yoğunlukları aynı sıcaklıkta sinterlenen 3 farklı numuneden alınan ölçümlerle belirlenmiştir.

4. BULGULAR VE TARTIŞMA

Tez çalışması kapsamında; asit temelli yöntem kullanılarak HA'e yapılan Zn katkısının parçacık boyutu ve morfolojisi üzerindeki etkilerinin belirlenmesi amacıyla SEM analizi yapılmıştır. Sentezlenen katkısız HA ve Zn katkılı HA tozlarının morfolojisini ve parçacık boyutlarını belirlemek amacıyla, sentezleme sonrasında elde edilen tozların SEM görüntüleri Şekil 4.1-4.4.'te sunulmakta olup; Zn oranına göre, numunelerin parçacık boyutu ve morfolojisinde belirgin bir fark olmadığı gözlemlenmiştir. Katkısız HA tozları iğne uçlu, yaklaşık 150 nm uzunluğunda ve 40 nm genişliğinde olup Zn katkılı HA tozlarıyla benzer boyutlara sahiptir.

Şekil 4.1. Katkısız HA'in SEM görüntüsü

Şekil 4.2. % 1 Zn katkılı HA numunenin SEM görüntüsü

Şekil 4.3. % 2 Zn katkılı HA numunenin SEM görüntüsü

Şekil 4.4. % 4 Zn katkılı HA numunenin SEM görüntüsü

Sentezlenen katkısız ve Zn katkılı tozların sinterleme öncesi FTIR analizleri 4000-450 cm⁻¹ bant aralığında yapılmış olup Çizelge 4.1.'de sunulmakta ve katkısız tozların FTIR spektrumu Şekil 4.5.'te sunulmaktadır. Sentezleme aşamasında Zn kullanılan ve kullanılmayan tüm tozların FTIR analizlerinde; hidroksil (OH)⁻¹ grubuna ait titreşim ve salınım bantları 629 cm⁻¹ ve 3571 cm⁻¹'de görülmektedir. Fosfat (PO₄)⁻³ grubuna ait v4 titreşim bantları 562 ve 601 cm⁻¹'de, v3 titreşim bantları 1089-1039 cm⁻¹ aralığında, v2 titreşim bantları 472 cm⁻¹'de ve v1 titreşim bantları 962 cm⁻¹'de görülmektedir.

Çizelge 4.1. Katkısız HA tozlarının FTIR analizi

Fonksiyonel Grup	Titreşim modu	Dalga sayısı (cm ⁻¹)
(PO ₄) ⁻³	ν1	962
(PO ₄) ⁻³	ν2	472
(PO ₄) ⁻³	v3	1038, 1090
(PO ₄) ⁻³	ν4	562, 601
(OH) ⁻¹	Salınım	632
(OH) ⁻¹	Titreşim	3571

Şekil 4.5. Katkısız HA ve tozlarının sinterleme öncesi FTIR grafiği

Zn katkılı ve katkısız olarak sentezlenen tozların sinterleme sonrası (1000 °C, 1100 °C, 1200 °C) FTIR analizleri yapılmış olup; katkısız numunelere ait FTIR spektrumları Şekil 4.6-4.8.'de sunulmaktadır. %1-4 Zn katkısı kullanılarak sentezlenen numunelerin FTIR spektrumları, katkısız numunelerin FTIR spektrumlarına benzer olduğu için sadece katkısız numunelere ait sonuçlar sunulmuştur.

Şekil 4.6. Katkısız HA 1000 °C sinterleme sonrası FTIR grafiği

Şekil 4.7. Katkısız HA 1100 °C sinterleme sonrası FTIR grafiği

Şekil 4.8. Katkısız HA tozlarının 1200 °C sinterleme sonrası FTIR grafiği

Sentezlenen katkısız tozların sinterleme sonrası FTIR analizleri sonucunda; tozların yapısında fosfat ve hidroksil piklerinin olduğu görülmektedir (Şekil 4.6-4.8).

Sentezlenen katkısız HA tozlarının 3 farklı sıcaklıkta (1000 °C, 1100 °C, 1200 °C) sinterlenmesi sonucunda hidroksil (OH)⁻¹ grubuna ait v1 salınım bandı 632 cm^{-1} 'de görülmektedir. Fosfat (PO₄)⁻³ grubuna ait v4 titreşim bantları 601 cm⁻¹'de,

v1 titreşim bantları 960 cm⁻¹'de ve v3 titreşim bantları 1090 cm⁻¹'de görülmekte olup sıcaklık arrtıkça bant aralıklarının pik boyları artmaktadır.

