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ABSTRACT

COMPUTATION OF SYSTEMIC RISK MEASURES: A
MIXED-INTEGER LINEAR PROGRAMMING

APPROACH

Nurtai Meimanjanov

M.S. in Industrial Engineering

Advisor: Çağın Ararat

December 2018

In the scope of finance, systemic risk is concerned with the instability of a financial

system, where the members of the system are interdependent in the sense that the

failure of some institutions may trigger defaults throughout the system. National

and global economic crises are important examples of such system collapses. One

of the factors that contribute to systemic risk is the existence of mutual liabilities

that are met through a clearing procedure. In this study, two network models of

systemic risk involving a clearing procedure, the Eisenberg-Noe network model

and the Rogers-Veraart network model, are investigated and extended from the

optimization point of view. The former one is extended to the case where op-

erating cash flows in the system are unrestricted in sign. Two mixed integer

linear programming (MILP) problems are introduced, which provide program-

ming characterizations of clearing vectors in both the signed Eisenberg-Noe and

Rogers-Veraart network models. The modifications made to these network models

are financially interpretable. Based on these modifications, two MILP aggrega-

tion functions are introduced and used to define systemic risk measures. These

systemic risk measures, which are not necessarily convex set-valued functions,

are then approximated by a Benson type algorithm with respect to a user-defined

error level and a user-defined upper-bound vector. This algorithm involves ap-

proximating the upper images of some associated non-convex vector optimization

problems. A computational study is conducted on two-group and three-group

systemic risk measures. In addition, sensitivity analyses are performed on two-

group systemic risk measures.

Keywords: systemic risk measure, aggregation function, set-valued risk measure,

systemic risk, Eisenberg-Noe model, Rogers-Veraart model, Benson’s algorithm,

non-convex vector optimization.
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ÖZET

SİSTEMİK RİSK ÖLÇÜLERİNİN HESAPLANMASI:
KARIŞIK TAMSAYILI DOĞRUSAL PROGRAMLAMA

YAKLAŞIMI

Nurtai Meimanjanov

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Çağın Ararat

Aralık 2018

Finans kapsamında sistemik risk, üyeleri birbirine bağımlı olan bir finansal sis-

temin istikrarsızlığı ile ilgili bir olgudur. Ulusal ve küresel ekonomik krizler bu

tür sistem çökmelerinin önemli örnekleridir. Sistemik riske katkısı olan etken-

lerden biri de karşılıklı yükümlülüklerin varlığıdır. Bu yükümlülükler bir takas

işlemi aracılığıyla yerine getirilmektedir. Bu çalışmada, takas işlemi içeren iki

sistemik risk ağ modeli, Eisenberg-Noe ağ modeli ve Rogers-Veraart ağ modeli,

araştırılmış ve eniyileme açısından genişletilmiştir. Ayrıca Eisenberg-Noe ağ mo-

deli, sistemdeki işletme nakit akışlarının negatif olmama kısıtlaması kaldırılarak,

akışlar işaretli olabilecek biçimde, genişletilmiştir. İşaretli Eisenberg-Noe ve

Rogers-Veraart ağ modellerinde, takas vektörlerinin programlama açısından nite-

lenmesini sağlayan iki karmaşık tamsayılı doğrusal programlama problemi ortaya

konulmuştur. Bu ağ modellerinde yapılan değişiklikler finansal olarak yorumla-

nabilir. Yapılan değişikliklere dayanarak iki birleştirme fonksiyonu tanıtılmıştır,

ve bu fonksiyonlar sistemik risk ölçülerinde kullanılmıştır. Sistemik risk ölçüleri

küme değerli fonksiyonlar olduğu için kullanıcı tarafından tanımlanan bir hata

düzeyine ve üst sınır vektörüne göre Benson tipi bir vektör eniyileme algorit-

masıyla yaklaşıklanmıştır. Bu işlem, bazı ilgili dışbükey olmayan vektör eniyileme

problemlerinin üst görüntülerinin yaklaşıklanmasını içerir. İki gruplu ve üç grup-

lu sistemik risk ölçüleri üzerinde hesaplamalı çalışma gerçekleştirilmiştir. Ayrıca

iki gruplu sistemik risk ölçüleri üzerinde duyarlılık analizleri yapılmıştır.

Anahtar sözcükler : sistemik risk ölçüsü, birleştirme fonksiyonu, küme-değerli risk

ölçüsü, sistemik risk, Eisenberg-Noe modeli, Rogers-Veraart modeli, Benson al-

goritması, dışbükey olmayan vektör eniyilemesi.
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Chapter 1

Introduction

Financial contagion is usually associated with a quick and unpredictable chain

of defaults in a financial system caused by high correlation between the mem-

bers of the system and leading to disastrous, from an economic point of view,

consequences such as high risk of national and global financial crises, necessity

for bailout loans, long-lasting economic regression and rise in national debt. A

good example is a so-called bank run, when a bank receives a lot of claims for

deposits due to a panic or decrease in confidence in the bank, causing insolvency

of the bank. In its turn, the bank probably calls its claims from the other banks,

decreasing confidence in them and causing new bank runs. Being not able to

meet their liabilities, some of the banks may become bankrupt and, thus, worsen

the contagion even further. Unlike the usual notion of risk, when it is associated

with a single entity, systemic risk is related to the strength of an entire financial

system against financial contagions.

One of the factors that contribute to systemic risk is the existence of mutual

liabilities between the members of a financial system. Clearing mechanisms of a

financial system clear these mutual liabilities. It can be done by calculating a

clearing vector of the system. There are many network models of systemic risk

and the corresponding algorithms that can treat financial systems as network

models and calculate their clearing vectors. This thesis extends two network
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models, the Eisenberg-Noe and Rogers-Veraart models, from the optimization

point of view by developing optimization problems that provide clearing vectors

in these models.

Systemic risk of a financial system can be decreased by imposing capital re-

quirements to the financial institutions in the system, so that the system can

overcome financial shocks. This can be accomplished by computing systemic risk

measures. Furthermore, to make the computations of systemic risk measures eas-

ier, the members of a financial system can be grouped into two or more categories

and the same capital requirement can be imposed to the financial institutions in

the same group. In this thesis, set-valued systemic risk measures are considered

and computed in the scope of the Eisenberg-Noe and Rogers-Veraart network

models, which are introduced in subsequent chapters. For each model, the corre-

sponding grouped systemic risk measure is established and approximated using

a Benson type algorithm for non-convex problems introduced in [1].

The rest of the thesis is structured as follows. Chapter 2 reviews the literature

on seminal and recent studies in network models of systemic risk and systemic risk

measures. For the sake of completeness, seminal studies on scalar and set-valued

risk measures are discussed as well.

The Eisenberg-Noe and Rogers-Veraart network models of systemic risk are

studied in detail and the corresponding optimization characterizations of clear-

ing vectors are provided in Chapter 3. The Eisenberg-Noe model is extended to

the case where operating cash flows in a system are not restricted to be non-

negative. Two approaches are applied to accomplish this task: the first one is

applied naively, being a conjecture in Eisenberg and Noe [2], and an entirely novel

one resulting from the analysis of the drawbacks of the first approach and im-

posing some seniority assumptions. Mixed-integer linear programming (MILP)

characterizations of clearing vectors are established for both the Eisenberg-Noe

and Rogers-Veraart network models. Proofs of some of the related results can be

found in Appendix A. Moreover, two aggregation functions, one for each network

model, are introduced in terms of these MILP formulations. These aggregation

2



functions play a significant role in systemic risk measures and serve as interme-

diaries between the Eisenberg-Noe and Rogers-Veraart network models and the

corresponding grouped systemic risk measures.

In Chapter 4, the grouping notion for systemic risk measures is introduced,

which groups the members of a financial system and decreases the dimension of

systemic risk measures, making it easier to approximate them. Two aggregation

functions, introduced in the previous chapter, are applied to systemic risk mea-

sures and the Eisenberg-Noe and Rogers-Veraart grouped systemic risk measures

are defined. Furthermore, these systemic risk measures are looked at from a

vector optimization point of view and considered as the upper images of their as-

sociated vector optimization problems. Two types of optimization problems used

in Benson’s algorithm, one being a weighted-sum scalarization and the other be-

ing a minimum step-length function, are formulated as MILP problems for the

Eisenberg-Noe and Rogers-Veraart grouped systemic risk measures. Some results

on boundedness and feasibility of the corresponding MILP problems are provided

and their proofs can be found in Appendix B.

The results of Chapter 4 allow one to approximate systemic risk measures with

a Benson type algorithm for non-convex vector optimization problems, which is

introduced in [1] and described in detail in Chapter 5. The assumptions and

definitions made in [1], a modification of the algorithm for this study and the

corresponding pseudo-codes to approximate inner and outer approximations of

the Eisenberg-Noe and Rogers-Veraart grouped systemic risk measures are pro-

vided in detail.

In Chapter 6, computational results and approximations of the Eisenberg-Noe

and Rogers-Veraart grouped systemic risk measures are presented. Two- and

three-group financial networks are generated with mutual liabilities and random

operating cash flows. In addition, sensitivity analyses are performed for two-

group networks by changing various parameters of the generated networks and

the corresponding grouped systemic risk measures.

In Chapter 7, an overview of this study and some suggestions for future research
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are provided.

1.1 Problem Definition

This study unites two research areas: network models of systemic risk and sys-

temic risk measures. In the scope of network models of systemic risk, there are

three main objectives of this thesis. The first one is to extend the Eisenberg-

Noe network model by relaxing the non-negativity assumption for operating cash

flows. Clearing vectors in the original Eisenberg-Noe network model have a nice

mathematical programming characterization in terms of an optimization prob-

lem with linear constraints. Hence, the second objective in this area is to for-

mulate mathematical programming characterizations of clearing vectors in the

Eisenberg-Noe network model with signed operating cash flows as well as in the

Rogers-Veraart network model. To unify the impacts of different members of a fi-

nancial system on the economy, systemic risk measures use aggregation functions,

which are described in Section 2.3. One can refer to [3] for a general framework

of this approach. Hence, the third objective in this scope is to define aggregation

functions in terms of the obtained mathematical programming characterizations

of clearing vectors.

From the systemic risk measures point of view, the objective of this thesis is

to apply the aggregation functions, obtained from the first part of the thesis, in

systemic risk measures and attempt a computation of these systemic risk measures

by applying a Benson type algorithm for non-convex problems, since the studied

systemic risk measures are set-valued and not-necessarily convex. In addition,

it is aimed to perform sensitivity analyses in the computation of systemic risk

measures by generating two-group networks with different parameters.
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Chapter 2

Literature Review

In this chapter, some significant works on network models of systemic risk and on

risk measures relevant to this study are reviewed. In the first part, an overview

of several network models is provided. The notions of monetary (scalar) risk

measure, multivariate (set-valued) risk measure and acceptance set are presented

in the second part. For monetary risk measures, some general definitions given

in Föllmer and Schied [4] are provided. In the last part of this chapter, works

done on the cross-section of network models and risk measures are reviewed and

compared.

2.1 Network Models of Systemic Risk

In this part, network models of systemic risk that were proposed by different

scholars in the period from 2001 up to the present are reviewed. The founda-

tion of this approach is given in Eisenberg and Noe [2]. Suzuki [5] is known

for developing a similar model, independent from Eisenberg and Noe [2], as well

as for introducing cross shareholdings into the model. Cifuentes et al. [6] applies

Eisenberg and Noe’s approach in [2] to the systems with regulatory policies which
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force the defaulting institutions to sell their illiquid assets. Elsinger [7] investi-

gates the seniorities of liabilities in the system. Rogers and Veraart [8] modifies

the Eisenberg-Noe model by adding bankruptcy costs in terms of limited realiza-

tion of assets by defaulting banks. Weber and Weske [9] proposes to investigate

all these factors in a joint model. Kabanov et al. [10] presents a survey on the

works that are devoted to network models of systemic risk.

Eisenberg and Noe [2] is known to be the first work to model the mutual liabil-

ities in financial systems as a directed network, where each node corresponds to

a member of a financial system (e.g. a bank, fund, company or any other finan-

cial institution) and directed arcs correspond to nominal liabilities between the

members of the financial system. The paper introduces the notion of a clearing

payment vector, defining it as a vector of payments that should be made by each

member the system in order to clear mutual liabilities. It is insisted that the fol-

lowing three criteria should be satisfied by a clearing vector: (1) limited liability,

which means that a node cannot pay more than what it owns, (2) the priority of

debt claims over the equity values of nodes, meaning that all nodes should meet

their obligations either in full or until they default, and (3) proportionality, that

is, a defaulting node pays each creditor a portion of its assets that is proportional

to the creditor’s claim on the defaulting node’s assets. Two characterizations of

clearing vectors are provided in the work: a fixed point characterization and a

mathematical programming characterization, which are summarized below.

A system of n ∈ N interconnected institutions is modeled as a quadruplet

(N ,π, p̄,x), where π ∈ Rn×n
+ is a relative liabilities matrix, p̄ ∈ Rn

+ is a total

obligation vector of the system, x ∈ Rn
+ is an operating cash flow vector and

N = {1, . . . , n}.

According to the fixed point characterization, a clearing vector of (N ,π, p̄,x)

is a fixed point of a mapping ΦEN+ : [0, p̄]→ [0, p̄], where [0, p̄] = [0, p̄1]× . . .×
[0, p̄n] is the Cartesian product of n intervals, 0 ∈ Rn is the vector of zeros and

ΦEN+ (p) :=
(
ΠTp+ x

)
∧ p̄, (2.1.1)
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or more explicitly, for each i ∈ N ,

Φ
EN+

i (p) =

(
n∑
j=1

πjipj + xi

)
∧ p̄i, (2.1.2)

where a ∧ b = min{a, b} for real numbers a, b.

On the other hand, according to the mathematical programming characteriza-

tion, for every strictly increasing (with respect to the componentwise ordering in

[0, p̄]) function f : [0, p̄]→ R, an optimal solution of the optimization problem

max f (p)

s.t. p ≤ ΠTp+ x

p ∈ [0, p̄]

(2.1.3)

is a clearing vector of the network (N ,π, p̄,x). (The constraint is understood in

a componentwise manner.)

Eisenberg and Noe [2] proposes a simple and easy-to-interpret algorithm, called

the fictitious default algorithm, to find a clearing vector of the system. Starting

from the assumption that initially all nodes meet their obligations, the aim of the

algorithm is to find a vector of payments at each step. At the next step, using the

current vector of payments and keeping in mind defaulting nodes, it updates the

vector of payments. The algorithm stops either when there is no defaulting node

at the current step or when all nodes default. It is proved that this sequence of

vectors of payments converge to a clearing vector in finitely many steps.

Suzuki [5] introduces a similar approach to evaluate clearing vectors (payoff

functions in the paper) as in Eisenberg and Noe [2]. The difference is that Eisen-

berg and Noe [2] studies interconnectedness only in terms of liabilities, whereas

Suzuki [5] considers cross-holdings of stock among members of a financial system,

as well. Similar to Eisenberg and Noe [2], Suzuki [5] points out that a clearing

vector of a system satisfies a fixed-point property for a general function Φ, which

covers the model in Eisenberg and Noe [2] as a special case, because the model

in Suzuki [5] includes cross-holdings of stock, whereas the model in [2] does not.
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The paper also proposes a version of the fictitious default algorithm, which it calls

the contraction principle, to find a clearing vector. However, unlike [2], Suzuki

[5] does not provide a mathematical programming characterization of clearing

vectors.

Cifuentes et al. [6] investigates systemic risk in terms of liquidity of institutions

in a financial system. In financial markets, externally imposed solvency regula-

tions or institutions’ internal risk regulations require the sale of assets whenever

there is a shock on the economy, and usually the sale decreases the prices of the

assets, because the supply increases while the demand does not. In its turn, this

decrease in price induces even more sales by the institutions. The whole pro-

cess has a disastrous effect on a falling market. Hence, liquidity requirements

on the members are at least as important as capital requirements in preventing

contagious failures.

Unlike earlier works, Cifuentes et al. [6] considers not only direct interconnect-

edness in balance sheet, but also unsteadiness of asset prices. The model in the

paper is based on Eisenberg and Noe’s framework in [2]. However, rather than

assuming that all assets of the institutions are liquid, these assets are differenti-

ated as illiquid and liquid. The “cash” introduced in Eisenberg and Noe [2] now

becomes a market value of all assets of an institution, which is a function of the

prices of illiquid assets. Since a clearing vector of the financial system depends

on the equity values of the entities, it also becomes a function of the prices of

illiquid assets. Hence, in order to find a clearing vector, the unsteadiness of these

prices should be handled.

For the sake of simplicity, it is assumed in [6] that there is only one illiquid

asset. The scholars introduce a function Φprice : [qeq, 1]→ [qeq, 1] such that

Φprice (q) = d−1

(∑
i

si (q)

)

where d−1 is a downward sloping inverse demand function, si (q) the amount of

the illiquid asset sold by an entity i at a price q, and qeq is the equilibrium price
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of the system. Φprice (q) is interpreted as a market-clearing price of the illiquid

asset when this asset is initially evaluated at price q. Hence, a fixed point of

Φprice gives an equilibrium price of the illiquid asset in the system. The obtained

equilibrium price can be used by a regulator of a financial system in order to

decrease liquidity risks and prevent contagions in the system.

Elsinger [7] extends the work in Eisenberg and Noe [2] in several ways. Firstly,

the so-called cross-holdings structure is added to model a financial system, similar

to the one proposed by Suzuki [5], which is done by introducing a holding matrix

of proportional ownership of each institution’s equity by other institutions in the

system. In the model, Elsinger [7] relaxes the non-negativity assumption on the

operating cash flow of an institution, claiming that insisting on non-negativity

of operating cash flows would mean that all liabilities of a node except the most

junior ones are always paid in full. The paper also introduces liabilities outside

the network, however this detail is insignificant in the structure of the model and

proofs, because it is included in the total liability of a node.

As in Suzuki [5], since the cross-holdings play a significant role in the model

in [7], equity values are brought to the forefront. Given a vector of payments, a

vector of equity values of a financial system must be a fixed point of a certain map

given explicitly in the paper. A clearing vector is then defined in terms of this

vector of equity values. In addition, a fixed-point characterization of a clearing

vector is provided, which is a generalization on the version in [2]. The paper

provides existence and uniqueness proofs for a clearing payment vector, as well

as a uniqueness proof for a vector of equity values. In addition, a modification of

the fictitious default algorithm is provided in Elsinger [7] to calculate a clearing

vector. It is asserted that both the modified algorithm and the original one

in Eisenberg and Noe [2] have the same interpretation in terms of institutions

defaulting in different rounds depending on their exposure to systemic risk.

Furthermore, Elsinger [7] introduces a seniority structure of liabilities by as-

suming different classes of seniorities and modifying the matrix of related liabil-

ities accordingly. It is claimed that this modification does not affect the results

on existence and uniqueness of a clearing vector. Two approaches are proposed
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to calculate a clearing vector under a seniority structure of liabilities. The first

one is a modification of the fictitious default algorithm mentioned above and the

second one is a sequential calculation of a clearing vector starting from the most

junior liabilities and assuming that all other claims of higher seniority are satis-

fied in full. If any institution is not able to satisfy the current level of seniority,

payments are reduced next to the most junior and so on. It is pointed out that

if there are no bankruptcy costs, then it is not reasonable to bail out defaulting

institutions. On the other hand, under strictly positive bankruptcy costs, bailing

out defaulting institutions may become reasonable. In addition, it is asserted that

introducing bankruptcy costs does not affect the existence of a clearing vector.

Rogers and Veraart [8] investigates contagion in a financial system, where

institutions are interconnected in a way that is presented in Eisenberg and Noe

[2]. It is claimed that, in reality, failing institutions are not able to realize their

assets in full to meet their obligations and this condition depresses the system

even further. Thus, the model in [8] includes default (or bankruptcy) costs.

The model in the paper is based on the Eisenberg-Noe network model in

[2]. A system of interconnected financial institutions is modeled as a sextuple

(N ,π, p̄,x, α, β), where π ∈ Rn×n
+ is a relative liabilities matrix, p̄ ∈ Rn

+ is a to-

tal obligation vector of the system, x ∈ Rn
+ is an operating cash flow vector and

N = {1, . . . , n}. These parameters are in line with the Eisenberg-Noe network

model. The parameters α, β ∈ (0, 1] represent default costs. They are fractions

of the values realized from the liquidation of the defaulting institution’s assets

and from the payments obtained from other entities, respectively.

As in Eisenberg and Noe [2], a clearing vector is defined as an n-dimensional

vector of payments made by all members of the financial system, which is a

fixed point of a mapping ΦRV+ : [0, p̄] → [0, p̄], defined as follows: for each

i ∈ {1, . . . , n},
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Φ
RV+

i (p) :=

p̄i if p̄i ≤ xi +
∑n

j=1 πjipj,

αxi + β
∑n

j=1 πjipj otherwise.
(2.1.4)

Even though the uniqueness of a clearing vector in this model is not guaranteed,

the existence can still be proved, which is done in [8]. In addition, a modification

of the fictitious default algorithm proposed in Eisenberg and Noe [2], which is

called the greatest clearing vector algorithm, is provided for the construction of

clearing vectors.

The second main focus of the work lies on the issue of bailing out failing

institutions. Rogers and Veraart [8] claim that in the absence of default costs,

there is no reason for solvent institutions to rescue insolvent ones. However, if

there are strictly positive default costs, then it might be beneficial for some subset

of solvent institutions to take over insolvent institutions. This subset of solvent

institutions is called a rescue consortium and is characterized by two conditions,

an ability to rescue insolvent institutions and an incentive to do so.

Unlike Eisenberg and Noe [2], Rogers and Veraart [8] does not provide a math-

ematical programming characterization of clearing vector in the network model.

Defining a mixed-integer linear programming characterization of clearing vectors

in Rogers-Veraart network model and implementing it in an aggregation function

of a systemic risk measure is one of the main contributions of this thesis which is

discussed in detail in Chapters 3 and 4.

For a detailed review of network models on systemic risk one can refer to

Kabanov et al. [10]. It is a survey of the main results on clearing systems. The

common focus in these works is the existence and uniqueness of clearing vectors

in the corresponding network models of systemic risk. The survey [10] consists of

several network models considered in the literature, including the ones reviewed

above, and discussions about the algorithms provided in the reviewed papers for

calculating fixed point solutions. In particular, Kabanov et al. [10] considers the

models proposed in Eisenberg and Noe [2], Rogers and Veraart [8], Suzuki [5],
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Elsinger [7], Fisher [11] and some other models with illiquid assets and price

impact.

Among the papers reviewed in Kabanov et al. [10], Fisher [11] adds deriva-

tive liabilities with different seniorities to the usual debts in the seniority model

proposed in Elsinger [7]. Thus, the model consists of two types of liabilities, rep-

resented by two sets of matrices with seniorities. The usual direct liabilities in

the model are fixed, as input parameters to the network, whereas the derivative

liabilities may depend on clearing vectors and, thus, are functions of clearing

vectors. Fisher [11] provides some results on existence of clearing vectors in such

models.

In addition to the above works, the survey [10] reviews two more network

models, where the main assumption is that the nodes in a network may own not

only cash, but also several types of illiquid assets. In the first model it is assumed

that institutions sell illiquid assets in equal proportions. The pricing in these

assets is modeled by some monotone decreasing and continuous inverse demand

function. Thus, when the clearing is applied, any node either pays its debts with

cash or sells its illiquid assets to generate more cash if its initial cash amount is

not enough. Conditions for existence and uniqueness of clearing vectors in such

systems are provided. The second model assumes that each institution sells its

illiquid assets independently from other members of the system according to its

individual strategy. In such a network, the main goal of each institution is to

maximize the value of its illiquid assets given a clearing vector, market prices of

the assets and a total sale of each illiquid asset by the other entities.

Weber and Weske [9] integrates many of the factors that contribute to systemic

risk into one network model. These factors include cross-holdings introduced in

Suzuki [5] and Elsinger [7], fire sales (or “forced” sale of assets) investigated in

Cifuentes et al. [6] and bankruptcy costs that were viewed in Elsinger [7] and

Rogers and Veraart [8]. Weber and Weske [9] takes the Eisenberg-Noe network

model as a base and introduces all the above factors simultaneously. The notion

of equilibrium in the paper consists of two parts: a clearing vector and a clearing

price of a single representative illiquid asset (for the sake of simplicity). While
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uniqueness of an equilibrium is not discussed, a result for its existence is provided.

The paper also provides two complex algorithms that calculate the greatest price-

payment equilibrium and the least price-payment equilibrium. These algorithms

are based on the fictitious default algorithm introduced in Eisenberg and Noe [2]

and on the procedures of calculating clearing vectors in Rogers and Veraart [8]

involving bankruptcy costs.

Weber and Weske [9] also provides a series of case studies, where systemic risk

factors such as bankruptcy costs, forced sales of illiquid assets and cross-holdings

are investigated both jointly and separately. Having investigated these factors

separately, it is concluded that bankruptcy costs and fire sales increase the threat

of systemic default. On the other hand, cross-holdings seem to be beneficial,

under the condition that they can be exchanged for liquid assets. Under the joint

model, bankruptcy costs prove to be more significant than other factors. The

paper concludes that if these costs are not too large, then a higher integration

of cross-shareholdings decreases the number of defaults. Hence, for regulatory

institutions, a good policy is to stimulate cross shareholdings. However, this

policy seems to be inefficient for high bankruptcy costs.

2.2 Risk Measures

In this part, the literature on risk measures is summarized, including the seminal

work by Artzner et al. [12] and works on scalar and set-valued risk measures.

2.2.1 Scalar (Univariate) Risk Measures

Quantifying risk has become a popular subject of study in late 90’s. The seminal

paper Artzner et al. [12] introduces an axiomatic approach for measuring risk.

First, a risky position is defined in terms of random future values. Second, the

notions of risk measure and acceptance set are introduced. Artzner et al. [12]

provides axioms on both acceptance sets and risk measures that reflect logical
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behavior in financial decision making. Hence, the risk measures that comply

with these axioms are called coherent risk measures. Artzner et al. [12] provides

several results that relate acceptance sets and coherent risk measures.

Let (Ω,F ,P) be a probability space. In [12] risky financial position is defined

as a random variable X : Ω→ R. Let L∞(R) be the linear space of all essentially

bounded financial positions X : Ω → R, where two random variables are con-

sidered identical if they are equal P-almost surely, and, for any X, Y ∈ L∞(R),

we write X ≤ Y when P{X > Y } = 0. Consider the following properties for a

mapping ρ : L∞(R)→ R.

• Monotonicity : X ≤ Y implies ρ (X) ≥ ρ (Y ), for every X, Y ∈ L∞(R).

• Translation property (cash additivity): ρ (X + µ) = ρ (X) − µ, for every

µ ∈ R, X ∈ L∞(R).

• Convexity : ρ (λX + (1− λ)Y ) ≤ λρ (X)+(1− λ) ρ (Y ), for every λ ∈ [0, 1],

X, Y ∈ L∞(R).

