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İsmail Can Özersin
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ABSTRACT

AN ANALOG NEUROMORPHIC CLASSIFIER CHIP
FOR ECG ARRHYTHMIA DETECTION

Murat Alp Güngen

M.S. in Electrical and Electronics Engineering

Advisor: Abdullah Atalar

September 2019

Following Moore’s Law, the increase in the availability of more processing power

alongside the development of algorithms that can use this power, electrocardio-

gram (ECG) systems are now becoming a part of our daily lives. The analytical

detection of irregularities within the ECG scan, arrhythmias, is tricky due to the

variations in the signals that differ from people to people due to physiological

reasons. In order to overcome this problem, a two stage machine-learning based

time-domain algorithm is first developed and tested on MatLab using datasets

from the MIT - BIH Arrhythmia Database. The algorithm begins with the pre-

processing stage where seven features are extracted from the input ECG wave-

form. These features are then moved onto the second classification stage where a

perceptron classifies the features as arrhythmic or normal. The algorithm was

then converted into an analog CMOS circuit using the XFAB XC06M3 fabrication

process on Cadence Virtuoso. Most of the operations in the preprocessing stage

were completed using operational transconductance amplifiers (OTAs). For the

classifier, the circuit uses analog floating gate metal oxide semiconductor tran-

sistors (FGMOS) to store the weights of the perceptron and a winner-take-all

current comparator for the activation function. Simulation results show that the

circuit works as intended with a power consumption of 290 µW .

Keywords: Neuromorphics, ECG, arrhythmia, arrhythmia detection.
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ÖZET

EKG’DE ARİTMİ TESPİTİ İÇİN BİR ANALOG
NÖROMORFİK TANIMLAYICI ÇİP

Murat Alp Güngen

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Abdullah Atalar

Eylül 2019

Moore yasasını takiben veri işleme gücündeki donanımsal ve algoritmik artış

sayesinde eskiden hastanelerle sınırlı olan elektrokardiyografi (EKG) sistemleri

yavaşça gündelik hayatımızın bir parçası olmaktadır. Farklı kişiler arasındaki

fizyolojik farklardan ötürü bir EKG taramasındaki anormallikleri, aritmileri, ana-

litik bir şekilde tespit etmek kolay değildir. Bu sorunun üstesinden gelmek için

öncelikle, iki aşamalı makine öğrenme tabanlı zaman bölgesi bir algoritma tasar-

lanır ve MIT - BIH veri tabanından alınan verileri kullanarak MatLab üzerinde

denenir. Algoritma önişleme aşaması ile başlar. Bu ilk aşamada sisteme verilen

EKG sinyalinden yedi özellik çıkarılır. Bu özellikler daha sonra ikinci tanımlama

aşamasına aktarılır. Bu aşamada bir algılayıcı özelliklere dayanarak o an işlenen

EKG sinyalini aritmik veya normal olarak sınıflandırır. Algoritma daha sonra

XFAB XC06M3 üretim sürecini kullanarak Cadence Virtuoso’da bir analog

CMOS devreye dönüştürülür. Önişleme aşamasındaki işlemlerin çoğu işlemsel

iletkenlik yükseltici devreleri kullanarak yapılır. Devre tanımlayıcıdaki ağırlıkları

depolamak için analog yüzen geçit metal oksit yarı iletken transistörler kullanır.

Aktivasyon fonksiyonu içinse bir kazanan-hepsini-alır akım karşılaştırıcısı kul-

lanılır. Simülasyon sonuçları devrenin istenen şekilde çalıştığını gösterir. Dev-

renin toplam güç tüketimi 290 µW ’dır.

Anahtar sözcükler : Nöomorfik, EKG, aritmi, aritmi tespiti.
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Chapter 1

Introduction

1.1 Motivation and Background

With the steady increase in processing power over the years, incorporating health

and environmental monitoring systems into smaller, mobile devices is slowly pick-

ing up pace. Medical monitoring systems that in the past could only be imple-

mented in hospitals using bulky, complicated equipment can now fit into the palm

of ones hand.

One of the best examples to illustrate this evolution is the Electrocardiogram

(ECG). The first device that measured electrocardiographic activity entered the

medical stage in 1901. The Eintoven (String) Galvanometer [5] [3] was the size

of a small car and required the patient to submerse both his/her hands and one

foot in separate containers full of a salt solution [3]. The ECG waveform, was

printed onto a piece of paper. As the years progressed, the components required

to produce an ECG scan were miniaturised. By the 1950’s, the device was small

enough to fit into a suitcase and move around [4]. Similar to the Einthoven

Galvanometer, this version of the ECG scanner also printed the ECG waveform

onto a piece of paper but, unlike Einthoven’s system, was portable (the entire

system fit into a briefcase). Today, technology has progressed to a point where

1



the entire system can fit into a single wrist-mounted device. The 2018 model of

the Apple Watch has the ability to take an ECG scan of the wearer with the push

of a single button, and can send the result to the users target device of choice.
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Figure 1.1: The increase in battery capacity has lagged greatly behind the increase
in algorithmic complexity and processor performance. The data for this figure
was obtained from [1]

While the hardware and the algorithms running on it are becoming more and

more complex, energy storage research-and-development has lagged behind (fig-

ure 1.1). This has led to devices that have high capabilities but low number

of operations when only powered by batteries. In order to overcome this issue,

rather than sit idly by waiting for energy-storage technologies to catch up, re-

search is being conducted to decrease the power consumption of algorithms and

the hardware they run on without losing precision.
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Figure 1.2: Screen-shot of the Apple Watch Series IV midway through taking
the ECG of the Author. The Apple Watch is currently the smallest readily and
commercially available ECG scanner.

On the algorithmic side, research on machine learning is picking pace thanks

to the continuous emergence of more data-sets. Machine learning algorithms,

depending on various factors, enable the emulation of certain algorithms at a

fraction of the computational cost. This is achieved by finding non-linear corre-

lations between input and target data (provided that the volume of data needed

for successful emulation is sufficient). For certain tasks like image recognition

and classification, machine learning algorithms can outperform analytical ones.

More details on machine learning is available in section 2.1.4.

On the hardware side, analog signal processing is also becoming more widely

used. The analog implementation of algorithms can be done with a smaller num-

ber of components, leading to smaller and more power efficient implementations

(less number of parts requires draws less current). In terms of power saving, ana-

log implementations offer a 20 year leap with respect to their digital counterparts

(figure 2.4).

The marriage of machine learning algorithms with analog hardware is a subset

3



of an area known as neuromorphic systems (section 2.2). Since its emergence in

the 1980’s, the area holds promise in enabling the creation of low-power alterna-

tives to various current digital systems.

1.2 Research Objectives

The aim of the work presented in this thesis is to design and implement an

analog neuromorphic application specific integrated circuit (ASIC) for real-time

ECG arrhythmia detection. The circuit will work in two stages. In the first stage,

preprocessing, the input ECG waveform (taken from an online database) will be

processed in various steps. At the end, various time-domain features will be ex-

tracted and fed (as inputs) to the second stage. The second stage, classification,

uses an analog perceptron to classify the preprocessed ECG waveform as arrhyth-

mic or not. The output will be a simple binary signal (high for arrhythmic).

The chip is intended for usage in mobile devices as a low-power alternative to

digital signal processing algorithms used to obtain the same outcome.

The algorithms for each stage will first be implemented in MatLab then con-

verted to analog hardware on Cadence Virtuoso. The XFAB XC06M3 process

will be used as to implement the hardware. All of the required hardware compo-

nents will be created on Cadence from scratch. Once schematic level simulations

are completed, the layout of the circuit will be drawn and post-layout simula-

tions will be performed. The results of these simulations will be compared to the

schematic and MatLab simulations.

Overall, the designed system can be used as a proof of concept for the potential

benefits of analog neuromorphic chips. The stages will also be designed to show

a degree reconfigurability in order to introduce some flexibility for usage in other

applications.

4



1.3 Thesis Outline

Chapter 2 provides an overview of ECG signals, arrhythmias, machine learning

and its advantage in ECG arrhythmia detection, and neuromorphics. The first

half of chapter 3 begins with the design of the algorithm on MatLab. The second

half focuses on the implementation of the components needed for the hardware

implementation then proceeds with the hardware implementation itself. Chapter

4 evaluates the simulation results to draw conclusions and offer future improve-

ments.
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Chapter 2

Overview

2.1 ECG

2.1.1 What is an ECG?

The Electrocardiogram (ECG or EKG) is a biophysical time-domain signal that

shows the activity of the heart. The signal originates from electrical activity

in different regions of the heart during a single heart-beat and is measured as

a voltage vs. time signal collected from various non-invasive electrodes placed

on the human body. It is used by doctors extensively to assess the physiology

of the heart under various conditions (rest, physical activity, during surgery,

etc.). Starting with the Eindhoven String Galvanometer at the turn of the 20th

century [5], ECGs have been around for a long time. Today, the technology has

been miniaturised to the point where it can be fitted into a watch and is slowly

becoming a part of out daily lives. An example of an ECG waveform is given

below in figure 2.1.
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Figure 2.1: Example ECG Waveform. Each region of the waveform corresponds
to activity in different areas of the heart. The origin of the components of the
waveform are as follows: The P wave is and the QRS interval (also known as
the QRS complex) is generated by the depolarization (contraction) of the atrium
and ventricles respectively. The T and U waves are generated by repolarization
(returning to the resting state) of the ventricles and papillary muscle respectively.

Each segment of the waveform corresponds to various expansion/contractions in

different regions of the heart. The ECG signal can be considered as the sum of

all of these individual activities.

2.1.2 Arrhythmias

Arrhythmias are irregularities in the operation of the heart with respect to the

timing of the beats. They can also be defined as fluctuations in the normal rate

or rhythm. The irregularities can arise from a multitude of reasons ranging from

physical trauma to genetics.

Whatever the cause, the irregularity arises when one or multiple regions of

the heart perform their respective tasks earlier or later than they are supposed

to, altering their respective components within the ECG waveform. As can be

expected, this causes the ECG waveform to differ from its standard shape, leading

to heart problems.

7



Four common types of arrhythmias are listed below:

• Premature Atrial Contraction (PAC),

• Supraventricular tachycardia (SVT),

• Atrial fibrillation (Afib),

• Premature ventricular contraction (PVC).

Figure 2.2 shows an example ECG with five normal and one arrhythmic heart

beat. As can be seen from the figure, the arrhythmic activity can easily be

distinguished from the other regular waveforms. The shape can be likened to a

malformed vertical reflection of a normal ECG waveform.

Figure 2.2: Example labelled ECG scan with a single arrhythmic heartbeat.
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2.1.3 ECG Arrhythmia Detection and Classification

As mentioned previously, arrhythmias cause time-domain variations in the shape

of the ECG waveform. Hence, using various forms of signal processing techniques

(both in the time and frequency domains), it is possible to identify an arrhythmic

heart beat. However, due to the problems listed below, it is very hard to create an

algorithm that uses traditional signal processing techniques for efficient detection

and classification of a given waveform as arrhythmic, that works efficiently across

different devices and patients. Machine learning algorithms are proposed as a

potential solution to this problem thanks to their ability to adapt to variations

in the data that can be hard to model.