Zn katkılı ve katkısız olarak sentezlenen tozların Sinterleme öncesi ve sonrası FTIR spektrumlarından; tüm numunelerin OH ve (PO₄)⁻³ piklerine sahip olduğu belirlenmiş olup; elde edilen sonuçlar, sentezlenen numunelerin HA olduğunu desteklemektedir.

Tez çalışması kapsamında; asit temelli yöntem kullanılarak sentezlenen katkısız ve Zn katkılı tozların 3 farklı sıcaklıkta (1000 °C, 1100 °C, 1200 °C) sinterlenmesi işlemi yapılmıştır. Sentezlenen tozların sinterleme öncesi ayrıca 1000 °C', 1100 °C ve 1200 °C sıcaklıkta yapılan sinterleme sonrası XRD grafikleri sırasıyla Şekil 4.9-4.12.'de sunulmaktadır.

XRD grafiklerine göre, sinterleme öncesi % 4 Zn katkılı HA tozları hariç diğer tüm numuneler HA pikleri ile tam uyuşmakta (JCPDS No: 01-072-1243); herhangi bir yan faz bulunmamaktadır.

Şekil 4.9. Katkısız HA ve Zn katkılı HA tozlarının sinterleme öncesi XRD grafiği (**•** ZnO pikini göstermektedir.)

XRD grafiklerine göre, sinterleme sonrası tozların HA pikleri ile tam uyuştuğu (JCPDS No: 01-072-1243); % 2 ve % 4 Zn katkılı tozlarında yan faz olarak ZnO oluştuğu görülmektedir. ZnO yan fazına ek olarak, yanlız % 4 Zn katkılı tozlarda az miktarda β-TCP yan fazının oluştuğu da tespit edilmiştir.

Çinko oranının artması ile sinterleme sonrası XRD spektrumundaki ZnO pikinin daha belirgin hale geldiği Şekil 4.10-4.12'de görülmektedir. XRD spektrumlarında, çinko oranı ile birlikte ZnO pik boyunun arttığı belirlenmiş olup; %4 Zn katkılı olarak sentezlenen tozların sinterleme sonrası XRD grafiklerinde belirgin olarak görülen ZnO'e ait pikin uzunluğu %2 Zn katkısında azalmıştır. %1 Zn katkılı olarak sentezlenen tozların XRD grafiklerinde ZnO pikinin görülmemesinin, Zn oranının düşük olmasından kaynaklandığı düşünülmektedir. Ergun ve çalışma arkadaşlarının yaptığı çalışmada da [44] benzer durum ile karşılaşılmıştır.

Şekil 4.10. Katkısız HA ve Zn katkılı HA tozlarının 1000 °C sinterleme sonrası grafiği (\blacksquare ZnO pikini ve $\bullet \beta$ -TCP göstermektedir.)

Şekil 4.11. Katkısız HA ve Zn katkılı HA tozlarının 1100 °C sinterleme sonrası XRD grafiği (∎ ZnO pikini ve • β-TCP göstermektedir.)

Şekil 4.12. Katkısız HA ve Zn katkılı HA tozlarının 1200 °C sinterleme sonrası XRD grafiği (∎ ZnO pikini ve • β-TCP göstermektedir.)

Şekil 4.13.'te % 2 Zn katkılı tozların sinterleme öncesi ve sonrası XRD grafiği sunulmaktadır. Sinterleme öncesi ve sonrasında % 2 Zn katkılı tozların HA pikleriyle tam uyuştuğu ve sinterleme ile HA fazının değişmediği görülmektedir.

Şekil 4.13. % 2 Zn katkılı HA tozlarının sinterleme öncesi ve sonrası XRD grafiği

Çinko oranının ve sinterleme sıcaklığının, kafes parametreleri üzerinde etkisi olup olmadığını belirlemek amacıyla; katkısız HA ve farklı oranlarda Zn katkılı HA tozlarının sinterleme öncesi ve sinterleme sonrası kafes parametreleri XRD-PDXL programı ile belirlenmiş olup; a, c ve V değerleri Çizelge 4.2'te sunulmaktadır.