• Positive homogeneity : ρ (ηX) = ηρ (X), for every η ≥ 0, X ∈ L∞(R).

A mapping ρ is called a monetary risk measure if it satisfies monotonicity

and translation property. Monotonicity is interpreted as follows: between two

financial positions, if the future value of one of them is greater than that of the

other one under any scenario, then the former one is less risky. The translation

property is motivated by the interpretation of ρ (X) as a capital requirement for

X ∈ L∞(R). If some deterministic amount of cash is added to X, then its capital

requirement will be reduced by the same amount.

If a monetary risk measure satisfies convexity, then it is called a convex risk

measure. Convexity corresponds to a thesis: “Diversification reduces risk.” If,

in addition to convexity, a monetary risk measure satisfies positive homogeneity,

then it is called a coherent risk measure.

In Föllmer and Schied [4], for a given mapping ρ, the corresponding acceptance
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set is defined as

Aρ := {X ∈ L∞(R)|ρ (X) ≤ 0}. (2.2.1)

The following statements summarize the relationship between ρ and Aρ.

• If ρ is a risk measure, then X ∈ Aρ, Y ≥ X imply Y ∈ Aρ, for every

X, Y ∈ L∞(R).

• If ρ is a convex risk measure, then Aρ is a convex subset of L∞(R).

• If ρ is a coherent risk measure, then Aρ is a convex cone.

Moreover, ρ can be recovered from Aρ by

ρ (X) = inf{µ ∈ R|X + µ ∈ Aρ}. (2.2.2)

The following examples of scalar risk measures are provided in [4].

Example 2.2.1 (Worst-case risk measure). The worst-case risk measure ρmax

is defined by

ρmax (X) = sup
Q∈M1

EQ[−X], (2.2.3)

where M1 is the class of all probability measures on (Ω,F) that are absolutely

continuous with respect to P. Note that ρmax is a coherent risk measure.

Example 2.2.2 (Average value at risk). The average value at risk (or the

conditional value at risk, or expected shortfall) at level λ ∈ (0, 1] of a position

X ∈ L∞(R) is given by

AV@Rλ (X) =
1

λ

∫ λ

0

V@Rθ (X) dθ, (2.2.4)

where

V@Rλ (X) = inf{µ ∈ R|P[X + µ < 0] ≤ λ} (2.2.5)

is the value at risk at level λ ∈ (0, 1] of X. The average value at risk is a coherent

risk measure.
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Example 2.2.3 (Entropic risk measure). The entropic risk measure of a

position X ∈ L∞(R) is defined by

ρη (X) =
1

η
logE[e−ηX ], (2.2.6)

where η > 0 is a given constant. The entropic risk measure is a convex but not

coherent risk measure.

2.2.2 Set-Valued (Multivariate) Risk Measures

Hamel et al. [13] gives a general representation of multivariate risk measures and

corresponding acceptance sets as follows. Given a probability space (Ω,F ,P),

let L∞(Rn) be the linear space of all essentially bounded n-dimensional random

variables X : Ω → Rn, where two random variables are considered identical if

they are equal P-almost surely. Consider the following properties for a set-valued

mapping R : L∞(Rn)→ 2Rn
.

• Monotonicity : X ≥ Y implies R (X) ⊇ R (Y ) for every X,Y ∈ L∞(Rn).

• Translation property : R (X + z) = R (X) − z for every X ∈ L∞(Rn),

z ∈ Rn.

• Convexity : R (λX + (1− λ)Y ) ⊇ λR (X) + (1− λ)R (Y ), for every λ ∈
(0, 1), X,Y ∈ L∞(Rn).

• Positive homogeneity : R (λX) = λR (X), for every λ ∈ (0,+∞), X ∈
L∞(Rn).

A set-valued risk measure is a function R : L∞(Rn) → 2Rn
which satisfies

monotonicity, translation property and R (0) 6= ∅. For a given financial position

X, the set R (X) consists of all capital allocation vectors that, added to X

(componentwisely), make it acceptable as in monetary risk measures.
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Given a set-valued risk measure R : L∞(Rn)→ 2Rn
, the corresponding accep-

tance set is defined as

AR = {X ∈ L∞(Rn)|0 ∈ R (X)} . (2.2.7)

In other words, a financial position X is acceptable in terms of R, if it does not

require an additional capital allocation.

Hamel et al. [13] provides the following results that relate set-valued risk mea-

sures and acceptance sets in L∞(Rn).

• If R is a set-valued risk measure, then AR + L∞
(
Rn

+

)
⊆ AR.

• If R is a convex set-valued risk measure, then AR is a convex subset of

L∞(Rn).

• If R is a positively homogeneous set-valued risk measure, then AR is a cone.

Moreover, a set-valued risk measure R can be recovered from AR by

R (X) = {z ∈ Rn|X + z ∈ AR} . (2.2.8)

2.3 Systemic Risk Measures

Chen et al. [14] applies an axiomatic approach to risk measures proposed by

Artzner et al. [12] to systemic risk. For the sake of clarity, results are presented in

a financial setting. However, it is argued that the notion of systemic risk measure

can be applied to analyze the risk in any system that consists of individual parts

that contribute to that risk. In Chen et al. [14], an economy (or financial market)

is defined as a matrix of random profits of finite number of firms (let there be

n firms in the economy) under scenarios from Ω, a finite set of states of nature,

where each column of the matrix corresponds to the profits of the firms under

a particular scenario. Thus, given any probability distribution, without loss of

17



generality one can consider the economy as a random vector X : Ω → Rn of

income profiles of the firms. Here, negative entries of X (ω) under some scenario

ω ∈ Ω would imply negative incomes of the corresponding firms. Assume L∞(Rn)

be a vector space of all such random vectors. Let 1 ∈ L∞(Rn) be a random vector

whose entries are equal to one under any scenario.

In [14], the notions of systemic risk measure and aggregation function are

introduced. A systemic risk measure is a function ρsys : L∞(Rn) → R that

satisfies the following conditions.

• Monotonicity : X ≤ Y implies ρsys (X) ≥ ρsys (Y ), for every X,Y ∈
L∞(Rn).

• Positive homogeneity : ρsys (ηX) = ηρsys (X), for every η ∈ R+, X,Y ∈
L∞(Rn).

• Preference consistency : if ρsys (X (ω)1) ≥ ρsys (Y (ω)1) for every ω ∈ Ω,

then ρsys (X) ≥ ρsys (Y ), for every X,Y ∈ L∞(Rn).

• Outcome convexity : ρsys (λX + (1− λ)Y ) ≤ λρsys (X) + (1− λ) ρsys (Y ),

for every λ ∈ [0, 1], X,Y ∈ L∞(Rn).

• Risk convexity : if ρsys (Z (ω)1) = λρsys (X (ω)1)+(1− λ) ρsys (Y (ω)) for

every ω ∈ Ω and λ ∈ [0, 1], then ρsys (Z) ≤ λρsys (X) + (1− λ) ρsys (Y ),

for every X,Y ,Z ∈ L∞(Rn).

Chen et al. [14] defines an aggregation function as a function Λ : Rn → R that

satisfies the following properties.

• Monotonicity : if x ≥ y, then Λ (x) ≥ Λ (y), for every x,y ∈ Rn.

• Positive homogeneity : Λ (ηx) = ηΛ (x), for every η ∈ R+, x,y ∈ Rn.

• Convexity : Λ (λx+ (1− λ)y) ≤ λΛ (x)+(1− λ) Λ (y), for every λ ∈ [0, 1],

x,y ∈ Rn.
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The main result of the paper is the following theorem, which allows to extend

a one-dimensional risk measure to a systemic risk measure with help of an aggre-

gation function, which summarizes an income profile of the economy under some

scenario into a single number, thus, making it possible to measure systemic risk

via a one-dimensional risk measure.

Theorem 2.3.1. [14, Theorem 1] A function ρsys : L∞(Rn) → R is a systemic

risk measure if and only if there exists an aggregation function Λ : Rn → R and

a coherent one-dimensional risk measure ρ : L∞(R) → R such that ρsys is the

composition of ρ and Λ, that is, ρsys (X) = ρ (Λ (X)) for every X ∈ L∞(Rn).

It is emphasized that the main factor that makes this result possible is the

preference consistency axiom mentioned above, which is a novel axiom and one

of the main contributions of the paper [14]. In addition, it is claimed that the

result can be modified to cases where either monotonicity, positive homogeneity or

convexity does not hold, so long as the preference consistency holds. In particular,

the last part of the paper is devoted to a detailed investigation of a matter when

convexity does not hold, which yields a new class of systemic risk measures called

homogeneous systemic risk measures.

Feinstein et al. [15] proposes a general approach to systemic risk. In the paper,

it is maintained that systemic risk consists of two components: a cash-flow model,

which captures the randomness of outcomes for the entities in the system, and an

acceptability criterion, which is based on the notion of acceptance set in Artzner

et al. [12].

A cash-flow model in the framework of [15] is described in terms of a non-

decreasing random field F : Rn → L∞(Rn), where L∞(Rn) is a set of n-

dimensional random vectors on some probability space and for each cash-flow

vector z ∈ Rn, Fz ∈ L∞(Rn) is a random variable representing some random

outcome in the system, which then can be interpreted according to the assumed

setting.

For a given random field F , a systemic risk measure R is defined as a set of
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additional capital allocations by

R (F ) = {z ∈ Rn|Fz ∈ A} , (2.3.1)

where A is some acceptance set. The resulting systemic risk measure is a set-

valued risk measure discussed in Hamel et al. [13].

As special cases, Feinstein et al. [15] provides the notions of insensitive and

sensitive (to capital levels) random fields. Letting Λ : Rn → R be an aggregation

function, as defined in Chen et al. [14], a random field F : Rn → L∞(Rn) can be

characterized with

Fz := Λ (X) +
n∑
i=1

zi, z ∈ Rn, (2.3.2)

for the insensitive case, and with

Fz := Λ (X + z) , z ∈ Rn, (2.3.3)

for the sensitive case, whereX is some n-dimensional random vector representing,

for instance, the values or wealths of entities at some future date, and z ∈ Rn is

a capital level.

Axioms for risk measures, such as translation property, monotonicity, convexity

proposed in previous works are adjusted to this framework and defined accord-

ingly. In addition, the paper proposes a grid search algorithm to approximately

solve set-valued systemic risk measures with a specified level of accuracy and

provides numerical case studies.

Biagini et al. [3] independently proposes a general framework for systemic

risk measures similar to the one in Feinstein et al. [15]. Unlike Feinstein et al.

[15], where systemic risk measures are characterized as set-valued risk measures,

Biagini et al. [3] generalize the axiomatic approach to systemic risk measures

introduced in Chen et al. [14], where systemic risk measures are defined as com-

positions of an aggregation function and a monetary risk measure. In [3], sys-

temic risk measures are interpreted as minimum capital allocations to make the

corresponding systems acceptable. Here, acceptability notion is motivated by
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acceptance sets in Artzner et al. [12], but in terms of multidimensional accep-

tance sets, that is, subsets of L∞(Rn). Similar to Feinstein et al. [15], Biagini

et al. [3] classifies systemic risk measures into two groups, insensitive and sensitive

systemic risk measures.

Consider a system of n entities, where X ∈ L∞(Rn) is a random vector repre-

senting random profits of entities at some fixed future date. Then, an insensitive

systemic risk measure is defined as

ρins (X) := inf {µ ∈ R|Λ (X) + µ ∈ A} , (2.3.4)

and interpreted as the minimum cost of recovering the system after a random

shock, whereas a sensitive systemic risk measure is defined as,

ρsen (X) := inf

{
n∑
i=1

zi

∣∣∣z = (z1, . . . , zn)T ∈ Rn,Λ (X + z) ∈ A

}
, (2.3.5)

and interpreted as a minimum capital allocation for each entity to avoid unac-

ceptable consequences of a random shock. Here, A ∈ L∞(R) is some acceptance

set which imposes some acceptability criterion, and Λ : Rn → R is an aggregation

function that calculates the effect that random shock X has on the economy.

Biagini et al. [3] generalizes systemic risk measures in multiple directions.

Firstly, the notion of scenario-dependent (capital) allocations is introduced. Pre-

viously, in the context of systemic risk measures, only deterministic capital allo-

cations were considered in the literature. Secondly, systemic risk measures are

investigated under multi-dimensional acceptance sets, which makes it possible to

analyze acceptability of random positions of the entities individually. The paper

provides a theoretical framework, which represent a systemic risk measure and its

properties under given generalizations. In addition, Biagini et al. [3] investigates

previously studied families of systemic risk measures from this new perspective.

Ararat and Rudloff [16] studies representability of multivariate systemic risk

measures from a convex duality perspective. Two types of multivariate systemic
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risk measures are considered in the paper, insensitive and sensitive. The def-

initions of set-valued systemic risk measures given in Feinstein et al. [15] are

reformulated in the following fashion. An insensitive systemic risk measure is

formulated as

Rins (X) :=

{
z ∈ Rn

∣∣∣Λ (X) +
n∑
i=1

zi ∈ A

}
, (2.3.6)

for every X ∈ L∞ (Rn), where L∞ (Rn) is the space of n-dimensional essentially

bounded random vectors. Here, A ⊆ L∞ (R) is an acceptance set that is in line

with the notions from Artzner et al. [12]. It is remarked that an insensitive risk

measure has its one-dimensional counter-part, a scalar systemic risk measure ρins,

formulated in Biagini et al. [3],

ρins (X) = inf
z∈Rn

{
n∑
i=1

zi

∣∣∣Λ (X) +
n∑
i=1

zi ∈ A

}
, (2.3.7)

in the sense that Rins and ρins can determine each other.

A sensitive systemic risk measure is formulated as

Rsen (X) :=
{
z ∈ Rn

∣∣∣Λ (X + z) ∈ A
}
. (2.3.8)

The paper investigates the above formulations of Rins and Rsen in the scope of

the general framework for multivariate risk measures proposed by Hamel and

Heyde [17]. It proves that Rins is a set-valued convex risk measure that lacks

translation and positive homogeneity properties in general. On the other hand,

Rsen is proved to be a set-valued convex risk measure, which satisfies all the listed

properties except positive homogeneity. However, the paper provides sufficient

conditions for both Rins and Rsen to satisfy positive homogeneity. Even though

Rsen cannot be recovered from ρins, due to its closedness and convexity, it can be

scalarized as follows,

ρsenw (X) := inf
z∈Rn

{
wTz

∣∣∣Λ (X + z) ∈ A
}
, (2.3.9)

where w ∈ Rn
+\ {0}.
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The main contribution of [16] lies in dual representations for both insensitive

and sensitive systemic risk measures, and for their scalarizations. These repre-

sentations are formulated in terms of probability measures and weight vectors,

and interpreted as the capital allocations of the entities in the presence of model

uncertainty and weight ambiguity. The paper applies these representations to ex-

amples of systemic risk measures defined by some known and previously studied

aggregation functions and monetary risk measures. These examples include total

profit-loss, total loss, entropic, Eisenberg-Noe, resource allocation and network

flow models.
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Chapter 3

Network Models of Systemic Risk

In this chapter, the Eisenberg-Noe and the Rogers-Veraart network models are

presented in detail. A modified model is introduced for the Eisenberg-Noe net-

work model by assuming signed operating cash flows. For both the Eisenberg-Noe

network model with signed operating cash flows and the Rogers-Veraart network

model, novel mixed-integer linear programming formulations of clearing vectors

are proposed. The related notation and assumptions are summarized below.

Let n ∈ {1, 2, . . .}. For real numbers a, b and vectors a = (a1, . . . , an)T, b =

(b1, . . . , bn)T ∈ Rn, the following operations are defined:

• a ∧ b = min {a, b} and a ∨ b = max {a, b}.

• a ∧ b = (a1 ∧ b1, . . . , an ∧ bn)T and a ∨ b = (a1 ∨ b1, . . . , an ∨ bn)T.

• a+ = 0 ∨ a = max {0, a} and a− = 0 ∨ (−a) = max {0,−a}.

• a+ =
(
a+

1 , . . . , a
+
n

)T
and a− =

(
a−1 , . . . , a

−
n

)T
.

• a� b = (a1b1, . . . , anbn)T is a Hadamard product (componentwise multipli-

cation).

• 0 = (0, . . . , 0)T ∈ Rn is the vector of zeros.
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• 1 = (1, . . . , 1)T ∈ Rn is the vector of ones.

• a ≤ b if and only if ai ≤ bi for each i ∈ {1, . . . , n}.

• Assume a ≤ b, then [a, b] = [a1, b1] × . . . × [an, bn] ⊆ Rn is a Cartesian

product of n intervals.

• ‖a‖∞ = max
i∈{1,...,n}

|ai|.

3.1 Eisenberg-Noe Network Model

In this section, the original Eisenberg-Noe network model in [2] and the corre-

sponding aggregation function are provided for completeness.

Definition 3.1.1. A quadruple (N ,π, p̄,x) is called an Eisenberg-Noe network

if N = {1, . . . , n} for some n ∈ N, π = (πij)i,j∈N ∈ Rn×n
+ is a stochastic matrix

with πii = 0 and
∑n

j=1 πji < n for each i ∈ N , p̄ = (p̄1, . . . , p̄n)T ∈ Rn
++, and

x = (x1, . . . , xn)T ∈ Rn
+.

In Definition 3.1.1, N is an index set of nodes in a network that represents a

financial system of n institutions. For every i ∈ N , p̄i > 0 is the total amount of

liabilities of node i and the vector p̄ is called the total obligation vector.

For every i, j ∈ N such that i 6= j, πij > 0 is the fraction of the total liability

of node i owed to node j and the stochastic matrix π is called the matrix of

relative liabilities. For every i ∈ N , the assumption πii = 0 implies that node i

cannot have liabilities to itself. By
∑n

j=1 πji < n for every i ∈ N , it is assumed

that no node owns all the claims in the network. Note that, given p̄ and π, for

every i, j ∈ N , the nominal liability of node i to node j, lij, can be calculated as

lij = πij p̄i.

For each i ∈ N , xi ≥ 0 is the operating cash flow of node i and the vector x

is called the operating cash flow vector.
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Let (N ,π, p̄,x) be an Eisenberg-Noe network. For each i ∈ N , let pi ≥ 0 be

the sum of all payments made by node i to the other nodes in the network. Then

p = (p1, . . . , pn)T ∈ Rn
+ is called a payment vector.

Definition 3.1.2. A vector p ∈ [0, p̄] is called a clearing vector for (N ,π, p̄,x)

if it satisfies the following properties:

• Limited liability: for each i ∈ N , pi ≤
∑n

j=1 πjipj + xi, which implies that

node i cannot pay more than it has.

• Absolute priority: for each i ∈ N , either pi = p̄i or pi =
∑n

j=1 πjipj + xi,

which implies that node i has to meet its obligations in full. Otherwise, it

pays as much as it has.

Definition 3.1.3. Let ΦEN+ : [0, p̄]→ [0, p̄] be defined by

ΦEN+ (p) :=
(
πTp+ x

)
∧ p̄. (3.1.1)

Remark 3.1.4. By a discussion in [2], a clearing vector for (N ,π, p̄,x) is a fixed

point of the mapping ΦEN+ in (3.1.1).

Recall, from (2.1.3), the relation between the optimization problem with linear

constraints in Eisenberg and Noe [2] and the fixed point problem ΦEN+ (p) = p.

Its proof is given for completeness, as well as for its generalizations in the coming

sections. Note that a function f : Rn → R is called strictly increasing if and only

if a ≤ b and a 6= b imply f (a) < f (b) for every a, b ∈ Rn.

Proposition 3.1.5. [2, Lemma 4] Let f : Rn → R be a strictly increasing func-

tion. Consider the following optimization problem with linear constraints:

max f (p)

s.t. p ≤ πTp+ x

p ∈ [0, p̄] .

(3.1.2)

If p ∈ Rn
+ is an optimal solution to this optimization problem, then it is a clearing

vector for (N ,π, p̄,x).

26



Proof. Let p be an optimal solution to (3.1.2). Then p satisfies limited liability

by the feasibility of the constraints p ≤ πTp+ x.

Now assume p does not satisfy absolute priority. Then, there exists a node

i ∈ N such that

pi <

n∑
j=1

πjipj + xi and pi < p̄i.

Now let pε ∈ Rn be equal to p in all components except the ith one, and let

pεi = pi + ε,

where ε > 0 is sufficiently small
(

for instance, ε = min
{
p̄i−pi

2
,
∑n

j=1 πjipj+xi−pi
2

})
to ensure

pεi < p̄i and pεi <
n∑
j=1

πjip
ε
j + xi.

Now, for each k ∈ N such that k 6= i,

n∑
j=1

πjkp
ε
j + xk =

∑
j∈N
j 6=i

πjkpj + πik (pi + ε) + xk =
n∑
j=1

πjkpj + xk + επik ≥ pk = pεk,

by the feasibility of p. Hence, pε is a feasible solution to (3.1.2).

Since pε ≥ p with pε 6= p and f is a strictly increasing function, it holds

f (pε) > f (p), which is a contradiction to the optimality of p. Hence, p satisfies

absolute priority and is a clearing vector for (N ,π, p̄,x).

Remark 3.1.6. Observe that the optimization problem in Proposition 3.1.5 can

be reformulated as
max f (p)

s.t. Ap ≤ b

p ≥ 0

(3.1.3)

where

A =

[
I − πT

I

]
∈ R2n×n, b =

[
x

p̄

]
∈ R2n,
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and I is the n× n identity matrix.

Each member in a network has its impact on economy. Aggregation functions

summarize these individual effects and provide a total impact of the network on

economy. They play a significant role in evaluating systemic risks and in the

computation of systemic risk measures. The aggregation function Λ : Rn → R
for the Eisenberg-Noe network (N ,π, p̄,x) is defined as

Λ (x) := sup
{
f (p)

∣∣∣p ≤ πTp+ x,p ∈ [0, p̄]
}
, (3.1.4)

where f : Rn → R is a strictly increasing function.

3.2 Signed Eisenberg-Noe Network Model

In the original Eisenberg-Noe network model, it is assumed that the operating

cash flow vector is nonnegative. In reality, however, it is not always the case. It

may happen that an institution has liabilities to external entities not modeled

as part of the network resulting in a negative operating cash flow or positive

operating costs.

Definition 3.2.1. A quadruple (N ,π, p̄,x) is called a signed Eisenberg-Noe net-

work if N , π and p̄ are defined as in Definition 3.1.1, and x = (x1, . . . , xn)T ∈
Rn.

Note that Definition 3.2.1 removes the nonnegativity assumption on the oper-

ating cash flow vector x. The objective is to modify the original Eisenberg-Noe

network model and calculate systemic risk measures for this network model. Two

approaches are considered to reach this objective.

The first approach, given in Section 3.2.1 below, is provided for complete-

ness and motivated by a conjecture in Eisenberg and Noe [2], stating that, given

(N ,π, p̄,x) with a signed operating cash flow, negative operating cash flows in
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some nodes can be regarded as liabilities to some additional node, which itself

has neither obligations nor operating cash flow, and that is why the operating

cash flow vector x can be assumed to be nonnegative without loss of generality.

Applying this conjecture directly without any seniority assumptions, a new net-

work
(
Ñ , π̃x, ˜̄px, x̃x

)
of n+ 1 nodes is introduced, where the matrix of relative

liabilities π̃x and the total obligation vector ˜̄px depend on the signed operating

cash flow vector x from the initially given network (N ,π, p̄,x). It turns out

that the obtained network
(
Ñ , π̃x, ˜̄px, x̃x

)
lacks a solid interpretation in terms

of the original network (N ,π, p̄,x), even though this approach is intuitive and

valid for the fictitious default algorithm described in Eisenberg and Noe [2], in

the sense that this way a clearing vector for the original network can be found.

Nevertheless, this approach is provided in detail to justify and give some insight

for the second approach.

In the second approach, some seniority conditions on performing clearing are

imposed, which results in modifying not the network (N ,π, p̄,x) itself, but the

mapping ΦEN+ in (3.1.1). The resulting network (N ,π, p̄,x) is still a network

with n nodes, however, a clearing vector for the network is now determined by

solving a fixed point problem of the new mapping ΦEN, which is discussed in more

detail in Section 3.2.2.

3.2.1 A Naive Approach

Let (N ,π, p̄,x) be a signed Eisenberg-Noe network. In this approach, Eisenberg

and Noe’s conjecture is applied directly, which states that any such network can

be extended by an additional node, which may be seen as “society,” to which each

node with a negative operating cash flow owe the absolute value of that amount.

Hence, N is replaced with a new index set Ñ = N ∪ {n+ 1} = {1, . . . , n+ 1}.
If the previous section is followed and an aggregation function in terms of an LP

problem is formulated, then the resulting optimization problem appears to be

non-linear in x, as discussed below.

Consider negative entries of the operating cash flow vector x as liabilities of the
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corresponding nodes to the additional node, “society.” Now the total obligation

vector, the matrix of relative liabilities and the operating cash flow vector of the

extended network can be constructed as follows.

For every i ∈ Ñ , let the total amount of liabilities of node i be defined as

˜̄pi :=

p̄i + x−i if i ∈ N ,

0 if i = n+ 1.

The vector ˜̄px = (˜̄p1, . . . , ˜̄pn+1)
T ∈ Rn

+ is called the extended total obligation

vector. Observe that ˜̄pn+1 = 0 because the “society” does not have any obligations

to the nodes.

For every i ∈ Ñ , j ∈ Ñ , let the fraction of the total liability of node i owed to

node j be defined as

π̃ij :=


πij p̄i

p̄i+x
−
i

if i, j ∈ N ,
x−i

p̄i+x
−
i

if i ∈ N , j = n+ 1,

0 if i = n+ 1.

(3.2.1)

The matrix π̃x = (π̃ij)i,j ∈ R(n+1)×(n+1)
+ is called the extended matrix of relative

liabilities. Then, for each i, j ∈ Ñ , a liability of node i to node j is defined

by l̃ij := π̃ij ˜̄pi. Hence, liabilities between nodes i, j ∈ N remain the same, any

negative operating cash flow of node i ∈ N becomes a liability to node n + 1,

society, and society itself does not have any obligations to the other nodes. For

each i ∈ Ñ , l̃ii = 0 still holds. In other words, a node cannot have liabilities to

itself.

Now, for every i ∈ Ñ , let the nonnegative operating cash flow of node i be

defined as

x̃i =

x
+
i if i ∈ N ,

0 if i = n+ 1.

The vector x̃ = (x̃1, . . . , x̃n+1)T ∈ Rn
+ is called the extended operating cash flow
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vector. Even though π̃x is not a stochastic matrix and the modified network(
Ñ , π̃x, ˜̄px, x̃x

)
is not an Eisenberg-Noe network in the sense of Definition 3.1.1,(

Ñ , π̃x, ˜̄px, x̃x

)
still satisfies the original Eisenberg-Noe network definition with

n+ 1 nodes described in [2] since x̃ is nonnegative.

