THE MOLECULAR PHYLOGENETIC ANALSIS OF SELECTED GALANTHUS SPECIES FROM NORTHWEST TURKEY

by
Zeynep Çelen

BS. in Molecular Biology and Genetics, Boğaziçi University, 2000

> Submitted to the Institute of Environmental Sciences in partial fulfillment of the requirements for the degree of

> Master of Science
> in

Environmental Sciences

Boğaziçi University
2005

THE MOLECULAR PHYLOGENETIC ANALSIS OF SELECTED GALANTHUS SPECIES FROM NORTHWEST TURKEY

APPROVED BY:

Prof. Işıl BALCIOĞLU

Prof. Tuna EKİM

Prof. Nilsun İNCE

Abstract

The molecular phylogenetic relationship of the Galanthus taxa found in Northwest Turkey was investigated. Galanthus plicatus subsp. byzantinus, Galanthus nivalis and their potential hybrid Galanthus xvalentinei nothosubsp. subplicatus were analyzed using ribosomal DNA (ITS) region and chloroplast introns (trnL(UAA) intron, intragenic spacer between $\operatorname{trn} \mathrm{L}(\mathrm{UAA})-\operatorname{trn} \mathrm{F}(\mathrm{GAA})$). The samples morphologically identified as G. nivalis and found in Turkey, did not genetically match G. nivalis recognized in Europe, they were identical to the samples defined as G. xvalentinei nothosubsp. subplicatus. G. xvalentinei nothosubsp. subplicatus samples showed no indications of recent hybridization or instability in any of the molecular markers examined. They were placed on a separate node indicating a genetically stable taxonomic unit, showing a range of morphological markers. The samples morphologically identified as G. plicatus subsp. byzantinus were on the nuclear DNA level very similar to G. plicatus. The chloroplast sequences, however, were very similar to those of G. xvalentinei nothosubsp. subplicatus. This could be indicative of an ancient hybrid but currently a stable species. These results show that the presence of G. nivalis in Turkey seems highly unlikely, and that G. xvalentinei nothosubsp. subplicatus should be defined as a separate stable taxonomic unit that requires recognition and further population ecology research.

ÖZET

Marmara bölgesinde bulunan üç Galanthus (Kardelen) türünün moleküler filogenetik incelemeleri yapıldı. Galanthus plicatus subsp. byzantinus, Galanthus nivalis ve morfolojik olarak hibritleri olarak kabul edilen Galanthus xvalentinei nothosubsp. subplicatus'un çekirdekte bulunan ribosomal DNA (ITS) bölgesi ile kloroplast intronlarının ($\operatorname{trnL}(\mathrm{UAA})$ intronun ve $\operatorname{trnL}(\mathrm{UAA})-\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ genleri arasındaki bölgenin) sekansları analiz edildi. Morfolojik olarak G. nivalis diye tanımlanan bitkiler genetik açıdan Avrupa'da kabul edilen G. nivalis‘den farklı, ve G. xvalentinei nothosubsp. subplicatus örnekleri ile aynı olduğu anlaşıldı. G. xvalentinei nothosubsp. subplicatus örnekleri ise hiçbir moleküler belirteçte hibritleşme belirtileri veya değişkenlik göstermedi. Filogenetik analizle genetik olarak ayrı ve sabit bir tür olduğu anlaşıld. Morfolojik olarak G. plicatus subsp. byzantinus olarak tanımlanan bitkiler nükleer DNA seviyesinde G. plicatus'a yakın durdu. Ama kloroplast sekansları, G. xvalentinei nothosubsp. subplicatus'a çok benzer çıktı. Bu iki genom arasındaki uyumsuzluk eski bir hibrit olabileceği anlamına gelebilir. Bu sonuçlar, Türkiye'de G. nivalis bulunmadığına dair kanıtlar sunmakta ve G. xvalentinei nothosubsp. subplicatus'un hibrit değil, ayrı bir taksonomik ünite halinde yeniden adlandırılmasını ve popülasyon incelemeleriyle birlikte yeni bir koruma stratejisinin oluşturulmasını gerektirmektedir.

TABLE OF CONTENTS

ACKNOWLEDGEMENT iii
ABSTRACT iv
ÖZET v
TABLE OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF SYMBOLS xii

1. INTRODUCTION 1
1.1. Conservation Biology and Phylogenetics 1
1.2. Molecular Phylogenetics 2
1.3. Plant Phylogenetic Analysis 3
1.3.1. Nuclear Phylogenetic Marker: Ribosomal DNA 4
1.3.1.1. ITS (internal transcribed spacer) region 5
1.3.1.2. 5.8S coding region 6
1.3.2. Chloroplast Phylogenetic Marker: The tRNA Intragenic 6Spacers
1.3.2.1. The $\operatorname{tr} n \mathrm{~L}(\mathrm{UAA})$ intron and $\operatorname{trnL}(\mathrm{UAA}) 3$ 'exon - 7$\operatorname{trn} \mathrm{F}$ (GAA) intragenic spacer.
1.4 Galanthus Species and Molecular Phylogenetics 7
2. THESIS OBJECTIVE 11
3. MATERIALS AND METHODS 12
3.1. Plant Samples 12
3.2. DNA extraction and Molecular Analysis 13
3.2.1. PCR Amplification of Nuclear Ribosomal ITS Region 13
3.2.2. PCR Amplification of the Chloroplast Introns 14
3.2.3. Gel Electrophoresis 14
3.2.4. Sequencing of the PCR Products 15
3.3. Statistical Analysis 15
3.4. Comparison with Other Galanthus Species 17
3.5 Checking for the Functionality of the ITS region 17
3.5.1. Angiosperm 5.8S Specific Site 17
3.5.2. ITS1 Functionality 18
3.2.3. ITS2 Functionality: Through the analysis of Secondary 18 mRNA Structure
4. RESULTS AND DISCUSSION 19
4.1. The Phylogenetic Analysis of Galanthus Species through Nuclear ITS 19 Region
4.1.1. Functionality of the ITS Region 21
4.1.2. Phylogenetic Analysis 24
4.2. Phylogenetic Analysis of the Galanthus Species through Chloroplast 26
Introns
4.2.1. Phylogenetic Analysis of the Chloroplast Introns 29
4.3. The Combined Analysis of Nuclear and Chloroplast Markers 31
4.4. Is G. xvalentinei nothosubsp. subplicatus a Hybrid? 33
4.5. Could G. plicatus subsp. byzantinus be an Ancient Hybrid? 35
5. CONCLUSIONS 38
REFERENCES 40
APPENDIX I (Construction of the consensus ITS region sequences) 46
APPENDIX II (Construction of consensus trnL(UAA) intron and $\operatorname{trnL}(\mathrm{UAA})$ 503'exon-trnF(GAA) intragenic spacer sequences.)
APPENDIX III (DNA Sequences of the species of Galanthus series used in 55 phylogenetic analysis.)

LIST OF TABLES

Table 1.1 Distribution and status of G.nivalis in Europe. Taken from EURO+Med Plant Database.

Table 3.1 Geographical coordinates of collected samples.
13
$\begin{array}{lll}\text { Table 3.2 } & \text { The GENBANK accession numbers of Galanthus species ITS } & 16 \\ & \text { region and chloroplast intron sequences. }\end{array}$

Table 4.1 The DNA content of ITS1-5.8S-ITS2 region of the samples. 20

Table 4.2 The G+C content of the samples' chloroplast intron DNA. 27

LIST OF FIGURES

Abstract

Figure 1.1. The schematic representation of the rDNA subunits and the multigene family.

Figure 1.2. The schematic representation of tRNA genes and the non-coding 7 regions.

Figure 1.3. G. plicatus subsp. byzantinus.

Figure 1.4. G. nivalis.
$\begin{array}{lll}\text { Figure 3.1. } & \text { Map of approximate locations of sample collection in Northwest } & 12 \\ & \text { Turkey. } & \end{array}$

Figure 4.1. The Gel Electrophoresis of ITS region PCR products of samples. 19

Figure 4.2. A section of the sequencing chromatogram of the ITS 1 region of 19 sample 11.

Figure 4.3. The phylogenetic tree of the Galanthus samples constructed using rDNA (ITS1-5.8S-ITS2) sequences.

Figure 4.4. The conserved angiosperm 21 base pair core motif of ITS1 in selected Galanthus species.

Figure 4.5. Predicted secondary structure of ITS2 mRNA of G. plicatus subsp. byzantinus. ($\mathrm{dG}=-91.1$)

Figure 4.6. Predicted secondary structure of ITS2 mRNA of G. xvalentinei nothosubsp. subplicatus. $(\mathrm{dG}=-94.3)$

Figure 4.7. The phylogenetic tree of Galanthus species constructed using rDNA region (ITS1-5.8S-ITS2) data.

Figure 4.8. The consensus MP tree of the Galanthus series, ITS1 and ITS2 sequences.

Figure 4.9. The phylogenetic tree of the Galanthus series including the Turkish samples with 5.8 S rDNA sequences.

Figure 4.10. The gel electrophoresis of $\operatorname{trnL}(\mathrm{UAA})$ intron PCR products of the samples.

