N-((2-KLOROFENİL)KARBAMOTİYOİL)SİKLOHEKZAN KARBOKSAMİT BİLEŞİĞİNİN TİTREŞİM SPEKTRUMUNUN İNCELENMESİ

YÜKSEK LİSANS TEZİ

BİRDAL ARSLAN

MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

> KİMYA ANABİLİM DALI

Danışman Yrd.Doç.Dr. Göktürk AVŞAR

> <u>MERSİN</u> KASIM - 2017

Birdal ARSLAN tarafından Yrd.Doç.Dr. Göktürk AVŞAR danışmanlığında hazırlanan "*N*-((2-Klorofenil)karbamotiyoil)siklohekzankarboksamit Bileşiğinin Titreşim Spektrumunun İncelenmesi" başlıklı çalışma aşağıda imzaları bulunan jüri üyeleri tarafından 23 Kasım 2017 tarihinde yapılan Tez Savunma Sınavı sonucunda oy birliği ile Yüksek Lisans Yeterlik tezi olarak kabul edilmiştir.

Görevi	Ünvanı, Adı ve Soyadı	1	İmza
Başkan	Doç. Dr. Berkant Kayan		1
Üye	Yrd. Doç. Dr. Göktürk AVŞAR		(all)
Üye	Yrd. Doç. Dr. Gün Binzet		fr -

Yukarıdaki Jüri kararı Fen Bilimleri Enstitüsü Yönetim Kurulu'nun $2/\sqrt{1/2}$ sayılı kararıyla onaylanmıştır.

of Dr. A Fen Bilimleri Enstitü Müdürü

Bu tezde kullanılan özgün bilgiler, şekil, tablo ve fotoğraflardan kaynak göstermeden alıntı yapmak 5846 sayılı Fikir ve Sanat Eserleri Kanunu hükümlerine tabidir.

ETİK BEYAN

Mersin Üniversitesi Lisansüstü Eğitim-Öğretim Yönetmeliğinde belirtilen kurallara uygun olarak hazırladığım bu tez çalışmasında,

- Tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- Görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlâk kurallarına uygun olarak sunduğumu,
- Başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- Atıfta bulunduğum eserlerin tümünü kaynak olarak kullandığımı,
- Kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- Bu tezin herhangi bir bölümünü Mersin Üniversitesi veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı,

- Tezin tüm telif haklarını Mersin Üniversitesi'ne devrettiğimi beyan ederim.

ETHICAL DECLERATION

This thesis is prepared in accordance with the rules specified in Mersin University Graduate Education Regulation and I declare to comply with the following conditions:

- I have obtained all the information and the documents of the thesis in accordance with the academic rules.
- I presented all the visual, auditory and written informations and results in accordance with scientific ethics.
- I refer in accordance with the norms of scientific works about the case of exploitation of others' works.
- I used all of the referred works as the references.
- I did not do any tampering in the used data.
- I did not present any part of this thesis as an another thesis at Mersin University or another university.
- I transfer all copyrights of this thesis to the Mersin University.

23 Kasım 2017 / November 23, 2017

İmza / Signature 8 Anlan

Birdal ARSLAN Öğrenci Adı ve Soyadı / Student Name and Surname

ÖZET

N-((2-KLOROFENİL)KARBAMOTİYOİL)SİKLOHEKZANKARBOKSAMİT BİLEŞİĞİNİN TİTREŞİM SPEKTRUMUNUN İNCELENMESİ

Bu tez kapsamında, N-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiği sentezlendi ve yapısal olarak elemental analiz, ¹H NMR, ¹³C NMR, LC-MS/MS ve FT-IR teknikleri ile karakterize edildi. N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin kristal ve moleküler yapısı X-ışınları tek kristal difraksiyon tekniği ile de aydınlatıldı. Kristal 15.021(3) Å, β = 90.86(3)°, ve D_{calc} = 1.400 mg/m³ hücre parametrelerine sahiptir. *N*-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin molekül yapısı, titreşim frekansları ve infrared pik şiddetleri 6-31G(d,p) ve 6-311G(d,p) temel setleri kullanılarak ab-initio Hartree-Fock ve yoğunluk fonksiyonel teori metotları DFT (BLYP, B3LYP, B3PW91 ve mPW1PW91) ile hesaplandı. Hesaplanan geometrik parametreler molekülün tek kristal yapı parametreleri ile karşılaştırıldı. Bu bileşik için B3LYP/6-31G(d,p) metodu ile hesaplanan harmonik titreşimler ile gözlenen titresim bandlarının birbirleri ile iyi bir uyum içinde olduğu bulundu. Molekülün teorik titreşim spektrumu SQM 2.0 programı kullanarak hesaplanan PED ile yorumlandı. İncelenen metotların hesaplama performansları PAVF 1.0 programı ile incelendi. X-ışını tek kristal difraksiyon çalışmasından elde edilen molekül içi etkileşimler hem Hirshfeld yüzeyleri hem de parmak izi çizimleri kullanılarak araştırıldı. Hirshfeld yüzey analizi, tiyoüre türevi bilesiğin kristal paketleme stabilizasyonunda H····H, S···H, Cl···H ve C···H kontaklarının önemli bir rol oynadığını ortaya çıkardı.

Anahtar Kelimeler: *N*-((2-Klorofenil)karbamotiyoil)siklohekzankarboksamit, IR, RAMAN, Titreşim Spektrumu, Yoğunluk fonksiyonu teorisi, Kristal yapı, Hirshfeld yüzey analizi.

Danışman: Yrd. Doç. Dr. Göktürk Avşar, Mersin Üniversitesi, Kimya Anabilim Dalı, Mersin.

ABSTRACT

INVESTIGATION OF THE VIBRATION SPECTRUM OF *N*-((2-CHLOROPHENYL)CARBAMOTHIOYL)CYCLOHEXANECARBOXAMIDE COMPOUND

N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide In this thesis. was synthesized and structurally characterized by elemental analysis, ¹H NMR, ¹³C NMR, LC-MS/MS and FT-IR techniques. The crystal and molecular structure of *N*-(2-chlorophenylcarbamothioyl) cyclohexanecarboxamide compound has been also determined by X-ray single crystal diffraction technique. It crystallizes in the monoclinic space group, with P2(1)/n, Z = 4, a =5.2385(10) Å, b = 17.902(4) Å, c = 15.021(3) Å and $D_{calc} = 1.400$ mg/m³. The molecular structure, vibrational frequencies and infrared intensities of *N*-(2-chlorophenylcarbamoylthioyl) cyclohexanecarboxamide compound were calculated by ab-initio Hartree-Fock and Density Functional Theory methods DFT (BLYP, B3LYP, B3PW91 and mPW1PW91) using the 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. It was found that the harmonic vibrations calculated by B3LYP/6-31G (d,p) method for this compound were in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the SQM 2.0 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program. Intermolecular contacts obtained from X-ray single crystal diffraction study were also explored using both Hirshfeld surfaces and fingerprint plots. Hirshfeld surface analysis revealed the occurrence of H…H. S…H. Cl…H ve C…H contacts that display an important role to crystal packing stabilization of the thiourea derivative compound.

Keywords: *N*-((2-Chlorophenyl)carbamothioyl)cyclohexanecarboxamide, IR, RAMAN, Vibration spectrum, Density functional theory, Crystal structure, Hirshfeld surface analysis.

Advisor: Asst. Prof. Göktürk AVŞAR, Department of Chemistry, Mersin University, Mersin.

TEŞEKKÜR

Tez çalışmalarım süresince çok yakın ilgi ve yardımlarını gördüğüm, geniş bilgi ve deneyimleriyle bana yön veren Danışmanım Mersin Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü öğretim üyesi Yrd. Doç. Dr. Göktürk AVŞAR ile Mersin Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü öğretim üyesi Yrd. Doç. Dr. İlkay Gümüş ve Mersin Üniversitesi Eğitim Fakültesi öğretim üyesi Yrd. Doç. Dr. Gün Binzet'e sonsuz saygı ve şükranlarımı sunarım.

Enstrümental analiz çalışmaları sırasında üniversitelerinin teknik imkanlarını esirgemeyen, Bilkent Üniversitesi Ulusal Nanoteknoloji Araştırma Merkezi, Mersin Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü ve Mersin Üniversitesi İleri Teknoloji Eğitim, Araştırma ve Uygulama Merkezi personeli ve yöneticilerine teşekkür ederim.

Tez çalışmama maddi destek sunan Mersin Üniversitesi Bilimsel Araştırma Projeler Birimi'ne (Proje no: 2016-2-TP2-1952) teşekkür ederim.

Ayrıca, tüm çalışmalarım sırasında benden her türlü ilgi ve desteğini esirgemeyen aileme teşekkür ederim.

İÇİNDEKİLER

	Sayfa
İÇ KAPAK	i
ONAY	ii
ETIK BEYAN	iii
OZET	iv
ABSTRACT	V
I EŞEKKUK İcindevil ed	Vl vii
	viii
SEKILLER DIZINI	ix
KISALTMALAR ve SİMGELER	X
1. GİRİŞ	1
2. KAYNAK ARAŞTIRMALARI VE TEORİK TEMELLER	2
2.1. N,N-Dialkil-N'-(substitue-benzoil)tiyoüre Bileşiklerinin Genel Özellikleri	2
2.2. Moleküler Titreşim Spektroskopisi	- 3
2.3. Moleküler Titreşim Türleri	5
2.4. Hesaplamalı Kimva Yöntemleri	6
2.4.1. Moleküler Mekanik Yöntemler	7
2.4.2. Semi Empirical Yöntemler	, 7
2.4.3. Ab-initio Yöntemler	, 8
2.4.4. Geometrik Optimizasvon	9
2.4.5. Ölceklendirilmis Kuantum Mekaniği (Scaled Quantum Mechanic, SOM) Metodu	9
3. MATERYAL VE METOD	11
3.1. Kullanılan Kimyasallar	11
3.2. Kullanılan Cihazlar	11
3.3. Yöntem	11
3 3 1 <i>N</i> -(2-Klorofenilkarhamotivoil)siklohekzankarhoksamit (H ₂ L) Bilesiğinin Sentezi	11
3.3.2 Karakterizasyon	11
3 3 3 Teorik hesanlamalar	12
4. BIILGIILAR VE TARTISMA	14
4.1 Sentez	14
4.2 Kristallografik Bulgular	14
4.3 Teorik Hesanlamalar	17
4.3.1. Geometri Ontimizasvonu ve Konformasvon Analizi	22
4.3.2 Termodinamik Hesanlamalar	22
4.3.2. NPA (Doğal Dopulasyon Analizlari) va Mullikan Nat Atamik Vük Hasanlamaları	24
4.2.4. Titrogim Erokanglari	24
4.5.4. Hittesiiii Flekalisiaii	31
	50
J. JUNUULAK IZAVNAIZLAD	54
	56
UZGEÇMIŞ	66

TABLOLAR	DİZİNİ

	Sayfa
Гаble 4.1. H $_2$ L bileşiğinin kristal parametreleri ve yapının arıtılmasına ait veriler.	19
Γable 4.2. H ₂ L bileşiğine ait kesirsel atom koordinatları (×10 ⁴) ve eşdeğer izotropik	
verdeğiştirme parametreleri (Ų×10³).	19
able 4.3. H2L bileşiğine ait anizotropik yerdeğiştirme parametreleri (Å2×103).	20
Table 4.4. H $_2$ L bileşiğinin ait atomlar arası bağ uzunlukları (Å).	20
`able 4.5. H₂L bileşiğinin atomlar arası bağ açıları (°).	20
Table 4.6. H ₂ L bileşiğinin hidrojen atom koordinatları (Å×10 ⁴) ve izotropik	
verdeğiştirme parametreleri (Ų×10³).	21
Γable 4.7. H₂L bileşiğinin torsiyon açıları (°).	21
Гаblo 4.8. H $_2$ L bileşiğinin Cremer & Pople burulma parametreleri.	22
Γablo 4.9. H $_2$ L bileşiğinin hidrojen bağı geometrisi (Å, °).	22
Fablo 4.10. H $_2$ L bileşiğinin teorik ve deneysel bağ uzunluklarının (Å) karşılaştırması.	26
ablo 4.11. H2L bileşiğinin teorik ve deneysel bağ açılarının (°) karşılaştırması.	27
Cablo 4.12. H ₂ L bileşiğinin teorik ve deneysel dihedral bağ açılarının (°) karşılaştırması.	28
Γablo 4.13. H ₂ L bileşiğine ait termodinamik parametreler.	29
Гаblo 4.14. H $_2$ L bileşiğine ait teorik NPA yük değerleri.	30
Гablo 4.15. H2L bileşiğine ait teorik Mulliken yük değerleri.	31
Fablo 4.16. H $_2$ L bileşiğinin hesaplanmış (B3LYP) dalga sayıları.	35
Гаblo 4.17. H $_2$ L bileşiğinin hesaplanmış (B-LYP, B3PW91) dalga sayıları.	40
Γablo 4.18. H₂L bileşiğinin hesaplanmış (mPW1PW91, HF) dalga sayıları.	45

ŞEKİLLER DİZİNİ

	Sayfa
Şekil 2.1. Monotiyo-β-diketon.	2
Şekil 2.2. <i>N,N</i> -Dialkil- <i>N</i> '-benzoiltiyoüreler.	2
Şekil 2.3. Elektromagnetik spektrum bölgeleri	3
Şekil 2.4. Moleküler titreşim türleri.	6
Şekil 2.5. İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye	
bağımlılığı.	9
Şekil 3.1. N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin sentez	
şeması.	12
Şekil 4.1. H ₂ L bileşiğinin FT-IR spektrumu.	15
Şekil 4.2. H ₂ L bileşiğinin ¹ H NMR spektrumu.	15
Şekil 4.3. H ₂ L bileşiğinin ¹³ C NMR spektrumu.	16
Şekil 4.4. H2L bileşiğinin COSY NMR spektrumu.	16
Şekil 4.5. H ₂ L bileşiğinin HMQC NMR spektrumu.	17
Şekil 4.6. H ₂ L bileşiğinin LC-MS spektrumu.	17
Şekil 4.7. H2L Bileşiğinin kristal yapısı.	18
Şekil 4.8. H2L Bileşiğinin birim hücre yapısı.	18
Şekil 4.9. H $_2$ L bileşiğinin optimize edilmiş ve tek kristal geometrik yapısı.	23
Şekil 4.10. $ au_{015\text{-}C8\text{-}N17\text{-}C7}$ Torsiyon açısına karşılık gelen 1-D potansiyel enerji grafiği.	24
Şekil 4.11. H ₂ L bileşiğinin deneysel (a) ve teorik (b) IR spektrumları.	33
Şekil 4.12. H ₂ L bileşiğinin deneysel (a) ve teorik (b) RAMAN spektrumları.	34
Şekil 4.13. N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin $d_{ m i}, d_{ m e},$	
$d_{ m norm}$, şekil indeksi ve curvedness fonksiyonları ile haritalandırılmış Hirshfeld yüzeyleri.	50
Şekil 4.14. Bileşiğin $d_{ m norm}$ fonksiyonu üzerinde haritalanan Hirshfeld yüzeyi.	51
Şekil 4.15. Bileşiğin şekil indeksi fonksiyonu üzerinde haritalanan Hirshfeld yüzeyi.	51
Şekil 4.16. Bileşiğin moleküller arası bütün etkileşimleri barındıran 2D parmak izi	
grafiği ve ayrıştırılmış parmak izi grafikleri.	52
Şekil 4.17. N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin	
molekülleri arasındaki bütün etkileşimleri gösteren birim hücre yapısı.	53

KISALTMALAR ve SİMGELER

Kisaltma/Simge	Tanım
DFT	Yoğunluk Fonksiyonel Teorisi, Density Functional Theory
HCl	Hidroklorik asit
HF	Hartree-Fock
HF-SCF	Hartree-Fock Self Consistent Field
IR	İnfrared spektroskopisi
KSCN	Potasyumtiyosiyanat
LC-MS/MS	Sıvı Kromatografisi - Kütle - Kütle Spektrometresi
MS	Kütle spektroskopisi
NMR	Nükleer manyetik rezonans spektroskopisi
NPA	Doğal Populasyon Analizleri, Natural Population Analysis
RAMAN	Raman spektroskopisi
UV-VIS	Görünür bölge ve mor ötesi spektroskopisi
vdW	Van der Waals
δ	Eğilme titreşimleri
ν_{as}	Asimetrik gerilme
Vs	Simetrik gerilme

1. GİRİŞ

Bir ya da daha çok ligand adı verilen organik bileşik veya grubun bir metal atomunun veya iyonu ile oluşturduğu bileşiklere koordinasyon bileşikleri denir ve koordinasyon bileşiklerini inceleyen bilim dalına ise koordinasyon kimyası denir. Koordinasyon bileşikleri tekstil, gıda, plastik, boya, iyon değiştiriciler, katalizörler gibi birçok alanda kullanım alanı bulabilmektedir [1-4]. Bu bileşiklerin özelliklerini ve dolayısıyla da kullanım alanlarını etkilen temel iki faktör; kullanılan ligandın ve metal atomunun türü ve özellikleridir. Periyodik cetvelde bulunan metal atomların pek çok özelliği bilindiğinden dolayı, çeşitlemelerin ligand bileşikleri aracılığıyla yapılabileceği açıktır. Bu nedenle son bir asırdır pek çok arastırma grubu yeni ligand bilesikleri sentezi üzerine yoğunlaşmıştır [1-5]. Sentezlenen bilesikler hakkında cok detaylı bilgiler edinmek için ise genellikle spektroskopik teknikler kullanılmaktadır. Bu tekniklere nükleer manyetik rezonans spektroskopisi (NMR), kütle spektroskopisi (MS), görünür bölge ve mor ötesi (UV-VIS) spektroskopisi, Raman spektroskopisi (RAMAN) ve infrared spektroskopisi (IR) örnek olarak verilebilir [6-8]. Bu spektroskopik tekniklerden IR ve Raman spektroskopisi, moleküllerin titreşim enerji düzeyleri üzerine yoğunlaşmış olup, elektromanyetik dalgalar ile içerisindeki moleküler bağlar uyarılmakta, rezonansa bileşiklerin getirilmekte ve titreştirilmekte ve bundan dolayıda elde edilen spektruma genel olarak titreşim spektrumu ve bu iki spektrospik tekniğe de toplu olarak titreşim spektroskopisi denilmektedir [6-8].

Yukarıda bahsedilen ligand adı verilen organik bileşiklerden bir taneside tiyoüre türevleridir. Özellikle *N*,*N*-dialkil-*N'*-(substitue-benzoil)tiyoüre türevi bileşiklerin metal komplekslerinin analitik ve teknik uygulamalarda kullanılabilirliliği ispatlanmıştır [9-76].

Bu tez kapsamında bir tiyoüre türevi bileşik olan *N*-((2-klorofenil)karbamotiyoil) siklohekzankarboksamit bileşiği [44], örnek inceleme bileşiği olarak seçilmiş ve bu bileşiğin yapısı, yapısal özellikleri ve titreşim frekansları deneysel ve teorik yöntemler ile incelenmiş, ve bu bileşiğin özellikleri hakkında daha detaylı bilgilerin elde edilmesi amaçlanmıştır. Böylece bu tez kapsamında elde edilecek bilgiler ile bu bileşik veya türevlerinin olası koordinasyon bileşikleri ve uygulama alanlarının irdelenmesinde diğer araştırmacılara yol gösterici olunacaktır.

2. KAYNAK ARAŞTIRMALARI VE TEORİK TEMELLER

2.1. N,N-Dialkil-N'-(substitue-benzoil)tiyoüre Bileşiklerinin Genel Özellikleri

N,*N*-Dialkil-*N*'-benzoiltiyoüreler, monotiyo-β-diketonlar ile yapısal olarak benzer özellikler gösterirler (**Şekil 2.1** ve **2.2**). Pek çok geçiş grubu metal atomları ile oksijene ve bozulmaya karşı dayanıklı, çoğu zaman renkli, kristalin olarak izole edilebilen nötr koordinasyon bileşikleri oluştururlar. *N*,*N*-Dialkil-*N*'-benzoiltiyoüre türevi bileşikler, içerdikleri oksijen ve kükürt atomları üzerinden metal merkez atomları ile koordine olmakta ve genellikle altıgen koordinasyon halkası oluşturarak kararlı koordinasyon bileşikleri oluşturmaktadırlar [58-69].

Şekil 2.1. Monotiyo-β-diketon.

X: O ve/veya S
Y: O, S ve/veya Se
R₁: Aromatik grup, Alifatik grup veya H
R₂: Aromatik grup, Alifatik grup veya H

Şekil 2.2. N,N-Dialkil-N'-benzoiltiyoüreler.

N,N-Dialkil-*N*'-benzoiltiyoüreler, potasyum tiyosiyanat, açil/aril klorür ve uygun amin başlangıç maddelerinden "*Tek damla sentez yöntemi*" kullanılarak yüksek verim ile sentezlenebilmektedir. Yükseltgenme basamağı 2+ olan metaller ile, genellikle ML₂ tipinde genellikle kare düzlem veya bozuk tetrahedral; yükseltgenme basamağı 3+ olan metaller ile de ML₃ tipinde oktahedral yapıda koordinasyon bileşikleri oluşturmaktadırlar [58-69].

N,N-Dialkil-*N*'-benzoiltiyoüre türevi bileşikler geçiş metalleri ile suda çözünmeyen kararlı kompleks bileşikler oluşturduklarından dolayı çevre kirliliğine sebep olan metallerin nitel ve nicel analizlerinin yapılmasında, çeşitli matrikslerde bulunan eser düzeydeki geçiş metalleri çöktürülmesi ve zenginleştirilmesi çalışmalarında [70], iyon seçici elektrotların üretiminde [71], tıpta patolojik mantar ve mayalara karşı antifungal etkisi nedeniyle tedavi edici

olarak [72-74], madencilikte çeşitli metallerin elde edilmesinde [75] ve çeşitli hastalıklar için kemoterapötik ajanlar [76] olarak kullanılmaktadır.

2.2. Moleküler Titreşim Spektroskopisi

Spektroskopi, elektromanyetik dalga ile maddenin etkileşimini inceleyen bilim dalına verilen isimdir. Bu etkileşimde, bir elektromagnetik dalga madde üzerine yönlendirildiğinde kullanılan elektromagnetik dalganın frekansına ve moleküllerin yapısına bağlı olarak madde tarafından soğurulur veya saçılır ve böylece elde edilen spektrum yorumlanarak madde hakkında detaylı bilgiler elde edilir. Elektromagnetik dalga enerjisine bağlı olarak değişik spektrum bölgelerine ayrılır (**Şekil 2.3**) [6-8,77].

Şekil 2.3. Elektromagnetik spektrum bölgeleri.

Elektromagnetik dalga madde üzerine gönderildiği zaman, madde ile elektromagnetik dalga arasında enerji alışverişi olur ve bu enerji değişimi de **Eşitlik 2.1**'e göre hesaplanır ve ΔE ile gösterilir.

$$\Delta E = E_{\text{son}} - E_{\text{ilk}} = h \times \Delta \upsilon$$
(2.1)

 ΔE = Enerji değişimi, h = Planck sabiti ve υ = Işınımın frekansını ifade eder.

Bir molekülün enerjisi ise, o molekülün öteleme, titreşim, dönme ve elektronik enerjisinin toplamından elde edilir. Molekülün enerjisi ise **Eşitlik 2.2'**deki gibi tanımlanır.

Ancak öteleme enerjisi sürekli bir enerji olduğundan ve spektroskopide değişim göstermediğinden toplam enerjiye katkısı yoktur ve ilgili eşitlikte tanımlanmaz.

 $E_{\text{Toplam}} = E_{\text{Elektronik}} + E_{\text{Titresim}} + E_{\text{Dönme}}$ (2.2)

Elektromagnetik spektrumunun infrared bölgesinde yayınlanan bir elektromanyetik dalga molekül ile etkileştiği zaman moleküllerin temel titreşim enerji seviyelerinde değişmelere neden olur. Bu değişimleri inceleyen spektroskopi dalına genel olarak titreşim spektroskopisi denir. Bu değişmeler kulanılan elektromagnetik dalganın absorplanması veya saçılması prensibine dayanır. Elektromagnetik dalganın absorplanması prensibine dayalı teknik infrared spektroskopisi ve elektromagnetik dalganın saçılması prensibine dayalı teknik ise Raman spektroskopisi olarak tanımlanır ve Raman ve IR spektroskopileri genellikle birbirinin tamamlayıcısı olarak kullanılır [6-8].