Çizelge 4.2. Sentezlenen katkısız ve Zn katkılı H	HA tozlarının kafes	parametreleri
---	---------------------	---------------

Sinterleme sıcaklığı	Zn0HA	Zn1HA	Zn2HA	Zn4HA
sinterleme öncesi	a: 9,41 c: 6,88 V: 528,43	a: 9,41 c: 6,88 V: 528,20	a: 9,40 c: 6,88 V: 528,00	a:9,41 c:6,88 V:528,70
1000 °C	a: 9,42	a: 9,42	a: 9,41	a:9,41
	c: 6,88	c: 6,89	c: 6,89	c:6,89
	V: 529,29	V: 529,92	V: 529,90	V:529,87
1100 °C	a:9,42	a:9,41	a: 9,41	a:6,41
	c:6,88	c:6,90	c: 6,91	c:6,91
	V:529,42	V:530,16	V: 530,69	V:530,87
1200 °C	a:9,37	a:9,38	a:9,39	a:9,39
	c:6,87	c:6,87	c:6,90	c:6,91
	V:523,40	V:524,33	V:527,76	V:528,20

Sinterleme öncesi ve sonrasında katkısız HA ve farklı oranlarda Zn katkılı HA tozlarının kafes parametrelerinde belirgin bir fark olmadığı görülmektedir. Zn katkısı ile ilgili çalışmalarda benzer duruma; Ren ve çalışma arkadaşlarının [49], Samani ve çalışma arkadaşlarının [9], Stanic ve çalışma arkadaşlarının [2] yaptığı çalışmalarda da karşılaşılmış olup elde edilen sonuçlar literatür ile uyumludur.

Yapılan SEM analizlerine ek olarak enerji dağılımlı X-ışını spektroskopisi (EDAX) kullanılarak numune içindeki Ca, P, O, Zn oluşumlarının miktarları belirlenmiştir. Çizelge 4.3.'te EDAX analizi sonucunda elde edilen veriler sunulmaktadır. Sinterleme öncesi ve sonrasında elde edilen veriler sonucunda, belirli oranlarda HA'e Zn katkısının varlığı gözlemlenmektedir.

Çizelge 4.3. Numunelerin sinterleme öncesi ve sinterleme sonrası EDAX analizinden elde edilen Ca, P, O, Zn katkı oranları

	Katkı	Ca	Р	0	Zn
	Oranları	(ağ. %)	(ağ. %)	(ağ. %)	(ağ. %)
	Katkısız	46,58	16,03	37,36	0,04
Sinterleme	ağ. % 1 Zn	44,45	16,49	37,57	1,48
öncesi	ağ. % 2 Zn	42,98	16,14	38,25	2,64
	ağ. % 4 Zn	42,46	15,85	37,30	4,39
	Katkısız	44,71	16,07	39,19	0,03
1000 °C	ağ. % 1 Zn	45,01	15,78	38,13	1,08
sinterleme	ağ. % 2 Zn	44,10	15,62	37,82	2,46
	ağ. % 4 Zn	43,98	16,25	35,71	4,07

Tez çalışması kapsamında; asit temelli yöntem kullanılarak sentezlenen katkısız HA tozlarının pelet haline getirilip 3 farklı sıcaklıkta (1000 °C, 1100 °C, 1200 °C) sinterlenmesiyle elde edilen numunelerin mikroyapısı incelenmiş olup elde edilen SEM yüzey görüntüleri Şekil 4.14'te sunulmaktadır. SEM görüntülerinden; sinterleme işleminde sıcaklık yükseldikçe numunelerdeki gözeneklerin azaldığı ve daha yoğun bir yapıya dönüştüğü görülmektedir.

Şekil 4.14. Pelet haline getirilip farklı sıcaklıklarda sinterlenmiş katkısız HA numunelerin yüzey SEM görüntüleri (a) 1000 °C, (b) 1100 °C, (c) 1200 °C

Sentezlenen katkısız HA ve Zn katkılı HA tozlarından elde edilen peletlerin 1200 °C'de sinterlenmesiyle elde edilen numunelerin yüzey SEM görüntüleri Şekil 4.15-4.18.'de sunulmakta olup; Zn oranına göre SEM görüntülerinde belirgin bir fark olmadığı gözlemlenmiştir.