If x is nonnegative, then
(
Ñ , π̃x, ˜̄px, x̃x

)
reduces an Eisenberg-Noe network

originally described in [2] with n nodes and one isolated node, which has no

relationship with the other nodes in the sense of mutual liabilities.

Let i ∈ Ñ and pi the sum of all payments done by node i to all other nodes in

the network. Then p = (p1, . . . , pn+1)T ∈ Rn+1
+ is a payment vector. A vector p ∈[

0, ˜̄px
]

is a clearing vector for
(
Ñ , π̃x, ˜̄px, x̃x

)
if it satisfies limited liability and

absolute priority in Definition 3.1.2. For a clearing vector p = (p1, . . . , pn+1)T for(
Ñ , π̃x, ˜̄px, x̃x

)
, it can be observed that pn+1 = 0 by absolute priority, because

the society does not have any liabilities inside the network.

According to the fixed point characterization in Eisenberg and Noe [2], a clear-

ing vector for
(
Ñ , π̃x, ˜̄px, x̃x

)
is a fixed point of a mapping Φ̃EN :

[
0, ˜̄px

]
→[

0, ˜̄px
]
, where

Φ̃EN (p) :=
(
π̃T
xp+ x̃

)
∧ ˜̄px. (3.2.2)

By Eisenberg and Noe [2],
(
Ñ , π̃x, ˜̄px, x̃x

)
has a clearing vector, or, in other

words, the fixed point problem Φ̃EN+ (p) = p has a solution in
[
0, ˜̄px

]
, where

0,p ∈ Rn+1.

Remark 3.2.2. Observe that if each node in (N ,π, p̄,x) has a nonnegative

operating cash flow then Φ̃EN becomes a simple extension of the function ΦEN+

in the original Eisenberg-Noe network model from Rn to Rn+1.

Recall Proposition 3.1.5, the relationship between the optimization problem in

(3.1.2) and the fixed point problem ΦEN+ (p) = p. A similar result is provided

for
(
Ñ , π̃x, ˜̄px, x̃x

)
.

Corollary 3.2.3. Let f : Rn+1 → R be a strictly increasing function. Consider
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the following optimization problem:

max f (p)

s.t. p ≤ π̃T
xp+ x+

p ∈
[
0, p̄+ x−

] (3.2.3)

If p ∈ Rn+1
+ is an optimal solution to this optimization problem, then it is a

clearing vector for
(
Ñ , π̃x, ˜̄px, x̃x

)
.

The proof of Corollary 3.2.3 follows directly from Proposition 3.1.5 because(
Ñ , π̃x, ˜̄px, x̃x

)
is a network of n + 1 nodes described in the original network

model in Eisenberg and Noe [2].

The aggregation function Λ̃ : Rn → R for
(
Ñ , π̃x, ˜̄px, x̃x

)
is defined as

Λ̃ (x) := sup
{
f (p)

∣∣∣p ≤ π̃T
xp+ x+,p ∈

[
0, p̄+ x−

]}
, (3.2.4)

where f : Rn+1 → R is a strictly increasing function. Observe that the constraint

is not linear in x because π̃x and x+ are not linear in x.

Even though it is possible to find a clearing vector for
(
Ñ , π̃x, ˜̄px, x̃x

)
by

applying the fictitious default algorithm in Eisenberg and Noe [2], it is not clear

how to interpret it for (N ,π, p̄,x) and there is no guarantee that a clearing

vector for (N ,π, p̄,x) exists, since the original proof in Eisenberg and Noe [2] on

existence of a clearing vector for (N ,π, p̄,x) assumes x is nonnegative.

This approach has the following major drawback. Given a signed network

(N ,π, p̄,x), a network
(
Ñ , π̃x, ˜̄px, x̃x

)
defined as described above is a totally

different network, due to the structure of π̃x, and cannot be interpreted in terms

of (N ,π, p̄,x). The main reason of this inconvenience is the absence of seniority

between society and the other nodes in the network. Nevertheless, motivated by

this observation, it is a good idea to impose some seniority between society and

the other nodes, which is described in detail in the following section.
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3.2.2 A Seniority-Based Approach

In this section, the second approach on modeling a signed Eisenberg-Noe network

is described in detail. The definition of a clearing vector in Definition 3.1.2 and

the mapping ΦEN+ in (3.1.1) are modified accordingly. Both a fixed-point and

a mathematical programming characterization of a clearing vector for such net-

works are provided. In addition, a mixed-integer linear programming aggregation

function in the scope of the signed Eisenberg-Noe network model is introduced.

Let (N ,π, p̄,x) be a signed Eisenberg-Noe network. In this approach, it is

assumed that the nodes having obligations outside the network, that is, the nodes

having negative operating cash flows have to meet these obligations first, and if

they do not default in the first round, then they should meet their obligations to

the other nodes inside the network. At this step, as in the original Eisenberg-Noe

network model, they either meet their obligations to the other nodes in full or

pay as much as they have at hand and default. Hence, the following definition

for clearing vectors is introduced.

Definition 3.2.4. A vector p ∈ [0, p̄] is called a clearing vector for (N ,π, p̄,x)

if it satisfies the following properties:

• Immediate default: for each i ∈ N ,
∑n

j=1 πjipj + xi ≤ 0 implies pi = 0.

• Limited liability: for each i ∈ N , if
∑n

j=1 πjipj + xi > 0, then pi ≤∑n
j=1 πjipj + xi, which implies that if node i has a strictly positive oper-

ating cash flow, then it cannot pay more than it has.

• Absolute priority: for each i ∈ N , if
∑n

j=1 πjipj+xi > 0, then either pi = p̄i

or pi =
∑n

j=1 πjipj + xi, which implies that if node i has a strictly positive

operating cash flow, then it has to meet its obligations in full. Otherwise, it

pays as much as it has.

Definition 3.2.5. Let ΦEN : [0, p̄]→ [0, p̄] be defined by

ΦEN (p) :=
(
p̄ ∧

(
πTp+ x

))+
, (3.2.5)
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or more explicitly, for each i ∈ N ,

ΦEN
i (p) =


0 if

∑n
j=1 πjipj + xi ≤ 0,∑n

j=1 πjipj + xi if 0 <
∑n

j=1 πjipj + xi ≤ p̄i,

p̄i if
∑n

j=1 πjipj + xi > p̄i.

(3.2.6)

Proposition 3.2.6. A vector p ∈ [0, p̄] is a clearing vector for (N ,π, p̄,x) if

and only if it is a fixed point of the mapping ΦEN.

Proof. To prove the “only if” part, let p = (p1, . . . , pn)T ∈ [0, p̄] be a clearing

vector. To show that p is a fixed point of the mapping ΦEN, let i ∈ N .

If
∑n

j=1 πjipj +xi ≤ 0, then pi = 0, by immediate default, and ΦEN
i (p) = 0, by

Definition 3.2.5. Hence, ΦEN
i (p) = pi.

If
∑n

j=1 πjipj + xi > 0, then, by absolute priority, either pi = p̄i or pi =∑n
j=1 πjipj + xi. If pi = p̄i, then, by limited liability, p̄i ≤

∑n
j=1 πjipj + xi and,

thus, by Definition 3.2.5, ΦEN
i (p) = p̄i. Hence, ΦEN

i (p) = pi. On the other hand,

if pi =
∑n

j=1 πjipj + xi < p̄i then, by Definition 3.2.5, ΦEN
i (p) =

∑n
j=1 πjipj + xi.

Hence, again ΦEN
i (p) = pi. Thus, p is a fixed point of ΦEN.

To prove the “if” part, let p = (p1, . . . , pn)T be a fixed point of ΦEN. In other

words, for every i ∈ N , ΦEN
i (p) = pi. To show that p is a clearing vector, let

i ∈ N .

If
∑n

j=1 πjipj + xi ≤ 0, then ΦEN
i (p) = pi = 0, by Definition 3.2.5. Hence,

immediate default holds.

If
∑n

j=1 πjipj+xi > 0, then ΦEN
i (p) = pi ≤

∑n
j=1 πjipj+xi, by Definition 3.2.5.

Hence, limited liability holds.

Now assume
∑n

j=1 πjipj + xi > 0. If
∑n

j=1 πjipj + xi ≤ p̄i, then ΦEN (p) =

pi =
∑n

j=1 πjipj + xi. If
∑n

j=1 πjipj + xi > p̄i, then ΦEN (p) = pi = p̄i, by

Definition 3.2.5. Hence, absolute priority holds as well. Hence, p is a clearing
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vector.

Remark 3.2.7. Observe that, if x ∈ Rn
+, then ΦEN coincides with the function

ΦEN+ in (3.1.1) defined for the original Eisenberg-Noe network model.

For every a ∈ Rn1 , b ∈ Rn2 , let (a, b) = (a1, . . . , an1 , b1, . . . , bn2)
T ∈ Rn1+n2 be

a vector concatenation.

Theorem 3.2.8. Let ΛEN : Rn → R be the following mixed-integer linear pro-

gramming (MILP) aggregation function

ΛEN (y) := sup
{
f (p)

∣∣∣p ≤ [πTp+ y +M (1− s)
]
∧ (p̄� s) ,

πTp+ y ≤Ms,p ∈ [0, p̄] , s ∈ {0, 1}n
}
,

(3.2.7)

where f : Rn → R is a strictly increasing linear function and M = n ‖p̄‖∞+‖y‖∞.

If (p, s) is an optimal solution to MILP for ΛEN (x), then p is a clearing vector

for (N ,π, p̄,x).

Observe that ΛEN (x) can be written more explicitly as

maximize f (p) (3.2.8)

subject to pi ≤
n∑
j=1

πjipj + xi +M (1− si) , i ∈ N , (3.2.9)

pi ≤ p̄isi, i ∈ N , (3.2.10)
n∑
j=1

πjipj + xi ≤Msi, i ∈ N , (3.2.11)

0 ≤ pi ≤ p̄i, i ∈ N , (3.2.12)

si ∈ {0, 1} , i ∈ N . (3.2.13)

Let u = (u1, . . . , un)T ∈ {0, 1}n be a binary vector, where ui = 0 if xi < 0,

and ui = 1 if xi ≥ 0, for each i ∈ N . Then (p, s) = (0,u) ∈ Rn×Zn is a feasible

solution to the MILP in (3.2.8). Moreover, if f is a bounded function on the
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interval [0, p̄] ⊆ Rn
+, then by Meyer [18, Theorem 2.1], the MILP in (3.2.8) has

an optimal solution. Observe that, by Theorem 3.2.8, the existence of an optimal

solution to the MILP in (3.2.8) proves the existence of a clearing vector for the

network (N ,π, p̄,x).

Remark 3.2.9. In Theorem 3.2.8, M = n ‖p̄‖∞ + ‖x‖∞ is taken to ensure

the feasibility in the constraint (3.2.11). In other words, it is enough to choose

M such that
∑n

j=1 πjipj + xi ≤ M , for each i ∈ N and for every p ∈ [0, p̄].

Furthermore, for each i ∈ N and for every p ∈ [0, p̄], since
∑n

j=1 πji < n, it holds∑n
j=1 πjipj < n ‖p̄‖∞. Hence,

∑n
j=1 πjipj + xi ≤ n ‖p̄‖∞ + ‖x‖∞ = M

Remark 3.2.10. Linearity of f is not a necessary condition for Theorem 3.2.8

to hold.

The proof of Theorem 3.2.8 is based on the following lemma.

Lemma 3.2.11. Let (p, s) be an optimal solution to the MILP for ΛEN (x). Let

i ∈ N such that 0 <
∑n

j=1 πjipj + xi. Then, pi = min
{∑n

j=1 πjipj + xi, p̄i

}
.

The proofs of Lemma 3.2.11 and Theorem 3.2.8 can be found in Appendices A.1

and A.2, respectively.

Remark 3.2.12. The aggregation function ΛEN in (3.2.7) is applied in Chapter 4

to define the Eisenberg-Noe grouped systemic risk measures.

3.3 Rogers-Veraart Network Model

Rogers and Veraart [8] extends the original Eisenberg-Noe network model by

introducing default costs. It is assumed that a defaulting node is not able to

use all of its liquid assets to satisfy its creditors. Unlike Eisenberg and Noe [2],

Rogers and Veraart [8] does not provide a programming formulation for clearing

vectors in the network model. This gap is filled here by proposing an MILP

whose optimal solution includes a clearing vector for the Rogers-Veraart network
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model. Hence, a mathematical characterization for a clearing vector is obtained

for this model for the first time. In addition, an aggregation function based on this

characterization is defined and its relationship to the network model is provided.

Finally, inspired by Definition 3.1.2, a weak definition of a clearing vector for the

Rogers-Veraart network model is proposed.

Definition 3.3.1. A sextuple (N ,π, p̄,x, α, β) is called a Rogers-Veraart network

if N = {1, . . . , n} for some n ∈ N, π = (πij)i,j∈N ∈ Rn×n
+ is a stochastic matrix

with πii = 0 and
∑n

j=1 πji < n for each i ∈ N , p̄ = (p̄1, . . . , p̄n)T ∈ Rn
++,

x = (x1, . . . , xn)T ∈ Rn
+ and α, β ∈ (0, 1].

As in Definition 3.1.1, N is the index set of nodes in a network that represents

a financial system of n institutions, p̄ is the total obligation vector, π is the

matrix of relative liabilities and x is the operating cash flow vector. As part of

the network model, it is assumed that a defaulting node may not be able to use

all of its liquid assets to meet its obligations. Hence, α denotes the fraction of the

operating cash flow and β denotes the fraction of cash inflow from other nodes

that can be used by a defaulting node to meet its obligations.

Let (N ,π, p̄,x, α, β) be a Rogers-Veraart network. For each i ∈ N , let pi ≥ 0

be the sum of all payments made by node i to the other nodes in the network.

Then p = (p1, . . . , pn)T ∈ Rn
+ is called a payment vector.

Motivated by Definition 3.1.2 of a clearing vector for an Eisenberg-Noe net-

work, the following similar definition of a clearing vector for a Rogers-Veraart

network is proposed.

Definition 3.3.2. A vector p ∈ [0, p̄] is called a clearing vector for

(N ,π, p̄,x, α, β) if it satisfies the following properties:

• Limited liability: for each i ∈ N , pi ≤ xi +
∑n

j=1 πjipj, which implies that

node i cannot pay more than it has.

• Absolute priority: for each i ∈ N , either pi = p̄i or pi = αxi+β
∑n

j=1 πjipj,

which implies that node i has to meet its obligations in full. Otherwise, it

has to pay as much as it can.
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Definition 3.3.3. Let ΦRV+ : [0, p̄]→ [0, p̄] be defined by

Φ
RV+

i (p) :=

p̄i if p̄i ≤ xi +
∑n

j=1 πjipj,

αxi + β
∑n

j=1 πjipj if p̄i > xi +
∑n

j=1 πjipj,
(3.3.1)

for each i ∈ N .

Remark 3.3.4. Observe that, if α = 1 and β = 1, then the function ΦRV+ be-

comes the usual ΦEN+ in (3.1.1) from the original Eisenberg-Noe network model.

Proposition 3.3.5. A fixed point p ∈ [0, p̄] of ΦRV+ is a clearing vector for

(N ,π, p̄,x, α, β).

Proof. Let p = (p1, . . . , pn)T be a fixed point of the mapping ΦRV+ . To show that

p is a clearing vector for (N ,π, p̄,x, α, β), let i ∈ N .

If p̄i ≤ xi +
∑n

j=1 πjipj, then Φ
RV+

i (p) = p̄i = pi ≤ xi +
∑n

j=1 πjipj, and if

p̄i > xi +
∑n

j=1 πjipj, then Φ
RV+

i (p) = αxi +β
∑n

j=1 πjipj = pi ≤ xi +
∑n

j=1 πjipj,

by the definition of ΦRV+ in (3.3.1) and since p is a fixed point of ΦRV+ . Hence,

both limited liability and absolute priority in Definition 3.3.2 hold. Hence, p is a

clearing vector for (N ,π, p̄,x, α, β).

Remark 3.3.6. Unfortunately, the converse of Proposition 3.3.5 fails to hold

in general. Here is a counterexample. Consider a Rogers-Veraart network

(N ,π, p̄,x, α, β), where N = {1, 2}, π =

[
0 1

1 0

]
, p̄ =

[
20

25

]
, x =

[
10

10

]
,

α = 0.5, β = 0.5, and let p =

[
20

15

]
. Observe that p is a clearing vector for

(N ,π, p̄,x, α, β) since it satisfies absolute priority and limited liability in Defini-

tion 3.3.2. However, by Definition 3.3.3, Φ
RV+

2 (p) = 25 > p2 = 15. Hence, the

fixed point property does not hold for p.
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Theorem 3.3.7. Let ΛRV+ : Rn → R be the following mixed-integer linear pro-

gramming (MILP) aggregation function

ΛRV+ (y) :=


sup

{
f (p)

∣∣∣p ≤ αy + βπTp+ p̄� s,

p̄� s ≤ y + πTp,p ∈ [0, p̄] , s ∈ {0, 1}n
}
,

if y ∈ Rn
+,

−∞, if y /∈ Rn
+,

(3.3.2)

where f : Rn → R is a strictly increasing linear function.

If (p, s) is an optimal solution to the MILP for ΛRV+ (x), then p is a clearing

vector for the network (N ,π, p̄,x, α, β).

Observe that ΛRV+ (x) can be written more explicitly as

maximize f (p) (3.3.3)

subject to pi ≤ αxi + β
n∑
j=1

πjipj + p̄isi, i ∈ N , (3.3.4)

p̄isi ≤ xi +
n∑
j=1

πjipj, i ∈ N , (3.3.5)

0 ≤ pi ≤ p̄i, i ∈ N , (3.3.6)

si ∈ {0, 1} , i ∈ N . (3.3.7)

It is easy to check that (p, s) = (0,0) ∈ Rn × Zn is a feasible solution to the

MILP in (3.3.3). Moreover, if f is a bounded function on the interval [0, p̄] ⊆ Rn
+,

then by Meyer [18, Theorem 2.1], the MILP in (3.3.3) has an optimal solution.

Observe that, by Theorem 3.3.7, the existence of an optimal solution to the MILP

in (3.3.3) proves the existence of a clearing vector for (N ,π, p̄,x, α, β). Hence, if

the function f is bounded on [0, p̄], then Theorem 3.3.7 provides an alternative

argument for proof of the original theorem [8, Theorem 3.1] on existence of a

clearing vectors in Rogers-Veraart network model.

Remark 3.3.8. Linearity of f is not a necessary condition for Theorem 3.3.7 to

hold.
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The proof of Theorem 3.3.7 relies on the following three lemmata.

Lemma 3.3.9. Let (p, s) be an optimal solution to the MILP for ΛRV+ (x). Let

i ∈ N such that

αxi + β

n∑
j=1

πjipj < p̄i ≤ xi +
n∑
j=1

πjipj.

Then, si = 1.

Lemma 3.3.10. Let (p, s) be an optimal solution to the MILP for ΛRV+ (x). Let

i ∈ N with p̄i ≤ xi +
∑n

j=1 πjipj. Then, pi = p̄i.

Lemma 3.3.11. Let (p, s) be an optimal solution to the MILP for ΛRV+ (x). Let

i ∈ N with p̄i > xi +
∑n

j=1 πjipj. Then pi = αxi + β
∑n

j=1 πjipj.

Proofs of Lemmata 3.3.9, 3.3.10, 3.3.11 and Theorem 3.3.7 can be found in

Appendices A.3, A.4, A.5 and A.6, respectively.

Remark 3.3.12. The aggregation function ΛRV+ in (3.3.2) is applied in Chapter 4

to define the Rogers-Veraart grouped systemic risk measures.

In the following theorem, an alternative mixed-integer linear programming

aggregation function for the Rogers-Veraart network model is introduced. How-

ever, using this MILP aggregation function may be too costly since it has 2n more

binary variables, n more continuous slack variables and 5n more constraints com-

pared to the previously defined aggregation function ΛRV+ . It is provided to show

that there is no unique way of defining an aggregation function that represents a

clearing vector in a Rogers-Veraart network. Furthermore, if α = β = 1, then the

MILP aggregation function ΛRV+ can represent a clearing vector in the original

Eisenberg-Noe network model with nonnegative x.
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Theorem 3.3.13. Let Λ
RV+

alt : Rn
+ → R be the following MILP aggregation func-

tion

Λ
RV+

alt (x) := sup
{
f (p)

∣∣∣p ≤ αx+ βπTp+ p̄�
(
s1 + s2

)
,

p̄� s1 ≤ x+ πTp,

p̄+Ms1 − y = x+ πTp,(
1− s2

)
� (M1+ p̄) ≥ y,

1− s2 ≤My,

p ≤ αx+ βπTp+ p̄�
(
1− s3

)
,

p̄� s3 ≤ αx+ βπTp,

y ∈ Rn
+,p ∈ [0, p̄] , s1, s2, s3 ∈ {0, 1}n

}
,

(3.3.8)

where f : Rn → R is a strictly increasing linear function and M = n ‖p̄‖∞+‖x‖∞.

If (p,y, s1, s2, s3) is an optimal solution to the MILP for Λ
RV+

alt (x), then p is

a clearing vector for (N ,π, p̄,x, α, β).

Observe that Λ
RV+

alt (x) can be written more explicitly as

max f (p) (3.3.9)

s.t. pi ≤ αxi + β
n∑
j=1

πjipj + p̄i
(
s1
i + s2

i

)
, i ∈ N , (3.3.10)

p̄is
1
i ≤ xi +

n∑
j=1

πjipj, i ∈ N , (3.3.11)

p̄i +Ms1
i − yi = xi +

n∑
j=1

πjipj, i ∈ N , (3.3.12)

(
1− s2

i

)
(M + p̄i) ≥ yi, i ∈ N , (3.3.13)(

1− s2
i

)
≤Myi, i ∈ N , (3.3.14)

pi ≤ αxi + β

n∑
j=1

πjipj + p̄i
(
1− s3

i

)
, i ∈ N , (3.3.15)

p̄is
3
i ≤ αxi + β

n∑
j=1

πjipj, i ∈ N , (3.3.16)
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yi ≥ 0, i ∈ N , (3.3.17)

0 ≤ pi ≤ p̄i, i ∈ N , (3.3.18)

s1
i , s

2
i , s

3
i ∈ {0, 1} , i ∈ N . (3.3.19)

Assume M ≥ 1 and min
i∈N
{p̄i − xi} ≥ 1. In other words, assume that for each

i ∈ N , the operating cash flow of the node i plus one is less than its total debt.

Let s1 = (s1
1, . . . , s

1
n)

T ∈ {0, 1}n and y = (y1, . . . , yn)T ∈ Rn be vectors, where,

for every i ∈ N , s1
i = 0 and yi = p̄i−xi if xi ≤ p̄i, and s1

i = 1 and yi = p̄i+M−xi
if xi > p̄i. Let p, s2, s3 = 0. Then (p,y, s1, s2, s3) ∈ Rn×Rn×Zn×Zn×Zn is a

feasible solution to the MILP in (3.3.9). Moreover, if f is a bounded function on

the interval [0, p̄] ⊆ Rn
+, then by Meyer [18, Theorem 2.1], the MILP in (3.3.9) has

an optimal solution. The proof of Theorem 3.3.13 can be found in Appendix A.7.

In the next chapter, an application of the MILP aggregation functions ΛEN

and ΛRV+ to systemic risk measures is demonstrated, the resulting systemic risk

measures are considered from a vector optimization point of view and some related

results are provided.
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Chapter 4

Grouping in Systemic Risk

Measures

In this chapter, systemic risk measures are looked at from a vector optimization

point of view. A notion of grouping in systemic risk measures is introduced.

It allows one to categorize the members of a financial system into groups and

makes it easier to compute systemic risk measures. To approximate systemic risk

measures by a Benson type algorithm for non-convex problems, two scalarization

problems are introduced as single objective optimization problems of a vector

optimization problem in the scope of the signed Eisenberg-Noe and the Rogers-

Veraart network models. Two more optimization problems are introduced as

minimum step-length functions. Mixed-integer linear programming formulations

of these problems are provided. Some results on the boundedness and feasibility

of these problems are presented.

Consider a probability space (Ω,F ,P), where the set of scenarios Ω is finite.

Assume Ω =
{
ω1, . . . , ωK

}
for some integer K ≥ 1. Let K = {1, . . . , K} be

an index set of Ω. Assume qk := P
{
ωk
}
> 0 for every k ∈ K. Let L (Rn) be

the linear space of all n-dimensional random variables X : Ω → Rn. For every

X ∈ L (Rn), let

‖X‖∞ := max
i∈{1,...,n}, ωk∈Ω

∣∣Xi

(
ωk
)∣∣ .
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Let X ∈ L (Rn). In the scope of this thesis, the following sensitive systemic

risk measures, studied in Feinstein et al. [15] and Ararat and Rudloff [16], are

considered:

Rsen (X) :=
{
z ∈ Rn

∣∣∣Λ(X + z) ∈ A
}
, (4.0.1)

where Λ : Rn → R is an aggregation function and A is an acceptance set.

When there are many institutions in the financial system, they can be grouped

into two or three groups in order to simplify the computation of systemic risk

measures by decreasing their dimensions. If a network of banks is considered,

then this grouping can be interpreted as classifying the banks into small, medium

and large ones and assigning the same risk level to all banks in a particular group.

Let G ≥ 1 be an integer denoting the number of groups and G = {1, . . . , G} the

set of groups in the network. Let (N`)`∈G be a partition on N , where N` denotes

the set of all institutions that belong to group ` ∈ G. Hence, each institution in

the network belongs to exactly one group. Let B1, . . . , BG be matrices, where B`,

` ∈ G, is the following matrix having 1’s in the `th row and 0’s elsewhere:

B` :=



0 . . . 0
...

. . .
...

1 . . . 1
...

. . .
...

0 . . . 0


∈ RG×n` ,

where n` is the number of nodes in group `. It is easy to observe that n =
∑

`∈G n`.

Let B ∈ RG×n be the following grouping matrix:

B :=
[
B1 B2 . . . BG

]
. (4.0.2)

Then, by overwriting the definition in (4.0.1), the grouped sensitive systemic risk

measures are defined as

Rsen(X) :=
{
z ∈ RG

∣∣∣Λ(X +BTz) ∈ A
}
, (4.0.3)
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where Λ : Rn → R is an aggregation function and A ⊆ L (R) is an acceptance

set.

For simplicity and computational reasons, from now on, let

A =
{
Y ∈ L (R)

∣∣∣E [Y ] ≥ γ
}
, (4.0.4)

where γ ∈ R is some suitable threshold.