Figure 4.11. The phylogenetic tree of Galanthus samples using chloroplast intragenic spacer between $\operatorname{trn} \mathrm{L}(\mathrm{UAA})$ and $\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ genes.

Figure 4.12. The phylogenetic tree of Galanthus samples with chloroplast $\operatorname{trnL}(\mathrm{UAA})$ intron data.

Figure 4.13. The phylogenetic tree of the Galanthus series using chloroplast trn (UAA) data and the spacer between trn L(UAA) 3'exon and $\operatorname{trn} \mathrm{F}(\mathrm{GAA})$.

Figure 4.14. The MP consensus parsimony tree of the Galanthus series with $t r n L(\mathrm{UAA})$ Group I intron.

Figure 4.15. The phylogenetic tree of the Galanthus series using chloroplast $\operatorname{trnL}(\mathrm{UAA})$ intron data.

Figure 4.16. The MP consensus tree of the chloroplast introns and nuclear ITS regions analyzed together.

Figure 4.17. 2-D representation of chloroplast and nuclear DNA distances with respect to G. nivalis.

Figure 4.18.	2-D representation of chloroplast and nuclear DNA distances with	33
	respect to G. plicatus.	

Figure 4.19. The phylogenetic trees of potential parents (underlined) with G. 34 xvalentinei nothosubsp. subplicatus (A: Both nuclear and chloroplast DNA data; B: only nuclear DNA data; C : only chloroplast nuclear data.).

Figure 4.20. The phylogenetic tree of G. plicatus subsp. byzantinus with G. xvalentinei nothosubsp. subplicatus and G. plicatus using the ITS region.

Figure 4.21. The phylogenetic tree of G. plicatus subsp. byzantinus with G. xvalentinei nothosubsp. subplicatus and G. plicatus using chloroplast introns.

Figure 4.22. The map of distribution of G. plicatus subsp. byzantinus, 38 G. xvalentinei nothosubsp. subplicatus and G. plicatus in Turkey. The circles represent the DNA regions that are close to identical between species.

LIST OF SYMBOLS

DNA	Deoxy-ribonucleic Acid
rDNA	Ribosomal Deoxy-ribonucleic Acid
tRNA	Transfer Ribonucleic Acid
ITS	Internal Transcribed Spacer
PCR	Polymerase Chain Reaction
dATP	2'-deoxyadenosine 5'-triphosphate $^{\text {dTTP }}$
2'-deoxythymidine 5'-triphosphate	
dGTP	2'-deoxyguanosine 5'-triphosphate $^{\text {dCTP }}$
2'-deoxyguanosine 5'-triphosphate	
G+C	Guanine + Cytosine
bp	Base Pairs
pg	10^{-9} Kg
μ L	10^{-6} L
mM	$10^{-3} \mathrm{M}$
μM	$10^{-6} \mathrm{M}$
U	Units
NJ	Neighbor Joining
MP	Maximum Parsimony
CI	Consistency Index
RI	Retention Index
2-D	Two Dimentional
CITES	Convention for the International Trade of Endangered Species

1. INTRODUCTION

This study aims to use molecular biology as methodological tools, to improve the conservation efforts of certain plant species. Identification and comparison of species at the DNA level, constructs a premise to clarify the status of each taxonomic unit. Molecular identifications of each species lead to better defined populations which in turn results in coherent population ecology studies. The detailed knowledge of each species' genetic identity, indirectly but inevitably, leads to the better protection and conservation of species.

1.1. Conservation Biology and Phylogenetics

Conservation biology is a multidisciplinary science that aims to protect biodiversity and prevent the extinction of populations. It proceeds through three main lines: the documentation of the variety of living organisms, understanding the causes and the consequences of the loss of biodiversity and developing methods to prevent such losses (Caro, 1998). The identification and documentation of biodiversity through systematics is the key factor for each conservation effort, where coherent strategies are built accordingly to save the existing taxons.

Systematics deals with the recognition of species (Beebee T. and Rowe G., 2004), and is made up of two interrelated disciplines, taxonomy and phylogeny. The field of taxonomy identifies and classifies organisms according to their morphological features. Phylogeny, on the other hand, is a discipline that investigates the evolutionary history and the relationships between the classified living organisms. Through phylogenetic analysis, ancestral relationships can be inferred and taxonomic statuses confirmed.

In the field of phylogeny, the reconstruction of ancestral relationships between organisms is done through the assembly of phylogenetic trees. Trees are built using quantified morphological features as data, and analytical methods such as distance matrices or discrete methods (maximum parsimony and maximum likelihood) as the construction tools.

Until recently, phylogeny was only constructed by assigning character states to anatomical and morphological characters. Nowadays, with the advance of molecular biology techniques, a more dedicated field of systematics, namely, molecular systematics has developed (Beebee T. and Rowe G., 2004). Taxa are re-defined using properties at the protein and DNA level and through molecular phylogenetics; molecular properties are quantified and compared. The enquiry into evolutionary relationships between different taxa has become more comprehensive and detailed through molecular analyses. Thus today, every conservation biology scheme that aims to preserve genetic diversity has to include a thorough molecular phylogenetic analysis as a beginning point.

1.2. Molecular Phylogenetics

Molecular Phylogenetics emerged during the 1960's, when protein contents were compared between closely related species using protein electrophoresis techniques (Hillis and Moritz, 1990; Berlocher, 1984; Buth, 1984). Allozymes were used as tools for analysis, and the differences in sizes and electrophoretic mobilities were compared. These analyses, however, were not detailed enough as the proteins that did match in electrophoretic mobility could be withholding differences at the gene level (Coyne, 1982).

This problem was overcome during the early 1980 's, with the development of low cost, high yield molecular methods such as the polymerase chain reaction (PCR). Since then both animal and plant physiologists have been able to directly examine the DNA and amino acid sequences of taxa to construct phylogenetic inferences and re-define taxonomic statuses.

There are several different techniques that allow the analysis of DNA using PCR, for molecular phylogenetic analysis. Restriction Fragment Length Polymorphism (RFLP) is a method where parts of the DNA are cleaved with restriction enzymes and compared. Even though simple, it requires prior knowledge of the restriction enzymes that can be used on the DNA of the samples, which is costly with unidentified genomes. Another method, Random Amplified Polymorphic DNA (RAPD) overcomes this problem by using many random sequences as primers and compares possible polymorphisms (Williams et al., 1990). Although this is a useful and less costly tool for phylogenetic analysis, the
technique has poor repeatability (Gehrig et al. 1997). Still another approach analyzes the parts of DNA that are highly variable called mini- or micro-satellite sequences that provide unique fingerprints for individuals however is not widely used for interspecific analyses (Parker et al., 1998). Yet, the direct sequencing of parts of the genome, using sequences that differ at the differing taxonomic levels is presently, the most prominent, detailed and cost effective method of phylogenetic analysis.

1.3. Plant Phylogenetic Analysis

The era of plant molecular phylogenetic analysis began with the comparison of $r b c \mathrm{~L}$ gene sequences (Chase et al., 1993). The $r b c \mathrm{~L}$ gene is a chloroplast gene that encodes the large subunit of ribulose biphosphate carboxylase (Rubisco) in plants (Zurawski et al., 1981). As the product of this gene is an important photosynthetic protein, these analyses were first done to investigate photosynthetic pathways. Free primers were distributed to many labs and was able to initiate the sequencing of at least 500 angiosperm species' rbcL gene (Chase et al., 1993) which produced the first major study of plant DNA for phylogenetic inference.

Since then several genes and introns of the chloroplast, mitochondria and nuclear genome have been used for the analysis of plant phylogenies at different taxonomic levels. The nuclear genome in plant evolves nearly twice as fast as chloroplast DNA due to its biparental mode of inheritance (Wolfe et al., 1987), and certain regions are used to differentiate between taxons at the species level. In addition it contains information on possible hybridizations due to its bi-parental mode of inheritance. Chloroplast genome, on the other hand, points to parental lineages and the path of gene flow attributable to its uniparental mode of inheritance. Even though the mitochondria genome is also uniparentally inherited, it evolves nearly five times slower than nuclear DNA in plants (Wolfe et al., 1987) and undergoes frequent rearrangements (Palmer and Herbon., 1987), which makes it an unfavorable marker for phylogenetic inference in plants. For concrete phylogenetic deductions, chloroplast markers and nuclear markers should be analyzed together, both to identify interspecific hybridizations and to increase phylogenetic resolution (Baldwin et al., 1995).

1.3.1. Nuclear Phylogenetic Marker: Ribosomal DNA

A nuclear genetic marker that is widely used for phylogenetic analysis is the region that codes for the ribosomal subunits (the ribosomal multigene family). This region is present in the plant nuclear genome in tandem repeated copies which can range from a hundred to thousands of repeats per genome. These repeats can be found either on a single chromosome or on different chromosomal locations (Alvarez and Wendel, 2003). Each ribosomal DNA set consists of 18S-5.8S-26S nuclear rDNA genes with ITS (internal transcribed spacers) 1 and 2 in between (Figure 1.1). The ITS region has been a focus of phylogenetic studies for approximately 15 years.

The rDNA multigene family repeats

Figure 1.1. The schematic representation of the rDNA subunits and the multigene family.