Şekil 4.15. Pelet haline getirilip 1200 °C'de sinterlenmiş katkısız HA numunenin yüzey SEM görüntüsü

Şekil 4.16. Pelet haline getirilip 1200 °C'de sinterlenmiş % 1 Zn katkılı HA numunenin SEM görüntüsü

Şekil 4.17. Pelet haline getirilip 1200 °C'de sinterlenmiş % 2 Zn katkılı HA numunenin SEM görüntüsü

Şekil 4.18. Pelet haline getirilip 1200 °C'de sinterlenmiş % 4 Zn katkılı HA numunenin SEM görüntüsü

Uysal ve çalışma arkadaşlarının yaptığı çalışmada [50] sentezleme aşamasında HA içine farklı oranlarda Zn²⁺ ve F⁻ iyonları ekleyerek çökelme yöntemiyle katkılı HA sentezlemişlerdir. Elde edilen tozlar 1100 °C'de 1 saat sinterleme işlemine tabi tutulmuştur. Sentezlenen tozların morfolojisinin SEM görüntüsü Şekil 4.19'da sunulmaktadır. Numunelerin tane büyüklüğü "intercept"

yöntemi kullanılarak hesaplanmış olup; tane boyutunun 333-209 nm arasında olduğunu belirtmektedirler. Saf HA'in tane boyutunun 238 nm olduğu, % 2 mol Zn²⁺ katkılı HA'in tane boyutunun ise 330 nm olduğu belirtilmekte olup; HA'e Zn²⁺ ve F⁻ iyonlarının katkısız tane boyutunu arttırdığı sonucuna varılmıştır [50].

Stanic ve çalışma arkadaşlarının yaptığı çalışmada [2]; HA içine farklı oranlarda Zn ve Cu katkıları eklenerek elde edilen tozların morfolojisini belirlemek için SEM analizi yapılmıştır. Şekil 4.20'de SEM görüntülerine göre, katkısız HA ile Zn ve Cu katkılı HA numunelerin ince kristal yapıya sahip ve benzer topaklanma eğilimine sahip olduğu belirtilmektedir. Bunun yanı sıra birbirine bağlı parçacıkların düzgün topaklanması; yapının içindeki farklı şekiller, tozların morfolojisi ve dağılımı hakkında fikir verdiği belirtilmektedir [2].

Şekil 4.19. (a) Saf HA, (b) % 2 mol Zn katkılı HA, (c) % 2 mol Zn ve % 1 mol F katkılı HA, (d) % 2 mol Zn ve % 2,5 mol F katkılı HA, (e) % 2 mol Zn ve % 5 mol F katkılı HA (Ölçek çubuğu $2\mu m$, büyütme 30K X) [50]*

* (Elsevier'den alınan izin ile [50] numaralı kaynaktan kullanılmıştır)

Şekil 4.20. Saf, Zn ve Cu katkılı HA tozlarının SEM grafiği (a) Saf HA, (b) ZnHA2,
(c) CuHA1 (d) CuHA2 [2]*
* (Elsevier'den alınan izin ile [2] numaralı kaynaktan kullanılmıştır)

Ren ve çalışma arkadaşlarının yaptığı çalışmada [49] yaş kimyasal yöntem kullanılarak farklı miktarlarda Zn iyonu içeren nano boyutta HA sentezlemişlerdir. Zn miktarının çökeltinin kristal boyutunu ve morfolojisini SEM analizi kullanarak incelemişlerdir. SEM görüntüsü Şekil 4.21.'de sunulmaktadır. SEM görüntüsünde, tüm çökeltilerde keskin yüzey açısı olmaksızın tipik parçacık şekli görülmektedir. Parçacıklar Zn katkısı arttıkça topaklanma eğilimdedirler. Parçacık boyutu 10nm ve 50nm arasında değişmektedir ve parçacık boyutunun Zn katkısı arttıkça artmakta olduğunu belirtmektedirler [49].

Sentezlenen HA tozları, tek eksenli preste 90s süresince 100 MPa basınç altında sıkıştırılarak pelet haline getirilmiştir. Pelet halindeki numuneler 3 farklı sıcaklıkta (1000 °C, 1100 °C, 1200 °C) sinterlenerek; çinko oranı ve sinterleme sıcaklığının yoğunluk üzerindeki etkileri incelenmiştir. Yoğunluk ölçümleri sonucunda elde edilen sonuçlar grafik olarak Şekil 4.22.'de sunulmaktadır. Zn katkı oranı arttıkça elde edilen numunelerin yoğunluğu artmaktadır. Yoğunluk 1000 °C sıcaklıkta sinterlenen ağ. % 1 Zn katkılı numunelerde artmakta iken, ağ. % 2 Zn ve ağ. % 4 Zn katkılı numunelerde azalma görülmektedir. 1100 °C ve 1200 °C'lerde ise, Zn

katkı oranı arttıkça yoğunluk artmaktadır. 1100 °C ve 1200 °C'lerde sinterlenen numunelerin yoğunluğu hemen hemen aynıdır.