For an arbitrary set A, let 2A denote its power set. Consider a general opti-

mization aggregation function ΛOPT : Rn → R ∪ {−∞} of the form

ΛOPT (x) := sup
{
f (p)

∣∣∣ (p, s) ∈ Y (x) ,p ∈ Rn, s ∈ Zn
}
, (4.0.5)

where f : Rn → R is a strictly increasing and continuous function, and Y : Rn →
2Rn×Zn

is a set-valued constraint function such that Y (x) is a compact set for

every x ∈ Rn. Then, the corresponding systemic risk measure Rsen : L (Rn)→ Rn

with respect to the aggregation function ΛOPT becomes

Rsen (X) =
{
z ∈ RG

∣∣∣E [ΛOPT
(
X +BTz

)]
≥ γ

}
. (4.0.6)

In this thesis, the special cases Λ = ΛEN and Λ = ΛRV+ are considered in more

detail. Let us define

Rsen
EN (X) :=

{
z ∈ RG

∣∣∣E [ΛEN(X +BTz)
]
≥ γ

}
, (4.0.7)

Rsen
RV (X) :=

{
z ∈ RG

∣∣∣E [ΛRV+(X +BTz)
]
≥ γ

}
, (4.0.8)

called the Eisenberg-Noe and Rogers-Veraart systemic risk measures, respectively.

Remark 4.0.1. In (4.0.8), the condition X + BTz ≥ 0 is implied by definition

of ΛRV+ in (3.3.2).

Remark 4.0.2. The number of groups G can be at most n, since each node in

a network must be assigned to exactly one group. If G = n, then the grouping

matrix B becomes the identity matrix I ∈ Rn×n and the grouped systemic risk
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measure in (4.0.3) reduces to the systemic risk measure in (4.0.1).

4.1 Weakly Minimal Elements of Systemic Risk

Measures

In this section, a vector optimization problem for the systemic risk measure in

(4.0.6) is introduced and some results on linearizing the corresponding weighted-

sum scalarization problem are provided. The following definition of a weakly

minimal element of a set is borrowed from Jahn [19].

Definition 4.1.1. Let A ⊆ Rn be an arbitrary set. A point z ∈ A is a weakly

minimal element of a set A if
(
{z} − int

(
Rn

+

))
∩ A = ∅, or, in other words, if

there is no other point z′ ∈ A such that z′i < zi for each i ∈ {1, . . . , n}.

Consider the following vector optimization problem

minimize z ∈ RG with respect to ≤

subject to E
[
ΛOPT

(
X +BTz

)]
≥ γ,

(4.1.1)

where “≤” is the usual componentwise ordering in Rn. Note that Rsen (X) coin-

cides with the so-called upper image of this vector optimization problem in the

sense that

Rsen (X) =
{
z + RG

+

∣∣∣E [ΛOPT
(
X +BTz

)]
≥ γ

}
. (4.1.2)

An approximation algorithm presented in Löhne et al. [20] works for con-

vex upper images by calculating finitely many weakly minimal elements. Since

Rsen (X) is not necessarily convex in the scope of this thesis, the Benson type

algorithm proposed in Nobakhtian and Shafiei [1] is applied instead, which works

for non-convex upper images.
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For w ∈ RG
+\ {0}, let P1 (w) be given by

P1 (w) := inf
z∈RG

{
wTz|ΛOPT

(
X +BTz

)
∈ A

}
(4.1.3)

as the optimal value of a weighted-sum scalarization problem.

Theorem 4.1.2. Let w ∈ RG
+\ {0}. Consider a weighted-sum scalarization prob-

lem

P1 (w) = inf
z∈RG

{
wTz

∣∣∣E [ΛOPT
(
X +BTz

)]
≥ γ

}
, (4.1.4)

and let

Z1 (w) := inf
z∈RG

{
wTz

∣∣∣∣∣∑
k∈K

qkf
(
pk
)
≥ γ,

(
pk, sk

)
∈ Y

(
X
(
ωk
)

+BTz
)
,pk ∈ Rn1 , sk ∈ Zn2 , k ∈ K

}
.

(4.1.5)

If P1 (w) and Z1 (w) have finite optimal values, then P1 (w) = Z1 (w).

Proof. Let
•
z be an optimal solution to P1 (w) and

(
z,
(
pk, sk

)
k∈K

)
is an optimal

solution to Z1 (w). Let P1 (w) = wT •
z =

•
µ and Z1 (w) = wTz = µ. Hence, the

aim is to prove
•
µ = µ.

First,
•
µ ≤ µ is shown. For an arbitrary k ∈ K,

(
pk, sk

)
is a feasible solution

to ΛOPT
(
X
(
ωk
)

+BTz
)

in (4.0.5) because the optimization problem in (4.1.5)

includes the constraints of (4.0.5). Hence,

ΛOPT
(
X
(
ωk
)

+BTz
)
≥ f

(
pk
)
, for every k ∈ K,

which implies

E
[
ΛOPT

(
X +BTz

)]
≥

K∑
k=1

qkf
(
pk
)
≥ γ,

where the second inequality holds by feasibility of
(
z,
(
pk, sk

)
k∈K

)
. Hence, z is

a feasible solution to P1 (w). Hence,
•
µ ≤ µ.
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Now,
•
µ ≥ µ is shown. For each k ∈ K, let

( •
pk,

•
sk
)

be an optimal solution to

ΛOPT
(
X
(
ωk
)

+BT •
z
)
.

Then,
K∑
k=1

qkf
( •
pk
)

= E
[
ΛOPT

(
X +BT •

z
)]
≥ γ,

by the definition of P1 (w). Hence,
(

•
z,
( •
pk,

•
sk
)
k∈K

)
is a feasible solution to

Z1 (w), which implies
•
µ ≥ µ. Hence, Z1 (w) = P1 (w).

Remark 4.1.3. Let ` ∈ G and e` the corresponding standard unit vector in RG.

Observe that the following weighted-sum scalarization problem

P1

(
e`
)

= inf
z∈RG

{
z`

∣∣∣E [ΛOPT
(
X +BTz

)]
≥ γ

}
(4.1.6)

is a single objective optimization problem of the vector optimization problem in

(4.1.1). By Theorem 4.1.2, if P1

(
e`
)

and Z1

(
e`
)

have finite optimal values, then

P1

(
e`
)

= Z1

(
e`
)
.

Remark 4.1.4. Let zideal ∈ RG be the ideal point of the vector optimization

problem in (4.1.1) in the sense that the entries of zideal minimize each of the

objective functions of the vector optimization problem. In other words, one can

define

zideal :=
(
P1

(
e1
)
, . . . ,P1

(
eG
))T ∈ RG. (4.1.7)

However, the single objective optimization problems
(
P1

(
e`
))
`∈G are not linear.

Theorem 4.1.2 allows one to solve G optimization problems with compact feasible

sets
(
Z1

(
e`
))
`∈G to obtain the ideal point of the vector optimization problem in

(4.1.1). In other words, one can calculate zideal =
(
Z1 (e1) , . . . ,Z1

(
eG
))T

.

The following two sections apply the results from Theorem 4.1.2 to specific

cases ΛOPT = ΛEN and ΛOPT = ΛRV+ , respectively.

In the subsequent sections, the function f : Rn → R in the objective functions
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of the MILP aggregation functions ΛEN in (3.2.7), and ΛRV+ in (3.3.2), is fixed as

f (p) := 1
Tp.

It is easy to check that f is a strictly increasing continuous linear function

bounded on the interval [0, p̄] ⊆ Rn.

4.1.1 P1 Problem for Eisenberg-Noe Systemic Risk Mea-

sures

Let (N ,π, p̄,X) be a signed Eisenberg-Noe network.

Corollary 4.1.5. Let ` ∈ G. Consider the single objective optimization problem

PEN
1

(
e`
)

:= inf
z∈RG

{
z`

∣∣∣E [ΛEN
(
X +BTz

)]
≥ γ

}
, (4.1.8)

and let

ZEN
1

(
e`
)

:= inf
z∈RG

{
z`

∣∣∣∣∣∑
k∈K

qk
[
1

Tpk
]
≥ γ,

pk ≤
[
ΠTpk +

[
X
(
ωk
)

+BTz
]

+M
(
1− sk

)]
∧
(
p̄� sk

)
,

ΠTpk +
[
X
(
ωk
)

+BTz
]
≤Msk,

pk ∈ [0, p̄] , sk ∈ {0, 1}n ,∀k ∈ K

}
,

(4.1.9)

where M = 2 ‖X‖∞ + (n+ 1) ‖p̄‖∞.

If PEN
1

(
e`
)

and ZEN
1

(
e`
)

have finite optimal values, then PEN
1

(
e`
)

=

ZEN
1

(
e`
)
.

The MILP problem ZEN
1

(
e`
)

in (4.1.9) can be written more explicitly as

minimize z` (4.1.10)

49



subject to
∑
k∈K

qk
[
1

Tpk
]
≥ γ, (4.1.11)

pki ≤
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz

)
i

]
+M

(
1− ski

)
, ∀i ∈ N , k ∈ K,

(4.1.12)

pki ≤ p̄is
k
i , ∀i ∈ N , k ∈ K,

(4.1.13)
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz

)
i

]
≤Mski , ∀i ∈ N , k ∈ K,

(4.1.14)

0 ≤ pki ≤ p̄i, ∀i ∈ N , k ∈ K,
(4.1.15)

ski ∈ {0, 1} , ∀i ∈ N , k ∈ K,
(4.1.16)

z ∈ RG. (4.1.17)

Proof of Corollary 4.1.5. Assume that
•
z is an optimal solution to PEN

1

(
e`
)

and(
z,
(
pk, sk

)
k∈K

)
is an optimal solution to ZEN

1

(
e`
)
.

Let YEN : Rn → 2Rn×Zn
be the following set-valued function

YEN (x) :=

{(
pk, sk

)
∈ Rn × Zn

∣∣∣∣∣pk ≤ [ΠTpk + x+M
(
1− sk

)]
∧
(
p̄� sk

)
,

ΠTpk + x ≤Msk,

pk ∈ [0, p̄] , sk ∈ {0, 1}n ,∀k ∈ K

}
.

(4.1.18)

Take Y = YEN in Theorem 4.1.2 and let
( •
pk,

•
sk
)

be an optimal solution to

ΛEN
(
X
(
ωk
)

+BT •
z
)
, for each k ∈ K. Then by Theorem 4.1.2, PEN

1

(
e`
)

=

ZEN
1

(
e`
)
.
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The next three propositions present some boundedness and feasibility results

for the MILP problem ZEN
1

(
e`
)
, ` ∈ G, in Corollary 4.1.5.

Proposition 4.1.6. Let ` ∈ G. Consider ZEN
1

(
e`
)

in Corollary 4.1.5. If(
z,
(
pk, sk

)
k∈K

)
is an optimal solution to ZEN

1

(
e`
)
, then z` ≤ zmax, where

zmax = ‖X‖∞ + ‖p̄‖∞.

Proposition 4.1.7. Let ` ∈ G. Consider ZEN
1

(
e`
)

in Corollary 4.1.5. Let the

value of M in ZEN
1

(
e`
)

MILP problem be taken as M = 2 ‖X‖∞+(n+ 1) ‖p̄‖∞.

If ZEN
1

(
e`
)

is feasible, then it is bounded.

Proposition 4.1.8. Let ` ∈ G. Then, ZEN
1

(
e`
)

in Corollary 4.1.5 is feasible if

and only if γ ≤ 1Tp̄.

The proofs of Propositions 4.1.6, 4.1.7 and 4.1.8 can be found in Appen-

dices B.1, B.2 and B.3, respectively.

Remark 4.1.9. Let ` ∈ G. Consider an optimal solution
(
z,
(
pk, sk

)
k∈K

)
to

the MILP problem ZEN
1

(
e`
)
. By the structure of the matrix B, for each i ∈ N ,

it holds
(
BTz

)
i

= zt for some t ∈ G. Hence, by Proposition 4.1.7,
(
BTz

)
i
≤

‖X‖∞ + ‖p̄‖∞ holds for each i ∈ N . In addition, for every i ∈ N , k ∈ K, and

pk ∈ [0, p̄], it holds
∑n

j=1 πjip
k
j < n ‖p̄‖∞ and Xi

(
ωk
)
≤ ‖X‖∞. Hence, the

choice of M = 2 ‖X‖∞ + (n+ 1) ‖p̄‖∞ in Corollary 4.1.5 is justified, since, to

ensure the feasibility in constraint (4.1.14) of the explicit formulation of ZEN
1

(
e`
)

in (4.1.10), it is enough to choose M such that

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz

)
i

]
≤M

for every i ∈ N , k ∈ K and pk ∈ [0, p̄].

4.1.2 P1 Problem for Rogers-Veraart Systemic Risk Mea-

sures

Let (N ,π, p̄,X, α, β) be a Rogers-Veraart network, where X ∈ L
(
Rn

+

)
.
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Corollary 4.1.10. Let ` ∈ G. Consider the single objective optimization problem

PRV
1

(
e`
)

:= inf
z∈RG

{
z`

∣∣∣E [ΛRV+
(
X +BTz

)]
≥ γ

}
, (4.1.19)

and let

ZRV
1

(
e`
)

:= inf
z∈RG

{
z`

∣∣∣∣∣∑
k∈K

qk
[
1

Tpk
]
≥ γ,

pk ≤ α
[
X
(
ωk
)

+BTz
]

+ βΠTpk + p̄� sk,

p̄� sk ≤
[
X
(
ωk
)

+BTz
]

+ ΠTpk,

X
(
ωk
)

+BTz ≥ 0,

pk ∈ [0, p̄] , sk ∈ {0, 1}n ,∀k ∈ K

}
.

(4.1.20)

If PRV
1

(
e`
)

and ZRV
1

(
e`
)

have finite optimal values, then PRV
1

(
e`
)

= ZRV
1

(
e`
)
.

The MILP problem ZRV
1

(
e`
)

in (4.1.20) can be written more explicitly as

minimize z` (4.1.21)

subject to
∑
k∈K

qk
[
1

Tpk
]
≥ γ, (4.1.22)

pki ≤ α
[
Xi

(
ωk
)

+
(
BTz

)
i

]
+ β

n∑
j=1

πjip
k
j + p̄is

k
i , ∀i ∈ N , k ∈ K,

(4.1.23)

p̄is
k
i ≤

[
Xi

(
ωk
)

+
(
BTz

)
i

]
+

n∑
j=1

πjip
k
j , ∀i ∈ N , k ∈ K,

(4.1.24)

Xi

(
ωk
)

+
(
BTz

)
i
≥ 0, ∀i ∈ N , k ∈ K,

(4.1.25)

0 ≤ pki ≤ p̄i, ∀i ∈ N , k ∈ K,
(4.1.26)
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ski ∈ {0, 1} , ∀i ∈ N , k ∈ K,
(4.1.27)

z ∈ RG. (4.1.28)

Here, constraint (4.1.25) ensures X +BTz ≥ 0 so that ΛRV+
(
X
(
ωk
)

+BTz
)
6=

−∞ for every k ∈ K.

Proof of Corollary 4.1.10. Assume that
•
z is an optimal solution to PRV

1

(
e`
)

and(
z,
(
pk, sk

)
k∈K

)
is an optimal solution to ZRV

1

(
e`
)
.

Let YRV : Rn → 2Rn×Zn
be the following set-valued function

YRV (x) :=

{(
pk, sk

)
∈ Rn × Zn

∣∣∣∣∣pk ≤ αx+ βΠTpk + p̄� sk,

p̄� sk ≤ x+ ΠTpk,x ≥ 0,

pk ∈ [0, p̄] , sk ∈ {0, 1}n ,∀k ∈ K

}
.

(4.1.29)

Take Y = YRV in Theorem 4.1.2 and let
( •
pk,

•
sk
)

be an optimal solution to

ΛRV+
(
X
(
ωk
)

+BT •
z
)
, for each k ∈ K. Then by Theorem 4.1.2, PRV

1

(
e`
)

=

ZRV
1

(
e`
)
.

The next three propositions present some boundedness and feasibility results

for the MILP problem ZRV
1

(
e`
)
, ` ∈ G, in Corollary 4.1.10.

Proposition 4.1.11. Let ` ∈ G. Consider ZRV
1

(
e`
)

in Corollary 4.1.10. If(
z,
(
pk, sk

)
k∈K

)
is an optimal solution to ZRV

1

(
e`
)
, then z` ≤ zmax, where zmax =

‖X‖∞ + 1
α
‖p̄‖∞.

Proposition 4.1.12. Let ` ∈ G. Consider ZRV
1

(
e`
)

in Corollary 4.1.10. If

ZRV
1

(
e`
)

is feasible, then it is bounded.

Proposition 4.1.13. Let ` ∈ G. Then, ZRV
1

(
e`
)

in Corollary 4.1.10 is feasible

if and only if γ ≤ 1Tp̄.
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The proofs of Propositions 4.1.11, 4.1.12 and 4.1.13 can be found in Appen-

dices B.4, B.5 and B.6, respectively.

4.2 Minimum Step-Length Function

In this section, minimum step-length functions, also referred to as P2 problems

(see Gerstewitz and Iwanow [21], Göpfert et al. [22] for details), are defined in

the scope of the Eisenberg-Noe and Rogers-Veraart systemic risk measures in

(4.0.7) and (4.0.8). Some results on MILP formulations of these P2 problems are

provided.

Let v ∈ RG and P2 (v) the following minimum step-length function

P2 (v) := inf
{
µ ∈ R

∣∣∣E [ΛOPT
(
X +BTv + µ1

)]
≥ γ

}
. (4.2.1)

P2 (v) can be interpreted as a minimum step-length in the direction 1 from the

point v to the boundary of the systemic risk measure Rsen (X).

The following theorem provides an alternative formulation for P2 (v).

Theorem 4.2.1. Let v ∈ RG and let

Z2 (v) := inf

{
µ ∈ R

∣∣∣∣∣∑
k∈K

qkf
(
pk
)
≥ γ,

(
pk, sk

)
∈ Y

(
X
(
ωk
)

+BTv + µ1
)
,

pk ∈ Rn, sk ∈ Zn, k ∈ K

}
.

(4.2.2)

If P2 (v) and Z2 (v) have finite optimal values, then P2 (v) = Z2 (v).

Proof. Let
•
µ ∈ R be an optimal solution to P2 (v) and

(
µ,
(
pk, sk

)
k∈K

)
be an

optimal solution to Z2 (v). Then, by definitions, P2 (v) =
•
µ and Z2 (v) = µ.

Hence, the aim is to prove
•
µ = µ.
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First,
•
µ ≤ µ is shown. For an arbitrary k ∈ K,

(
pk, sk

)
is a feasible solution

to ΛOPT
(
X
(
ωk
)

+BTv + µ1
)

in (4.0.5) because Z2 (v) in (4.2.2) includes the

constraints of (4.0.5). Hence,

ΛOPT
(
X
(
ωk
)

+BTv + µ1
)
≥ f

(
pk
)
, for every k ∈ K,

which implies

E
[
ΛOPT

(
X +BTv + µ1

)]
≥

K∑
k=1

qk
[
f
(
pk
)]
≥ γ,

where the second inequality holds by feasibility of
(
µ,
(
pk, sk

)
k∈K

)
. Then, µ is a

feasible solution to P2 (v). Hence,
•
µ ≤ µ.

Now,
•
µ ≥ µ is shown. For each k ∈ K, let

( •
pk,

•
sk
)

be an optimal solution to

ΛOPT
(
X
(
ωk
)

+BTv +
•
µ1
)
.

Then
K∑
k=1

qk
[
f
( •
pk
)]

= E
[
ΛOPT

(
X +BTv +

•
µ1
)]
≥ γ,

by definition of P2 (v). Hence
(

•
µ,
( •
pk,

•
sk
)
k∈K

)
is a feasible solution to Z2 (v),

which implies
•
µ ≥ µ. Hence, P2 (v) = Z2 (v).

The following two sections apply the result from Theorem 4.2.1 to specific

cases ΛOPT = ΛEN and ΛOPT = ΛRV+ , respectively.

4.2.1 P2 Problem for Eisenberg-Noe Systemic Risk Mea-

sures

Let (N ,π, p̄,X) be an Eisenberg-Noe network.
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Corollary 4.2.2. Let v ∈ RG and let

PEN
2 (v) := inf

{
µ ∈ R

∣∣∣E [ΛEN
(
X +BTv + µ1

)]
≥ γ

}
, (4.2.3)

and

ZEN
2 (v) := inf

{
µ ∈ R

∣∣∣∣∣∑
k∈K

qk
[
1

Tpk
]
≥ γ,

pk ≤
[
ΠTpk +

[
X
(
ωk
)

+BTv + µ1
]

+M
(
1− sk

) ]
∧
(
p̄� sk

)
,

ΠTpk +
[
X
(
ωk
)

+BTv + µ1
]
≤Msk,

pk ∈ [0, p̄] , sk ∈ {0, 1}n , ∀k ∈ K

}
,

(4.2.4)

where M = 2 ‖X‖∞ + 2 ‖v‖∞ + (n+ 1) ‖p̄‖∞.

If PEN
2 (v) and ZEN

2 (v) have finite optimal values, then PEN
2 (v) = ZEN

2 (v).

The MILP problem ZEN
2 (v) in (4.2.4) can be written more explicitly as

minimize µ (4.2.5)

subject to
∑
k∈K

qk
[
1

Tpk
]
≥ γ, (4.2.6)

pki ≤
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]

(4.2.7)

+M
(
1− ski

)
, ∀i ∈ N , k ∈ K,

(4.2.8)

pki ≤ p̄is
k
i , ∀i ∈ N , k ∈ K,

(4.2.9)
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]
≤Mski , ∀i ∈ N , k ∈ K,

(4.2.10)
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0 ≤ pki ≤ p̄i, ∀i ∈ N , k ∈ K,
(4.2.11)

ski ∈ {0, 1} , ∀i ∈ N , k ∈ K.
(4.2.12)

Proof of Corollary 4.2.2. Let
•
µ ∈ R be an optimal solution to PEN

2 (v) and let(
µ,
(
pk, sk

)
k∈K

)
be an optimal solution to ZEN

2 (v).

Take Y = YEN in Theorem 4.2.1 and let
( •
pk,

•
sk
)

be an optimal solution to

ΛEN
(
X
(
ωk
)

+BTv +
•
µ1
)
, for each k ∈ K. Then by Theorem 4.2.1, PEN

2 (v) =

ZEN
2 (v).

The next three propositions present some boundedness and feasibility results

for the MILP problem ZEN
2 (v), v ∈ RG, in Corollary 4.2.2.

Proposition 4.2.3. Let v ∈ RG and consider ZEN
2 (v) in Corollary 4.2.2. If(

µ,
(
pk, sk

)
k∈K

)
is an optimal solution to ZEN

2 (v), then µ ≤ µmax, where µmax =

‖X‖∞ + ‖v‖∞ + ‖p̄‖∞.

Proposition 4.2.4. Let v ∈ RG and consider ZEN
2 (v) in Corollary 4.2.2. Let

the value of M in ZEN
2 (v) MILP problem be taken as M = 2 ‖X‖∞ + 2 ‖v‖∞ +

(n+ 1) ‖p̄‖∞. If ZEN
2 (v) is feasible, then it is bounded.

Proposition 4.2.5. Let v ∈ RG. Then, ZEN
2 (v) in Corollary 4.2.2 is feasible if

and only if γ ≤ 1Tp̄ .

The proofs of Propositions 4.2.3, 4.2.4 and 4.2.5 can be found in Appen-

dices B.7, B.8 and B.9.

Remark 4.2.6. Let v ∈ RG and consider an optimal solution
(
µ,
(
pk, sk

)
k∈K

)
to

the MILP problem ZEN
2 (v). By Proposition (4.2.3), µ ≤ ‖X‖∞+ ‖v‖∞+ ‖p̄‖∞.

By the structure of the matrix B, for each i ∈ N , it holds
(
BTv

)
i

= vt for some

t ∈ G. Hence, for every v ∈ RG,
(
BTv

)
i
≤ ‖v‖∞. In addition, for every i ∈ N ,

k ∈ K, and pk ∈ [0, p̄], it holds
∑n

j=1 πjip
k
j < n ‖p̄‖∞ and Xi

(
ωk
)
≤ ‖X‖∞.

Hence, the choice of M = 2 ‖X‖∞ + 2 ‖v‖∞ + (n+ 1) ‖p̄‖∞ in Corollary 4.2.2
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is justified, since, to ensure the feasibility in constraint (4.2.10) of the explicit

formulation of ZEN
2 (v) in (4.2.5), it is enough to choose M such that

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]
≤M

for every i ∈ N , k ∈ K, v ∈ RG and pk ∈ [0, p̄].

4.2.2 P2 Problem for Rogers-Veraart Systemic Risk Mea-

sures

Let (N ,π, p̄,X, α, β) be a Rogers-Veraart network, where X ∈ L
(
Rn

+

)
.

Corollary 4.2.7. Let v ∈ RG and let

PRV
2 (v) := inf

{
µ ∈ R

∣∣∣E [ΛRV+
(
X +BTv + µ1

)]
≥ γ

}
, (4.2.13)

and

ZRV
2 (v) := inf

{
µ ∈ R

∣∣∣∣∣∑
k∈K

qk
[
1

Tpk
]
≥ γ,

pk ≤ α
[
X
(
ωk
)

+BTv + µ1
]

+ βΠTpk + p̄� sk,

p̄� sk ≤
[
X
(
ωk
)

+BTv + µ1
]

+ ΠTpk,

X
(
ωk
)

+BTv + µ1 ≥ 0,

pk ∈ [0, p̄] , sk ∈ {0, 1}n ,∀k ∈ K

}
.

(4.2.14)

If PRV
2 (v) and ZRV

2 (v) have finite optimal values, then PRV
2 (v) = ZRV

2 (v).

The MILP problem ZRV
2 (v) in (4.2.14) can be written more explicitly as

minimize µ (4.2.15)
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subject to
∑
k∈K

qk
[
1

Tpk
]
≥ γ, (4.2.16)

pki ≤ α
[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]

+ β
n∑
j=1

πjip
k
j + p̄is

k
i , ∀i ∈ N , k ∈ K,

(4.2.17)

p̄is
k
i ≤

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]

+
n∑
j=1

πjip
k
j , ∀i ∈ N , k ∈ K,

(4.2.18)

Xi

(
ωk
)

+
(
BTv

)
i
+ µ ≥ 0, ∀i ∈ N , k ∈ K,

(4.2.19)

0 ≤ pki ≤ p̄i, ∀i ∈ N , k ∈ K,
(4.2.20)

ski ∈ {0, 1} , ∀i ∈ N , k ∈ K.
(4.2.21)

Here, constraint (4.2.19) ensures X + BTv + µ1 ≥ 0, so that for every k ∈ K it

holds that ΛRV+
(
X
(
ωk
)

+BTv + µ1
)
6= −∞.

Proof of Corollary 4.2.7. Let
•
µ ∈ R be an optimal solution to PRV

2 (v) and let(
µ,
(
pk, sk

)
k∈K

)
be an optimal solution to ZRV

2 (v).

Take Y = YRV in Theorem 4.2.1 and let
( •
pk,

•
sk
)

be an optimal solution to

ΛRV+
(
X
(
ωk
)

+BTv + µ1
)
, for each k ∈ K. Then by Theorem 4.2.1, PRV

2 (v) =

ZRV
2 (v).

The next three propositions present some boundedness and feasibility results

for the MILP problem ZRV
2 (v), v ∈ RG, in Corollary 4.2.7.