All functional copies of the rDNA repeats are known to be uniform in the genome (Alvarez and Wendel, 2003). This uniformity is achieved by a phenomenon called concerted evolution, which occurs via unequal crossing over or rapid gene conversion (Arnheim, 1983; Elder and Turner, 1995; Zimmer et al., 1980). This mechanism allows any differences in one of the copies in the multigene family to homogenize so that the whole family contains the same sequence. There are cases, however, where some copies in the genome might not be identical. Such cases can happen in newly formed hybrid species
or polyploid plants, where concerted evolution might not have had enough time to take place. The multigene family, then, might consist both of paternal and maternal lineages or non-functional copies where the cloning of the different rDNA's would be necessary for analysis (Alvarez and Wendel, 2003).

Nonetheless the homogeneity of the rDNA per individual would not directly infer a pure species. The parental sequences causing different repeat types can combine together in time, forming chimeric sequences showing within populational differences (McDade, 1992). There can also be cases where concerted evolution might have taken place and one of these lineages or chimeric sequences has become dominant and homogenous in all of the multigene family (Alvarez and Wendel, 2003). Such possibilities suggest that concerted evolution would work at different evolutionary rates with differential operative strategies, so all of these possibilities should be carefully determined when these sequences are used for phylogenetic analysis.

In addition, taxa are faced with the possibility that some of the repeats in the family might have mutations in critical regions and are not translated leading to pseudogenes. If these sequences are not handled by concerted evolution and corrected, they could harbor many mutations and result in different rDNA copies corrupting phylogenetic analysis. These pseudogenes can be detected through G+C content, secondary structure, methylation processes (Bucker et al., 1997) and rate of substitutions in conserved regions.
1.3.1.1. ITS (internal transcribed spacer) region. The ITS region is easily accessible as universal primers have been designed that work on most plant and fungal DNA (White et al., 1990). The spacer ITS1 is located between the 3 'end of 18 S rDNA and the 5 ' of the 5.8S rDNA whereas ITS2 is located at the 3 'end of 5.8 S and the 5 'end of 26 SrDNA . Both of these regions are transcribed and spliced during the formation of ribosome.

Even though these spacers are not a part of the ribosome, they contribute to the formation of ribosome. Certain regions in the ITS1 spacer are critical for the assembly of the large and small ribosomal subunits in yeast (Musters et al., 1990; van Nues et al., 1994). Additionally deletions or point mutations in ITS2 region affect the maturation of the large 26S subunit (Sande et al., 1992).

Both of the ITS1 and ITS2 spacers in angiosperms consist of conserved motifs that play a crucial role in the production of ribosomal subunits in plants. For example, ITS2 has a GGU base triplet (Liu et al., 1994) that is linked with the formation of the secondary structure of the RNA. Such conserved secondary structural motifs positioned in specific regions of the helices are involved in the ITS2 excision processes (Mai and Coleman, 1997).

The functional roles of the ITS1 and ITS2 spacers in the production of the ribosome suggest that they are under evolutionary stress and will not harbor too many random mutations. This makes these regions ideal for interspecies differentiation, where they are expected to show uniformity over individuals from the same species.
1.3.1.2. 5.8S coding region. The 5.8 S region, which is also amplified together with the ITS regions is around 163 base pairs long in angiosperms, and is located in between the two spacers (Jobes et al., 1997). This region is not widely used in low-level phylogenetic studies due to its high conservation at the species level, and its relatively short length (Troitsky et al., 1991; Suh et al., 1992).

1.3.2. Chloroplast Phylogenetic Marker: The tRNA Intragenic Spacers

The uniparental mode of inheritance of the chloroplast genome allows systematics to define parents of hybrids and the path of gene flow in speciation. The size of the chloroplast genome is around 150 kb and consists mostly of coding genes. It has four distinctive regions, a large single copy (LSC), 2 inverted repeats (IR) that are exact inverted copies of each other and a small single copy (SSC) (Curtis et al., 1984). The rate of evolution of the IR region, consisting mostly of rRNA genes, is approximately three times slower than the rest of the chloroplast DNA. The slow rate has been related to the possible processes that allow the two repeats to remain exactly the same (Wolfe et al., 1987).

Chloroplast coding genes evolve slowly and are generally used for family or higherlevel taxonomic investigations. Coding genes such as $r b c \mathrm{~L}$ (Gielly and Taberlet, 1994) found in the LSC, or matK located within trnK exon in the LSC (Wolfe et al., 1991) or
$a t p \mathrm{~B}$ are tools used in such analysis. Non-coding regions of the chloroplast, however, tend to evolve more rapidly and can be used for relations below the family level (Gielly and Taberlet, 1994).

1.3.2.1. The $\operatorname{trn} \mathrm{L}(\mathrm{UAA})$ intron and $\operatorname{trn} \mathrm{L}(\mathrm{UAA}) 3$ 'exon $-\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ intragenic spacer.

Figure 1.2. The schematic representation of tRNA genes and the non-coding regions. Taken from Taberlet et al. (1991).

The highly conserved chloroplast tRNA coding genes are present in the LSC and are spaced out in concession (Figure 1.2) (Taberlet et al., 1991). There are intragenic spacers between the different trn genes that can be amplified using universal primers designed by Taberlet et al. (1991) and used for phylogenetic inference. These intragenic spacers, which can evolve up to 11 times faster than $r b c \mathrm{~L}$ gene, are widely used for intrafamilial and intrageneric level of phylogenetic research (Gielly and Taberlet, 1994). The trnL intron is a Group I intron, which is self-splicing and evolves approximately 1.6 times slower than the intragenic spacer (Gielly and Taberlet, 1994).

1.4. Galanthus Species and Molecular Phylogenetics

Galanthus L. is the Latin genus name for the widely cultivated snowdrop plants. The Galanthus genera belongs to the multicellular and eukaryotic Plantae kingdom, under the class Angiospermae (angiosperms, flowering plants), order Asparagles that are monocots, and the family Amaryllidaceae. There are 19 recognized Galanthus species occurring in many natural habitats in Europe and the Middle East (Davis, 1999; Davis et al., 2001; Zonneveld et al., 2003), 16 of which are present in Turkey. They reside in woodlands and forests, in cool environments with plenty of water (Davis et al., 2001).

The molecular karyotypic properties of all Galanthus species except polyploids are similar, having $2 \mathrm{n}=24$ chromosomes (Sveshnikova, 1965). The nuclear DNA content of the different diploid Galanthus species, analyzed through flow cytometry, is between $50 \mathrm{pg}-90 \mathrm{pg}$ (Zonneveld et al., 2003). The molecular phylogenetic analysis of most of the Galanthus species have been recently done by Lledo et al. (2004), however, some species that grow in Turkey have not yet been added to the analysis.

There are three taxonomic groups that reside in Northwest Turkey, which have not yet been analyzed,. The phylogenetic relationships have been defined on the morphological level but have not yet been dwelled into at the molecular level.

On the Asian side of Istanbul, down to the province of Bursa there are swarms of Galanthus plicatus subsp. byzantinus (Figure 1.3). Even though it is registered in literature as occurring in Northwest Turkey, on both sides of the Bosphorous (Bishop et al., 2001), it is not clear if there are any pure individuals residing on the European side. The plants that are collected on the European side of the Bosphorous are mostly described as hybrids. Expectedly, G. plicatus subsp. byzantinus populations have been listed as under threat due to hybridization with G.nivalis in the western Istanbul area (Anonymous, 1999). The plants flower around January to April at altitudes between 100-300m (Bishop et al., 2001; Davis et al., 1999).

Figure 1.3. G. plicatus subsp. byzantinus.
(Photograph taken from the Royal Horticultural Society website:

Galanthus xvalentinei nothosubsp. subplicatus populations, are found on the European side of the Bosphorous. G. xvalentinei is the general name given to hybrids of Galanthus plicatus and Galanthus nivalis (Davis et al., 2001) and the prefix 'notho-' indicates that it is a hybrid. G. xvalentinei nothosubsp. subplicatus is the name specifically given for the hybrid between G. nivalis and G. plicatus subsp. byzantinus (Davis et al., 2001). G. xvalentinei nothosubsp. subplicatus is probably the only naturally occurring hybrid of the Galanthus genera (Davis et al., 2001). The morphological markers of the individuals of the hybrid resemble both parents in variable degrees, even though all individuals are always separable from either parent (Davis et al., 2001). This hybrid is endemic to the province of Istanbul, but is also thought to spread to the provinces of Edirne, Kirklareli, and Tekirdağ (Davis et al., 2001). The plants flower between JanuaryMarch at altitudes $30-150 \mathrm{~m}$ (Davis, 2002). The taxon is not under any danger, however is listed in CITES Appendix II, for threats that can occur with uncontrolled trade ${ }^{1}$.

Figure 1.4. G. nivalis. (Photograph taken from the following website: http://www.f-lohmueller.de/botanic/lily/Amaryllidaceae/Galanthus/Galanthus015.htm

[^0]The European side of the Bosphorous also encloses populations of G. nivalis (Figure 1.4). The species is found all over Europe and has also been observed in Turkey, however only in the European side of the Bosphorous, and not in Asia Minor (Davis, 1999) (Table 1.1). The individuals that have been previously described as G. nivalis in Turkey are presently described as the hybrid G. xvalentinei nothosubsp. subplicatus, hence the occurrence of G. nivalis in Turkey is unclear. The plants flower from January to May, at altitudes $100-1400 \mathrm{~m}$ (Davis 1999). The biggest threat to the species in Turkey is habitat loss and hybridization with G. plicatus subsp. byzantinus (Anonymous, 1999).