Issues with ECG classification [6]:

• Lack of standardisation of ECG features,

• Variability amongst ECG features due to physiological differences,

• Variability in the waveforms themselves between patients,

• Noise factors

• variations in the quality of the ECG signal due to the calibration of the

machine itself.
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2.1.4 Machine Learning

Machine learning, a form of statistical signal processing shown to work exception-

ally in non-linear classification problems, offers a solution to the problems that

prevent proper arrhythmia classification with only signal processing techniques,

mentioned in the previous subsection.

Machine learning algorithms, specifically artificial neural networks, can be used

to find the common target features within a given data sample that may be

impossible to determine analytically. When a device running these algorithms

is presented with a sufficiently large dataset and a specific task (recognition,

classification, etc.), it will begin with a training phase. During training, over

multiple iterations, the algorithm will adapt itself repeatedly using the data until

it achieves the desired task as optimally as possible.

The overall performance of the algorithm depends on multiple factors ranging

from the size and quality of the dataset to the way the desired algorithm is

implemented. Usually, in order to improve the performance of the algorithm, the

data is first pre-processed where noise (if present) is reduced and the relevant

features are extracted from the data. The algorithm is then run on these features

rather than the entire dataset itself which improves its overall performance.

Features are the parts of the data within the dataset that are of relevant

importance to the algorithm (the rest can be considered as noise). Compared to

raw data, using extracted features can be more efficient as the algorithm won’t

have to extract features from the data itself (which, depending on the nature of

the feature, may be very difficult or even impossible).
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2.1.4.1 Artificial Neural Networks

An artificial neural network is a method of machine learning that draws its in-

spiration from the biological nervous system. The network consists of individual

units called “neurons” that (similar to a biological neuron) multiply their inputs

with weights, sum them, then pass the result through an activation function.

The network can be “trained” to respond as desired to different sets of inputs

by changing the values of its weights. This enables the neuron to find the relevant

features within the input that are of importance to the desired output.

Within the network, individual neurons are arranged in layers (called the input,

hidden, and output layers). The weights of each layer learn different patterns from

their respective inputs. The neurons then sum their respected weighted inputs,

pass the result through a non-linear function known as an ”activation function”,

and, unless they are at the output layer, feed the output of their activation

functions into the inputs of the neurons on the next layer. The output(s) of the

neuron(s) in the output layer becomes the output of the network.

During training, the network utilizes algorithms that update the weights in

the direction of the desired output. The output is continuously compared to a

target value. The difference between the networks output and the target value

is taken, known as the error, and used to update the weights. Weight update

algorithms like backpropagation are used to determine the amount with which

each individual weight will be updated.

In a neural network that uses backpropagation, each weight is individually

summed with an update value consisting of the product of the partial derivative

of the error with respective to that weight and other variable to control the magni-

tude of the update value. The aim is to minimise the output of the error function

as much as possible. In other words, to update the weights until minimum error

is achieved. The process is shown below in appendix A.4.
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2.1.4.2 The Usage of Artificial Neural Networks in ECG Arrhythmia

Detection

The availability of the MIT BIH ECG arrhythmia dataset has helped many re-

searchers tackle the ECG classification problem. Over the past 2 decades, there

have been multiple academic publications on the usage of artificial neural net-

works for the detection and classification of various types of ECG arrhythmias.[6]

These publications show that artificial neural networks coupled with properly

extracted time or frequency domain features can overcome the problems standard

signal processing algorithms face.

Some of the popular features utilised by these publications are listed below:

• RR Interval: The time duration between two R waves,

• R Peak: The amplitude of the R wave,

• QRS Duration: The time duration of the QRS wave,

• QT Duration: The time duration from the starts of the Q segment to the

end of the T wave,

• PR Interval: The time duration from the start of the P wave to the end

of the R wave,

• U Peak: The amplitude of the U wave (if available),

• Frequency: For extracting heart rate from the ECG scan.
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2.2 Neuromorphics

2.2.1 What are Neuromorphics?

Neuromorphics or Neuromorphic Systems are defined as systems (mainly con-

sisting of analog or digital electronic circuits) that mimic various properties of

biological neurons and neural systems. The definition also encompasses analog

and digital implementation of artificial neural networks. Different types of sys-

tems in which neuromorphic algorithms were implemented in can be seen in figure

2.3.

Figure 2.3: Example labelled ECG Waveform with a single PAC heartbeat.

The area began in the late 1980s with the publication of Carver Mead’s Analog

VLSI and Neural Systems [7]. Since then, multiple innovations have been made

in the area ranging from new sensor and information processing technologies to

new types of hardware architectures. [8]
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2.2.2 Analog Neuromorphic Systems

The greatest advantage neuromorphic systems present is power. Neuromorphic

systems mimic the biological nervous system which itself is the most power-

efficient information processing system in nature. The human brain has the

information processing capacity far greater than a supercomputer yet consumes

orders of magnitude less power. Gene’s law (similar to Moore’s law), illustrated

in figure 2.4, shows that analog circuits have a potential 20 year leap with respect

to their digital counterparts in terms of power consumption.

Compared to their digital counterparts, an analog implementation of a neuro-

morphic system (e.x. a neural network) can achieve similar results with a smaller

number of transistors consuming less current. Hence, an analog neuromorphic

circuit will consume less power.
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Figure 2.4: Gene’s Law shows that analog signal processing circuits have a 20
year leap with respect to their digital counterparts in terms of power consumption
(Power/(Million Multiply Accumulate Cycles per second)). Data for this plot was
obtained from [2]
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Analog neuromorphic circuits generally utilise cutting-edge/experimental

memory technologies in order to store weight values. Examples of these tech-

nologies are:

• Analog Floating Gate MOSFET transistors,

• Memristors,

• Phase Change Materials.

The above listed technologies are all non-volatile and low power memory stor-

age components. For neuromorphic applications, these components are generally

used to store weights which can be preprogrammed or updated by the system

itself as it is being used.

Research in this area has also led to the commercialization of certain products.

Audience and Synaptics are examples of two companies, founded by researchers

who have worked on the area of neuromorphics, that produce biologically inspired

circuits for audio and tactile sensing circuits respectively. Some of the customers

of the chips produced by these companies include Apple, Google, and HP.
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Chapter 3

Proposed Algorithm for ECG

Arrhythmia Detection and

Simulations

3.1 Sample ECG Waveform

For simplicity the waveform shown in figure 3.1 will be used to illustrate the stages

of the algorithm. Simulation results with additional waveforms can be found in

figure 3.43. Information on the ECG dataset used can be found in appendix A.1.

0 1 2 3 4 5 6 7 8
Time (S)

-1
0
1
2

Sample ECG Waveform

0 1 2 3 4 5 6 7 8
Time (S)

0

0.5

1
Arrhythmia Label

Figure 3.1: The sample ECG waveform alongside the labels highlighting the
arrhythmic beats.
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3.2 The Algorithm

The algorithm proposed for ECG arrhythmia detection takes a raw ECG wave-

form as its input and outputs a binary value, indicating whether the waveform

is arrhythmic or not (High = Arrhythmic, Low = Normal). It consists of two

stages: preprocessing and classification. The preprocessing stage itself uses vari-

ous techniques to extract seven features from the input waveform. These seven

features are then fed into the input of the second, classifier, stage where a single

artificial neural network (also known as a perceptron) is used to classify the ECG

waveform as arrhythmic or not. The algorithm was first implemented on MatLab

and later converted to an analog ASIC. Due to the analog nature of the ASIC,

the algorithm is limited to time-domain methods (as frequency domain methods

require the FFT (Fast Fourier Transform) of the waveform to be taken which

cannot be implemented with analog components.

Figure 3.2: The stages of the algorithm.
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3.2.1 The Preprocessing Stage

As mentioned above, the preprocessing stage of the algorithm extracts seven

features from the raw ECG waveform. plots of these features are given below on

figure 3.3b. These features are:

1. The input ECG waveform bandpass filtered at the 0.1-1Hz interval,

2. The input ECG waveform bandpass filtered at the 1-3Hz interval,

3. The input ECG waveform bandpass filtered at the 3-10Hz interval,

4. The input ECG waveform bandpass filtered at the 10-30Hz interval,

5. The input ECG waveform bandpass filtered at the 30-50Hz interval,

6. Pan-Tomkins algorithm (figure 3.3a) processed inter-peak time duration,

7. Pan-Tompkins algorithm (figure 3.3a) processed peak amplitude value.
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(a) The input ECG waveform, its Pan-Tompkins algorithm output,
and arrhythmia labels.
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(b) The seven extracted features from the sample ECG waveform.

Figure 3.3: The sample waveform and extracted features.
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3.2.2 Differences Between Normal and Arrhythmic ECG

Waveforms at Different Frequency Bands

As can be seen from figure 3.3b, normal and arrhythmic waves differ greatly at

different frequencies. When filtered at different frequency bands, the amplitudes

of the regions of the filtered signal corresponding to the arrhythmic waves are

either smaller or greater with respect to the normal waves.

In the 0.1 - 1 Hz, 1 - 3 Hz and 3 - 10 Hz frequency bands, the waveforms corre-

sponding to the arrhythmic beats have larger peak-to-peak amplitude differences.

The opposite is observed on the for the 10 - 30 Hz and the 30 - 50 Hz bands.

These differences highlight the abnormal nature of arrhythmia. When closely

inspected, normal ECG waves at different bands appear periodic, their behaviour

easy to deduce whereas the anomalies introduced by arrhythmias are more ran-

dom.
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3.2.3 The Pan-Tompkins Algorithm

The most important part of the preprocessing stage is the Pan-Tompkins

algorithm.[9] Developed in 1985, the purpose of this algorithm is to ease the

real-time detection of the QRS complex (also referred to as QRS interval, fig-

ure 2.1) of an ECG waveform which can be problematic due to noise or medical

conditions. The stages of the full algorithm are listed below.

1. Filtering: The waveform is filtered with a bandpass filter at the 5-15 Hz

interval.

2. Differentiation: The derivative of the filtered signal is taken, with respect

to time.

3. Squaring: In order to remove the negative values of the signal, the square

of the differentiated signal is taken.

4. Integration: A moving window integrator is used to collect the individual

small peaks of the same QRS wave generated from the previous steps into

a single peak.

5. Fiducial Mark Detection: The rising edge of the integrator stage output

is used to mark the start of the QRS complex.

6. Adaptive Thresholding: Converts the integrated signals into pulse

streams where each pulse corresponds to the temporal location of a sin-

gle QRS complex.

