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Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
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ABSTRACT

ESSAYS ON BILATERAL TRADE WITH DISCRETE
TYPES

Kamyar Kargar Mohammadinezhad

Ph.D. in Industrial Engineering

Advisor: Mustafa Çelebi Pınar

October 2019

Bilateral trade is probably the most common market interaction problem and

can be considered as the simplest form of two sided markets where a seller and

a buyer bargain over an indivisible object subject to incomplete information

on the reservation values of participants. We treat this problem as a combina-

torial optimization problem and re-establish some results of economic theory

that are well-known under continuous valuations assumptions for the case of

discrete valuations using linear programming techniques.

First, we propose mathematical formulation for the problem under domi-

nant strategy incentive compatibility (DIC) and ex-post individual rationality

(EIR) properties. Then we derive necessary and sufficient conditions under

which ex-post efficiency can be obtained together with DIC and EIR. We also

define a new property called Allocation Maximality and prove that the Posted

Price mechanism is the only mechanism that satisfies DIC, EIR and allocation

maximality. In the final part we consider ambiguity in the problem framework

originating from different sets of priors for agents types and derive robust

counterparts.

Next, we study the bilateral trade problem with an intermediary who wants

to maximize her expected gains. Using network programming we transform

the initial linear program into one from which the structure of mechanism is

transparent. We then relax the risk-neutrality assumption of the intermediary

and consider the problem from the perspective of risk-averse intermediary. The

effects of risk-averse approach are presented using computational experiments.
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Finally, we broaden the scope of the problem and discuss the case in which

the seller is also a producer at the same time and consider benefit and cost

functions for the respective parties. Starting by a non-convex optimization

problem, we obtain an equivalent convex optimization problem from which

the problem is solved easily. We also reconsider the same problem under

dominant strategy incentive compatibility and ex-post individual rationality

constraints to preserve the practicality of all obtained solutions.

Keywords: Bilateral trade, Mechanism design, Robustness, Ambiguity, φ-

divergence.



ÖZET

AYRIK TİPLİ İKİ TARAFLI TİCARET ÜZERİNE
MAKALELER

Kamyar Kargar Mohammadinezhad

Endüstri Mühendisliği, Doktora

Tez Danışmanı: Mustafa Çelebi Pınar

Ekim 2019

En yaygın pazar etkileşimi olduğunu söyleyebileceğimiz iki taraflı ticaret

problemi bir satıcı ve bir alıcının karşılıklı değerlerini bilmedikleri durumda

bölünemeyen bir nesne üzerinden pazarlık yaptıkları en basit iki taraflı pazar

etkileşimi türüdür. Bu problemi kombinatoryal eniyileme problemi olarak ele

alıyoruz ve sürekli değerler varsayımı altında iyi bilinen bazı iktisat teorisi

sonuçlarını ayrık tip durumu için doğrusal programlama kullanarak yeniden

kuruyoruz.

İlk olarak Baskın Strateji Teşvik Uyumluluğu (BTU) ve Nihai Birey Rasy-

onelliği (NBR) özellikleri altındaki problem için matematiksel formülasyon

öneriyoruz. Sonra nihai verimlilik koşulunun BTU ve NBR ile beraber

elde edilebileceği gerek ve yeter koşulları türetiyoruz. Bunun yanında ismi

”Allocation Maximality” olan yeni bir özellik tanımlıyoruz ve Posted Price

mekanizmasının BTU, NBR ve allocation maximality özelliklerini sağlayan

tek mekanizma olduğunu kanıtlıyoruz. Son bölümde, katılımcı tipleri üzerinde

tanımlanan olasılık dağılımlarından kaynaklanan belirsizliği problem tanımına

alıyoruz ve gürbüz problem çözümlerini buluyoruz.

Buna müteakip kendi kazancını enbüyüklemek isteyen arabulucunun bu-

lunduğu iki taraflı ticaret problemini çalışıyoruz. Ağ programlamasını kul-

lanarak elimizdeki doğrusal formulasyonunu en iyi mekanizmanın anlaşılır

olduğu bir duruma getiriyoruz. Daha sonra aracının riske duyarsızlık olduğu

varsayımını kaldırıp problemi riskten kaçınan aracı gözünden ele alıyoruz.

Riskten kaçınan varsayımının sonuçlar üzerindeki etkilerini hesaplama deney-

leriyle sunuyoruz.

Son olarak problem kapsamını genişletip satıcının aynı zamanda üretici
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olduğu ve ilgili taraflar için fayda ve masraf fonksiyonları düşünülen duruma

eğiliyoruz. Dışbükey olmayan bir eniyileme probleminden başlayarak kendi-

sine eşdeğer ve kolayca çözülen bir dışbükey eniyileme problemini elde ediy-

oruz. Tüm sonuçların uygulanabilirliğini korumak adına aynı problemi Baskın

Strateji Teşvik Uyumluluğu ve Nihai Birey Rasyonelliği koşulları altında tekrar

ele alıyoruz.

Anahtar sözcükler : İki taraflı ticaret, Mekanizma tasarımı, Gürbüzlük, Belir-

sizlik, φ-divergence.
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Chapter 1

Introduction

“Mechanism design is an analytical framework for thinking clearly and care-

fully about what exactly a given institution can achieve when the information

necessary to make decisions is dispersed and privately held.” — R. Vohra [1]

In general, mechanism design is about investigating the necessary and suffi-

cient conditions to achieve desired social, environmental or economic outcomes

under many assumptions such as individuals’ self-interest and incomplete in-

formation. It can be said that mechanism design provides an optimization

framework in strategic level. In the literature, mechanism design is referred

to as a subfield of microeconomics and game theory but there is a distinct

difference between game theory and mechanism design. While game theory

looks for methods to predict the outcome of a given game, mechanism design

takes the reverse path. In mechanism design, we start with a given desirable

outcome and try to design a game which produces it.

The main challenge in mechanism design is that the individuals’ actual

preferences are not publicly observable and the individuals are reluctant to

reveal them because they do not find it in their interests to do so. As a
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result, in one way or another, individuals must be encouraged to reveal this

information.

Applications of the mechanism design span a wide and diverse variety of

disciplines including health care [2], cloud computing [3], job shop scheduling

(truthful job scheduling) [4], electric vehicle charging [5], supply chain man-

agement [6], vehicle routing problem [7], etc.

Besides the aforementioned areas mechanism design plays a key role in pro-

viding analytical framework for many well known problems from the economics

literature such as auctions, provision of public goods, bilateral trade and design

of voting procedures and markets. In this thesis we focus on bilateral trading

problem and its different variants as combinatorial optimization problems.

APPROACH Throughout the thesis we undertake an investigation of a

celebrated problem of micro-economic theory, bilateral trade problem, using

tools of network optimization and linear programming in discrete type spaces

(where by type we understand the private information parameter value that

distinguishes an economic agent). While classical results were obtained using

calculus tools (see e.g., [8, 9]) we shall use linear programming duality and finite

dimensional convex optimization tools to obtain our results in discrete type

spaces. The motivation for this approach is that there is no reason to justify

the practice that valuations of economic agents are modeled as a continuum

while the discrete type setting is more realistic assumption. We also use game

theory to model the strategic interactions and behaviors of rational agents.

1.1 Preliminaries

The following concepts and terms are the backbone of mechanism design, and

our models in particular, and we will frequently refer them throughout the
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thesis.

BILATERAL TRADE PROBLEM Bilateral trading problem is the most

common market interaction in which a seller and a buyer bargain over an in-

divisible object, and the valuation of each agent about the object is private

information. For example let us consider a bargaining problem between a risk

neutral seller and buyer over an indivisible object. Each individual’s valuation

about the object is assumed to be an independent random variable and private

information. These two individuals will participate in some bargaining mech-

anism to make a decision about two important issues. Should the object be

transferred from the seller to the buyer? If the answer is yes, then what is the

transfer price? This well-known problem is referred to as “Bilateral Trading

problem” in the mechanism design literature.

INCENTIVE COMPATIBILITY Incentive compatibility is one of the

main concepts in the mechanism design literature coined by Hurwitz in 1972

[10] and has several different degrees such as Bayesian incentive compati-

bility and dominant strategy incentive compatibility (DIC). A mechanism is

Bayesian incentive compatible if truth telling is a Bayesian Nash equilibrium

and the stronger degree, dominant strategy incentive compatibility, means that

the telling the truth is a weakly dominant strategy.

INDIVIDUAL RATIONALITY Like the incentive compatibility individ-

ual rationality has also different degrees; interim individual rationality and

ex-post individual rationality (EIR) which are defined as follows. Interim in-

dividual rationality requires that each individual has non-negative expected

gains from the trade and ex-post individual rationality means that regardless

of the other agent’s type, both traders find it beneficial to participate in the

bargain.

EX-POST EFFICIENCY In the context of bilateral trade problem, ex-

post efficiency roughly means that the buyer gets the object if and only if the
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buyer’s valuation is higher than the seller’s.

COMMON PRIOR ASSUMPTION The assumption that each state of

the world is an independent draw from a commonly known distribution is

called common prior assumption.

The specific definitions, concepts and notations are discussed in the related

chapters.

1.2 Outline of the Thesis

Chapter 2 reviews related work in bilateral trade problem and mechanism de-

sign with discrete types. In Chapter 3, we investigate the cases where mech-

anisms satisfying dominant strategy incentive compatibility and ex-post in-

dividual rationality properties can exhibit robust performance in the face of

imprecision in prior structure. We start with the general mathematical for-

mulation of the bilateral trade problem with DIC, EIR properties. We derive

necessary and sufficient conditions for dominant strategy incentive compat-

ible, ex-post individually rational mechanisms to be ex-post efficient at the

same time. Then we define a new property called Allocation Maximality, and

prove that the Posted Price mechanisms are the only mechanisms that satisfy

DIC, EIR and Allocation Maximal properties. We also show that Posted Price

mechanism is not the only mechanism that satisfies DIC and EIR properties.

The last part of this chapter introduces different sets of priors for agents’

types and consequently allows ambiguity in the problem framework. We de-

rive robust counterparts and solve them numerically for the proposed objective

function under box and φ-divergence ambiguity specifications. Results suggest

that restricting the feasible set to Posted Price mechanisms can decrease the

objective value to different extents depending on the uncertainty set.
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Chapter 4 is devoted to bilateral trade with risk-averse intermediary. We

consider bilateral trade of an object between a seller and a buyer through an

intermediary who aims to maximize her expected gains as proposed by My-

erson and Satterthwaite [11], in a Bayes-Nash equilibrium framework where

the seller and buyer have private, discrete valuations for the object. Using

duality of linear network optimization, the intermediary’s initial problem is

transformed into an equivalent linear programming problem with explicit for-

mulae of expected revenues of the seller and the expected payments of the

buyer, from which the optimal mechanism is immediately obtained. Then,

an extension of the same problem is considered for a risk-averse intermediary.

Through a computational analysis, we observe that the structure of the op-

timal mechanism is fundamentally changed by switching from risk-neutral to

risk-averse environment.

In Chapter 5 we consider an extension for the bilateral trade problem where

the seller is also a producer, and the optimal mechanism involves a production

quantity on the part of seller. In this chapter departing from a non-convex

optimization problem, we obtain an equivalent convex optimization problem

from which the problem is solved easily. In the second part of this chapter we

change our focus from Bayesian setting to dominant strategy framework. We

then give the necessary condition for the positive production level under two

assumptions related to probability distributions of agents types and the cost

and benefit functions of the buyer and seller, respectively. Finally, Chapter 6

concludes.

1.3 Contributions of the Thesis

Below we summarize the main contributions emerging from our work. The

central problem in all following results is bilateral trade.
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• We present linear programming formulations for three variants of bilat-

eral trade with discrete types.

• The finite dimensional (a consequence of discrete type spaces) convex

optimization formulations given in the thesis have the potential to fur-

ther the application of modern convex optimization to the problems of

economic theory.

• We propose necessary and sufficient conditions so that ex-post efficiency

can be obtained together with DIC and EIR properties.

• Defining a new property called Allocation Maximality we prove that the

Posted Price mechanisms are the only mechanisms that satisfy DIC, EIR

and allocation maximal properties.

• By considering box and φ-divergence based sets for priors of agents types,

we derive robust counterparts of the problem from the perspective of an

ambiguity averse intermediary.

• Using linear (and, in particular network programming) duality, we trans-

form the initial linear program of bilateral trade with intermediary into

one from which the structure of the optimal mechanism is transparent.

• By relaxing the risk-neutrality of the intermediary in the bilateral trade

with intermediary problem, we propose a stochastic programming formu-

lation for the risk-averse version of the problem and discuss the distinct

differences in the structure of optimal mechanisms using numerical re-

sults.

• Considering extended version of bilateral trade with intermediary prob-

lem where the seller is also a producer, we propose an equivalent convex

optimization problem for the initial non-convex one from which the prob-

lem is solved easily.

6



Chapter 2

Literature Review

In this section we provide the related literature review with specific attention

to discrete type setting. Mechanism design has been the subject of a substan-

tial number of studies and its literature branches out into diverse directions

based on the assumptions, objectives types and possible applications. Be-

fore narrowing down our focus to bilateral trading problem it worths to make

mention of some important features and assumptions in the literature.

One of the main distinctions in mechanism design literature is the types

of participants which categorize the problems into two main, discrete and

continuous, types. The relevant private information that each agent has is

referred to the type of that agent and assumed to be an independent draw

from the type set, say T . Therefore if this type set is continuous we deal with

continuous type environment and if it is discrete then we are in discrete types

setting. The related studies about mechanism design with discrete types are

discussed in sections (2.1) and (2.2).

The other distinguishing feature in the literature is whether there exist a

money transfer in the mechanism or not. While in most environments money
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is used as a medium of compensation there are some cases that monetary

compensation is not applicable or even is illegal. The possible institutional

and/or ethical considerations can be the reasons for this restriction. Promotion

of a faculty member, organ donation, political decisions are among the cases

that the decisions must be made without monetary transfer [12, 13, 14].

Another interesting direction which is mostly followed by computer scien-

tists is algorithmic mechanism design where the different preferences of differ-

ent owners of resources or requests are considered in designing an algorithm

in a computer network environment. In fact, algorithmic mechanism design

seeks for an algorithm that functions well assuming strategic selfish behavior

of each participant. Nisan and Ronen provide a comprehensive presentation

of the algorithmic mechanism design in their paper [4].