Şekil 4.21. Farklı Zn kesitlerinin Sem görüntüsü, (a) HA, (b) %5 mol Zn katkılı HA, (c) %10 mol Zn katkılı HA, (d) %15 mol Zn katkılı HA, (e) %20 mol Zn katkılı HA [49]*

* (Elsevier'den alınan izin ile [49] numaralı kaynaktan kullanılmıştır)

Şekil 4.22. Katkısız HA ve Zn katkılı HA numunelerin yoğunluk hesabı

Sinterleme sıcaklığının ve çinko oranının, numunelerin mikrosertlik değerleri üzerinde etkisi olup olmadığını belirlemek için yoğunluk hesabında kullanılan numuneler, zımparalama-parlatma işlemi ardından mikrosertlik testine tabi tutulmuşlardır.

Mikrosertlik testleri sonucunda, Zn katkılı ve katkısız tüm numunelerde 1000 °C'den 1100 °C'ye geçerken Vickers mikrosertlik değeri artmakta, 1100 °C'den 1200 °C'ye geçerken de azalma göstermektir. 1000 °C sinterleme sıcaklığında, ağ. %1 Zn katkı oranında mikrosertlik değeri en yüksek olup, Zn katkı oranı arttıkça mikrosertlik değeri azalmaktadır. 1100 °C ve 1200 °C sinterleme sıcaklıklarında ise, Zn katkı oranı arttıkça mikrosertlik değeri artmaktadır. Çizelge 4.4.'te katkısız HA ve Zn katkılı HA numunelerin 1000 °C, 1100 °C, 1200 °C sinterleme sonrası Vickers mikrosertlik değerleri ve Şekil 4.23.'te ise elde edilen Vickers mikrosertlik değerlerinin grafiği sunulmaktadır.

Numuneler	Vickers Sertlik Değeri (HV)	Standart Sapma
Zn0HA1000	372,80	14,02
Zn1HA1000	432,11	17,09
Zn2HA1000	380,94	14,17
Zn4HA1000	316,18	10,95
Zn0HA1100	551,98	12,52
Zn1HA1100	576,86	18,15
Zn2HA1100	574,23	4,16
Zn4HA1100	597,49	18,22
Zn0HA1200	521,27	4,61
Zn1HA1200	526,67	8,10
Zn2HA1200	526,63	4,05
Zn4HA1200	529,33	2,36

Çizelge 4.4. Katkısız HA ve Zn katkılı HA numunelerin 1000 °C, 1100 °C, 1200 °C sinterleme sonrası mikrosertlik değerleri

Şekil 4.23. Katkısız HA ve Zn katkılı HA numunelerin mikrosertlik değerleri

5. SONUÇLAR ve ÖNERİLER

Bu tez çalışmasında, yaş kimyasal yöntem içinde yer alan asit-temelli metot kullanılarak katkısız HA ve farklı oranlarda Zn katkılı HA sentezlenmiş; sentezleme aşamasında kullanılan Zn katkısının, parçacık boyutu ve morfolojisi üzerindeki etkileri belirlenmiştir. Ayrıca çinko katkısının (ağ. % 1, ağ. % 2 ve ağ. % 4) ve sinterleme sıcaklığının (1000 °C, 1100 °C, 1200 °C) HA ve yan faz oluşumu, sinterlenebilirlik, yoğunluk ve mikrosertlik üzerindeki etkileri incelenmiş; Zn katkısının yapıya dahil olup olmadığı belirlenmiştir.

Farklı Zn katkısı ve sinterleme sıcaklığı içeren bu çalışmadan aşağıdaki sonuçlar elde edilmiştir

- Asit-temelli yöntem kullanılarak, 40 °C'de 1 gün yaşlandırma sonrası elde edilen katkısız HA tozların yaklaşık 150 nm uzunluğunda, 40 nm genişliğinde ve iğne uçlu şekilde olduğu görülmekte olup; sentezleme aşamasında kullanılan ağ. % 1, ağ. % 2 ve ağ. % 4 Zn katkısının, elde edilen tozun boyutu ve morfolojisi üzerinde belirgin bir etkiye sahip olmadığı belirlenmiştir.
- Zn katkılı ve katkısız olarak sentezlenen tozların, sinterleme öncesi ve sonrası FTIR spektrumlarından, tüm numunelerin hidroksil ve fosfat piklerine sahip olduğu belirlenmiştir. Elde edilen sonuçlar, sentezlenen numunelerin HA olduğunu desteklemektedir.
- Sentezlenen Zn katkılı ve katkısız tozların; XRD analizi sonucunda ana fazın HA olduğu belirlenmiş olup; düşük piklere sahip ZnO ve β-TCP yan fazları XRD spektrumlarında görülmektedir.
- Zn katkılı ve katkısız olarak sentezlenen tozların sinterleme öncesi ve sonrası EDAX analizinde, numunelerin belirli oranlarda Zn içerdiği; Zn oranının, sentezleme aşamasında kullanılan Zn oranına benzer şekilde artış gösterdiği belirlenmiş olup; EDAX ve XRD analizlerinden elde edilen sonuçlara göre Zn katkılı HA toz elde edildiği kanaatine varılmıştır.