Table 1.1. Distribution and status of G.nivalis in Europe. Taken from EURO+Med Plant Database http://www.s2you.com/euromed/

COUNTRY	STATUS	COUNTRY	STATUS
Austria	$*$	Switzerland	NT
Liechtenstein	$*$	Netherlands	$*$
Belgium	$*$	Spain	$* ?$
Luxembourg	$*$	Hungary	$*$
Bosnia-Herzegovina	CR-VU	Italy	$*$
Great Britain	$*$	Moldova	R
Bulgaria	CR-VU	Poland	$*$
Czech Republic	VU	Romania	$*$
Croatia	$*$	Sicily	$*$
Denmark	$*$	Slovakia	NT
Estonia	$*$	Slovenia	$*$
France	$*$	Serbia \& Montenegro	$*$
Germany	VU	Sweden	$*$
Greece	R	Turkey	VU
Ireland	$*$	Ukraine	R

Abbreviations: CR: critically endangered, VU: vulnerable, NT: near threatened, R: rare, * : present, *?: doubt about presence.

2. THESIS OBJECTIVE

The aim of this thesis is to define unclear taxonomic statuses using a molecular phylogenetic approach. G. plicatus subsp. byzantinus, G. xvalentinei nothosubsp subplicatus and G. nivalis that reside in North-west Turkey have been identified and classified morphologically, however need to be confirmed at the molecular level. Particularly, the hybrid classification of G. xvalentinei nothosubsp. subplicatus has been under question.

The nuclear phylogenetic analysis, which will also reveal possible hybridization between species will be done through the ribosomal ITS1 and ITS2 regions. Chloroplast markers, $\operatorname{trnL}(\mathrm{UAA})$ intron and the intragenic spacer between $\operatorname{trnL}(\mathrm{UAA})$ and $\operatorname{trn} F$ (GAA) genes, on the other hand, will be used to define the maternal parent of the possible hybrid G. xvalentinei nothosubsp. subplicatus and to define the path of gene flow.

The accurate taxonomic identification and phylogenetic analysis of species would allow more precise conservation efforts. Galanthus species in Turkey are listed as threatened. G. xvalentinei nothosubsp. subplicatus due to its range should be classified, maybe as vulnerable, if found to be a pure species. These analyses would either confirm the current statuses of conservation or would lead to a re-classification and a re-definition of the taxonomic units and lead to new conservation strategies.

3. MATERIALS AND METHODS

Figure 3.1 Map of approximate locations of sample collection in Northwest Turkey.

3.1. Plant Samples

The plant samples were collected from selected locations in both Anatolian Marmara and European Marmara regions of Turkey (Figure 3.1, Table 3.1). G. plicatus subsp. byzantinus were collected from 5 different sites in the Anatolian region of the Marmara. G. xvalentinei nothosubsp. byzantinus was collected from 4 different sites in the European side of the Marmara. The G. nivalis in Turkey sample was collected further west from a town called Soğucak. Another G. nivalis sample and the outgroup species sample, Sternbergia Lutea, was kindly provided by the Botanical Gardens of Istanbul University, Department of Botany.

The samples were collected at the end of February, at the time they were flowering. They were identified according to their morphological features, and collected together with their bulbs. 10 bulbs per location were obtained and planted. Leaves of the plants were used as material for molecular analysis.

Table 3.1 Geographical coordinates of collected samples.

Sample	Taxanomic Nomenclature	Coordinates(N)	Coordinates(E)	Altitude(m)
1	G. plicatus subsp. byzantinus	N40 53' 11,3"	E29 41' 12,0"	493m
2	G. plicatus subsp byzantinus	N41 04' 09,2"	E29 20' 15, $\mathbf{8}^{\prime \prime}$	18 m
3	G. plicatus subsp byzantinus	N40 56' 36.9"	E29 15' 25,7"	444 m
4	G. plicatus subsp byzantinus	N41 03' 58.7"	E29 20' 55.4"	20 m
5	G. plicatus subsp byzantinus	N40 35' 54,7"	E29 16' 13, ${ }^{\prime \prime}$	86 m
6	G. xvalentinei nothosubsp subplicatus	N41 10' $52,2^{\prime \prime}$	E28 24' 12,5"	51 m
7	G. xvalentinei nothosubsp subplicatus	N41 11' 10,5"	E28 24' 46, $\mathbf{2}^{\prime \prime}$	32 m
8	G. xvalentinei nothosubsp subplicatus	N41 08' $03,8^{\prime \prime}$	E28 27' 53,3"	NA*
9	G. xvalentinei nothosubsp subplicatus	N41 $22^{\prime} 58,4{ }^{\prime \prime}$	E 28 11' 42,5"	227 m
10	G. nivalis (TR)	N41 38' 53,2"	E27 39' 43,6"	300 m
11	G. nivalis (TR)	NA*	NA*	NA*

*NA: not available

3.2. DNA Extraction and Molecular Analysis

Fresh leaf cells were lyzed using freeze fracturing; leaves were frozen in liquid nitrogen, powdered and preserved in $-80{ }^{\circ} \mathrm{C}$ until further analysis. DNA from frozen powdered tissue was extracted using Qiagen Plant DNA Extraction Minikit.

3.2.1. PCR Amplification of Nuclear Ribosomal ITS Region

The amplification of the ribosomal intragenic spacer region (ITS1, ITS2 and 5.8S rDNA) was performed using the universal primers taken from White et al. (1990).

Forward primer ITS5	${ }^{\prime}$ '-GGAAGTAAAAGTCGTAACAAGG-3'
Reverse primer ITS4	5^{\prime}-TCCTCCGCTTATTGATATGC-3'

The PCR reaction mix in $100 \mu \mathrm{~L}$ contained 1X PCR buffer, $1.5 \mathrm{mM} \mathrm{MgCl} 2,0.2 \mathrm{mM}$ of each dNTP (dATP, dCTP, dGTP and dTTP); $1 \mu \mathrm{M}$ of each primer, 200 ng of DNA and 5U of Taq Polymerase (Promega). The amplification sequence had an initial denaturation step at $94{ }^{\circ} \mathrm{C}$ for 2 min 30 s . This step was followed by 30 cycles of the following reactions, denaturation at $95^{\circ} \mathrm{C}$ for 30 s , annealing at $52{ }^{\circ} \mathrm{C}$ for 1 min 30 s , and an
elongation at $72{ }^{\circ} \mathrm{C}$ for 3 min . After these cycles, a final elongation step was included which kept the samples at $72{ }^{\circ} \mathrm{C}$ for 7 min . The obtained PCR products were purified using PCR Product Purification Kit (Progmega), following its procedures.

3.2.2. PCR Amplification of the Chloroplast Introns

The two non-coding regions of the chloroplast DNA, $\operatorname{trnL}(\mathrm{UAA})$ intron and the spacer between $\operatorname{trnL}(\mathrm{UAA}) 3^{\prime}$ and $\operatorname{trn} F(\mathrm{GAA}) 5^{\prime}$ were amplified using universal primers designed from conserved chloroplast tRNA gene sequences (Taberlet et al., 1991)

The trnL (UAA) intron was amplified using the following primers.

Forward primer \mathbf{c}	5^{\prime}-CGAAATCGGTAGACGCTACG-3'
Reverse primer \mathbf{d}	5^{\prime}-GGGGATAGAGGGACTTGAAC-3'

The intergenic spacer between the trnL (UAA) 3' exon and trnF (GAA) was amplified using the following primer pair.

Forward primer \mathbf{e}	5'-GGTTCAAGTCCCTCTATCCC-3'
Reverse primer \mathbf{f}	5'-ATTTGAACTGGTGACACGAG-3'

The PCR reaction was carried out using the same protocol as previously used in ITS amplification. The annealing temperature was similarly $52^{\circ} \mathrm{C}$.

3.2.3. Gel Electrophoresis

The PCR products were run on 2% Agarose gels prepared in 1X TAE (Tris-acetateEDTA) buffer. For the detection of bands under ultraviolet light, $2.5 \mu \mathrm{~L}$ of ethidium bromide was added to the gel. $10 \mu \mathrm{~L}$ of PCR products were loaded on the gel, mixed with $2 \mu \mathrm{~L} 6 \mathrm{X}$ loading dye (Promega). The products were run at 200 V , for 30 min in an electrophoresis tank containing 1X TAE.

3.2.4. Sequencing of the PCR Products

Sequencing reactions were carried out in the Genetic Laboratories in Acıbadem Hospital, by Ms. Fulya Taylan. The reaction was done using DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences, USA). $3 \mu \mathrm{~L}$ of purified PCR products were added to the reaction mix containing 5 pmol of primer, $8 \mu \mathrm{~L}$ of sequencing reagent premix added to a total volume of $20 \mu \mathrm{~L}$. The samples were sequenced with both forward and reverse primers separately. The cycle sequencing was performed in ABI 9700 Thermocycler (Applied Biosystems) with 25 cycles of $95^{\circ} \mathrm{C}$ for $20 \mathrm{sec} ., 5{ }^{\circ} \mathrm{C}$ for 15 sec . and $60^{\circ} \mathrm{C}$ for 60 sec . After cycle sequencing, the unbound dyes were removed by DyeEx 2.0 Dye removal Kit (Qiagen). The purified products were analyzed on the ABI 3100 Genetic Analyzer (Applied Biosystems).