Besides all these studies, there have been attempts to extend the well

known mechanisms in static environment to dynamic ones. For example,

Athey and Segal [15] introduce dynamic generalizations for an efficient, budget-

balanced, Bayesian incentive compatible mechanism under very general quasi-

linear private-value environments. In fact the central problem that the liter-

ature of dynamic mechanism tries to address is the design of incentive com-

patible mechanisms in a dynamic environment in which agents sequentially

receive private information over time. Bergemann and Välimäki [16] provide

an overview about the basic questions and modeling issues that arise by shift-

ing from static paradigm to a dynamic one.

There are several common measures used in the literature to define the ob-

jective function of the problem. Profit and revenue maximizing functions can

be referred as the most applied objective types [17, 18, 19, 20]. Other com-

mon objective functions are minmax or maxmin types which are applicable

under uncertainty to achieve robust mechanisms or used to reflect the ambi-

guity averse behaviors of the agents [21, 22, 23]. In addition, some researchers
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consider a social goal in their studies [24, 25, 26, 27]. Although welfare maxi-

mizing objective is the most common goal, some studies consider non-welfare

maximizing social goals. For instance, Lavi [28] proposes to consider a social

goal different from welfare maximization, namely makespan minimization for

the task assignment problem in the scheduling domain. The proposed goal

aims to construct a balanced allocation, in order to minimize the completion

time of the last task.

2.1 Mechanism Design with Discrete Type

Recently Vohra [1, 29] developed a linear programming approach to tackle

problems in economics under discrete type spaces. His line of research was then

followed by others who investigate some celebrated problems in the literature.

Bayrak and Pınar [30] re-examine the optimal mechanism from [29] and

arrive at a conclusion that the second price auction for the sale of a single good

through a Bayesian incentive compatible mechanism that maximizes expected

revenue of the seller is suboptimal since the principal can do better with a

slight modification. They also show that their proposed variant of the second

price auction is related to the widely used generalized second price auction

mechanism in keyword-auctions for advertising.

Koçyiğit et al. [31] consider maximizing the worst case revenue in an auction

with single seller and multiple buyers where all agents are ambiguity-averse,

and formulate this problem as a mixed integer programming problem. They

also propose a hybrid algorithm to compute the optimal solutions in a signifi-

cantly shorter times compared to the general purpose MIP solvers.

Bayrak et al. [14] study the allocation problem where a principal has a

9



good to allocate among a set of agents who have a private valuation for re-

ceiving the good. In the investigated problem, the principal can check the

truthfulness of the agents’ value declarations at a cost instead of using mone-

tary transfers. They assume that the agents’ valuations are randomly drawn

from a discrete set of values, which is not known but can be one of a set of

distributions. They also present a robust allocation mechanism by maximizing

the worst-case expected value of the principal under two assumptions on the

set of distributions.

Augustynczik et al. [27] propose a mechanism design approach for the

implementation of biodiversity conservation policies. In their problem the

biodiversity is supplied as a single indivisible unit and the government defines

a discrete level of biodiversity to be supplied in public forests. They propose a

mechanism to levy funds to cover the costs of the biodiversity-oriented forest

management. In their setting the agents have quasilinear utilities and are

risk-neutral and the proposed mechanism design framework is applied to a

temperate forest landscape in southwestern Germany.

Duives et al. [32] apply mechanism design approach for the sequencing

problem. They consider a single-server setting where jobs require compen-

sation for waiting and waiting cost is private information to the jobs. The

proposed model aims to find a Bayes–Nash incentive compatible mechanism

that minimizes the total expected payments to the jobs. They also show that

the problem is solvable in polynomial time, by a version of Smith’s rule. Later,

Hoeksma and Uetz [33] studied generalized version of the sequencing problem

where the types of job-agents including processing times and waiting costs

are private to the jobs. They also showed that the problem can be solved in

polynomial time by linear programming techniques.
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Li et al. [34] investigate mechanism design applicability in assembly pro-

duction systems. The authors propose a contracting mechanism for the assem-

bler’s contract design problem. The objective is to maximize the assembler’s

expected profit and the dominant strategy incentive compatible consideration

guarantees that all suppliers truthfully reveal their own production costs. In

order to simplify the proposed mechanism they introduce a hybrid mechanism.

In the proposed hybrid mechanism the complexity of the contract offered to

a given supplier is related the importance of that supplier to the assembler’s

overall profit.

2.2 Bilateral Trade Problem

One of the pioneering studies in bilateral trading problem was done by Myerson

and Satterthwaite [11]. A well-cited result of Myerson and Satterthwaite shows

that it is impossible to design an ex-post efficient Bayesian transfer mechanism

for an object between a seller and a buyer with private valuations, with the

following properties: both parties reveal their true valuations in equilibrium

and both parties find it beneficial to participate. The result is known as

the Myerson and Satterthwaite impossibility theorem. However, the same

reference establishes that an optimal mechanism – optimal from the view point

of the intermediary – can be defined where both parties achieve non-negative

utilities in expectation, and declare their true valuations in equilibrium.

Later, Hagerty and Rogerson [35] criticized this study in particular and

mechanisms with common prior assumption in general for the following rea-

sons: most of the time it is hard to derive exactly the traders’ priors or it is

possible that we encounter with a variety of priors over time. So the authors

proposed an alternative mechanism which shows robust performance with re-

spect to variations in prior structure.
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In their mechanism, the Bayesian incentive compatible and interim indi-

vidual rationality properties are replaced with dominant strategy incentive

compatibility and ex-post individual rationality, respectively.

The aforementioned pioneering studies have been inspiring for many re-

searchers to study mechanisms for bilateral trading problem. However, there

is only a handful of research papers concerning the bilateral trading problem

under discrete type setting. When we look at the literature on bilateral trade

problem with discrete types we notice that most of the works focus on Bayesian

incentive compatible and interim individually rational mechanisms.

Matsuo [36] considers a bargaining problem between one seller and one

buyer for a single object when both agents have two-type private values. The

author then finds necessary and sufficient conditions on the agent beliefs so

that budget balanced, ex-post efficient mechanism is achievable with Bayesian

incentive compatibility and individual rationality properties.

Othman and Sandholm [37] use automated mechanism design to investigate

how often the impossibility occurs over discrete valuation domains. They draw

samples with respect to different distributions to check the feasibility of ex-

post efficient bilateral trade. The main finding of the paper is that in the

settings with large numbers of possible valuations (approaching the continuous

case) the impossibility appears generally but as the cardinality of the type set

decreases the impossibility is observed less frequent.

Kos and Manea [38] prove that there exists an ex-post efficient, budget

balanced mechanism if and only if a VCG-like mechanism does not run an

expected deficit. The authors also consider the multiple buyers case and the

effect of an additional buyer to the existence of ex-post Efficient mechanism.

Lastly, the authors deal with the mechanism maximizing total gains from

trade.
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Flesch et al. [39] focus on ex-post individually rational mechanisms and

show that Ex-post efficiency is possible if the cardinality of the type set is

less than or equal to five. Later, Flesch et al. [40] proved that for any ex-

post efficient mechanism, there exists prior distributions such that it is also

Bayesian incentive compatible and interim individually rational.

To the best of our knowledge there are only two studies in the literature

that consider dominant strategy incentive compatible and ex-post individually

rational mechanisms with discrete types; Carroll [41] and Pınar [42]. Carroll

[41] considers a nontrivial case when each agent has two types and shows that

first-best welfare (ex-post efficiency) is infeasible while Pınar [42] considers

the robust trade mechanisms in the presence of an intermediary and gives the

characterization of the optimal robust trade as the solution of a simple linear

program when budget balance requirement is relaxed to feasibility.

Against this background we investigate different versions of bilateral trade

problem. We use linear programming duality and finite dimensional convex

optimization tools to obtain our results in discrete type spaces. The problem

is also explored based on different objective functions and under risk-averse

and ambiguity-averse agents.
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Chapter 3

Robust Bilateral Trade with

Discrete Types

The purpose of present chapter is to reconsider properties and results of robust

mechanism design for bilateral trading problem under discrete framework, and

various specifications for the set of priors. The main contributions and novelty

of the current chapter can be summarized as follows. Note that all findings

and results are for discrete type setting:

• We propose necessary and sufficient conditions so that ex-post efficiency

can be obtained together with DIC and EIR.

• We show by an example that Posted Price mechanisms are not the only

DIC, EIR mechanisms, which is the case in continuous type space as

proved by [35].

• We define a new property called Allocation Maximality and prove that

the Posted Price mechanisms are the only mechanisms that satisfy DIC,

EIR and Allocation Maximality properties.
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• We consider ambiguity in the problem framework originating from dif-

ferent sets of priors for agents types. Then robust counterparts from the

perspective of an ambiguity averse intermediary are derived, and related

computational results are discussed.

The rest of this chapter proceeds as follows. In the next section we define

the proposed problem and give the related assumptions and concepts. We

then formulate the bilateral trade problem under DIC, EIR properties with

discrete types. In Section 3.1, we also provide intuition about the necessary

and sufficient conditions for a DIC, EIR mechanism to also be ex-post efficient.

In Section 3.2, the relations between the newly defined Allocation Maximal

property and Posted Price mechanisms are scrutinized, and we prove that the

Posted Price mechanisms are the only Allocation Maximal DIC, EIR mecha-

nisms. In Section 3.3, we derive the robust counterparts for the bilateral trade

problem while the intermediary wants to maximize seller’s expected revenue.

The proposed models consider ambiguity under box and φ-divergence based

sets, respectively. In Section 3.4, computational results are provided, and the

performance of the proposed models are compared in terms of their objective

function value. Finally, Section 3.5 concludes.

The results of this chapter are published in Euro Journal on Computational

Optimization.

3.1 Problem Statement

Suppose there is a risk neutral seller who owns an object and a risk neutral

buyer who wishes to buy that object. Let i and j denote the value of the

object to the seller and the buyer, respectively. These valuations are privately

kept by traders. The value that each trader assigns to the object is called type
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of that trader. The type of each trader is an independent draw from the set

T = {1, 2, ...,m}1. Variables p and x are defined to be trade probability and

expected payment value, respectively, while grij is the probability mass function

for the payment r conditional on the agents types i, j. A mechanism that

is dominant strategy incentive compatible and ex-post individually rational

should satisfy the following system of non-linear inequalities:

xij − ipij ≥ xkj − ipkj ∀i, j, k ∈ T (3.1)

jpij − xij ≥ jpik − xik ∀i, j, k ∈ T (3.2)

xij = pij
∑
r

rgrij ∀i, j ∈ T (3.3)

j∑
r=i

grij = 1 ∀i, j ∈ T (3.4)

grij ≥ 0 ∀r, i, j ∈ T (3.5)

pij ≤ 1 ∀i, j ∈ T (3.6)

pij ≥ 0 ∀i, j ∈ T. (3.7)

Note that a continuous analog of these constraints is also the starting point

of [35]. Obviously, constraints (3.6) and (3.7) ensure that trade probability is

between zero and one. Constraint (3.3) calculates the expected payment from

trade probability and payment distribution. Constraints (3.4) and (3.5) force

grij variables to define a valid probability mass function. It is enough to consider

grij variables for i ≤ r ≤ j because we are interested in EIR mechanisms.

Finally, constraints (3.1) and (3.2) represent the dominant strategy incentive

compatibility for the seller and the buyer, respectively. These constraints

ensure that reporting a different type other than the actual one will result

in utility which is less than or equal to the case when the type is truthfully

reported for all possible types. It is clear that we are only interested in the

mechanisms in which the optimal strategy is to report truthfully. In order

to have a linear system of inequalities we want to take out the grij variable

1We work with more general discrete type sets in Proposition 3.1 below. However, we
prefer the simple type set T not to encumber the notation.
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and solve the problem over xij and pij. Note that xij variable should be zero

if pij = 0, and otherwise xij is bounded below and above by ipij and jpij,

respectively. Therefore, using the following system does not eliminate any

EIR mechanisms and also gets rid of the nonlinear equality:

xij − ipij ≥ xkj − ipkj ∀i, j, k ∈ T (3.1)

jpij − xij ≥ jpik − xik ∀i, j, k ∈ T (3.2)

xij − ipij ≥ 0 ∀i, j ∈ T (3.8)

jpij − xij ≥ 0 ∀i, j ∈ T (3.9)

pij ≤ 1 ∀i, j ∈ T (3.6)

pij ≥ 0 ∀i, j ∈ T. (3.7)

Constraints (3.8) and (3.9) bound the expected payment variable so that it

satisfies the EIR conditions. Given a mechanism satisfying the above system,

one can easily find the set of all EIR payment distributions grij for all pij > 0

using the following system:

j∑
r=i

rgrij = xij/pij ∀i, j ∈ T

j∑
r=i

grij = 1 ∀i, j ∈ T

grij ≥ 0 ∀r, i, j ∈ T.

Therefore, we continue our search for DIC, EIR mechanisms by considering

the latter system. Next, we will look into the system of inequalities (3.2) and

(3.9) which corresponds to the dual constraints of a shortest path problem:

jpij − jpik ≥ xij − xik ∀i, j, k ∈ T (3.2)

jpij ≥ xij ∀i, j ∈ T. (3.9)

This system is separable for each i ∈ T so that we can consider each of them

separately. Introducing a vertex for each type j and an arc between every

successive type (j + 1, j) of length jpij − jpij+1, we will obtain the network in

Figure 3.1 for all i ∈ T (also introduce a dummy node zero).
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1

0

2 j j + 1 m

0pi1

2pi2 − 2pi1

pi1 − pi2

(j + 1)pij+1 − (j + 1)pij

jpij − jpij+1

...

... ...

...

Figure 3.1: Network of types where only the arcs between successive nodes are

drawn

Note that this network contains only a subset of the arcs defined by constraints

(3.2) and (3.9). Thus, if the corresponding primal shortest path problem is

unbounded, constraints (3.2) and (3.9) are infeasible. Then we should not

have any negative cost cycles in the network. Let us consider the length of the

cycle j → j + 1→ j:

(j + 1)pij+1 − (j + 1)pij + jpij − jpij+1 = pij+1 − pij ≥ 0.