Only the first four of the stages of the algorithm is used for the preprocessing

stage as the inclusion of the following stages actually deletes some of the features

of the ECG waveform that can be beneficial for classification (e.x. ECG peak am-

plitude). Graphical results of each stage of the Pan-Tompkins algorithm applied

to the sample ECG waveform can be seen on figure 3.4.
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The Pan-Tompkins Algorithm
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Figure 3.4: The relevant stages Pan-Tompkins algorithm applied to the sample
arrhythmic ECG signal.

Figure 3.5: Closeup of the final stage from figure 3.4 with the arrhythmic wave-
forms (highlighted in read) differences between normal and arrhythmic waveforms
indicated.
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3.2.3.1 Differences Between Normal and Arrhythmic ECG Wave-

forms Following the Implementation of the Pan-Tompkins Al-

gorithm

Figure 3.5, on the previous page, shows a close-up of the final segment of figure 3.4

with the two arrhythmic waveforms highlighted in red. As can be seen from this

figure, the arrhythmic waves, with respect to their normal counterparts, have

smaller peak amplitudes and varying time delays. The time delay within the

peaks of the same arrhythmic wave is much smaller that the one between two

normal ECG waves. The time delay following the end of the arrhythmic wave, on

the other hand is much longer. Biologically, this longer time delay corresponds

to the a short rest period in the heart following arrhythmic beats. These two

critical differences also

3.2.4 The Classification Stage

The second stage of the algorithm focuses on the classification of arrhythmic

waves based on the outputs of the preprocessing stage. The selected classifier for

this stage is the perceptron.

The perceptron, a single neuron from an artificial neural network (section

2.1.4.1), works by multiplying its inputs with a set of weights, summing them up

along with a bias value and passing the result through an activation function.

Mathematically, the following equation is used to describe the operation of a

perceptron:

O = f

(
n∑
i=1

ωixi

)
→ O =

{
1,
∑
ωixi ≥ θ

0,
∑
ωixi < θ

(3.1)

Where O is the output, f() is the activation function, θ is the threshold value

used by the activation function, and ωi and xi (iεn) are the respective products

of the ith input and weight of the perceptron. O is a binary output, meaning that

it is either equal to 1 or 0.

Mathematically, the perceptron could also be considered as a comparator where
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the activation function does the comparison. If the sum of the weighted inputs

is greater than a threshold value, the perceptron outputs 1. Otherwise it will

output 0.

3.2.5 Positive Weighted Perceptron

In order to ease the complexity of the hardware design, negative currents should

be removed from the system. On the input, this is easily achieved by adding an

offset that makes the entire input ECG waveform positive. The squaring function

(and respective circuit) in the Pan-Tompkins algorithm deals with the negative

outputs of the differentiator, eliminating the problems with negative currents in

the preprocessing stage.

As artificial neural networks usually include both positive and negative valued

weights, eliminating the negative currents that arise from the product of the

inputs (all positive) with these weights can’t be done in a straightforward manner

such as adding an offset.

Instead, using the comparator feature of the perceptron is used with the fol-

lowing procedure: First the weighted inputs are separated into the positive and

negative values and summed separately. Next, θ, depending on its sign is added

to its corresponding sum. Finally, the negative sum consisting of the negatively

weighted signals is moved to the other side of the comparator function, turning it

positive. The resulting equation implements the same function as the perceptron

without any negatively valued signals. Mathematically, the described operations

are shown below: ∑
ωixi ≥ θ =

∑
ω>0

ω+
i xi +

∑
ω<0

ω−
i xi ≥ θ

Where: ∑
ω<0

ω−
i xi = −

∑
ω<0

∣∣ω−
i xi
∣∣

Hence:
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∑
ωixi ≥ θ =

∑
ω>0

ω+
i xi −

∑
ω<0

∣∣ω−
i xi
∣∣ ≥ θ

Depending on the sign of θ, the new comparator equations become one of the

following:

θ ≥ 0→
∑

ωixi ≥ θ ⇒
∑
ω>0

ω+
i xi ≥

∑
ω<0

∣∣ω−
i xi
∣∣+ θ

θ < 0→
∑

ωixi ≥ θ ⇒
∑
ω>0

ω+
i xi + θ ≥

∑
ω<0

∣∣ω−
i xi
∣∣ (3.2)

This positively weighted comparator can easily be implemented using a class

of circuits known as Winner-Takes-All (WTA) comparators.

3.3 MatLab Implementation of the Algorithm

The algorithm was implemented on MatLab. For the Pan-Tompkins algorithm,

the relevant parts of the code from [10] were extracted. The remaining parts of the

code were written from scratch. At the end of the preprocessing stage on MatLab,

the data is transformed into the form shown in figure 3.3b. The algorithm was

used on the entire dataset. Afterwards, the processed data was split into separate

training and testing sets with a 70:30 ratio (training and testing respectively).

For the classifier stage, a single layer artificial neural network with one output

(similar to a perceptron) was created on MatLab’s neural network/data manager

toolbox and the training set was used to train the network. A TANSIG activation

function was chosen as it is the one that most resembles a comparator. Running

the test set on the network showed an overall 85% precision. A closer examination

of the results is given in the next subsection.
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3.3.1 MatLab Simulation Results

MatLab Results of Algorithm
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Figure 3.6: The ECG sample waveform, MatLab processed outputs, and the
target labels.

Figure 3.6 above shows the output of the MatLab implementation of the algo-

rithm on the sample ECG waveform. The first plot shows the waveform itself, the

second plot shows raw output of the classifier. In order to improve the results,

thresholding (set at 0.95) was applied, the results of which are shown in the third

plot. The fourth and final plot shows the target labels.

As can be seen from the results above, the algorithm is successful in classifying

the two arrhythmic beats present in the sequence. However, there are multiple

false negatives and positives present in the output that should be addressed.

False positives indicate the existence of an arrhythmic beat when there isn’t

one. The false positives outputted by the algorithm could be seen to occur with

the R portion of the ECG waveform. Their duration is also consistent with that

of the R segment. As the duration of the arrhythmia is much greater than the

duration of the R segment (and hence the false positives) the false positives can
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be removed with the application of a low-pass filter.

False negatives indicate the absence of an arrhythmic beat when there actually

is one. The mainly occur around the start and end of the arrhythmic beat and

occur at a higher frequency (based on their short intervals, similar to that of

the false positives). They can be removed from the data with the inclusion of a

low-pass filter at the output.

In analog circuits, an integrator behaves like a low-pass filter. A basic moving

window integrator was applied to the output of the saturated algorithm output

yielding the results below in figure 3.7. As can be seen from these new results, the

false positives and negatives have disappeared. While the duration and position

of the processed outputs may differ from the target labels, this should not be too

much of a problem as the aim of this work is the detection/classification of the

presence of arrhythmic ECG waveforms within the scan.

Processed MatLab Results of Algorithm
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Figure 3.7: Processing the saturated algorithm outputs with an integrator fol-
lowed by a second saturation removes the high-frequency false positive and neg-
atives.
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3.4 Hardware Implementation of the Algorithm

As the algorithm consists of time domain methods, mapping it onto an analog

IC only requires utilizing/designing the relevant components of each stage of the

algorithm and connecting them to each other. All of the components were created

from scratch using transistors and capacitors from XFAB’s XC06M3 process.

3.4.1 Hardware System Components Overview

The main component used in most throughout this chip is the operational

transconductance amplifier. It is used to implement most of the stages of the

Pan-Tomkins algorithm. The names of the circuits and their corresponding func-

tions in the algorithm are listed below:

1 The Operational Transconductance Amplifier - Used in most com-

ponents.

2 C4 Bandpass Filter - Used to implement the filter bank and the first stage

of the Pan-Tompkins algorithm.

3 Differentiator - Used in the second stage of the stage of the Pan-Tompkins

algorithm.

4 Current Squarer - Used in the third stage of the Pan-Tompkins algorithm.

5 Leaky Integrator - Used in the fourth stage of the Pan-Tompkins algo-

rithm, and at the end of the classifier.

6 Peak Detector - Used to extract the first part of the pre-processing stage

of the algorithm.

7 RR Distance Finder - Used to extract the second part of the pre-

processing stage of the algorithm.

8 FGMOS Transistors - Used to store the weights of the classifier.
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9 Vector Matrix Multiplier - Used to implement the matrix multiplication

stage of the classifier.

10 Winner-Take-All Comparator - Used to implement the transfer function

of the classifier.

3.4.2 Circuits Designs and Layouts

All of the plots shown in the subsections below, unless otherwise stated, are

created using data from Cadence simulations of actual corresponding circuits

processed on MatLab.
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3.4.2.1 The Operational Transconductance Amplifier

The operational transconductance amplifier (OTA, figure 3.8) is a type of am-

plifier which generates an output current based on its differential input voltage

(difference between the ’+’ and ’-’ terminals). It could also be considered as a

differential voltage controlled current source.

The transconductance (denoted as Gm) of the amplifier deduces the output

current/input differential voltage relationship. Ideally, this relationship expressed

mathematically as shown in equation 3.3 below. The transconductance value

itself, depends on the magnitude of the bias current (implemented using current

mirrors connected to a reference bias current).

IOut = Gm(V+ − V−) (3.3)

Equation 3.3 is for ideal cases only. In reality, the transfer function of the

OTA is non-linear (figure 3.9a) with only a small linear region around the point

where the differential input value is close to zero. In reality, equation 3.4 is more

commonly used to show the transfer function of the OTA.

IOut = Ib tanh

(
k(V+ − V−

2
)

)
(3.4)

The value of the transconductance of the OTA itself depends on the magnitude

of the bias current. The bias current/transconductance relationship is shown on

figure 3.9b (for derivation, see appendix C.1).
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(a) The OTA circuit.

(b) The OTA symbol.

(c) The OTA Layout.

Figure 3.8: The operational transconductor amplifier circuit and symbol.
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Figure 3.9: The operational transconductor amplifier simulation results.
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3.4.2.2 C4 Bandpass Filter

The Capacitively Coupled Current Conveyer (C4) bandpass filter is a 2nd order

OTA based programmable bandpass filter (figure 3.10a)[11]. The transfer func-

tion of the filter is shown below, in equation 3.5 (for derivation, see appendix

C.2). The programmability of the filter comes from the effect the transconduc-

tance value of each OTA has on the transfer function.

Vout
Vin

=
τbS

τ
Q
(Sτa−1)

S2τ2+ τ
Q
+1

τa =
Cfb
Gm2

τb = CinGm2

CLGm1+CfbGm2

τ =
√

CinCL+CfbCLCfbCin
Gm1Gm2

Q =
√

(CinCL+CfbCLCfbCinGm1Gm2)

(Gm1CL+CfbGm2)2

(3.5)

The center frequency of the filter can be found from the following equation:

fc =

√
Gm1Gm2

CinCL + CfbCLCfbCin
(3.6)

Solving equations 3.5 and 3.6 simultaneously according to the desired center

frequency (fc) and quality (Q) values. Figure 3.11 shows the variation of fc and

Q with respect to different bias currents on the schematic (figure 3.11a) and post

layout (figure 3.11b) simulations.