İnfrared spektroskopisinde örnek (katı, sıvı, ve gaz) infrared bölgenin tüm frekanslarını içeren elektromanyetik dalga ile ışınlanır, geçen veya soğrulan ışınımı incelenir. Işımanın soğrulma miktarı **Eşitlik 2.3**'e ve geçme miktarıda **Eşitlik 2.4**'e göre hesaplanır.

$$A = \log \left(I_{o} / I \right)$$
(2.3)

 $T = I/I_o$ (2.4)

Burada I_o gelen infrared ışının şiddeti, I ise örnekten geçen infrared ışınının şiddetidir. İnfrared spektrokopisi kullanılan elektromagnetik dalganın dalgaboyuna bağlı olarak yakın (12500-4000 cm⁻¹), orta (4000-400 cm⁻¹) ve uzak (400-20 cm⁻¹) infrared bölge olmak üzere üç bölgeye ayrılır [6-8].

İnfrared soğurma bandı olarak görünen titreşimler, molekülde bağların ve atom gruplarının dipol momentlerinde değişme yapabilen titreşimlerdir ve infrared spektroskopisinde ışınlar dalga boylarıyla değil daha çok dalga sayılarıyla $\bar{\nu}$ (cm⁻¹) tanımlanırlar (**Eşitlik 2.5**).

$$\bar{\nu} = \frac{1}{\lambda} \tag{2.5}$$

Yakın infrared bölgede, molekül titreşim frekanslarının üst tonları ve harmonikler gözlenir. Orta infrared bölge fonksiyonel grup bölgesi (4000-1500 cm⁻¹, fonksiyonel grupların yer aldığı bölge) ve parmak izi bölgesi (1500-600 cm⁻¹, bileşiğe özel karakteristik absorbansların yer aldığı bölge) olmak üzere iki kısma ayrılır. Uzak infrared bölge ise ağır atomların titreşim frekansları ve örgü titreşimlerinin gözlendiği bölgedir [6-8].

Raman spektroskopisinin çalışma prensibi, görünür ya da yakın infrared bölgesinde monokromatik elektromagnetik dalga üreten bir ışın kaynağından molekül üzerine gönderilen elektromagnetik dalganın molekül tarafından saçılmasına ve saçılan elektromagnetik dalganın ölçülmesine dayanır. Molekül üzerine gönderilen elektromagnetik dalga esnek ve esnek olmayan saçılma olmak üzere iki tür saçılma yapar. Molekülle etkileşen elektromagnetik dalganın büyük bir kısmı esnek saçılma gerçekleştirir, saçılmaya uğrayan elektromagnetik dalganın dalga boyu ve enerjisi korunur, bu tür saçılmalara Rayleigh saçılması denir. Esnek olmayan saçılmalarda ise molekül üzerine gönderilen elektromagnetik dalganın çok az bir kısmının saçılmadan sonra enerjisi ve dalga boyunda değişimler gözlenir bu tür saçılmalar Raman saçılması olarak adlandırılır. Molekül üzerine gönderilen elektromagnetik dalga ile saçılan elektromagnetik dalga arasındaki enerji farkı iki titreşim enerji seviyesi arasındaki enerji farkına karşılık gelir. Bu yüzden Raman saçılmasının incelenmesi ile moleküllerin titreşim enerji seviyeleri arasındaki geçişler hakkında veriler elde edilebilir. Raman saçılması durumunda saçılan elektromagnetik dalganın enerjisinde ve frekansında bir miktar artış ya da azalış meydana gelir. Molekül tarafından saçılan elektromagnetik dalganın frekansı gelen elektromagnetik dalganın frekansından küçük ise bu tür saçılmalara Stokes saçılması denir. Saçılan elektromagnetik dalganın frekansının gelen elektromagnetik dalganın frekansından büyük olduğu durumlarda ise anti-Stokes saçılması olarak adlandırılan saçılma gerçekleşir. Rayleigh saçılması esnasında ise gelen elektromagnetik dalganın frekansı ile saçılan elektromagnetik dalganın frekansı arasında bir değişim olmaz [6-8].

2.3. Moleküler Titreşim Türleri

Çok atomlu bir moleküldeki titreşim türleri gerilme titreşimleri ve eğilme titreşimleri olarak iki ana başlık altında toplanabilirler. Gerilme titreşimleri (v), bağ ekseni doğrultusundaki uzama ya da kısalma hareketlerinden kaynaklanır ve yer değiştirme vektörü, bağ uzunluğundaki değişmeyi verir. Moleküldeki tüm bağların uzaması ya da kısalması simetrik gerilme (v_s) hareketi olarak tanımlanırken, bağların bir ya da birkaçı uzarken diğerlerinin kısalması şeklinde gerçekleşen gerilme hareketleri asimetrik gerilme (v_{as}) olarak tanımanır [6-8].

Eğilme titreşimleri (δ) bağ açısını değiştiren titreşimler olup düzlem içi ve düzlem dışı eğilmeler olmak üzere iki gruba ayrılır. Düzlem içi eğilmeler makaslama ve sallanma hareketleri olarak ikiye ayrılırlar. Makaslama hareketinde molekülün bulunmuş olduğu düzlem içerisinde, bağ uzunlukları değişmeden iki bağ arasındaki açının periyodik olarak artıp azaldığı titreşim hareketi olup yer değiştirme vektörleri birbirine zıt konumda hareket ederler. Sallanma hareketinde ise molekülün bulunmuş olduğu düzlem içinde atomlar arasındaki bağ uzunlukları ve bağ açısı değişmeden, iki bağ arasındaki ya da bir bağ ile bir atom grubu arasındaki açının yer değiştirmesiyle oluşan titreşim hareketidir (**Şekil 2.4**) [6-8].

Düzlem dışı eğilme hareketleri, dalgalanma, kıvırma, burulma ve düzlem dışı açı bükülmesi olarak dört hareket ile tanımlanırlar. Dalgalanma hareketi molekül düzlemi ile bir bağa bağlı atom ya da atom grubu arasındaki açının değişimi olarak tanımlanır. Molekülün tüm atomları denge konumunda düzlemsel iken, bir atom bu düzleme dik olarak hareket eder. Kıvırma hareketi moleküldeki bulundukları düzlem sabit kalmak üzere, üç atomu birbirine bağlayan iki bağın düzlem dışına doğru ve birbirlerine göre zıt yönde hareket etmeleri sonucu oluşan titreşim hareketidir. Yer değiştirme vektörleri bağ doğrultusuna diktir. Burulma hareketi iki düzlem arasındaki açının, bir bağ ya da açının bozulmasına neden olacak şekilde değişmesiyle oluşan titreşim hareketidir. Düzlem dışı açı bükülme hareketi ise atomların hareketi ile genellikle bir simetri düzlemin yok edilmesi hareketidir (**Şekil 2.4**) [7,8].

Şekil 2.4. Moleküler titreşim türleri.

2.4. Hesaplamalı Kimya Yöntemleri

Kimyayı matematiksel yöntemlerle tanımlayan teorik kimya, bileşiklerin kimyasal yapılarını ve tepkimelerini temel fizik kanunlarına dayanarak açıklamaya çalışır. Teorik kimyacılar tarafından geliştirilmiş matematiksel yöntemleri ise hesaplamalı kimya kullanır ve bulunan sonuçları yorumlayarak hem bileşikler hemde reaksiyonlar hakkında çok detaylı bilgiler elde edilir. Bu çalışmalarda kararlı moleküller, kısa-ömürlü ürünler, kararsız ara ürünler ve geçiş hallerini incelemek mümkündür. Bu hesaplamalar ile elde edilen kalitatif ve kantitatif sonuçlar, kimyacıların bileşikler, ürünler ve reaksiyonlar hakkında çok faydalı öngörülerde bulunmasını sağlar.

Son yıllarda, pek çok araştırmacı tarafından deneysel çalışmaları desteklemek ya da deneysel çalışma yapmadan elde edilecek sonuçları önceden tahmin edebilmek amacıyla hesaplamalı kimya yöntemleri kullanılmaya başlanmıştır. Hesaplamalı kimya yöntemleri moleküler mekanik yöntemler, semi empirical yöntemler ve ab-initio yöntemler olarak üç temel bölüme ayrılabilir.

2.4.1. Moleküler Mekanik Yöntemler

Moleküler mekanik yöntemler bir kimyasal sistemde atomlar arasındaki etkileşmeleri klasik fizik kuralları ile tanımlar. Moleküler mekanik yöntemlerde atomlar birer küre, bağlar ise birer yay gibi düşünülür. Moleküler mekanik yöntemlerde bağ yapan atomlar arasındaki etkileşimler, bağ gerilmesinden kaynaklanan E_{Gerileme} , açı bükülmesinden kaynaklanan $E_{\text{Bükülme}}$, torsiyon açılarındaki değişimden kaynaklanan E_{Torsiyon} , ve ilk üç terimin birlikte görülmesinden kaynaklanan çapraz etkileşimler ($E_{\text{Çapraz}}$) olarak tanımlanabilir. Moleküler mekanik yöntemlerde bağ yapmayan atomlar arasındaki etkileşimler ise; elektrostatik etkileşimden kaynaklanan $E_{\text{Elektrostatik}}$ ve van der Waals etkileşimlerden kaynaklanan $E_{\text{vanDerWaals}}$ ile tanımlanabilir. Moleküler mekanik yöntemlerde sistemin toplam enerjisi (E_{Toplam}) **Eşitlik 2.6**'daki gibi tanımlanır.

$$E_{\text{Toplam}} = E_{\text{Gerilme}} + E_{\text{Bükülme}} + E_{\text{Torsiyon}} + E_{\text{Çapraz}} + E_{\text{Elektrostatik}} + E_{\text{vanDerWaals}}$$
(2.6)

Moleküler bir sistem için hesaplanan bu değer gerçek enerjiyi değil, atomların birbirlerine göre konumlarından kaynaklanan konformasyon enerjisini verir. Burada molekülün farklı konformasyonlarına karşılık gelen enerji farkları önemlidir. Moleküler mekanik yöntemler oldukça basit hesaplama teknikleri kullandıkları için, çok büyük moleküllere dahi hiçbir sınırlama olmaksızın uygulanabilirler. MM+, AMBER ve CHARM moleküler mekanik yöntem kullanan paket programlardan bazılarıdır [78-80].

2.4.2. Semi Empirical Yöntemler

Semi empirical yöntemlerde gerçek moleküler hamiltoniyen operatörü yerine daha basit bir hamiltoniyen yazılır ve deneysel veriler veya ab initio hesaplamalarından elde edilmiş bazı düzeltme parametreleri kullanılır. Extend Hückel teorisi yönteminden kısa bir süre sonra Pople ve yardımcıları Coulomb ve overlap (örtüşme) terimlerinden oluşan seküler determinanttan overlap integrallerini çıkararak işlem yükünü hafifletmenin mümkün olduğunu fark etmelerinin ardından bu varsayım CNDO (Complete Neglect of Differential Overlap) yönteminin geliştirilmesine sebep olmuştur [81]. Daha sonra ise elektron integrallerinin, aynı atom üzerindeki elektronların farklı (Differential) örtüşmelerinin bir düzeltme faktörü olarak CNDO'ya eklenmesiyle INDO (Intermediate Neglect of Differential Overlap) yöntemi geliştirildi [82]. Daha sonra da bu metotlara yeni düzeltme parametrelerinin eklenmesiyle MINDO (Modified INDO), AM1 (Austin Model1), PM3 (Parameterized Austin Model3), ZINDO (Michael Zerner's INDO) gibi modeler geliştirildi. Bu yöntemleri yapısında bulunduran paket programlarından bazıları MOPAC, AMPAC, GAUSSIAN, SPARTAN ve HYPERCHEM'dir [80-93].

2.4.3. Ab-initio Yöntemler

Ab initio yöntemleri kuantum mekaniğine dayanır, bu yöntemler ile molekül yapısı ve buna bağlı tüm özellikler hesaplanabilir. Moleküllerin sadece kararlı yapıları değil farklı yapılar arasındaki geçiş halleri veya bir tepkimenin mekanizması modellenebilir. Ab initio Latince kökenli bir kelime olup "başlangıçtan itibaren" anlamına gelir. Bu yöntemler moleküler mekanik ve semi empirical yöntemlerden farklı olarak deneysel parametre kullanmazlar. Buna bağlı olarak hesaplama süreleri moleküler mekanik yöntemlere göre daha fazladır. Bu yöntemler Schrödinger dalga denkleminin çözümüne dayanır. Tek elektronlu hidrojen atomu için bu denklemi çözmek mümkün olsa da çok elektronlu sistemlerde çözüm çok zor olduğundan; Hartree-Fock Self Consistent Field (HF-SCF) ve Density Functional Theory (DFT) gibi farklı matematiksel yaklaşımlar kullanılır [93-96]. Hartree-Fock (HF) modelinde enerji molekül dalga fonksiyonu Ψ 'ye göre ifade edilir. HF modeli korelasyon yani etkileşim enerjisini dikkate almaz. Yoğunluk Fonksiyonel Teorisinde (DFT) enerji, elektron yoğunluğu p'ya göre ifade edilir. Ab initio ve semi emprical molekül orbital yöntemlerinin her ikisi de orbitalleri hidrojen benzeri orbitaller olarak tanımlar. Dalga fonksiyonlarında Slater veya Gaussian tipi orbitalleri kullanırlar. Bir sistemin değişim (varyasyon) yöntemi ile hesaplanması; sistem için bir Hamiltoniyen (H) yazılır, değişken parametreler içeren bir dalga fonksiyonu (Ψ) seçilir ve enerjinin minimuma ulaşmasını sağlama, basamaklarını içerir. Atomik orbitallerin matematiksel ifadesine "temel set" denir. Moleküllerin atomlardan oluşması ve aynı cins atomların farklı moleküllerde benzer özellikler göstermelerinden dolayı moleküler orbital atomik orbitallerin lineer toplamları olarak yazılabilir. 3-21G, 4-21G, 6-31G setleri temel minimal setlerdir. Split valens temel setler orbitallerin büyüklüğünü değiştirir fakat şeklini değiştirmez. Polarize temel setler ise bir atomun taban durumunu tanımlamak için gerekenden daha fazla açısal momentumu orbitallere ekleyerek orbitallerin şeklini değiştirir. Örneğin temel polarize setler

8

karbon atomları için *d* fonksiyonlarını da göz önüne alır. 4-21G* (4-21G(d)), 6-31G* (6-31G(d)) şeklinde ifade edilir [97,98].

2.4.4. Geometrik Optimizasyon

Molekülün minimum enerjili (denge durum) geometrisini hesaplayabilmek için Gradyent metodu (kuvvet metodu) kullanılır. Hesaplamalar moleküle ait belirli bir geometri oluşturularak başlar. Bir koordinat sistemindeki atomlar arasındaki yer değiştirmeler, molekülün enerjisiyle birlikte diğer birçok özelliklerinde değişmelere neden olur. Molekülün yapısındaki değişiklikler sonucunda enerjinin koordinata bağımlılığı sonucuna varılır. Bu bağımlılık moleküler yapı ile molekülün enerjisi arasındaki ilişkidir. Bu ilişki "potansiyel enerji yüzeyi" olarak adlandırılır. İki atomlu moleküllerde bağ gerilmesine karşılık gelen elektronik enerji grafiği **Şekil 2.5**'de verilmiştir. Burada; E_m minimum enerjili nokta, X_m minimum enerjiye karşılık gelen koordinant noktasıdır. Bir molekül için önce potansiyel enerji yüzeyi doğru tanımlanır ve bu tanımdan yararlanılarak denge geometrisine karşılık gelen minimum enerjili noktası hesaplanır.

Şekil 2.5. İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye bağımlılığı.

2.4.5. Ölçeklendirilmiş Kuantum Mekaniği (Scaled Quantum Mechanic, SQM) Metodu

Ölçeklendirilmiş Kuantum Mekaniği metodunda öncelikle molekülün yaklaşık geometrisi veri olarak ilgili programa girdi olarak girilir. Daha sonra geometrik optimizasyonu için kullanılacak temel set seçilir ve seçilen model çerçevesinde enerjinin birinci analitik türevleri alınarak hesaplamalar başlatılır. İterasyonlu hesaplamalar sonucunda molekülün minimum enerjiye sahip geometrisi elde edilmiş olur. Molekülün titreşim frekanslarını (IR ve RAMAN) hesabında öncelikle geometrik optimizasyon sonucunda elde edilen geometrik veriler temel alınarak yine seçilen hesaplama modeline göre ilgili program aracılığıyla enerjinin ikinci analitik türevini kullanarak kuvvet sabitleri hesaplanır. Daha sonra bu kuvvet sabitleri kullanılarak titreşim frekansları harmonik yaklaşım metodu ile ilgili metoda göre hesaplanır. En son işlem basamağında ise elde edilen titreşim frekansları deneysel değerlerle uyum sağlaması için uygun ölçekleme faktörleri (Scaling Factor) kullanılarak ölçeklendirilir [99].

3. MATERYAL VE METOD

3.1. Kullanılan Kimyasallar

Deneylerde kullanılan kimyasal maddeler Merck, Aldrich ve Alfa-Aesar firmalarından ticari olarak alınmış ve herhangi bir saflaştırma işlemi uygulanmadan kullanılmıştır. Bu tez çalışmasında siklohegzankarbonil klorür, 2-kloroanilin, aseton, hidroklorik asit, dimetil sülfoksit- d_6 , etanol ve diklorometan kimyasalları kullanılmıştır.

3.2. Kullanılan Cihazlar

 i) Nükleer Manyetik Rezonans Spektroskopisi (NMR): Sentezlenen bileşiğin yapısındaki proton ve karbon atomlarının yerini belirlemek ve yapılarını aydınlatmak için Bruker Ultrashield Plus Biospin Marka Avance III 400 MHz Nanobay FT-NMR model spektroskopi cihazı kullanılarak bileşiğin NMR spektrumu alındı.

ii) FT-İnfrared Spektroskopisi (FT-IR): Sentezlenen bileşiğin yapısındaki fonksiyonel grupları belirlemek amacıyla Perkin Elmer Marka FT-IR/FIR/NIR Spectrometer Frontier, Spectrum 100 ATR model spektrometre cihazı kullanılarak bileşiğin FT-IR spektrumu alındı.

iii) FT-Raman Spektroskopisi (FT-RAMAN): Sentezlenen bileşiğin yapısındaki fonksiyonel grupları belirlemek amacıyla Thermo NXR FT-RAMAN Modüllü Nicolet 6700 FT-IR spektrometre cihazı kullanılarak bileşiğin FT-RAMAN spektrumu alındı.

iv) LC-MS/MS Tandem Kütle spektrometresi: Sentezlenen bileşiğin kütlesini belirlemek amacıyla Agilent marka, 6460 Triple quadrupole model, ikili (binary) pompa, autosampler, QQQ (MS/MS) kütle dedektörüne sahip cihaz kullanılmıştır.

iv) X-ışınları Tek Kristal Difraksiyonu: Sentezlenen bileşiğin tek kristal yapısını tayin etmek için tek kristal difraksiyon verileri BRUKER APEX-II CCD difraktometresi ile toplanmıştır.

3.3. Yöntem

3.3.1. N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit (H₂L) Bileşiğinin Sentezi

Potasyumtiyosiyanat (KSCN, 0.1 mol) susuz asetonda çözüldükten sonra üzerine asetonda çözülmüş 0.1 mol siklohekzankarbonil klorür ilave edilerek yarım saat geri soğutucu altında karıştırıldı. Daha sonra karışıma 1 mol 2-kloroanilinin 30 mL asetondaki çözeltisi 15-20 dakika içerisinde damla damla ilave edildi ve iki saat boyunca karıştırıldı [44]. Elde edilen karışım soğuk 0.1 M HCl asit çözeltisi üzerine boşaltılarak oluşan katı süzülerek sıvısından

ayrıldı. İlgili bileşik diklorometan : etanol (1:2, *v*:*v*) karışımında kristallendirilerek saflaştırıldı (**Şekil 3.1**) [9-76].

Şekil 3.1. N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin sentez şeması.

3.3.2. Karakterizasyon

Sentezi yapılan *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit (H₂L) bileşiğinin karakterizasyonu Nükleer Manyetik Rezonans Spektroskopisi (NMR), FT-İnfrared Spektroskopisi (FT-IR), FT-Raman Spektroskopisi (FT-RAMAN) ve LC-MS/MS Tandem Kütle spektroskopisi ile yapılmıştır. Sentez çalışmalarının son basamağında elde edilen katı ürün, diklorometan:etanol (1:2, *v:v*) karışımında yeniden kristallendirme çalışmaları sonucunda Xışınları tek kristal difraksiyonu analizine uygun *N*-(2-klorofenilkarbamotiyoil)siklohekzan karboksamit bileşiğinin kristalleri elde edilmiştir. Bu bileşiğin yapısı ayrıca X-ışınları tek kristal difraksiyonu tekniği ile de aydınlatılmıştır. Molekül içerisindeki halkaların konformasyonları Cremer & Pople parametreleri ve molekül içi ve moleküller arası π ··· π ve C-H··· π etkileşmeleri ve hidrojen bağları PLATON programı kullanılarak hesaplanmıştır [100].

3.3.3. Teorik Hesaplamalar

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin teorik çalışmaları Gaussian 03W paket programı kullanılarak gerçekleştirilmiştir [90]. Gaussian 03W moleküler mekanik, yarı-denel ve ab initio yöntemleri içeren çok sayıda teori ve temel set seçeneğine sahiptir. Gaussian 03W program ile atom ve moleküllerin enerjileri hesaplanabilir, geometrik optimizasyonları yapılabilir ve enerjiye bağlı olan titreşim frekansları, kuvvet sabitleri ve dipol momentleri hesaplanabilir. Program potansiyel enerji yüzeyinde dolaşarak minimumlar, geçiş halleri ve tepkime güzergahı taranabilir. Molekül dalga fonksiyonunun kararlılığı test edebilir. Ayrıca IR ve Raman spektrumları, termokimyasal özellikleri, bağ ve tepkime enerjileri, molekül orbitalleri, atom yükleri, çok kutuplu momentler, NMR ve manyetik duyarlılık, titreşimsel şiddetler, elektron ilgisi ve iyonlaşma enerjileri, kutuplanabilirlik ve hiper kutuplanma, elektrostatik potansiyel ve elektron yoğunluğu gibi pek çok özelliğin atomlar ve moleküller için hesaplanmasına olanak tanır. Hesaplamalarda atom veya molekülün temel hal ya da uyarılmış hali kullanılabilir [77,90,93].

Gaussian 03W paket programına *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin giriş dosyaları hazırlamak ve gaussian çıktılarını görselleştirmek için Gauss View 3.0 programı kullanılmıştır [101]. Gauss view molekülleri görsel hale getirir onları istediğimiz gibi döndürmemize, hareket ettirmemize ve moleküllerde değişiklik yapmamıza olanak sağlar. Ayrıca karmaşık hesaplamalar için dahi kolaylıkla giriş dosyaları hazırlamamızı sağlar. Gaussian programı tarafından hesaplanan sonuçları grafiksel olarak incelememize olanak sağlar. Bu sonuçlar; optimize edilmiş moleküler yapılar, moleküler orbitaller, elektrostatik potansiyel yüzeyi, atomik yükler, IR, Raman, NMR, spektrumları, titreşim frekanslarına bağlı normal mod animasyonları gibi sıralanabilir [77,102].

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin moleküler yapısı Gauss View 3.0 programı kullanılarak üç boyutlu olarak çizildi [102]. Çizilen bu yapının geometrik parametreleri Gaussian 03W paket programına otomatik olarak giriş verileri olarak girildi [90]. Daha sonra 6-31G(d,p) ve 6-311G(d,p) baz setinde B3LYP, BLYP, B3PW91, mPW1PW91 ve HF yöntemleri kullanılarak optimize edildi [93-108]. Optimize edilen geometriye ait parametreler *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin X-ışınları tek kristal difraksiyon verileri ile karşılaştırıldı. Optimize edilen konfigürasyonun titreşim frekansları da yukarıda verilen metotlar için hesaplandı. Elde edilen teorik veriler deneysel değerler ile uyumlu hale getirilebilmek için ölçekleme faktörleriyle çarpılarak düzeltildi.

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin Hirshfeld yüzey analizi, CrystalExplorer3.1 programı kullanılarak gerçekleştirildi [109]. Analiz için CrystalExplorer3.1 programında CIF dosyasındaki hidrojen atomlarının tüm bağ uzunlukları tipik standart nötron değerleri için otomatik olarak modifiye edildi. Aynı zamanda, tüm Hirshfeld yüzeyleri standart (yüksek) bir yüzey çözünürlüğü kullanılarak oluşturuldu. Üç boyutlu (3D) d_i ve d_e yüzeyler, sırasıyla 0.915 (kırmızı)-2.631 (mavi) Å ve 0.915 (kırmızı)-2.631 (mavi) Å sabit bir renk skalası kullanılarak eşleştirildi. İki boyutlu (2D) parmak izi çizelgeleri, grafik eksenlerindeki d_e ve d_i mesafe ölçekleri ile standart 0.6-2.4 Å görünümü kullanılarak gösterildi.