A network with non-negative cycle costs means that pij variable should be

non-decreasing in j ∈ T . Besides, it can be shown that all shortest paths

of the network are represented in the given figure. To see this, consider the

length of j → j + 1 · · · → k in the given network:

(j + 1)pij+1 − (j + 1)pij + · · ·+ kpik − kpik−1 = kpik − (j + 1)pij −
k−1∑
l=j+1

pil

= kpik − kpij −
k−1∑
l=j+1

(pil − pij),

which is less than or equal to kpik − kpij, length of the arc (j, k), since pij

variables are monotone increasing in j. Now we consider the path j → j −
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1 · · · → k:

(j − 1)pij−1 − (j − 1)pij + · · ·+ kpik − kpik+1 = kpik − (j − 1)pij +

j−1∑
l=k+1

pil

= kpik − kpij +

j−1∑
l=k+1

(pil − pij),

which is again less than or equal to kpik−kpij. Since this is true for all arcs, all

shortest paths are represented in Figure 3.1. We use this fact in the following

manner: take pi0 = 0, xi0 = 0 and sum up the constraints corresponding to

the shortest path from node 0 to j which is actually the tightest upper bound

on xij variable:

j∑
k=1

(kpik − kpik−1) = jpij −
j−1∑
k=1

pik ≥ xij.

Similarly by summing up the constraints corresponding to the shortest path

from node j to 0, we will obtain:

j∑
k=1

(k − 1)(pik−1 − pik) = −(j − 1)pij +

j−1∑
k=1

pik ≥ −xij,

which turns out to be the tightest lower bound on xij implied by constraints

(3.2) and (3.9). Our analysis on the dual shortest path problem for the buyer’s

DIC and EIR constraints led us to a relaxation as follows:

pim ≥ pim−1 ≥ · · · ≥ pi2 ≥ pi1 ∀i ∈ T

jpij −
j−1∑
k=1

pik ≥ xij ≥ (j − 1)pij −
j−1∑
k=1

pik ∀i, j ∈ T.

Vohra [1] made extensive use of this duality relation to transform the buyer’s

Bayesian incentive compatibility and interim individual rationality constraints.

Now, we also apply a similar approach to the seller’s DIC, EIR constraints

which can be written as:

ipkj − ipij ≥ xkj − xij ∀i, j, k ∈ T (3.1)

− ipij ≥ −xij ∀i, j ∈ T. (3.8)
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Again consider these constraints as the dual of a shortest path problem. For

all j ∈ T , this time we will obtain the network in Figure 3.2. Dummy node

m+ 1 is connected to node m and pim+1, xim+1 are equal to zero.

1 2 i i+ 1 m

m+ 1

−mpmj (m+ 1)pmj

p2j − p1j

2p1j − 2p2j

ipi+1j − ipij

(i+ 1)pij − (i+ 1)pi+1j

...

... ...

...

Figure 3.2: Network of types for constraints (3.1) and (3.8)

Let us calculate the cost of path i→ i+ 1 · · · → m→ m+ 1:

m∑
k=i

(kpk+1j − kpkj) = −ipij −
m∑

k=i+1

pkj,

which is obviously less than the cost of arc (i,m + 1) for any i ∈ T . After

constructing the network, we utilize the same set of arguments in order to find

the following set of inequalities:

p1j ≥ p2j ≥ · · · ≥ pm−1j ≥ pmj ∀j ∈ T
m∑

k=i+1

pkj + ipij ≤ xij ≤
m∑

k=i+1

pkj + (i+ 1)pij ∀i, j ∈ T.

No negative cost cycle argument requires pij to be monotone decreasing

on i, and it can be shown that all shortest paths are contained in the given

network. The only difference from the previous analysis is that we find the

lower bound on xij by considering the path from node i to m+ 1 following the

arcs in Figure 3.2 and upper bound is given by the path from m+ 1 to i.
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At this point, we introduce the relaxed formulation which should be satisfied

by any DIC, EIR mechanism:

pim ≥ pim−1 ≥ · · · ≥ pi2 ≥ pi1 ∀i ∈ T (3.10)

p1j ≥ p2j ≥ · · · ≥ pm−1j ≥ pmj ∀j ∈ T (3.11)

jpij −
j−1∑
k=1

pik ≥ xij ≥ (j − 1)pij −
j−1∑
k=1

pik ∀i, j ∈ T (3.12)

m∑
k=i+1

pkj + ipij ≤ xij ≤
m∑

k=i+1

pkj + (i+ 1)pij ∀i, j ∈ T (3.13)

pij ≤ 1 ∀i, j ∈ T (3.6)

pij ≥ 0 ∀i, j ∈ T. (3.7)

A trivial solution of the above system is to set all trading probabilities to

zero. Although we do not allow any trade in this mechanism, it satisfies the

DIC and EIR conditions. Nobody is ex-post worse off by participating in the

trade, and each trader’s dominant strategy set contains reporting one’s true

type. We present three examples in Figure 3.3 in order to investigate the

relation between DIC, EIR mechanisms and the relaxed formulation, where

m = 5. These examples only specify allocation rules but we also need transfer

rules to check if the mechanism satisfies DIC, EIR constraints or not. As we

shall see below, the relaxed formulation helps us track down the DIC, EIR

transfer rules.
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pxy = 1
pxy = 0.5

Figure 3.3: Trade probabilities with different properties; (a) ex-post efficient

mechanism, (b) Posted Price mechanism, (c) Neither ex-post efficient nor

Posted Price mechanism.

Ex-post efficiency dictates that the trade should take place if and only if

the buyer has a higher valuation than the seller. Example (a) in Figure 3.3

illustrates an ex-post efficient allocation where the tie break rule leaves the

good to the seller. It is easy to check that ex-post efficient mechanism (with

any tie break rule) is not feasible in the relaxed formulation because of the

constraints (3.12) and (3.13). Therefore, we can conclude that there does

not exist any DIC, EIR and Ex-post efficient mechanism when both agents

have type set T = {1, 2, 3, 4, 5}. However this is not true in general, and the

following proposition gives conditions using general discrete type sets Tb and

Ts (not necessarily the first m integers), for buyer and seller respectively, so

that ex-post efficiency can be obtained together with DIC and EIR.

Proposition 3.1. For finite type sets Tb and Ts with strictly positive elements,

there exists a DIC, EIR, Ex-post efficient mechanism if and only if the convex

hull of agents’ efficient type sets which are defined as T ∗b = {bk ∈ Tb|bk >
sl for some sl ∈ Ts} and T ∗s = {sk ∈ Ts|sk < bl for some bl ∈ Tb} have finite

intersection.

Proof. Assume that there exists a DIC, EIR and Ex-post Efficient mechanism
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(p∗, x) but convex hull of sets T ∗b and T ∗s have infinite intersection. Then there

exist bj ∈ T ∗b and si ∈ T ∗s such that bj is strictly less than si. By definition

of efficient type sets, there exist types sl ∈ Ts and bk ∈ Tb satisfying sl < bj

and bk > si. Then we can write sl < bj < si < bk so that plj = plk = pik = 1

holds. We know from Lemma 3.1 that xlj = xlk = xik should also hold in

order to satisfy DIC constraints. Given all these information, let us check EIR

constraints. We see that bj ≥ xlj ≥ sl and bk ≥ xik ≥ si cannot be satisfied

together with xlj = xik since we have bj < si. Hence there is no transfer

rule we can use together with p∗ to have a DIC, EIR mechanism. This is a

contradiction.

Now we start from efficient type sets T ∗b and T ∗s whose convex hulls have finite

intersection. If both efficient type sets are empty, we have a trivial case bm ≤ s1

where seller always values the good more. Then any Posted Price mechanism

imposes Ex-post Efficiency. In the nontrivial case, both sets are nonempty and

minimum type, b, in T ∗b should be bigger than or equal to maximum type, s̄,

in T ∗s . Here any Posted Price mechanism with unique price x ∈ [s̄, b] will be

Ex-post efficient. Since all Posted Price mechanisms are DIC, EIR the proof

is complete.

As an immediate result of this proposition, if the buyer and seller have a

common type set T = {1, 2, . . . ,m}, which is the case in the current study,

Ex-post efficiency can be obtained when m ≤ 3. In three types case, the

posted price will be equal to 2 and efficient types will be {1, 2} for the seller

and {2, 3} for the buyer. Adding an extra type 4 will result in efficient type

sets {1, 2, 3} and {2, 3, 4} whose convex hulls have infinite intersection.

The other two examples in Figure 3.3, (b) and (c), only specify allocation

variables but one can use the relaxed formulation to elicit transfer variables.

When pij values of example (b) are written in the relaxed formulation, it is

easy to see that the only feasible solution is setting xij equal to three whenever

pij is equal to one. This is actually the Posted Price mechanism with price
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set to three and it is a DIC, EIR mechanism. Similarly, when we use pij

values in example (c), we see that the relaxed formulation gives x13 = 1,

x24 = 3, x35 = 2. For other transfer variables, we find following intervals,

x15 ∈ [2.5, 3.5], x14 ∈ [2.5, 3], x25 ∈ [3, 3.5]. We use another characteristic from

DIC mechanisms to find the unique solution in this case.

Lemma 3.1. When all elements in finite type set T are strictly positive, any

DIC mechanism has xij = xkj if and only if pij = pkj holds for all i, j, k ∈ T .

Similarly, xij = xik holds if and only if pij = pik is satisfied for all i, j, k ∈ T .

Proof. Truthful reporting is a weakly dominant strategy if the following set of

constraints are satisfied:

xij − ipij ≥ xkj − ipkj ∀i, j, k ∈ T (3.1)

jpij − xij ≥ jpik − xik ∀i, j, k ∈ T. (3.2)

For any pair of types i, k ∈ T , we have the following two constraints from

inequality (3.1):

xij − ipij ≥ xkj − ipkj ∀j ∈ T

xkj − kpkj ≥ xij − kpij ∀j ∈ T.

If xij = xkj holds, we end up with i(pkj − pij) ≥ 0 and k(pij − pkj) ≥ 0. Then

for any j ∈ T , we should also have pij = pkj since all elements in T are strictly

positive. Other parts can be proven similarly.

The intuition behind Lemma 3.1 is that whenever one of these equalities

holds, there is a profitable deviation for some type if the other equality does

not hold. Therefore, transfer rule in example (c) should be x15 = x14 =

x25 = x24 = 3. Along with this transfer rule, example (c) satisfies DIC,

EIR constraints. Note that finding DIC, EIR transfer rules from the relaxed

formulation is not generally easy.
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Therefore we found a DIC, EIR mechanism, example (c), which is not a

Posted Price mechanism. Recall that according to [35] every DIC, EIR mech-

anism is a Posted Price mechanism when agents have continuous type space.

Our example (c) showed that DIC, EIR constraints for the discrete type space

are also satisfied by other solutions, a testimony to the discrepancy between

continuous and discrete type space. In the following section we will use the

proposed relaxed formulation to show that Posted Price mechanisms can be

formulated exactly.

3.2 Posted Price and Allocation Maximal

Mechanisms

In this section, we show that using the constraints of the relaxed formulation,

we can formulate Posted Price mechanisms. We start our discussion by refer-

ring to the following set of inequalities as the final relaxed formulation (FRF).

We get rid of transfer variables and use their upper and lower bounds given in

(3.12) and (3.13) to come up with constraint (3.14). Obviously any DIC and

EIR mechanism should satisfy FRF:

pim ≥ pim−1 ≥ · · · ≥ pi2 ≥ pi1 ∀i ∈ T (3.10)

p1j ≥ p2j ≥ · · · ≥ pm−1j ≥ pmj ∀j ∈ T (3.11)

(j − i)pij ≥
j−1∑
k=1

pik +
m∑

k=i+1

pkj ∀i, j ∈ T (3.14)

pij ≤ 1 ∀i, j ∈ T (3.6)

pij ≥ 0 ∀i, j ∈ T. (3.7)

First, we investigate another set of examples when T = {1, 2, 3} in order
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to clarify the relation between DIC, EIR mechanisms and FRF. Monotonicity

and bounding constraints for p variables are obviously satisfied for all three

examples in Figure 3.4. We will check the constraint (3.14) for ex-post efficient

example (d):

2p13 ≥ p11 + p12 + p23 + p33 gives 2 = 2

p12 ≥ p11 + p22 gives 1 ≥ 0

p23 ≥ p22 + p33 gives 1 ≥ 0.

Example (d) is a Posted Price mechanism with unique price two but its tie

break rule awards the good to the seller unlike example (e). Posted Price

mechanism in example (e) has another characteristic apart from being DIC,

EIR, ex-post efficient. It satisfies the constraint (3.14) with equality for all

i, j ∈ T . It is easy to see that example (f) also satisfies the constraint (3.14)

with equality and we cannot increase any pij variable without decreasing an-

other one first. A mechanism with no trade also satisfies constraint (3.14) with

equality but we can increase p1m as long as m > 1. When the cardinality of the

type set gets bigger than three we no longer have ex-post Efficiency. However

in this case how much efficiency one can capture becomes a relevant question.

To answer this question we define the concept of Allocation Maximality and

prove that a feasible mechanism in the FRF is Allocation Maximal only if it

is a Posted Price mechanism.

2 3
1

2

3

(d)

2 3
1

2

3

(e)

2 3
1

2

3

(f)

pxy = 1

Figure 3.4: Trade probabilities with different properties; (d) Ex-post efficient

mechanism, (e) Posted Price mechanism with unique price 2, (f) Posted Price

mechanism with unique price 1.
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Definition 3.1. An allocation rule, p∗, that is feasible in FRF is Allocation

Maximal if and only if there does not exist any other mechanism, p, feasible

in FRF such that pii ≥ p∗ii for all i ∈ T and pkk > p∗kk for some k ∈ T .

In order to show the structure of Allocation Maximal mechanisms of FRF

we will need the following result.

Lemma 3.2. The following two equations are equivalent for mechanisms fea-

sible in FRF.

(j − i)pij =

j−1∑
k=i

pik +

j∑
k=i+1

pkj ∀i, j ∈ T (3.15)

pij =

j∑
k=i

pkk ∀i, j ∈ T. (3.16)

Proof. Firstly notice that we can change the constraint (3.14) with the follow-

ing:

(j − i)pij ≥
j−1∑
k=i

pik +

j∑
k=i+1

pkj ∀i, j ∈ T.

We only need to consider p variables that satisfy i ≤ j in the right hand side.

This is because constraint (3.14) forces pij to be zero if i > j is satisfied. Now

we can continue with the proof.