3.3. Statistical Analysis

The chromatograms obtained from sequencing reactions were edited through BioEdit Sequence Alignment Editor (Hall, 1999). Ambiguous bases were corrected using the corresponding base of the sequence that was obtained by the reverse primer. Multiple sequences were aligned using Clustal W computer program (Thompson et al., 1994).

The phylogenetic analyses of the sequences were executed on MEGA Version 2.1 (Kumar et al., 2001). The phylogenetic trees were constructed using the Neighbor-Joining (NJ) method (Saitou et al., 1987). Tamura Nei (Tamura and Nei, 1993) distances were used as the reference distances between the sequences examined, and used in the construction of the NJ trees. Tamura Nei method of distance calculation accounts for the substitution rate differences between nucleotides and the possible inequality of nucleotide frequencies.

NJ method is fast and provides branch lengths; however, it uses distances rather than discrete characters (Soltis et al., 2003). Hence, all analyses were repeated using max-mini branch and bound search of Maximum Parsimony (MP). The consensus phylogenetic tree of all possible parsimony trees was produced and inferred.

Bootstrapping (Felsenstein, 1985) was applied 1000 times to both methods of tree construction. Missing data or gaps in the aligned sequences were pair wise deleted for analysis. The corresponding sequences of an outgroup species, Sternbergia Lutea, were used for rooting all phylogenetic trees.

Table 3.2. The GENBANK ${ }^{2}$ accession numbers of Galanthus species ITS region and chloroplast intron sequences.

Nuclear rDNA sequences (ITS1-5.8S-ITS2)

Accession Number	Taxa
AY101304	G. plicatus
AY101294	G. alpinus
AY101295	G. cilicicus
AY101296	G. elwesii
AY101297	G. fosteri
AY101298	G. gracilis
AY101299	G. ikariae
AY101300	G. krassnovii
AY101301	G. lagodechianus
AY101302	G. nivalis
AY101303	G. platyphyllus
AY101305	G. regiane-olgae
AY101306	G. regiane-olgae subsp vernalis
AY101307	G. transcaucasius
AY101308	G.woronowii

Chloroplast DNA sequences

Accession Number	Taxa
AY357136	G. nivalis (trnL inton and trnL-trnF spacer)
AF104730	G. plicatus (trnL-trnF spacer)
AF104799	G. plicatus (trnL intron)

[^1]
3.4. Comparison with Other Galanthus Species

The taxons analyzed were compared with other Galanthus species, in order to relate these species to the rest of the Galanthus genera. Certain Galanthus species' ITS region sequences were available on GenBank database (Table 2.2). There were only two $\operatorname{trn} \mathrm{L}(\mathrm{UAA})$ intron and $\operatorname{trn} \mathrm{L}(\mathrm{UAA})-\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ intragenic spacer region sequences belonging to Galanthus species, on Genbank.

For the comparison with other species, the taxons morphologically defined as G. xvalentinei nothosubsp. subplicatus, G. nivalis (TR) and G. plicatus subsp. byzantinus were each represented by consensus sequences. These consensus sequences were produced via the sequences obtained from the samples collected from different locations, morphologically identified as belonging to the same taxon (Appendix I and II). The sequences were highly similar and only insertions/deletions that were explicitly due to sequencing error were eliminated. Appendix III contains all of the Galanthus series sequences analyzed in the thesis.

3.5. Checking for the Functionality of the ITS region

The G+C content of the ITS region was analyzed for possible pseudogene content. Additionally ITS1, 5.8 S , and ITS2 sequences were screened separately to check for functionality.

3.5.1. Angiosperm 5.8S Specific Site

The universal primers that were used to amplify rDNA region are prone to amplifying contaminant DNA as they have been derived from fungi (White et al., 1990). Therefore the sequences were first screened for any fungal or algal contamination. The 5.8 S rDNA coding sequence was determined, using instructions of Jobes and Thien (1997) and the conserved 14 base pair region that differentiates between flowering plants and fungi/algae was analyzed.

3.5.2. ITS1 Functionality

The conserved angiosperm motif in ITS1, GGCRY- (4 to 7n) -GYGYCAAGGAA (Liu and Schardl, 1994) was analyzed in order to check for the functionality of the region. This region is expected to harbor random mutations in the case of pseudogenes.

3.5.3. ITS2 Functionality: Through the analysis of Secondary mRNA Structure

The secondary structures of the consensus ITS2 sequences were analyzed to check for the functionality of these sequences. The secondary structure predictions were done using MFOLD ${ }^{3}$ (Zucker et al., 1999). The thermodynamically optimal and suboptimal folding were computed at $\mathrm{T}=20^{\circ} \mathrm{C}$ and at $\mathrm{T}=37^{\circ} \mathrm{C}$. Both temperatures yielded similar structures. The structures with the highest loop free energy at $\mathrm{T}=20^{\circ} \mathrm{C}$ were selected for comparison.

[^2]
4. RESULTS AND DISCUSSION

4.1. The Phylogenetic Analysis of Galanthus Species through Nuclear ITS Region

Figure 4.1. The gel electrophoresis of ITS region PCR products of samples.

The PCR products of the nuclear ITS region obtained from each of the 11 samples yielded a clear single band on electrophoresis gel. All samples had single bands that were representative of products of similar sizes, with similar electrophoretic mobility (Figure 4.1). The sequencing of these products revealed $650-652$ base pairs per sample, with similar low range $\mathrm{G}+\mathrm{C}$ values (Table 4.1). The chromatograms obtained during sequencing had low level of background noise and did not show any explicit heterogeneity or polymorphisms in any region of the samples (Figure 4.2).

Figure 4.2. A section of the sequencing chromatogram of the ITS1 region of sample 11.

Table 4.1 The DNA content of ITS1-5.8S-ITS2 region of the samples.

		All Regions
Sample	Taxanomic Identification	G+C content (\%)
S1	Galanthus plicatus subsp. byzantinus	44.09
S2	Galanthus plicatus subsp byzantinus	44.09
S3	Galanthus plicatus subsp byzantinus	44.17
S4	Galanthus plicatus subsp byzantinus	44
S5	Galanthus plicatus subsp byzantinus	44
S6	Galanthusx valentinei nothosubsp subplicatus	43.69
S7	Galanthusx valentinei nothosubsp subplicatus	43.69
S8	Galanthusx valentinei nothosubsp subplicatus	43.69
S9	Galanthusx valentinei nothosubsp subplicatus	43.69
S10	Galanthus nivalis $(T R)$	43.69
S11	Galanthus nivalis $(T R)$	43.69

The 5.8S rDNA coding sequence was determined, using instructions of Jobes and Thien (1997) and the conserved 14 base pair region that differentiates between flowering plants and fungi/algae was analyzed. The conserved region, which consists of an EcoRI site (TTC) in fungi and algae and none (TCC) in angiosperms, confirmed that all material obtained belonged to angiosperms. BLAST ${ }^{4}$ sequence analysis software, revealed high similarity of these sequences to Galanthus species' rDNA regions, further confirming that these sequences belong to Galanthus species.

The sequences were compared using Tamura Nei distances and NJ method, which placed samples 1-5 and 6-11 grouping together, with very low distances within groups (Figure 4.3). The distances within samples of each node pointed out the similarity of sequences between these samples. In addition, the tree also reflected the geographical positioning of these samples, with samples $1-5$ being collected from the Anatolian side of the Bosphorous, whereas the samples 6-11 collected from the European side.

[^3]
*Numbers indicate bootstrap values and branch lengths indicate distance. S.Lutea is used to root the tree.

Figure 4.3. The phylogenetic tree of the Galanthus samples constructed using rDNA (ITS1-5.8S-ITS2) sequences.

As the within group samples had very similar sequences supported by calculated close to zero distances, for further analysis one representative sequence, a consensus sequence was constructed from the different samples of each morphologically defined taxonomic group. G. xvalentinei nothosubsp subplicatus and G. nivalis(TR) samples had identical sequences in spite of the intronic regions included, hence a single consensus sequence was done for both taxonomic units and will be referred to as G.xvalntinei/niv(TR). G. plicatus subsp. byzantinus samples' consensus sequence will be referred to as G. plicatus sb.

4.1.1 Functionality of the ITS Region

Ribosomal genes belong to a multi gene family, which evolve by concerted evolution, leading to inter-genic homogenization of each sequence (Baldwin et al., 1995). However, there is a possibility that some copies might degenerate into pseudogenes, and become inactive. These paralogous copies would accumulate mutations that can differ intraspecifically and would be misleading in phylogenetic analyses, when compared with other species. To eliminate such a possibility the samples' ITS regions were screened for functionality.