- SEM görüntülerinden; sinterleme sıcaklığı arttıkça, beklendiği üzere, boşluk oranının azaldığı; sinterleme sıcaklığındaki artış ile yapının daha yoğun hale geldiği gözlemlenmiştir.
- SEM görüntüleri dikkate alındığında, sentezleme aşamasında kullanılan ağ.
 % 1, ağ. % 2 ve ağ. % 4 Zn'nun, boşluk oranı ve sinterlenebilirlik üzerinde belirgin bir etki yaratmadığı gözlemlenmiştir. Zn oranındaki artış ile yoğunluk artma eğiliminde olmasına rağmen, yoğunluk değerlerinde belirgin bir fark olmadığı belirlenmiştir.
- Sentezleme aşamasında farklı Zn oranları kullanılarak elde edilen numuneler, pelet haline getirilip farklı sıcaklıklarda sinterlenmeleri ardından yapılan mikrosertlik testi sonucunda, çinko oranına ve sinterleme sıcaklığına göre Vickers mikrosertlik değerlerinin 316,18±10,95 HV - 597,49±18,22 HV aralığında olduğu belirlenmiştir.

KAYNAKLAR

- http://www.marketsandmarkets.com/Market-Reports/biomaterials-393.html, Markets and Markets, (2012).
- [2] Stanic, V., Dimitrijevic, S., Antic-Stankovic, J., Mitric, M., Jokic, B., Plecas,
 I. B. and Raicevic, S. "Synthesis, characterization and antimicrobial activity
 of copper and zinc-doped hydroxyapatite nanopowders", Applied Surface
 Science, 256(20): 6083–6089, (2010).
- [3] Vallet-Regi, M. and Gonzalez-Calbet, J. M. "Calcium phosphates as substitution of bone tissues", Progress Solid State Chemistry, 32(1-2): 1-31, (2004).
- [4] Campoccia, D., Montanaro, L. and Arciola, C. R. "The significance of infection related to orthopedic devices and issues of antibiotic resistance", Biomaterials, 27(11): 2331-2339, (2006).
- [5] Chen, W., Liu, Y., Courtney, H. S., Bettenga, M., Agrawal, C. M., Bumgardner, J. D. and Ong, J. L. "In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating", Biomaterials, 27(32), 5512-5517, (2006).
- [6] Heidenau, F., Mittelmeier, W., Detsch, R., Haenle, M., Stenzel, F., Ziegler,
 G. and Gollwitzer, H. "A novel antibacterial titania coating: metal ion toxicity
 and in vitro surface colonization", Journal of Materials Science: Materials in
 Medicine, 16(10): 883-888, (2005).
- [7] Chung, R. J., Hsieh, M. F., Huang, C. W., Perng, L. H., Wen, H. W. and Chin,
 T. S. "Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings", Journal of Biomedical Materials Research
 Part B: Applied Biomaterials, 76(1): 169-178, (2006).

- [8] Ito, A., Otsuka, M., Kawamura, H., Ikeuchi, M., Ohgushi, H., Sogo Y. and Ichinose, N. "Zinc-containing tricalcium phosphate related materials for promoting bone formation", Current Applied Physics, 5(5): 402-406, (2005).
- [9] Samani, S., Hossainalipour, S. M. and Rezaie, H. R. "In vitro antibacterial evaluation of sol–gel-derived Zn⁻, Ag⁻, and (Zn + Ag)⁻doped hydroxyapatite coatings against methicillin-resistant staphylococcus aureus", Journal of Biomedical Materials Research A, 101(1): 222-230, (2013).
- [10] Landi, E., Logroscino, G., Proietti, L., Tampieri, A., Snadri, M. and Sprio, S.
 "Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour", Journal of Materials Science: Materials in Medicine, 19(1): 239–247, (2008).
- Bezzi, G., Celotti, G., Landi, E., LaTorretta, T. M. G., Sopyan, I. and Tampieri, A. "A novel sol-gel technique for hydroxyapatite preparation", Material Chemistry Physics, 78(3): 816-824, (2003).
- [12] Zhou, G., Li, Y., Xiao, W., Zuo, Y., Xue, J. and Jansen, J. A. "Synthesis, characterization, and anti-bacterial activities of a novel nano hydroxyapatite/zinc oxide complex", Journal of Biomedical Materials Research Part A, 15(85): 929-937, (2007).
- [13] Ratner, B. D., Hoffman, A. S., Schoen, F. J. and Lemons, J. E. "Biomaterials Science: An Introduction To Materials In Medicine, 2nd ed.", Elsevier, China, 484 s., (2004).
- [14] Hench, L. L. "Medical materials for the next millenium", MRS Bulletin, 24(5): 13-20, (1999).