Overall, the C4 filter is used six times for the following tasks:

• Feature extraction: fc = 0.55Hz, Q = 0.9,

• Feature extraction: fc = 2.0Hz, Q = 2.0,

• Feature extraction: fc = 6.5Hz, Q = 3.5,

• Feature extraction: fc = 20Hz, Q = 20,

• Feature extraction: fc = 40Hz, Q = 20,

• Pan Tompkins first stage: fc = 10Hz, Q = 10.
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(a) Schematic of the C4 filter. (b) Layout of the C4 filter.

Figure 3.10: C4 schematic and layout.
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C4 Filter Tuning - Schematic
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(a) Schematic simulation results for the center frequency and quality of the C4 filter
with respect to ib1 and ib2.
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(b) Post layout simulation results for the center frequency and quality of the C4 filter
with respect to ib1 and ib2.

Figure 3.11: Center frequency and quality variation with respect to different bias
currents.
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3.4.2.3 The C4 Filter Bank

As mentioned in section 3.2.1, the first five of the seven required features consist

of the ECG input waveform filtered at different frequency intervals. In order to

achieve this, five instances of the C4 filter have been created, tuned as required,

and implemented as a filter bank on Cadence. The schematic and layout of this

filter bank can be seen below on figure 3.12.

(a) Schematic of the C4 filter bank.

(b) Layout of the C4 filter bank.

Figure 3.12: C4 filter bank schematic and layout.
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3.4.2.4 Differentiator

The next component on the chain of devices used to implement the Pan-Tompkins

algorithm is the differentiator (figure 3.13. The base of the circuit is created the

same as the operational transconductance amplifier mentioned in section 3.4.2.1.

The input signal is given as a voltage to the positive (V+) input terminal of

the OTA and the output is connected to the negative (V-) input terminal (as

can be seen below in figure 3.13a). A capacitor connected to the output of the

OTA creates the differential output of the input signal. This is caused by the

differential voltage-current relationship of the capacitor [12].

In order to convert the differential output voltage to a current, as well as

prevent the alteration of the differential effect of the capacitor by introducing

other devices, the output of the OTA is replicated by connecting 4 identical

transistors to the output. The gates of these transistors is connected to the gates

of their respective counterparts in order to replicate the same currents flowing

through them. The output of these transistors can then be given as a current to

the next device linked on the Pan-Tomkins chain.

The input output relationship of the differentiator for an input triangle wave

is plotted in figure 3.14. As can be seen from the figure, the output (for both

schematic and layout implementations on Cadence) is a positive square wave

(corresponding to the rising edge of the triangle) followed by a negative square

wave (corresponding to the falling edge of the triangle). The output square waves

of the differentiator not ideal (as the corners are not sharp) but the circuit still

works as intended. It should also be noted that the AV extracted results show

some instability in the form of minor oscillations. However, this didn’t cause any

problems in the Pan-Tompkins circuit.
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(a) The differentiator circuit.

(b) The differentiator symbol.

(c) The differentiator Layout.

Figure 3.13: The differentiator.
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Figure 3.14: The differentiators response to a triangle input. The test circuit
could be found in appendix B.2
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3.4.2.5 Current Squarer

The next step of the Pan-Tomkins algorithm is squaring. The circuit chosen to

achieve this is shown below in figure 3.15. It is a two-stage circuit (based on [13]

and [12]) that takes the square of the negative and positive parts of the input

separately (similar to a class AB amplifier). Depending on the nature of the

input current (whether it flows into the circuit’s input terminal (positive) or out

of the input terminal (negative)) the inverter will either output Vdd or gnd which

will switch between the upper and lower parts respectively. The outputs of both

stages are then combined

Both upper and lower stages use a process known as translinear squaring [13]

for the squaring procedure. Circuit simulations can be seen below on figure 3.16.

(a) The squarer circuit.

(b) The squarer symbol.

(c) The squarer Layout.

Figure 3.15: The squarer circuit.
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The relationship between the I1, I2, and I3 currents for both upper and lower

sections of the circuit is expressed with equation 3.7 given below. For the deriva-

tion of this equation, refer to appendix C.3.

I3 =
(I1)

2

I2
(3.7)
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Figure 3.16: Simulation results for both schematic and post layout of the squarer
circuit. The test circuit could be found in appendix B.3

In the simulation, an 8 ms triangle wave with a peak-to-peak current of 4 nA

(-2 nA to +2 nA) is given to the circuit as an input. Both the schematic and

AV extracted results are identical with each other. Magnitude-wise, the circuit

parameters extracted from the layout (post-layout parameters i.e. AV extracted)

results are a little less than the schematic results. When compared to the desired

signal, both the schematic and AV Extracted show deviations with errors upto

10%. These errors are greatest when the input currents absolute magnitude is

less than 1 nA. Another issue, close to 0 nA, the shape gets distorted. These

distortions will not be too problematic as the classifier can be trained to classify

preprocessed inputs with the effects of these distortions.
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3.4.2.6 The Leaky Integrator

The final component of the Pan-Tompkins circuit is the leaky integrator, which

is an integrator that gradually loses the value (charge) it holds over a fixed rate.

The circuit consists of a capacitor, whose differential current-voltage relationship

is used to obtain the integral of the input current, and an OTA based pseudo-

resistor. In order to create the pseudo-resistor, the positive terminal of the OTA

is grounded and the negative terminal (also the input of the circuit) is connected

to the output.

The integrator receives the output current of the squarer (figure 3.15) as its

input, converts it to a voltage via the capacitor. The OTA then outputs the

integral of the input signal. The transfer function of the integrator is given below

(equation 3.8) The full derivation of this equation can be found in the appendix

(C.4).

(a) The leaky integrator schematic.

(b) The leaky integrator Layout.

Figure 3.17: The leaky integrator circuit, schematic and layout.
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Vout
Iin

=
1

1 + sC
Gm

(3.8)

As Pan-Tompkins algorithm requires a leaky integrator [9], the circuit was

tuned to have a leakage time of around 80 ms. Simulation results for both

schematic and layout extracted circuits are shown below on figure 3.18.
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Figure 3.18: Simulation results for both schematic and post layout of the leaky
integrator circuit. The test setup schematic used to obtain the results of this
simulation can be found in appendix B.4.

In addition to the leaky integrator shown above, a second type of leaky inte-

grator was also created. Shown below in figure 3.19, this integrator was created

by adding a second OTA to the current input of the integrator in figure 3.17a.

This OTA converts its input voltage into a current which is then integrated by

the circuit discussed previously. This leaky integrator is used to integrate volt-

ages. This integrator is used at the output of the classifier as a low-pass filter, the

intended (algorithmic) impact of this component on the output of the classifier

is shown in figure 3.7.

42



Figure 3.19: The leaky voltage integrator implemented with a pseudo-resistance
mode OTA.

The transfer function of this leaky integrator is given below in equation 3.9.

The derivation of this equation can also be found in appendix C.4. Simulation

results of this integrator at different leakage rates is given below in figure 3.20.

Vout
Vin

=
Gm1

1 + sC
Gm2

(3.9)
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Figure 3.20: The leaky voltage integrator simulation results.
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3.4.3 The Pan-Tompkins Circuit

When the devices shown in the previous subsections (3.4.2.2, 3.4.2.4, 3.4.2.5 and

3.4.2.6) are chained together in the order they appear here (shown below in figure

3.21a), they implement Pan-Tomkins algorithm in the time domain [12]. Figure

3.21 shows the output of each circuit. As can be seen from the results, the circuit

stages output similar waveforms to those seen in figure 3.5.

(a) The Pan-Tompkins circuit.
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(b) Cadence schematic simulation results for the Pan-Tompkins circuit.

Figure 3.21: The Pan Tompkins Circuit and Simulation results.

44



However, there are also some differences especially evident in the differentia-

tion and integration stages. These mainly arise from the difference between the

analog and digital means used to implement those methods. It could be argued

that as digital differentiation and integration is less precise than their analog

counterparts, the circuit outputs are closer to the desired ideal forms.
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3.4.3.1 Peak Detector

The role of the peak detector circuit is to find the maximum level of the output

of each integrator peak and hold onto that value until the next peak arrives. This

is achieved using two identical OTA-C (operational transconductance amplifier

- capacitor) circuits. A single instance of the OTA-C peak detector is shown in

figure 3.22.

Figure 3.22: A single instance of the peak detector circuit.

The aim of this circuit is to capture and hold onto the max value of the Pan-

Tompkins peaks. Hence, unlike a traditional peak detector, its output should

not decrease over time. In order to achieve this, a series of transmission gates

(labelled as 1,2, and 3). The transmission gates 1 and 3 are connected to the

same complementary control signals A and B (B = A). Transmission gate 2 is

connected to the inversion of these control signals. gates

When gates 1 and 3 are active, and the input voltage of the OTA is greater

than the voltage stored on the capacitor, the OTA starts charging the capacitor

via the NMOS connected to its output. Gate 3 then allows the capacitor voltage

to to pass be outputted. When the complimentary control signal is given, gates

1 and 3 turn off (reach a very high resistance state) and gate 2 switches on. As

gate 2 directly connects the capacitor to the ground, it being on discharges the

capacitor, bringing its charge to 0 and resetting the circuit for a new peak.
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In order to create the peak value detection circuit, the circuit was replicated

and the orientation of the transmission gates was switched so that the replicated

circuit would have the control signals connected to the dual terminals (illustrated

in figure 3.23a). This enables only one of the two circuits to be switched on at

a time, allowing the other one to discharge. In other words, the two individual

detectors are multiplexed to the same output. The control signals are generated

using the normal and inverted outputs of a 1-bit digital counter. The counter

circuit is created using a D flip-flop with its inverted output connected back to

its D input. The clock of the D flip-flop receives its inputs from the digital pulses

generated by the RR Distance Finder circuit (Vpulse in 3.26a).

(a) The peak detector circuit, complete schematic.

(b) The peak detector circuit layout.

Figure 3.23: The peak detector schematic and layout.

When the layout of the peak detector (figure 3.23b) is examined closer, an

unused region can be seen in the top right third of the layout. This section was

intentionally left blank in order to fit the RR distance finder circuit (figure 3.26b)

47



and shorter the connections between its pulse signal to the clock of the D flip-flop

(top left third of the peak detector layout). The final version can be seen in figure

3.27b.
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Figure 3.24: Waveforms of the peak detector circuit.