Primarily, there were no divergences in the sequences of different samples identified as the same taxon, suggesting that these sequences are preserved throughout the taxonomic unit. The G+C content of sequences can also be an indicator of functionality as very low $\mathrm{G}+\mathrm{C}$ compositions can suggest pseudogenes. The ITS1 and ITS2 sequences obtained from G. xvalentinei nothosubsp. subplicatus/G.niv(TR) and G.plicatus subsp. byzantinus had lower $\mathrm{G}+\mathrm{C}$ content, 45.31 and 44.0 percent respectively, than the proposed angiosperm range ($50 \%-75 \%$) by Baldwin et al. (1995). However all other Galanthus species obtained from GENBANK also similarly had low G+C contents (43\%-47\%).

Additionally, for further analysis of the functionality of the region, ITS1 and ITS2 sequences were examined separately. The conserved angiosperm motif in ITS1, GGCRY(4 to 7n) -GYGYCAAGGAA (Liu and Schardl, 1994) was found with one substitution at position $149(\mathrm{C} \rightarrow \mathrm{T})$. However, this substitution was also present in all other Galanthus species examined (Figure 4.4).

	130	140	150	160	170	180
G.nivalis	GGGatagTt	ECAGGucha	agTTTTGETE	TAGTTCGCEC	Cangengcha	CCCTETTTEE
G.plicatus	GEGatagTTT	ECaccunch	AGTTTTEGTE	TAGTTCECEC	Chageracha	CCTTETTTEE
G.pli.subs	GEGATAGTTT	ECaccunch	AGTTTTEGTE	TAGTTCECEC	Chaccaccan	CCTTETTTE
G. rralenti	gegatagt	ECagcaram	agTt TTEGTE	TAGTTCGCEC	Cungenccha	CCCTETTTEE
G.niv(TR)	GEGATAGTTT	ECAGGALCA	MGTTTTGGTE	TAGTTCECEC	Chaccaccan	CCCTETTTGE

Figure 4.4. The conserved angiosperm 21 base pair core motif (underlined) of ITS1 in selected Galanthus species.

The analysis of ITS2 sequences was performed via predicted secondary structures. MFOLD program revealed around 9 optimal and suboptimal secondary folds for both sequences and the fold with the highest loop free energy was selected for comparison. The hypothetical secondary structures of Gx.val/niv(TR) and G.plicatus subsp. byzantinus were similar in structure, yielding 7 helices (Figure 4.5; Figure 4.6). The universal juxtaposition $(\mathrm{U} \bullet \mathrm{U})$ in helix II was observed in both structures (Mai et al., 1997). The conserved GGU triplet in position 143-145 was also present, however at the 5' base of helix III and not the apex. The base differences between $G x \cdot v a l / n i v(T R)$ and G.plicatus subsp. byzantinus, showed that the former had correctional substitutions when compared to the latter.

VII
Figure 4.5. Predicted secondary structure of ITS2 mRNA of G. plicatus subsp. byzantinus.($\mathrm{dG}=-91.1$)

Figure 4.6. Predicted secondary structure of ITS2 mRNA of G. xvalentinei nothosubsp. subplicatus. $(\mathrm{dG}=-94.3)$

The detailed analyses of the conservation patterns in ITS1 and ITS2 regions and the lack of heterogeneity of sequences between different samples strongly suggest that the sequences analyzed are functional sequences and do not contain pseudogenes. Therefore, reliable phylogenetic inferences can be obtained via the use of these sequences.

4.1.2. Phylogenetic Analysis

*Numbers indicate bootstrap values and branch lengths indicate distance. S. Lutea is used to root the tree.

Figure 4.7. The phylogenetic tree of Galanthus species constructed using rDNA region (ITS1-5.8S-ITS2) data.

The ITS region, including ITS1, ITS2 and 5.8S coding sequences, were compared between all available Galanthus species on Genbank, including G. xvalentinei/niv(TR) and G.plicatus subsp. byzantinus using Tamura Nei distances and NJ (Figure 4.7). The Turkish samples clustered together with the Galanthus series described by Davis (1999) in agreement with morphological data. G. plicatus and its subspecies G. plicatus subsp. byzantinus grouped together with high bootstrap value. G.nivalis and G. reginae subsp. vernalis also grouped together in agreement with morphological data, suggesting closer relatedness of G.reginae subsp. vernalis to G.nivalis than G.reginae (Davis et al., 2001).
G.xvalentinei/niv(TR) remained on a separate branch. The Galanthus series species separated from the rest of the Galanthus species with 100 percent bootstrap value.

Similarly, the detailed analysis of the variable intronic regions ITS1 and ITS2 of the Galanthus series, using Maximum Parsimony branch and bound method (tree length $=197$ steps, $\mathrm{CI}=0.97, \mathrm{RI}=0.75$, number of sites $=455$, repeated 1000 times) showed G. plicatus grouping together with its subspecies G. plicatus subsp.byzantinus (Figure 4.8). G.xvalentinei/nivalis (TR) was placed again on a separate branch, not clustering with either G. plicatus or G. nivalis.

*Numbers indicate bootstrap values. S. Lutea is used to root the tree.

Figure 4.8. The consensus MP tree of the Galanthus series, ITS1 and ITS2 sequences.

The phylogenetic analysis using NJ with Tamura Nei distances, of the highly conserved 5.8 S rDNA region showed that G.nivalis, G. reginae and G. reginae subsp. vernalis shared identical sequences. G. plicatus and its subspecies G. plicatus subsp. byzantinus also had identical sequences, both similarities referring to the slow rate of evolution of this region. In the constructed phylogenetic tree, G.x valentinei/niv(TR), which had its own unique sequence, was placed on the same node as G. plicatus and its subspecies, indicating closer relatedness to G. plicatus with respect to G. nivalis and its close relatives (Figure 4.9).

* Numbers indicate bootstrap values and branch lengths indicate distance. S. Lutea is used to root the tree.

Figure 4.9. The phylogenetic tree of the Galanthus series including the Turkish samples with 5.8 S rDNA sequences.

In summary, nuclear ITS data confirmed that G.plicatus subsp.byzantinus is a subspecies of G. plicatus, by the clustering of the two taxa in all phylogenetic trees. G.xvalentinei nothosubsp. subplicatus and G. nivalis(TR) samples had identical sequences of the ITS region, indicating that these samples belong to the same taxonomic unit. The unique sequence of G.xvalentinei/niv(TR) when compared to other closely related species, suggests that it can be classified as a separate taxonomic unit. The phylogenetic trees also suggest that G.xvalentinei/niv(TR) shows closer relatedness to G. plicatus than to G. nivalis.

4.2. Phylogenetic Analysis of the Galanthus Species through Chloroplast Introns

The PCR products of the samples' chloroplast $\operatorname{trnL}(\mathrm{UAA})$ intron and the spacer between $\operatorname{trn} \mathrm{L}(\mathrm{UAA})-\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ genes showed clear bands with similar sizes and electrophoretic mobility (Figure 4.10). The chromatograms obtained from sequencing of these samples also had low level of background noise.

Figure 4.10. The gel electrophoresis of $\operatorname{trn} \mathrm{L}(\mathrm{UAA})$ intron PCR products of the samples.

The intragenic spacer between $\operatorname{trnL}(\mathrm{UAA}) 3^{\prime}$ exon and $\operatorname{trnF}(\mathrm{GAA}) 5$ ' of the different samples had lengths between 350-353 bases with low G+C content in all samples (Table 4.2). In addition, the group I intron, $\operatorname{trn} \mathbf{L}(\mathrm{UAA})$, was found to be 466 bases long and having higher $\mathrm{G}+\mathrm{C}$ contents, most likely due to its functional property.

Table 4.2. The G+C content of the samples' chloroplast intron DNA.

Sample	Taxanomic Identification	$\begin{array}{r} \operatorname{trnL}(\mathbf{U A A}) \text { intron } \\ G+C \text { content }(\%) \end{array}$	$\begin{aligned} & \operatorname{trnL}(\mathbf{U A A})- \\ & \operatorname{trnF}(\mathbf{G A A}) \text { spacer } \\ & G+C \text { content }(\%) \end{aligned}$
S1	Galanthus plicatus subsp. byzantinus	34.55	28.77
S2	Galanthus plicatus subsp byzantinus	34.55	28.77
S3	Galanthus plicatus subsp byzantinus	34.55	28.77
S4	Galanthus plicatus subsp byzantinus	34.55	28.57
S5	Galanthus plicatus subsp byzantinus	34.55	28.57
S6	Galanthusx valentinei nothosubsp subplicatus	34.12	28.77
S7	Galanthusx valentinei nothosubsp subplicatus	34.12	28.69
S8	Galanthusx valentinei nothosubsp subplicatus	34.12	28.49
S9	Galanthusx valentinei nothosubsp subplicatus	34.12	28.41
S10	Galanthus nivalis (TR)	34.33	28.77
S11	Galanthus nivalis (TR)	34.33	28.77

The detailed analysis of the chloroplast sequences showed that even though these sequences are introns, they are highly conserved between closely related taxonomic units. The spacer between the chloroplast $\operatorname{trn} \mathrm{L}(\mathrm{UAA})$ and $\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ genes were found to have accumulated very few random point mutations differing between the samples of the same taxon, unlike the uniformity observed with the nuclear ITS sequences. However, overall there was high similarity between all samples examined, which did not show any clustering according to geography or taxonomic classification (Figure 4.11).