Proposition 4.2.8. Let v ∈ RG and consider ZRV
2 (v) in Corollary 4.2.7. If(

µ,
(
pk, sk

)
k∈K

)
is an optimal solution to ZRV

2 (v), then µ ≤ µmax, where µmax =

‖X‖∞ + ‖v‖∞ + 1
α
‖p̄‖∞.

Proposition 4.2.9. Let v ∈ RG and consider ZRV
2 (v) in Corollary 4.2.7. If

ZRV
2 (v) is feasible, then it is bounded.
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Proposition 4.2.10. Let v ∈ RG. Then, ZRV
2 (v) in Corollary 4.2.7 is feasible

if and only if γ ≤ 1Tp̄.

The proofs of Propositions 4.2.8, 4.2.9 and 4.2.10 can be found in Appen-

dices B.10, B.11 and B.12.

Remark 4.2.11. For ` ∈ G and v ∈ RG, a threshold γ in the MILP prob-

lems ZEN
1

(
e`
)
, ZRV

1

(
e`
)
, ZEN

2 (v), ZRV
2 (v) in Corollaries 4.1.5, 4.1.10, 4.2.2 and

4.2.7, respectively, can be taken as some percentage of 1Tp̄, sum of the debts

of all nodes in the network. Then this threshold ensures that the expected total

amount of payments exceeds this fraction of the total debt in the system. Indeed,

Corollaries 4.1.8, 4.1.13, 4.2.5 and 4.2.10 show that the MILP problems ZEN
1

(
e`
)
,

ZRV
1

(
e`
)
, ZEN

2 (v), ZRV
2 (v) are feasible if and only if γ ≤ 1Tp̄. Hence, this choice

of γ threshold is justified.

Proposition 4.1.7 shows that if the MILP problem ZEN
1

(
e`
)

in (4.1.9) is feasible

for every ` ∈ G, then the ideal point zideal ∈ Rn exists for the vector optimization

problem in (4.1.1) with ΛOPT = ΛEN. Proposition 4.1.12 provides the same result

for the vector optimization problem in (4.1.1) with ΛOPT = ΛRV+ . In addition,

the results of Propositions 4.1.6, 4.1.7, 4.2.3 and 4.2.4 allow one to choose the

exact value for the upper bound M in the corresponding MILP problems instead

of assuming some vague heuristic values.

The next chapter outlines the Benson type algorithm for non-convex prob-

lems introduced in Nobakhtian and Shafiei [1]. It is described in detail how

this algorithm approximates the Eisenberg-Noe and Rogers-Veraart systemic risk

measures, which are not necessarily convex. The related pseudo-codes are pro-

vided.
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Chapter 5

A Benson Type Algorithm to

Approximate the Eisenberg-Noe

and Rogers-Veraart Systemic

Risk Measures

In this chapter, an algorithm that approximates the Eisenberg-Noe and Rogers-

Veraart systemic risk measures is presented. The systemic risk measures are ap-

proximated with respect to a user-defined approximation error ε > 0 and an upper

bound point zUB ∈ RG. The algorithm is based on the Benson type algorithm

for non-convex multi-objective programming problems described in Nobakhtian

and Shafiei [1]. The following definitions are borrowed from [1].

Let L ⊆ RG. A point v ∈ L is called a vertex of L if it cannot be expressed

as a strict convex combination of two distinct points of L ∩ N , where N is a

neighborhood of v. A set of all vertices of L is denoted by vertL. The notation

intL denotes the interior of L. Given a point z ∈ RG and L ⊆ RG, L|z :=

{v ∈ L|v ≤ z} denotes the set of all points in L which are less than or equal to

z in all components.
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Let R,L,U ⊆ RG, z ∈ RG and ε > 0 be a positive real number. The set L
is called an outer approximation for R with respect to ε and z, if R ⊆ L and

L|z ⊆ R+B (0, ε), where B (0, ε) is the closed ball in RG centered at 0 and with

radius ε. The set U is called an inner approximation for R with respect to ε and

z if R is an outer approximation for U with respect to ε and z.

The algorithm that calculates inner and outer approximations of a systemic

risk measure works as follows. It is provided in detail only for the Eisenberg-Noe

systemic risk measures, since it works similarly for the Rogers-Veraart systemic

risk measures. Let (N ,π, p̄,X) be a signed Eisenberg-Noe network. Let G be the

number of groups in the network and G = {1, . . . , G}. Consider the corresponding

Eisenberg-Noe systemic risk measure Rsen
EN (X) in (4.0.7). Let zideal ∈ RG be the

ideal point of the vector optimization problem in (4.1.1) with ΛOPT = ΛEN, in the

sense that the entries of zideal minimize each of the objective functions of the vec-

tor optimization problem. One can calculate zideal =
(
ZEN

1 (e1) , . . . ,ZEN
1

(
eG
))T

by Corollary 4.1.5. In addition, for v ∈ RG, the minimum step-length PEN
2 (v) can

be obtained by solving the MILP problem ZEN
2 (v) in (4.2.4), by Corollary 4.2.2.

The algorithm starts with an initial inner approximation U0 := zUB +RG
+ and

an initial outer approximation L0 := zideal + RG
+, which satisfy U0 ⊆ Rsen

EN (X) ⊆
L0. Let ε = ε1 and initially set t ← 0. At the tth iteration, for a vertex

vt ∈ vertLt|zUB such that vt + ε /∈ int U t, the algorithm solves ZEN
2 (vt) to obtain

the minimum step-length µt from the point vt to the boundary of Rsen
EN (X) in

the direction 1 ∈ RG. In other words, yt = vt + µt1 is a boundary point of the

set Rsen (X). Then the algorithm excludes the cone yt − RG
+ from Lt to obtain

Lt+1 by Lt+1 := Lt\
(
yt − RG

+

)
, and adds the cone yt + RG

+ to U t to obtain U t+1

as follows: U t+1 := U t ∪
(
yt + RG

+

)
. Therefore, at each step of the algorithm

we have U t ⊆ U t+1 ⊆ Rsen
EN (X) ⊆ Lt+1 ⊆ Lt. At the end of the tth iteration,

vertLt+1 is computed. The computation of vertLt+1 is described in detail in

Gourion and Luc [23]. The above process repeats for t ← t + 1. The algorithm

stops at T th iteration, when vertLT |zUB + ε ⊆ int UT . The sets UT and LT

are the inner and outer approximations for Rsen
EN (X) with respect to ε > 0 and

zUB ∈ RG. Note that zUB have to be chosen such that zUB ∈ Rsen
EN (X) to get
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non-empty approximations. The pseudo-codes of the algorithm for the Eisenberg-

Noe and Rogers-Veraart systemic risk measures are provided in Algorithm 1 and

Algorithm 2, respectively.

Algorithm 1. Inner and outer approximation algorithm for the
Eisenberg-Noe systemic risk measures

Initialization.

(i1) Let zUB ∈ Rsen
EN (X) be an upper bound, L0 = zideal + RG

+,
U0 = zUB + RG

+ and ε > 0 be an approximation error.
(i2) Put ε = ε1 and t← 0.

(i3) Let S be an empty set.
Iteration steps.

(k1) If vertLt|zUB ⊆ S set T = t and stop. Otherwise, choose
vt ∈ vertLt|zUB\S.

(k2) If vt + ε ∈ int U t, add vt to S and go to (k1).

(k3) Suppose that µt = PEN
2 (vt). Define yt = vt + µt

1.

(k4) Define Lt+1 := Lt\
(
yt − RG

+

)
and U t+1 := U t ∪

(
yt + RG

+

)
.

(k5) Determine vertLt+1 and set t← t+ 1. Go to (k1).
Results.

(r1) LT is an outer approximation and UT is an inner approximation for
Rsen

EN (X) with respect to ε > 0 and zUB ∈ RG.
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Algorithm 2. Inner and outer approximation algorithm for the
Rogers-Veraart systemic risk measures

Initialization.

(i1) Let zUB ∈ Rsen
RV (X) be an upper bound, L0 = zideal + RG

+,
U0 = zUB + RG

+ and ε > 0 be an approximation error.
(i2) Put ε = ε1 and t← 0.

(i3) Let S be an empty set.
Iteration steps.

(k1) If vertLt|zUB ⊆ S set T = t and stop. Otherwise, choose
vt ∈ vertLt|zUB\S.

(k2) If vt + ε ∈ int U t, add vt to S and go to (k1).

(k3) Suppose that µt = PRV
2 (vt). Define yt = vt + µt

1.

(k4) Define Lt+1 := Lt\
(
yt − RG

+

)
and U t+1 := U t ∪

(
yt + RG

+

)
.

(k5) Determine vertLt+1 and set t← t+ 1. Go to (k1).
Results.

(r1) LT is an outer approximation and UT is an inner approximation for
Rsen

RV (X) with respect to ε > 0 and zUB ∈ RG.
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Chapter 6

Computational Results and

Analysis

In this chapter, some computational results are presented to illustrate the approx-

imation of the Eisenberg-Noe and Rogers-Veraart systemic risk measures by the

Benson type algorithm described in Chapter 5. The algorithm is implemented on

Java Photon (Release 4.8.0) calling Gurobi Interactive Shell (Version 7.5.2) and

run on an Intel(R) Core(TM) i7-4790 processor with 3.60 GHz and 4 GB RAM.

First, the Eisenberg-Noe and Rogers-Veraart systemic risk measures are approx-

imated within two-group frameworks. Then, sensitivity analyses are performed

in the scope of these frameworks. Finally, the Eisenberg-Noe and Rogers-Veraart

systemic risk measures are approximated within three-group frameworks. The

corresponding computational results and approximations are presented.

Recall that n is the number of institutions in a financial system, n` is the

number of nodes in a group ` ∈ G, K is the number of scenarios, ε is a user-defined

approximation error and zUB is a user-defined upper-bound vector that limits the

approximated region of a systemic risk measure. Throughout the computation

of systemic risk measures, except for the Rogers-Veraart case in a three-group
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framework, zUB is taken as

zUB = ẑideal + 2 ‖p̄‖∞ ,

where ẑideal is the ideal point of the corresponding systemic risk measure with

γ = 1
Tp̄, that is, when it is required that the expected total value of payments

is at least as much as the total amount of liabilities in the network.

Throughout this chapter, γ is taken as some percentage of 1Tp̄, the total debt

in a network with the total obligation vector p̄. Hence, the choice of γ threshold

has a nice and intuitive financial interpretation as the minimum amount of liabil-

ities that should be met on average in the network. As it was already mentioned

in Chapter 4, this choice of γ is justified by Corollaries 4.1.8, 4.1.13, 4.2.5 and

4.2.10. For the simplicity of notation in the subsequent sections, let γp denote

the fraction of the total debt that should be met on average in the network, that

is, γ = γp
(
1

Tp̄
)

and γp ∈ [0, 1].

6.1 Data Generation

From now on, nodes in any particular network are considered as banks. In the

scope of this computational study, a network of n banks is grouped into two or

three categories. These correspond to cases when the number of groups G is 2

or 3, respectively, G = {1, . . . , G}, N =
⋃
`∈G N` = {1, . . . , n}, and n` = |N`|

corresponds to the number of banks in group ` ∈ G. In the case of two groups,

` = 1 and ` = 2 correspond to big and small banks, respectively. In the case of

three groups, ` = 1, ` = 2 and ` = 3 correspond to big, medium and small banks,

respectively. For a signed Eisenberg-Noe network (N ,π, p̄,X) and a Rogers-

Veraart network (N ,π, p̄,X, α, β), the corresponding interbank liabilities matrix

l := (lij)i,j∈N ∈ Rn×n
+ and the random operating cash flow vector X are generated

in the following fashion.
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Recall that a financial system is considered as a network with nodes corre-

sponding to the members of the system and directed arcs corresponding to the

liabilities between the members. To generate these connections in terms of the

interbank liabilities matrix l we use the idea of random graphs, also referred as

the Erdös-Rényi model, presented by Erdös and Rényi [24] and, independently, by

Gilbert [25]. First, we fix a connectivity probabilities matrix qcon :=
(
qcon
`,ˆ̀

)
`,ˆ̀∈G

∈

RG×G and an intergroup liabilities matrix lgr :=
(
lgr

`,ˆ̀

)
`,ˆ̀∈G

∈ RG×G. These matri-

ces are interpreted as follows. For any two banks i, j ∈ N with i ∈ N`, j ∈ Nˆ̀

and `, ˆ̀∈ G, qcon
`,ˆ̀

is a probability that the bank i owes lgr

`,ˆ̀
amount to the bank j.

Then the liability lij is generated by the Bernoulli trial

lij =

l
gr

`,ˆ̀
, if Uij < qcon

`,ˆ̀
,

0, otherwise,

where Uij is the realization of a continuous random variable with a standard uni-

form distribution on a separate probability space. Once the interbank liabilities

matrix l is generated, the relative liabilities matrix π and the total obligation

vector p̄ are derived from it by the following relations, described originally in

Eisenberg and Noe [2],

p̄i =
∑
j∈N

lij, i ∈ N ; πij =
lij
p̄i
, i, j ∈ N .

Recall that the operating cash flow vector X = (X1, . . . , Xn) ∈ L (Rn) is a

multivariate random vector and Ω is a finite set of K scenarios. It is assumed

that all scenarios are equally likely to happen, the operating cash flows have a

common standard deviation σ, and there is a common correlation % between any

two operating cash flows. Then, each entry Xi, i ∈ N , is generated as a random

sample of size K as described below.

For the Eisenberg-Noe network, the mean values of operating cash flows in

each group, ν := (ν`)`∈G, are fixed and the random vector X is generated in a

way that its joint cumulative distribution function is stated in terms of a Gaussian
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copula and its marginal distributions are Gaussian distributions. Hence, for each

i ∈ N with i ∈ N` for some ` ∈ G, Xi has a Gaussian distribution with mean ν`

and common standard deviation σ.

On the other hand, for the Rogers-Veraart network, first, shape parameters

κ := (κ`)`∈G and scale parameters θ := (θ`)`∈G are fixed and then, due to the

assumption that operating cash flows are nonnegative, X is generated in a way

that its joint cumulative distribution function is stated in terms of a Gaussian

copula and its marginal distributions are gamma distributions. That is, for each

i ∈ N with i ∈ N` for some ` ∈ G, Xi has a gamma distribution with shape

parameter κi and scale parameter θi. Then, ν` = κ`θ` for each ` ∈ G. Shape

and scale parameters of the gamma distributions are chosen in a way that the

random operating cash flows have a common standard deviation σ =
√
κ`θ`, for

each ` ∈ G. For both Eisenberg-Noe and Rogers-Veraart networks, it is assumed

that Xi and Xj have a common correlation coefficient % ∈ [−1, 1], for every

i, j ∈ N such that i 6= j.

In the following sections, computational results and approximations of some

Eisenberg-Noe and Rogers-Veraart systemic risk measures are presented and an-

alyzed from different points of view. First, general computational results for

a two-group Eisenberg-Noe systemic risk measure are presented. Then sensitiv-

ity analysis results are provided for two-group Eisenberg-Noe and Rogers-Veraart

systemic risk measures by changing various parameters of the generated networks,

namely, connectivity probabilities, number of scenarios, γ threshold, numbers of

banks in groups, α and β parameters of Rogers-Veraart networks, mean values of

operating cash flows and a common correlation % between operating cash flows.
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6.2 A Two-Group Signed Eisenberg-Noe Net-

work with 50 Nodes and 100 Scenarios

In this part, a two-group Eisenberg-Noe network of banks is generated and the

corresponding systemic risk measure is approximated by the Benson type algo-

rithm with different levels of approximation error. The corresponding results,

namely, computation times, inner and outer approximations are provided below.

The network is generated with the following parameters: the number of banks

in the network n = 50, the number of big banks n1 = 15, the number of small

banks n2 = 35, the number of scenarios K = 100, the common standard deviation

σ = 100, and the common correlation % = 0.05. In addition, the following

connectivity probabilities matrix, the intergroup liabilities matrix and the mean

values of the operating cash flows are assumed:

qcon =

[
0.9 0.3

0.7 0.5

]
, lgr =

[
10 5

8 5

]
, ν =

[
−50 −100

]
.

We take γp = 0.7. Hence,

Rsen
EN (X) =

{
z ∈ R2

∣∣∣E [ΛEN
(
X +BTz

)]
≥ 0.7

(
1

Tp̄
)}

, (6.2.1)

where the aggregation function ΛEN is defined as in (3.2.7).

The Benson type algorithm is run with four different approximation errors ε

to demonstrate different approximation levels both for inner and outer approxi-

mations. Table 6.1 presents the computational performance of the algorithm for

ε ∈ {1, 5, 10, 20}.

Figure 6.1 shows the inner approximations of the Eisenberg-Noe systemic risk

measure in (6.2.1) for ε ∈ {1, 5, 10, 20}. Figure 6.2 consists of zoomed portions of

the inner approximations in Figure 6.1. Figure 6.3 shows the corresponding outer

approximations. Figure 6.4 consists of zoomed portions of the outer approxima-

tions in Figure 6.3.
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ε
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

20 18 19 18 663.546 11944 3.318
10 35 36 35 541.419 18950 5.264
5 73 74 73 512.998 37449 10.403
1 394 395 394 492.597 194083 53.912

Table 6.1: Computational performance of the algorithm for a network of 15 big
and 35 small banks, 100 scenarios and approximation errors ε ∈ {1, 5, 10, 20}.

(a) ε = 20 (b) ε = 10

(c) ε = 5 (d) ε = 1

Figure 6.1: Inner approximations of the Eisenberg-Noe systemic risk measure for
ε ∈ {1, 5, 10, 20}.
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(a) ε = 20 (b) ε = 10

(c) ε = 5 (d) ε = 1

Figure 6.2: Zoomed portions of the inner approximations in Figure 6.1.
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(a) ε = 20 (b) ε = 10

(c) ε = 5 (d) ε = 1

Figure 6.3: Outer approximations of the Eisenberg-Noe systemic risk measure for
ε ∈ {1, 5, 10, 20}.
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(a) ε = 20 (b) ε = 10

(c) ε = 5 (d) ε = 1

Figure 6.4: Zoomed portions of the outer approximations in Figure 6.3.

73



One can easily observe from Figure 6.2 and Figure 6.4 that as ε decreases the

algorithm gives more precise approximations of the systemic risk measure. In

addition, as the number of P2 problems increases, the average computation time

per P2 problem decreases. This may be attributed to the warm start feature of

the Gurobi solver. When a sequence of mixed-integer programming problems are

solved, the solver constructs an initial solution out of the previously obtained op-

timal solution. This feature is explained in detail in Gurobi Optimizer Reference

Manual [26, Chapter 10.2, pp. 594-595].

In the next two sections, sensitivity analyses on several parameters are per-

formed and the corresponding computation times and inner approximations of

Eisenberg-Noe systemic risk measures are compared. The parameters investi-

gated are connectivity probabilities between big and small banks, number of sce-

narios, γ threshold and distribution of nodes among groups. These are performed

on two different two-group Eisenberg-Noe networks, one with 50 banks and 100

scenarios and the other one with 70 banks and 50 scenarios.

6.3 Sensitivity Analyses on Two-Group Signed

Eisenberg-Noe Networks with 50 Nodes and

100 Scenarios

In this section, sensitivity analyses are performed on connectivity probabilities

between big and small banks and on the number of scenarios. We take the two-

group signed Eisenberg-Noe network investigated in the previous section as a

base, where

qcon =

[
0.9 0.3

0.7 0.5

]
, lgr =

[
10 5

8 5

]
, ν =

[
−50 −100

]
,

n = 50, n1 = 15, n2 = 35, K = 100, σ = 100, and the % = 0.05. The correspond-

ing Eisenberg-Noe systemic risk measure requires γp = 0.7 and the approximation
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error in the Benson type algorithm is taken as ε = 1.

6.3.1 Connectivity Probabilities

In this part, a sensitivity analysis on connectivity probabilities between the groups

of big banks and small banks is performed and the corresponding changes in

Eisenberg-Noe systemic risk measures are reported and analyzed. Connectivity

probabilities play a major role in generating networks of banks for the compu-

tational purposes in this study because they define the existence of liabilities

between the banks. Hence, changing them changes the structure of the generated

network. First, the connectivity probability corresponding to liabilities of big

banks to small banks is changed, keeping all the other parameters fixed. Then,

the one corresponding to liabilities of small banks to big banks is considered in a

similar way.

6.3.1.1 Connectivity Probability that a Big Bank is Liable to a Small

Bank

Here we present the results of the sensitivity analysis on qcon
1,2 , the probability that

a big bank is liable to a small bank. Originally, this connectivity probability is

taken as qcon
1,2 = 0.3. Table 6.2 shows the computational performance of the algo-

rithm for qcon
1,2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 6.5 consists of the corresponding

inner approximations.

Observe from Table 6.2 that the average time per P2 problem increases with

qcon
1,2 . This is the case because as qcon

1,2 increases, big and small banks in the network

become more connected in terms of liabilities. Hence, the corresponding MILP

formulations of P2 problems need more time to be solved. This seems to be the

only factor behind the increase because most of the algorithm runtime is devoted

to solving P2 problems and the number of P2 problems in each case does not

change much.
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qcon1,2

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.1 279 280 358 294.07 105 277 29.244
0.3 394 395 394 492.597 194 083 53.912
0.5 360 361 360 556.795 200 447 55.680
0.7 364 365 364 633.644 230 647 64.069
0.9 377 378 377 772.76 291 331 80.925

Table 6.2: Computational performance of the algorithm for qcon
1,2 ∈

{0.1, 0.3, 0.5, 0.7, 0.9}.

Figure 6.5: Inner approximations of the Eisenberg-Noe systemic risk measure for
qcon

1,2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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It can be observed that, as qcon
1,2 increases, the corresponding inner approxima-

tions of systemic risk measures in Figure 6.5 shift from the top left corner towards

the bottom right corner. It can be interpreted as follows: as qcon
1,2 increases, the

first group, the group of big banks, loses capital allocation options, while the

second group, the group of small banks, gains a wider range of capital allocation

options. It can also be observed from Figure 6.5 that generating a network with

qcon
1,2 = 0.1 results in a nonconvex Eisenberg-Noe systemic risk measure. However,

for the values qcon
1,2 ∈ {0.3, 0.5, 0.7, 0.9}, the corresponding Eisenberg-Noe systemic

risk measures seem to be convex sets. Probably, for these cases, there is some

breakpoint between 0.1 and 0.3 that switches these Eisenberg-Noe systemic risk

measures from a nonconvex shape to a convex one, meaning that, whenever the

probability qcon
1,2 is less than this breakpoint, big banks are less likely to be liable

to small banks and have even more capital allocation options than they have in

the other cases.

6.3.1.2 Connectivity Probability that a Small Bank is Liable to a Big

Bank

Here we present the results of the sensitivity analysis on qcon
2,1 , the probability that

a big bank is liable to a small bank. Originally, this connectivity probability is

taken as qcon
2,1 = 0.7. Table 6.3 shows the computational performance of the algo-

rithm for qcon
2,1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 6.6 consists of the corresponding

inner approximations.

qcon2,1

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.1 257 258 257 233.243 59943 16.651
0.3 294 295 294 319.511 93936 26.093
0.5 328 329 328 377.398 123787 34.385
0.7 394 395 394 492.597 194083 53.912
0.9 435 436 512 487.547 249624 69.340

Table 6.3: Computational performance of the algorithm for qcon
2,1 ∈

{0.1, 0.3, 0.5, 0.7, 0.9}.
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As in the previous sensitivity analysis, observe from Table 6.3 that the average

time per P2 problem increases with qcon
2,1 . Hence, it is another justification of the

presumption that this happens because with higher connectivity probabilities the

network becomes more connected in terms of liabilities and the corresponding

MILP formulations of P2 problems need more time to be solved.

Figure 6.6: Inner approximations of the Eisenberg-Noe systemic risk measure for
qcon

2,1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Note that as qcon
2,1 increases, the inner approximations of the corresponding

Eisenberg-Noe systemic risk measures in Figure 6.6 shift from the bottom right

corner towards the top left corner. Conversely to the previous sensitivity analysis,

it can be interpreted as follows: as qcon
2,1 increases, the first group gains a wider

range of capital allocation options, while the second group loses capital allocation

options. It can also be observed from Figure 6.6 that generating a network with

qcon
2,1 = 0.9 results in a nonconvex Eisenberg-Noe systemic risk measure. However,

for the values qcon
2,1 ∈ {0.1, 0.3, 0.5, 0.7}, the corresponding Eisenberg-Noe systemic

risk measures seem to be convex sets. As in the previous sensitivity analysis, it

can be presumed that for these cases there is some breakpoint between 0.7 and 0.9

that switches these Eisenberg-Noe systemic risk measures from a convex shape to

a nonconvex one, meaning that, whenever the probability qcon
2,1 is higher than this

breakpoint, small banks are more likely to be liable to big banks and the latter
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have even more capital allocation options than they have in the other cases.

6.3.2 Number of Scenarios

In this part, a sensitivity analysis is performed by changing the number K of

scenarios in the set {10, 20, . . . , 100}. The main purpose is to analyze how com-

putation times and the corresponding systemic risk measures change. Since the

network structure remains the same all the time, it is expected that there will be

no major changes in Eisenberg-Noe systemic risk measures. However, since each

scenario adds n continuous and n binary variables to the corresponding P2 prob-

lem and its MILP formulation ZEN
2 , defined in (4.2.5), one would expect major

changes in computation times.

Table 6.4 shows the computational performance of the algorithm for K ∈
{10, 20, . . . , 100} and Figure 6.7 provides the inner approximations of the corre-

sponding Eisenberg-Noe systemic risk measures.

K
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

10 376 377 376 3.088 1 161 0.323
20 380 381 380 11.977 4 551 1.264
30 389 390 389 28.134 10 944 3.040
40 381 382 381 56.685 21 597 5.999
50 373 374 373 96.488 35 990 9.997
60 381 382 381 151.635 57 773 16.048
70 385 386 385 206.924 79 666 22.129
80 390 391 390 293.155 114 330 31.758
90 381 382 381 378.346 144 150 40.042
100 394 395 394 492.597 194 083 53.912

Table 6.4: Computational performance of the algorithm for K ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Finally, Figure 6.8 and Figure 6.9 suggest that the average time per P2 prob-

lem and the total algorithm time increase faster than linearly with K. At the
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Figure 6.7: Inner approximations of the Eisenberg-Noe systemic risk measure for
K ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
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Figure 6.8: Scenarios-average time per P2 problem plot for the signed Eisenberg-
Noe network of 50 banks.
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Figure 6.9: Scenarios-total algorithm time plot for the signed Eisenberg-Noe net-
work of 50 banks.

same time, it can be observed from Figure 6.7 that the corresponding inner ap-

proximations of the Eisenberg-Noe systemic risk measures do not change much.

Hence, the results obtained justify the expectations.