4. BULGULAR VE TARTIŞMA

4.1. Sentez

Tez kapsamında hedeflenen *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiği literatürde belirtilen yöntemlere göre sentezlenmiş [9-76] ve ¹H NMR, ¹³C NMR, COSY, HMQC, LC-MS/MS, FT-IR teknikleri kullanılarak karakterize edilmiştir (**Şekil 4.1-4.6**). *N*-(2klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğine ait karakterizasyon sonuçları aşağıda verilmiştir. Elde edilen analiz sonuçları literatür verileri ile uyumlu olup hedef bileşik başarı ile sentezlenmiştir [44].

N-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit (H₂L)

Renk: Beyaz.

Verim: 85 %.

Erime noktası: 136-138 °C.

FT-IR (ATR, ν, cm⁻¹): ν(N-H) 3225, 3194; ν(C-H) 3114, 3096, 3073, 2987, 2937, 2925, 2915, 2900; ν(C=O) 1686; ν(C=S) 1452; ν(C-Cl) 673.

¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 12.57 (s, 1H, NH), 11.57 (s, 1H, NH), 8.07 (dd, 1H, Ar-H), 7.57 (dd, 1H, Ar-H), 7.39 (td, 1H, Ar-H), 7.31 (td, 1H, Ar-H), 2.58 (tt, 1H, CH), 1.84 (d, 2H, Cy-H_{ak}), 1.75 (s, 2H, Cy-H_{ak}), 1.64 (d, 1H, Cy-H_{ak}), 1.36 (q, 2H, Cy-H_{ek}), 1.23 (q, 2H, Cy-H_{ek}), 1.18 (m, 1H, Cy-H_{ek}).

¹³C NMR (100 MHz, DMSO-*d*₆, δ, ppm): 180.13 (C=S), 178.39 (C=O), 135.19 (C-Ar), 129.44 (C-Ar), 127.95 (C-Ar), 127.86 (C-Ar), 127.62 (C-Ar), 127.17 (C-Ar), 43.86 (CH), 28.59 (Cy), 25.15 (Cy), 24.92 (Cy).

Elementel analiz (%) Hesaplanan C₁₄H₁₇ClN₂OS: C, 56.65; H, 5.77; N, 9.44. Bulunan: C, 55.94; H, 5.70; N, 9.61 %.

LC-MS (+ESI, *m/z*): 297.2 [M+H]⁺, 261.2, 187.1, 128.2.

Şekil 4.1. H₂L bileşiğinin FT-IR spektrumu.

Şekil 4.2. H₂L bileşiğinin ¹H NMR spektrumu.

Şekil 4.4. H₂L bileşiğinin COSY NMR spektrumu.

Şekil 4.5. H₂L bileşiğinin HMQC NMR spektrumu.

4.2. Kristallografik Bulgular

Diklorometan:etanol (1:2, *v:v*) karışımında yeniden kristallendirme çalışmaları sonucunda X-ışınları tek kristal difraksiyonu analizine uygun *N*-(2-klorofenilkarbamotiyoil) siklohekzankarboksamit bileşiğinin kristalleri elde edilmiştir. Bileşiğin yapısı, X-ışınları tek kristal difraksiyonu tekniği ile aydınlatılmıştır. Bileşiğin, monoklinik kristal sistemine ve P2(1)/n uzay grubunda ve yapının da, a = 5.2385(10) Å, b = 17.902(4) Å, c = 15.021(3) Å, $\beta = 90.86(3)^\circ$, Z = 4, $D_{calc} = 1.400$ mg/m³ hücre parameterlerine sahip olduğu tespit edilmiştir. Bileşiğin kristal yapısı ve birim hücre içerisindeki yerleşimi **Şekil 4.7-4.8**'de verilmiştir. Bu

kristale ait kristallografik veriler **Tablo 4.1**'de, seçilmiş bağ uzunlukları (Å), bağ açıları (°), hidrojen geometrileri, atomik koordinatlar ve eşdeğer izotropik termal parametreler, anizotropik yer değiştirme parametreleri (Å²), hidrojen atom koordinatları ve izotropik yerdeğiştirme parametreleri, Cremer & Pople burulma parametreleri is**e Tablo 4.2-4.9**'da verilmiştir. Tüm elde edilen veriler değerlendirildiğinde sentezlenen bileşiğinin tek kristal yapısı başarı ile aydınlatılmış olup; elde edilen yapı, önerilen molekül formülü ile uyumludur.

Şekil 4.8. H₂L Bileşiğinin birim hücre yapısı.

Ampirik formül	C14H17CIN2OS
Molekül ağırlığı	296.81
Ölçüm sıcaklığı	153(2) K
X-ışını kaynağı dalgaboyu (Mo Kα)	0.71073 Å
Kristal sistemi	Monoklinik
Uzay grubu	P2(1)/n
Birim hücre parameterleri	
	a = 5.2385(10) Å
	b = 17.902(4) Å
	c = 15.021(3) Å
	$\beta = 90.86(3)^{\circ}$
Birim hücre hacmi (V)	1408.6(5) Å ³
Birim hücredeki molekül sayısı (Z)	4
Yoğunluk	1.400 Mg/m ³
Absorpsiyon katsayısı	0.413 mm ⁻¹
F(000)	624
Kristal boyutları	0.72 × 0.19 × 0.12 mm
Veri toplama 20 aralığı	3.54 to 25.19 °
h, k, l indeks aralığı	
	-6≤h≤6,
	-21≤k≤20,
	-15≤ <i>l</i> ≤17
Toplanan / Bağımsız yansıma sayısı	9840 / 2519 [R(int) = 0.0406]
Soğurma düzeltmesi	REQAB (multi-scan)
Soğurma düzeltmesi T _{min} / T _{maks}	0.9521 ve 0.7554
Arıtım yöntemi	En küçük kareler yöntemi F ²
Veri/sınırlamalar/parametreler	2519 / 0 / 172
Final R Değerleri [I>2σ(I)]	R1 = 0.0405, wR2 = 0.0874
R Değerleri (Tüm değerler)	R1 = 0.0510, wR2 = 0.0921
En büyük fark pik ve hole	0.252 ve -0.265 e.Å ⁻³

Table 4.1. H ₂ L bileşiğinin kristal pa	arametreleri ve yapının	arıtılmasına ait veriler.
---	-------------------------	---------------------------

Table 4.2. H_2L bileşiğine ait kesirsel atom koordinatları (×10⁴) ve eşdeğer izotropik yerdeğiştirme parametreleri (Å²×10³).

Atom	X	у	Ζ	U(eq)
01	5747(3)	9063.7(9)	7282(1)	28.6(4)
Cl1	905.7(10)	7904.3(3)	6786.4(4)	30.24(17)
S1	7314.8(11)	9272.2(3)	4312.7(4)	26.36(16)
N1	7838(3)	9449.4(10)	6036.5(12)	21.7(4)
N2	4776(3)	8585.1(10)	5646.7(12)	21.9(4)
C1	3162(4)	8090.5(11)	5172.1(15)	21.8(5)
C2	3438(4)	7897.2(12)	4276.0(15)	26.1(5)
C3	1736(4)	7400.0(13)	3872.9(17)	30.9(5)
C4	-246(4)	7087.4(13)	4344.6(18)	33.5(6)
C5	-501(4)	7260.7(12)	5237.3(18)	30.9(5)
C6	1191(4)	7745.6(12)	5649.6(15)	23.7(5)
C7	6531(4)	9074.8(11)	5359.2(14)	21.0(4)
C8	7469(4)	9425.8(12)	6942.3(14)	22.0(4)
С9	9331(4)	9896.0(12)	7478.4(14)	22.1(4)
C10	9782(4)	9584.8(12)	8412.6(14)	23.7(5)
C11	11692(4)	10073.8(13)	8922.1(15)	29.3(5)
C12	10763(5)	10875.8(14)	8962.4(17)	36.6(6)
C13	10254(5)	11196.6(13)	8039.1(16)	31.1(5)
C14	8379(4)	10708.1(12)	7514.8(15)	25.0(5)

Atom	U11	U22	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	29.2(8)	34.4(9)	22.4(8)	0.4(7)	4.3(6)	-9.0(7)
Cl1	32.0(3)	27.4(3)	31.6(3)	3.7(2)	9.8(2)	-1.1(2)
S1	29.8(3)	29.8(3)	19.5(3)	1.7(2)	2.1(2)	-7.1(2)
N1	22.6(9)	21.9(9)	20.7(9)	1.8(7)	0.9(7)	-5.5(7)
N2	22.7(9)	23.4(10)	19.5(9)	-0.7(7)	1.8(7)	-3.2(7)
C1	20.7(10)	17.2(10)	27.4(12)	0.8(8)	-1.5(9)	2.5(8)
C2	25.6(11)	24.0(11)	28.8(12)	-1.0(9)	1.2(9)	-0.1(9)
C3	32.9(12)	27.5(12)	32.3(13)	-4.1(10)	-4.9(10)	2.4(10)
C4	28.8(12)	24.5(12)	46.9(16)	-3.9(10)	-9.1(11)	-4.2(9)
C5	21.1(11)	22.6(12)	49.1(16)	1.8(10)	1.5(10)	-3.4(9)
C6	23.6(11)	20.0(11)	27.5(12)	2.3(9)	2.6(9)	3.9(8)
C7	19.8(10)	20(1)	23.3(11)	1.3(8)	0.6(8)	1.4(8)
C8	24.2(10)	21.0(11)	20.7(11)	1.0(8)	1.5(9)	3.3(8)
C9	21.4(10)	23.9(11)	21.1(11)	0.4(8)	2.5(8)	0.2(8)
C10	28.1(11)	21.4(11)	21.6(12)	1.0(9)	-0.2(9)	1.8(9)
C11	28.5(11)	36.0(13)	23.5(12)	2.1(10)	-0.3(9)	-5.6(10)
C12	50.5(15)	30.4(13)	28.9(14)	-4.7(10)	-0.7(11)	-10.5(11)
C13	38.6(13)	24.0(12)	30.7(13)	0.7(9)	1.9(10)	-5.5(10)
C14	25.1(11)	21.9(11)	28.0(12)	3.0(9)	3.0(9)	0.9(9)

Table 4.3. H₂L bileşiğine ait anizotropik yerdeğiştirme parametreleri ($Å^2 \times 10^3$).

Table 4.4. H₂L bileşiğinin ait atomlar arası bağ uzunlukları (Å).

Atom	Atom	Bağ uzunluğu	Atom	Atom	Bağ uzunluğu
01	C8	1.228(3)	С3	C4	1.384(3)
Cl1	C6	1.740(2)	C4	C5	1.385(4)
S1	C7	1.669(2)	C5	C6	1.381(3)
N1	C8	1.378(3)	C8	C9	1.512(3)
N1	C7	1.390(3)	C9	C10	1.525(3)
N2	C7	1.346(3)	C9	C14	1.538(3)
N2	C1	1.410(3)	C10	C11	1.526(3)
C1	C2	1.399(3)	C11	C12	1.517(3)
C1	C6	1.408(3)	C12	C13	1.521(3)
C2	C3	1.392(3)	C13	C14	1.525(3)

Table 4.5. H₂L bileşiğinin atomlar arası bağ açıları (°).

Atom	Atom	Atom	Bağ açısı	Atom	Atom	Atom	Bağ açısı
C8	N1	C7	129.27(18)	N2	C7	S1	128.25(17)
C7	N2	C1	130.83(19)	N1	C7	S1	117.50(15)
C2	C1	C6	117.9(2)	01	C8	N1	122.79(19)
C2	C1	N2	124.86(19)	01	C8	C9	122.99(19)
C6	C1	N2	117.14(19)	N1	C8	C9	114.21(18)
C3	C2	C1	120.1(2)	C8	C9	C10	112.13(18)
C4	C3	C2	121.1(2)	C8	С9	C14	109.79(17)
C3	C4	C5	119.3(2)	C10	C9	C14	111.01(18)
C6	C5	C4	120.3(2)	C9	C10	C11	110.08(18)
C5	C6	C1	121.2(2)	C12	C11	C10	110.78(19)
C5	C6	Cl1	118.61(18)	C11	C12	C13	111.9(2)
C1	C6	Cl1	120.19(17)	C12	C13	C14	110.92(19)
N2	C7	N1	114.24(19)	C13	C14	С9	110.73(18)

Atom	X	у	Ζ	U(eq)
H1	9121	9754	5856	26
H2	4602	8571	6248	26
H2A	4804	8108	3939	31
Н3	1941	7272	3258	37
H4	-1431	6754	4056	40
Н5	-1860	7043	5571	37
Н9	10933	9893	7177	27
H10A	10429	9084	8375	28
H10B	8197	9570	8725	28
H11A	11919	9884	9516	35
H11B	13313	10057	8634	35
H12A	12024	11176	9264	44
H12B	9222	10896	9300	44
H13A	11831	11230	7724	37
H13B	9567	11691	8092	37
H14A	8186	10899	6921	30
H14B	6740	10723	7792	30
Table 4.7. H ₂ L bil	leşiğinin torsiyon açıl	arı (°).		

Table 4.6. H ₂ L bileşiğinin hidrojen atom koordinatları ($Å$ ×10 ⁴) ve izotropik yerdeğiştirm	е
parametreleri (Ų×10³).	

 Table 4.7. H2L bileşiğinin torsiyon açıları (°).

Atom	Atom	Atom	Atom	Açı
C(8)	N(1)	C(7)	S(1)	175.70(17)
C(8)	N(1)	C(7)	N(2)	-4.9(3)
C(7)	N(1)	C(8)	0(1)	-3.0(3)
C(7)	N(1)	C(8)	C(9)	178.23(19)
C(7)	N(2)	C(1)	C(2)	14.1(3)
C(7)	N(2)	C(1)	C(6)	-168.5(2)
C(1)	N(2)	C(7)	S(1)	1.9(3)
C(1)	N(2)	C(7)	N(1)	-177.50(19)
N(2)	C(1)	C(2)	C(3)	179.8(2)
C(6)	C(1)	C(2)	C(3)	2.4(3)
N(2)	C(1)	C(6)	Cl(1)	-2.8(3)
N(2)	C(1)	C(6)	C(5)	179.16(19)
C(2)	C(1)	C(6)	Cl(1)	174.83(16)
C(2)	C(1)	C(6)	C(5)	-3.3(3)
C(1)	C(2)	C(3)	C(4)	-0.1(3)
C(2)	C(3)	C(4)	C(5)	-1.4(3)
C(3)	C(4)	C(5)	C(6)	0.6(3)
C(4)	C(5)	C(6)	Cl(1)	-176.34(18)
C(4)	C(5)	C(6)	C(1)	1.8(3)
0(1)	C(8)	C(9)	C(10)	29.6(3)
0(1)	C(8)	C(9)	C(14)	-94.3(2)
N(1)	C(8)	C(9)	C(10)	-151.63(18)
N(1)	C(8)	C(9)	C(14)	84.5(2)
C(8)	C(9)	C(10)	C(11)	179.42(18)
C(14)	C(9)	C(10)	C(11)	-57.4(2)
C(8)	C(9)	C(14)	C(13)	-178.99(18)
C(10)	C(9)	C(14)	C(13)	56.5(2)
C(9)	C(10)	C(11)	C(12)	57.2(2)
C(10)	C(11)	C(12)	C(13)	-56.6(3)
C(11)	C(12)	C(13)	C(14)	55.4(3)
C(12)	C(13)	C(14)	C(9)	-54.8(3)

6 Üyeli halka	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)
Hibrit türü	sp ³	sp ³	sp ³	sp ³	sp ³	sp ³
Sapma (Å)	0.243(2)	-0.246(2)	0.239(2)	-0.229(3)	0.226(3)	-0.233(2)
Halka bağ açısı (°)	111.00(18)	110.07(18)	110.76(19)	111.9(2)	110.9(2)	110.71(18)
Torsiyon açısı (I-J) (°)	-57.4(2)	57.2(2)	-56.6(3)	55.4(3)	-54.8(3)	56.5(2)
Halka bag uzunluğu (Å)	1.525(3)	1.527(3)	1.518(3)	1.521(4)	1.525(3)	1.538(3)
Sapma: Cremer&Pople düzler	minden I atomu	nun uzaklığı.				
Parametre				Değer		
Halka bağ uzunluğunun ağırlı	ıklı ortalaması			1.5260 Å		
Mutlak torsiyon açısının ağırl	ıklı ortalaması			56.59 Å		
Q(2)				0.018(2) Å		
Phi(2)				47(8) °		
Q(3)				0.578(2) Å		
Burulma genliği (Q)				0.578(2) Å		
Theta				0.0(2)°		
Phi				47(8) °		
Simetrik form				C-Form		

Tablo 4.8. H₂L bileşiğinin Cremer & Pople burulma parametreleri.

Simetrik form: 6-üyeli halkalar: C : Sandalye (Chair) - Th = 0.0; H : Yarım Sandalye (Half-Chair) - Th = 50.8; Phi = k × 60 + 30; E : Zarf (Envelope) - Th = 54.7; Phi = k × 60; S : Vida-Tekne (Screw-Boat) - Th = 67.5; Phi = k × 60 + 30; B : Tekne (Boat) - Th = 90.0; Phi = k × 60; T : Bükülmüş tekne (Twist-Boat) - Th = 90.0; Phi = k × 60 + 30 [110, 111].

Tablo 4.9. H₂L bileşiğinin hidrojen bağı geometrisi (Å, °).

No	Tipi	Donor	н		Akseptor	Simetri kodu	D-H	Н…А	D…A	∠ D-H…A	∠ A…H…A*
1	Inter	N(1)	H(1)	/	S(1)	2- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>	0.91	2.57	3.4642(19)	168	
2	Intra	N(2)	H(2)		Cl(1)		0.91	2.42	2.9378(19)	116	
3	Intra	N(2)	H(2)		0(1)		0.91	1.88	2.644(2)	141	102
4	Intra	C(2)	H(2A)		S(1)		0.96	2.52	3.191(2)	127	
5	Inter	C(9)	H(9)		S(1)	2- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>	0.96	2.85	3.562(2)	131	

4.3. Teorik hesaplamalar

4.3.1. Geometri Optimizasyonu Ve Konformasyon Analizi

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin moleküler yapısının C1 nokta grubuna ait olduğu tespit edilmiştir. Bileşiğin optimize edilmiş geometrik yapısı, tek kristal yapısı ile karşılaştırmalı olarak **Şekil 4.9**'da gösterilmiştir. Elde edilen teorik bag uzunlukları, açıları ve dihedral açılar gibi geometrik parametreler ilgili bileşiğin tek kristal yapısına ait geometrik veriler **Tablo 4.10-12**'de benzer şekilde karşılaştırmalı olarak verilmiştir. Ayrıca teorik ve deneysel geometrik parametrelere ait korelasyon değerleride ilgili tabloların sonunda sunulmuştur.

Şekil 4.9. H₂L bileşiğinin optimize edilmiş ve tek kristal geometrik yapısı.

Yapılan incelemede elde edilen teorik ve deneysel yapı parameterlerinin birbiri ile uyum içerisinde olduğu tespit edilmiştir. Bağ uzunluğu hesaplamalarında en iyi korelasyon (r = 0.9990) mPW1PW91/6-311G(d,p) metodu için bulunmuş olup teorik ve deneysel bağ uzunlukları arasındaki maksimum fark (C7-N17) ise 0.010 Å'tur. Bağ açıları hesaplamalarında ise en iyi korelasyon (r = 0.9933) mPW1PW91/6-311G(d,p) metodu için bulunmuş olup teorik ve deneysel bağ açıları arasındaki maksimum fark (C8-C9-C10) ise 1.50°'dir. Bilindiği üzere teorik hesaplamalar yapılırken molekül gaz fazında izole bir molekül olarak kabul edilmekte iken, X-ışıları tek kristal difraksiyonu verileri molekül katı halde ve molekül içi ve dışı etkileşimler mevcutken elde edilmektedir. Yukarıdaki mevzu bahis olan farkların kristal formda var olan molekül içi ve moleküller arası etkileşimlerden kaynaklandığı düşünülmektedir [77].

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit molekülün olası konformasyonlarını elde etmek için, önce molekülün iskelet yapısındaki torsiyon açıları tespit edilmiş ve olası yapıların arasından belirlenen $\tau_{015-C8-N17-C7}$ açısı değiştirilerek molekül **f**arklı konformorları elde edilmiştir. Hesaplamalarda B3LYP / 6-31G(d,p) metodu kullanılmış olup her bir torsyion açısı için geometri optimize edilmiş ve titreşim frekansları hesaplanmıştır. Bu konformerlerin "Geçiş hali" (Transition state, TS) olup olmadıklarını belirlemek için hesaplanan IR titreşimleri incelenmiş ve "sanal frekans" (N_{img}, imaginary frequency) var olup olmadığı kontrol edilmiş ve belirlenen 36 konformer yapının hepsinde N_{img} = 0 olarak elde edilmiştir. Her bir torsiyon açısı için 10° aralıklarla 0-360° taraması yapılarak 1-D potansiyel enerji grafikleri elde edilmiştir. $\tau_{015-C8-N17-C7}$ Torsiyon açısına karşılık gelen 1-D potansiyel enerji grafiği **Şekil 4.10**'da verilmiştir. **Şekil 4.10**'dan da görüleceği üzere toplam üç minimum ve üç maksimum değer tespit edilmiştir. $\tau_{015-C8-N17-C7}$ torsiyon açısı X-ışını tek kristal difraksiyon analizi sonucu elde edilen tek kristal yapısında -3.0(3)° olarak hesap edilmişken yapılan DFT hesaplamaları sonuçunda mPW1PW91 /6-31G(d,p) metodu ile aynı torsiyon açısı 1.15° olarak hesaplanmış olup tüm bu değerler yapılan konformasyon analizi ve elde edilen 1-D enerji grafikleri ile de tam uyum halindedir. Ayrıca kristal yapıda mevcut olan molekül içi hidrojen bağı da bu sonuçları doğrulamaktadır (**Tablo 4.9**).

Şekil 4.10. τ_{015-C8-N17-C7} Torsiyon açısına karşılık gelen 1-D potansiyel enerji grafiği.

4.3.2. Termodinamik Hesaplamalar

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğine ait termodinamik parametreler toplu olarak **Tablo 4.13**'de verilmiştir. Bileşiğin geometrik optimizasyonu sonucu elde edilen minimum enerji B3LYP/6-311G(d,p) metodu için -1587.130 a.u. ve HF/6-31G(d,p) metodu için ise -1580.888 a.u. olarak hesaplanmıştır. Metodlar arasındaki bu iki uç değer için hesap edilen enerji farkı ise sadece -6.242 a.u.'dur.

4.3.3. NPA (Doğal Populasyon Analizleri) ve Mulliken Net Atomik Yük Hesaplamaları

Bu tez kapsamında ayrıca *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin her bir atom için moleküler sistemler için hesapsal uygulamalarda önemli rol

oynayan net atomik yük, Gaussian 03W paket programının NPA (Doğal Populasyon Analizleri, Natural Population Analysis) ve Mulliken analiz modülü ile tüm metodlar için ayrı ayrı hesaplandı. *N*-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiği için hesaplanan NPA ve Mulliken yük değerleri, **Tablo 4.14** ve **4.15**'de verilmiştir. NPA ve Mulliken atomik yük hesaplama sonuçlarına göre karbonil grubunda bulunan karbon atomunun en yüksek pozitif yükte olduğunu göstermiştir. Ayrıca, molekülde bulunan iki azot atomunun en yüksek negatif yükleri paylaştığı tespit edilmiştir. Molekül yapısında bulunan oksijen atomu ise beklendiği şekilde negatif yük ile yüklendiği her iki yöntemle yapılan hesaplamalarda tespit edilmiştir.