Figure 3.24 above shows the waveforms for different instances of the Peak

detector with the output of the Pan-Tompkins circuit (figure 3.21b) fed as an in-

put. The uppermost plot shows the Pan-Tompkins peaks along with the threshold

value that generates the pulses. The second plot (Pulse) shows the corresponding

pulses that arise when the Pan-Tompkins signal is above the threshold. The third

and fifth plots (Counter Output O and Counter Output O! respectively) shows

the two outputs of the counter. The fourth and sixth plots (Upper Peak Detector

Circuit and Lower Peak Detector Circuit respectively) show the voltages of the

two peak detector. As can be seen from these plots, the peak detectors show

activity when their corresponding counter output is high. The final plot (Peak

Detector Output) shows the overall output of the circuit which multiplexes the

outputs of the upper and lower circuits based on their control signals.
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3.4.3.2 RR Distance Finder

The distance between two R peaks (RR distance) is the final feature required

by the classification algorithm. As the important aspect here is the time delay

between the two peaks (figure 3.4), the shape of the waveform itself, as well as its

peak value, is not important. The time delay between the two consecutive R peaks

is shown as a voltage that decays from a thresholded digital pulse. Figure 3.25

below illustrates the operation described above.
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Figure 3.25: A MatLab based example to illustrate the order of operations con-
ducted by the RR distance circuit: As the input signal crosses a certain threshold
value (top plot), a digital pulse is generated (middle plot). The duration of the
pulse lasts as long as the input is above the threshold. Once the pulse is gone,
the value of the pulse starts to decay. The greater the decay, the greater the time
delay between the two pulses.

The circuit designed to find the distance between the two R waves consists of

two stages. In the first stage, thresholding occurs via an OTA-C circuit connected

to a digital voltage buffer. The OTA is tuned to detect a threshold voltage of 100
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mV, once detected, it quickly fills a capacitor whose rise in voltage then triggers

the buffer. An OTA-C circuit was chosen for this task as the OTA’s low dynamic

range allows it to almost act like a digital switch. Also, it should be noted that

thresholded inverters (where the W/L ratio between the PMOS and the NMOS

transistors is adjusted to enable thresholding) do not reach the target sensitivity

without taking up a huge amount of area.

The pulse generated by the buffer is then fed into the second stage which

consists of a conventional OTA based peak detector. Here, the output of the

OTA drives the amount of current flowing through the upper NMOS transistor.

This transistor fills up the capacitor which stores the voltage representing the

time delay between the two input peaks. Simulation results of this circuit on the

sample ECG sequence is given in figure 3.28b.

(a) The RR Distance Finder schematic.

(b) The RR Distance Finder Layout.

Figure 3.26: The RR Distance Finder.
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3.4.3.3 Feature Extraction Stage

Figure 3.27a shows the placement of each component on the layout of the Pan-

Tompkins + Peak Detector and RR Distance Finder circuits. Figure 3.27b shows

the overall layout. The components were placed and routed in a fashion that

would be the most area efficient. Simulation results (schematic and post layout)

of this circuit are shown in figure 3.28 below.

(a) The combination of each of the above components for the preprocessing circuit.

(b) The complete layout of the preprocessing circuit with components labelled.

Figure 3.27: The preprocessing circuit.
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(a) The peak detector circuit simulation results.
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(b) The RR Distance Finder simulation results.

Figure 3.28: The feature extraction circuit simulation results.
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As will be explained in the next subsection, the classifier receives currents as

input whereas feature extractor outputs voltages. Hence, the following converter

circuits (figure 3.29) are added to the output of the peak detector and the RR

distance finder in order to convert their outputs into a current. For the case of the

peak converter, the a capacitive voltage divider is used so that the peak values

fit into the linear region of the OTAs transfer function (figure 3.9a).

(a) The converter circuit schematic.

(b) The converter circuit layout.

Figure 3.29: The converter circuit for the Pan-Tompkins peak and RR distance
values.
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3.4.3.4 Classifier

Moving onto the classifier stage of the algorithm, the positive weighted perceptron

(see 3.2.5) is implemented in two stages. The first stage implements the weight

multiplication and summing using a FGMOS based vector-matrix-multiplier. The

second stage utilizes a winner-take-all current comparator to emulate the activa-

tion function of the perceptron.

3.4.3.5 Analog FGMOS Transistors for Weight Storage

The floating gate metal oxide semiconductor transistor (FGMOS) is a type of

non-volatile memory storage device. Its main difference from a regular CMOS

transistor is its gate, which consists of 2 poly layers with the first one sandwiched

between two oxide layers, isolating it from the surroundings (figure 3.30a). The

other poly layer is at the top, above the oxide. The high electrical resistance of

the oxide traps the charge stored at the gate. In total, 20 FGMOS’s are used in

this work (the vector matrix multiplier, section 3.4.4).
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(a) Cross-section comparisons of a regular MOSFET (left) and an FGMOSFET (right).
The poly layer above the gate in the FGMOSFET (poly1) is sandwiched between two
oxides, trapping the electrical charge within.

(b) The pins of an FGMOSFET. The Poly-poly capacitor is used to increase the total
amount of possible storable charge by increasing the amount of poly1.

Figure 3.30: FGMOSFET transistors.

The trapped charge remains in the first poly layer and unless altered, will

remain constant for a long time (on the order of years). Two different processes

that can be used to alter the charge trapped in the poly layer are:

• Tunnelling: (figure 3.31a) A high voltage is used to extract electrons from

the poly layer. The removal of electrons (which tunnel through the oxide)

increases the net positive charge of the poly layer, increasing the voltage at

the gate.

• Hot electron injection: (figure 3.31b) Electrons are injected into the poly

layer which increases the net negative charge, decreasing the voltage at the

gate.
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(a) During tunnelling, the application of a high voltage through the tunnelling tran-
sistor extracts electrons from the floating poly layer, increasing the gate voltage.

(b) During hot electron injection, the application of a high voltage on the drain of
the transistor injects electrons into the floating poly layer, increasing the gate voltage.

Figure 3.31: Different FGMOS programming modes. The voltages are applied as
pulses with 0.2s durations, leading to the changes in the plots.

Figure 3.32: Layout of the FGMOSFETs used for weight storage in the VMM.

The voltages required for different stages of programming and operation are

supplied externally. In order to decrease the number of required pads, a 4-pin

analog multiplexer was created. The multiplexer uses transmission gates con-

nected to different logic signals to multiplex between various states. The same

logic signals are used to control transmission gates at all of the terminals. The

complete layout of the FGMOS’s is shown below in figure 3.33.
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Figure 3.33: Layout of the FGMOSFETs with the analog multiplexer circuit.

The control signals for the multiplexer consist of three select bits (each corre-

sponding to a different row) and one enable bit.
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3.4.4 The Vector Matrix Multiplier

The vector matrix multiplier (VMM) circuit is an analog circuit used to imple-

ment the multiplication of a vector with a matrix. As can be seen on figure 3.34a

below.

(a) The VMM circuit schematic.

(b) The VMM circuit layout.

Figure 3.34: The vector matrix multiplier.

Each row of the circuit correlates to a row in the matrix. On the left-hand-

side, the input is fed through the reference FGMOS with charge wref loaded

at the gate. The input (value of the vector that will be multiplied with the

row of the matrix) is given as a current through the source of the reference

FGMOS. The voltage at the source of the reference FGMOS is then replicated
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to the sources of the FGMOS’on the right hand side via the voltage follower

OTA. The ratio of the charge on the right-hand-side FGMOS’s with respect to

the reference charge, determines the magnitude of the reference current that will

flow through that transistor. In other words, the current that flows through each

right-hand-side FGMOS is equivalent to the reference current multiplied by the

ratio between of the charges on the right-hand-side transistors and the reference

charge. Mathematically, this is expressed below:

Iout =
ωFG
ωref

Iin (3.10)

The drains of the right-hand-side FGMOS’s in each column are connected to

each other. This enables their currents to be summed. The net current on each

column corresponds to a single row of matrix multiplication.

It should be noted that in the layout of the VMM provided in figure 3.34b, only

the left-hand side of the circuit is present. The FGMOS’s for the right-hand-side

were created separately and can be viewed in figure 3.32.
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3.4.4.1 The Winner-Take-All Comparator

The final component is the winner-take-all (WTA) current comparator. This

circuit receives two currents as its input and outputs two voltages whose values

are proportional to the sizes of the currents.

(a) The WTA circuit schematic.

(b) The WTA circuit symbol.

(c) The WTA circuit layout.

Figure 3.35: The winner-take-all current comparator.
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3.4.5 Classifier

The schematic of the classifier circuit is given below in figure 3.36. As previously

discussed in subsection 3.3.1, a voltage integrator is added to the output of the

WTA comparator in order to improve the results and behave like a low-pass filter.

Unlike the placement discussed in subsection 3.3.1, here the voltage integrator

is added directly to the output of the comparator followed by the saturating

inverters in order to reduce the overall number of components. In the simulation

stage (subsection 3.3.1), the integrator was added to the output of the saturated

classifier output which would require two more inverters.

Figure 3.36: The classifier.
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3.4.6 Full Circuit

The symbolic representation of the classifier connected to the feature extraction

circuits is given below in figure 3.37. Figure 3.38 shows the complete layout of

the chip. Figure 3.39 shows the layout with the components labelled in a similar

fashion to figure 3.27b. Finally, figure 3.40 shows the chip connected to its pads.

Figure 3.37: In the classifier, the outputs of the VMM are fed into the WTA. The
output of the WTA corresponding to the existence of an arrhythmic beat is then
filtered with a leaky OTA integrator before being thresholded and converted to
a digital signal by the inverters.
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Figure 3.38: The classifier chip.
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Figure 3.39: The classifier chip with components labelled.
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Figure 3.40: The classifier chip surrounded by pads.
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3.4.7 Classifier Results

The simulation results of the classifier are given below, on figure 3.41. As can

be seen from the results below, both the schematic and layout simuations show

success in recognising parts of the arrhythmic waveform. As can be seen from the

results, there are also some misclassifications however, compared to the correct

ones, they are short in duration and can be removed with the inclusion of a

low-pass filter.
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Figure 3.41: The raw classifier output. The output of the WTA prior to low-pass
filtering. Both false positive and negative outputs can be seen.

The results with the inclusion of the voltage integrator at the output of the

classifier are given below in figure 3.42.
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Classifier Results - Processed
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Figure 3.42: The filtered output of the WTA showing the presence of arrhythmic
waveforms as desired.

As can be seen from these results, the inclusion of the voltage integrator has

removed the false positives and negatives. While the duration of the classifier

outputs are shorter that length of the labels, they are still long enough to cover

most of the arrhythmic waveform, indicating its presence.

Figure 3.43 below shows the output of the chip on a 50 S interval of the test

set containing normal and arrhythmic waveforms. Similar to the results in figure

3.42, the chip correctly classifies the arrhythmic waveforms.
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Figure 3.43: The output of the classifier with a 50 second slice from the test set.
The classifier performs as intended, showing the presence of arrhythmias that
align with the target labels.

3.4.7.1 Power Consumption

Simulations showed that the average current drawn by the circuit is 58 µA which,

when multiplied by the Vdd voltage, shows that the total power consumption of

the circuit is 290 µW .