Equivalence is obvious for the cases when i is greater than or equal to j

since neither constraint is restrictive in this case. Therefore, we will consider

remaining cases. Assume that (3.15) holds for all i, j ∈ T . We will use

induction to show that if (3.15) holds, then (3.16) also holds. For the base

case, j = i+ 1, equivalence is simple:

pij =

j−1∑
k=i

pik +

j∑
k=i+1

pkj =

j∑
k=i

pkk.
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Assume that (3.16) holds for all i, j ∈ T such that j ≤ i+ q. Then consider

j = i+ q + 1:

(q + 1)pij =

j−1∑
k=i

pik +

j∑
k=i+1

pkj =

j−1∑
k=i

k∑
l=i

pll +

j∑
k=i+1

j∑
l=k

pll

=

j−1∑
k=i

(j − k)pkk +

j∑
k=i+1

(k − i)pkk = (j − i)
j∑
k=i

pkk

= (q + 1)

j∑
k=i

pkk.

Now assume that (3.16) holds for all i, j ∈ T . Then we can rewrite the right

hand side of (3.15) as:

j−1∑
k=i

pik +

j∑
k=i+1

pkj =

j−1∑
k=i

k∑
l=i

pll +

j∑
k=i+1

j∑
l=k

pll

=

j−1∑
k=i

(j − k)pkk +

j∑
k=i+1

(k − i)pkk = (j − i)
j∑
k=i

pkk = (j − i)pij.

Proposition 3.2. An allocation rule that is feasible in FRF is Allocation

Maximal if and only if p1m is equal to one and pij =
∑j

k=i pkk holds for all

i, j ∈ T .

Proof. Assume that p is Allocation Maximal but equality (3.16) is not satisfied.

Then using Lemma 3.2, we also know equality (3.15) is not satisfied for some

i, j ∈ T . We will show that we can increase some pii and still get feasibility in

FRF which contradicts the Allocation Maximality of p.

First, notice that such a profile would have strictly positive difference, j− i.
If difference is less than or equal to zero then equality (3.15) should be satisfied
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because of the monotonicity and non-negativity constraints. Then we only

need to consider profiles with j− i > 0. Consider the profile (x, y) which does

not satisfy equality (3.15) and have the minimum difference, y− x, among all

such profiles:

(y − x)pxy >

y−1∑
n=x

pxn +

y∑
n=x+1

pny.

Then we know that (3.15) holds for all profiles (k, l) such that (l−k) < (y−x).

Using the induction argument from the proof of Lemma 3.2, we can show that

equivalence holds for such profiles:

(l − k)pkl =
l−1∑
n=k

pkn +
l∑

n=k+1

pnl ∀k, l ∈ T such that (l − k) < (y − x)

pkl =
l∑

n=k

pnn ∀k, l ∈ T such that (l − k) < (y − x).

For profile (x, y), we can write the following:

(y − x)pxy >

y−1∑
n=x

pxn +

y∑
n=x+1

pny = (y − x)

y∑
n=x

pnn.

Then using this result and constraint (3.14), we can conclude that:

pij >

j∑
n=i

pnn ∀i, j ∈ T such that j ≥ y and i ≤ x,

which means that p1m >
∑m

n=1 pnn. Now define ε = 1 −
∑m

n=1 pnn so that we

can exhibit a contradiction using p∗ defined as follows:

p∗nn = pnn + ε/m ∀n ∈ T,

p∗ij =

j∑
n=i

p∗nn ∀i, j ∈ T.

Because of the construction of p∗ij variables, we know that monotonicity con-

straints hold and constraint (3.15) and (3.16) are satisfied with equality. Since

p∗ii > pii for all i ∈ T , the existence of p∗ contradicts the Allocation Maximality

of p.
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Now assume that p is Allocation Maximal, pij =
∑j

n=i pnn holds for all

i, j ∈ T but p1m is less than one. Then we can construct a new allocation rule

p∗ that is feasible in FRF by increasing pnn for all n ∈ T by ε = (1−p1m)/m as

above. By Definition 3.1, p is not Allocation Maximal. This is a contradiction.

Now assume that we have an allocation rule that is feasible in FRF and it

satisfies p1m = 1 and pij =
∑j

n=i pnn holds for all i, j ∈ T . Using Lemma 3.2,

we also have equality (3.15) satisfied for all i, j ∈ T . Assume to the contrary

that there exists a p∗ feasible in FRF such that p∗ii ≥ pii for all i ∈ T and

p∗kk > pkk for some k ∈ T . Then we have the following inequality:

m∑
n=1

p∗nn >
m∑
n=1

pnn = p1m = 1.

Using induction argument as in the proof of Lemma 3.2, one can also show that

p∗ij ≥
∑j

n=i p
∗
nn should hold for any i, j ∈ T . Therefore, p∗1m ≥

∑m
n=1 p

∗
nn > 1,

which means p∗ is not feasible in FRF and this is a contradiction.

We now show that all Allocation Maximal allocation rules in FRF are

Posted Price mechanisms. We first need to define the Posted Price mechanism

in general form. The seller (or the intermediary, if there is one) announces

that he will post a price according to some distribution F and its probability

mass function f . After observing the posted price, the buyer and the seller

decide if they want to trade or not. Assuming that agents always favor trade

more than status quo, we can write the Posted Price mechanism as:

pij = F (j)− F (i− 1), xij =

j∑
n=i

nfn, ∀i, j ∈ T.

In other words, trade probability, pij is equal to the probability that posted

price is in the set {i, i+1, . . . , j−1, j}. Transfer value, xij, is equal to expected

payment with respect to posted price probability mass function. The above

definition of Posted Price mechanism allows the seller (intermediary) to pick a
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price distribution which will enable him to randomize the posted price he will

announce.

Proposition 3.3. A DIC, EIR mechanism is Allocation Maximal if and only

if it is a Posted Price mechanism with the price mass function
∑m

n=1 f(n) = 1

where trade is preferred to status quo.

Proof. Assume that a DIC, EIR mechanism (p, x) is Allocation Maximal. Then

allocation rule p should be feasible in the FRF. By Proposition 3.2, we have

p1m = 1 and pij =
∑j

n=i pnn holds for all i, j ∈ T . From constraints (3.12) and

(3.13), we can write the following bounds for the transfer rule:

jpij −
j−1∑
k=i

pik ≥ xij ≥
j∑

k=i+1

pkj + ipij

j

j∑
n=i

pnn −
j−1∑
k=i

k∑
n=i

pnn ≥ xij ≥
j∑

k=i+1

j∑
n=k

pnn + i

j∑
n=i

pnn

j

j∑
n=i

pnn −
j−1∑
k=i

(j − k)pnn ≥ xij ≥
j∑

k=i+1

(k − i)pnn + i

j∑
n=i

pnn

j∑
n=i

npnn ≥ xij ≥
j∑
n=i

npnn.

We see that there is only one transfer rule feasible in the relaxation. This

mechanism is equivalent to the following Posted Price mechanism with prob-

ability mass function f :

fi = pii ∀i ∈ T ⇒ pij = F (j)− F (i− 1), xij =

j∑
n=i

nfn, ∀i, j ∈ T.

Since p1m is equal to one, we have
∑m

n=1 f(n) = 1. This mechanism awards the

good to the buyer when both agents have the same type equal to the posted

price. In other words, trade is preferred to status quo where seller keeps

the good. Since we utilized Proposition 3.2 giving necessary and sufficient

conditions, the proof is complete.
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Corollary 3.1. The following system of equations is DIC-EIR implementable

and every feasible solution is a Posted Price mechanism where trade is preferred

to status quo.

xij = jpij −
j−1∑
k=i

pik ∀ i, j ∈ T (3.17)

xij = ipij +

j∑
l=i+1

plj ∀ i, j ∈ T (3.18)

pij ≤ 1 ∀i, j ∈ T (3.6)

pij ≥ 0 ∀i, j ∈ T. (3.7)

(3.10) , (3.11).

The proof directly follows from Lemma 3.2 and the definition of Posted Price

mechanism. Restricting the allocation variables to be binary gives all Posted

Price mechanisms with unique price where trade is preferred to status quo.

Giving positive probability to more than one price might not be preferable

due to practical concerns. Therefore, we will also investigate Posted Price

mechanisms with a unique posted price and analyze its performance compared

to Posted Price mechanism with not necessarily unique price in Section 5.

3.3 Bilateral Trading under Ambiguity

Until this point, we were interested in the general characteristics of DIC, EIR

mechanisms. However, such analysis does not give specific information that a

seller would need in practice. In order to specify the optimal trade probabili-

ties and expected transfers, we need an objective function and an assumption
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about the priors. By relaxing the unique common prior assumption, which

is commonly used in the literature, we introduce ambiguity into the prob-

lem framework. To deal with non-unique prior we consider bilateral trading

problem from the perspective of an ambiguity-averse seller.

As in the paper by Gilboa and Schmeidler [43], we maximize the worst case

expected utility of the seller subject to DIC, EIR constraints. The bilateral

trade problem with ambiguity-averse agents was also considered by De Castro

and Yannelis in [44]. The authors show that when all agents are ambiguity-

averse, for some class of max-min preferences DIC, EIR mechanisms are Ex-

post efficient. For other examples of mechanism design problems with ambi-

guity, we refer to [22] and [45]. In the following two sections we consider two

types of ambiguity specifications. The first set based on interval uncertainty is

one of the most widely used polyhedral uncertainty sets in robust combinato-

rial optimization literature. Interval uncertainty sets have been applied for a

variety of problems in the fields of economics, production, transportation, etc.

The reader may refer to study by Kouvelis and Yu [46] for use of robustness

approach in different environments. The second set is constructed based on

φ-divergence ambiguity sets which reflects distributional robustness. As the

uncertainty set constructed around the nominal distribution covers all possi-

ble probability distributions in that range, the φ-divergence based ambiguity

region is in accordance with the DIC concept of robust mechanism design.
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3.3.1 Bilateral Trading Mechanism under Box Ambigu-

ity Set

In this section we derive the robust counterpart for bilateral trading problem

under box ambiguity set. First let us write our objective function as follows:

max
x,p∈X

{
min
h∈U

∑
i,j

hij (xij − ipij)

}
, (3.19)

where hij is density of joint distribution of agents type, X contains the con-

straints acting on p and x depending on the model used, and U is a set of

ambiguity for the prior h and defined as follows:

U =

{
lij ≤ hij ≤ uij ,

∑
i,j

hij = 1

}
.

In this step we propose a linear programming model for the robust counterpart

of this problem using Lagrangian duality. Let us consider the inner part of

equation (3.19) separately as follows:

min
lij≤hij≤uij

∑
i,j

hij(xij − ipij)

s.t :
∑
i,j

hij = 1.

then the Lagrangian can be written as:

L(h, µ) =
∑
i,j

hij(xij − ipij) + µ(
∑
i,j

hij − 1),

and the dual function is:

g(µ) = min
h
L(h, µ) = −µ+ min

h

∑
i,j

hij(xij − ipij + µ),

so the Lagrange dual problem is:

max
µ
− µ+

∑
i,j

(lij(xij − ipij + µ)+ + uij(xij − ipij + µ)−) ,
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as a result we obtain the following optimization problem as the robust coun-

terpart problem:

max
x,p∈X,µ,a,b

∑
i,j

− µ+ lijaij − uijbij

s.t : xij − ipij + µ = aij − bij ∀i, j ∈ T,

aij, bij ≥ 0 ∀i, j ∈ T.

3.3.2 Bilateral Trading Mechanism under φ-divergence

Ambiguity Set

In this section we derive robust counterpart for our objective function un-

der φ-divergence-based ambiguity region. Using φ-divergence measures, we

probabilistically ensure that the ambiguity set contains the true distribution

with a desired level of confidence. This is the main advantage of ambiguity

sets based on φ-divergence measures over those based on box ambiguity. The

reader can refer to [47] and [48] for other advantages and applications related

to φ-divergence measures in robust optimization problems, specially in data-

driven setting. The construction of the uncertainty region from the given data

is out of scope of this study. However, we refer the interested reader to [49]

which explains how to obtain an approximate uncertainty set for probabil-

ity vectors h around nominal distribution, ĥ, as confidence set of confidence

level at least (1− α), for example. φ-divergence measures are commonly used

to reflect the distance between two probability distributions and defined as

follows:

The φ-divergence measure between two probability distributions h =

(h1, ..., hn)T ≥ 0 and g = (g1, ..., gn)T ≥ 0 in IRn is

Iφ(h, g) =
n∑
i=1

hi φ(
hi
gi

), φ ∈ Φ,
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where Φ is the class of all convex functions φ(t), t ≥ 0 such that φ(1) = 0,

0φ(0/0) = 0 and 0φ(p/0) = limu→∞ φ(u)/u.

We suppose that h comes from an uncertainty set constructed around a

prior which can be derived from historical data, forecasting, simulation, etc.,

and four well-known φ-divergence functionals are applied as a measure of dis-

tance. Table 3.1 shows their characteristics (See [49] for other specifications

and choices for φ). The reader may also refer to [50] for detailed and compre-

hensive review on this subject.

Consider the following robust linear constraint:

(a+Bh)Tx ≤ d ∀h ∈M, (3.20)

where a ∈ IRn, B ∈ IRn×m, d ∈ IR are given parameters; h ∈ IRm is the

uncertain parameter; x ∈ IRn is the optimization vector and the uncertainty

region M is given by

M =
{
h ∈ IRm| h ≥ 0, eTh = 1, Iφ(h, g) ≤ ρ

}
, (3.21)

where ρ controls the ambiguity level. The large value of ρ means that our

confidence in data is low, and small value for ρ indicates that we trust in data.

Ben-Tal et al. [49] prove that:

Theorem 3.1. A vector x ∈ IR satisfies (3.20) with uncertainty region M
such that h ∈M if and only if there exist η ∈ IR and λ ∈ IR such that (x, λ, η)

satisfies 
aTx+ η + ρλ+ λ

m∑
i=1

hiφ
∗(
bTi x−η
λ

) ≤ d,

λ ≥ 0.