Birdal ARSLAN, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2017

٩	Adı	Tanımlama	Atom-Atom	Deneysel	B3LYP		В-LYP		B3PW91		mPW1PW91		노	
				(X-ray)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)
-	R1	R(1,2)	C1-C2	1.399	1.403	1.400	1.415	1.412	1.401	1.398	1.398	1.396	1.387	1.385
2	R2	R(1,6)	C1-C6	1.408	1.409	1.407	1.423	1.419	1.407	1.406	1.405	1.404	1.387	1.385
S	R3	R(1,18)	C1-N18	1.410	1.410	1.409	1.417	1.417	1.404	1.402	1.402	1.400	1.419	1.421
4	R4	R(2,3)	C2-C3	1.392	1.392	1.390	1.402	1.399	1.390	1.388	1.388	1.386	1.381	1.380
5	R6	R(3,4)	C3-C4	1.384	1.394	1.392	1.404	1.401	1.392	1.389	1.390	1.387	1.386	1.385
9	R8	R(4,5)	C4-C5	1.385	1.393	1.391	1.404	1.401	1.391	1.389	1.389	1.387	1.381	1.381
7	R10	R(5,6)	C5-C6	1.381	1.392	1.389	1.401	1.397	1.390	1.387	1.388	1.385	1.385	1.383
ø	R12	R(6,19)	C6-CI19	1.740	1.760	1.760	1.780	1.781	1.746	1.745	1.742	1.741	1.741	1.740
6	R13	R(7,16)	C7-S16	1.669	1.675	1.673	1.689	1.688	1.668	1.666	1.665	1.663	1.673	1.670
10	R14	R(7,17)	C7-N17	1.390	1.409	1.408	1.424	1.423	1.404	1.403	1.401	1.400	1.384	1.383
1	R15	R(7,18)	C7-N18	1.346	1.351	1.350	1.366	1.365	1.348	1.347	1.345	1.344	1.327	1.327
12	R16	R(8,9)	C8-C9	1.512	1.521	1.520	1.533	1.533	1.517	1.515	1.514	1.512	1.517	1.516
13	R17	R(8,15)	C8-015	1.228	1.230	1.223	1.245	1.237	1.228	1.221	1.225	1.218	1.200	1.194
14	R18	R(8,17)	C8-N17	1.378	1.382	1.383	1.395	1.395	1.378	1.378	1.376	1.375	1.378	1.379
15	R19	R(9,10)	C9-C10	1.525	1.547	1.546	1.560	1.559	1.538	1.536	1.534	1.532	1.534	1.533
16	R20	R(9,14)	C9-C14	1.538	1.546	1.544	1.558	1.557	1.542	1.541	1.540	1.539	1.543	1.543
17	R22	R(10,11)	C10-C11	1.526	1.535	1.534	1.547	1.546	1.530	1.529	1.527	1.526	1.531	1.530
18	R25	R(11,12)	C11-C12	1.517	1.535	1.534	1.547	1.546	1.530	1.529	1.528	1.526	1.530	1.530
19	R28	R(12,13)	C12-C13	1.521	1.535	1.534	1.547	1.546	1.530	1.529	1.527	1.526	1.530	1.530
20	R31	R(13,14)	C13-C14	1.525	1.535	1.535	1.547	1.546	1.530	1.528	1.527	1.526	1.531	1.530
<u>ـ</u>					0.9988	0.9987	0.9984	0.9984	0666.0	0.9989	0666.0	0666.0	0.9974	0.9968
q	Tanımlama				R(9,10)	R(9,10)	R(6,19)	R(6,19)	R(7,17)	R(7,17)	R(7,17)	R(7,17)	R(8,15)	R(8,15)
>	Değer				0.022	0.021	0.040	0.041	0.014	0.014	0.011	0.010	0.028	0.034

Tablo 4.10. H_2L bileşiğinin teorik ve deneysel bağ uzunluklarının (Å) karşılaştırması.
0
Ñ
•
esi,
site
ers
λi
ü
sin
era
Σ
sü,
ΪÜ
ısti
ΕĽ
eri
Ш
ili
ЪВ
Fer
i,]
ſez
[S]
san
Lis
ek
iks
Υü
ź
Γ
SSI
AF
lal
irc
В

Tablo 4.11. H_2L bileşiğinin teorik ve deneysel bağ açılarının (°) karşılaştırması.

119.08 120.11 120.75 120.59 120.17 120.73 120.43 118.09 125.89 122.83 114.20 122.95 111.22 108.95 111.00 111.06 111.63 111.32 111.59 111.10 130.00 124.70 6.13 119.81 118.84 116.01 119.61 A(1,18,7) 6-311G(d,p) 0.9541 126.56 122.55 114.49 111.03 109.03 110.98 111.03 111.63 111.32 111.58 111.05 120.64 120.28 120.53 120.09 119.62 120.78 118.75 117.62 115.82 122.94 130.06 125.66 A(1,18,7) 5.17 119.00 6-31G(d,p) 119.97 120.47 0.9660 ΗF 110.75 1.50 120.76 113.75 108.90 111.34 111.59 111.13 130.14 130.25 A(8,9,10) 6-311G(d,p) 117.77 124.17 118.03 120.71 19.41 119.92 121.43 120.14 118.43 116.70 129.54 122.24 114.93 122.81 110.63 111.47 111.21 0.9933 120.16 122.75 111.36 111.18 1.80 118.05 123.48 118.41 120.62 120.65 119.57 119.84 121.28 118.56 116.92 129.33 113.75 121.93 115.31 110.33 109.04 110.74 111.60 111.50 111.24 129.87 129.30 0.9905 A(8,9,10) 6-31G(d,p) mPW1PW91 109.13 110.78 A(8,9,10) 117.76 110.42 111.39 111.29 130.17 130.08 1.71 123.96 118.23 120.74 119.45 121.42 120.17 129.47 113.72 122.11 115.11 122.77 111.62 111.21 111.53 6-311G(d,p) 120.71 119.91 118.41 116.81 0.9922 118.49 120.65 118.49 116.88 115.35 122.69 110.74 111.43 111.56 129.43 1.83 117.97 123.47 120.67 19.55 119.86 121.29 120.21 129.41 113.71 121.95 110.30 109.22 111.64 111.21 111.31 129.96 A(8,9,10) 6-31G(d,p) 0.9901 B3PW91 118.54 129.60 113.59 115.23 122.65 110.85 111.69 A(8,9,10) 117.52 123.90 120.82 120.73 119.49 119.80 121.64 118.15 116.81 122.11 109.62 110.22 111.79 111.33 111.84 111.66 130.41 130.38 0.9884 6-311G(d,p) 120.21 2.51 20.76 118.13 129.95 122.55 110.15 110.72 118.48 119.48 121.56 120.31 113.48 121.98 115.47 111.68 111.75 111.28 111.67 130.32 A(8,9,10) 2.52 6-31G(d,p) 117.60 123.88 120.77 119.82 116.57 109.61 111.80 130.31 0.9875 В-LYP 120.19 129.15 109.49 110.08 130.15 117.83 123.58 118.53 120.72 120.65 19.54 121.46 118.35 116.99 113.85 121.94 115.27 122.79 110.85 111.66 111.26 111.70 111.50 129.78 0.9888 A(8,9,10) 2.64 6-311G(d,p) 19.81 111.54 123.43 118.56 110.00 110.76 111.55 111.69 130.05 129.55 A(8,9,10) 2.62 6-31G(d,p) 117.94 120.65 120.66 119.80 121.38 118.38 121.79 115.50 111.65 111.23 111.52 0.9876 119.57 116.84 129.34 122.71 109.51 120.24 113.81 B3LYP Deneysel 117.90 121.10 120.19 122.99 122.79 112.13 109.79 110.78 124.86 117.14 120.10 119.30 120.30 121.20 117.50 128.25 114.24 110.08 111.90 110.92 110.72 130.83 (X-ray) 118.61 114.21 111.01 129.27 Atom-Atom-Atom C11-C12-C13 C10-C11-C12 C12-C13-C14 N17-C7-N18 015-C8-N17 C10-C9-C14 C9-C10-C11 C9-C14-C13 S16-C7-N18 S16-C7-N17 C1-C6-CI19 C5-C6-CI19 C9-C8-O15 C9-C10 C8-C9-C14 C7-N17-C8 C2-C1-N18 C6-C1-N18 C9-C8-N17 C1-N18-C7 C4-C5-C6 C1-C6-C5 C1-C2-C3 C3-C4-C5 C2-C3-C4 C2-C1-C6 Tanımlama A(10,11,12) A(11,12,13) A(12,13,14) A(9,10,11) A(16,7,17) A(16,7,18) A(17,7,18) A(5,6,19) A(9,8,15) A(9,8,17) A(15,8,17) A(8,9,10) A(8,9,14) A(10,9,14) A(9,14,13) A(7,17,8) A(1,6,19) A(1,18,7) A(2,1,18) A(6,1,18) A(2,1,6) ۵(2,3,4) ٩(3,4,5) A(4,5,6) A(1,6,5) A(1,2,3) Tanımlama Değer A10 A19 A20 A22 A26 A43 A64 A13 A16 A17 A18 A23 A24 A25 A28 A31 A37 A49 A55 A61 No Adi A21 A2 A3 A4 A7 Ł 9 ÷ 12 13 4 15 16 1 8 19 20 21 23 24 25 26 > ത c

5														Ī
°	Adi	Tanımlama	Atom-Atom-Atom-Atom	Deneysel	B3LYP		В-LYP		B3PW91		mPW1PW91		HF	
				(X-ray)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)
-	D1	D(6,1,2,3)	C6-C1-C2-C3	2.40	0.94	0.67	0.67	0.46	96.0	0.58	1.00	0.54	0.84	0.60
2	D3	D(18,1,2,3)	N18-C1-C2-C3	179.80	177.83	177.1	178.27	178.02	178.06	178.14	178.07	178.25	177.47	177.83
e	D5	D(2,1,6,5)	C2-C1-C6-C5	-3.30	-0.66	-0.48	-0.51	-0.35	-0.67	-0.45	-0.70	-0.42	-0.35	-0.33
4	D6	D(2,1,6,19)	C2-C1-C6-CI19	174.83	179.37	179.47	179.63	179.69	179.44	179.54	179.38	179.52	179.41	179.56
5	D7	D(18,1,6,5)	N18-C1-C6-C5	179.16	-177.70	-177.67	-178.25	-178.03	-177.91	-178.16	-177.93	-178.28	-176.99	-177.53
9	D8	D(18,1,6,19)	N18-C1-C6-Cl19	-2.80	2.33	2.27	1.90	2.00	2.19	1.83	2.15	1.66	2.77	2.36
7	D9	D(2,1,18,7)	C2-C1-N18-C7	14.10	31.25	30.42	23.02	24.26	30.47	24.95	31.26	22.60	68.45	79.86
œ	D11	D(6,1,18,7)	C6-C1-N18-C7	-168.50	-151.89	-152.56	-159.41	-158.21	-152.44	-157.50	-151.68	-159.69	-114.97	-102.97
6	D13	D(1,2,3,4)	C1-C2-C3-C4	-0.10	-0.53	-0.30	-0.33	-0.17	-0.53	-0.22	-0.56	-0.20	-0.73	-0.44
10	D17	D(2,3,4,5)	C2-C3-C4-C5	-1.40	-0.20	-0.29	-0.20	-0.27	-0.22	-0.30	-0.22	-0.28	0.11	0.00
1	D21	D(3,4,5,6)	C3-C4-C5-C6	0.60	0.49	0.48	0.36	0.39	0.51	0.43	0.52	0.39	0.37	0.27
12	D25	D(4,5,6,1)	C4-C5-C6-C1	1.80	-0.05	-0.10	0.00	-0.07	-0.06	-0.05	-0.05	-0.04	-0.25	-0.10
13	D26	D(4,5,6,19)	C4-C5-C6-C119	-176.34	179.92	179.96	179.86	179.89	179.83	179.96	179.87	-179.98	179.98	-180.00
14	D29	D(16,7,17,8)	S16-C7-N17-C8	175.70	178.90	179.01	179.57	179.46	178.01	178.30	177.74	178.07	178.32	178.08
15	D31	D(18,7,17,8)	N18-C7-N17-C8	-4.90	-0.45	-0.38	0.22	0.06	-1.25	-1.03	-1.53	-1.32	-1.81	-2.18
16	D33	D(16,7,18,1)	S16-C7-N18-C1	1.90	1.70	1.73	2.07	2.23	1.24	1.24	0.80	1.05	-1.96	-2.91
17	D35	D(17,7,18,1)	N17-C7-N18-C1	-177.50	-179.05	-178.97	-178.69	-178.46	-179.62	-179.53	179.95	-179.65	178.19	177.38
18	D37	D(15,8,9,10)	O15-C8-C9-C10	29.60	62.96	63.43	64.28	64.30	51.52	51.09	50.10	46.27	39.32	36.97
19	D38	D(15,8,9,14)	O15-C8-C9-C14	-94.30	-58.98	-58.66	-57.78	-57.98	-70.40	-70.90	-71.73	-75.67	-83.25	-85.70
20	D40	D(17,8,9,10)	N17-C8-C9-C10	-151.63	-116.51	-116.02	-115.05	-115.07	-129.61	-130.13	-131.23	-135.38	-142.41	-144.79
21	D41	D(17,8,9,14)	N17-C8-C9-C14	84.50	121.55	121.89	122.89	122.65	108.46	107.88	106.94	102.68	95.02	92.54
22	D43	D(9,8,17,7)	C9-C8-N17-C7	178.23	178.63	178.45	178.30	178.25	-178.01	-177.96	-177.51	-177.20	-176.08	-175.54
23	D45	D(15,8,17,7)	015-C8-N17-C7	-3.00	-0.84	-0.99	-1.03	-1.11	0.85	0.81	1.15	1.13	2.18	2.70
24	D47	D(8,9,10,11)	C8-C9-C10-C11	179.42	-176.18	-176.26	-176.11	-176.16	-176.04	-176.05	-175.99	-176.05	-177.10	-177.08
25	D50	D(14,9,10,11)	C14-C9-C10-C11	-57.40	-54.70	-54.63	-54.39	-54.26	-55.02	-55.03	-55.16	-55.20	-55.67	-55.60
26	D56	D(8,9,14,13)	C8-C9-C14-C13	-178.99	175.88	175.90	175.76	175.79	176.80	176.91	176.87	177.19	178.18	178.27
27	D59	D(10,9,14,13)	C10-C9-C14-C13	56.50	54.68	54.62	54.35	54.24	55.14	55.14	55.29	55.32	55.57	55.46
28	D65	D(9,10,11,12)	C9-C10-C11-C12	57.20	55.15	55.06	54.97	54.80	55.27	55.30	55.39	55.46	55.56	55.57
29	D74	D(10,11,12,13)	C10-C11-C12-C13	-56.60	-54.95	-54.92	-54.76	-54.65	-55.01	-55.09	-55.14	-55.22	-55.01	-55.03
30	D83	D(11,12,13,14)	C11-C12-C13-C14	55.40	54.98	54.96	54.76	54.68	55.16	55.20	55.27	55.35	54.88	54.84
31	D92	D(12,13,14,9)	C12-C13-C14-C9	-54.80	-55.18	-55.11	-54.96	-54.84	-55.47	-55.45	-55.57	-55.61	-55.20	-55.11
-		ı			0.2978	0.2977	0.2997	0.2991	0.1350	0.1372	-0.0462	0.3223	-0.0580	0.1202
q	Tanımlama	ı			D(18,1,6,5)	D(18,1,6,5)	D(18,1,6,5)	D(18,1,6,5)	D(18,1,6,5)	D(18,1,6,5)	D(17,7,18,1)	D(18,1,6,5)	D(8,9,14,13)	D(8,9,14,13)
>	Değer	ı		ı	356.86	356.83	357.40	357.19	357.07	357.31	357.45	357.44	357.17	357.26

Tablo 4.12. H₂L bileşiğinin teorik ve deneysel dihedral bağ açılarının (°) karşılaştırması.

017	
si, 2	
rsite	
Üniv€	
lersin	
i, M	
stitüsi	
Ens	
eri	
im	
Bil	
Fen	
Tezi,	
'su	
Lisa	
ek	
üks	
۷, ۲	
LA	
RS	
al A	
ird	
В	

arametreler.
mik p
odina
term
ie ait
bileșiğin
H_2L
ł.13.
Tablo 4

Thermodinamik parametreler (298 K)	B3LYP		з-LYP		B3PW91	E	nPW1PW91		生	
	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)
Optimize global minimum enerji (SCF) (a.u.)	-1586.917	-1587.130	-1586.557	-1586.790	-1586.546	-1586.744	-1586.767	-1586.964	-1580.888	-1581.067
Toplam termal enerji (Thermal) <i>E</i> _{total} (kcal/mol)	195.991	195.161	190.463	189.759	196.439	195.594	197.668	196.810	208.449	207.248
Entropi, S (cal/mol.K)	140.822	141.244	143.063	143.097	143.032	143.148	141.877	141.439	139.389	139.648
Titreşim Enerjisi, $E_{ m vb}$ (kcal/mol)	194.214	193.383	188.685	187.982	194.662	193.816	195.890	195.032	206.671	205.470
Sıfır nokta titreşim enerjisi, $E_{ m o}$ (kcal/mol)	184.96098	184.10234	179.12220	178.39470	185.38990	184.52676	186.69117	185.84004	197.98175	196.72233
Rotasyonel sabitler (GHz)										
A	0.62083	0.62250	0.60416	0.60702	0.62805	0.62768	0.63172	0.63007	0.68554	0.70547
В	0.14253	0.14267	0.14135	0.14108	0.14401	0.14493	0.14473	0.14605	0.13707	0.13550
O	0.12400	0.12408	0.12166	0.12175	0.12512	0.12510	0.12578	0.12563	0.12812	0.12964
Dipol moment (Debye)										
۲×	-2.3028	-2.2673	-2.2255	-2.1585	-2.3911	-2.3698	-2.4034	-2.3846	2.4432	-2.4917
μ	-0.6047	-0.5164	-0.6228	-0.5080	-0.6623	-0.5954	-0.6789	-0.6436	0.5410	0.1682
μ _z	1.0301	1.0542	0.7817	0.8673	0.8281	0.6829	0.8222	0.5785	2.0101	-2.2416
µ1 Toplam	2.5942	2.5532	2.4396	2.3810	2.6157	2.5371	2.6293	2.5368	3.2097	3.3558
Entropiler, S (cal/mol.K)										
Toplam	140.822	141.244	143.063	143.097	143.032	143.148	141.877	141.439	139.389	139.648
Öteleme	42.954	42.954	42.954	42.954	42.954	42.954	42.954	42.954	42.954	42.954
Dönme	34.637	34.633	34.691	34.688	34.606	34.601	34.590	34.585	34.545	34.516
Titreşim	63.232	63.657	65.418	65.455	65.472	65.593	64.333	63.900	61.891	62.178

Atom	B3LYP		B-LYP		B3PW91		mPW1PW91		HF	
	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)
C1	0.1336	0.1284	0.1274	0.1223	0.1311	0.1258	0.1324	0.1275	0.1437	0.1373
C2	-0.2297	-0.1975	-0.2318	-0.2014	-0.2388	-0.2087	-0.2392	-0.2110	-0.1927	-0.1471
C3	-0.2305	-0.1886	-0.2291	-0.1902	-0.2389	-0.1932	-0.2391	-0.1924	-0.2276	-0.1814
C4	-0.2325	-0.1902	-0.2310	-0.1909	-0.2413	-0.1960	-0.2419	-0.1969	-0.2107	-0.1570
C5	-0.2464	-0.2199	-0.2465	-0.2229	-0.2547	-0.2247	-0.2548	-0.2242	-0.2386	-0.2055
C6	-0.0549	-0.0284	-0.0509	-0.0262	-0.0653	-0.0377	-0.0669	-0.0389	-0.0349	0.0002
C7	0.2552	0.2950	0.2215	0.2599	0.2465	0.2880	0.2546	0.2970	0.4301	0.4754
C8	0.7214	0.7306	0.6779	0.6922	0.7186	0.7250	0.7282	0.7335	0.8786	0.8778
C9	-0.3347	-0.2828	-0.3307	-0.2826	-0.3490	-0.2931	-0.3506	-0.2944	-0.3291	-0.2656
C10	-0.4611	-0.3705	-0.4581	-0.3754	-0.4818	-0.3846	-0.4828	-0.3852	-0.4329	-0.3206
C11	-0.4658	-0.3724	-0.4634	-0.3777	-0.4851	-0.3833	-0.4858	-0.3824	-0.4346	-0.3170
C12	-0.4678	-0.3755	-0.4654	-0.3808	-0.4871	-0.3865	-0.4878	-0.3857	-0.4369	-0.3208
C13	-0.4660	-0.3724	-0.4636	-0.3778	-0.4849	-0.3834	-0.4855	-0.3825	-0.4336	-0.3164
C14	-0.4620	-0.3717	-0.4592	-0.3768	-0.4791	-0.3806	-0.4798	-0.3795	-0.4314	-0.3168
015	-0.6193	-0.6314	-0.5897	-0.6071	-0.6162	-0.6270	-0.6220	-0.6305	-0.7144	-0.7118
S16	-0.1977	-0.2141	-0.1770	-0.1915	-0.1928	-0.2103	-0.1975	-0.2165	-0.3062	-0.3241
N17	-0.6514	-0.6298	-0.6244	-0.6070	-0.6537	-0.6285	-0.6600	-0.6343	-0.7507	-0.7232
N18	-0.6001	-0.5897	-0.5719	-0.5670	-0.6019	-0.5871	-0.6080	-0.5912	-0.6982	-0.6829
CI19	0.0048	-0.0017	0.0046	-0.0002	0.0162	0.0090	0.0169	0.0094	-0.0113	-0.0190
H20	0.2708	0.2376	0.2686	0.2390	0.2787	0.2452	0.2795	0.2464	0.2545	0.2054
H21	0.2476	0.2073	0.2451	0.2076	0.2560	0.2117	0.2566	0.2118	0.2409	0.1934
H22	0.2469	0.2074	0.2442	0.2076	0.2552	0.2116	0.2559	0.2118	0.2405	0.1928
H23	0.2583	0.2195	0.2560	0.2202	0.2665	0.2242	0.2671	0.2242	0.2521	0.2063
H24	0.4655	0.4430	0.4542	0.4363	0.4702	0.4458	0.4724	0.4470	0.4827	0.4458
H25	0.4538	0.4159	0.4475	0.4122	0.4603	0.4204	0.4615	0.4212	0.4586	0.4137
H26	0.2381	0.1896	0.2365	0.1922	0.2491	0.1974	0.2499	0.1982	0.2268	0.1666
H27	0.2455	0.1991	0.2442	0.2015	0.2562	0.2058	0.2568	0.2060	0.2311	0.1735
H28	0.2494	0.2031	0.2468	0.2042	0.2612	0.2121	0.2619	0.2127	0.2396	0.1814
H29	0.2291	0.1834	0.2281	0.1861	0.2384	0.1887	0.2387	0.1882	0.2132	0.1556
H30	0.2485	0.2020	0.2472	0.2048	0.2582	0.2074	0.2586	0.2071	0.2326	0.1743
H31	0.2449	0.1989	0.2436	0.2016	0.2546	0.2043	0.2551	0.2040	0.2295	0.1717
H32	0.2322	0.1860	0.2309	0.1890	0.2419	0.1917	0.2423	0.1913	0.2169	0.1587
H33	0.2290	0.1832	0.2278	0.1858	0.2390	0.1894	0.2393	0.1891	0.2147	0.1572
H34	0.2486	0.2022	0.2473	0.2049	0.2586	0.2078	0.2590	0.2075	0.2334	0.1752
H35	0.2463	0.1999	0.2449	0.2023	0.2562	0.2056	0.2566	0.2053	0.2317	0.1740
H36	0.2503	0.2043	0.2481	0.2058	0.2578	0.2076	0.2580	0.2062	0.2321	0.1727

Tablo 4.14. H_2L bileşiğine ait teorik NPA yük değerleri.