6.4 Sensitivity Analyses on Two-Group Signed

Eisenberg-Noe Networks with 70 Nodes and

50 Scenarios

In this section, sensitivity analyses are performed on γ threshold, the distribution

of nodes among groups, and the number of scenarios. An Eisenberg-Noe network

(N ,π, p̄,X) is generated with the following parameters:

qcon =

[
0.7 0.1

0.5 0.5

]
, lgr =

[
10 5

8 5

]
, ν =

[
−50 −100

]
,
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n = 70, n1 = 10, n2 = 60, K = 50, σ = 100, and % = 0.05. The corresponding

Eisenberg-Noe systemic risk measure requires γp = 0.9. Hence,

Rsen
EN (X) =

{
z ∈ R2

∣∣∣E [ΛEN
(
X +BTz

)]
≥ 0.9

(
1

Tp̄
)}

, (6.4.1)

where the aggregation function ΛEN is defined as in (3.2.7). The approximation

error in the Benson type algorithm is taken as ε = 1.

6.4.1 Threshold Level

In this part, different γ levels are compared and analyzed to investigate how the

corresponding Eisenberg-Noe systemic risk measures and computational times

change when the requirement that some fraction of the total amount of liabilities

in the network should be met on average gets more strict. The values γp ∈
{0.01, 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 1} are considered. Recall that γ = γp

(
1

Tp̄
)
.

Table 6.5 illustrates the computational performance of the algorithm for dif-

ferent values of γp and Figure 6.10 represents the corresponding inner approxi-

mations of the Eisenberg-Noe systemic risk measures.

It can be noted from Table 6.5 that the average times per P2 problem are

high for the values of γp around 0.3, and the number of P2 problems are high

for the values of γp around 0.5. These two factors result in high total algorithm

times for the values of γp around 0.4. In addition, it can be observed that the

difference between the number of inner and outer approximation vertices and the

number of P2 problems increases drastically for the values of γp around 0.5. This

happens because the boundaries (weakly minimal elements) of the corresponding

Eisenberg-Noe systemic risk measures in Figure 6.10 contain “flat” regions, which

makes the algorithm solve more P2 problems without actually improving the

approximation. Observe from Figure 6.10 that as γp increases, each subsequent

Eisenberg-Noe systemic risk measure is contained in the previous one. This result

is fully consistent with the corresponding Eisenberg-Noe systemic risk measure

in (6.4.1) since capital allocations that satisfy a particular γ threshold can at
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γp
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.01 376 377 376 3.088 1 161 0.323
0.1 210 210 437 305.389 133 455 37.071
0.2 145 146 727 492.418 357 988 99.441
0.3 90 91 893 560.268 500 320 138.978
0.4 87 88 1037 494.65 512 952 142.487
0.5 91 95 1099 448.063 492 421 136.784
0.6 94 95 1065 240.982 256 646 71.291
0.7 96 97 927 97.501 90 383 25.106
0.8 141 142 719 45.546 32 748 9.097
0.9 234 235 461 15.285 7 047 1.957
0.95 217 218 217 11.622 2 522 0.701
0.99 136 137 136 2.504 341 0.095
1.00 1 1 1 0.203 0.204 0

Table 6.5: Computational performance of the algorithm for γp ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1}.

the same time satisfy any smaller threshold. Hence, these capital allocations are

included in any Eisenberg-Noe systemic risk measure with a smaller threshold

level.

6.4.2 Distribution of Nodes among Groups

In this part, a sensitivity analysis is performed by changing the distribution of

nodes among the groups for a fixed total number of nodes n = 70 and the num-

ber of big banks n1 takes values in {5, 10, 20, . . . , 60, 65}. Then the number of

small banks is n2 = n − n1. As previously, the main purpose is to analyze how

computation times and the corresponding systemic risk measures change. The

generated random operating cash flows remain the same all the time, while the

network structure changes at each run. Hence, the corresponding Eisenberg-Noe

systemic risk measures are expected to vary a lot.

Table 6.6 shows the computational performance of the algorithm for n1 ∈
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Figure 6.10: Inner approximations of the Eisenberg-Noe systemic risk measure
for γp ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1}.
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{5, 10, 20, . . . , 60, 65} and Figure 6.11 represents the corresponding inner approx-

imations of the Eisenberg-Noe systemic risk measures.

n1

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

5 93 94 1096 16.88 18 501 5.139
10 234 235 461 15.285 7 047 1.957
20 209 210 209 38.512 8 049 2.236
30 201 202 201 45.225 9 090 2.525
40 213 214 213 55.444 11 809 3.280
50 250 251 250 61.329 15 332 4.259
60 403 404 639 79.577 50 850 14.125
65 205 206 1092 131.431 143 523 39.867

Table 6.6: Computational performance of the algorithm for n1 ∈
{5, 10, 20, 30, 40, 50, 60, 65}.

Note that the average time per P2 problem in Table 6.6 tends to increase as the

number of big banks increases. This happens because the highest connectivity

probability, qcon
1,1 = 0.7, is the probability that one big bank is liable to another

big bank. Hence, as the number of big banks increases, the nodes in the network

become more connected with liabilities and it takes more time to solve a P2

problem because the MILP formulations of P2 problems get more complex in

terms of constraints. In addition, it can be observed that the difference between

the numbers of inner and outer approximation vertices and the number of P2

problems increases as the distribution of nodes changes toward the two extreme

cases: 5 big banks and 65 big banks. As in the previous sensitivity analysis, this

happens because the boundaries (weakly minimal elements) of the Eisenberg-Noe

systemic risk measures around these extreme cases in Figure 6.11 contain “flat”

regions, which makes the algorithm solve more P2 problems without actually

improving the approximation.

Observe from Figure 6.11 that as the number of big banks increases and the

number of small banks decreases, the small banks get a wider range of capital

allocation options, as opposed to the big banks. This happens because the total

number of banks is fixed and the group with less number of banks has a wider

range of capital allocation options since it has more claims to the other group’s
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Figure 6.11: Inner approximations of the Eisenberg-Noe systemic risk measure
for n1 ∈ {5, 10, 20, 30, 40, 50, 60, 65}.

banks. When the number of banks in each group is evenly distributed, the group

of big banks has a wider range of capital allocation options. The reason lies

behind connectivity probabilities. Recall that for this set-up it is assumed that

the connectivity probability from big banks to small banks is qcon
12 = 0.1, while

the connectivity probability from small banks to big banks is qcon
21 = 0.5. It means

that small banks are more likely to be liable to big banks and, since big banks

have more claims compared to small banks, they have a wider range of capital

allocation options.

6.4.3 Number of Scenarios

In this part, a sensitivity analysis is performed by changing the number K of

scenarios in the set {10, 20, . . . , 100}. As in the previous sensitivity analysis on

the number of scenarios, since the network structure remains the same all the

time, it is expected that there will be no major changes in the corresponding

Eisenberg-Noe systemic risk measures. The main purpose is to compare compu-

tation times. Since each scenario adds n continuous and n binary variables to the
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corresponding P2 problem and its MILP formulation ZEN
2 , defined in (4.2.5), one

would expect major changes in computation times. Table 6.7 shows the compu-

tational performance of the algorithm for K ∈ {10, 20, . . . , 100} and Figure 6.12

provides the inner approximations of the corresponding Eisenberg-Noe systemic

risk measures.

K
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

10 232 233 453 0.817 370 0.103
20 220 221 446 2.282 1 018 0.283
30 217 218 455 4.912 2 235 0.621
40 220 221 451 9.293 4 191 1.164
50 234 235 461 15.285 7 047 1.957
60 219 220 439 23.642 10 379 2.883
70 213 214 436 31.066 13 545 3.762
80 222 223 451 38.392 17 315 4.810
90 230 231 462 62.928 29 073 8.076
100 216 217 444 77.758 34 524 9.590

Table 6.7: Computational performance of the algorithm for K ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Finally, Figure 6.13 and Figure 6.14 suggest that the average time per P2

problem and the total algorithm time increase faster than linearly with K. At

the same time, it can be observed from Figure 6.12 that the corresponding inner

approximations of the Eisenberg-Noe systemic risk measures do not change much.

Hence, the results obtained justify the expectations.
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Figure 6.12: Inner approximations of the Eisenberg-Noe systemic risk measure
for K ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
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Figure 6.13: Scenarios-average time per P2 problem plot for the signed Eisenberg-
Noe network of 70 banks.
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Figure 6.14: Scenarios-total algorithm time plot for the signed Eisenberg-Noe
network of 70 banks.

6.5 Sensitivity Analyses on Two-Group Rogers-

Veraart Networks with 45 Nodes and 50

Scenarios

In this section, sensitivity analyses are performed in computation of Rogers-

Veraart systemic risk measures by changing the α and β parameters of Rogers-

Veraart networks, γ threshold, distributions of nodes among groups, mean values

of the random operating cash flows for a fixed expected total value of the operat-

ing cash flows in Rogers-Veraart networks, and the common correlation between

the random operating cash flows. A Rogers-Veraart network (N ,π, p̄,X, α, β) is

generated with the following parameters:

qcon =

[
0.5 0.1

0.3 0.5

]
, lgr =

[
200 100

50 50

]
,

n = 45, n1 = 15, n2 = 30, K = 50, and % = 0.05. In addition, the liquid

fraction of the random operating cash flows available to a defaulting node is fixed

as α = 0.7, and the liquid fraction of the realized claims available to a defaulting
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node is fixed as β = 0.9. The shape and scale parameters of gamma distributions

of the random operating cash flows Xi, i ∈ N`, ` ∈ G, are chosen as

κ =
[
100 64

]
, θ =

[
1 1.25

]
.

Then the mean values of the random operating cash flows in the corresponding

groups are

ν =
[
100 80

]
and the common standard deviation is σ = 10.

In the Rogers-Veraart systemic risk measure γp = 0.9 is taken, that is,

Rsen
RV (X) =

{
z ∈ R2

∣∣∣E [ΛRV+
(
X +BTz

)]
≥ 0.9

(
1

Tp̄
)}

, (6.5.1)

where the aggregation function ΛRV+ is defined as in (3.3.2). The approximation

error in the Benson type algorithm is taken as ε = 1.

6.5.1 Rogers-Veraart α Parameter

In this part, a sensitivity analysis is performed by changing α, the liquid fraction

of the operating cash flow that can be used by a defaulting node to meet its

obligations. It is analyzed how computation times and the corresponding systemic

risk measures change. The generated network (N ,π, p̄,X, α, β) remains the same

in all cases.

Table 6.8 illustrates the computational performance of the algorithm for α ∈
{0.1, 0.3, 0.5, 0.7, 0.9} and Figure 6.15 consists of the inner approximations of the

corresponding Rogers-Veraart systemic risk measures.

Note from Table 6.8 that the average time per P2 problem decreases with

α. It can be presumed that this happens because of the following observation:

as α parameter increases, the discontinuity in the fixed-point characterization of

clearing vectors in the Rogers-Veraart model in (3.3.1) decreases and it gets easier
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α
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.1 273 274 333 12.165 4 051 1.125
0.3 461 462 484 10.572 5 117 1.421
0.5 592 593 602 5.231 3 149 0.875
0.7 583 584 584 3.876 2 264 0.629
0.9 589 590 589 3.395 2 000 0.555

Table 6.8: Computational performance of the algorithm for α ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.

to solve the corresponding MILP formulation of a P2 problem because it contains

the constraints of (3.3.2), the MILP characterization of clearing vectors in the

Rogers-Veraart model.

Observe from Figure 6.15 that the Rogers-Veraart systemic risk measures ex-

pand significantly as α increases. It means that both big and small banks get less

strict capital requirements as default costs decrease. One can also observe that

in each case allocating zero capital requirement to the groups is not an available

option. In addition, in each case big banks can be allocated a negative amount of

capital requirement given that the capital requirements for small banks are high

enough. On the other hand, small banks do not have this privilege.

6.5.2 Rogers-Veraart β Parameter

In this part, a sensitivity analysis is performed by changing β, the liquid fraction

of the realized claims from the other nodes that can be used by a defaulting node

to meet its obligations. The generated network (N ,π, p̄,X, α, β) remains the

same in all cases.

Table 6.9 shows the computational performance of the algorithm for β ∈
{0.1, 0.3, 0.5, 0.7, 0.9} and Figure 6.16 provides the inner approximations of the

corresponding Rogers-Veraart systemic risk measures.
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Figure 6.15: Inner approximations of the Rogers-Veraart systemic risk measures
for α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

β
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.1 187 189 214 5.014 1 073 0.298
0.3 223 225 270 5.561 1 502 0.417
0.5 323 324 350 3.733 1 307 0.363
0.7 394 395 401 3.710 1 488 0.413
0.9 583 584 584 3.876 2 264 0.629

Table 6.9: Computational performance of the algorithm for β ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.
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Note from Table 6.9 that the total number of P2 problems increases with β.

We can observe smaller average times per P2 problem for higher values of β. As

in the case of the α parameter, it can be presumed that this happens because

of the following observation: as β parameter increases, the discontinuity in the

fixed-point characterization of clearing vectors in the Rogers-Veraart model in

(3.3.1) decreases, which makes it easier to solve the MILP formulation of a P2

problem.

Observe from Figure 6.16 that the Rogers-Veraart systemic risk measures ex-

pand significantly as β increases. It means that both big and small banks get less

strict capital requirements if defaulting banks are able to use larger fractions of

realized claims. It can also be observed that in each case allocating zero capital

requirement to the groups is not an available option. In addition, if β = 0.9 then

big banks can be allocated a negative amount of capital requirement given that

the capital requirements for small banks are high enough. On the other hand,

small banks do not have this privilege.

Figure 6.16: Inner approximations of the Rogers-Veraart systemic risk measures
for β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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6.5.3 Rogers-Veraart α and β Parameters

Now, Rogers-Veraart systemic risk measures and the corresponding computation

times are analyzed by changing α and β parameters simultaneously and assuming

that α = β. Again, the generated network (N ,π, p̄,X, α, β) remains the same in

all cases. Table 6.10 shows the computational performance of the algorithm for

α, β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and Figure 6.17 represents the inner approximations

of the corresponding Rogers-Veraart systemic risk measures.

α, β

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.1 130 134 142 6.585 935 0.260
0.3 168 169 214 4.440 950 0.264
0.5 263 265 287 5.169 1 484 0.412
0.7 394 395 401 3.710 1 488 0.413
0.9 589 590 589 3.395 2 000 0.555

Table 6.10: Computational performance of the algorithm for α, β ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.

In Table 6.10, note that the average time per P2 problem decreases and the

number of P2 problems increases as α and β increase, which results in increase

in the total algorithm time. As in the previous two sensitivity analyses, it can be

presumed that this happens because the discontinuity in the fixed-point charac-

terization of clearing vectors in the Rogers-Veraart model in (3.3.1) decreases as

α and β increase.

Observe from Figure 6.17 that the Rogers-Veraart systemic risk measures ex-

pand significantly as α and β increase. It means that both big and small banks

get less strict capital requirements if defaulting nodes can use larger fractions of

their assets and realized claims to meet their obligations. One can also observe

that in each case allocating zero capital requirement to the groups is not an avail-

able option. In addition, if α = 0.9 and β = 0.9 then big banks can be allocated

a negative amount of capital requirement given that the capital requirements for

small banks are high enough. On the other hand, small banks do not have this

privilege.
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Figure 6.17: Inner approximations of the Rogers-Veraart systemic risk measures
for α, β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

6.5.4 Threshold Level

In this part, different γ levels are compared and analyzed, where γp takes val-

ues in {0.1, 0.2, . . . , 0.9, 0.95, 0.99, 1} and γ = γp
(
1

Tp̄
)
. Table 6.11 shows the

computational performance of the algorithm for different values of γp and Fig-

ure 6.18 consists of the inner approximations of the corresponding Rogers-Veraart

systemic risk measures.

It can be noted from Table 6.11 that the average time per P2 problem and the

total algorithm time are high for γp values around 0.7. In addition, the number

of P2 problems increases up to γp = 0.9 and then decreases. Observe that in

Figure 6.18 the Rogers-Veraart systemic risk measures with smaller γp values

contain the ones that have higher γp values. This result is fully consistent with

the corresponding Eisenberg-Noe systemic risk measure in (6.5.1) since capital

allocations that satisfy high values of γ threshold can at the same time satisfy

smaller values of γ threshold. Hence, these capital allocations are included in any

Rogers-Veraart systemic risk measures with a smaller γ threshold.
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γp
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0.1 1 1 1 0.384 0.384 0
0.2 13 14 13 13.809 180 0.050
0.3 51 52 51 30.273 1 544 0.429
0.4 94 95 94 36.645 3 445 0.957
0.5 165 166 165 98.625 16 273 4.520
0.6 223 224 223 138.532 30 893 8.581
0.7 389 390 389 204.288 79 468 22.075
0.8 395 396 395 91.600 36 182 10.051
0.9 583 584 584 3.876 2 264 0.629
0.95 418 419 431 2.946 1 270 0.353
0.99 66 67 74 1.639 121 0.034
1.00 1 1 1 0.132 0.132 0

Table 6.11: Computational performance of the algorithm for γp ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1}.

Figure 6.18: Inner approximations of the Rogers-Veraart systemic risk measure
for γp ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1}.
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6.5.5 Distribution of Nodes among Groups

In this part, a sensitivity analysis is performed by changing the distribution of

nodes among the groups for a fixed total number of nodes n = 45 and the number

of big banks n1 takes values in {5, 10, 15, 20, 25, 30, 35, 40}. Then the number of

small banks is n2 = n−n1. As previously, the main purpose of is to analyze how

computation times and the corresponding systemic risk measures change. The

generated random operating cash flows remain the same all the time, while the

network structure changes at each run. Hence, the corresponding Rogers-Veraart

systemic risk measures are expected to vary a lot. Table 6.12 shows the compu-

tational performance of the algorithm for n1 ∈ {5, 10, 15, . . . , 40} and Figure 6.19

provides the inner approximations of the corresponding Rogers-Veraart systemic

risk measures.

n1

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

5 6 7 6 1.006 6 0.002
10 436 437 436 3.994 1 742 0.484
15 583 584 584 3.876 2 264 0.629
20 516 517 517 7.887 4 078 1.133
25 557 558 557 6.118 3 408 0.947
30 371 372 371 5.786 2 147 0.596
35 187 188 187 6.100 1 141 0.317
40 106 107 108 5.196 561 0.156

Table 6.12: Computational performance of the algorithm for n1 ∈
{5, 10, 15, 20, 25, 30, 35, 40}.

Note that the average time per P2 problem in Table 6.12 is relatively high

for the values n1 ∈ {20, 25, 30, 35, 40}. In addition, the number of P2 problems

is greater for the values around n1 = 20. Observe from Figure 6.19 that as the

number of big banks increases and the number of small banks decreases, the small

banks get a wider range of capital allocation options, as opposed to the big banks.

This happens because the total number of banks is fixed and the group with less

number of banks has a wider range of capital allocation options since it has more

claims to the other group’s banks in the scope of this set-up.
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Figure 6.19: Inner approximations of the Rogers-Veraart systemic risk measure
for n1 ∈ {5, 10, 15, 25, 30, 35, 40}.

6.5.6 Mean Values of Random Operating Cash Flows

In this part, a sensitivity analysis is performed by changing the mean values of

random operating cash flows Xi, i ∈ N , for a fixed mean value of total operating

cash flow in the network and fixed common standard deviation σ = 10. The

mean total operation cash flow in (N ,π, p̄,X, α, β) is

E

[∑
i∈N

Xi

]
=
∑
i∈N

E [Xi] =
∑
i∈N`

∑
`∈G

E [Xi] = n1ν1 +n2ν2 = 15 ·100+30 ·80 = 3900.

Let ν1 take values in {10, 30, 50, 80, 100, 120, 150, 180, 200, 240}. Then, for

the fixed mean total operation cash flow, the corresponding ν2 values are

{125, 115, 105, 90, 80, 70, 55, 40, 30, 10}. Tables 6.13 and 6.14 represent the cor-

responding shape and scale parameters of the gamma distributions of generated

operating cash flows Xi, i ∈ N`, ` ∈ G. Table 6.15 illustrates the computational

performance of the algorithm for these values of ν1 and ν2, and Figure 6.20 rep-

resents the inner approximations of some of the corresponding Rogers-Veraart
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systemic risk measures.

ν1 10 30 50 80 100 120 150 180 200 240

κ1 1 9 25 64 100 144 225 324 400 576

θ1 10 10
3

2 1.25 1 5
6

2
3

5
9

0.5 5
12

Table 6.13: Shape and scale parameter values of gamma distributions
of generated operation cash flows for big banks with mean values ν1 ∈
{10, 30, 50, 80, 100, 120, 150, 180, 200, 240} and standard deviation σ = 10.

ν2 125 115 105 90 80 70 55 40 30 10

κ2 156.25 132.25 110.25 81 64 49 30.25 16 9 1

θ2 0.8 20
23

20
21

10
9

1.25 10
7

20
11

2.5 10
3

10

Table 6.14: Shape and scale parameter values of gamma distributions of
generated operation cash flows for small banks with mean values ν2 ∈
{125, 115, 105, 90, 80, 70, 55, 40, 30, 10} and standard deviation σ = 10.

Note that the computational results in Table 6.15 do not change much with

mean values of operating cash flows. The reason behind this observation lies in

Figure 6.20, where the corresponding Rogers-Veraart systemic risk measures do

not change much in shape, but only shift as the mean values of operating cash

flows change. One can presume that this happens because the mean total value

of operating cash flows in the network is fixed. Interpreting it from the financial

perspective, as the mean operating cash flow increases for one group of banks and

decreases for the other one, the former one gets less strict capital requirements

while the latter gets more strict capital requirements and vice versa, but it does

not change the picture as a whole. However, one should keep in mind that these

results do not imply a general behavior and depend on generated networks.

6.5.7 Common Correlation

In this part, a sensitivity analysis is performed by changing the common

correlation, %, between random operating cash flows Xi, i ∈ N . Ta-

ble 6.16 shows the computational performance of the algorithm for % ∈
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ν1

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

10 599 600 600 3.828 2 297 0.638
30 586 587 586 3.878 2 273 0.631
50 580 581 580 3.912 2 269 0.630
80 598 599 598 3.803 2 274 0.632
100 583 584 584 3.876 2 264 0.629
120 596 597 596 3.812 2 272 0.631
150 603 604 603 3.826 2 307 0.641
180 589 590 589 3.829 2 256 0.627
200 589 590 589 3.824 2 252 0.626
240 579 580 579 4.206 2 435 0.676

Table 6.15: Computational performance of the algorithm for ν1 ∈
{10, 30, 50, 80, 100, 120, 150, 180, 200, 240}.

Figure 6.20: Inner approximations of the Rogers-Veraart systemic risk measure
for ν1 ∈ {10, 50, 100, 150, 200, 240}.
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{0, 0.01, 0.05, 0.1, 0.2, . . . , 0.9}. Figure 6.21 provides the inner approximations

of the corresponding Rogers-Veraart systemic risk measures.

%
Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

0 575 576 577 3.887 2 243 0.623
0.01 582 583 582 3.788 2 205 0.612
0.05 583 584 584 3.876 2 264 0.629
0.1 591 592 591 3.866 2 285 0.635
0.2 588 589 590 3.852 2 273 0.631
0.3 600 601 602 3.792 2 283 0.634
0.4 601 602 603 3.819 2 303 0.640
0.5 616 617 619 3.751 2 322 0.645
0.6 604 605 607 3.850 2 337 0.649
0.7 616 617 619 3.821 2 365 0.657
0.8 618 619 618 3.847 2 378 0.660
0.9 614 615 614 3.896 2 392 0.664

Table 6.16: Computational performance of the algorithm for % ∈
{0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Note that the computational results in Table 6.16 do not change much with

the common correlation %. It can also be observed from Figure 6.21 that the

Rogers-Veraart systemic risk measures are almost the same for all values of %.

One can attribute it to the possibility that in this network operating cash flows

do not have much impact on the network.

6.6 A Three-Group Signed Eisenberg-Noe Net-

work with 60 Nodes and 50 Scenarios

In this section, a three-group signed Eisenberg-Noe network of banks is generated

and the corresponding Eisenberg-Noe systemic risk measure is approximated by

the Benson type algorithm. The computation times and the inner approximations

are presented below.
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Figure 6.21: Inner approximations of the Rogers-Veraart systemic risk measure
in (6.5.1) for % ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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A signed Eisenberg-Noe network (N ,π, p̄,X) is generated with n = 60, n1 =

10, n2 = 20, n3 = 30, K = 50, σ = 100, and % = 0.05. In addition,

qcon =


0.4 0.2 0.1

0.3 0.4 0.1

0.2 0.3 0.4

 , lgr =


20 15 8

15 10 6

8 6 5

 , ν =
[
−50 −100 −150

]
.

It is taken γp = 0.95 so that

Rsen
EN (X) =

{
z ∈ R3

∣∣∣E [ΛEN
(
X +BTz

)]
≥ 0.95

(
1

Tp̄
)}

, (6.6.1)

where the aggregation function ΛEN is defined as in (3.2.7).

Table 6.17 shows the computational performance of the algorithm for ε = 20.

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

413 516 1250 2.904 3631 1.009

Table 6.17: Computational performance of the algorithm for a signed Eisenberg-
Noe network with 10 big, 20 medium and 30 small banks, 50 scenarios and ap-
proximation error ε = 20.

Figure 6.22 represents the inner approximation of the corresponding three-

group Eisenberg-Noe systemic risk measure. It can be presumed that this

Eisenberg-Noe systemic risk measure is convex.

6.7 A Three-Group Rogers-Veraart Network

with 60 Nodes and 50 Scenarios

In this section, a three-group network of banks is generated and the correspond-

ing Rogers-Veraart systemic risk measure is approximated by the Benson type

algorithm. The computation times and the inner approximations are presented

below.
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Figure 6.22: Inner approximation of the three-group Eisenberg-Noe systemic risk
measure with 60 nodes, 50 scenarios and approximation error ε = 20.
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A Rogers-Veraart network (N ,π, p̄,X, α, β) is generated with n = 60, n1 =

10, n2 = 20, n3 = 30, K = 50, % = 0.05,

qcon =


0.4 0.2 0.1

0.2 0.3 0.2

0.1 0.2 0.2

 , lgr =


200 190 180

190 190 180

180 180 170

 .
In addition, the liquid fraction of the random operating cash flows and the liquid

fraction of the realized claims available to defaulting banks are fixed as α = β =

0.9. The shape and scale parameters of gamma distributions of Xi, i ∈ N`, ` ∈ G,

are chosen as

κ =
[
100 81 64

]
, θ =

[
1 10

9
1.25

]
.

Then, the corresponding mean values of the random operating cash flows in the

groups are

ν =
[
100 90 80

]
and the common standard deviation is σ = 10.

It is taken γp = 0.99 so that

Rsen
RV (X) =

{
z ∈ R3

∣∣∣E [ΛRV+
(
X +BTz

)]
≥ 0.99

(
1

Tp̄
)}

, (6.7.1)

where ΛRV+ is defined as in (3.3.2). The upper bound point in the approximation

is taken as

zUB = ẑideal +
1

5
‖p̄‖∞ .