Detailed examination of the currents drawn in the simulations show that while

the upper limit of the current drawn by the analog components is set by their

biasing currents (all nA), the digital components (the inverters and the D-Flip-

Flop counter) drawn on the order of µA during their operation (the transitions

from high-to-low and vice versa).
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This problem could be resolved by replacing the digital components with low-

power digital components from a more power-efficient process (with smaller tran-

sistor gate lengths). Another possible solution, at the cost of more silicon real-

estate, is replacing the voltage buffers (two digital inverters connected in series)

with a custom voltage inverter with a small integrating capacitor or large biasing

currents. With a low threshold voltage (set by biasing the negative input terminal

which may require an extra pin for the reference voltage) the capacitor can be

charged and discharged to/from zero to Vdd as fast as a digital voltage buffer.
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Chapter 4

Conclusion

4.1 Conclusion

In this work, the aim was to create a neuromorphic ECG arrhythmia classifier.

Starting with the algorithm, followed by the hardware design and simulations,

the aim was achieved. The algorithm starts by extracting seven features from the

ECG waveform. These features are then fed into a perceptron that is pre-trained

to classify arrhythmic waveforms.

Initial MatLab simulations show that the algorithm is successful at detecting

arrhythmic waveforms. Following the success of the MatLab results, the algo-

rithm was converted to an analog circuit on Cadence Virtuoso using the XFAB

XC06M3 fabrication process. First an OTA was created which was then used

to implement most of the other functions within the algorithm. A VMM, with

FGMOS transistors to hold the weight values, connected to a WTA current com-

parator was created to implement the classifier.

The simulation results show that the classifier has succeeded in detecting the

arrhythmic waveforms in the test dataset (a 50 second long slice (figure 3.43)).
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Hence, the goal of the work has been successfully achieved. Potential improve-

ments and future goals are discussed below.

4.2 Future Goals

4.2.1 Fabrication

While the circuit works successfully in the simulations, in order to verify its perfor-

mance, it has to be fabricated and tested using real signals. Due to the high cost

of ASIC fabrication coupled with the fabrication schedule of the XFAB foundary,

the circuit could not be fabricated for experimental validation. A possible future

goal is the fabrication and experimental testing of the circuit for verification.

4.2.2 Potential Improvements

As discussed before, in order to further reduce the power consumption of this

circuit, the digital components can be replaced with those of a more efficient

process or replaced by custom analog components that perform similarly.

Another potential improvement is training and implementing more perceptrons

that are sensitive to different types of arrhythmias. This way, the circuit can

identify the type of arrhythmia it encounters. The perceptrons can all receive the

same inputs, negating the need to replicate the pre-processing circuit.
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Appendix A

Extra Info

Information about the following is provided here:

• A.1: The Dataset,

• A.2: MatLab,

• A.3: Cadence,

• A.4: Artificial Neural Network Training.
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A.1 Dataset

All of the ECG waveforms were obtained from the MIT - BIH Arrhythmia

database [14]. Published in the 1980’s, the dataset contains forty-eight half-hour

recordings from forty-seven patients, which were recorded in the 1970’s.

The entire database was first downloaded from PhysioNet [15] (where it is

housed today and is freely available) then processed on MatLab in order to create

the dataset.

The dataset was created by first selecting thirty patients from the database

with a sufficient number of arrhythmias within their recordings. The MLII record-

ings were selected as they have the waveforms of interest.

In total, the generated dataset has:

• 59365 Normal waveforms,

• 6394 Arrhythmic waveforms.

– 5734 PVC waveforms,

– 660 APC waveforms.

The labels provided by the database are timestamped with the relevant label

placed at the center of the waveform. In order to convert this to suit the needs

of the algorithm, the labels were processed on MatLab so that they encompassed

the entire waveform. As shown in the second subplot of figure 3.43 this process

can sometimes combine consequent arrhythmias into a single long label. This did

not turn out to be problematic as both the algorithm and the circuit successfully

isolated each arrhythmic beat (within a combined label) individually.
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A.2 MatLab

All MatLab related operations were performed on the R2018b version of Matlab.

[16]

A.3 Cadence

All circuit and layout designs and simulations were performed on the Virtuoso

Design Environment from Cadence Design Systems [17]. The XFAB XC06M3

fabrication process was used as the basis of the design. Licences for the XFAB

XC06M3 process was obtained thanks to Europractice [18].

Figure A.1 below shows the graphical user interface of Virtuoso during the

design of the layout of the classifier chip.

Figure A.1: A screen shot showing the graphical user interface of the Virtuoso
Design Environment during the layout design process of the classifier chip.
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A.4 Artificial Neural Network Training

Figure A.4 below shows the training algorithm for a single perceptron (similar to

the one used in the classifier). The perceptron receives a 1xn vector as an input,

multiplies it with 1xn weights (ω), sums the products of the input and weights,

and passes the result through the activation function f. Next, the output is

compared to the desired value and the error is calculated. If this error is equal

to that found in the previous r iterations (in 1 iteration, all of the training data

is used to update the weights) then that means that the network cannot learn

better. If not, it means that the weights can be improved. Hence, they are

updated. The update value depends on the type of update function used.

Figure A.2: ANN training
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Appendix B

Test Circuits

The following test circuits are given below:

• B.1: Operational Transconductance Amplifier,

• B.2: Differentiator,

• B.3: Squarer,

• B.4: Leaky Integrator.
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B.1 OTA

Figure B.1: The test circuit for the OTA. Results shown in figure 3.9.

B.2 Differentiator

Figure B.2: The test circuit for the differentiator. Results shown in figure 3.14.
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B.3 Squarer

Figure B.3: The test circuit for the squarer. Results shown in figure 3.16.

B.4 Leaky Integrator

Figure B.4: The test circuit for the leaky integrator. Results shown in figure 3.18.
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Appendix C

Derivations

The following derivations are given below:

• C.1: The OTA Gm - IBIAS Relationship

• C.2: Derivation of the C4 Transfer Function

• C.3: Derivation of the Squarer Transfer Function

• C.4: Derivation of the Integrator Transfer Function
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C.1 The OTA Gm - IBIAS Relationship

Using the test circuit in B.1, the OTA transfer function was generated for different

bias current values. The transconductance (Gm) value is obtained using the

following equation is used:

Gm = max

(
diout
d∆V

)
(C.1)

The figures below (generated in Cadence Virtuoso) show the application of

equation C.1 to three different bias current based OTA transfer functions (fig-

ure C.1). As can be seen from figure C.1b, larger bias currents lead to larger

transconductance values.

(a) The OTA transfer function. At three different bias currents.

(b) The gm-Ibias relationship.

Figure C.1: The transconductance is equal to the maximum value of the derivative
of the transfer function.
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C.2 Derivation of the C4 Transfer Function

Figure C.2: The C4 filter.

Writing nodal equations around the nodes Vout and Va (figure C.2) yields:

Vout
1

jωCL

+
Vout − Va

1
jωCfb

+Gm2(Va − VREF ) = 0→ Va = Vout
jω(CL + Cfb)

jωCfb −Gm2

(C.2)

Va−Vin
1

jωCin

+ Va−Vout
1

jωCfb

+Gm1(Vout − Va) = 0

Va(jω(Cin + Cfb) +Gm1)− Vout(Gm1 + jωCfb) = Vin(jωCfb −Gm2)
(C.3)

We can simplify equations C.2 and C.3 with the following substitutions:

Cin + Cfb = CIN

CL + Cfb = COUT

Va = Vout
jω(COUT )

jωCfb −Gm2

(C.4)

Va(jω(CIN) +Gm1)− Vout(Gm1 + jωCfb) = Vin(jωCfb −Gm2) (C.5)
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Combining equations C.4 and C.5 yields:

Vout

(
(jωCIN +Gm1)

jωCOUT
jωCfb−Gm2

−Gm1 − jωCfb
)

= Vin(jωCin)

The inside of the bracket on the left hand side can be rewritten as:

−ω2COUTCIN+jωCOUTGm1

−Gm2+jωCfb
−Gm1−jωCfb =

−ω2COUTCIN+Gm1Gm2+ω2C2
fb+jω(COUTGm1+Gm2Cfb−Gm1Cfb)

−Gm2+jωCfb

Hence,

Vout
Vin

=
(jωCin)−Gm2 + jωCfb

−ω2COUTCIN +Gm1Gm2 + ω2C2
fb + jω(COUTGm1 +Gm2Cfb −Gm1Cfb)

(C.6)

The following simplifications can be made to equation C.6:

Vout
Vin

=
j2ω2CinCfb−jωCinGm2

Gm1Gm2+jω(CLGm1+CfbGm2)+j2ω2(CinCL+CfbCL+CinCfb)

Vout
Vin

=
1

Gm1Gm2
1

Gm1Gm2

j2ω2CinCfb−jωCinGm2

Gm1Gm2+jω(CLGm1+CfbGm2)+j2ω2(CinCL+CfbCL+CinCfb)

Vout
Vin

=
1

Gm1Gm2
(j2ω2CinCfb − jωCinGm2)

1 + jω
(

CL
Gm2

+
Cfb
Gm1

)
+ j2ω2

Gm1Gm2
(CinCL + CfbCL + CinCfb)

(C.7)

In order to transform equation C.7 into the form shown in equation 3.5 the

following steps will be taken:

j2ω2τ 2 = j2ω2CinCL+CfbCLCfbCin
Gm1Gm2

→ τ =
√

CinCL+CfbCLCfbCin
Gm1Gm2

τ
Q

= CL

Gm2+
Cfb
Gm1

→ Q =

√
CinCL+CfbCLCfbCin

Gm1Gm2
CL

Gm2+
Cfb
Gm1

Moving on:

Vout
Vin

=
1

Gm1Gm2
(j2ω2CinCfb−jωCinGm2)

1+jω τ
Q
+j2ω2τ2

j2ω2CinCfb−jωCinGm2
Gm1Gm2

τ
Q

=
j2ω2CinCfb−jωCinGm2

Gm1Gm2

Gm1Gm2

CLGm1+CfbGm2
=

j2ω2CinCfb−jωCinGm2

CLGm1+C2Gm2
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j2ω2CinCfb−jωCinGm2

CLGm1+C2Gm2
= CinGm2

CLGm1+CfbGm2
jω
(
jω

Cfb
Gm2
− 1
)

Vout
Vin

=
τ
Q

CinGm2
CLGm1+CfbGm2

(
jω

Cfb
Gm2

−1
)

1+jω
(
CL
Gm2

+
Cfb
Gm1

)
+ j2ω2

Gm1Gm2
(CinCL+CfbCL+CinCfb)

τa =
Cfb
Gm2

τb =
CinGm2

CLGm1+CfbGm2

(C.8)

Converting equation C.8 to the S domain:

Vout
Vin

=
sτb

τ
Q

(sτa − 1)

1 + s τ
Q

+ s2τ 2
(C.9)

Which is the equation found in 3.6.
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C.3 Derivation of the Squarer Transfer Func-

tion

The main principle behind this circuit is translinearity and translinear circuits

[13]. The term is defined as:

”...a class of circuits whose large-signal behaviour hinges on the extraordinary

precise exponential current-voltage characteristic of the bipolar transistor and the

intimate thermal contact and close matching of monolithically integrated devices.”