In Theorem 3.1, bi are the ith column of B and φ∗ : IR → IR ∪ {∞} is the

conjugate function of φ which is defined as follows:

φ∗(s) = sup
t≥0
{st− φ(t)}.
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Table 3.1: φ-Divergence Measures

Divergence measure φ(t) φ∗(s) Iφ(h, g)

Burg entropy −log(t) + t− 1 −log(1− s), s < 1
∑
i

gilog( gi
hi

)

Kullback-Leibler t log(t)− t+ 1 es − 1
∑
i

hilog(hi
gi

)

χ2-distance 1
t
(t− 1)2 2− 2

√
1− s, s < 1

∑
i

(hi−gi)2
hi

Hellinger-distance (
√
t− 1)2 s

1−s , s < 1
∑
i

(
√
hi −

√
gi)

2

Now let us reconsider the objective function of proposed problem with the

uncertainty region defined by M as follows:

max
x,p∈X

{
min
h∈M

∑
i,j

hij (xij − ipij)

}
,

which is equal to:

max
x,p∈X,h∈M,β

{
β |
∑
i,j

hij (xij − ipij) ≥ β

}
. (3.22)

Using Theorem 3.1 and Table 3.1 we can derive the robust counterpart for

(3.22) with different divergence measures as follows:

Burg entropy:

max
x,p∈X,λ≥0,η

{
−η − ρλ− λ

∑
i,j

(
hij

(
−log(1− (

− (xij − ipij)− η
λ

))

))}
,

Kullback-Leibler:

max
x,p∈X,λ≥0,η

{
−η − ρλ− λ

∑
i,j

(
hij

(
e(

−(xij−ipij)−η
λ

) − 1

))}
,
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χ2-distance:

max
x,p∈X,λ≥0,η

{
−η − ρλ− λ

∑
i,j

(
hij

(
2− 2

√
1− (

− (xij − ipij)− η
λ

)

))}
,

Hellinger-distance:

max
x,p∈X,λ≥0,η

{
−η − ρλ− λ

∑
i,j

(
hij

[
(
−(xij−ipij)−η

λ
)

1− (
−(xij−ipij)−η

λ
)

])}
.

We solve these models numerically and the results are reported and dis-

cussed in the next section.

3.4 Computational Results

In this section we present the computational results related to the problems

with the objective functions discussed in previous section. For each problem

we construct three models with different constraint sets. Model 1 is the general

model for robust bilateral trading model and considers the constraints (3.1),

(3.2) and (3.6)-(3.9). We construct Model 2 by considering the constraints

given in Corollary 1. This set of constraints lead to Posted Price mechanisms.

In Model 3, we consider the same constraints as in Model 2 but pij’s are defined

as binary variables and as a result Model 3 is even tighter than Model 2. This

modification results in Posted Price mechanism with unique price which is

more applicable. We consider these three models in our computational study

to investigate how objective function value is changed if we want to apply the

Posted Price mechanism.

In each table, first column is labeled with “m” which denotes the car-

dinality of set T . The second column entitled “h-distribution” specifies the
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distribution that h comes from. We consider two types of distributions for this

purpose, “Uniform” stands for the uniform distribution such that hij = 1/m2

and “Normal” refers to the normal distribution with N ∼ (m
2
, (m

8
)2). The last

three columns provide objective function values for Models 3, Model 2 and

Model 1, respectively. The value between parenthesis in the “OF3(x∗)” col-

umn is the unique price that have to be posted in Model 3 at optimality. The

problem instances were formulated in GAMS 23.3.3 and solved using BARON

([51]) and COINIPOPT ([52]) solvers.

Table 3.2: Results for models without ambiguity

m h-distribution OF3(x∗) OF2 OF1

5
Uniform 0.480 (4) 0.480 0.500

Normal 0.448 (5) 0.448 0.456

10
Uniform 0.840 (7) 0.840 0.861

Normal 0.942(8) 0.942 0.953

15
Uniform 1.222 (11) 1.222 1.237

Normal 1.263 (11) 1.263 1.280

20
Uniform 1.592 (14) 1.592 1.609

Normal 1.557 (14) 1.557 1.573

In the Table 3.2, we give results for the problem without ambiguity. This

helps us to have a clear insight about the behavior of the problem with ambi-

guity.

39



Table 3.3: Results for models under box ambiguity

m
h-

distribution
r OF3(x

∗) OF2 OF1

0.5 0.240 (4) 0.240 0.250
0.25 0.360 (4) 0.360 0.375
0.1 0.432 (4) 0.432 0.450

Uniform

0.5 0.224 (5) 0.224 0.228
0.25 0.336 (5) 0.336 0.342

5

Normal

0.1 0.403 (5) 0.403 0.410

0.5 0.420 (8) 0.420 0.431
0.25 0.630 (8) 0.630 0.646
0.1 0.756 (8) 0.756 0.775

Uniform

0.5 0.471 (8) 0.471 0.477
0.25 0.707 (8) 0.707 0.715

10

Normal

0.1 0.848 (8) 0.848 0.858

0.5 0.611 (11) 0.611 0.619
0.25 0.917 (11) 0.917 0.928
0.1 1.100 (11) 1.100 1.114

Uniform

0.5 0.631 (11) 0.631 0.640
0.25 0.947 (11) 0.947 0.960

15

Normal

0.1 1.137 (11) 1.137 1.152

0.5 0.796 (14) 0.796 0.804
0.25 1.194 (14) 1.194 1.207
0.1 1.433 (14) 1.433 1.448

Uniform

0.5 0.778 (14) 0.778 0.787
0.25 1.167 (14) 1.167 1.180

20

Normal

0.1 1.401 (14) 1.401 1.416
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In the Table 3.3, the results for the problem under box ambiguity set are

illustrated. The “r” column defines the range of the interval by specifying

the upper and lower bounds using the following formulae: uij = hij(1 + r)

and lij = hij(1 − r). We set three values of 0.1, 0.25 and 0.5 for “r” which

reflect low, medium and high ambiguity, respectively. Results suggest that it

is optimal for Posted Price mechanisms to have unique price.

Results for the problem under different φ-divergence measures are summa-

rized in the Tables 3.4-3.7. The column ρ is the same parameter introduced

in the set definition (3.21) which determines the uncertainty region around h.

The three values that ρ can take are 0.1, 0.01 and 0.001, which correspond to

high, medium and low ambiguity, respectively.

As to be expected, the first observation is that as the ambiguity increases,

we see that the objective function value decreases for all models and instances.

Similarly, when ambiguity decreases the difference between objective function

values in all models also decreases and in low level of ambiguity the objective

function values for Model 2 and Model 3 are equal in most cases. This valuable

result means that when we encounter low level of ambiguity the proposed

“Posted Price mechanism with unique price” which is quite common practice

can provide a solution without significant loss of profit. We also observe that in

the absence of ambiguity Model 2 and Model 3 provide the same solution which

means that the Posted Price mechanisms with unique price are the optimal

mechanisms. However this is not the case for the models with ambiguity.

In Table 3.8, we summarize the amount of profit loss in percentage caused by

the application of the Posted Price mechanism. The “Uncertainty set” column

specifies the considered uncertainty set. The “Min”, “Max” and “Avg.” labels

stand for the minimum, maximum and average profit loss in percentage, re-

spectively, considering the instances presented in Tables 3.3 - 3.7. The “Unique

41



Table 3.4: Results for models under Burg Entropy divergence measure

m
h-

distribution
ρ OF3(x

∗) OF2 OF1

0.1 0.168 (4) 0.173 0.196
0.01 0.358 (4) 0.358 0.378
0.001 0.439 (4) 0.439 0.459

Uniform

0.1 0.146 (4) 0.169 0.195
0.01 0.318 (5) 0.328 0.346

5

Normal

0.001 0.404 (5) 0.404 0.419

0.1 0.284 (7) 0.302 0.323
0.01 0.620 (7) 0.622 0.642
0.001 0.766 (7) 0.767 0.788

Uniform

0.1 0.326 (7) 0.343 0.361
0.01 0.692 (8) 0.695 0.710

10

Normal

0.001 0.858 (8) 0.858 0.869

0.1 0.400 (11) 0.427 0.448
0.01 0.883 (11) 0.892 0.911
0.001 1.107 (11) 1.107 1.123

Uniform

0.1 0.412 (10) 0.439 0.461
0.01 0.918 (11) 0.921 0.940

15

Normal

0.001 1.146 (11) 1.146 1.164

0.1 0.461 (12) 0.552 0.572
0.01 1.154 (14) 1.159 1.177
0.001 1.444 (14) 1.444 1.460

Uniform

0.1 0.423 (12) 0.539 0.559
0.01 1.124 (14) 1.127 1.146

20

Normal

0.001 1.409 (14) 1.409 1.427
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Table 3.5: Results for models under Kullback-Leibler divergence measure

m
h-

distribution
ρ OF3(x

∗) OF2 OF1

0.1 0.125 (4) 0.138 0.165
0.01 0.352 (4) 0.352 0.373
0.001 0.438 (4) 0.438 0.458

Uniform

0.1 0.107 (4) 0.142 0.170
0.01 0.312(4) 0.322 0.341

5

Normal

0.001 0.403 (5) 0.403 0.418

0.1 0.204 (7) 0.234 0.259
0.01 0.609 (7) 0.612 0.633
0.001 0.765 (7) 0.765 0.786

Uniform

0.1 0.249 (7) 0.270 0.293
0.01 0.681 (8) 0.684 0.700

10

Normal

0.001 0.857 (8) 0.857 0.868

0.1 0.283 (10) 0.328 0.351
0.01 0.866 (11) 0.876 0.894
0.001 1.105(11) 1.105 1.121

Uniform

0.1 0.295 (10) 0.337 0.362
0.01 0.900 (11) 0.904 0.924

15

Normal

0.001 1.144 (11) 1.144 1.162

0.1 0.363 (13) 0.421 0.444
0.01 1.132 (14) 1.138 1.157
0.001 1.441 (14) 1.441 1.458

Uniform

0.1 0.353 (12) 0.413 0.435
0.01 1.101 (14) 1.106 1.125

20

Normal

0.001 1.407 (14) 1.407 1.424
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Table 3.6: Results for models under χ2-distance divergence measure

m
h-

distribution
ρ OF3(x

∗) OF2 OF1

0.1 0.200 (4) 0.200 0.277
0.01 0.394 (4) 0.394 0.414
0.001 0.451 (4) 0.451 0.471

Uniform

0.1 0.226 (4) 0.241 0.254
0.01 0.356 (5) 0.360 0.378

5

Normal

0.001 0.417 (5) 0.417 0.430

0.1 0.442 (7) 0.449 0.469
0.01 0.685 (7) 0.687 0.707
0.001 0.787 (7) 0.788 0.809

Uniform

0.1 0.492 (8) 0.506 0.521
0.01 0.766 (8) 0.766 0.779

10

Normal

0.001 0.883 (8) 0.883 0.894

0.1 0.626 (10) 0.640 0.660
0.01 0.983 (11) 0.986 1.004
0.001 1.141 (11) 1.141 1.156

Uniform

0.1 0.646 (11) 0.660 0.681
0.01 1.019 (11) 1.020 1.038

15

Normal

0.001 1.180 (11) 1.180 1.198

0.1 0.802 (14) 0.831 0.850
0.01 1.283 (14) 1.284 1.302
0.001 1.487 (14) 1.487 1.504

Uniform

0.1 0.786 (14) 0.809 0.829
0.01 1.251 (14) 1.251 1.269

20

Normal

0.001 1.453 (14) 1.453 1.470
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Table 3.7: Results for models under Hellinger-distance divergence measure

m
h-

distribution
ρ OF3(x

∗) OF2 OF1

0.1 0.066 (4) 0.087 0.106
0.01 0.309 (4) 0.309 0.329
0.001 0.422 (4) 0.422 0.442

Uniform

0.1 0.056 (4) 0.094 0.113
0.01 0.272 (4) 0.284 0.306

5

Normal

0.001 0.385 (5) 0.386 0.403

0.1 0.107 (7) 0.147 0.166
0.01 0.531 (7) 0.535 0.556
0.001 0.735 (7) 0.736 0.757

Uniform

0.1 0.138 (7) 0.172 0.191
0.01 0.592 (8) 0.602 0.618

10

Normal

0.001 0.823 (8) 0.823 0.834

0.1 0.150 (9) 0.205 0.223
0.01 0.754 (10) 0.764 0.784
0.001 1.060 (11) 1.060 1.077

Uniform

0.1 0.155 (10) 0.210 0.229
0.01 0.780 (11) 0.789 0.809

15

Normal

0.001 1.098 (11) 1.098 1.116

0.1 0.192 (12) 0.263 0.280
0.01 0.939 (14) 0.992 1.011
0.001 1.382 (14) 1.382 1.399

Uniform

0.1 0.188 (12) 0.256 0.274
0.01 0.951 (14) 0.964 0.985

20

Normal

0.001 1.349 (14) 1.349 1.360
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Posted Price” column represents the difference between objective function val-

ues of Model 3 and Model 1, and the “Posted Price” column provides the

difference between objective function values of Model 2 and Model 1. For

example in the uncertainty set defined by Burg Entropy divergence measure,

on average we lose 7.2% of the objective function value for optimal DIC, EIR

mechanism if we insist on a Posted Price mechanism with unique price.

Table 3.8: Profit loss in percentage for different models

Uncertainty
set

Unique Posted Price (OF3) Posted Price (OF2)

Min Max Avg. Min Max Avg.

Box 1.0 4.0 1.8 1.0 4.0 1.8
Burg Entropy 1.1 25.1 7.2 1.1 13.3 3.9
Kullback-Leibler 1.2 37.1 9.2 1.2 16.5 4.8
χ2 1.1 27.8 4.6 1.1 27.8 3.6
Hellinger 1.0 50.4 14.2 1.0 18.0 5.5

3.5 Conclusion

In this chapter, we focused on the robust bilateral trade problem with dis-

crete types. First, we formulated a general model for DIC, EIR mechanisms

and considered its relaxation which proved to be useful in two different ways.

Given any allocation rule, the relaxation can be used to find transfer rules that

give DIC, EIR mechanisms. Besides, constraints of the relaxation can be used

to formulate Posted Price mechanisms which are DIC and EIR. On the other

hand, we showed that ex-post efficiency can be obtained together with DIC

and EIR if and only if convex hull of agents’ efficient type sets have finite in-

tersection. When agents share the same type set with cardinality greater than

or equal to four, ex-post efficiency is infeasible but one can consider allocation

maximal mechanisms. We showed that the Posted Price mechanisms are not

the only DIC, EIR mechanisms but they are the only ones satisfying allocation
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maximality together with DIC, EIR. Lastly, we introduced different sets of pri-

ors and considered the problem in the shoes of ambiguity averse intermediary.

To manage the ambiguity in the probability distribution of agents types we

derived robust counterparts for the proposed objective function under box and

φ-divergence ambiguity specifications. We also examined the performance of

the proposed robust models based on an extensive numerical study.
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Chapter 4

Bilateral Trade with

Risk-Averse Intermediary using

Linear Network Optimization

In this chapter we start by proposing a linear programming formulation for

the bilateral trading problem where risk-neutral intermediary wants to benefit

from the difference between the payment of the buyer and the transfer to the

seller and maximize her expected gains.