The phylogenetic analysis using Tamura Nei distances and NJ method of the group I intron $\operatorname{trnL}(\mathrm{UAA})$ showed, similar to ITS results, Anatolian G. plicatus subsp. byzantinus samples grouping together, and samples from the European side, G. xvalentinei nothosubsp. subplicatus and G. nivalis(TR) clustering together, but in different nodes, projecting the geographical separation (Figure 4.12). In contrast to the ITS results, G. x valentinei nothosubsp. subplicatus and G.nivalis (TR) did not have identical sequences as they differed consistently by one base out of the 466 compared. However, all nodes had low bootstrap value ($63-68 \%$), pointing out the high similarity of the different sequences.

*Numbers indicate bootstrap values and branch lengths indicate distance. S. Lutea is used to root the tree.

Figure 4.11. The phylogenetic tree of Galanthus samples using chloroplast intragenic spacer between $\operatorname{trn} \mathrm{L}(\mathrm{UAA})$ and $\operatorname{trn} \mathrm{F}(\mathrm{GAA})$ genes.

*Numbers indicate bootstrap values and branch lengths indicate distance. S. Lutea is used to root the tree.
Figure 4.12. The phylogenetic tree of Galanthus samples with chloroplast $\operatorname{trnL}(U A A)$ intron data.

4.2.1. Phylogenetic Analysis of the Chloroplast Introns

For each morphologically defined taxonomic unit a consensus sequence was made, from the different samples collected from selected regions. There were only two species' sequences that were available on GenBank, G. plicatus and G. nivalis that could be used for these comparisons. The NJ tree constructed from both introns added together showed the Turkish samples clustering together, sharing a node with G. plicatus with high bootstrap value (Figure 4.13).

* Numbers indicate bootstrap values and branch lengths indicate distance. S. Lutea is used to root the tree.

Figure 4.13. The phylogenetic tree of the Galanthus series using chloroplast $\operatorname{trnL}(\mathrm{UAA})$ data and the spacer between $\operatorname{trn} \mathrm{L}(\mathrm{UAA}) 3$ 'exon and $\operatorname{trn} \mathrm{F}(\mathrm{GAA})$.

Consequently, the comparison of the functional, group I intron, $\operatorname{trnL}(\mathrm{UAA})$ sequences alone also showed the Turkish samples sharing a node with G. plicatus and not with G. nivalis, in trees constructed both from Maximum Parsimony branch and bound method. (tree length $=313$ steps, $\mathrm{CI}=0.99, \mathrm{RI}=0.83$, number of sites $=466$) and NJ method using Tamura Nei distances (Figure 4.14; Figure 4.15 respectively).

* Numbers indicate bootstrap values. S. Lutea is used to root the tree

Figure 4.14. The MP consensus parsimony tree of the Galanthus series with $\operatorname{trn} \mathbf{L}(\mathrm{UAA})$ Group I intron.

* Numbers indicate bootstrap values and branch lengths indicate distance. S. Lutea is used to root the tree

Figure 4.15. The phylogenetic tree of the Galanthus series using chloroplast trnL(UAA) intron data.

These analyses show that even though the chloroplast introns are highly conserved between close species, they are also phylogenetically informative. In addition, as chloroplast DNA is maternally inherited in angiosperms, it can reflect the path of gene flow. In the trees obtained, all Turkish samples clustered closely together reflecting their
close geographical proximities. Besides, all samples examined seem to be closely related to G. plicatus and not G. nivalis. These data are in concordance with the conserved nuclear 5.8S rDNA data, which showed that G. plicatus subsp. byzantinus, G. xvalentinei nothosubsp. subplicatus and G. nivalis(TR) samples are closer to G. plicatus than to G. nivalis. However, G.plicatus subsp. byzantinus surprisingly had closer relatedness to G. xvalentinei nothosubsp. subplicatus than to G. plicatus as in the nuclear data.

A consistent difference of one base was observed between G. xvalentinei nothosubsp. subplicatus and G. nivalis(TR) trnL(UAA) intron samples, however, between all other taxonomic groups examined there were at least 7 base differences observed (e.g. between G. plicatus and G. plicatus subsp. byzantinus). Together with the findings of identical ITS and $\operatorname{trnL}(\mathrm{UAA})-\operatorname{trnF}(\mathrm{GAA})$ spacer sequences, with a single base pair difference in the $\operatorname{trnL}(\mathrm{UAA})$ intron, it can strongly be inferred that G. xvalentinei nothosubsp. subplicatus and G. nivalis($T R$) belong to the same taxonomic unit.

4.3. The Combined Analysis of Nuclear and Chloroplast Markers

* Numbers indicate bootstrap values. S. Lutea is used to root the tree.

Figure 4.16. The MP consensus tree of the chloroplast introns and nuclear ITS regions analyzed together.

Adding the sequences obtained from both genomes and increasing the number of parsimony informative sites in a single MP branch and bound analysis (number of sites $=1491$; number of parsimony informative sites $=30$, tree length $259, \mathrm{CI}=0.98, \mathrm{RI}=$ 0.85) again showed G. xvalentinei nothosubsp. subplicatus samples relating closer to G. plicatus than G. nivalis (Figure 4.16). G. plicatus is naturally found in Anatolian Turkey, Romania and Crimea (Davis et al., 2001) which reflects on and explains the close phylogeny observed with the analyzed Turkish samples.

The two dimensional representations of Tamura Nei distances of the Turkish samples with respect to G. plicatus and G. nivalis were constructed (Figure 4.17; Figure 4.18). Both graphs revealed that G. xvalentinei nothosubsp. subplicatus has similar chloroplast DNA distances as G. plicatus subsp. byzantinus to both G. plicatus and G. nivalis. This reflects the slow evolution of these sequences, the close geographical positioning of the samples and hence the gene flow.

Figure 4.17. 2-D representation of chloroplast and nuclear DNA distances with respect to G. nivalis.

Furthermore these graphs show G. xvalentinei nothosubsp. subplicatus standing equidistant to both G. plicatus and G. nivalis when comparing the nuclear sequences. This slightly contradicts the phylogenetic trees obtained using these distances in previous chapters, as they were showing closer relatedness to G. plicatus rather than G. nivalis. However, these 2-dimensional presentations only reflect distances and not the evolutionary quality of the differences hence, it can be inferred that G. xvalentinei nothosubsp. subplicatus/ G. nivalis (TR) has its own unique nuclear ITS region sequence, with similar number of substitutions compared to both G. plicatus and G. nivalis. Only the phylogenetic trees infer that these substitutions are evolutionarily more related to G. plicatus.

Additionally, nuclear distances showed G. plicatus subsp. byzantinus standing much closer to G. plicatus than to G. nivalis.

Figure 4.18. 2-D representation of chloroplast and nuclear DNA distances with respect to G. plicatus.

4.4. Is G. xvalentinei nothosubsp. subplicatus a Hybrid?

There is literature identifying G. xvalentinei nothosubsp. subplicatus as a hybrid swarm (Davis et al., 2001; Brickell, 1984; Webb, 1974). Morphologically it has been described as showing traits from both G. nivalis and G. plicatus subsp. byzantinus, and garden hybrids produced from these two species have similar features (Davis et al., 2001).

However, the genomic markers analyzed in this study show no indications of the G. xvalentinei nothosubsp. subplicatus samples belonging to a hybrid taxa. ITS sequence repeats are identical via concerted evolution and would show heterogeneity with recent hybridization events (Baldwin et al., 1995). All ITS sequences belonging to different samples of G. xvalentinei nothosubsp. subplicatus are homogeneous, monophyletic, and most importantly, identical. Hence the sequences, which are also unique when compared to other close species, are suggestive of a stable species.

*Tamura Nei distances with NJ. Numbers indicate bootstrap values and branch length indicate distance.

Figure 4.19. The phylogenetic trees of potential parents (underlined) with G. xvalentinei nothosubsp. subplicatus (A: Both nuclear and chloroplast DNA data; B: only nuclear DNA data; C: only chloroplast nuclear data.).

Concerted evolution can act fast and lead to the preservation of either parent's sequences or a chimeric sequence of both parents, which would lead to homogenized sequences (Baldwin et al., 1995). However, this does not seem to be the case with G. xvalentinei nothosubsp. subplicatus since there are no indications of a hybrid sequence or high similarity to either putative parent. Yet, another possibility would be that hybrid species would also show incongruence between chloroplast and nuclear data (Baldwin et al., 1995). Again, both genomic analyses show similar results (Figure 4.19).

Total nuclear DNA content show G. nivalis having an average of 72.2 pg , whereas G. plicatus, G. plicatus subsp. byzantinus and G. xvalentinei nothosubsp. subplicatus have on average $55.4 \mathrm{pg}, 57.9 \mathrm{pg}$ and 54.4 pg (Zonneveld et al., 2003). A garden hybrid between G. nivalis and G. plicatus subsp. byzantinus shows an expected intermediate value of 64.6 pg and not 54.4 pg (Zonneveld et al., 2003). These data are in congruence with the data analyzed in this thesis, identifying both G. xvalentinei nothosubsp. subplicatus and G. plicatus subsp. byzantinus as having similar nuclear content with G. plicatus and not with G. nivalis. The lack of G. nivalis in close geographical proximity to G. xvalentinei nothosubsp. subplicatus populations also supports against the hybrid theory. Even though morphologically, individuals show variations of both "parents", there are currently no molecular data that can support it.