Atom	B3LYP		B-LYP		B3PW91		mPW1PW91		HF	
	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)
C1	0.331870	0.315420	0.329453	0.306202	0.338040	0.347257	0.338947	0.354281	0.285399	0.253266
C2	-0.055321	-0.045906	-0.042225	-0.047478	-0.080475	-0.059440	-0.083223	-0.059409	-0.081302	-0.001008
C3	-0.105170	-0.103402	-0.079221	-0.096117	-0.144018	-0.117494	-0.149574	-0.116256	-0.159217	-0.089927
C4	-0.075136	-0.081516	-0.047804	-0.073511	-0.111669	-0.090488	-0.117460	-0.088408	-0.135812	-0.076154
C5	-0.079041	0.016099	-0.058520	0.020949	-0.107788	0.008923	-0.110829	0.010614	-0.120529	0.020109
C6	-0.149415	-0.270149	-0.131773	-0.265514	-0.184913	-0.297465	-0.192970	-0.300889	-0.169065	-0.182402
C7	0.338135	0.165262	0.304081	0.139006	0.332299	0.177411	0.339253	0.187520	0.481929	0.313474
C8	0.622383	0.427564	0.565871	0.379498	0.647378	0.459323	0.661491	0.468986	0.813528	0.589141
C9	-0.140694	-0.247232	-0.101173	-0.225587	-0.202627	-0.303295	-0.215407	-0.313660	-0.244905	-0.277163
C10	-0.175703	-0.175682	-0.145446	-0.164807	-0.229531	-0.203187	-0.236385	-0.203808	-0.208393	-0.137346
C11	-0.185047	-0.210176	-0.153328	-0.196313	-0.245979	-0.248347	-0.254160	-0.251394	-0.226975	-0.190871
C12	-0.177299	-0.207185	-0.145190	-0.195019	-0.237277	-0.240489	-0.245757	-0.242092	-0.219388	-0.176855
C13	-0.185789	-0.211436	-0.154481	-0.197805	-0.243471	-0.245014	-0.251374	-0.246693	-0.222504	-0.183091
C14	-0.175167	-0.175096	-0.144785	-0.164403	-0.230784	-0.201341	-0.237876	-0.200532	-0.218302	-0.143258
015	-0.525555	-0.393190	-0.495521	-0.357390	-0.528278	-0.401570	-0.534292	-0.405520	-0.613196	-0.504322
S16	-0.258015	-0.227787	-0.246944	-0.218022	-0.242153	-0.219345	-0.242241	-0.223364	-0.317352	-0.298209
N17	-0.558421	-0.390227	-0.495800	-0.350732	-0.595021	-0.422852	-0.608829	-0.430448	-0.756435	-0.514535
N18	-0.624236	-0.452402	-0.575593	-0.411958	-0.658129	-0.493817	-0.671098	-0.504040	-0.740382	-0.540923
CI19	0.001381	-0.062054	-0.009304	-0.061423	0.027124	-0.051365	0.032041	-0.052401	0.024369	-0.091865
H20	0.131867	0.158737	0.106081	0.151332	0.165542	0.178624	0.171833	0.180605	0.185780	0.114357
H21	0.098691	0.102288	0.070994	0.093031	0.134263	0.111169	0.140190	0.109570	0.164654	0.107660
H22	0.096224	0.102841	0.068143	0.093396	0.131887	0.112123	0.137830	0.110554	0.164150	0.109312
H23	0.111753	0.118943	0.084062	0.108814	0.146482	0.128836	0.152136	0.127323	0.180402	0.127852
H24	0.337049	0.287382	0.311465	0.272369	0.358459	0.297905	0.364197	0.299395	0.391659	0.303010
H25	0.293307	0.274172	0.269604	0.261738	0.315991	0.286301	0.319852	0.287486	0.351411	0.293009
H26	0.085951	0.118452	0.063919	0.108511	0.121399	0.141090	0.127665	0.144712	0.132988	0.118641
H27	0.098360	0.115616	0.080512	0.107852	0.130453	0.133561	0.135106	0.134833	0.125664	0.105614
H28	0.123855	0.132459	0.106595	0.123225	0.154134	0.154019	0.158137	0.155562	0.148663	0.125682
H29	0.092559	0.104206	0.077802	0.097861	0.120538	0.122349	0.124411	0.123816	0.109572	0.091157
H30	0.098820	0.117893	0.081157	0.110667	0.130098	0.133992	0.134682	0.134726	0.125160	0.105522
H31	0.094476	0.113902	0.076838	0.106632	0.125902	0.130062	0.130561	0.130935	0.121384	0.102907
H32	0.097884	0.110127	0.082867	0.103830	0.126556	0.128560	0.130500	0.129990	0.115107	0.096141
H33	0.092337	0.104086	0.077466	0.097696	0.121478	0.122848	0.125501	0.124524	0.112035	0.093021
H34	0.098968	0.118038	0.081137	0.110718	0.130936	0.134778	0.135629	0.135805	0.126883	0.107312
H35	0.099475	0.116799	0.081281	0.108776	0.131754	0.134860	0.136417	0.135876	0.130831	0.111670
H36	0.124666	0.133154	0.107781	0.123978	0.151400	0.151518	0.155097	0.151799	0.142189	0.119071

Tablo 4.15. H₂L bileşiğine ait teorik Mulliken yük değerleri.

4.3.4. Titreşim Frekansları

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit molekülünün nokta grubu C1 olup 102 tane normal titreşim modu vardır, bunların hepsi IR ve Raman aktiftir. Titreşim frekanslarının hesaplanmasında optimize edilmiş geometriler kullanılmıştır. *N*-(2-Klorofenil karbamotiyoil)siklohekzankarboksamit bileşiğinin titreşim frekanslar sırasıyla B3LYP, B-LYP, B3PW91, mPW1PW91 ve HF metodları için 6-31G(d,p) ve 6-311G(d,p) temel setleri ile hesaplanmıştır. Deneysel frekans değerleri ile hesaplanan teorik frekans değerleri birbirleri ile karşılaştırılmış ve elde edilen tüm veriler **Tablo 4.16-18**'de karşılaştırmalı olarak verilmiştir. **Tablo 4.16-18** incelendiğinde düzeltme faktörü kullanıldığı takdirde gaz fazında hesaplanan dalga sayılarının deneysel sonuçlara iyi uyum gösterdiği görülmüştür. Hesaplanan korelasyon verileri incelendiğinde B3LYP/6-31G(d,p) metodu ile yapılan hesaplamada elde edilen verilerin deneysel veriler ile en iyi uyumu sağladığı tespit edilmiştir. **Tablo 4.16**'da verilen titreşim bandlarının tanımlanması Gauss View 5.0 [101], VEDA [112] ve SQM 2.0 [113] programları ile yapılmıştır. Tüm hesaplanan ve deneysel spektrumlar birbirleri ile iyi bir uyum içindedir. Teorik ve deneysel titreşim frekanslarının korelasyon hesaplarına ait detaylar ise **Tablo 4.16**-18'in altında verilmiştir. **Şekil 4.11** ve **4.12**'de sırasıyla deneysel ve teorik IR ve RAMAN spektrumları karşılaştırmalı olarak verilmiştir.

Hesaplanan ve gözlenen IR bandları arasındaki fark için hesaplanan RMS değerleri B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B-LYP/6-31G(d,p), B-LYP/6-311G(d,p), B3PW91/6-311G(d,p), mPW1PW91/6-31G(d,p), mPW1PW91/6-311G(d,p), HF/6-31G(d,p) ve HF/6-311G(d,p) metodları için sırasıyla 27.12, 27.83, 28.29, 28.88, 28.46, 28.87, 28.38, 28.78, 41.55 ve 43.29 olarak bulunmuştur. Bu sonuçlar, kullanılan metodlar ile hesaplanmış frekanslar ve gözlenen deneysel değerler arasında iyi bir uyumun olduğunu göstermektedir. Özellikle, B3LYP/6-31G(d,p) metodunun en iyi performansı gösterdiği bulunmuştur. Deneysel ve hesaplanan titreşim modları arasında gözlenen küçük farklar ise molekül içi ve moleküller arası hidrojen bağı oluşumundan kaynaklanmaktadır. Ayrıca, deneysel sonuçların katı faza ait olduğunu ve teorik hesaplamaların ise gaz fazına ait olduğunu unutmamak gerekir [77].

Ayrıca PAVF 1.0 programı kullanarak IR spektrum analizi için önemli olan uygun ölçekleme faktörleri hesaplanmıştır [114]. Elde edilen ölçekleme faktör değerleri B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B-LYP/6-31G(d,p), B-LYP/6-311G(d,p), B3PW91/6-31G(d,p), mPW1PW91/6-311G(d,p), HF/6-31G(d,p) ve HF/6-311G(d,p) metodları için sırasıyla 0.9573, 0.9622, 0.9872, 0.9914, 0.9545, 0.9595, 0.9481, 0.9533, 0.8983 ve 0.9041 olarak belirlenmiştir. Değerler literatürler tarafından tavsiye edilen (0.9614, 0.9679, 1.0072, 0.9934, 0.9573, 0.9631, 0.9500, 0.9567, 0.8992, 0.9051) ölçekleme faktör değerlerine çok yakın olduğu görülmektedir [77,115]. Sonuç olarak, bileşiğin bilinmeyen türevlerinin gelecekteki IR spektrum analizleri için, B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), mPW1PW91 /6-31G(d,p), B3PW91/6-311G(d,p), B3PW91/6-311G(d,p), mPW1PW91 /6-31G(d,p), mPW1PW91 /6-311G(d,p), mPW1PW91 /6-311G(d,p), mPW1PW91 /6-311G(d,p), ve HF/6-311G(d,p) metodları için sırasıyla 0.9573, 0.9545, 0.9595, 0.9481, 0.9573, 0.9622, 0.9872, 0.9914, 0.9545, 0.9595, 0.9481, 0.9573, 0.9622, 0.9872, 0.9914, 0.9545, 0.9595, 0.9481, 0.9573, 0.9622, 0.9872, 0.9914, 0.9545, 0.9595, 0.9481, 0.9533, 0.8983 ve 0.9041 ölçeklendirme faktörleri kullanılması tavsiye edilebilir.

Şekil 4.11. H₂L bileşiğinin deneysel (a) ve teorik (b) IR spektrumları.

Şekil 4.12. H₂L bileşiğinin deneysel (a) ve teorik (b) RAMAN spektrumları.

٩	Simetri	۳	RAMAN	B3LYP /	6-31G(d,p)				B3LYP / 6	-311G(d,p)				Titreşim modu *
		(cm ⁻¹)	(cm ⁻¹)	B3LYP (cm ^{.1})	B3LYPxSF (cm ⁻¹)	B3LYPxCSF (cm ⁻¹)	IR intensitesi (km/mol)	RAMAN aktivitesi A4/amu	B3LYP (cm ⁻¹)	B3LYPxSF (cm ⁻¹)	B3LYPxCSF (cm ⁻¹)	IR intensitesi (km/mol)	RAMAN aktivitesi A4/amu	- TED, (%)
-	A	3225	3216	3623	3483	3468	44.55	74.15	3613	3497	3476	44.63	80.83	vN ₁₇ H, 100
2	A	3194	3193	3313	3185	3172	365.41	215.91	3314	3207	3188	355.52	225.4	vN ₁₈ H, 99
с	A	3114	3106	3254	3129	3115	2.47	52.44	3236	3132	3114	2.07	53.46	vCH _{arom} , 98, sym
4	A	3096	3096	3224	3099	3086	6.97	192.77	3206	3103	3084	6.17	204.22	vCH _{aron} , 97, sym
5	A	3073	3074	3209	3086	3072	15.28	169.77	3192	3089	3071	14.08	179.26	vCH _{arom} , 99, asym
9	A	3073	3074	3195	3072	3058	2.07	67.97	3177	3075	3057	1.95	71.31	vCH _{arom} , 95, asym
7	A	2987	2978	3096	2976	2964	59.74	17.25	3075	2977	2959	68.29	16.56	vCH _{ch} , 74, asym
œ	A	2987	2978	3090	2971	2958	5.87	52.79	3069	2971	2953	4.45	61.42	vCH _{ch} , 92, asym
6	A	2937	2940	3080	2961	2948	24.68	98.95	3059	2961	2943	21.19	123.95	vCH _{ch} , 77, asym
10	A	2937	2940	3077	2958	2945	51.56	284.12	3057	2959	2942	58.85	336.96	vCH _{ch} , 92, asym
1	A	2937	2940	3075	2957	2944	60.62	64.13	3055	2957	2940	69.31	65.77	vCH _{ch} , 80, asym
12	A	2925	2927	3046	2928	2916	11.76	92.8	3029	2932	2914	14.37	97.14	vCH _{ch} , 91, sym
13	A	2925	2927	3043	2926	2913	24.1	39.64	3027	2930	2912	22.1	45.04	vCH _{ch} , 91, sym
14	A	2915	2917	3030	2913	2901	34.95	19.91	3013	2917	2899	38.32	20.86	vCH _{ch} , 71, sym
15	A	2900	2904	3024	2907	2895	28.81	216.7	3009	2912	2895	15.52	131.34	vCH _{ch} , 93, sym
16	A	2900	2904	3022	2906	2893	14.74	23.29	3005	2908	2891	13.42	23.34	vCH _{ch} , 84, sym
17	A	2900	2904	3020	2903	2891	11.07	12.09	3003	2906	2889	19.5	141.29	vCH _{ch} , 88, sym
18	A	1686	1688	1758	1690	1683	106.84	48.34	1744	1688	1678	117.86	48.32	vCO, 76
19	A	1593	1591	1648	1584	1577	21.18	257.99	1635	1583	1573	127.76	334.07	vCC _{arom} , 41
20	A	1585	1585	1641	1578	1571	295.87	88.23	1634	1581	1572	255.52	35.41	vCC _{arom} , 37 + 5 _{Bend} CN ₁₈ H, 29
21	A	1530	1533	1604	1542	1535	397.03	112.57	1594	1543	1534	294.28	88.25	vCC _{arom} , 17 + δ _{Bend} CN ₁₈ H, 35
22	٨	1492	1483	1548	1488	1481	462.74	30.15	1540	1490	1481	482.12	28.78	v(C=S), 23 + v(CS)N, 17 + δ _{Bend} CN ₁₇ H, 48
23	A	1466	1469	1522	1463	1457	3.56	3.55	1510	1461	1453	4.4	3.85	δ _{scis} HCH _{ch} , 93
24	A	1459	1462	1514	1455	1449	43.97	33.98	1505	1456	1448	45.71	40.72	δ _{Bend} CCH _{arom} , 50
25	A	1442	1442	1508	1449	1443	10.38	3.3	1497	1449	1440	13.02	2	δ _{scis} HCH _{ch} , 90

Tablo 4.16. H₂L bilesiğinin hesaplanmıs (B3LYP) dalga sayılar

Birdal ARSLAN, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2017

No Sim	etri IR	RAMAN	B3LYP /	6-31G(d,p)				B3LYP / 6-	311G(d,p)				Titreşim modu *
	(cu	n ⁻¹) (cm ⁻¹)	B3LYP (cm ⁻¹)	B3LYP _x SF (cm ⁻¹)	B3LYPxCSF (cm ⁻¹)	IR intensitesi (km/mol)	RAMAN aktivitesi A4/amu	B3LYP (cm ^{.1})	B3LYPxSF (cm ^{.1})	B3LYPxCSF (cm ^{.1})	IR intensitesi (km/mol)	RAMAN aktivitesi A4/amu	TED, (%)
26 A	142	42 1442	1503	1445	1439	2.92	0.45	1493	1445	1436	5.24	1.23	S _{scis} HCH _{ch} , 90
27 A	144	42 1442	1500	1442	1436	4.95	26.06	1489	1442	1433	6.66	18.41	SsoisHCH _{ch} , 74
28 A	140	32 1437	1497	1439	1433	0.13	28.56	1487	1439	1431	0.61	19.28	ðscisHCHch, 87
29 A	142	21 1432	1483	1426	1420	38.77	21.24	1474	1427	1419	41.31	21.43	vCC _{arom} , 12 + 5CCH _{arom} , 43
30 A	14{	52 1453	1416	1361	1356	127.5	31.93	1406	1361	1353	104.8	20.53	δ _{Wag} CCH _{26ch} , 37 + ν (C=S), 12
31 A	13:	35 1331	1397	1343	1338	3.91	2.66	1389	1344	1336	9.51	1.37	δ _{Wag} CCH _{ch} , 66
32 A	13:	35 1331	1394	1340	1334	0.76	3.06	1383	1339	1331	0.46	1.83	δ _{Wag} CCH _{ch} , 58
33 A	13,	28 1325	1382	1329	1323	312.56	18.13	1370	1326	1318	4.27	0.65	v(CS)N, 20
34 A	13,	28 1325	1378	1325	1319	2.03	0.15	1370	1326	1318	292.01	16.1	δ _{Wag} CCH _{ch} , 38
35 A	13,	12 1313	1365	1312	1307	2.56	10.15	1358	1315	1307	7.2	8.36	δ _{Wag} CH _{ch} , 44
36 A	13(1301	1355	1302	1297	77.4	43.83	1347	1304	1296	139.51	47.38	v(CS)N, 12 + 5 _{Wag} CCH _{26ch} , 14
37 A	128	37 1294	1340	1288	1282	8.78	19.55	1334	1292	1284	0.24	10.49	vCC _{atom} , 62
38 A	128	37 1294	1338	1287	1281	0.01	15.26	1326	1283	1276	1.62	73.19	δ _{Twist} CCH _{ch} , 58
39 A	12(39 1269	1321	1270	1264	4.77	74.35	1314	1272	1264	3.99	40.36	vCC _{aron} , 10 + vC _{arom} N, 16 + δCCH _{aron} , 29
40 A	12	46 1246	1305	1254	1249	1.69	17.22	1301	1260	1252	1.5	10.12	δTwistCCH _{ch} , 54
41 A	12	46 1246	1293	1243	1238	1.43	3.6	1289	1248	1240	0.77	1.98	δ _{Twist} CCH _{ch} , 29 + δ _{Wag} CH _{ch} , 24
42 A	12:	35 1233	1281	1231	1226	14.56	2.85	1276	1235	1228	16.98	1.53	δ _{Twist} CCH _{ch} , 19 + δ _{Wag} CH _{ch} , 10
43 A	12	18 1218	1268	1219	1214	26.65	54.83	1261	1221	1213	32.5	59.88	vCaromN, 15 + 5CCHarom, 22
44 A	117	72 1169	1205	1159	1154	1.44	2.82	1202	1164	1157	1.29	2.32	$\delta_{Twist}CCH_{ch}$, 11 + τCH_{ch} , 17
45 A	11	55 1158	1192	1146	1141	28.55	23.36	1188	1150	1143	6.16	18.85	SCCH _{arom} , 67
46 A	11	38 1130	1189	1143	1138	133.08	39.28	1180	1143	1136	171.86	46.81	v(CO)N, 17 + 5CN17H, 12 + 5RockCCch, 10
47 A	112	22 1118	1173	1127	1122	134.77	12.15	1165	1128	1121	165.54	12.17	v(CS)N, 30
48 A	11(JG 1103	1156	1111	1107	33.12	14.17	1150	1113	1107	56.71	19.78	vCC _{aron} , 22 + δCCH _{aron} , 31
49 A	107	75 1076	1138	1094	1089	13.33	7.51	1130	1094	1087	17.85	9.19	$v(CS)N$, 19 + $v(CO)C_{ch}$, 10
50 A	105	51 1049	1097	1055	1050	0.67	0.72	1097	1062	1055	0.32	1	δ _{Twist} CCH _{ch} , 32
51 A	10	46 1046	1095	1053	1049	0.14	0.54	1090	1055	1049	0.28	0.21	vCCqi, 57
52 A	100	35 1035	1077	1036	1031	4.19	13.26	1073	1039	1033	5.58	13.16	vCCaron, 30 + δCCCaron, 22 + δCCHaron, 13

		9			1					1 1 1 1 1 1				
°N N	Simetri	R		B3LYP //	5-31G(d,p)				B3LYP / 6	-311G(d,p)				litreşim modu *
		(ciii.)	(- III)	B3LYP	B3LYPxSF	B3LYPxCSF	IR intensitesi	RAMAN aktivitesi	ВЗЦҮР	B3LYPxSF	B3LYPxCSF	IR intensitesi	RAMAN aktivitesi	- IEU, (%)
				(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	A⁴/amu	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	A4/amu	
53	A	1026	1028	1058	1017	1013	31.02	33.2	1055	1021	1015	1.95	9.92	vCCarom, 26 + vCCl, 24 + δCCCarom, 20
54	A	1026	1028	1057	1016	1012	0.57	9.94	1055	1021	1015	30.64	42.58	vCC _{ch} , 33 + 5 _{Wag} CH _{ch} , 10
55	A	1005	1000	1047	1006	1002	2.77	1.04	1043	1010	1004	2.99	0.57	v(CO)C _{ch} , 10 + δCCC _{ch} , 24
56	A	1005	1000	1042	1001	265	6.79	8.88	1039	1006	1000	7.05	6.2	vCC _{d1} , 35
57	٨	955	956	987	949	945	0.71	0.6	993	961	955	0.44	1.06	үСН _{Ph} , 79
58	٨	939	939	975	937	933	18.27	2.2	974	943	937	15.02	2.25	5CNC, 11
59	٨	926	925	951	914	910	2.82	1.48	956	926	920	2.25	0.54	үСН _{Ph} , 80
60	٨	919	919	940	903	006	1.43	0.4	937	907	901	1.1	0.24	vCC _{ch} , 22
61	٨	893	891	935	899	895	24.55	4.45	933	903	897	28.34	5.53	v(CO)C _{ch} , 15 + vCC _{ch} , 45 + δCCC _{ch} , 15
62	A	884	886	908	873	869	1.2	0.25	906	876	871	1.62	0.21	vCC _{ch} , 26
63	A	858	859	898	863	860	1.13	7.29	895	867	861	0.87	6.31	δ _{Rock} CH _{ch} , 11
64	A	843	843	870	837	833	1.55	4.16	870	842	837	2.63	1.61	γCH _{Ph} , 76
65	A	817	818	857	824	820	2.31	0.86	854	826	821	3.36	0.73	vCC _{ch} , 13 + δCCC _{ch} , 13
99	A	796	802	822	791	787	49.99	30.56	821	794	200	46.87	34.38	TNCNH, 63
67	٨	770	770	811	780	776	9.95	15.56	808	782	111	6.99	18.29	vCC _{ch} , 26 + πNCNH, 16 + δRing _{EreathingCh} , 20
68	A	754	754	800	769	766	0.37	1.43	797	771	767	0.48	1.01	δ _{Rock} CH _{ch} , 53
69	A	750	751	677	749	746	8.12	5.05	111	752	748	9.91	4.9	γCH _{Ph} , 69 + δ _{Reck} CH _{ch} , 21
70	A	736	737	769	740	737	37.21	3.21	767	743	738	42.05	1.91	γCH _{Ph} , 69 + δ _{Reck} CH _{ch} , 18
71	A	723	724	748	719	716	36.43	11.2	747	723	719	40.16	10.13	vC=S, 29 + δNCO, 18
72	A	710	209	734	705	702	7.49	1.52	736	713	708	5.68	2.14	τNCNH, 10 + γC ₈ , 52
73	A	697	669	726	698	695	13.77	1.3	729	706	702	17.59	1.06	SCCCarom, 11 + vCCI, 11
74	A	673	671	700	673	671	5.64	10.93	703	681	677	7.98	14.2	vCCI, 22 + 5CCCarom, 14 + TCCarom, 21
75	A	644	642	671	645	642	59.75	0.74	668	647	643	51.88	0.8	TH25N17C8C9, 82
76	A	633	636	654	629	626	2.08	5.34	655	634	630	2.65	6.83	SCCCarom, 51
17	A	601	602	617	593	591	4.91	9.95	615	595	592	8.87	9.45	γC ₇ , 80
78	A	539	537	549	528	526	5.62	2.29	550	532	529	4.8	2.2	τCC _{arom} , 10 + γC ₁ , 18
79	A	534	532	542	521	519	5.98	1.28	542	525	522	6.21	1.33	δN(CO)C _{ch} , 14 + γC ₁ , 12

Ŋ	Simetri	a	RAMAN	B31 YP //	3-31G(d n)				R31 YP / 6-	311G(d n)				Titresim modu *
2		(cm ⁻¹)	(cm ⁻¹)									: : : :		TED, (%)
				B3LYP (cm ⁻¹)	B3LYPXSF (cm ⁻¹)	B3LYPXCSF (cm ⁻¹)	IK intensitesi (km/mol)	KAMAN aktivitesi A4/amu	В3LYP (cm ⁻¹)	B3LYPXSF (cm ⁻¹)	B3LYPXCSF (cm ⁻¹)	IK intensitesi (km/mol)	KAMAN aktivitesi A4/amu	
80	A		507	512	492	490	2.08	0.38	511	495	492	2.39	0.39	δ _{Rock} CCC _{ch} , 31
81	A		442	455	437	436	3.71	5.4	456	441	438	7.56	6.13	γCH _{Ph} , 10 + τCC _{arom} , 30 + γC ₆ , 29
82	A		431	448	431	429	5.57	1.69	447	432	430	5.13	1.61	δNCC _{Ph} , 13 + δCCC _{ch} , 19
83	A		428	444	427	425	0.54	0.42	444	430	427	0.98	0.53	SCCC _{ch} , 49
84	A		424	437	420	418	2.17	3.56	436	422	419	2.3	3.62	vCCl, 32 + 5CCCarom, 12 + 5CCCcth, 14
85	A		373	381	366	364	17.78	3.19	379	367	365	16.11	3.27	ðNCO, 10 + ðCNC, 12
86	A		343	365	351	349	1.26	1.79	364	352	350	1.58	1.41	δNCO, 20 + δCNC, 12 + δN(CS)N, 10 + δSCN 12 + δCCCL 16
87	A		338	348	334	333	1.19	3.32	346	335	333	0.94	3.69	δCCC_{ch} , 11 + τCC_{ch} , 19
88	A		307	304	293	291	2.91	3.35	303	293	291	3.15	2.87	δCCCI, 12 + τCC _{aron} , 10 + τC ₇ N ₁₈ , 15
89	A		294	297	285	284	7.61	2.63	296	286	285	7.03	2.79	δN(CS)N, 14 + τCC _{ch} , 19
06	A		229	236	227	226	0.27	0.44	234	227	225	0.28	0.39	тСС _{ch} , 29
91	A		223	228	219	219	0.29	0.83	227	220	219	0.18	0.65	TCC _{ch} , 38
92	A		197	211	203	202	0.42	1.43	210	203	202	0.42	1.32	δC ₆ CC, 15 + δCCCI, 21
93	A		182	194	186	186	6.72	1.23	193	187	186	5.52	0.86	δN(CO)C _{ch} , 16 + δSCN, 18
94	A	,	173	189	182	181	1.34	1.76	188	182	180	1.74	1.61	γC ₆ , 29
95	٨		149	152	146	146	3.31	2.43	152	147	146	3.42	2.05	δCNC, 10 + δN(CS)N, 10 + τCC _{aron} , 22 + outCa. 10
96	A		117	122	117	117	5.82	0.73	120	117	116	5.7	0.91	TC7N17, 34 + TC7N18, 11
97	A	,	,	101	97	67	0.94	0.82	101	98	97	0.98	0.77	δNCC_{Ph} , 15 + τCC_{ch} , 14
98	A			81	78	78	0.71	4.87	80	17	77	0.88	5.2	TCCarom, 11 + τC7N17, 34 + τC7N18, 11 +
66	A	ī	ı	49	47	47	0.32	1.92	49	47	47	0.34	1.91	0.0cm, 13 6CNCaron, 13 + 6CNC, 13 + 6N(CS)N, 11 + 6N(CO)Can, 16 + TCCan, 20
100	۷			36	35	35	0.43	1.99	37	35	35	0.53	2.13	TC_7N_{18} , 25 + TC_8N_{17} , 52
101	A	,	,	27	25	25	0.04	2.81	26	25	25	0.03	3.03	τC ₁ N ₁₈ , 26 + τC ₈ C ₉ , 52
102	A			18	17	17	0.87	3.99	16	16	16	0.93	4.46	TC ₁ N ₁₈ , 48 + τC ₇ N ₁₈ , 11 + τC ₈ C ₉ , 21
<u>۔</u>				0.9993	0.9993	0.9993			0.9993	0.9993	0.9993			
Ortala	ıma mutlak	ς yüzde hέ	ata	4.0624	0.7032	0.8079	ı	ı	3.6685	0.7171	0.7521			

No Simetri IR RAMAN	I B3LYP	(6-31G(d,p)				B3LYP / 6.	311G(d,p)				Titreşim modu *
(cm ⁻¹) (cm ⁻¹)	B3LYP	B3LYPxSF	B3LYPxCSF	IR intensitesi	RAMAN aktivitesi	ВЗLYP	B3LYPxSF	B3LYPxCSF	IR intensitesi	RAMAN aktivitesi	TED, (%)
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	A⁴/amu	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	A₄/amu	
Ortalama mutlak hata	64.1602	10.7553	11.9644	,	,	57.0705	11.3648	11.672	•		
Karekök ortalama (RMSov)	72.3548	27.8807	27.1222			65.3413	29.2455	27.8398			
Karekök ortalama (RMSmol)	82.6175	31.8353	30.9692			74.6093	33.3937	31.7886			
Ölçeklendirme faktörü (Scaling Fact	.) 1.0000	0.9614	0.9573			1.0000	0.9679	0.9622	•		
Maksimum fark frekans no	. 	-	.			÷	F	÷			
Maksimum fark (cm ⁻¹)	397.562	257.7311	242.8317	,		387.7167	271.7485	251.0361	'		
* v, Gerilme; δ, düzleı	n içi bü.	külme; γ,	düzlem dı	ışı bükülm	e; τ, torsiyon	; SF: Ölç	eklendir	me faktör	ü (Scaling	factor), CSF:]	Hesaplanan ölçeklendirme
faktörü (Calculated So	aling fa	ctor).									