[13]

Translinear circuits have the ability to perform analog mathematical operations

with currents (such as multiplication and squaring) that are not possible with

linear circuits. The exponential current-voltage relationship (mentioned above)

of an nMOS transistor can be described with the following equation:

I = W
L
I0e

κVg/UT
(
e−Vs/UT − e−Vd/UT

)
If VDS (the drain-to-source voltage) across the transistor is greater than 4UT ,

then the equation above could be simplified to:

I =
W

L
I0e

(κVg−Vs)/UT (C.10)
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(a) Clockwise element.
(b) Counterclockwise element.

(c) A simplified version of the squaring circuit in 3.15a.

Figure C.3: The red arrows indicate the orientation of the transistor in the
translinear loop while the green arrows indicate the direction of the current.
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According to the translinearity principle, the product of subthreshold currents

flowing through the clockwise (figure C.3a) and counterclockwise (figure C.3b)

elements within a translinear loop (figure C.3c) must be equal. As shown by

equation C.11 below. For the full derivation of this equation refer to [13].

∏
nεCW

In =
∏

nεCCW

In (C.11)

The circuit in figure C.3c is a simplified version of the upper potion of the

squaring circuit in figure 3.15a. Following the loop (the red arrow) within this

circuit, it can be seen that the current I1 flows through the two counterclockwise

transistors while the currents I2 and I3 flow through the two clockwise transistors.

Applying equation C.11 to this circuit yields:

I1 ∗ I1 = I2 ∗ I3 → (I1)
2 = I2 ∗ I3 (C.12)

Rearranging the terms within C.12 leads to:

I3 =
(I1)

2

I2
(C.13)

Which is the same as equation 3.7.
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C.4 Derivation of the Integrator Transfer Func-

tion

First, let’s begin with the ideal current voltage relationship of a capacitor:

(a) The output voltage is equal to
the integration of the current flow-
ing into the capacitor.

(b) The circuit implemented with
an OTA.

Figure C.4: The integrator.

Where (assuming that the initial voltage across the capacitor is equal to 0)

the voltage across the capacitor (Vout in figure C.4a) is equal to the product of

the integration of the voltage over time and the inverse of the capacitance of the

capacitor:

Vout =
1

C

∫ T

0

iindt (C.14)

Which can be rewritten in the Laplace (S -) domain as:

Vout(S) =
1

sC
Iin(S) (C.15)

The circuit in figure C.4a can be implemented using an OTA, as shown in

figure C.4b. Here, rewriting equation C.15 becomes:
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Vout(S) =
1

sC
GmVin(S) (C.16)

Under ideal conditions, the capacitor will hold onto the charge it accumulates

forever. However, in real life capacitors have an internal resistance that leaks

the accumulated charge. An external resistance may also be introduced which

discharges the capacitor on purpose.

Figure C.5: The inclusion of a resistance causes the capacitor to leak.

Adding a resistor to the output of figure C.4b as shown in figure C.5 alters the

transfer function as follows:

Vout(S) =
GmR

1 + sCR
Vin(S) (C.17)

Where GmR determines the overall gain and the product of R and C deter-

mines the time constant of the leakage.

The circuit in figure C.5 can be created using an OTA based pseudo-resistor

(figure C.6a, which is created by grounding the positive input terminal and con-

necting the negative input terminal to the output) resulting in figure C.6b. De-

pending on the direction of the current, the current will flow through the upper

PMOS (positive) or lower NMOS (negative) output transistors of the OTA.
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(a) An OTA based pseudo-resistor
with tunable resistance. The resis-
tance is equal to 1

Gm
.

(b) The leaky integrator circuit imple-
mented with an OTA based pseudo-resistor.

Figure C.6: The leaky integrator implemented with a pseudo-resistance.

Where the output currents of the two OTAs are:

Io1 = Gm1Vin

Io2 = −Gm2Vout

The output voltage is, hence, equal to the total current flowing through the

capacitor:

Vout = Io1+Io2
sC

= Gm1Vin−Gm2Vout
sC

The overall transfer function can be rewritten as:

Vout
Vin

=
Gm1

1 + sC
Gm2

(C.18)

Where, similar to RC in equation C.17, C
Gm2

is the leakage time constant.
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Removing the first OTA (the one that converts the input voltage into a current)

so that the input is a current (as shown in figure 3.17a, section 3.4.2.6) alters

the transfer function as 3.8.

Vout
Iin

=
1

1 + sC
Gm

(C.19)
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Appendix D

Code

The MatLab code used for the preprocessing stage is given below. The parts of

the code where the Pan-Tompkins algorithm [9] is used are from [10].

1 c l e a r a l l

2 c l o s e a l l

3 c l c

4

5 load ECG dataset . mat

6 ECG dataset s igna l s = ECG dataset s igna l s ( 1 , : ) ;

7 ECG dataset tm = ECG dataset tm ( 1 , : ) ;

8 ECG dataset Fs = 360 ;

9 %%

10 % F i r s t Stage : BPF

11 ECG datase t s i gna l s bp f = [ ] ;

12

13 f 1 =5; % c u t t o f f low frequency to

get r i d o f b a s e l i n e wander

14 f 2 =15; % c u t t o f f f r equency to

d i s ca rd high f requency no i s e

15 N = 3 ; % order o f 3 l e s s

p r o c e s s i n g
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16

17 f o r i = 1 : l ength ( ECG dataset Fs )

18 f s = ECG dataset Fs ( i ) ;

19 Wn=[ f1 f2 ]∗2/ f s ; % cutt o f f based on f s

20 [ a , b ] = butte r (N,Wn) ; % bandpass f i l t e r i n g

21

22 ecg h = f i l t f i l t ( a , b , ECG dataset s igna l s ( i , : ) ) ;

23 ecg h = ecg h / max( abs ( ecg h ) ) ;

24

25 ECG datase t s i gna l s bp f = [ ECG datase t s i gna l s bp f ;

ecg h ] ;

26 end

27 c l e a r a b ecg h i N Wn f s f 1 f 2

28 %%

29 % Second Stage : Der iva t ive

30 % −−−−−− H( z ) = (1/8T)(−zˆ(−2) − 2zˆ(−1) + 2z + z ˆ(2) )

−−−−−−−−− %

31 ECG datase t s i gna l s bp f ddt = [ ] ;

32 f o r i = 1 : l ength ( ECG dataset Fs )

33 f s = ECG dataset Fs ( i ) ;

34 b = [ 1 2 0 −2 −1] .∗(1/8) ∗ f s ;

35 ecg d = f i l t f i l t (b , 1 , ECG datase t s i gna l s bp f ( i , : ) ) ;

36 ecg d = ecg d /max( ecg d ) ;

37 ECG datase t s i gna l s bp f ddt = [

ECG datase t s i gna l s bp f ddt ; ecg d ] ;

38 end

39 c l e a r b i ecg d f s

40 %%

41 % Third Stage : Square ing

42 ECG datase t s i gna l s bp f ddt sq =

ECG datase t s i gna l s bp f ddt . ˆ 2 ;

43

44 %%
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45 % Fourth Stage : I n t e g r a t o r

46 %−−−−−−−Y( nt ) = (1/N) [ x (nT−(N − 1)T)+ x (nT − (N − 2)T)

+.. .+x (nT)]−−−−−−−−−%

47 ECG PT = [ ] ;

48 f o r i = 1 : l ength ( ECG dataset Fs )

49 f s = ECG dataset Fs ( i ) ;

50 ecg m = conv ( ECG datase t s i gna l s bp f ddt sq ( i , : ) , . . .

51 ones (1 , round (0 .150∗ f s ) ) /round (0 .150∗ f s ) ) ;

52 ECG PT = [ECG PT; ecg m ] ;

53 end

54 c l e a r i ecg m f s

55 %%

56 plot PanTompson = 1 ;

57 i f ( plot PanTompson == 1)

58 ECG sample id = 1 ;

59 Time sample = [260000 , 265000 ] ;

60

61 aa Raw signal = . . .

62 ECG dataset s igna l s ( ECG sample id , [ Time sample (1 ) :

Time sample (2 ) ] ) ;

63 time = ECG dataset tm ( ECG sample id , [ Time sample (1 ) :

Time sample (2 ) ] ) ;

64 ac BPF signal = . . .

65 ECG datase t s i gna l s bp f ( ECG sample id , [ Time sample

(1 ) : Time sample (2 ) ] ) ;

66 a d d d t s i g n a l = ECG datase t s i gna l s bp f ddt (

ECG sample id , . . .

67 [ Time sample (1 ) : Time sample (2 ) ] ) ;

68 a e s q u a r e d s i g n a l = ECG datase t s i gna l s bp f ddt sq (

ECG sample id , . . .

69 [ Time sample (1 ) : Time sample (2 ) ] ) ;

70 a b i n t e g r a t e d s i g n a l = ECG PT( ECG sample id , [

Time sample (1 ) : Time sample (2 ) ] ) ;
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71

72 f i g u r e (2 )

73 s g t i t l e ( ’Pan Tompkins Algorithm ’ )

74 subplot ( 5 , 1 , 1 )

75 p lo t ( time , aa Raw signal ) ;

76 t i t l e ( ’Raw S igna l ’ )

77 xlim ( [ time (1 ) , time ( end ) ] )

78

79 subplot ( 5 , 1 , 2 )

80 p lo t ( time , ac BPF signal ) ;

81 t i t l e ( ’BPF F i l t e r e d S igna l ’ )

82 xlim ( [ time (1 ) , time ( end ) ] )

83

84 subplot ( 5 , 1 , 3 )

85 p lo t ( time , a d d d t s i g n a l ) ;

86 t i t l e ( ’d/dt S igna l ’ )

87 xlim ( [ time (1 ) , time ( end ) ] )

88

89 subplot ( 5 , 1 , 4 )

90 p lo t ( time , a e s q u a r e d s i g n a l ) ;

91 t i t l e ( ’d/dt S igna l ’ )

92 xlim ( [ time (1 ) , time ( end ) ] )

93

94 subplot ( 5 , 1 , 5 )

95 p lo t ( time , a b i n t e g r a t e d s i g n a l ) ;

96 t i t l e ( ’ In t eg ra t ed S igna l ’ )

97 xlim ( [ time (1 ) , time ( end ) ] )

98 x l a b e l ( ’Time ( s ) ’ )

99

100 % f i g u r e (2 )

101 % subplot ( 2 , 1 , 1 )

102 % plo t ( time , a b i n t e g r a t e d s i g n a l ) ;

103 % [ pks , l c s ] = . . .
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104 % f indpeaks ( a b i n t e g r a t e d s i g n a l , ’ MinPeakHeight

’ , 0 . 0 5 , ’ MinPeakDistance ’ , 2 0 0 )

105 % subplot ( 2 , 1 , 2 )

106 % plo t ( time , smooth ( a b i n t e g r a t e d s i g n a l ) ) ;

107 % f indpeaks ( smooth ( a b i n t e g r a t e d s i g n a l ) , . . .