Table 6.18 shows the computational performance of the algorithm for ε = 40.

Inner
approx.
vertices

Outer
approx.
vertices

P2

problems

Avg. time
per P2 prob.
(seconds)

Total algorithm
time (seconds)

Total algorithm
time (hours)

975 1323 19382 0.427 8284 2.301

Table 6.18: Computational performance of the algorithm for a Rogers-Veraart
network with 10 big, 20 medium and 30 small banks, 50 scenarios and approxi-
mation error ε = 40.
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Figure 6.23 provides the inner approximation of the corresponding three-group

Rogers-Veraart systemic risk measure. It can be observed that this Rogers-

Veraart systemic risk measure is not convex.

Figure 6.23: Inner approximation of the three-group Rogers-Veraart systemic risk
measure with 60 nodes, 50 scenarios and approximation error ε = 40.
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Chapter 7

Conclusion and Future Research

Systemic risk is an important aspect of a financial system with tight interdepen-

dencies because it helps evaluate the risk of financial contagions and decrease

the risks of financial crises and their consequences. One of the aspects studied

by the scholars in systemic risk area is clearing, which reduces interdependency

in financial systems by eliminating mutual liabilities. The study in this thesis

is conducted at the interface of network models of systemic risk and systemic

risk measures. To the best of our knowledge, it is the first attempt to compute

systemic risk measures by implementing mixed-integer linear programming aggre-

gation functions and applying a Benson type algorithm for non-convex problems.

Computation of systemic risk measures is considered from the vector optimization

point of view.

The Eisenberg-Noe and Rogers-Veraart network models of systemic risk are

investigated and extended from the optimization point of view in Chapter 3.

MILP characterizations of clearing vectors in these network models are presented.

The nonnegative operating cash flow assumption in the Eisenberg-Noe network

model is relaxed and two modification approaches are described: without and

with seniority assumption. It is shown that the former approach, a naive attempt

originated from a conjecture made in Eisenberg and Noe [2], leads to a formulation

of a totally different problem and makes it difficult to interpret the new model in
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terms of the original one due to absence of seniority in the structure of the model.

Analyzing this approach leads to the second approach with a seniority assumption

and proves to be more applicable both in terms of financial interpretation and

from optimization point of view. In addition, two MILP aggregation functions are

presented, which are then implemented in systemic risk measures in Chapter 4.

A grouping notion for the members of a financial system is employed in Chap-

ter 4 in terms of a grouping matrix applied in the structure of systemic risk

measures. MILP characterizations of P1, the weighted-sum scalarization prob-

lem, and P2, the problem of finding a minimum step-length, are formulated for

both the Eisenberg-Noe and Rogers-Veraart systemic risk measures. Important

results on boundedness and feasibility of these MILP formulations are provided.

In Chapter 5, the Benson type algorithm for non-convex problems described in

Nobakhtian and Shafiei [1] and the corresponding pseudo-codes for approximation

of the Eisenberg-Noe and Rogers-Veraart systemic risk measures are presented.

The roles of the MILP formulations of P1 and P2 problems in the algorithm are

explained.

A computational study is performed in Chapter 6 by generating two-group and

three-group signed Eisenberg-Noe and Rogers-Veraart networks and approximat-

ing the corresponding systemic risk measures. The computational performance

of the algorithm and results of the sensitivity analyses performed on various pa-

rameters of the networks are provided. The obtained inner approximations of

the corresponding systemic risk measures are compared and interpreted from the

financial point of view as capital allocations (capital requirements) for the mem-

bers of the financial system. It is observed that the most of the computation times

are devoted to solving the optimization problems in terms of MILP formulations

of the corresponding P2 problems.

For future research, this study can be extended in several ways. One option is

to try different acceptance sets in systemic risk measures. For the sake of simplic-

ity, the acceptance set of the negative expectation risk measure is applied in this

study. One can try using acceptance sets related to the average value at risk (also
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known as the conditional value at risk or expected shortfall) or the entropic risk

measure. As a slight extension for this research, the nonnegativity assumption

on operating cash flows can be relaxed for the Rogers-Veraart network model

using the ideas developed in Chapter 3. In the scope of computation of systemic

risk measures, different aggregation functions can be formulated as optimization

problems in various research areas and applied in systemic risk measures, which

then can be approximated using the Benson type algorithm. A challenging at-

tempt would be to try to formulate and compute a systemic risk measure with a

network model (together with its aggregation function) that reflects as much as

possible the real-world conditions and includes many aspects of financial systems,

such as the network model developed in Weber and Weske [9]. One more option

is to try to develop a heuristic algorithm that improves computational times in

approximating systemic risk measures.
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Appendix A

Proofs of the Results in

Chapter 3

A.1 Proof of Lemma 3.2.11

Proof. If si = 0, then constraint (3.2.11) is infeasible by assumption. Hence,

si = 1, and this yields

pi ≤
n∑
j=1

πjipj + xi and pi ≤ p̄i,

by constraints (3.2.9) and (3.2.10), respectively. Hence,

pi ≤ min

{
n∑
j=1

πjipj + xi, p̄i

}
.

To get a contradiction, suppose that pi < min
{∑n

j=1 πjipj + xi, p̄i

}
. Now let

pε ∈ Rn
+ be equal to p in all components except the ith one, and let pεi = pi + ε,
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where

ε := min

{
min

{
n∑
j=1

πjipj + xi, p̄i

}
− pi,min

l∈N

{
M −

(
n∑
j=1

πjlpj + xl

)}
, ε′

}
> 0,

where ε′ = min
l∈N :

∑n
j=1 πjlpj+xl<0

∣∣∣∑n
j=1 πjlpj + xl

∣∣∣ (ε′ = +∞ if there is no l ∈ N such

that
∑n

j=1 πjlpj + xl < 0 holds
)

. This choice of ε ensures

pεi ≤ p̄i and pεi ≤
n∑
j=1

πjip
ε
j + xi,

and will also be justified by other technical details later in this proof.

Let sε ∈ {0, 1}n be a vector of binaries, where sεl = 0 if
∑n

j=1 πjlp
ε
j + xl < 0

and sεl = 1 if
∑n

j=1 πjlp
ε
j + xl ≥ 0, for each l ∈ N . It is shown that (pε, sε) is a

feasible solution to ΛEN (x) by showing that all constraints in (3.2.8) are satisfied.

First, for fixed k ∈ N\{i}, the kth constraints in (3.2.8) are verified for (pε, sε).

Three cases are considered:

(1)
n∑
j=1

πjkpj + xk < 0, (2)
n∑
j=1

πjkpj + xk = 0, (3) 0 <
n∑
j=1

πjkpj + xk.

(1) Assume that
∑n

j=1 πjkpj + xk < 0. If sk = 1, then, by constraint (3.2.9),

pk ≤
n∑
j=1

πjkpj + xk +M (1− 1) =
n∑
j=1

πjkpj + xk < 0,

which is a contradiction to the feasibility of (p, s) in constraint (3.2.12).

Hence, sk = 0, which in its turn implies pk = 0 by (3.2.10) and (3.2.12).

By the definitions of pε and sε, it holds that pεk = pk = 0 since k 6= i, and

sεk = 0. Constraint (3.2.9) holds as

pεk = pk = 0 ≤
n∑
j=1

πjkp
ε
j + xk +M (1− sεk) =

n∑
j=1

πjkpj + xk +M + επik

by the feasibility of pk = 0 and sk = 0, and since ε > 0 and πik ≥ 0.
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Constraint (3.2.11) holds as

n∑
j=1

πjkp
ε
j + xk =

n∑
j=1

πjkpj + xk + επik ≤
n∑
j=1

πjkpj + xk + ε ≤ 0 = Msεk

since
∑n

j=1 πjkpj+xk < 0, πik ≤ 1 and since a small enough ε > 0 is taken to

ensure
∑n

j=1 πjkpj + xk + ε ≤ 0. Constraints (3.2.10), (3.2.12), and (3.2.13)

for node k hold trivially by the feasibility of pk = 0 and sk = 0. Hence,

pεk = 0 and sεk = 0 satisfy the corresponding constraints in (3.2.8).

(2) Assume that
∑n

j=1 πjkpj + xk = 0. Now, either sk = 0 or sk = 1 holds. If

sk = 0, then pk = 0 by constraints (3.2.10) and (3.2.12). If sk = 1, then, by

the assumption of this case and (3.2.9), pk ≤
∑n

j=1 πjkpj +xk+M (1− 1) =

0, which, together with (3.2.12), implies pk = 0.

Also, pεk = pk = 0 and sεk = 1, by the definitions of pε and sε. Constraint

(3.2.9) holds as

pεk = pk = 0 ≤
n∑
j=1

πjkp
ε
j + xk +M (1− sεk)

=
n∑
j=1

πjkpj + xk +M (1− 1) + επik = επik,

since
∑n

j=1 πjkpj + xk = 0, ε > 0 and πik ≥ 0. Constraint (3.2.11) holds as

n∑
j=1

πjkp
ε
j + xk =

n∑
j=1

πjkpj + xk + επik = επik ≤Msεk = M

since
∑n

j=1 πjkpj + xk = 0, ε ≤ min
l∈N

{
M −

(∑n
j=1 πjlpj + xl

)}
≤ M by

the definition of ε, and 0 ≤ πik ≤ 1. It is easy to observe that all other

constraints in (3.2.8) for node k are satisfied trivially by pεk = 0 and sεk = 1.

(3) Assume that 0 <
∑n

j=1 πjkpj + xk. If sk = 0, then, by constraint (3.2.11),

n∑
j=1

πjkpj + xk ≤Msk = 0,
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which is a contradiction to the assumption. Hence, sk = 1. Also, sεk = 1,

by the definition of sε.

Since sk = 1, (3.2.10) and (3.2.12) hold by the feasibility of pk since pεk = pk

for k 6= i. Also, (3.2.11) holds since a small enough ε > 0 is taken to ensure

n∑
j=1

πjkp
ε
j + xk =

n∑
j=1

πjkpj + xk + επik ≤M. (A.1.1)

Indeed, recall the assumption
∑n

j=1 πjl < n, for each l ∈ N . Hence, for

each l ∈ N and for every p ∈ [0, p̄],
∑n

j=1 πjlpj + xl < M , where M =

n ‖p̄‖∞ + ‖x‖∞. So, (A.1.1) is guaranteed by the choice of ε. (That is

the reason behind including the term min
l∈N

{
M −

(∑n
j=1 πjlpj + xl

)}
in the

definition of ε.)

Recall that, since sk = 1, pk ≤
∑n

j=1 πjkpj + xk holds. Then constraint

(3.2.9) is satisfied since

pεk = pk ≤
n∑
j=1

πjkpj + xk

≤
n∑
j=1

πjkpj + xk + επik

=
∑
j∈N
j 6=i

πjkpj + πik (pi + ε) + xk =
n∑
j=1

πjkp
ε
j + xk.

Constraint (3.2.13) is satisfied trivially. Hence, pεk and sεk satisfy the corre-

sponding constraints in (3.2.8).

Next, it is shown that pεi and sεi satisfy the constraints in (3.2.8) for i. It holds

sεi = 1, since
∑n

j=1 πjipj + xi > 0 by the assumption of Lemma 3.2.11. Then,

constraints (3.2.10) and (3.2.12) hold since pεi = pi + ε > 0 and pεi = pi + ε ≤
pi + p̄i− pi ≤ p̄i, where ε ≤ p̄i− pi holds since ε ≤ min

{∑n
j=1 πjipj + xi, p̄i

}
− p̄i.
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Constraint (3.2.9) holds as

pεi = pi + ε ≤ pi +
n∑
j=1

πjipj + xi − pi =
n∑
j=1

πjipj + xi

≤
n∑
j=1

πjkpj + xk + επik =
∑
j∈N
j 6=i

πjkpj + πik (pi + ε) + xk =
n∑
j=1

πjkp
ε
j + xk,

where ε ≤
∑n

j=1 πjipj + xi − pi holds since ε ≤ min
{∑n

j=1 πjipj + xi, p̄i

}
− p̄i.

Constraint (3.2.11) holds as

n∑
j=1

πjip
ε
j + xi =

n∑
j=1

πjipj + xi + επii =
n∑
j=1

πjipj + xi ≤M

by the feasibility of p and since πll = 0, for each l ∈ N . Constraint (3.2.13)

is satisfied trivially. Hence, pεi and sεi satisfy the corresponding constraints in

(3.2.8).

Hence, (pε, sε) is a feasible solution to ΛEN (x). However, since pε ≥ p with

pε 6= p and f is a strictly increasing function, it holds that f (pε) > f (p), which is

a contradiction to the optimality of p. Hence, pi = min
{∑n

j=1 πjipj + xi, p̄i

}
.

A.2 Proof of Theorem 3.2.8

Proof. Let (p, s) be an optimal solution to the MILP for ΛEN (x). To prove

that p is a clearing vector, by Proposition 3.2.6, one can equivalently show that

ΦEN (p) = p. Let i ∈ N . Recalling (3.2.6), three cases are considered:

(1)
n∑
j=1

πjipj + xi ≤ 0, (2) 0 <
n∑
j=1

πjipj + xi ≤ p̄i, (3)
n∑
j=1

πjipj + xi > p̄i.

(1) Assume that
∑n

j=1 πjipj + xi ≤ 0. Then, by Definition 3.2.5, ΦEN
i (p) = 0.

By the arguments from the proof of Lemma 3.2.11 for this case, pi = 0.

Hence, pi = 0 = ΦEN
i (p).
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(2) Assume that 0 <
∑n

j=1 πjipj+xi ≤ p̄i. Then, by Definition 3.2.5, ΦEN
i (p) =∑n

j=1 πjipj + xi. Since 0 <
∑n

j=1 πjipj + xi, by Lemma 3.2.11,

pi = min

{
n∑
j=1

πjipj + xi, p̄i

}
=

n∑
j=1

πjipj + xi.

Hence, pi =
∑n

j=1 πjipj + xi = ΦEN
i (p).

(3) Assume that
∑n

j=1 πjipj + xi > p̄i. Then, by Definition 3.2.5, ΦEN
i (p) = p̄i.

Since
∑n

j=1 πjipj + xi > p̄i > 0, again by Lemma 3.2.11,

pi = min

{
n∑
j=1

πjipj + xi, p̄i

}
= p̄i.

Hence, pi = p̄i = ΦEN
i (p).

Therefore, p is a clearing vector for (N ,π, p̄,x).

A.3 Proof of Lemma 3.3.9

Proof. To get a contradiction, suppose that si = 0. Then pi ≤ αxi +

β
∑n

j=1 πjipj < p̄i by constraint (3.3.4) and the assumption. Let p′ ∈ Rn
+ be

equal to p in all components except the ith one, and let p′i = p̄i. Also, let s′ ∈ Rn
+

be equal to s in all components except the ith one, and let s′i = 1.

It is shown that (p′, s′) is a feasible solution to ΛRV+ (x) by showing that all

constraints in (3.3.3) are satisfied. First, for fixed k ∈ N\{i}, the kth constraints

in (3.3.3) are verified for (p′, s′). Constraints (3.3.4) and (3.3.5) hold as

p′k = pk ≤ αxk + β

n∑
j=1

πjkpj + p̄ksk

≤ αxk + β
n∑
j=1

πjkpj + p̄ksk + πik (p̄i − pi) = αxk + β
n∑
j=1

πjkp
′
j + p̄ks

′
k,
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and

p̄ks
′
k = p̄ksk ≤ xk +

n∑
j=1

πjkpj ≤ xk +
n∑
j=1

πjkpj + πik (p̄i − pi) = xk +
n∑
j=1

πjkp
′
j,

since p′k = pk, s
′
k = sk for every k ∈ K such that k 6= i, p̄i − pi > 0, πik ≥ 0, and

by the feasibility of (p, s). Constraints (3.3.6) and (3.3.7) hold trivially by the

feasibility of (p, s).

Next, the ith constraints in (3.3.3) are verified for p′i = p̄i, s
′
i = 1. Constraints

(3.3.4) and (3.3.5) hold as

p′i = p̄i ≤ αxi + β
n∑
j=1

πjipj + p̄is
′
i

= αxi + β
n∑
j=1

πjipj + p̄i + πii (p̄i − pi) = αxi + β
n∑
j=1

πjip
′
j + p̄i,

and

p̄is
′
i = p̄i ≤ xi +

n∑
j=1

πjipj = xi +
n∑
j=1

πjipj + πii (p̄i − pi) = xi +
n∑
j=1

πjip
′
j,

since αxi + β
∑n

j=1 πjip
′
j ≥ 0, πii = 0 and by the assumption of Lemma 3.3.9.

Constraints (3.3.6) and (3.3.7) are satisfied trivially.

Hence, (p′, s′) is a feasible solution to ΛRV+ (x). However, since p′ ≥ p with

p′ 6= p and f is a strictly increasing function, it holds that f (p′) > f (p), which

is a contradiction to the optimality of p. Hence, si = 1.

A.4 Proof of Lemma 3.3.10

Proof. To get a contradiction, suppose that pi < p̄i. Let p′ ∈ Rn
+ be equal to p

in all components except the ith one, and let p′i = p̄i
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It is shown that (p′, s) is a feasible solution to ΛRV+ (x) by showing that all

constraints in (3.3.3) are satisfied. First, for fixed k ∈ N\{i}, the kth constraints

in (3.3.3) are verified for (p′, s). Constraints (3.3.4) and (3.3.5) hold as

p′k = pk ≤ αxk + β
n∑
j=1

πjkpj + p̄ksk

≤ αxk + β
n∑
j=1

πjkpj + p̄ksk + πik (p̄i − pi) = αxk + β

n∑
j=1

πjkp
′
j + p̄ksk,

and

p̄ksk ≤ xk +
n∑
j=1

πjkpj ≤ xk +
n∑
j=1

πjkpj + πik (p̄i − pi) = xk +
n∑
j=1

πjkp
′
j,

since p′k = pk for every k ∈ K such that k 6= i, p̄i − pi > 0, πik ≥ 0 and by the

feasibility of (p, s). Constraints (3.3.6) and (3.3.7) hold trivially by the feasibility

of (p, s).

Next, the ith constraints in (3.3.3) are verified for p′i = p̄i, si. Two cases are

considered:

(1) p̄i ≤ αxi + β
n∑
j=1

πjipj, (2) αxi + β
n∑
j=1

πjipj < p̄i.

(1) If the first case holds, then constraints (3.3.4) and (3.3.5) hold for both

si = 0 and si = 1 as

p′i = p̄i ≤ αxi + β

n∑
j=1

πjipj + p̄isi

= αxi + β

n∑
j=1

πjipj + p̄isi + πii (p̄i − pi) = αxi + β

n∑
j=1

πjip
′
j + p̄isi,

and

p̄isi ≤ xi +
n∑
j=1

πjipj = xi +
n∑
j=1

πjipj + πii (p̄i − pi) = xi +
n∑
j=1

πjip
′
j,
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since πii = 0 and by the assumption of Lemma 3.3.10. Constraints (3.3.6)

and (3.3.7) are satisfied trivially.

(2) If the second case holds, then, by Lemma 3.3.9, si = 1. Then constraints

(3.3.4) and (3.3.5) hold as

p′i = p̄i ≤ αxi + β

n∑
j=1

πjipj + p̄isi

= αxi + β
n∑
j=1

πjipj + p̄i + πii (p̄i − pi) = αxi + β
n∑
j=1

πjip
′
j + p̄i,

and

p̄isi = p̄i ≤ xi +
n∑
j=1

πjipj = xi +
n∑
j=1

πjipj + πii (p̄i − pi) = xi +
n∑
j=1

πjip
′
j,

since πii = 0 and by the assumption of Lemma 3.3.10. Constraints (3.3.6)

and (3.3.7) are satisfied trivially.

Hence, (p′, s) is a feasible solution to ΛRV+ (x). However, since p′ ≥ p with

p′ 6= p and f is a strictly increasing function, it holds that f (p′) > f (p), which

is a contradiction to the optimality of p. Hence, pi = p̄i.

A.5 Proof of Lemma 3.3.11

Proof. To get a contradiction, suppose that pi 6= αxi + β
∑n

j=1 πjipj. If si =

1, then constraint (3.3.5) is not satisfied by assumption. Hence, si = 0 and

pi < αxi + β
∑n

j=1 πjipj by constraint (3.3.4). Let p′ ∈ Rn
+ be equal to p in all

components except the ith one, and let p′i = αxi + β
∑n

j=1 πjipj.

It is shown that (p′, s) is a feasible solution to ΛRV+ (x) by showing that all

constraints in (3.3.3) are satisfied. First, for fixed k ∈ N\{i}, the kth constraints
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in (3.3.3) are verified for (p′, s). Constraints (3.3.4) and (3.3.5) hold as

p′k = pk ≤ αxk + β

n∑
j=1

πjkpj + p̄ksk

≤ αxk + β
n∑
j=1

πjkpj + p̄ksk + πik (p̄i − pi) = αxk + β

n∑
j=1

πjkp
′
j + p̄ksk,

and

p̄ksk ≤ xk +
n∑
j=1

πjkpj ≤ xk +
n∑
j=1

πjkpj + πik (p̄i − pi) = xk +
n∑
j=1

πjkp
′
j,

since p′k = pk for every k ∈ K such that k 6= i, p̄i − pi > 0, πik ≥ 0 and by the

feasibility of (p, s). Constraints (3.3.6) and (3.3.7) hold trivially by the feasibility

of (p, s).

Next, the ith constraints in (3.3.3) are verified for p′i = αxi + β
∑n

j=1 πjipj,

si = 0. Constraints (3.3.4) and (3.3.5) hold as

p′i = αxi + β
n∑
j=1

πjipj ≤ αxi + β
n∑
j=1

πjipj + p̄isi

= αxi + β
n∑
j=1

πjipj + πii (p̄i − pi) = αxi + β
n∑
j=1

πjip
′
j,

and

p̄isi = 0 ≤ xi +
n∑
j=1

πjipj = xi +
n∑
j=1

πjipj + πii (p̄i − pi) = xi +
n∑
j=1

πjip
′
j,

since πii = 0 and xi+
∑n

j=1 πjipj ≥ 0. Constraints (3.3.6) and (3.3.7) are satisfied

trivially.

Hence, (p′, s) is a feasible solution to ΛRV+ (x). However, since p′ ≥ p with

p′ 6= p and f is a strictly increasing function, it holds that f (p′) > f (p), which

is a contradiction to the optimality of p. Hence, pi = p̄i.
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A.6 Proof of Theorem 3.3.7

Proof. Let (p, s) be an optimal solution to the MILP for ΛRV+ (x). To prove that

p is a clearing vector, thanks to Proposition 3.3.5, it suffices to show ΦRV+ (p) = p.

Fix i ∈ N . Recalling (3.3.1), two cases are considered:

(1) p̄i ≤ xi +
n∑
j=1

πjipj, (2) p̄i > xi +
n∑
j=1

πjipj.

(1) Assume that p̄i ≤ xi+
∑n

j=1 πjipj. Then, by Definition 3.3.3, Φ
RV+

i (p) = p̄i.

By Lemma 3.3.10, pi = p̄i. Hence, pi = p̄i = Φ
RV+

i (p).

(2) Assume that p̄i > xi +
∑n

j=1 πjipj. Then, by Definition 3.3.3, Φ
RV+

i (p) =

αxi + β
∑n

j=1 πjipj. By Lemma 3.3.11, pi = αxi + β
∑n

j=1 πjipj. Hence,

pi = αxi + β
∑n

j=1 πjipj = Φ
RV+

i (p).

Therefore, p is a clearing vector.

A.7 Proof of Theorem 3.3.13

Proof. Let (p,y, s1, s2, s3) be an optimal solution to the MILP for Λ
RV+

alt (x). To

prove that p is a clearing vector, thanks to Proposition 3.3.5, it suffices to show

ΦRV+ (p) = p. Fix i ∈ N . Four cases are considered:

(1) p̄i ≤ αxi + β
n∑
j=1

πjipj ≤ xi +
n∑
j=1

πjipj, and p̄i < xi +
n∑
j=1

πjipj;

(2) αxi + β

n∑
j=1

πjipj < p̄i < xi +
n∑
j=1

πjipj;

(3) p̄i = xi +
n∑
j=1

πjipj;

(4) p̄i > xi +
n∑
j=1

πjipj ≥ αxi + β

n∑
j=1

πjipj.
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(1) Assume the first case. Then, by Definition 3.3.3, Φ
RV+

i (p) = p̄i. By con-

straint (3.3.12), s1
i = 1. Otherwise, (3.3.12) is not satisfied by assumptions.

If yi = 0, then s2
i = 1 by (3.3.14). If yi > 0, then s2

i = 0 by (3.3.13). For

both s3
i = 0 and s3

i = 1, the constraint pi ≤ p̄i in (3.3.18) is the tightest one

on pi by the assumption p̄i ≤ αxi+β
∑n

j=1 πjipj. Hence, pi = p̄i = Φ
RV+

i (p).

(2) Assume the second case. By Definition 3.3.3, Φ
RV+

i (p) = p̄i. By constraint

(3.3.12), s1
i = 1. Otherwise, (3.3.12) is not satisfied by assumption. If yi =

0, then s2
i = 1 by (3.3.14). If yi > 0, then s2

i = 0 by (3.3.13). By constraint

(3.3.16), s3
i = 0. Otherwise, (3.3.16) is not satisfied by assumption. Then,

since s3
i = 0 and s1

i = 1 it holds that

pi ≤ αxi+β
n∑
j=1

πjipj+p̄i (1− 0) and pi ≤ αxi+β
n∑
j=1

πjipj+p̄i
(
1 + s2

i

)
,

by constraints (3.3.15) and (3.3.10), respectively. Hence, the constraint

pi ≤ p̄i in (3.3.18) is the tightest one on pi, despite the assumption p̄i >

αxi + β
∑n

j=1 πjipj. Hence, pi = p̄i = Φ
RV+

i (p).

(3) Assume the third case. By Definition 3.3.3, Φ
RV+

i (p) = p̄i. If s1
i = 0 then

yi = 0 by (3.3.12). Then, s2
i = 1 by (3.3.14). If s1

i = 1 then yi = M > 0

by (3.3.12). Then, s2
i = 0 by (3.3.14). So, either s1

i = 1 or s2
i = 1. Here,

two more possible cases are considered: either p̄i = xi +
∑n

j=1 πjipj =

αxi + β
∑n

j=1 πjipj or p̄i = xi +
∑n

j=1 πjipj > αxi + β
∑n

j=1 πjipj. In the

former case, for both s3
i = 0 and s3

i = 1, the constraint pi ≤ p̄i in (3.3.18)

is the tightest one for pi. Hence, pi = p̄i = Φ
RV+

i (p). In the latter case,

s3
i = 0 by (3.3.16). Then, since s3

i = 0 and s1
i + s2

i = 1 it holds that

pi ≤ αxi+β
n∑
j=1

πjipj+p̄i (1− 0) and pi ≤ αxi+β
n∑
j=1

πjipj+p̄i
(
s1
i + s2

i

)
,

by constraints (3.3.15) and (3.3.10), respectively. Hence, the constraint

pi ≤ p̄i in (3.3.18) is the tightest one on pi. Hence, pi = p̄i = Φ
RV+

i (p). A

detailed proof of the claim pi = p̄i can be given similar to the one in the

proof of Theorem 3.2.8.
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(4) Assume the fourth case. By Definition 3.3.3, Φ
RV+

i (p) = αxi+β
∑n

j=1 πjipj.