017	
esi, 2	
niversit	
Ü	
Mersin	
ü,	
Institüs	
iΕ	
er	
m	
Bili	
. Fen	
Tezi	
Lisans	
ek]	
ükse	
Y	
N,	
LA	
RS	
A	
dal	
Bir(

)					•							
٩	Simetri	R S	RAMAN	B-LYP/ 6-3	11G(d,p)		В-LYP / 6-3	11G(d,p)		B3PW91/ 6-:	31G(d,p)		B3PW91 / 6	-311G(d,p)	
		(cm ⁻¹)	(cm ⁻¹)	B-LYP	B-LYPxSF	B-LYPxCSF	B-LYP (1)	B-LYPxSF	B-LYPxCSF	B3PW91	B3PW91xSF	B3PW91xCSF	B3PW91	B3PW91xSF	B3PW91xCSF
				(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
-	A	3225	3216	3501	3527	3457	3496	3473	3466	3640	3485	3474	3627	3493	3480
2	A	3194	3193	3167	3190	3127	3165	3144	3138	3291	3151	3142	3284	3162	3151
с	A	3114	3106	3150	3173	3110	3153	3132	3126	3257	3118	3109	3239	3120	3108
4	A	3096	3096	3142	3165	3102	3127	3106	3100	3234	3096	3087	3217	3098	3086
5	A	3073	3074	3126	3149	3086	3112	3091	3085	3221	3084	3075	3203	3085	3074
9	A	3073	3074	3111	3134	3072	3097	3076	3070	3207	3070	3061	3189	3071	3060
7	A	2987	2978	3014	3035	2975	2997	2977	2971	3112	2979	2971	3091	2977	2966
œ	A	2987	2978	3007	3029	2969	2990	2970	2964	3106	2973	2965	3084	2970	2959
6	A	2937	2940	2997	3019	2959	2980	2960	2954	3098	2965	2957	3077	2963	2952
10	A	2937	2940	2994	3016	2956	2978	2958	2952	3094	2961	2953	3074	2961	2950
1	A	2937	2940	2992	3014	2954	2976	2956	2950	3093	2961	2952	3073	2959	2948
12	A	2925	2927	2967	2988	2929	2954	2934	2928	3058	2928	2919	3042	2929	2919
13	A	2925	2927	2964	2985	2926	2951	2932	2926	3054	2923	2915	3037	2925	2914
14	A	2915	2917	2950	2972	2913	2938	2918	2912	3042	2912	2903	3025	2914	2903
15	A	2900	2904	2943	2964	2905	2929	2909	2904	3036	2906	2897	3019	2907	2897
16	A	2900	2904	2942	2963	2904	2928	2909	2903	3035	2905	2897	3017	2906	2895
17	A	2900	2904	2936	2957	2898	2925	2906	2900	3031	2902	2893	3016	2904	2894
18	A	1686	1688	1673	1686	1652	1660	1649	1645	1775	1699	1694	1761	1696	1690
19	A	1593	1591	1581	1592	1561	1569	1558	1555	1661	1590	1585	1650	1589	1583
20	A	1585	1585	1573	1585	1553	1567	1556	1553	1649	1578	1574	1641	1580	1574
21	A	1530	1533	1541	1552	1522	1531	1521	1518	1610	1541	1537	1601	1541	1536
22	A	1492	1483	1484	1495	1465	1477	1467	1464	1553	1487	1482	1545	1488	1482
23	A	1466	1469	1483	1493	1464	1472	1462	1459	1517	1452	1448	1507	1452	1446
24	A	1459	1462	1469	1480	1450	1460	1450	1448	1515	1450	1446	1500	1445	1440
25	A	1442	1442	1467	1477	1448	1457	1447	1444	1501	1437	1433	1487	1432	1427
26	A	1442	1442	1463	1473	1444	1454	1444	1441	1496	1432	1428	1483	1428	1423

Tablo 4.17. H_2L bileşiğinin hesaplanmış (B-LYP, B3PW91) dalga sayıları.

٩	Simetri	R	RAMAN	В-LYP/ 6-3	1G(d,p)		В-ГҮР / 6-	311G(d,p)		B3PW91/ 6-	31G(d,p)		B3PW91 / 6	.311G(d,p)	
		(cm ⁻¹)	(cm ⁻¹)	B-LYP (cm ⁻¹)	B-LYPxSF (cm ^{.1})	B-LYP _x CSF (cm ⁻¹)	B-LYP (cm ⁻¹)	B-LYPxSF (cm ^{.1})	B-LYPxCSF (cm ⁻¹)	B3PW91 (cm ⁻¹)	B3PW91xSF (cm⁻¹)	B3PW91xCSF (cm ⁻¹)	B3PW91 (cm ⁻¹)	B3PW91xSF (cm ⁻¹)	B3PW91xCSF (cm ⁻¹)
27	A	1442	1442	1461	1471	1442	1452	1442	1439	1491	1428	1423	1479	1425	1420
28	A	1432	1437	1459	1470	1441	1451	1442	1439	1490	1426	1422	1477	1423	1418
29	٨	1421	1432	1434	1445	1416	1426	1416	1413	1485	1422	1418	1477	1422	1417
30	٨	1452	1453	1363	1372	1345	1354	1345	1343	1418	1357	1353	1408	1356	1351
31	٨	1335	1331	1355	1364	1337	1346	1337	1334	1393	1334	1330	1385	1334	1329
32	A	1335	1331	1350	1359	1332	1340	1331	1328	1391	1332	1328	1380	1329	1324
33	A	1328	1325	1336	1346	1319	1330	1321	1318	1389	1329	1325	1378	1327	1322
34	A	1328	1325	1330	1340	1313	1321	1312	1310	1373	1315	1311	1366	1316	1311
35	A	1312	1313	1322	1331	1305	1315	1306	1304	1366	1308	1304	1355	1305	1301
36	A	1302	1301	1316	1326	1300	1299	1291	1288	1359	1301	1297	1350	1300	1296
37	A	1287	1294	1301	1310	1284	1298	1289	1287	1347	1290	1286	1340	1291	1286
38	A	1287	1294	1300	1309	1283	1288	1280	1277	1331	1274	1270	1325	1276	1272
39	A	1269	1269	1279	1289	1263	1277	1268	1266	1323	1267	1263	1319	1270	1265
40	A	1246	1246	1265	1274	1249	1262	1253	1251	1304	1248	1245	1300	1252	1248
41	A	1246	1246	1258	1267	1242	1254	1246	1243	1288	1233	1229	1283	1235	1231
42	A	1235	1233	1242	1251	1226	1239	1230	1228	1279	1224	1221	1274	1227	1222
43	A	1218	1218	1225	1233	1209	1217	1209	1207	1272	1217	1214	1266	1219	1215
44	A	1172	1169	1166	1175	1152	1164	1156	1154	1209	1157	1154	1205	1160	1156
45	A	1155	1158	1162	1170	1147	1160	1152	1150	1191	1140	1136	1185	1141	1137
46	A	1138	1130	1144	1153	1130	1137	1129	1127	1188	1137	1134	1182	1138	1134
47	A	1122	1118	1127	1135	1113	1122	1114	1112	1181	1130	1127	1173	1130	1126
48	A	1106	1103	1115	1123	1101	1108	1100	1098	1160	1111	1108	1155	1113	1109
49	A	1075	1076	1087	1095	1073	1079	1072	1069	1141	1093	1089	1135	1093	1089
50	A	1051	1049	1067	1075	1053	1069	1062	1059	1111	1064	1061	1107	1067	1063
51	A	1046	1046	1050	1058	1037	1044	1038	1035	1095	1049	1045	1094	1054	1050
52	A	1035	1035	1043	1050	1030	1039	1032	1030	1081	1034	1031	1077	1037	1033
53	A	1026	1028	1017	1025	1004	1014	1008	1006	1064	1019	1016	1061	1022	1018

٩	Simetri	R	RAMAN	B-LYP/6-3	31G(d,p)		В-LYP / 6-;	311G(d,p)		B3PW91/ 6-:	31G(d,p)		B3PW91 / 6	-311G(d,p)	
		(cm ⁻¹)	(cm ⁻¹)	B-LYP (cm ⁻¹)	B-LYPxSF (cm⁴)	B-LYPxCSF (cm ⁻¹)	B-LYP (cm ⁻¹)	B-LYPxSF (cm ^{.1})	B-LYPxCSF (cm ⁻¹)	B3PW91 (cm ⁻¹)	B3PW91xSF (cm ⁻¹)	B3PW91xCSF (cm ⁻¹)	B3PW91 (cm ⁻¹)	B3PW91xSF (cm ⁻¹)	B3PW91xCSF (cm ⁻¹)
54	A	1026	1028	1016	1023	1003	1014	1007	1005	1063	1018	1015	1061	1022	1018
55	A	1005	1000	1011	1019	666	1007	1001	666	1051	1007	1004	1049	1011	1007
56	A	1005	1000	1005	1012	992	1002	995	<u>9</u> 93	1049	1004	1002	1046	1008	1004
57	A	955	956	946	953	934	950	944	942	988	945	943	994	957	954
58	A	939	939	940	947	928	939	933	931	977	936	933	977	940	937
59	A	926	925	911	917	868	915	606	206	951	910	907	957	922	918
60	A	919	919	606	916	898	908	902	901	945	904	902	942	907	904
61	A	893	891	899	905	887	896	890	888	941	901	898	939	904	901
62	A	884	886	879	886	868	877	871	869	910	871	869	905	871	868
63	A	858	859	870	877	859	868	862	860	006	862	859	898	865	862
64	A	843	843	836	842	825	835	829	827	868	831	828	871	838	835
65	A	817	818	828	834	817	824	819	817	862	825	823	859	828	824
66	A	796	802	805	811	795	804	799	797	834	798	796	836	805	802
67	A	0 <i>LL</i>	770	783	789	773	780	774	773	818	783	781	815	785	782
68	A	754	754	778	784	769	775	770	769	799	765	763	794	765	762
69	A	750	751	750	755	740	749	744	742	783	750	748	781	752	749
20	A	736	737	742	748	733	738	734	732	768	736	733	768	740	737
71	A	723	724	719	724	710	718	713	712	753	721	719	753	725	723
72	A	710	602	705	710	696	707	702	701	738	706	704	742	714	712
73	A	697	669	696	701	687	700	969	694	729	698	696	732	705	702
74	A	673	671	677	681	668	679	675	673	705	675	673	711	685	682
75	A	644	642	643	648	635	643	639	638	675	647	645	673	648	646
76	A	633	636	634	638	626	635	630	629	653	626	624	654	630	628
17	A	601	602	588	592	581	586	582	581	621	594	592	618	595	593
78	A	539	537	531	535	524	531	527	526	549	526	524	550	530	528
79	A	534	532	526	530	519	526	522	521	542	519	517	542	522	520
80	A	,	507	498	502	492	498	495	494	510	488	486	507	488	486

No Simetri	R	RAMAN	B-LYP/ 6-31	1G(d,p)		B-LYP / 6-3	:11G(d,p)		B3PW91/ 6-:	31G(d,p)		B3PW91/6	-311G(d,p)	
	(cm ⁻¹)	(cm ⁻¹)	B-LYP (cm ⁻¹)	B-LYPxSF (cm ^{.1})	B-LYPxCSF (cm ⁻¹)	B-LYP (cm ⁻¹)	B-LYPxSF (cm ⁻¹)	B-LYP _X CSF (cm ⁻¹)	B3PW91 (cm ⁻¹)	B3PW91xSF (cm ^{.1})	B3PW91xCSF (cm ⁻¹)	B3PW91 (cm ⁻¹)	B3PW91xSF (cm ⁻¹)	B3PW91xCSF (cm ⁻¹)
81 A		442	438	442	433	439	436	435	454	435	434	455	438	437
82 A		431	434	438	429	435	432	431	447	428	426	444	428	426
83 A		428	432	435	426	431	428	427	440	422	420	440	423	422
84 A		424	418	421	413	417	414	414	437	419	418	437	420	419
85 A		373	367	370	363	366	363	363	382	366	365	380	366	364
86 A		343	351	354	347	350	348	347	366	350	349	364	351	349
87 A		338	336	339	332	335	333	332	348	334	333	347	334	333
88 A		307	295	297	291	293	291	290	304	291	291	304	293	291
89 A		294	287	289	284	286	284	284	295	283	282	296	285	284
90 A		229	231	232	228	229	227	227	238	228	227	235	226	226
91 A		223	221	223	218	220	219	219	230	220	219	228	219	219
92 A		197	205	207	203	204	203	202	208	199	198	209	202	201
93 A		182	189	190	186	187	186	186	192	183	183	191	184	184
94 A		173	180	181	177	179	178	178	189	181	181	187	180	179
95 A		149	149	150	147	148	147	146	152	146	145	154	148	148
96 A		117	116	117	115	115	114	114	121	116	115	119	114	114
97 A			102	103	101	101	100	100	102	98	97	105	102	101
98 A			80	81	79	79	78	78	81	77	77	80	77	77
99 A			49	49	48	49	48	48	50	48	48	52	50	49
100 A			36	37	36	37	37	37	30	29	29	29	28	28
101 A			25	25	25	27	26	26	16	16	16	16	15	15
102 A		ı	15	15	15	15	15	15	11	10	10	11	10	10
-			0.9993	0.9993	0.9993	0.9993	0.9993	0.9993	0.9993	0.9993	0.9993	0.9992	0.9992	0.9992
Ortalama mutlak	t yüzde hatε	-	1.1791	1.574	1.0779	0.9414	0.9611	1.0307	4.3285	0.8101	0.9161	3.9442	0.8317	0.8886
Ortalama mutlak	: hata		20.6522	27.8038	14.8509	16.2439	14.4204	14.753	68.2767	12.2425	13.6611	61.0994	12.5428	13.5855
Karekök ortalam	a (RMSov)		34.3559	41.5688	28.2918	31.6924	29.0383	28.8778	77.0923	28.8003	28.4633	69.6632	29.4042	28.8685
Karekök ortalam	a (RMSmol	(39.2289	47.4649	32.3047	36.1877	33.1571	32.9739	88.027	32.8853	32.5005	79.5442	33.5749	32.9632

2017	
rsitesi	
ı Ünive	
Mersin	
Enstitüsü,	
Bilimleri l	
i, Fen	
s Tez	
Lisan	
Yüksek	
ARSLAN,	
Birdal <i>i</i>	

No Simetri IR	RAMAN	B-LYP/6-31	1G(d,p)		B-LYP / 6-31	11G(d,p)		B3PW91/ 6-	31G(d,p)		B3PW91/6-	311G(d,p)	
(cm ⁻¹)	(cm ⁻¹)	В-LYP	B-LYPxSF	B-LYP _x CSF	В-LYP	B-LYP _x SF	B-LYP _x CSF	B3PW91	B3PW91xSF	B3PW91xCSF	B3PW91	B3PW91xSF	B3PW91xCSF
		(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
Ölçeklendirme faktörü (Scal	ling Fact.)	1.0000	1.0072	0.9872	1.0000	0.9934	0.9914	1.0000	0.9573	0.9545	1.0000	0.9631	0.9595
Maksimum fark frekans no			.	-	-	F	-	-	-	.		-	-
Maksimum fark (cm ⁻¹)		276.3869	301.5969	231.5725	270.9858	247.9123	240.884	415.0573	259.6269	249.4747	401.5365	267.7173	254.7852

* SF: Ölçeklendirme faktörü (Scaling factor), CSF: Hesaplanan ölçeklendirme faktörü (Calculated Scaling factor).

Tablo 4.18. H₂L bileşiğinin hesaplanmış (mPW1PW91, HF) dalga sayıları.

017	
2	
Si,	
te	
rsi	
ve	
Ľ.	
Ü	
ü.	
Suc	
ž	
ü	
üs	
ti ti	
nst	
Ξ	
ŝ	
П	
lir	
Bi	
en	
щ	
Ξ,	
Te	
]S_	
ar	
Lis	
Ł	
se	
üķ	
Σ	
Ź	
LA	
RS	
Al	
lal	
ird	
m	

٩	Simetri	R	RAMAN	mPW1PW91/	6-31G(d,p)		mPW1PW91/	6-311G(d,p)		HF/ 6-31G(d	(d,		HF / 6-311G	(d,p)	
		(cm ⁻¹)	(cm ⁻¹)	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	¥	HFXSF	HFXCSF	Ŧ	HFxSF	HFXCSF
				(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
27	A	1442	1442	1499	1424	1421	1488	1423	1418	1619	1456	1454	1609	1456	1455
28	A	1432	1437	1497	1422	1419	1487	1423	1418	1616	1453	1451	1607	1454	1452
29	A	1421	1432	1496	1421	1418	1485	1421	1416	1607	1445	1443	1595	1443	1442
30	٨	1452	1453	1432	1360	1357	1422	1360	1355	1564	1406	1405	1555	1408	1406
31	A	1335	1331	1403	1333	1330	1395	1335	1330	1520	1367	1366	1512	1369	1367
32	A	1335	1331	1401	1331	1328	1391	1331	1326	1520	1366	1365	1512	1368	1367
33	A	1328	1325	1400	1330	1327	1390	1330	1325	1507	1355	1353	1500	1357	1356
34	٨	1328	1325	1383	1314	1311	1376	1316	1312	1495	1345	1343	1486	1345	1343
35	A	1312	1313	1373	1305	1302	1366	1307	1302	1487	1337	1336	1476	1336	1335
36	A	1302	1301	1367	1299	1296	1359	1300	1295	1470	1322	1320	1460	1321	1320
37	A	1287	1294	1356	1288	1286	1348	1290	1285	1447	1301	1300	1440	1303	1302
38	٨	1287	1294	1338	1271	1269	1331	1274	1269	1421	1278	1277	1409	1275	1274
39	٨	1269	1269	1332	1266	1263	1327	1269	1265	1411	1269	1268	1406	1273	1271
40	A	1246	1246	1312	1247	1244	1308	1251	1247	1395	1254	1253	1389	1257	1255
41	٨	1246	1246	1295	1230	1228	1290	1235	1230	1382	1242	1241	1375	1244	1243
42	A	1235	1233	1287	1223	1220	1282	1227	1222	1366	1228	1227	1359	1230	1228
43	٨	1218	1218	1280	1216	1214	1274	1219	1215	1319	1186	1185	1309	1185	1184
44	A	1172	1169	1217	1157	1154	1214	1161	1157	1314	1181	1180	1306	1182	1181
45	A	1155	1158	1200	1140	1138	1193	1141	1137	1292	1162	1161	1284	1162	1161
46	A	1138	1130	1194	1134	1132	1189	1137	1133	1286	1157	1155	1281	1159	1158
47	A	1122	1118	1192	1132	1130	1184	1133	1129	1245	1120	1119	1236	1119	1117
48	A	1106	1103	1169	1110	1108	1163	1113	1109	1241	1116	1115	1234	1117	1115
49	A	1075	1076	1151	1093	1091	1144	1094	1091	1202	1081	1080	1185	1073	1072
50	A	1051	1049	1123	1066	1064	1120	1071	1067	1189	1069	1068	1182	1070	1069
51	A	1046	1046	1102	1047	1045	1100	1052	1049	1168	1050	1049	1164	1054	1052
52	A	1035	1035	1088	1034	1032	1084	1037	1033	1166	1049	1048	1159	1049	1048
53	۷	1026	1028	1073	1019	1017	1070	1023	1020	1137	1022	1021	1133	1026	1024

jniversitesi, 2017	
lersin (
Enstitüsü, M	
n Bilimleri	
'ezi, Feı	
isans T	
Yüksek I	
ARSLAN,	
Birdal	

٩	Simetri	R	RAMAN	mPW1PW91/	6-31G(d,p)		mPW1PW91 / (6-311G(d,p)		HF/ 6-31G(c	(,p)		HF / 6-311G	i(d,p)	
		(cm ⁻¹)	(cm ⁻¹)	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	ΗF	HFxSF	HFxCSF	ΗF	HFxSF	HFxCSF
				(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm-1)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
54	A	1026	1028	1071	1017	1015	1069	1023	1019	1136	1021	1020	1128	1021	1020
55	A	1005	1000	1060	1007	1005	1057	1012	1008	1132	1018	1017	1127	1020	1019
56	A	1005	1000	1057	1005	1003	1055	1009	1006	1121	1008	1007	1115	1009	1008
57	A	955	956	262	947	945	1003	096	956	1109	266	966	1106	1001	1000
58	A	939	939	985	936	934	984	941	938	1084	975	974	1080	978	977
59	A	926	925	096	912	910	967	925	921	1050	944	943	1046	947	946
60	A	919	919	952	904	903	951	606	906	1009	908	907	1005	910	606
61	A	893	891	949	902	006	947	906	902	1007	905	904	1004	908	907
62	A	884	886	915	869	868	910	871	867	982	883	882	977	884	883
63	A	858	859	907	862	860	904	865	862	974	876	875	970	878	877
64	A	843	843	876	832	830	880	842	839	966	869	868	961	870	869
65	A	817	818	869	825	824	867	829	826	914	822	821	911	825	824
66	A	796	802	838	796	794	843	806	803	874	786	785	874	791	290
67	A	770	770	824	783	781	822	786	784	864	777	777	861	779	778
68	A	754	754	804	763	762	800	766	763	858	772	771	856	774	774
69	A	750	751	190	750	749	788	753	751	848	762	762	844	764	763
70	A	736	737	774	736	734	774	740	738	821	738	738	818	741	740
71	A	723	724	760	722	720	760	727	725	820	738	737	811	734	733
72	A	710	709	744	706	705	746	714	711	781	703	702	778	705	704
73	A	697	669	735	669	697	737	705	702	768	691	690	750	679	678
74	A	673	671	711	675	674	718	687	684	746	671	670	741	671	670
75	A	644	642	681	647	646	675	646	644	734	660	659	714	647	646
76	A	633	636	658	625	624	659	630	628	701	631	630	669	632	632
17	A	601	602	626	595	594	623	596	594	666	598	598	654	592	591
78	A	539	537	553	526	524	555	531	529	592	533	532	590	534	533
79	A	534	532	545	518	517	545	522	520	569	512	511	560	507	506
80	A	ı	507	512	487	486	510	488	486	548	493	492	544	493	492