108 % ’ MinPeakHeight ’ , 0 . 0 5 , ’ MinPeakDistance ’ , 2 0 0 )

109 c l e a r aa Raw signal ac BPF signal a d d d t s i g n a l

a e s q u a r e d s i g n a l

110 c l e a r time ECG sample id Time sample

a b i n t e g r a t e d s i g n a l

111 end

112

113 plot PanTompson = 1 ;

114 i f ( plot PanTompson == 1)

115 ECG sample id = 1 ;

116 Time sample = [260000 , 265000 ] ;

117

118 aa Raw signal = . . .

119 ECG dataset s igna l s ( ECG sample id , [ Time sample (1 ) :

Time sample (2 ) ] ) ;

120 time = ECG dataset tm ( ECG sample id , [ Time sample (1 ) :

Time sample (2 ) ] ) ;

121 ac BPF signal = . . .

122 ECG datase t s i gna l s bp f ( ECG sample id , [ Time sample

(1 ) : Time sample (2 ) ] ) ;

123 a d d d t s i g n a l = ECG datase t s i gna l s bp f ddt (

ECG sample id , . . .

124 [ Time sample (1 ) : Time sample (2 ) ] ) ;

125 a e s q u a r e d s i g n a l = ECG datase t s i gna l s bp f ddt sq (

ECG sample id , . . .

126 [ Time sample (1 ) : Time sample (2 ) ] ) ;

127 a b i n t e g r a t e d s i g n a l = ECG PT( ECG sample id , [

Time sample (1 ) : Time sample (2 ) ] ) ;

98



128

129 f i g u r e (1 )

130 s g t i t l e ( ’Pan Tompkins Algorithm ’ )

131 subplot ( 5 , 1 , 1 )

132 p lo t ( time , aa Raw signal ) ;

133 t i t l e ( ’Raw S igna l ’ )

134 xlim ( [ time (1 ) , time ( end ) ] )

135

136 subplot ( 5 , 1 , 2 )

137 p lo t ( time , ac BPF signal ) ;

138 t i t l e ( ’BPF F i l t e r e d S igna l ’ )

139 xlim ( [ time (1 ) , time ( end ) ] )

140

141 subplot ( 5 , 1 , 3 )

142 p lo t ( time , a d d d t s i g n a l ) ;

143 t i t l e ( ’d/dt S igna l ’ )

144 xlim ( [ time (1 ) , time ( end ) ] )

145

146 subplot ( 5 , 1 , 4 )

147 p lo t ( time , a e s q u a r e d s i g n a l ) ;

148 t i t l e ( ’d/dt S igna l ’ )

149 xlim ( [ time (1 ) , time ( end ) ] )

150

151 subplot ( 5 , 1 , 5 )

152 p lo t ( time , a b i n t e g r a t e d s i g n a l ) ;

153 t i t l e ( ’ In t eg ra t ed S igna l ’ )

154 xlim ( [ time (1 ) , time ( end ) ] )

155 x l a b e l ( ’Time ( s ) ’ )

156

157 % f i g u r e (2 )

158 % subplot ( 2 , 1 , 1 )

159 % plo t ( time , a b i n t e g r a t e d s i g n a l ) ;

160 % [ pks , l c s ] = . . .
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161 % f indpeaks ( a b i n t e g r a t e d s i g n a l , ’ MinPeakHeight

’ , 0 . 0 5 , ’ MinPeakDistance ’ , 2 0 0 )

162 % subplot ( 2 , 1 , 2 )

163 % plo t ( time , smooth ( a b i n t e g r a t e d s i g n a l ) ) ;

164 % f indpeaks ( smooth ( a b i n t e g r a t e d s i g n a l ) , . . .

165 % ’ MinPeakHeight ’ , 0 . 0 5 , ’ MinPeakDistance ’ , 2 0 0 )

166 c l e a r aa Raw signal ac BPF signal a d d d t s i g n a l

a e s q u a r e d s i g n a l

167 c l e a r time ECG sample id Time sample

a b i n t e g r a t e d s i g n a l plot PanTompson

168 end

169 %%

170 % Feature Extract ion

171 RR Amplitudes = {} ;

172 R Int e rva l s = {} ;

173 f o r i = 1 : l ength ( ECG dataset Fs )

174 S igna l = ECG PT( i , : ) ;

175 time = ECG dataset tm ( i , : ) ;

176 [ Peaks , Locs ] = f indpeaks ( S ignal , ’ MinPeakHeight ’ , 0 . 0 5 ,

’ MinPeakDistance ’ ,200) ;

177 RR Amplitudes = [ RR Amplitudes ;{ Peaks } ] ;

178 R Int e rva l s = [ R In t e rva l s ; { time ( Locs ( 2 : end ) )−time (

Locs ( 1 : end−1) ) } ] ;

179 end

180 c l e a r S i gna l time i Peaks Locs

181 % BPF Features

182 N = 3 ;

183 ECG dataset bpf a = [ ] ;

184 ECG dataset bpf b = [ ] ;

185 ECG dataset bpf c = [ ] ;

186 ECG dataset bpf d = [ ] ;

187 ECG dataset bpf e = [ ] ;

188
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189 f o r i = 1 : l ength ( ECG dataset Fs )

190 f s = ECG dataset Fs ( i ) ;

191 % a . 0.1−1 Hz

192 Wn a=[0.1 1 ]∗2/ f s ;

193 [ bpf a a , bp f a b ] = butte r (N, Wn a) ;

194 ECG dataset bpf a = [ ECG dataset bpf a ; f i l t f i l t (

bpf a a , bpf a b , ECG dataset s igna l s ( i , : ) ) ] ;

195 % b . 1 Hz−3 Hz

196 Wn b=[1 3 ]∗2/ f s ;

197 [ bpf b a , bpf b b ] = butte r (N, Wn b) ;

198 ECG dataset bpf b = [ ECG dataset bpf b ; f i l t f i l t (

bpf b a , bpf b b , ECG dataset s igna l s ( i , : ) ) ] ;

199 % c . 3 Hz− 10 Hz

200 Wn c=[3 10]∗2/ f s ;

201 [ bp f c a , bp f c b ] = butte r (N, Wn c) ;

202 ECG dataset bpf c = [ ECG dataset bpf c ; f i l t f i l t (

bp f c a , bpf c b , ECG dataset s igna l s ( i , : ) ) ] ;

203 % d . 10 Hz − 30 Hz

204 Wn d=[10 30]∗2/ f s ;

205 [ bpf d a , bpf d b ] = butte r (N, Wn d) ;

206 ECG dataset bpf d = [ ECG dataset bpf b ; f i l t f i l t (

bpf d a , bpf d b , ECG dataset s igna l s ( i , : ) ) ] ;

207 % e . 30 Hz − 50 Hz

208 Wn e=[30 50]∗2/ f s ;

209 [ bp f e a , bp f e b ] = butte r (N, Wn e) ;

210 ECG dataset bpf e = [ ECG dataset bpf e ; f i l t f i l t (

bp f e a , bpf e b , ECG dataset s igna l s ( i , : ) ) ] ;

211 end

212 Time sample = [260000 , 265000 ] ;

213 f i g u r e ( )

214 ECG dataset s igna l s=ECG dataset s igna l s ( [

Time sample (1 ) : Time sample (2 ) ] ) ;
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215 time = ECG dataset tm ( [ Time sample (1 ) : Time sample (2 ) ] )

;

216 subplot ( 6 , 1 , 1 )

217 p lo t ( time , ECG dataset s igna l s )

218 t i t l e ( ’Raw ECG Signa l ’ )

219 xlim ( [ time (1 ) , time ( end ) ] )

220 ECG dataset s igna l s=ECG dataset bpf a ( [ Time sample

(1 ) : Time sample (2 ) ] ) ;

221 time = ECG dataset tm ( [ Time sample (1 ) : Time sample (2 ) ] )

;

222 subplot ( 6 , 1 , 2 )

223 p lo t ( time , ECG dataset s igna l s )

224 t i t l e ( ’ 0 . 1 − 1HZ BPF ECG Signa l ’ )

225 xlim ( [ time (1 ) , time ( end ) ] )

226 ECG dataset s igna l s=ECG dataset bpf b ( [ Time sample

(1 ) : Time sample (2 ) ] ) ;

227 time = ECG dataset tm ( [ Time sample (1 ) : Time sample (2 ) ] )

;

228 subplot ( 6 , 1 , 3 )

229 p lo t ( time , ECG dataset s igna l s )

230 t i t l e ( ’ 1 − 3HZ BPF ECG Signa l ’ )

231 xlim ( [ time (1 ) , time ( end ) ] )

232 ECG dataset s igna l s=ECG dataset bpf c ( [ Time sample

(1 ) : Time sample (2 ) ] ) ;

233 time = ECG dataset tm ( [ Time sample (1 ) : Time sample (2 ) ] )

;

234 subplot ( 6 , 1 , 4 )

235 p lo t ( time , ECG dataset s igna l s )

236 t i t l e ( ’ 3 − 10HZ BPF ECG Signa l ’ )

237 xlim ( [ time (1 ) , time ( end ) ] )

238 ECG dataset s igna l s=ECG dataset bpf d ( [ Time sample

(1 ) : Time sample (2 ) ] ) ;
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239 time = ECG dataset tm ( [ Time sample (1 ) : Time sample (2 ) ] )

;

240 subplot ( 6 , 1 , 5 )

241 p lo t ( time , ECG dataset s igna l s )

242 t i t l e ( ’ 10 − 30HZ BPF ECG Signa l ’ )

243 xlim ( [ time (1 ) , time ( end ) ] )

244 ECG dataset s igna l s=ECG dataset bpf e ( [ Time sample

(1 ) : Time sample (2 ) ] ) ;

245 time = ECG dataset tm ( [ Time sample (1 ) : Time sample (2 ) ] )

;

246 subplot ( 6 , 1 , 6 )

247 p lo t ( time , ECG dataset s igna l s )

248 t i t l e ( ’ 30 − 50HZ BPF ECG Signa l ’ )

249 x l a b e l ( ’Time ’ )

250 xlim ( [ time (1 ) , time ( end ) ] )

251 c l e a r f s i N Wn a Wn b Wn c Wn d Wn e bp f a a bp f b a

b p f c a bpf d a b p f e a

252 c l e a r bp f a b bpf b b bp f c b bpf d b bp f e b

ECG datase t s i gna l s bp f ddt

253 c l e a r ECG datase t s i gna l s bp f ddt sq

ECG datase t s i gna l s bp f
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