- [15] Laurencin, C. T., Ambrosio, A. M., Borden, M. D. and Cooper, J. A. "Tissue Engineering: Orthopedic Application", Annual Reviews Biomedical Engineering, 1, 19-46, (1999).
- [16] Park, J. B. and Lakes, R. S. "Biomaterials: An Introduction 2nd ed., Plenum Press, New York, 328 s., (1992).
- [17] Kline, J. "Handbook of Biomedical Engineering", Academic Press, Michigan, 733 s., (1988).
- [18] Gümüşderelioğlu, M. "Biyomalzemeler", Bilim ve Teknik Dergisi, http://www.biltek.tubitak.gov.tr/bdergi/yeniufuk/icerik/biyomalzemeler.pdf (01.07.2002).
- [19] Sygnatowicz, M. and Tiwari, A. "Controlled synthesis of hydroxyapatitebased coatings for biomedical application", Materials Science and Engineering C, 29, 1071–1076, (2009).
- [20] Albayrak, O., "Hydroxyapatite Coating on Ti and Ti6Al4V Substrates by Using Electrophoretic Deposition Method", Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 102 s., (2008).
- [21] Ipekoglu, M., "Effects of Calcination and Particle Size on The Sintering of Natural Hydroxyapatite", Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 167 s., (2004).
- [22] Heness, G. and Ben-Nissan, B. "Innovative bioceramics", Materials Forum, 27, 104-114, (2004).
- [23] Yelten, A., "Sol-Jel Yöntemi İle Üretilmiş Alümina-Bovine Hidroksiapatit Kompozitlerinin Özellikleri ve Karakterizasyonu", İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 172 s., (2010).

- [24] Best, S. M., Porter, A. E., Thian, E. S. and Huang, J. "Bioceramics: Past, present and for the future", Journal of the European Ceramic Society, 28(7): 1319-1327, (2008).
- [25] Kumar, R. R. and Wang, M. "Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system", Materials Letters, 55(3): 133-137, (2002).
- [26] Hoepfner, T. P. and Case, A. D. "Physical Characteristics of Sintered Hydroxyapatite", Bioceramics: Materials and Applications III, Ceramic Transactions", 110(2): 53-54, (2000).
- [27] Murugan, R. and Ramakrishna, S. "Development of nanocomposites for bone grafting", Composites Science and Technology, 65(15-16): 2385-2406, (2005).
- [28] Barrios, N. A. "A Computational Investigation of the Interaction of the Collagen Molecule with Hydroxyapatite", University College London, Ph.D. Thesis, 215 s., (2010).
- [29] Bahadır, A., "Gümüş Katkılı Kalsiyum Fosfat Malzemelerden Karmaşık Mimarili Skafolt Fabrikasyon", İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 86 s., (2008).
- [30] Kong, L. B., Ma, J. and Boey F. "Nanosized hydroxyapatite powders derived from coprecipitation process", Journal of Materials Science, 37(6), 1131-1134, (2002).
- [31] Kweh, S. W. K., Khor, K. A. and Cheang, P. "The production and characterization of hydroxyapatite (HA) powders", Journal of Materials Processing Technology, 89-90, 373-377, (1999).