2017	
itesi, 1	
nivers	
Ü	
Mersin	
itüsü,	
i Enst	
limler	
Bi	
, Fen	
Tezi	
Lisans	
iksek	
Ϋ́ί	Í
SLAN,	
I ARS	
Birda	

No	Simetri	R	RAMAN	mPW1PW91/	6-31G(d,p)		mPW1PW91 /	6-311G(d,p)		HF/ 6-31G(d	(d'		HF / 6-311G(d,p)	
		(cm ⁻¹)	(cm ⁻¹)	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	堆	HFxSF	HFxCSF	ΗF	HFxSF	HFxCSF
				(cm ⁻¹)	(cm ⁻¹)	(cm-1)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
81	A		442	458	435	434	458	439	437	521	469	468	531	480	480
82	A		431	450	428	427	447	428	426	496	446	446	497	450	449
83	A		428	443	421	420	444	425	423	473	425	424	470	426	425
84	A		424	441	419	418	441	422	420	464	417	416	460	416	416
85	A		373	385	366	365	383	366	365	417	375	374	418	378	378
86	A		343	369	351	350	367	351	350	393	353	353	391	353	353
87	A		338	351	333	333	349	334	333	374	336	336	373	338	337
88	A		307	306	291	291	306	293	292	320	288	288	319	289	288
89	A		294	298	283	283	300	287	286	312	280	280	305	276	276
06	A		229	240	228	228	241	230	229	272	245	244	278	251	251
91	A		223	232	220	220	231	221	220	251	225	225	251	228	227
92	A		197	210	199	199	213	204	203	233	209	209	234	212	211
93	A		182	193	184	183	193	185	184	192	173	173	189	171	171
94	A		173	190	181	181	187	179	178	184	165	165	177	160	160
95	A		149	154	146	146	156	150	149	159	143	143	156	141	141
96	A		117	122	116	115	117	112	112	129	116	116	126	114	114
97	A			103	98	97	108	103	103	98	88	88	97	88	87
98	A			81	17	77	82	78	78	73	65	65	68	62	62
66	A			51	49	48	53	51	51	55	50	50	55	50	50
100	A			30	28	28	32	31	31	26	24	23	25	22	22
101	A		ı	19	18	18	28	27	27	22	20	20	23	20	20
102	A		ı	14	13	13	10	6	6	11	10	10	13	12	12
<u>۔</u>				0.9993	0.9993	0.9993	0.9992	0.9992	0.9992	0.9984	0.9984	0.9984	0.9983	0.9983	0.9983
Ortalar	na mutlak)	ڟzde hata	-	5.0532	0.8344	0.9205	4.669	0.8431	0.9	11.7971	1.6681	1.6519	11.0632	1.7409	1.7222
Ortalar	na mutlak I	nata		78.8682	12.5446	13.8514	71.5156	12.5475	13.8315	173.6179	28.5414	28.5931	162.7861	29.6541	29.6967
Karekċ	ik ortalama	(RMSov)		87.0551	28.5433	28.3836	79.0972	29.2798	28.7793	175.227	41.5807	41.5513	165.252	43.3236	43.2898
Karekċ	ik ortalama	(RMSmol)	0	99.403	32.5918	32.4095	90.3163	33.4328	32.8613	200.0811	47.4785	47.445	188.6913	49.4686	49.43

No Simetri IR	RAMAN	mPW1PW91/	6-31G(d,p)		mPW1PW91 /	6-311G(d,p)		HF/ 6-31G(1,p)		HF / 6-311G	(d,p)	
(cm-1)	(cm ⁻¹)	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	mPW1PW91	mPW1PW91xSF	mPW1PW91xCSF	뽀	HFxSF	HFXCSF	ΗF	HFxSF	HFxCSF
		(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
Ölçeklendirme faktörü (Sca	aling Fact.)	1.0000	0.9500	0.9481	1.0000	0.9567	0.9533	1.0000	0.8992	0.8983	1.0000	0.9051	0.9041
Maksimum fark frekans no		-	-	+	F	+	1	-	-	-	-	-	-
Maksimum fark (cm ⁻¹)		440.7431	257.4559	250.4855	425.2415	267.186	254.7091	660.5649	268.9	265.2721	645.8179	278.4773	274.4929

* SF: Ölçeklendirme faktörü (Scaling factor), CSF: Hesaplanan ölçeklendirme faktörü (Calculated Scaling factor).

4.4. Hirshfeld analizi

Bileşiğin d_i , d_e , d_{norm} , şekil indeks ve curvedness fonksiyonları ile haritalandırılmış Hirshfeld yüzeyleri **Şekil 4.13**'de gösterilmektedir. **Şekil 4.13** (-0.295)-(+1.182) Å sabit renk skalası ile d_{norm} üzerinde haritalanmış yüzeyleri göstermektedir. d_{norm} yüzeyi çok yakın moleküller arası etkileşimleri tanımlamak için kullanılır ve yüzey kırmızı-mavi-beyaz bir renk şemasında haritalanır. Kırmızı bölgeler van der Waals (vdW) yarıçapından daha yakın temasları, mavi bölgeler van der Waals yarıçapından daha uzun etkileşimleri ve beyaz bölgeler ise tam olarak van der Waals ayrımına eşit kontak uzaklıklarını temsil eder [116]. Şekil indeksi ve curvedness yüzeyler genellikle, karakteristik paketleme modları, düzlemsel istifleme düzenlemeleri ve komşu moleküllerin birbirleriyle temas şekilleri belirlemek için kullanılabilir [117].

Şekil 4.13. *N*-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin d_i , d_e , d_{norm} , şekil indeks ve curvedness fonksiyonları ile haritalandırılmış Hirshfeld yüzeyleri.

N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin d_{norm} fonksiyonları ile haritalandırılmış Hirshfeld yüzeyi **Şekil 4.14**'de gösterilmektedir. d_{norm} Yüzeyindeki dublet olarak ortaya çıkan parlak koyu kırmızı spotlar güçlü N-H…S etkileşimlerini temsil eder ve S1…H1 etkileşim uzunluğu 2.473 Å'dur. Bu parlak kırmızı spotların her iki yanındaki daha açık kırmızı spotlar ise C-H…S (2.774 Å) ve C-H… π (2.639 Å) etkileşimlerini temsil eder (**Şekil 4.14**) ve bu etkileşimler N-H…S etkileşiminden nispeten daha zayıftır. C-H… π (2.639 Å) etkileşimleri, aynı zamanda şekil indeksi fonksiyonuyla haritalanan Hirshfeld yüzeyi üzerinde içi boş turuncu alan (π ····H, **Şekil 4.14a**) ve şişkin mavi alan olarak görülür (H··· π , **Şekil 4.14b**).

Şekil 4.14. Bileşiğin *d*_{norm} fonksiyonu üzerinde haritalanan Hirshfeld yüzeyi.

Şekil 4.15. Bileşiğin şekil indeksi fonksiyonu üzerinde haritalanan Hirshfeld yüzeyi.

Şekil 4.16'da Hirshfeld yüzeyinin moleküller arası bütün etkileşimleri barındıran 2D parmak izi grafiği ve ayrıştırılmış parmak izi grafikleri gösterilmiştir. 2D parmak izi grafikleri bileşikteki H…H, S…H, Cl…H ve C…H etkileşimlerinin varlığını ortaya koymaktadır. H…H

etkileşimleri, tüm etkileşimlerin 2D parmak izi grafiğindeki dağılmış noktaların ortasında vurgulanır. Minimum $d_e + d_i \approx 2.2$ Å civarındadır ve bu etkileşim türü toplam etkileşimin 48.6%'sına katlı sağlar. C…H/H…C etkileşimleri toplam Hirshfeld yüzeylerine 12.8%'lik oran ile daha düşük bir katkıda bulunur. Bileşikte, Cl…C/C…Cl, S…H/H…S ve C…C etkileşimlerinin varlığı da gözlemlenmiş ve toplam Hirshfeld yüzeylerine katkıları sırasıyla 11.1, 9.9 ve 1.8% olarak bulunmuştur.

Bileşikteki dominant N-H···S hidrojen bağlanma etkileşimleri, S···H/H···S etkileşimlerinin gösterildiği iki boyutlu parmak izi grafiklerinde iki sivri uç olarak görülmektedir (**Şekil 4.16**). S···H/H···S etkileşimlerinin iki boyutlu parmak izi grafiğinde yeşil ile işaretlenmiş uç ($d_e > d_i$) molekülün bir donor olarak hareket ettiği, kırmızı ile işaretlenmiş uç ($d_i > d_e$) ise molekülün bir akseptör olarak hareket ettiği karşılıklı etkileşimleri gösterir. *N*-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin molekülleri arasındaki bütün etkileşimleri gösteren birim hücre yapısı ise **Şekil 4.17**'de verilmiştir.

Şekil 4.16. Bileşiğin moleküller arası bütün etkileşimleri barındıran 2D parmak izi grafiği ve ayrıştırılmış parmak izi grafikleri.

Şekil 4.17. *N*-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin molekülleri arasındaki bütün etkileşimleri gösteren birim hücre yapısı.

5. SONUÇLAR

Bu tez çalışmasında;

- N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiği sentezlendi ve yapıları elementel analiz, ¹H NMR, ¹³C NMR, LC-MS ve FT-IR teknikleriyle aydınlatıldı.
- N-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin X-ışınları tek kristal difraksiyonu analizine uygun kristalleri yeniden kristalendirme tekniği ile elde edildi ve moleküler yapısı X-ışınları tek kristal difraksiyonu çalışması ile aydınlatıldı.
- N-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin geometrik parametreleri ve titreşim frekansları Gaussian 03W paket proğramı kullanılarak B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B-LYP/6-31G(d,p), B-LYP/6-311G(d,p), B3PW91/6-31G(d,p), B3PW91/6-311G(d,p), mPW1PW91/6-31G(d,p), mPW1PW91/6-311G(d,p), HF/6-31G(d,p) ve HF/6-311G(d,p) metodları ile hesaplandı.
- Tüm hesaplamalarda elde edilen geometrik parametreler tek kristal yapı parametreleri ile karşılaştırılmış ve en iyi korelasyon bağ uzunlukları için mPW1PW91/6-311G(d,p) (*r* = 0.9990) ve bağ açıları için ise mPW1PW91/6-311G(d,p) (*r* = 0.9933) metodu için bulunmuştur.
- N-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin titreşim frekansları teorik olarak hesaplanmış ve deneysel frekans değerleri ile karşılaştırılarak korelasyon değerleri hesaplanmıştır.
- Bileşiğin hesaplanan IR ve RAMAN spektrumları, deneysel olarak gözlenen IR ve RAMAN spektrumları ile oldukça iyi bir uyum içerisindedir.
- Elde edilen korelasyon verileri karşılaştırıldığında B3LYP/6-311G(d,p) metodu ile yapılan frekans hesaplamalarının çok uyumlu sonuçlar verdiği gözlenmiştir.
- TED analizi yapılarak deneysel IR ve RAMAN spektrumunda gözlenen tüm bandların tanımlamaları ve hangi moddan kaynaklandıkları hesaplanarak aydınlatılmış ve böylece *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin tam bir titreşim mod analizi yapılmıştır.
- N-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin ileride sentez edilebilecek yeni türevlerinin IR/RAMAN spektral tahminleri için, B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B-LYP/6-31G(d,p), B-LYP/6-311G(d,p), B3PW91/6-31G(d,p), B3PW91/6-311G(d,p), mPW1PW91/6-31G(d,p), mPW1PW91/6-311G(d,p), HF/6-31G(d,p) ve HF/6-311G(d,p) metodları için sırasıyla 0.9573, 0.9622, 0.9872, 0.9914, 0.9545, 0.9595, 0.9481, 0.9533, 0.8983 ve 0.9041 ölçeklendirme faktörlerinin kullanımı önerilebilir.

- *N*-(2-Klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin şekil indeksi ve d_{norm} fonksiyonları ile haritalandırılmış Hirshfeld yüzeyi hesaplanmış, Hirshfeld yüzeyinin moleküller arası bütün etkileşimleri barındıran 2D parmak izi grafiği ve ayrıştırılmış parmak izi grafikleri elde edilmiş ve *N*-(2-klorofenilkarbamotiyoil)siklohekzan karboksamit bileşiğinin molekülleri arasındaki bütün etkileşimleri gösteren birim hücre yapısı elde edilerek detaylı bir şekilde aydınlatılmıştır.
- Hirshfeld yüzey analizi sonucu, *N*-(2-klorofenilkarbamotiyoil)siklohekzankarboksamit bileşiğinin kristal paketleme stabilizasyonunda H…H, S…H, Cl…H ve C…H kontaklarının önemli bir rol oynadığı tespit edilmiştir.

KAYNAKLAR

- [1]. Tunalı, N. K.; Özkar, S., Anorganik Kimya, Gazi Kitabevi, 9. Baskı, 498 s, 2009.
- [2]. Ölmez, H.; Yılmaz, V. T., Anorganik Kimya, MKM-Marmara Kitap Merkezi Yayınevi, 5. Baskı, 516 s, 2008.
- [3]. Shriver, D. F.; Atkins, P. W., Anorganik Kimya, Bilim Yayıncılık, 1 Baskı, 639 s, 1999.
- [4]. Miessler, G. L.; Tarr, D. A., İnorganik Kimya, Palme Yayıncılık, 1. Baskı, 664 s, 2009.
- [5]. Bekaroğlu, Ö., Koordinasyon Kimyası, İ. Ü. Yayınları, İstanbul, 537 s, 1972.
- [6]. Gündüz, T. İnstrümental Analiz, Gazi Kitabevi, 1 Baskı, 1357 s, 2007.
- [7]. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Enstrümantal Analiz İlkeleri, Bilim Yayıncılık, 6. Baskı, 1037 s, 2013.
- [8]. Özpozan, T., Titreşim Spektroskopisi (IR & RAMAN) Teori ve Uygulamaları, Erciyes Üniversitesi Yayını, Yayın no 25, 1996.
- [9]. Vest, P., Schuster. M; König. K. H., Solvent Extraktion von Platin Metallen mit N-mono- und N,N-di-Substituierten Benzoylthioharnstoffen, Fresenius' Zeitschrift für Analytische Chemie 1989, 333, 759-763.
- [10]. Dechamps-Oliver, I.; Guillon, E.; Mohamadou, A.; Jean-Pierre, B., Coordination of Nickel and Cobalt with N-morpholine or *N*,*N*-Diethyl-*N*'-monosubstituted benzoylthioureas, *Polyhedron* **1996**, 15, 947-952.
- [11]. Zhao, Y.; Liu, C.; Feng, M.; Chen, Z.; Li, S.; Tian, G.; Wang, L.; Huang, J.; Li, S. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon, *Journal of Hazardous Materials* **2010**, 176(1-3), 119-124.
- [12]. König, K. H.; Pletsch, H. J.; Schuster, M., N,N-dialkyl-N'-benzoylharnstoffe als fallungs- und extraktionsreagentien, *Fresenius' Zeitschrift für Analytische Chemie* **1986**, 325, 621-624.
- [13]. Selvakumaran, N.; Pratheepkumar, A.; Ng, S. W.; Tiekink, E. R. T.; Karvembu, R., Synthesis, structural characterization and cytotoxicity of nickel(II) complexes containing 3,3dialkyl/aryl-1-benzoylthiourea ligands, *Inorganica Chimica Acta* 2013, 404, 82-87.
- [14]. Xu, X.; Qian, X.; Li, Z.; Huang, Q.; Chen, G., Synthesis and insecticidal activity of new substituted N-aryl-N'-benzoylthiourea compounds, *Journal of Fluorine Chemistry* 2003, 121(1), 51-54.
- [15]. Gemili, M.; Sari, H.; Ulger, M.; Sahin, E.; Nural, Y., Pt(II) and Ni(II) complexes of octahydropyrrolo[3,4-c]pyrrole *N*-benzoylthiourea derivatives: Synthesis, characterization, physical parameters and biological activity, *Inorganica Chimica Acta* 2017, 463, 88-96.
- [16]. Androvic, L.; Drabina, P.; Svobodova, M.; Sedlak, M., Polystyrene supported benzoylthiourea-pyrrolidine organocatalyst for the enantioselective Michael addition, *Tetrahedron: Asymmetry* **2016**, 27(16), 782-787.

- [17]. Esteves, H.; Fatima, A.; Castro, R. P.; Sabino, J. R.; Macedo, F., A simple one-pot methodology for the synthesis of substituted benzoylguanidines from benzoylthioureas using tert-butyl hydroperoxide, *Tetrahedron Letters* **2015**, 56(49), 6872-6874.
- [18]. Zhang, S.; Pu, Q.; Liu, P.; Sun, Q.; Su, Z., Synthesis of amidinothioureidosilica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation, *Analytica Chimica Acta* 2002, 452(2), 223-230.
- [19]. Amirnejat, S.; Movahedi, F.; Masrouri, H.; Mohadesi, M.; Kassaee, M. Z., Silica nanoparticles immobilized benzoylthiourea ferrous complex as an efficient and reusable catalyst for one-pot synthesis of benzopyranopyrimidines, *Journal of Molecular Catalysis A: Chemical* 2013, 378, 135-141.
- [20]. Arslan, H.; Külcü, N.; Flörke, U.; Synthesis and characterization of copper(II), nickel(II) and cobalt(II) complexes with novel thiourea derivatives, *Transition Metal Chemistry* 2003, 28(7), 816-819.
- [21]. Karakus, S.; Kaymakçıoglu, B.; Toklu, H. Z.; Arıcıoğlu, F.; Rollas, S., Synthesis and Anticolvunsant Activity of New N-(Alkyl/Substituted aryl)-N'-[4-(5-cyclohexylamino)-1, 34-thiadiazole-2-yl)phenyl]thioureas, Archiv der Pharmazie Chemistry in Life Sciences 2009, 342, 48-53.
- [22]. Azam, F.; Alkskas, A.; Ahmed, M. A., Synthesis of some urea and thiourea derivatives of 3phenyl/ethyl-2-thioxo-2, 3-dihydrothiazolo[4,5-d]pyrimidine and their antagonistic effects on haloperidol-induced catalepsy and oxidative stress in mice, *European Journal of Medicinal Chemistry* 2009, 53, 667-675.
- [23]. Selvakumaran, N.; Ng, S. W.; Edward, T.; Karvembu, R., Versatile coordination behavior of *N*,*N*-di(alkyl/aryl)-*N*"-benzoylthiourea ligands: Synthesis, crystal structure and cytotoxicity of palladium(II) complexes, *Inorganica Chimica Acta* **2011**, 376, 278-284.
- [24]. Bera, T.; Belsare, D. P. Synthesis, Antineoplastic And Anthelmintic Activities of N-Alkyloxycarbonyl-N'-(4-Benzyloxy-2-Nitrophenyl)Thioureas As Prodrugs of (6-Benzyloxy-1H-Benzimidazol-2-yl)Carbamic Acid Ester, *Indian Journal of Chemistry Section* B-Organic Chemistry Including Medicinal Chemistry 1992, 31(6), 370-372.
- [25]. Singh, B.; Mahajan, S.; Sheikh, H. N.; Kalsotra, B. L., Peroxo complexes of uranium (VI) with N-benzoyl urea and related ligands: Synthesis, characterization and antifungal activity, *Journal of The Indian Chemical Society* **2012**, 89(9), 1265-1271.
- [26]. Miao, H. J.; Zhang, J. W.; Yuan, H.; Li, Y.; Xu, Y.; Li, H.; Yang, X.; Ling, Y., Synthesis and Fungicidal Activities of Nucleoside Compounds Containing Substituted Benzoyl Thiourea, *Chinese Journal of Organic Chemistry* **2012**, 32(5), 915-921.

- [27]. Merdivan, M.; Aygün, R. S.; Külcü, N. Determination of compositions of some metal-ligand complexes by HPTLC-Densitometry, *Spectroscopy Letters* **1998**, 31(1), 99-109.
- [28]. Wu, J.; Shi, Q.; Chen, Z.; He, M.; Jin, L.; Hu, D., Synthesis and Bioactivity of Pyrazole Acyl Thiourea Derivatives, *Molecules* **2012**, 7(5), 5139-5150.
- [29]. Keche, A. P.; Hatnapure, G. D.; Tale, R. H.; Rodge, A. H.; Birajdar, S.; Kamble, S.; Vandana, M. A., Novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation, *Bioorganic & Medicinal Chemistry Letters* 2012, 22(10), 3445-3448.
- [30]. Nitulescu, G. M.; Draghici, C.; Chifiriuc, M. C.; Marutescu, L.; Bleotu, C.; Missir, A. V., Synthesis and antimicrobial screening of N-(1-methyl-1H-pyrazole-4-carbonyl)-thiourea derivatives, *Medicinal Chemistry Research* **2012**, 21(3), 308-314.
- [31]. Mei-Hang, C.; Zhuo, C. Bao-An, S.; Pinaki, S.; Bhadury, S. Y.; Xue-Jian, C.; De-Yu, H.; Wei, X.; Song, Z., Synthesis and Antiviral Activities of Chiral Thiourea Derivatives Containing an α-Aminophosphonate Moiety, *Journal of Agricultural and Food Chemistry* **2009**, 57(4), 1383-1388.
- [32]. Galabov, A. S.; Velichkova, E. H.; Vassilev G. N., Antiviral Activity of NPhenyl-N'arylthiourea Derivates against some Rhinoviruses, *Chemotherapy* **1977**, 23(2), 81-90.
- [33]. Emen, F. M.; Arslan, H.; Külcü, N.; Flörke, U.; Duran, N., Synthesis, characterization and antimicrobial activities of some metal complexes with *N*'-(2-chloro-benzoyl)thiourea ligands: The crystal structure of *fac*-[CoL₃] and *cis*-[PdL₂], *Polish Journal of Chemistry* 2005, 79, 1615-1626.
- [34]. Rafael, C.; Julio, J. C.; Ruxandra, G.; Francisco, J. G.; Hermosa, M. R.; Francisca, S.; Juan, L. M.; Enrique, M.; Rodriguez, F. E., *N*-benzoyl-*N*'-alkylthioureas and their complexes with Ni(II), Co(III) and Pt(II) crystal structure of 3-benzoyl-1-butyl-1-methyl-thiourea: activity against fungi and yeast. *Journal of Inorganic Biochemistry* **2004**, 98(8), 1307-1314.
- [35]. Arslan, H.; Flörke, U.; Külcü, N., The crystal and molecular structure of 1-(biphenyl-4-carbonyl-3-ptolyl-thiourea, *Acta Chimica Slovenica* **2004**, 51, 787-792.
- [36]. Uğur, D.; Arslan, H.; Külcü, N., Synthesis, characterization and thermal behaviour of 1, 1dialkyl-3-(4-(3, 3-dialkylthioureidocarbonyl)-benzoyl)thiourea and its Cu(II), Ni(II), and Co(II) complexes. *Russian Journal of Coordination Chemistry* **2006**, 32(9), 669-675.
- [37]. Arslan, H.; Flörke, U.; Külcü, N.; Emen, F. M., Crystal structure and thermal behaviour of copper(II) and zinc(II) complexes with *N*-pyrrolidine-*N*'-(2-chlorobenzoyl)thiourea, *Journal of Coordination Chemistry* **2006**, 59(2), 223-228.
- [38]. Binzet, G.; Flörke, U.; Külcü, N.; Arslan, H., Crystal structure of 3-(2-chloro-benzoyl)-1, 1diphenylthiourea, (C₆H₅)₂N(CS)(NH)(CO)(C₆H₄Cl). *Zeitschrift für Kristallographie - New Crystal Structures* **2004**, 219, 395-397.