The contribution of the present chapter is twofold: the first one is to re-

establish some results of economic theory, that are well-known, under contin-

uous valuations assumptions for the case of discrete valuations of both parties

in a bilateral trade framework through an intermediary. While these classi-

cal results were obtained using calculus tools (see e.g., [8, 9]) we move on to

use linear (and, in particular network programming) duality to transform the

initial linear program into one from which the structure of the optimal mech-

anism is transparent. To be precise, we show that in a mechanism optimal

48



for an intermediary maximizing her expected net gains the trade takes place

whenever the value declarations of the buyer and the seller are at least a min-

imum value apart. This result is consistent with that of the aforementioned

study by Myerson and Satterthwaite [8].

As the second contribution, we relax the risk-neutrality assumption of the

intermediary and consider bilateral trading problem from the perspective of

a risk-averse intermediary. In order to quantify the associated risks we use

Conditional Value-at-Risk coherent risk measure and propose a stochastic

programming formulation. Then, to investigate the effects of risk-aversion

approach we conduct a computational experiment. The results show that the

objective function value and allocation rule are affected by the passage from

risk-neutral intermediary to risk-averse one.

The rest of this chapter is organized as follows. In Section 4.1, we define the

bilateral trading with intermediary problem, provide the related assumptions

and concepts and formulate the problem with discrete types. We then propose

an equivalent linear programming formulation and investigate the structure of

optimal mechanisms. In Section 4.2, a risk-averse optimization model based

on Conditional Value-at-Risk coherent risk measure is presented. Section 4.3

is devoted to computational results and compares risk-neutral and risk-averse

models in terms of objective function value and allocation rule. Finally, Section

4.4 presents our summary and conclusions.

The results of this chapter are published in NETWORKS journal.

4.1 Problem Statement

We work in the Myerson and Satterthwaite [8] bilateral trade setting where in-

centive constraints are represented by the requirement that truthful reporting

49



of valuations by agents be a Bayesian equilibrium. While the reference [8] is

usually cited for the impossibility theorem (with the exception of [9]), we shall

concentrate on bilateral trade through an intermediary (broker in the jargon

of [8]) in this section.

Let us start with the notation. For the sake of simplicity in the formulae

we assume that the set of valuations for the seller are {1, . . . ,m} while that of

the buyer is {1, . . . , n}1. The seller’s probability mass function is denoted as

(f1, . . . , fm), and that of the buyer is (g1, . . . , gn). The value that each trader

assigns to the object is referred to as the type of that trader. As part of the

intermediary’s mechanism design problem the decision variables pij are used

to represent the probability that the object is transferred from the seller to the

buyer when the seller declares type i and the buyer declares type j. Both f

and g vectors are assumed known. Now, we define the decision variables that

represents the monetary transfers. Let xij denote the revenue of the seller

when she declares type i and the buyer declares type j, and yij the payment

of the buyer in that case. The remaining variables x̄i, ȳj, p̄i and q̄j are defined

as follows. The expected revenue of the seller when his/her valuation is equal

to i is denoted x̄i, and is given as:

x̄i =
n∑
j=1

xijgj, ∀ i = 1, . . . ,m. (4.1)

Similarly, the expected payment of the buyer when his/her valuation is equal

to j, denoted ȳj, is given by

ȳj =
m∑
i=1

yijfi, ∀ j = 1, . . . , n. (4.2)

The probability of the seller selling the object when his/her valuation is i is

p̄i =
n∑
j=1

pijgj, ∀ i = 1, . . . ,m. (4.3)

1This is not a serious restriction. It is only for the sake of simplicity. One can also consider
other more general, discrete valuations, which will only change some of the formulae in a
straightforward manner.
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The probability of the buyer getting the object when his/her valuation is j is

q̄j =
m∑
i=1

pijfi, ∀ j = 1, . . . , n. (4.4)

The intermediary (broker) aims to maximize her expected gain —the interme-

diary’s gain is the positive difference (retained by her) between the payment of

the buyer and the transfer to the seller— subject to Bayesian incentive com-

patibility and individual rationality constraints on the part of both the seller

and the buyer. Hence, we have the following linear programming problem:

max
x,y,x̄,ȳ,p,p̄,q̄

m∑
i=1

n∑
j=1

(yij − xij)figj

subject to (Incentive compatibility for the seller:)

x̄i − ip̄i ≥ x̄k − ip̄k ∀k, i = 1, . . . ,m, (4.5)

(Incentive compatibility for the buyer:)

jq̄j − ȳj ≥ jq̄` − ȳ` ∀`, j = 1, . . . , n, (4.6)

(Individual rationality for both:)

x̄i − ip̄i ≥ 0, ∀ i = 1, . . . ,m, (4.7)

jq̄j − ȳj ≥ 0, ∀ j = 1, . . . , n, (4.8)

in addition to non-negativity restrictions on all pijs and all pijs bounded above

by one, and defining equations (4.1)–(4.4). Constraints (4.5) and (4.6) ensure

that each agent will receive highest expected utility by truthfully reporting

his/her type. The left-hand side of both constraints represents the utility

gained by truthful reporting of the type while the right-hand side gives the util-

ity expression for reporting any arbitrary type. Therefore truthful reporting

can never be worse in terms of utility than concealing one’s type. Constraints

(4.7) and (4.8) guarantee that any type receives non-negative expected utility

by participating in the mechanism. I.e., nobody is worse off by taking part in
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the mechanism. We refer to the above linear program as (BT1). Now, we will

explain the connection to shortest path problem which Vohra [53] introduced

for the Bayesian incentive compatibility and interim individual rationality con-

straints of the buyer. Then we will go into the details as we show that the same

idea is also applicable for the seller’s constraints. First rewrite the constraints

for buyer:

jq̄j − jq̄` ≥ ȳj − ȳ` ∀`, j = 1, . . . , n,

jq̄j ≥ ȳj ∀j = 1, . . . , n.

Consider a network with set of nodes {0, 1, . . . , n} that contains buyer types

and a dummy node 0. Every pair of nodes, (j, `) will be connected by one arc

having cost jq̄j − jq̄`. Then above system of constraints with variables ȳj are

nothing but the dual of shortest path problem in this network. Strong duality

of linear programming enables us to ensure the feasibility of dual system by

simply requiring shortest path problem to be bounded below (see, e.g., [54]).

Using this insight, we know that costs of the arcs should not give rise to any

negative cost cycles. This is satisfied if and only if variables q̄j are monotone

increasing. Another result uses the same idea utilized by label correcting

algorithm which gives the optimal shortest path when there are no negative

cost cycles. We know that labels given to each node are updated according

to dual constraints. At optimality, label of a node cannot be greater than the

shortest path length to that node. Structure of the arc costs at hand gives

a unique tight upper bound for each variable ȳj. Hence a direct mechanism

which is interim individually rational for the buyer should satisfy the following

set of constraints:

q̄n ≥ q̄n−1 ≥ . . . ≥ q̄1 ≥ 0,

ȳj ≤ jq̄j −
j−1∑
`=1

q̄`, ∀ j = 1, . . . , n.
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1 2 i i+ 1 m

0

−mp̄m

p̄2 − p̄1

2p̄1 − 2p̄2

ip̄i+1 − ip̄i

(i + 1)p̄i − (i + 1)p̄i+1

...

... ...

...

Figure 4.1: Network for the seller’s constraints (3.1) and (3.8)

Constraints for the seller can be written as shown below, and we will use

the network in Figure 4.1 to analyze the corresponding shortest path problem:

ip̄k − ip̄i ≥ x̄k − x̄i ∀k, i = 1, . . . ,m,

−ip̄i ≥ −x̄i, ∀ i = 1, . . . ,m.

Although every pair of nodes in the network are connected by an arc, only

the arcs represented in Figure 4.1 will construct the shortest paths. This is

a direct result of the feasibility condition for the dual problem which is the

absence of negative cost cycles. Consider the cost of cycle i→ i+ 1→ i:

ip̄i+1 − ip̄i + (i+ 1)p̄i − (i+ 1)p̄i+1 = p̄i − p̄i+1,

which holds for any i ∈ {1, . . . ,m− 1}. Hence we should have variables p̄i to

be monotone decreasing in order to ensure the feasibility of dual system.

Now we can show that all shortest paths are represented in the Figure 4.1

by comparing the cost of path i→ i+ 1→ · · · → s− 1→ s:

ip̄i+1−ip̄i+(i+1)p̄i+2−(i+1)p̄i+1+· · ·+(s−1)p̄s−(s−1)p̄s−1 = (s−1)p̄s−ip̄i−
s−1∑
k=i+1

p̄k,

to the cost of arc (i, s) that is ip̄s− ip̄i. Since p̄i variables should be monotone

decreasing and nonnegative, the result follows.
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In order to find the tightest bound on x̄i variables, let node 0 to be the

destination node and use label correcting algorithm to find shortest paths

from all nodes to node 0. Set the label for node 0, d0 to zero and use the arcs

in Figure 4.1 to find the bounds. Since we already know the shortest paths,

we know that labels will be assigned according to following equation where ci0

is the cost of path i→ i+ 1→ · · · → m− 1→ m→ 0:

ci0 + di = d0,

ip̄i+1 − ip̄i + (i+ 1)p̄i+2 − (i+ 1)p̄i+1 + . . .

+(m− 1)p̄m − (m− 1)p̄m−1 −mp̄m + di = 0,

di = ip̄i +
m∑

k=i+1

p̄k.

We found that di is the tightest lower bound on x̄i since cij + di ≥ dj should

be satisfied for any arc (i, j).

Next we see that x̄i and ȳj will be optimized at their respective tightest

bound values. Hence we can write the objective as:

m∑
i=1

n∑
j=1

(yij − xij)figj =
n∑
j=1

gj ȳj −
m∑
i=1

fix̄i

=
n∑
j=1

gj(jq̄j −
j−1∑
`=1

q̄`)−
m∑
i=1

fi(ip̄i +
m∑

k=i+1

p̄k)

=
n∑
j=1

gjjq̄j −
n∑
j=1

gj

j−1∑
`=1

q̄` −
m∑
i=1

fiip̄i −
m∑
i=1

fi

m∑
k=i+1

p̄k

=
n∑
j=1

gjjq̄j −
n−1∑
`=1

n∑
j=`+1

gj q̄` −
m∑
i=1

fiip̄i −
m∑
k=2

k−1∑
i=1

fip̄k

=
n∑
j=1

gjjq̄j −
n−1∑
`=1

(1−G`)q̄` −
m∑
i=1

fiip̄i −
m∑
k=2

Fk−1p̄k

=
n∑
j=1

gj(j −
1−Gj

gj
)q̄j −

m∑
i=1

fi(i+
Fi−1

fi
)p̄i,
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where we define the cumulative probabilities Gj =
∑j

`=1 g`, ∀j = 1, . . . , n,,

and Fi =
∑i

k=1 fk,∀ i = 1, . . . ,m. Let

Φj = j − 1−Gj

gj
, ∀j = 1, . . . , n,

and

Γi = i+
Fi−1

fi
, ∀ i = 1, . . . ,m.

Theorem 4.1. 1. The problem (BT1) is equivalently solved by solving the

following linear program, referred to as (BT2), in variables pij, p̄i, q̄i,

(where 0 ≤ pij ≤ 1 for all i, j):

max
m∑
i=1

n∑
j=1

(Φj − Γi)pijfigj

subject to

p̄i =
n∑
j=1

pijgj, ∀ i = 1, . . . ,m,

q̄j =
m∑
i=1

pijfi, ∀ j = 1, . . . , n,

p̄1 ≥ p̄2 ≥ . . . ≥ p̄m ≥ 0,

q̄n ≥ q̄n−1 ≥ . . . ≥ q̄1 ≥ 0.

2. If Φj and Γi are both monotone increasing, then the optimal mechanism

is as follows;

pij =

1, if Φj ≥ Γi,

0, otherwise,

yij = jpij −
j−1∑
`=1

pi`,

xij = ipij +
m∑

k=i+1

pkj.
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Proof.

The first part of the theorem should be immediate due to the network ar-

guments. In order to prove the second part, ignore the expected allocation

variables and monotonicity constraints. Then we need to maximize the ob-

jective function subject to pij ∈ [0, 1] constraints. Optimal solution will be

setting pij equal to one whenever Φj ≥ Γi holds. It should be zero otherwise.

Under the monotone Φj and Γi assumption, we see that optimal pij values

are monotone increasing in j and monotone decreasing in i. This means that

expected allocation variables satisfy the monotonicity constraints. Solution

given in part 2 should also be optimal for the BT2 problem.

Compare now the above theorem to the derivation in Chapter 7 of [9] where

Spulber defines the analogous Γi value as i+ Fi
fi

for all i ∈ [c0, c1]2. While it is

not immediately apparent at a first glance, one cannot simply apply the result

for continuous type space to the discrete type space since the definition of Γi

changes in the passage to discrete type space.

The proof also established that the marginal probability of the buyer getting

the object is increasing (weakly) with his/her valuation, whereas the marginal

probability of the seller losing the object is diminishing with his/her valuation

of the object.

As an immediate consequence of Theorem 4.1, we have that if trade takes

place then the slack between buyer and seller valuations is at least equal to a

certain quantity. However, this does not mean that every time the minimum

slack is observed there is trade.

2Continuous set of possible buyer types which Spulber refers as opportunity cost.
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4.1.1 Illustrative Example

For purposes of illustration consider an example with 9 types for both

the buyer and the seller, i.e., the seller values the object as one of

i ∈ {1, . . . , 9} with probabilities (0.3, 0.3, 0.3, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01).

The buyer values the object as one of j ∈ {1, . . . , 9} with probabilities

(0.3, 0.21, 0.2, 0.2, 0.03, 0.02, 0.02, 0.01, 0.01). Trade takes place for the (i, j)

pairs

(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9),

(2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9) and (3, 7), (3, 8), (3, 9)

which are the only pairs where the difference Φj − Γi is non-negative, and

hence the corresponding pij is set to one at optimality. However, considering

an example with 20 equally likely types given as {1, . . . , 20} for both seller

and buyer, trade takes place whenever the difference between buyer and seller

valuations is at least equal to 10, which is in agreement with the example given

in [8, 9].

4.2 Bilateral Trade with Risk-Averse Interme-

diary

In the previous section we proposed a mathematical model which maximizes

the expected gain of intermediary. In fact we assumed that the intermediary is

completely neutral toward risk and evaluates the uncertain gain function by its

expectation. However, we know that the gain of the intermediary is a random

outcome and depends on the seller’s and the buyer’s valuations. Consequently

it is quite possible that some cases with low probability have significant impacts

on the decision of the risk-neutral intermediary. In addition, in many real-life
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application especially in economic setting people -even those who do not know

much about probabilistic events- are risk-averse to some degree. So it would

be perfectly rational if we substitute the risk-neutral intermediary with a risk-

averse one in our problem.