- [32] Kumta, P. N., Sfeir, C. Lee, D. H., Olton, D. and Choi, D. "Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization", Acta Biomaterialia, 1(1): 65-83, (2005).
- [33] Wei, M., "Electrophoresis of hydroxyapatite on metal substrates", University of New South Wales, Ph.D. Thesis, (1997).
- [34] Saeri, M.R., Afshar, A., Ghorbani, M., Ehsani, N. and Sorrell, C. C. "The wet precipitation process of hydroxyapatite", Materials Letters, 57, 4064-4069, (2003).
- [35] Lim, G. K., Wang, J., Ng, S. C., Chew, C. H. and Gan, L. M. "Processing of hydroxyapatite via microemulsion and emulsion routes", Biomaterials, 18(21): 1433-1439, (1997).
- [36] Bouyer, E., Gitzhofer, F. and Boulos, M. I. "Morphological study of hydroxyapatite nanocrystal suspension", Journal of Materials Science: Materials in Medicine, 11(8): 523-531, (2000).
- [37] Osaka, A., Miura Y., Takeuchi, K., Asada, M. and Takahashi, K. "Calcium apatite prepared from calcium hydroxide and orthophosphoric acid", Journal Materials Science: Materials in Medicine 2(1): 51-55, (1991).
- [38] Ferraz, M.P., Monteiro, F.J., and Manuel, C. M. "Hydroxyapatite nanoparticles: A review of preparation methodologies", Journal of Applied Biomaterial and Biomechanics, 2(2), 74-80, (2004).
- [39] Kalita, S. J. and Bhatt, H. A. "Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization", Materials Science and Engineering C, 27(4): 837–848, (2007).

- [40] Venkatasubbu, G. D., Ramasamy, S., Ramakrishnan, V., Avadhani, G. S., Thangavel, R. and Kumar, J. "Investigations on zinc doped nanocrystalline hydroxyapatite", International Journal of NanoScience and Nanotechnology, 2(1): 1-23, (2011).
- [41] Ashuri, M., Moztarzadeh, F., Nezafati, N., Hamedani, A. A. and Tahriri, M. "Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol–gel-derived bioactive glass for bone substitute applications", Materials Science and Engineering C, 32(8): 2330–2339, (2012).
- [42] Bhattacharjee, P., Begam, H. and Chanda, A. "Development and physical, chemical and mechanical characterization of doped hydroxyapatite", International Journal of Scientific and Engineering Research, 2(4): 193-200, (2011).
- [43] Tan, C. Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M. A. and Kutty, M. G. "Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite", Ceramics International, 39(8): 8979-8983, (2013).
- [44] Ergun, C., Webster, T. J., Bizios, R. and Doremus, R. H. "Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure", Journal of Biomedical Materials Research Part A, 59(2): 305-311, (2002).
- [45] Uysal, I., Severcan, F. and Evis Z. "Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride", Ceramics International, 39(7): 7727-7733, (2013).

- [46] Tank, K. P., Sharma, P., Kanchan, D. K. and Joshi, M. J., "FTIR, powder XRD, TEM and dielectric studies of pure and zinc doped nanohydroxyapatite", Crystal Research Technology, 46(12), 1309-1316, (2011).
- [47] Tank, K. P., Chudasama, K. S., Thaker, V. S. and Joshi, M. J. "Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies", Journal of Nanoparticle Research, 15, 1644-1655, (2013).
- [48] Gomes, S., Nedelec, J. M. and Renaudin, G., "On the effect of temperature on the insertion of zinc into hydroxyapatite", Acta Biomaterialia, 8(3): 1180-1189, (2012).
- [49] Ren, F., Xin, R., Ge, X. and Leng, Y., "Characterization and structural analysis of zinc-substituted hydroxyapatites", Acta Biomaterialia, 5(8): 3141-3149, (2009).
- [50] Uysal, I., Severcan, F., Tezcaner, A. and Evis Z. "Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite" Progress in Natural Science: Materials International, 24(4): 340-349, (2014).

ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı: Süleyman Çınar ÇAĞAN

Doğum Tarihi: 21/03/1988

Öğrenim Durumu:

Derece	Bölüm/Program	Üniversite	Yıl
Lise	İçel Anadolu Lisesi		2002-2006
Lisans	Makine Mühendisliği	Mersin Üniversitesi	2007-2011
Yüksek Lisans	Makine Mühendisliği	Mersin Üniversitesi	2011-2014

Görevler:

Görev Unvanı	Görev Yeri	Yıl
Arş. Görevlisi	Mersin Üniversitesi, Fen Bilimleri Enstitüsü	2013

ESERLER (Makaleler ve Bildiriler)

 Cagan, S.C., İnce, A. "Bir Yoğunlaştırılmış Güneş Enerjisi Güç Santralinin Ön Tasarımı", V. Güneş Enerjisi Sistemleri Sempozyumu ve Sergisi Bildiri Kitabı, Mersin, 35-48, (2011).