It holds that s1
i = 0 and s3

i = 0 by constraints (3.3.16) and (3.3.11), re-

spectively. Otherwise, these constraints are not satisfied by assumption.

Since s1
i = 0 it holds that yi > 0 by constraint (3.3.12). Then, s2

i = 0 by

constraint (3.3.13). Then, s1
i = s2

i = s3
i = 0 yields

pi ≤ αxi + β
n∑
j=1

πjipj

by both (3.3.15) and (3.3.10), and it is the tightest constraint on pi by

assumption. Hence, pi = αxi + β
∑n

j=1 πjipj = Φ
RV+

i (p). A detailed proof

of the claim pi = αxi + β
∑n

j=1 πjipj can be given similar to the one in the

proof of Theorem 3.2.8

Therefore, p is a clearing vector.
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Appendix B

Proofs of the Results in

Chapter 4

B.1 Proof of Proposition 4.1.6

Proof. Let
(
z,
(
pk, sk

)
k∈K

)
be an optimal solution to ZEN

1

(
e`
)
. The aim is to

show z` ≤ zmax.

To get a contradiction, suppose that z` > zmax. Let z′ ∈ RG be the vector

such that z′` = zmax and z′ˆ̀ = zˆ̀, for each ˆ̀∈ G such that ˆ̀ 6= `. It is shown that(
z′,
(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

1

(
e`
)

by showing that all constraints

of ZEN
1

(
e`
)

in (4.1.10) are satisfied. For each i ∈ N , k ∈ K such that
(
BTz′

)
i

=

zmax, constraint (4.1.12) holds as

pki ≤
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz′

)
i

]
+M

(
1− ski

)
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ zmax +M
(
1− ski

)
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ ‖X‖∞ + ‖p̄‖∞ +M
(
1− ski

)
,
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since

n∑
j=1

πjip
k
j ≥ 0, Xi

(
ωk
)
+‖X‖∞ ≥ 0, pki ≤ p̄i ≤ ‖p̄‖∞ , and M

(
1− ski

)
≥ 0.

Also, for each i ∈ N , k ∈ K such that
(
BTz′

)
i

= zmax, constraint (4.1.14) holds

as

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz′

)
i

]
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ zmax

<
n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ zt ≤Mski ,

by the assumption zmax < z` and the feasibility of
(
z,
(
pk, sk

)
k∈K

)
. All the other

constraints in (4.1.10) hold by the feasibility of
(
z,
(
pk, sk

)
k∈K

)
, since they are

free of zmax. Hence,
(
z′,
(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

1

(
e`
)
, which

contradicts to the optimality of
(
z,
(
pk, sk

)
k∈K

)
by the assumption z` > zmax.

Hence, z` ≤ zmax = ‖X‖∞ + ‖p̄‖∞.

B.2 Proof of Proposition 4.1.7

Proof. To get a contradiction, suppose that ZEN
1

(
e`
)

is feasible but unbounded.

Then for any µ ∈ R there exist ε > 0 and
(
z,
(
pk, sk

)
k∈K

)
, where z ∈ Rn

and
(
pk, sk

)
∈ Rn × Zn for each k ∈ K, such that e`

T
z = z` = µ and(

z − εe`,
(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

1

(
e`
)
.

Let µ = −2M . Then there exist ε > 0 and
(
z,
(
pk, sk

)
k∈K

)
such that e`

T
z =

z` = µ = −2M and
(
z − εe`,

(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

1

(
e`
)
. Fix

i ∈ N , k ∈ K such that
(
BTz

)
i

= z` = µ = −2M . Then constraint (4.1.12)
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violates constraint (4.1.15) as

pki ≤
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz − εe`

)
i

]
+M

(
1− ski

)
≤

n∑
j=1

πjip
k
j +Xi

(
ωk
)
− 2M − ε+M

=
n∑
j=1

πjip
k
j +Xi

(
ωk
)
− ε− 2 ‖X‖∞ − (n+ 1) ‖p̄‖∞

=

(
n∑
j=1

πjip
k
j − n ‖p̄‖∞

)
+
(
Xi

(
ωk
)
− 2 ‖X‖∞

)
− ‖p̄‖∞ − ε < 0,

since

n∑
j=1

πjip
k
j < n ‖p̄‖∞ , Xi

(
ωk
)
≤ 2 ‖X‖∞ , −‖p̄‖∞ < 0 and − ε < 0.

Hence,
(
z − εe`,

(
pk, sk

)
k∈K

)
is infeasible, which is a contradiction to the as-

sumption. Hence, ZEN
1 (e`) is bounded from below. In addition, by Proposi-

tion 4.1.6, ZEN
1 (e`) is bounded from above.

B.3 Proof of Proposition 4.1.8

Proof. Assume γ ≤ 1Tp̄. Let z = zmax
1, pk = p̄, sk = 1 for each k ∈ K, where

zmax = ‖X‖∞ + ‖p̄‖∞. It is shown that
(
z,
(
pk, sk

)
k∈K

)
is a feasible solution to

ZEN
1

(
e`
)
. Since pk = p̄ for each k ∈ K, it holds that

∑
k∈K q

k
[
1

Tpk
]

= 1
Tp̄ ≥ γ.

Hence, constraint (4.1.11) holds by hypothesis.
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Now fix i ∈ N , k ∈ K. Constraint (4.1.12) holds as

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz

)
i

]
+M

(
1− ski

)
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ zmax
(
BT
1
)
i
+M (1− 1)

=
n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ zmax =
n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ ‖X‖∞ + ‖p̄‖∞ ≥ p̄i = pki ,

since

n∑
j=1

πjip
k
j ≥ 0, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,

(
BT
1
)
i

= 1, by definition of a grouping matrix B, and ski = 1, by the choice of

sk. Constraint (4.1.14) holds as

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTz

)
i

]
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+ ‖X‖∞ + ‖p̄‖∞

≤ 2 ‖X‖∞ + (n+ 1) ‖p̄‖∞ = M = Mski ,

since
∑n

j=1 πjip
k
j ≤ n ‖p̄‖∞. All the other constraints in (4.1.10) hold trivially by

the choice of z, pk and sk, for each k ∈ K. Hence,
(
z,
(
pk, sk

)
k∈K

)
is a feasible

solution to ZEN
1

(
e`
)
.

Now, if γ > 1
Tp̄, then constraint (4.1.11) is infeasible, since

∑
k∈K q

k
[
1

Tpk
]
≤

1
Tp̄ < γ, by constraint (4.1.15). Hence, ZEN

1

(
e`
)

in Corollary 4.1.5 is feasible if

and only if γ ≤ 1Tp̄.

B.4 Proof of Proposition 4.1.11

Proof. Let
(
z,
(
pk, sk

)
k∈K

)
be an optimal solution to ZRV

1

(
e`
)
. The aim is to

show z` ≤ zmax.
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To get a contradiction, suppose that z` > zmax. Let z′ ∈ Rn be the vector

such that z′` = zmax and z′ˆ̀ = zˆ̀, for each ˆ̀∈ G such that ˆ̀ 6= `. It is shown that(
z′,
(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

1

(
e`
)

by showing that all constraints

of ZRV
1

(
e`
)

in (4.1.21) are satisfied. For each i ∈ N , k ∈ K such that
(
BTz′

)
i

=

zmax, constraint (4.1.23) holds as

pki ≤ α
[
Xi

(
ωk
)

+
(
BTz′

)
i

]
+ β

n∑
j=1

πjip
k
j + p̄is

k
i

= αXi

(
ωk
)

+ αzmax + β

n∑
j=1

πjip
k
j + p̄is

k
i

= α
(
Xi

(
ωk
)

+ ‖X‖∞
)

+ ‖p̄‖∞ + β
n∑
j=1

πjip
k
j + p̄is

k
i ,

since

0 < α, β ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0, pki ≤ ‖p̄‖∞ ,
n∑
j=1

πjip
k
j ≥ 0, p̄is

k
i ≥ 0.

Also, for each i ∈ N , k ∈ K such that
(
BTz′

)
i

= zmax, constraint (4.1.24) holds

as

p̄is
k
i ≤

[
Xi

(
ωk
)

+
(
BTz′

)
i

]
+

n∑
j=1

πjip
k
j = Xi

(
ωk
)

+ zmax +
n∑
j=1

πjip
k
j

= Xi

(
ωk
)

+ ‖X‖∞ +
1

α
‖p̄‖∞ +

n∑
j=1

πjip
k
j ,

since

0 < α ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0, p̄is
k
i ≤ ‖p̄‖∞ ≤

1

α
‖p̄‖∞ ,

n∑
j=1

πjip
k
j ≥ 0.

In addition, for each i ∈ N , k ∈ K such that
(
BTz′

)
i

= zmax, constraint (4.1.25)

holds as

Xi

(
ωk
)

+
(
BTz′

)
i

= Xi

(
ωk
)

+ zmax = Xi

(
ωk
)

+ ‖X‖∞ +
1

α
‖p̄‖∞ ≥ 0.
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All the other constraints in (4.1.21) hold by the feasibility of
(
z,
(
pk, sk

)
k∈K

)
,

since they are free of zmax. Hence,
(
z′,
(
pk, sk

)
k∈K

)
is a feasible solution to

ZRV
1

(
e`
)
, which contradicts to the optimality of

(
z,
(
pk, sk

)
k∈K

)
by the assump-

tion z` > zmax. Hence, z` ≤ zmax = ‖X‖∞ + 1
α
‖p̄‖∞.

B.5 Proof of Proposition 4.1.12

Proof. To get a contradiction, suppose that ZRV
1

(
e`
)

is feasible but unbounded.

Then for any µ ∈ R there exist ε > 0 and
(
z,
(
pk, sk

)
k∈K

)
, where z ∈ Rn

and
(
pk, sk

)
∈ Rn × Zn for each k ∈ K, such that e`

T
z = z` = µ and(

z − εe`,
(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

1

(
e`
)
.

Let µ = −M , where M = ‖X‖∞ + 1
α

(n+ 1) ‖p̄‖∞. Then there exist ε > 0

and
(
z,
(
pk, sk

)
k∈K

)
such that e`

T
z = z` = µ = −M and

(
z − εe`,

(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

1

(
e`
)
. Fix i ∈ N , k ∈ K such that

(
BTz

)
i

= z` =

µ = −M . Then constraint (4.1.23) violates constraint (4.1.26) as

pki ≤ α
[
Xi

(
ωk
)

+
(
BT
(
z − εe`

))]
+ β

n∑
j=1

πjip
k
j + p̄is

k
i

= αXi

(
ωk
)

+ α (−M − ε) + β
n∑
j=1

πjip
k
j + p̄is

k
i

= α
(
Xi

(
ωk
)
− ‖X‖∞

)
− (n+ 1) ‖p̄‖∞ − αε+ β

n∑
j=1

πjip
k
j + p̄is

k
i

= α
(
Xi

(
ωk
)
− ‖X‖∞

)
+

(
β

n∑
j=1

πjip
k
j − n ‖p̄‖∞

)
+
(
p̄is

k
i − ‖p̄‖∞

)
− αε < 0,

since

0 < α, β ≤ 1, Xi

(
ωk
)
≤ ‖X‖∞ ,

n∑
j=1

πjip
k
j < n ‖p̄‖∞ , p̄is

k
i ≤ ‖p̄‖∞ , − ε < 0.
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Hence,
(
z − εe`,

(
pk, sk

)
k∈K

)
is infeasible, which is a contradiction to the as-

sumption. Hence, ZRV
1 (e`) is bounded from below. In addition, by Proposi-

tion 4.1.11, ZRV
1 (e`) is bounded from above.

B.6 Proof of Proposition 4.1.13

Proof. Assume γ ≤ 1Tp̄. Let z = zmax
1, pk = p̄, sk = 1 for each k ∈ K, where

zmax = ‖X‖∞+ 1
α
‖p̄‖∞. It is shown that

(
z,
(
pk, sk

)
k∈K

)
is a feasible solution to

ZRV
1

(
e`
)
. Since pk = p̄ for each k ∈ K, it holds that

∑
k∈K q

k
[
1

Tpk
]

= 1
Tp̄ ≥ γ.

Hence, constraint (4.1.22) holds by hypothesis.

Now fix i ∈ N , k ∈ K. Constraint (4.1.23) holds as

α
[
Xi

(
ωk
)

+
(
BTz

)
i

]
+ β

n∑
j=1

πjip
k
j + p̄is

k
i

= α
[
Xi

(
ωk
)

+ zmax
(
BT
1
)
i

]
+ β

n∑
j=1

πjip
k
j + p̄i

= α
[
Xi

(
ωk
)

+ ‖X‖∞
]

+ ‖p̄‖∞ + β
n∑
j=1

πjip
k
j + p̄i ≥ p̄i = pki ,

since

0 < α, β ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0, ‖p̄‖∞ ≥ 0,
n∑
j=1

πjip
k
j ≥ 0,

and ski = 1, by the choice of sk. Constraint (4.1.24) holds as

[
Xi

(
ωk
)

+
(
BTz

)
i

]
+

n∑
j=1

πjip
k
j = Xi

(
ωk
)

+ ‖X‖∞ +
1

α
‖p̄‖∞ +

n∑
j=1

πjip
k
j

≥ Xi

(
ωk
)

+ ‖X‖∞ + ‖p̄‖∞ +
n∑
j=1

πjip
k
j

≥ p̄i = p̄is
k
i ,
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since

0 < α ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
n∑
j=1

πjip
k
j ≥ 0, ‖p̄‖∞ ≥ p̄i

and ski = 1, by the choice of sk. In addition, constraint (4.1.25) holds as

Xi

(
ωk
)

+
(
BTz

)
i

= Xi

(
ωk
)

+ zmax = Xi

(
ωk
)

+ ‖X‖∞ +
1

α
‖p̄‖∞ ≥ 0.

All the other constraints in (4.1.21) hold trivially by the choice of z, pk and sk,

for each k ∈ K. Hence,
(
z,
(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

1

(
e`
)
.

Now, if γ > 1
Tp̄, then constraint (4.1.22) is infeasible, since

∑
k∈K q

k
[
1

Tpk
]
≤

1
Tp̄ < γ, by constraint (4.1.26). Hence, ZRV

1

(
e`
)

in Corollary 4.1.10 is feasible

if and only if γ ≤ 1Tp̄.

B.7 Proof of Proposition 4.2.3

Proof. To get a contradiction, suppose that µ > µmax. It is shown that(
µmax,

(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

2 (v) by showing that all con-

straints of ZEN
2 (v) in (4.2.5) are satisfied. Fix i ∈ N , k ∈ K. Constraint (4.2.8)

holds as

pki ≤
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µmax

]
+M

(
1− ski

)
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ + ‖p̄‖∞ +M

(
1− ski

)
=

n∑
j=1

πjip
k
j +

(
Xi

(
ωk
)

+ ‖X‖∞
)

+
((
BTv

)
i
+ ‖v‖∞

)
+ ‖p̄‖∞ +M

(
1− ski

)
,
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since

n∑
j=1

πjip
k
j ≥ 0, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
(
BTv

)
i
+ ‖v‖∞ ≥ 0,

pki ≤ ‖p̄‖∞ , M
(
1− ski

)
≥ 0.

Constraint (4.2.10) holds as

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µmax

]
<

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]
≤Mski = M

by the assumption µmax < µ and the feasibility of
(
µ,
(
pk, sk

)
k∈K

)
. All the other

constraints in (4.2.5) hold by the feasibility of
(
µ,
(
pk, sk

)
k∈K

)
, since they are

free of µmax. Hence,
(
µmax,

(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

2 (v), which

contradicts to the optimality of
(
µ,
(
pk, sk

)
k∈K

)
by the assumption µ > µmax.

Hence, µ ≤ µmax = ‖X‖∞ + ‖v‖∞ + ‖p̄‖∞.

B.8 Proof of Proposition 4.2.4

Proof. To get a contradiction, suppose that ZEN
2 (v) is feasible but unbounded.

Then for any µ ∈ R there exist ε > 0 and
(
pk, sk

)
k∈K, where

(
pk, sk

)
∈ Rn × Zn

for each k ∈ K, such that
(
µ− ε,

(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

2 (v).

Let µ = −2M . Then there exist ε > 0 and
(
pk, sk

)
k∈K such that(

−2M − ε,
(
pk, sk

)
k∈K

)
is a feasible solution to ZEN

2 (v). Fix i ∈ N , k ∈ K.
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Then constraint (4.2.8) violates constraint (4.2.11) as

pki ≤
n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
− 2M − ε

]
+M

(
1− ski

)
≤

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+
(
BTv

)
i
− ε−M

=
n∑
j=1

πjip
k
j +Xi

(
ωk
)

+
(
BTv

)
i
− ε− 2 ‖X‖∞ − 2 ‖v‖∞ − (n+ 1) ‖p̄‖∞

=

(
n∑
j=1

πjip
k
j − (n+ 1) ‖p̄‖∞

)
+
(
Xi

(
ωk
)
− 2 ‖X‖∞

)
+
((
BTv

)
i
− 2 ‖v‖∞

)
− ε < 0,

since

n∑
j=1

πjip
k
j < (n+ 1) ‖p̄‖∞ , Xi

(
ωk
)
≤ 2 ‖X‖∞ ,

(
BTv

)
i
≤ 2 ‖v‖∞ , −ε < 0.

Hence,
(
−2M − ε,

(
pk, sk

)
k∈K

)
is infeasible, which is a contradiction to the

assumption. Hence, ZEN
2 (v) is bounded from below. In addition, by Proposi-

tion 4.2.3, ZEN
2 (v) is bounded from above.

B.9 Proof of Proposition 4.2.5

Proof. Assume γ ≤ 1
Tp̄. Let µ = µmax, pk = p̄, sk = 1 for each k ∈ K, where

µmax = ‖X‖∞ + ‖v‖∞ + ‖p̄‖∞. It is shown that
(
µ,
(
pk, sk

)
k∈K

)
is a feasible

solution to ZEN
2 (v). Since pk = p̄ for each k ∈ K, it holds that

∑
k∈K q

k
[
1

Tpk
]

=

1
Tp̄ ≥ γ. Hence, constraint (4.2.6) holds by hypothesis.
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Now fix i ∈ N , k ∈ K. Constraint (4.2.8) holds as

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]

+M
(
1− ski

)
=

n∑
j=1

πjip
k
j +Xi

(
ωk
)

+
(
BTv

)
i
+ µ+M (1− 1)

=
n∑
j=1

πjip
k
j +Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ + ‖p̄‖∞ ≥ p̄i = pki ,

since
n∑
j=1

πjip
k
j ≥ 0, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
(
BTv

)
i
+ ‖v‖∞ ≥ 0,

and ski = 1, by the choice of sk. Constraint (4.2.10) holds as

n∑
j=1

πjip
k
j +

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]

=
n∑
j=1

πjip
k
j +Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ + ‖p̄‖∞

≤ 2 ‖X‖∞ + 2 ‖v‖∞ + (n+ 1) ‖p̄‖∞ = M = Mski ,

since
∑n

j=1 πjip
k
j ≤ n ‖p̄‖∞. All the other constraints hold trivially by the choice

of µ, pk and sk, for each k ∈ K. Hence,
(
µ,
(
pk, sk

)
k∈K

)
is a feasible solution to

ZEN
2 (v).

Now, if γ > 1
Tp̄, then constraint (4.2.6) is infeasible, since

∑
k∈K q

k
[
1

Tpk
]
≤

1
Tp̄ < γ, by constraint (4.2.11). Hence, ZEN

2 (v) in Corollary 4.2.2 is feasible if

and only if γ ≤ 1Tp̄.
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B.10 Proof of Proposition 4.2.8

Proof. To get a contradiction, suppose that µ > µmax. It is shown that(
µmax,

(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

2 (v) by showing that all con-

straints of ZRV
2 (v) in (4.2.15) are satisfied. Fix i ∈ N , k ∈ K. Constraint

(4.2.17) holds as

pki ≤ α
[
Xi

(
ωk
)

+
(
BTv

)
i
+ µmax

]
+ β

n∑
j=1

πjip
k
j + p̄is

k
i

= αXi

(
ωk
)

+ α
(
BTv

)
i
+ αµmax + β

n∑
j=1

πjip
k
j + p̄is

k
i

= α
(
Xi

(
ωk
)

+ ‖X‖∞
)

+ α
((
BTv

)
i
+ ‖v‖∞

)
+ ‖p̄‖∞ + β

n∑
j=1

πjip
k
j + p̄is

k
i ,

since

0 < α, β ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
(
BTv

)
i
+ ‖v‖∞ ≥ 0,

pki ≤ p̄i ≤ ‖p̄‖∞ ,
n∑
j=1

πjip
k
j ≥ 0, and p̄is

k
i ≥ 0.

Constraint (4.2.18) holds as

p̄is
k
i ≤

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µmax

]
+

n∑
j=1

πjip
k
j

=
(
Xi

(
ωk
)

+ ‖X‖∞
)

+
((
BTv

)
i
+ ‖v‖∞

)
+

1

α
‖p̄‖∞ +

n∑
j=1

πjip
k
j ,

since

Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
(
BTv

)
i
+ ‖v‖∞ ≥ 0,

0 < α ≤ 1, p̄is
k
i ≤ ‖p̄‖∞ ≤

1

α
‖p̄‖∞ , and

n∑
j=1

πjip
k
j ≥ 0.
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In addition, constraint (4.2.19) holds as

Xi

(
ωk
)

+
(
BTv

)
i
+ µmax = Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ +

1

α
‖p̄‖∞ ≥ 0.

All the other constraints hold by the feasibility of
(
µ,
(
pk, sk

)
k∈K

)
, since they are

free of µmax. Hence,
(
µmax,

(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

2 (v), which

contradicts to the optimality of
(
µ,
(
pk, sk

)
k∈K

)
by the assumption µ > µmax.

Hence, µ ≤ µmax = ‖X‖∞ + ‖v‖∞ + 1
α
‖p̄‖∞.

B.11 Proof of Proposition 4.2.9

Proof. To get a contradiction, suppose that ZRV
2 (v) is feasible but unbounded.

Then for any µ ∈ R there exist ε > 0 and
(
pk, sk

)
k∈K, where

(
pk, sk

)
∈ Rn × Zn

for each k ∈ K, such that
(
µ− ε,

(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

2 (v).

Let µ = −M , where M = ‖X‖∞ + ‖v‖∞ + 1
α

(n+ 1) ‖p̄‖∞. Then there exist

ε > 0 and
(
pk, sk

)
k∈K such that

(
−M − ε,

(
pk, sk

)
k∈K

)
is a feasible solution to

ZRV
2 (v). Fix i ∈ N , k ∈ K. Then constraint (4.2.17) violates constraint (4.2.20)

as

pki ≤ α
[
Xi

(
ωk
)

+
(
BTv

)
i
−M − ε

]
+ β

n∑
j=1

πjip
k
j + p̄is

k
i

= αXi

(
ωk
)

+ α
(
BTv

)
i
+ α (−M − ε) + β

n∑
j=1

πjip
k
j + p̄is

k
i

= α
(
Xi

(
ωk
)
− ‖X‖∞

)
+ α

((
BTv

)
i
− ‖v‖∞

)
+

(
β

n∑
j=1

πjip
k
j − n ‖p̄‖∞

)
+
(
p̄is

k
i − ‖p̄‖∞

)
− αε < 0,
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since

0 < α, β ≤ 1, Xi

(
ωk
)
≤ ‖X‖∞ ,

(
BTv

)
i
≤ ‖v‖∞ ,

β

n∑
j=1

πjip
k
j < n ‖p̄‖∞ , p̄is

k
i ≤ ‖p̄‖∞ , and − ε < 0.

Hence,
(
−M − ε,

(
pk, sk

)
k∈K

)
is infeasible, which is a contradiction to the

assumption. Hence, ZRV
2 (v) is bounded from below. In addition, by Proposi-

tion 4.2.8, ZRV
2 (v) is bounded from above.

B.12 Proof of Proposition 4.2.10

Proof. Assume γ ≤ 1
Tp̄. Let µ = µmax, pk = p̄, sk = 1 for each k ∈ K,

where µmax = ‖X‖∞ + ‖v‖∞ + 1
α
‖p̄‖∞. It is shown that

(
µ,
(
pk, sk

)
k∈K

)
is

a feasible solution to ZRV
2 (v). Since pk = p̄ for each k ∈ K, it holds that∑

k∈K q
k
[
1

Tpk
]

= 1
Tp̄ ≥ γ. Hence, constraint (4.2.16) holds by hypothesis.

Now fix i ∈ N , k ∈ K. Constraint (4.2.17) holds as

α
(
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
)

+ β
n∑
j=1

πjip
k
j + p̄is

k
i

= α
(
Xi

(
ωk
)

+ ‖X‖∞ +
(
BTv

)
i
+ ‖v‖∞

)
+ ‖p̄‖∞ + β

n∑
j=1

πjip
k
j + p̄i ≥ p̄i = pki ,

since

0 < α, β ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
(
BTv

)
i
+ ‖v‖∞ ≥ 0,

n∑
j=1

πjip
k
j ≥ 0,
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and ski = 1, by the choice of sk. Constraint (4.2.18) holds as

[
Xi

(
ωk
)

+
(
BTv

)
i
+ µ
]

+
n∑
j=1

πjip
k
j

= Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ +

1

α
‖p̄‖∞ +

n∑
j=1

πjip
k
j

≥ Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ + ‖p̄‖∞ +

n∑
j=1

πjip
k
j ≥ p̄i = p̄is

k
i ,

since

0 < α ≤ 1, Xi

(
ωk
)

+ ‖X‖∞ ≥ 0,
(
BTv

)
i
+ ‖v‖∞ ≥ 0,

n∑
j=1

πjip
k
j ≥ 0,

and ski = 1, by the choice of sk. In addition, constraint (4.2.19) holds as

Xi

(
ωk
)

+
(
BTv

)
i
+ µ = Xi

(
ωk
)

+
(
BTv

)
i
+ ‖X‖∞ + ‖v‖∞ +

1

α
‖p̄‖∞ ≥ 0.

All the other constraints hold trivially by the choice of z, pk and sk for each

k ∈ K. Hence,
(
z,
(
pk, sk

)
k∈K

)
is a feasible solution to ZRV

2 (v).

Now, if γ > 1
Tp̄, then constraint (4.2.16) is infeasible, since

∑
k∈K q

k
[
1

Tpk
]
≤

1
Tp̄ < γ, by constraint (4.2.20). Hence, ZRV

2 (v) in Corollary 4.2.7 is feasible if

and only if γ ≤ 1Tp̄.
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