Before developing a risk-averse optimization model for our problem we need

to answer the question of how we will measure the risk. In fact we need a risk

measure which will map from the set of random variables in our problem into

real numbers. There are remarkable studies in the literature proposing various

risk measures. While each has its own attractive features they may also lack

some desired properties. The reader may refer to [55] for comprehensive review

on the modeling and optimization of risk-averse preferences. However, the

concept of a coherent risk measure which was introduced by Artzner et al. [56]

has attracted a special attention because of its desirable properties. A popular

example of coherent risk measures is Conditional Value-at-Risk (CVaR) which

is widely used in finance applications and is also a good candidate for bilateral

trade with a risk-averse intermediary. The CVaR was developed as a remedy

to alleviate some problems associated with the Value-at-Risk (VaR) measure

commonly used in finance. VaR is a quantile risk measure that gives the

loss amount of a financial portfolio for a specified probability. VaR is not in

general a convex function in the portfolio positions. Another criticism leveled

against VaR was that it ignored the potential magnitude of portfolio losses

once the losses hit the critical VaR value. CVaR measures the expected value

of portfolio losses given that the critical VaR value has been reached. CVaR is a

convex function of portfolio positions and it can also be computed using linear

programming in discrete probability spaces. To define the CVaR risk measure

let us consider a probability space (Ω,F ,P) where Ω is the sample space, F
is the set of all events defined on Ω and P is the corresponding probability

distribution. We also define M = M(Ω,F ,P) as the set of all probability

measures on (Ω,F). Now the conditional value-at-Risk at confidence level

α ∈ (0, 1] for a random variable Z, (CV aRα(Z) : M → R), is defined as
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[57, 58]:

CVaRα(Z) = max
η∈R

{
η − 1

1− α
E[(η − Z)+]

}
. (4.9)

The optimization problem (4.9) can be linearized using the following form:

CVaR(Z) = max
ϑ,η

η − 1

1− α
∑
ω∈Ω

pωϑω,

subject to ϑω ≥ η − zω, ∀ω ∈ Ω.

ϑω ≥ 0, ∀ω ∈ Ω.

(4.10)

where zω’s are the realization of the Z with corresponding probability of pω.

Now we can formulate the risk-averse optimization model for our problem

as follows:

max
ϑ,η

η − 1

1− α

m∑
i=1

n∑
j=1

figjϑij, (4.11)

subject to zij = yij − xij, ∀ i = 1, . . . ,m, ∀j = 1, . . . , n,

(4.12)

ϑij ≥ η − zij, ∀ i = 1, . . . ,m, ∀j = 1, . . . , n,

(4.13)

ϑij ≥ 0, ∀ i = 1, . . . ,m, ∀j = 1, . . . , n,

(4.14)

(4.1)− (4.8),

in addition that all pijs are bounded below and above by zero and one, respec-

tively.

As the seller and the buyer remain risk-neutral, the incentive compatibility

and individual rationality constraints, (4.1)-(4.8) are also valid for this model.
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4.3 Computational Results

In this section we provide the numerical results related to the bilateral trade

problem with risk-averse and risk-neutral intermediary. Table 4.1 summarizes

these results. The first column of the table entitled “T” specifies the cardinal-

ity of the sets where both seller and buyer valuations come from. The second

column with “∼ dis” label identifies the probability distribution of the seller

and buyer valuations. We consider three specifications of distributions for this

purpose. “U” stands for the uniform case where fi = 1
T

for all i and gj = 1
T

for all j. “N” mimics the normal distribution and is defined as follows; at

first step we assign the value of |T | to the seller’s probability mass function

with median index, say fî. Then, for the remaining elements assign the value

using fî+−k = |T | − 2.|k| formula and in the last step normalize them such that

all elements sum up to one. The same approach is applied for the buyer’s

mass functions. Finally, “DnI” refers to the case with increasing (decreasing)

values of the seller’s (buyer’s) mass function probability. The applied rules are

fi = |i| and gj = |T |− |j|+1, then we also need to normalize the obtained val-

ues. The third column with three sub-columns provides the objective function

value given by (4.11) and in fact is the gain of the risk-averse intermediary

with three different confidence level. The last column illustrates the expected

gain of the risk-neutral intermediary. The value between parenthesis, ∆, states

the minimum difference between seller’s and buyer’s valuations where trans-

action may happen. For example, if the value is three, it means that in the

optimal mechanism the transaction will not happen if the difference between

the buyer’s and seller’s valuation is less than three.

We can observe from the table that when the level of risk-aversion increases

the related objective function value decreases and the risk-neutral model gives

higher objective value compared to the risk-averse one, which were the ex-

pected results. We also observe that when level of risk-aversion increases the
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Table 4.1: Intermediary’s gains under risk-averse and risk-neutral approaches

T ∼ dis
Risk Averse (∆)

Risk Neutral (∆)
α = 0.2 α = 0.3 α = 0.4

U 0.266 (2) 0.228 (1) 0.213 (1) 0.320 (2)
N 0.229 (1) 0.208 (1) 0.191 (1) 0.260 (2)5

D\I 0.083 (1) 0.074 (1) 0.063 (1) 0.106 (2)
U 0.426 (3) 0.373 (3) 0.324 (2) 0.550 (5)
N 0.349 (2) 0.318 (2) 0.295 (1) 0.411 (3)10

D\I 0.089 (1) 0.077 (1) 0.065 (1) 0.124 (3)
U 0.574 (5) 0.499 (4) 0.428 (3) 0.746 (7)
N 0.443 (3) 0.407 (3) 0.374 (2) 0.522 (5)15

D\I 0.108 (2) 0.091 (1) 0.077 (1) 0.158 (5)
U 0.732 (6) 0.633 (5) 0.541 (3) 0.962 (10)
N 0.566 (5) 0.517 (4) 0.470 (3) 0.675 (7)20

D\I 0.127 (2) 0.106 (2) 0.088 (1) 0.189 (7)

∆ value decreases. This means that when the intermediary becomes more

risk-averse he prefers to allow the transaction to occur with smaller difference

between the valuations of the seller and the buyer.

Another concluding remark which is not present in the table is that, in all

instances presented in Table 4.1 the optimal value of the pijs are zero or one

in the risk-neutral model but they take fractional value between zero and one

in some cases of the risk-averse model. As a result the optimal mechanism

changes for the risk-averse intermediary who decides the allocation through a

lottery in some realizations of the types.

4.4 Conclusion

In this chapter, we dealt with bilateral trade with intermediary problem of

microeconomic theory using tools of linear (network) programming duality.

The problem is one of designing an optimal mechanism from the viewpoint of
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an intermediary benefiting from the difference between the buyer and seller

valuations of the good to be exchanged. More precisely, a seller and a buyer,

each withholding private information about an object, exchange it through

an intermediary maximizing her expected gains from trade. In a Bayes-Nash

equilibrium framework, we derived the optimal exchange mechanism using lin-

ear network optimization duality under discrete valuations of the two parties.

Then we considered an extension where the intermediary also seeks to avoid

risk. We also presented numerical results and discussed the main difference

between the optimal mechanism structures of the problems.
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Chapter 5

Intermediated Trade with

Production

In this section, we shall extend the results of the previous section to the case of

a seller who is a producer, following [9]. This extension is important as it finds

application in marketing channel. To be more precise the problem environment

can be considered as one-level distribution channel where ownership of goods

is transfered from the point of production to the point of consumption by

intermediary of a broker. The buyer has a willingness-to-buy parameter, and

the producer a cost parameter. Both parameters are private information to the

respective parties. The mechanism that is designed by the broker determines

the level of production, the payment from the buyer to the intermediary, and

the payment from the intermediary to the producer while revealing the buyer’s

willingness-to-buy and the producer’s cost and also maximizing the expected

revenue of the intermediary.
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5.1 Problem Statement

We denote by i the willingness-to-buy (or, type) parameter of the buyer and

let the first m integers denote its values. The probability of buyer type i is

denoted fi > 0. We use j to represent to cost parameter and the first n integers

the values of the cost parameter of the producer. The probability of producer

type j is denoted gj > 0. The buyer has a benefit function B(q, i) from output

qij. The producer has a cost function C(q, j). We shall assume that B has the

form

B(qij, i) = iqij + φ(qij)

where φ is a concave, continuously differentiable univariate function. Likewise,

we shall confine ourselves with cost functions C of the form:

C(qij, j) = jqij + γ(qij)

where γ is a convex, continuously differentiable univariate function. This form

of functions is referred to as quasi-linear in the economics literature.

The broker seeks a mechanism maximizing his/her expected net gain while

eliciting incentive compatibility and individual rationality on the part of the

buyer and the producer, respectively.

We define the following decision variables. We have aij to denote the pay-

ment by the buyer to the intermediary when the willingness-to-buy is i and

the cost is j (or, type realization (i, j)), and likewise, bij the transfer from the

intermediary to the producer under the type realization (i, j). Let

a1
i =

n∑
j=1

aijgj,∀i = 1, . . . ,m, (5.1)

b2
j =

m∑
i=1

bijfi,∀j = 1, . . . , n (5.2)
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denote the variables representing the respective expected transfer payments.

Then we have the following optimization model referred to as (BtQ):

max
qij ,aij ,bij ,a1i ,b

2
j

m∑
i=1

n∑
j=1

figj(aij − bij) (5.3)

subject to
n∑
j=1

gjB(qij, i)− a1
i ≥

n∑
j=1

gjB(qkj, i)− a1
k,∀k 6= i,∀k, i = 1, . . . ,m (5.4)

n∑
j=1

gjB(qij, i)− a1
i ≥ 0,∀i = 1, . . . ,m (5.5)

b2
j −

m∑
i=1

fiC(qij, j) ≥ b2
` −

m∑
i=1

fiC(qi`, j),∀` 6= j,∀`, j = 1, . . . , n (5.6)

b2
j −

m∑
i=1

fiC(qij, j) ≥ 0,∀j = 1, . . . , n (5.7)

with equations (5.1)-(5.2) and non-negativity of all variables. We note that

problem (BtQ) is a non-convex optimization problem. However, we shall show

below that it can be solved by solving an equivalent and much simpler (almost)

unconstrained convex optimization problem. Thus, problem (BtQ) has hidden

convexity. Denote by Q the matrix with entries qij, and by Fi and Gj, the

cumulative probabilities, respectively. We begin with a simple observation

that is useful here and later.

Lemma 5.1. If all ak ≥ 0 (with bk ≥ ak), fk ≥ 0 for all k ∈ K, then the

following optimization problem

min
yk

m∑
k=1

fkyk

subject to

ak ≤ yk+1 − yk ≤ bk,∀k = 1, . . . ,m− 1,

yk ≥ 0,∀k = 1, . . . ,m,

admits an optimal solution of the form y∗1 = 0 and y∗k =
∑k−1

i=1 ai for k =

2, . . . ,m.
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Proof. By a change of variables ∆i = yi+1 − yi for all i = 1, . . . ,m − 1, and

observing that we can always set y1 = 0 at optimality, we obtain the equivalent

problem

min
∆i

m∑
i=2

fi

(
i−1∑
k=1

∆k

)
subject to

ai ≤ ∆i ≤ bi,∀i = 1, . . . ,m− 1,

which is solved at ∆∗i = ai, i = 1, . . . ,m− 1.

Theorem 5.1. Output level Q∗ in an optimal mechanism is computed by max-

imizing the concave function

Ψ(Q) =
m∑
i=1

n∑
j=1

figj [B(qij, i)− C(qij, j)]−
m−1∑
i=1

(1−Fi)
n∑
j=1

gjqij−
n−1∑
j=1

Gj

m∑
i=1

fiqij+1

over non-negativity restrictions on qij, i = 1, . . . ,m, j = 1, . . . , n.

Proof. First, we eliminate the variables aij and bij from the objective function

using the defining equations (5.1) and (5.2), and get the equivalent objective

function:

max
m∑
i=1

fia
1
i −

n∑
j=1

gjb
2
j

over the constraints of non-negativity and (5.4)-(5.5)-(5.6)-(5.7). Now we make

the following changes of variables inspired from [59]:

yi ≡
n∑
j=1

gjB(qij, i)− a1
i ,∀i = 1, . . . ,m,

xj ≡ b2
j −

m∑
i=1

fiC(qij, j), ∀j = 1, . . . , n.

Kerkkamp et al. [59] refer to the newly defined variables as information rent

variables. Substituting for a1
i and b2

j in the objective function and constraints
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we obtain the equivalent model after straightforward algebra:

max
m∑
i=1

fi(
n∑
j=1

gjB(qij, i)− yi)−
n∑
j=1

gj(
m∑
i=1

fiC(qij, j) + xj)

subject to

yi − yk ≥ (i− k)
n∑
j=1

gjqkj,∀k 6= i, k, i = 1, . . . ,m,

xj − x` ≥ (`− j)
m∑
i=1

fiqi`, ∀` 6= j, `, j = 1, . . . , n,

and non-negativity of yi and xj, for all i = 1, . . . ,m, j = 1, . . . , n by the

individual rationality constraints. Notice that the above model is now in a

desired form since we have a concave function to maximize with linear con-

straints. This simplification is due to the assumed forms of the functions B

and C. However, the problem has still too many constraints to yield a useful

structure. On the other hand, we can reduce the number of constraints by ob-

serving that we have to consider only the consecutive incentive compatibility

(IC) constraints. To see this, let us examine the consecutive constraints of the

buyer that are re-written as range constraints for fixed qijs:

n∑
j=1

gjqij ≤ yi+1 − yi ≤
n∑
j=1

gjqi+1j, ∀i = 1, . . . ,m− 1.

For ease of notation let us define ci =
∑n

j=1 gjqij. Hence the above range

constraints are

ci ≤ yi+1 − yi ≤ ci+1,∀i = 1, . . . ,m− 1.

Feasibility dictates that one should have cis weakly monotone increasing, i.e.,

0 ≤ c1 ≤ c2 ≤ . . . ≤ cm. Then it is immediate to observe that any yi values

satisfying the consecutive incentive compatibility constraints also satisfy all

incentive compatibility constraints for the buyer. To show this, let us consider
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types i and k, not consecutive with i < k. For any feasible y values satisfying

the consecutive IC constraints we have the chain of range inequalities:

ci ≤ yi+1 − yi ≤ ci+1,

ci+1 ≤ yi+2 − yi+1 ≤ ci+2,

...

ck−1 ≤ yk − yk−1 ≤ ck.