- [39]. Özpozan, N.; Özpozan, T.; Arslan, H.; Karipçin, F.; Külcü, N., Thermal behaviours Co(II), Ni(II), Cu(II) and Pb(II) complexes of *N*,*N*-dipropyl-*N*'-benzoylthiourea, *Thermochimica Acta* 1999, 336, 97-103.
- [40]. Arslan, H.; Flörke, U.; Külcü, N., Synthesis, Characterization and Crystal Structure of 1-(4chlorobenzoyl)-3-naphthalen-1-yl-thiourea, *Journal of Chemical Crystallography* 2003, 33, 919-924.
- [41]. Arslan, H.; Flörke, U.; Külcü, N., The Crystal And Molecular Structure of 1-(2-chlorobenzoyl)-3-p-tolyl-thiourea, *Turkish Journal of Chemistry* **2004**, 28, 673-678.
- [42]. Arslan, H.; Flörke, U.; Mansuroglu, D., Crystal and Molecular Structure of *Bis*(2, 2-diphenyl-*N*-(di-*n*-propylcarbamothioyl)acetamido)copper(II) Complex, *E-Journal of Chemistry* 2011, 8, 455-461.
- [43]. Arslan, H.; Duran, N.; Borekci, G.; Ozer, C.; Akbay, C., Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes, *Molecules* 2009, 14, 519-527.
- [44]. Ozer, K. C.; Arslan, H.; Vanderveer, D.; Külcü, N., Synthesis and Characterization of N-(Arylcarbamothioyl)-cyclohexanecarboxamide Derivatives: The Crystal Structure of N-(Naphthalen-1-ylcarbamothioyl)cyclohexanecarboxamide, *Molecules* 2009, 14, 655-666.
- [45]. Arslan, H.; Mansuroglu, D.; Vanderveer, D.; Binzet, G., The molecular structure and vibrational spectra of *N*-(2,2-diphenylacetyl)-*N*'-(naphthalen-1yl)-thiourea by Hartree-Fock and density functional methods, *Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy* **2009**, 72, 561-571.
- [46]. Mansuroglu, D.; Arslan, H.; Vanderveer, D.; Binzet, G., Synthesis and Characterization of *N*-(2, 2-Diphenylacetyl)-*N*'-Substituted Thiourea Derivatives: The Crystal Structure of *N*-(2, 2-Diphenylacetyl)-*N*'-(4-chlorophenyl)-thiourea. *Phosphorus Sulfur and Silicon and The Related Elements* 2009, 184, 3221-3230.
- [47]. Arslan, H.; Floerke, U.; Kulcu, N.; Binzet, G., The molecular structure and vibrational spectra of 2-chloro-*N*-(diethylcarbamothioyl)benzamide by Hartree-Fock and density functional methods. *Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy* 2007, 68, 1347-1355.
- [48]. Arslan, H.; Flörke, U.; Kulcu, N., Theoretical studies of molecular structure and vibrational spectra of O-ethyl benzoylthiocarbamate. *Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy* 2007, 67, 936-943.
- [49]. Gholap, S.; Gunjal, N., 2,4,6-Trichloro-1,3,5-triazine (TCT) mediated one pot direct synthesis of *N*-benzoylthioureas from carboxylic acids, *Arabian Journal of Chemistry* 2017, 10, Supp. 2, S2750-S2753.

- [50]. Arslan, H.; Florke, U.; Kulcu, N.; Kayhan, E., Synthesis, characterization, crystal structure and thermal behavior of N'-(4-chlorobenzoyl)-N,N-di-n-butylthiourea and its nickel complex. *Turkish Journal of Chemistry* **2006**, 30, 429-440.
- [51]. Arslan, H.; Kulcu, N.; Florke, U., Normal coordinate analysis and crystal structure of N,Ndimethyl-N'-(2-chloro-benzoyl)thiourea. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 2006, 64, 1065-1071.
- [52]. Khorrami, S.; Shafai, M.; Armstrong, S., Complexation of N-Benzoyl-N-methyl-Nphenylthiourea by Copper (II) in a Mixed Solvent System, Journal of Chemical & Engineering Data 2003, 48, 142-145.
- [53]. Weiqun, Z.; Wen, Y.; Lihua, Q.; Yong, Z., Structures and vibrational spectra of the *N*-benzoyl-*N*'-dialkylthiourea derivative and their complexes with Hg (II), *Journal of Molecular Structure* 2005, 749, 89-95.
- [54]. Weiqun, Z.; Wen, Y.; Lihua, Q., Structure and stability of thiourea with water, DFT and MP2 calculations, *Journal of Molecular Structure Theochem* **2005**, 730, 131-139.
- [55]. Weiquna, Z.; Baolonga, L.; Yanga, C.; Yonga, Z.; Yang, L., The structure and conformation analysis of N-2-fluorobenzoyl-N'-2-methoxy phenyl thiourea, *Journal of Molecular Structure: Theochem* 2005, 715, 117-124.
- [56]. Dominguez, M.; Antico, E.; Beyer, L.; Aguirre, A., Liquid-liquid extraction of palladium (II) and gold(III) with N'-benzoyl-N',N'-diethylthiourea and the synthesis of a palladium benzoylthiourea complex, *Polyhedron* **2002**, 21, 1429-1437.
- [57]. Fontas, C.; Hidalgo, M.; Salvado, V.; Antico, E., Selective recovery and preconcentration of mercury with benzoylthiourea-solid supported liquid membrane system, *Analytica Chimica Acta* 2005, 547, 255-261.
- [58]. Avşar, G., Bazı 3d-geçiş Metallerinin N,N-dimetil-N'-benzoil tiyoüre Ligandı ile Yaptığı Komplekslerin Termal Bozunma Kinetiğinin İncelenmesi. Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 1999.
- [59]. Karipcin, F., Bazı soy metallerinin N,N-dialkil-N"-benzoyltiyoüre türevleri ile Şelatlarının sentezlenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 1995.
- [60]. Akyil, N., N,N-dialkil-N'-benzoiltiyoüre Türevlerinin Bazı Geçiş Metalleriyle Yaptığı Komplekslerin Bozunma Kinetiklerinin İncelenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 1997.
- [61]. Polat, G., Ni(II), Co(II) ve Cu(II) İyonlarının Yeni Tiyoüre Türevleri ile Şelat Bileşiklerinin Sentezi ve İncelenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2002.

- [62]. Binzet, G., Benzoiltiyoüre Türevleri ile Metal Komplekslerinin Sentezi ve Özellikleri, Doktora Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2009.
- [63]. Uğur, D., Tereftalikasid-tiyoüre Türevi Ligandları ve Bu Ligandların Bazı Metal Komplekslerini Sentezlenmesi ve İncelenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2004.
- [64]. Emen, F. M., 3d-Geçiş Metallerinin Yeni Tiyoüre Türevleri ile Şelat Bileşiklerinin Sentezi ve Karakterizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2002.
- [65]. Kayhan, E., Katı Faz Tepkime Verilerinden Kinetik Parametrelerin Hesaplanmasına Uygun Yazılım Programlarının Geliştirilmesi, Sentezlenecek Tiyoüre Türevleri ve Bunların Komplekslerine Uygulanması, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2003.
- [66]. Özer, C. K.; Çeşitli Tiyoüre Türevlerinin ve Geçiş Grubu Metal Komplekslerinin Sentezlenmesi ve Karakterizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Sağlık Bilimleri Enstitüsü, Mersin, 2008.
- [67]. Kurt, Ü., Tiyoüre Türevi Paladyum Komplekslerinin Sentezlenmesi ve Karakterizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2014.
- [68]. Gedik, H., Değişik Üre Benzeri Bileşiklerin Sentezlenmesi ve Karakterizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Sağlık Bilimleri Enstitüsü, Mersin, 2007.
- [69]. Mansuroğlu, D. S., Yeni Tiyoüre Türev Ligand ve Metal Komplekslerinin Sentezlenmesi ve Karakterizasyonu, Yüksek Lisans Tezi, Mersin Üniversitesi, Sağlık Bilimleri Enstitüsü, Mersin, 2008.
- [70]. König, K. H.; Schuster, M.; Steinbrech, B.; Schneeweis, G.; Schlodder, R., N,N-dialkyl-N'benzoylthioharnstoffe als selektive extraktionsmittel zur abtrennung und anreicherung von platinmetallen, *Fresenius' Zeitschrift für Analytische Chemie* **1985**, 321, 457-460.
- [71]. Lazo, A. R.; Bustamante, M.; Jimenez, J.; Arada, M. A.; Yazdani-Pedram, M., Preparation and study of a1-furoyl-3, 3-diethylthiourea electrode, *Journal of the Chilean Chemical Society* 2006, 51(3), 975-978.
- [72]. Binzet, G.; Arslan, H.; Flörke, U.; Külcü, N.; Duran, N., Synthesis, characterization and antimicrobial activities of transition metal complexes of *N*,*N*-dialkyl-*N*'-(2-chlorobenzoyl)thiourea derivatives, *Journal of Coordination Chemistry* **2006**, 59(12), 1395-1406.
- [73]. Fernandez, E. R.; Manzano, J. L.; Benito, J. J.; Hermosa, R.; Monte, E.; Criado, J. J., Thiourea, triazole and thiadiazine compounds and their metal complexes as antifungal agents, *Journal of Inorganic Biochemistry* 2005, 99, 1558-1572.

- [74]. Arslan, H.; Duran, N.; Sahin, N. O.; Külcü, N., Thermal behaviour and antimicrobial activity of novel series of benzoylthiourea derivative, *Asian Journal of Chemistry* 2006, 18(3), 1710-1718.
- [75]. Madencilik Terimler Sözlüğü, <u>http://www. migem. gov. tr/sozluk/sozluk. html</u>, Erişim: 19/10/2017.
- [76]. Sach, C.; Datt, M. S., Synthesis and characterisation of mixed-ligand platinum(II)sulfokside complexes, [PtCl(DMSO)(L)], for potential use as chemotherapeutic agents, *Polyhedron* **2000**, 19, 1347-1354.
- [77]. Aslantatar, E., Bis(2-İzobutirilamidofenil)Amin Bileşiğinin Titreşim Spektrumunun İncelenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Mersin, 2013.
- [78]. Hocquet, A.; Langgard, M., An Evaluation of the MM+ Force Field, Molecular Modeling Annual 1998, 4(3), 94-112.
- [79]. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, *Journal of the American Chemical Society* 1995, 117, 5179-5197.
- [80]. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., Chemistry at Harvard Macromolecular Mechanics (CHARMM): A program for macromolecular energy, minimization, and dynamics calculations, *Journal of Computational Chemistry* 1983, 4(2), 187-217.
- [81]. Pople, J. A.; Santry, D. P.; Segal, G. A. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures, *Journal of Chemical Physics* **1965**, 43, S129-S135.
- [82]. Metzger, R. M., INDO and MINDO/3 atom-in-molecule polarizabilities, *The Journal of Chemical Physics* **1981**, 74, 3444-3457.
- [83]. Bingham, R. C.; Dewar, M. J. S.; Lo, D. H., Ground States of Molecules. XXV. MINDO/3. An Improved Version of the MINDO Semiempirical SCF-MO Method. *Journal of the American Chemical Society* 1975, 97, 1285-1293.
- [84]. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P., Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model, Austin Model 1, *Journal of the American Chemical Society* 1985, 107(13), 3902-3909.
- [85]. Stewart, J. J. P., Optimization of parameters for semiempirical methods I. Method, *The Journal of Computational Chemistry* **1989**, 10(2), 209-220.
- [86]. Ridley, J.; Zerner, M., An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines, *Theoretica Chimica Acta* **1973**, 32(2), 111-134.
- [87]. Mantz, Y. A.; Musselman, R. L., ZINDO Calculations of the Ground State and Electronic Transitions in the Tetracyanonickelate Ion, Ni(CN)_{4²}, *Inorganic Chemistry* 2002, 41(22), 5770-5777.
- [88]. Stewart, J. J. P., MOSOL, MOPAC for Solid-State Physics, Quantum Chemistry Program Exchange **1985**, 5, 62-63.
- [89]. Rzepa, H. S.; Yi, M. Y.; Karelson, M. M.; Zerner, M. C., Geometry Optimization at the Semiempirical Self-Consistent-Reaction-Field Level using the AMPAC and MOPAC Programs, *Journal of the Chemical Society, Perkin Transactions II* 1991, 5, 635-637.
- [90]. Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Montgomery J. A. Jr.; Vreven T.; Kudin K. N.; BurantJ. C.; Millam J. M.; Iyengar S. S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G. A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J. E.; Hratchian H. P.; Cross J. B.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Ayala P. Y.; Morokuma K.; Voth G. A.; Salvador P.; Dannenberg J. J.; Zakrzewski V. G.; Dapprich S.; Daniels A. D, Strain M. C.; Farkas O.; Malick D. K.; Rabuck A. D.; Raghavachari K.; Foresman J. B.; Ortiz J. V.; Cui Q.; Baboul A. G.; Clifford S.; Cioslowski J.; Stefanov B. B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R. L.; Fox D. J.; Keith T.; Al- Laham M. A.; Peng C. Y.; Nanayakkara A.; Challa combe M.; GillP. M. W.; Johnson B.; Chen W.; Wong M. W.; Gonzalez C.; and Pople J. A.; Gaussian 03W (Revision B. 04), Gaussian, Inc.; Pittsburgh PA, 2003.
- [91]. HyperChem(TM) Professional 8. 0, Hypercube, Inc.; 1115 NW 4th Street, Gainesville, Florida 32601, USA.
- [92]. Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld. C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill D. P.; DiStasio Jr, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Vooris, T.; Chein, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Daschel, H.; Doerksen, R. J.; Dreuw, A.; Dunitez, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C. P.; Kedziora, G.; Khalliulin, R. Z.; Kulnzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Provnov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M., Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package, *Physical Chemistry Chemical Physics* 2006, 8(27), 3172-3191.

- [93]. Fischer, C. F. General Hartree-Fock program, *Computer Physics Communication* **1987**, 43(3), 355-365.
- [94]. Hartree, D. R., Results of Calculations of Atomic Wave Functions. I. Survey, and Self-Consistent Fields for Cl⁻ and Cu⁺, *Proceedings of the Royal Society A: Mathematical, Physical* & Engineering Sciences (London) **1933**, 141, 282-301.
- [95]. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects, *Physical Review* **1965**, 140, A1133-A1138.
- [96]. Parr, R. G.; Weitao, Y. Density-Functional Theory of Atoms and Molecules, Oxford University Press., NewYork, 1994.
- [97]. Bahat, M., Kinazolin Molekülünün Kuvvet Alanının DFT-B3LYP 6-31 G Tabanlı SQM Metodu ile Hesabı ve Bazı Hoffman Tipi Komplekslerin Titreşimsel Spektroskopi ile İncelenmesi, Doktora tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2000.
- [98]. Levine, I. N., Quantum Chemistry, Prentice-Hall, USA, 1991.
- [99]. Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A., Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, *Journal of the American Chemical Society* **1983**, 105(24), 7037-7047.
- [100].Spek, A. L., Structure validation in chemical crystallography, *Acta Crystallographica Section D* **2009**, 65(2), 148-155.
- [101].Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W.L.; Gilliland, R., GaussView,Version 3.07, Semichem Inc., Shawnee Mission, KS, 2003.
- [102].Özdemir, M., Benzensolfonikasit hidrazit'in konformasyon analizi, titresim ve kimyasal kayma degerlerinin dft metodu ile hesaplanması, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara, 2007.
- [103].Foresman, B. J. Exploring Chemistry with Electronic Structure Methods, 2nd Ed., Gaussian, Inc. Pittsburgh, 1996.
- [104].Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange, *The Journal of Chemical Physics* **1993**, 98, 5648-5652.
- [105].Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Physical Review B* **1988**, 37, 785-789.
- [106].Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior, *Physical Review A* **1988**, 38, 3098-3100.
- [107].Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, *Physical Review B* **1992**, 46, 6671-6687.

- [108].Adamo, C.; Barone, V., Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, *The Journal of Chemical Physics* **1998**, 108(2), 664-675.
- [109].CrystalExplorer (Version 3. 1), Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A., University of Western Australia, 2012.
- [110].Evans, D. G.; Boeyens, J. C. A., Conformational analysis of ring pucker, Acta Crystallographica Section B 1989, 45(6), 581-590.
- [111].Cremer, D.; Pople, J. A., General definition of ring puckering coordinates, *Journal of the American Chemical Society* **1975**, 97, 1354-1358.
- [112].Jamroz, M. H., Vibrational Energy Distribution Analysis, VEDA 4, Warsaw, 2004-2010.
- [113].SQM Version 1. 0, Scaled Quantum Mechanical Force Field, Green Acres Road, Fayetteville, Arkansas 72703, 2013.
- [114].Arslan, H.; Performance Analysis of Vibrational Frequencies, PAVF 1. 0, Mersin, Turkey, 2007.
- [115].Scott, A. P.; Radom, L., Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, *Journal of Physical Chemistry B* 1996, 100(41), 16502-16513.
- [116].Wang, J. W.; Zhang, Y. W.; Wang, M. X.; Luo, Y. H.; Sun, B. W., Assembly of 6-aminonicotinic acid and inorganic anions into different dimensionalities: Crystal structure, absorption properties and Hirshfeld surface analysis, *Polyhedron* 2017, 124, 243-250.
- [117].Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis, *Crystal engineering communications* **2009**, 11, 19-32.

ÖZGEÇMİŞ

Adı ve Soyadı	: Birdal ARSLAN
Doğum Tarihi	: 18.04.1975
E-mail	: <u>birdal.arslan@mersin.edu.tr</u> ; <u>arslanb75@gmail.com</u>

Öğrenim Durumu

:

•

- 8					
Derece	Bölüm/Program	Üniversite	Yıl		
Lisans	Kimya Bölümü	Niğde Üniversitesi	1995-2000		
Yüksek Lisans	Kimya Anabilim dalı	Mersin Üniversitesi	2015-2017		
Doktora	-	-	-		

Görevler

Görev Ünvanı	Görev Yeri	Yıl
Uzman	Mersin Üniversitesi Teknoloji Transfer Ofisi	2015-2017

ESERLER

Makaleler ve Bildiriler

- Gumus, I.; Gonca, S.; Arslan, B.; Keskin, E.; Solmaz, U.; Arslan, H. *N*-(Dibenzylcarbamothioyl)-3-methylbutanamide: Crystal structure, Hirshfeld surfaces and antimicrobial activity. *European Journal of Chemistry* 2017, 8(4), 410-416.
- Arslan, B.; Avsar, G. Crystal structure and Hirshfeld surface analysis of *N*-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide, 2nd International Mediterranean Science and Engineering Congress, Çukurova University, Adana, Turkey, 25-27 October 2017.
- 3. Arslan, H., Gumus, İ., Solmaz, U., Keskin, E., Binzet, G., Arslan, B., Selcik, N. A., Bozkurt, S., Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions, 2nd International Mediterranean Science and Engineering Congress, Çukurova University, Adana, Turkey, 25-27 October 2017.
- 4. Arslan, H., Gumus, İ., Solmaz, U., Keskin, E., Binzet, G., Arslan, B., Selcik, N. A., Bozkurt, S., Structural considerations on benzamide derivatives: Synthesis, crystal structure and Hirshfeld surface analysis, 3rd International Turkish Congress on Molecular Spectroscopy, Muğla/Bodrum, Turkey, 26-29 August 2017.
- 5. Gumus, I.; Arslan, H.; Solmaz, U.; Keskin, E.; Binzet, G.; Arslan, B.; Selcik, A. N.; Bozkurt, S., Supramolecular self-assembly of new benzamide derivatives directed by intermolecular and π -stacking interactions: Crystal structures and Hirshfeld surface analyses, 3rd International Turkish Congress on Molecular Spectroscopy, Muğla/Bodrum, Turkey, 26-29 August 2017.

- 6. Turunc, E.; Binzet, R.; Arslan, H.; Kahraman, O.; Binzet, G., İlkay, G.; Keskin, E.; Solmaz, U.; Arslan, B.; Selcik, A. N., *Onosma Malatyana* Binzet Extract Mediated Biosynthesis of Ag Doped ZnO Nanoparticles and its Sensing Application. I. Tibbi ve Aromatik Bitkiler Kongresi, Konya, Türkiye, 11-12 Mayıs 2017.
- Gumus, I.; Binzet, G.; Arslan, H.; Solmaz, U.; Arslan, B.; Keskin, E. Crystal structure and Hirshfeld surface analysis of *N*,*N*-di-*n*-propyl-*N*'-(4-chlorobenzoyl)thiourea, I. International Scientific and Vocational Studies Congress, Nevşehir/Ürgüp, Turkey, 05-08 October 2017.
- Uvacin, E., Solmaz, U., Selcik, N. A., Bozkurt, S., Gumus, İ., Aslantatar, E., Binzet, G., Dögen, A., Arslan, B., Arslan, H., Synthesis characterization and antimicrobial activity of benzamide derivatives and their palladium and platinum complexes, 28. Ulusal Kimya Kongresi, Mersin, 15-21 Ağustos 2016.
- 9. Solmaz, U., Uvacin, E., Selcik, N. A., Bozkurt, S., Gumus, İ., Aslantatar, E., Binzet, G., Dögen, A., Arslan, B., Arslan, H., *N*-(*Bis*(2,4-dimethoxybenzyl)carbamothioyl)-4-methoxybenzamide ligand and it's Pt(II)/Pd(II) metal complexes: synthesis, characterization and antimicrobial activity', 28. Ulusal Kimya Kongresi, Mersin, 15-21 Ağustos 2016.
- Binzet, G.; Gumus, I.; Solmaz, U.; Arslan, B.; Uvacin, E., Aslantatar, E.; Flörke, U.; Kulcu, N.; Arslan, H., Synthesis and characterization of 3-chloro-N-(dialkylcarbamothioyl)benzamide and their nickel and copper complexes. 28. Ulusal Kimya Kongresi, Mersin, 15-21 Ağustos 2016.
- Binzet, R.; Dogen, A.; Binzet, G.; Gumus, I.; Arslan, B., Essential oils and crude extracts from Onosma Sieheana Hayek roots: Chemical composition and antibacterial activity. 1st International Mediterranean Science and Engineering Congress, Çukurova University, Congress Center, Adana, Turkey, 26-28 October 2016.
- 12. Turunç, E.; Binzet, R.; Arslan, H.; Binzet, G.; Gumus, I.; Keskin, E.; Solmaz, U.; Arslan, B.; Selcik, A. N.; Bozkurt, S., Green synthesis of palladium and silver nanoparticles using *Lithodora hispidula* (Sm) Griseb. and their electroanalytical application. 1st International Mediterranean Science and Engineering Congress, Çukurova University, Congress Center, Adana, Turkey, 26-28 October 2016.

Projeler

- **1.** Dibenzil Amin Bazlı Tiyoüre Türevi Ligantlar ve Onların Pt(II) ve Pd(II) Metal Komplekslerinin Sentezlenmesi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin İncelenmesi, BAP, Proje No: 2016-1-AP4-1426, Araştırmacı, Devam ediyor.
- **2.** Redoks Aktif Bileşiklerin Elektrokimyasal Davranışlarının Dönüşümlü Voltametri Tekniği İle Aydınlatılması, BAP, Proje No: 2016-1-AP5-1433, Araştırmacı, Devam ediyor.

- **3.** Co(II)-[*N*,*N*'-(3,6-Dikloro-9*H*-karbazol-1,8-diil)*bis*(4-metoksibenzamid)] İle Modifiye Camsı Karbon Elektrot Hazırlanması ve Elektroanalitik Uygulaması, BAP, Proje No: 2016-1-AP4-1429, Araştırmacı, Devam ediyor.
- **4.** Yeni Benzamit Türevi Bileşiklerin ve bunların Ni(II) ve Cu(II) komplekslerinin Sentezi, Karakterizasyonu ve Antimikrobiyal Özelliklerinin İncelenmesi, BAP, Proje No: 2015-AP4-1198, Araştırmacı, Devam ediyor.
- 5. Bis(3,5-dimetoksibenzil)amin Bazlı Yeni Tiyoüre Türevi Ligandlar ve Bunların Pt(II) ve Pd(II) Metal Komplekslerinin Sentezlenmesi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin İncelenmesi, BAP, Proje No: 2015-AP4-1162, Araştırmacı, Devam ediyor.
- **6.** Geçiş Grubu Metal Komplekslerinin Molekül İçi ve Moleküler Arası Etkileşimlerinin X-Işınları Tek Kristal Difraksiyonu Tekniği İle Tespiti, BAP, Proje No: 2015-AP5-1271, Araştırmacı, 2017, Tamamlandı.
- N-((2-Klorofenil)karbamotiyoil)siklohekzankarboksamit Bileşiğinin Titreşim Spektrumunun İncelenmesi, BAP, Proje No: 2016-2-TP2-1952, Araştırmacı, 2017, Tamamlandı.
- Onosma sieheana'nın İçeriğinin Belirlenmesi ve Antimikrobiyal Aktivitelerinin İncelenmesi, BAP, Proje No: 2015-AP3-1199, Araştırmacı, 2017, Tamamlandı.