Adding the inequalities, and simplifying we obtain the range inequality

k−1∑
l=i

cl ≤ yk − yi ≤
k∑

l=i+1

cl.

However, by monotonicity of ci we have that the above inequality implies

(k − i)ci ≤ yk − yi ≤ (k − i)ck,

which is exactly the IC constraint for the pair (i, k). By a similar reasoning

we can also confine ourselves to consecutive incentive compatibility constraints

for the producer:

m∑
i=1

fiqij+1 ≤ xj − xj+1 ≤
m∑
i=1

fiqij,∀j = 1, . . . , n− 1.

We denote by dj the quantity
∑m

i=1 fiqij. Hence, the inequalities above are

re-written for convenience as

dj+1 ≤ xj − xj+1 ≤ dj,∀j = 1, . . . , n− 1.

The next step in the proof is to consider, for fixed Q the problem

min
yi

m∑
i=1

fiyi

subject to

ci ≤ yi+1 − yi ≤ ci+1,∀i = 1, . . . ,m− 1,
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and non-negativity of yis. By the previous lemma, this results in optimal y∗i s

as y∗1 = 0 and

y∗i =
i−1∑
k=1

ck, i = 2, . . . ,m.

By the same token, for fixed Q we consider the problem

min
xj

n∑
j=1

gjxj

subject to

dj+1 ≤ xj − xj+1 ≤ dj,∀j = 1, . . . , n− 1,

where dj are non-negative and weakly monotone decreasing. Using a proof

technique similar to that of Lemma 1 above, an optimal solution has x∗n = 0

and

x∗j =
n∑

l=j+1

dl,∀j = 1, . . . , n− 1.

Now, when we substitute the y∗i and x∗j values into the objective function, and

recalling the definitions of ci and dj parameters we obtain the function Ψ after

simple algebra.

We note that the expression for Ψ given in the theorem above is precisely

(mutatis mutandis) the discrete type space version of the objective function

expression in equation (28) on pp. 120 of [9] for continuous type space. The

proof above shows, among other things, that the information rent increases

for buyers with increasing willingness-to-buy while it decreases for producers

with increasing cost parameter.

Consider an example with ten types for both the buyer and the producer

with the following quadratic functions

B(q, i) = iq − q2/2,

and

C(q, j) = jq + q2/2.

69



The probabilities fi are as follows:

(0.4, 0.3, 0.17, 0.05, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01),

while the gj are specified as

(0.55, 0.18, 0.12, 0.02, 0.06, 0.02, 0.02, 0.01, 0.01, 0.01).

Solving the first-order conditions (which result in a simple linear equation for

each variable) for each qij and zeroing out the result if it is less than zero, we

obtain the following result: trade takes place at the respective valuations

(3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (8, 2), (9, 1), (9, 2), (10, 1)(10, 2), (10, 3)

with output levels

(0.618, 0.643, 0.643, 1.5, 1.5, 2.5, 0.472, 3.5, 1.472, 4.5, 2.472, 0.458).

respectively, in the same order of the couples above.

5.2 DIC, EIR Mechanism for Intermediated

Trade with Production

In the previous section departing from a non-convex optimization problem,

we obtained an equivalent convex one that can be solved easily. However,

considering Bayesian incentive compatibility and interim individual rationality

properties in some rare cases may lead to impractical solutions. To have a

clear idea let us consider the following example with four types for both buyer

and producer with the following quadratic functions as the benefit and cost

functions, respectively.

B(q, i) = iq − q2/2,
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and

C(q, j) = jq + q2/2.

The probabilities fi are as follows:

(0.235, 0.269, 0.254, 0.242),

while the gj are specified as

(0.243, 0.240, 0.246, 0.276).

By solving the problem under Bayesian incentive compatibility and interim

individual rationality considerations we obtain the following result. The un-

represented values corresponding to the remaining decision variables are zero.

Figure 5.1: Results for an example of intermediated trade with production

under BIC and IIR constraints

Although the result seems operational in terms of expected transfer pay-

ments but by investigating the obtained solution for each realization of agents

types we noticed impracticality in the payments and amount of production.

We observe that there exist cases in which there is money transfer without

any production, or agents do not pay or receive money while they buy or sell.

These cases are clear from the following results related to the optimal values

of aij and bij.
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Figure 5.2: Results for an example of intermediated trade with production

For example, if the buyer has type one, i = 1, and seller has type two, j = 2,

there is a money transfer from the buyer to the broker, b12 = 0.569, while the

seller receives no money. More interestingly the corresponding production

level, q12, is also zero which means there is no production but the buyer pays

money and receives nothing instead.

Therefore, to impede these outcomes and have a mechanism that provides

practical solutions relating to the money transfers and production levels we

replace the Bayesian incentive compatibility and interim individual rationality

with dominant strategy incentive compatibility and ex-post individual ratio-

nality, respectively.

Then we have the following optimization model that maximizes the expected

utility of the intermediary subject to DIC and EIR constraints:

(M1) max
qij ,aij ,bij

m∑
i=1

n∑
j=1

figj(aij − bij) (5.8)

subject to

B(qij, i)− aij ≥ B(qkj, i)− akj,∀k 6= i∀i, j, k (5.9)

B(qij, i)− aij ≥ 0,∀i, j (5.10)

bij − C(qij, j) ≥ bi` − C(qi`, j),∀` 6= j,∀i, j, ` (5.11)

bij − C(qij, j) ≥ 0,∀i, j (5.12)

and non-negativity of all variables.
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Now if we resolve the the last example under the DIC and EIR constraints

we obtain the following solution which is practical in terms of money transfer

and production level. In all realizations if there is money transaction it hap-

pens for the seller and buyer simultaneously and positive production level is

only possible with positive money transfer.

Figure 5.3: Results for an example of intermediated trade with production

under DIC, EIR constraints

However, using duality of network optimization and linear programming

techniques, this initial problem is transformed into an equivalent problem from

which the necessary condition for the mechanisms is achieved under some

assumptions.

Theorem 5.2.

The problem (M1) is equivalently solved by solving the following problem, re-

ferred to as (M2), in variable qij ≥ 0:

(M2) max
qij

m∑
i=1

n∑
j=1

figj{B(qij, i)−
i−1∑
l=1

qlj − C(qij, j)−
m∑

l=j+1

qil} (5.13)

subject to

qi+1j ≥ qij ∀i, j (5.14)

qij−1 ≥ qij ∀i, j (5.15)
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Proof. We start the proof by considering constraints (5.9) and (5.10) which

are corresponding to the dual constraints of a shortest path problem defined

based on the following network in which each buyer type, i, is represented by

one node and each consecutive pairs of nodes are connected to each other with

an arc of length B(qij, i) − B(qi+1j,i+1). Note that this system is separable

for each j so that we can consider each of them separately and the network

contains only a subset of the arcs defined by constraints (5.9) and (5.10).

1

0

2 j j + 1 m

B(q1j , 1)−B(q0j , 1)

B(q2j , 2)−B(q1j , 2)

B(q1j , 1)−B(q2j , 1)

B(qi+1j , i+ 1)−B(qij , i+ 1)

B(qij , i)−B(qi+1j , i)
...

... ...

...

Figure 5.4: Network of buyer types where only the arcs between successive

nodes are drawn

Clearly we should not have any negative cycle in the network given by Figure

5.4, otherwise the system of constraints (5.9) and (5.10) would be infeasible.

Let us consider the length of the cycle i→ i+ 1→ i:

B(qi+1j, i+ 1)−B(qij, i+ 1) +B(qij, i)−B(qi+1j, i)

= (i+ 1)qi+1j + φ(qi+1j)− (i+ 1)qij − φ(qij) + iqij + φ(qij)− iqi+1j − φ(qi+1j)

= qi+1j − qij ≥ 0.

A network with non-negative cycle costs means that qij variable should be

non-decreasing in i . Besides, it can be shown that all shortest paths of the

network are represented in the given

network. To verify this, consider the length of i → i + 1 · · · → k in the
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given network:

B(qi+1j, i+ 1)−B(qij, i+ 1) + · · ·+B(qkj, k)−B(qk−1j, k)

= (i+ 1)qi+1j + φ(qi+1j)− (i+ 1)qij − φ(qij)+

· · ·+ kqkj + φ(qkj)− kqk−1j − φ(qk−1j)

= B(qkj, k)−B(qij, k)−
k−1∑
l=i+1

(qlj − qij),

which is less than or equal to B(qkj, k)−B(qij, k), length of the arc (i, k), since

qij variables are non-decreasing in i.

Now we consider the path i→ i− 1 · · · → k:

B(qi−1j, i− 1)−B(qij, i− 1) + · · ·+B(qkj, k)−B(qk+1j, k)

= (i− 1)qi−1j + φ(qi−1j)− (i− 1)qij − φ(qij)+

· · ·+ kqkj + φ(qkj)− kqk+1j − φ(qk+1j)

= B(qkj, k)−B(qij, k) +
i−1∑
l=k+1

(qlj − qij),

which is again less than or equal to B(qkj, k) − B(qij, k). Since this is true

for all arcs, all shortest paths are represented in Figure 5.4. We use this fact

in the following manner: take q0j = 0, a0j = 0 and sum up the constraints

corresponding to the shortest path from node 0 to i which is actually the

tightest upper bound on aij variable:

i∑
k=1

(B(qkj, k)−B(qk−1j, k)) = B(qij, i)−
i−1∑
l=1

qlj ≥ aij.

Similarly by summing up the constraints corresponding to the shortest path

from node i to 0, we will obtain:

i∑
k=1

B(qk−1j, k − 1)−B(qkj, k − 1) = B(qij, i− 1)−
i−1∑
l=1

qlj ≤ aij,
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which turns out to be the tightest lower bound on aij implied by constraints

(5.9) and (5.10). Our analysis on the dual shortest path problem for the

buyer’s DIC and EIR constraints led us to a relaxation as follows:

q1j ≤ q2j ≤ · · · ≤ qi−1j ≤ qij ∀i = 1, . . . ,m.

B(qij, i− 1)−
i−1∑
l=1

qlj ≤ aij ≤ B(qij, i)−
i−1∑
l=1

qlj ∀i = 1, . . . ,m and ∀j = 1, . . . , n.

Now if we apply the similar approach for the seller’s DIC and EIR restric-

tions given by constraints (5.11) and (5.12) we obtain the following set of

constraints.

qim ≥ qim−1 ≥ · · · ≥ qij+1 ≥ qij ∀j = 1, . . . , n.

C(qij, j + 1) +
m∑

l=j+1

qil ≥ bij ≥ C(qij, j) +
m∑

l=j+1

qil ∀i = 1, . . . ,m and ∀j = 1, . . . , n.

The optimization problem , M2, is easily derived using the obtained bounds

and monotonicity of variable q with trivial calculations.

As an immediate result of this theorem we can claim the following corollary:

Corollary 5.1. If the following two conditions are satisfied, then i− j ≥ m−1
2

is the necessary condition for qij ≥ 0.

1. φ(qij)− γ(qij) ≤ 0, ∀qij; ∀i = 1, . . . ,m and ∀j = 1, . . . , n

2. fi and gj are uniformly distributed ∀i = 1, . . . ,m and ∀j = 1, . . . , n

Proof. Follows directly from linear algebra.
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5.3 Conclusion

In this chapter we considered an extension for the intermediated bilateral trade

problem where the seller is also a producer, and the optimal mechanism in-

volves a production quantity on the part of seller. Starting by a non-convex

optimization problem, we obtained an equivalent convex one that can be solved

easily. To preserve the practicality of all obtained solutions we reconsidered

the same problem under dominant strategy incentive compatibility and ex-post

individual rationality constraints and proposed mathematical formulation. Us-

ing duality of network programming we also provided the necessary condition

for the optimal mechanisms. This necessary condition is valid for the cases

that agents types are uniformly distributed and the concave part of the benefit

function is greater than or equal to the convex part of the cost function for all

realization of production level.
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Chapter 6

Conclusion

In this dissertation we studied three bilateral trade problems under different

transaction frameworks and objective functions including ambiguity averse and

risk averse ones. The substantive difference that distinguishes our problems

from those in the literature is considering the agents type sets as discrete

spaces. Our decision to switch from continuous type setting to discrete one

has two main reasons; 1) to make the type-sets assumption more realistic and

2) treat the problem as a combinatorial optimization and provide the conducive

ground for applying linear programming techniques.

Focusing on the bilateral trade as a central problem, first in Chapter 3 we

reconsidered properties and results of robust mechanism design for bilateral

trading problem under discrete framework, and various specifications for the

set of priors. To that purpose we proposed a mathematical formulation for the

problem under dominant strategy incentive compatibility and ex-post individ-

ual rationality properties. Then we derived necessary and sufficient conditions

under which ex-post efficiency can be obtained together with DIC and EIR.

We also defined a new property called Allocation Maximality and proved that

the Posted Price mechanism is the only mechanism that satisfies DIC, EIR and

78



allocation maximality. In the final part we imposed ambiguity into the prob-

lem framework originating from different sets of priors for agents types based

on box and φ-divergence ambiguity specifications and derived corresponding

robust counterparts.

Next, in Chapter 4 we investigated the bilateral trade problem with an

intermediary who wants to maximize her expected gains. We proposed a

linear mathematical formulation for the problem, and then using network pro-

gramming duality transformed that initial formulation into one that enables

a transparent mechanism structure. We then relaxed the risk-neutrality of

the intermediary and reconsidered the problem with existence of a risk-averse

intermediary. We also presented numerical results and discussed the main

difference in the structures of optimal mechanisms in both problems.

As a final problem, we extended intermediated bilateral trade problem to

the case where the seller is also a producer. Therefore, the mechanism deter-

mines the level of production, the payment from the buyer to the intermedi-

ary, and the payment from the intermediary to the producer. Starting from a

non-convex optimization problem, we obtained an equivalent convex one. To

preserve the practicality of all obtained solutions we reconsidered the problem

under dominant strategy incentive compatibility and ex-post individual ratio-

nality constraints. We also provided the necessary condition for the optimal

mechanisms for the special case where agent types are uniformly distributed

and the concave part of the benefit function is greater than or equal to the

convex part of the cost function for all realizations of production level.
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[39] J. Flesch, M. Schröder, and A. J. Vermeulen, “The bilateral trade model

in a discrete setting,” 2013.
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