4.5. Could G. plicatus subsp. byzantinus be a Hybrid?

*Tamura Nei distances with NJ. Numbers indicate bootstrap values and branch length indicate distance.

Figure 4.20. The phylogenetic tree of G. plicatus subsp. byzantinus with G. xvalentinei nothosubsp. subplicatus and G. plicatus using the ITS region.

The molecular DNA sequences obtained from populations of G. plicatus subsp. byzantinus show incongruent chloroplast and nuclear data (Figures 4.18, 4.20 and 4.21). Nuclear ITS sequences places G. plicatus subsp. byzantinus in close relatedness with G. plicatus, whereas chloroplast introns suggest very close association to G. xvalentinei nothosubsp. subplicatus and not G. plicatus.

*Tamura Nei distances with NJ. Numbers indicate bootstrap values and branch length indicate distance.

Figure 4.21. The phylogenetic tree of G. plicatus subsp. byzantinus with G. xvalentinei nothosubsp. subplicatus and G. plicatus using chloroplast introns.

Contrasting nuclear and chloroplast data suggest that there could be different levels of introgression and that the species under question could be an ancient hybrid. If G. xvalentinei nothosubsp. subplicatus is defined as a stable taxonomic unit, then we can infer that G. plicatus subsp. byzantinus could be an ancient hybrid between G. plicatus and G. xvalentinei nothosubsp. subplicatus. The different populations of G. plicatus subsp. byzantinus in Marmara had similar functional ITS sequences that is not representative of a recent hybrid swarm. Hence, it can only be concluded that G. plicatus subsp. byzantinus could be an ancient hybrid, that has stabilized into an established taxonomic unit.
G. plicatus is found in the western and central part of the Black Sea region in the North of Turkey (Bishop M., et al., 2001). Even though today, these species do not overlap, the spatial location of the three species adds weight to an ancient hybridization hypothesis (Figure 4.22). However, actual G. plicatus samples from Black Sea region
should be collected and the molecular markers analyzed, in order to make a thorough conclusion. The G. plicatus sequences that have been included in this analysis are from GENBANK, with unknown origin.

Figure 4.22. The map of distribution of G. plicatus subsp. byzantinus, G. xvalentinei nothosubsp. subplicatus and G. plicatus in Turkey. The circles represent the DNA regions that are close to identical between species.

5. CONCLUSIONS

The samples morphologically identified as G. nivalis found in Turkey [abbreviated as G. nivalis($(T R)$ in the thesis], were not genetically identical to the G. nivalis recognized in Europe. More samples from different locations close to the border should be analyzed, but as of yet, it can be suggested that there is no G. nivalis present in Turkey-in-Europe.

Samples taken from the European side of the Bosphorous and morphologically identified as G. nivalis seems to belong to the same taxonomic unit as G. xvalentinei nothosubsp. subplicatus. All samples had identical nuclear ITS sequences and highly similar chloroplast introns. The phylogenetic analyses of the chloroplast sequences revealed closer relatedness of G. xvalentinei nothosubsp. subplicatus and G. nivalis(TR) to G. plicatus and G. plicatus subsp. byzantinus than to G. nivalis. The phylogenetic analysis of the nuclear ITS sequences placed this taxonomic group onto a separate branch in the clade representing the Galanthus series. These results suggest that G. xvalentinei nothosubsp. subplicatus/G. nivalis(TR) samples are of the same taxonomic unit.
G. xvalentinei nothosubsp. subplicatus has been morphologically defined as a hybrid. However, there were no indications of recent hybridization or instability in any of the molecular markers examined. All markers were consistent and showed unique sequences. It seems that G. xvalentinei nothosubsp. subplicatus is a genetically stable taxonomic unit however showing a range of morphological markers.

The samples morphologically identified as G. plicatus subsp. byzantinus are on the nuclear DNA level very similar to G. plicatus. The chloroplast sequences, however, are very similar to those of G. xvalentinei nothosubsp. subplicatus. This inconsistency could be indicative of an ancient hybrid species, however more molecular analyses need to be done.

Both G. nivalis and G. plicatus subsp. byzantinus have been described as being under threat of hybridization in Turkey-in-Europe (Anonymous, 1999). These data suggest that there are probably no pure G. plicatus subsp. byzantinus or G. nivalis in the European side of the Bosphorous. G. plicatus subsp. byzantinus samples can only be found in the Asian side of the Bosphorous. And there are probably no G. nivalis in Turkey. These data should be incorporated into plant conservation databases.

The plants that are present in Turkey-in-Europe seem to be a stable taxonomic unit with a unique genome. Population ecology studies need to be conducted for re-naming and re-defining the conservation status of these plants. G. xvalentinei nothosubsp. subplicatus is listed as near threatened, however if the range of this plant is only limited within the Turkish borders (less than $20.000 \mathrm{~km}^{2}$), it might be listed as vulnerable and endemic, which would lead to changes in the current conservation policies. These data need to be matched up with population ecology studies, immediately, to be effective in the preservation of these Galanthus species.

REFERENCES

Anonymous, 1999: CITES Significant Trade in App. II species (plants). Review of trade in Galanthus and Cyclamen in Turkey and Georgia. - Report, prepared by Fauna \& Flora international in ass. with DHKD and WWF Georgia, Draft.

Alvarez, I., Wendel, J.F., 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417-434.

Arnheim, N., 1983. Concerted evolution in multigene families. Evolution of Genes and Proteins, M.Nei and R. Koehn (Eds), Sinauer Associates, Sunderland, Massachusetts, 3861.

Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciehowski, M.F., Campbell, C.S., Donoghue, M.J. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny, Annuals of Missouri Botanical Gardens, 82, 247-277.

Beebee T. and Rowe G., 2004. An introduction to Molecular Ecology. Oxford University Press, Oxford, UK, 1-3.

Berlocher, S.H., 1984. Insect molecular systematics, Annual Review of Entomology, 29, 403-33.

Bishop, M., Davis, A.P., Grimshaw, J. 2001. Snowdrops - The Griffin Press, UK, 363.

Brickell, C.D., 1984. Galanthus. In: P.H. Davis et al. (eds.), Flora of Turkey and the Agean Islands. 8:365-372. Edinburgh University Press, Edinburg.

Buckler, E.S., Ippolito, A., Holtsford, T.P., 1997. The evolution of ribosomal DNA: Divergent paralogous and phylogenetic implications, Genetics, 145, 983-987.

Buth, D.G., 1984. The application of electrophoretic data in systematic studies, Annual Review of Ecological Systems, 6, 339-64.

Caro, T.M., 1998. Behavioral Ecology and Conservation Biology, (edited by Caro T.M.) New York: Oxford University Press, Foreword.

Chase, M.W., 1993. Phylogenetics of seed plants: an analysis of nucleatide sequences from plastid gene $r b c \mathrm{~L}$, Annuals MO Botanic Gardens, 80, 528-580.

Coyne, J.A., 1982. Gel electrophoresis and cryptic protein variation, Isozymes: Current Topics in Biological Medicine Research, 6, 1-32.

Curtis, S.E., Clegg, M.T., 1984. Molecular evolution of chloroplast DNA sequences, Molecular Biology and Evolution, 1(4), 291-301.

Davis, A.P., 2002. Galanthus L., in Taxonomic revisions for Euro+Med Plant base. Unpublished manuscript, 102.

Davis, A.P., 1999. The genus Galanthus. Timber Press, Portland, Oregon, 566.

Davis, A.P., Byfield, A., Özhatay, N., Taylor, K., 2001. Galanthus xvalentinei nothosubsp. subplicatus (Amaryllidaceae): a new Galanthus hybrid from north-western Turkey, Kew Bulletin, 56, 639-647.

Elder, J.F., Turner, B.J., 1995. Concerted evolution of repitative DNA sequences in eukaryotes, Quarterly Review in Biology, 70, 297-320.

Felsenstien, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 39, 783-791.

Gehrig, H.H., Rösicke, H., Kluge, M., 1997. Detection of DNA polymorphisms in the genus Kalanchoe by RAPD-PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behavior of the species, Plant Science, 125, 41-51.

Gielly, L., Taberlet, P., 1994. The use of chloroplast DNA to resolve plant phylogenies: Non-coding versus rbcL sequences, Molecular Biology and Evolution, 11(5), 769-777.

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis. program for Windows 95/98/NT. Nucleic Acids Symposium. 41, 95-98.

Hillis, D.M., Moritz, C., 1990. Molecular Systematics, Sunderland, Mass Sinauer.

Jobes, D.V., Thien, L.B., 1997. A conserved motif in the 5.8S Ribosomal RNA (rRNA) gene is a useful diagnostic marker of plant internal transcribed spacer (ITS) sequences, Plant Molecular Biology Reporter, 15, 326-334.

Liu, J.S., Schardl, C.L., 1994. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes, Plant Molecular Biology, 26(2), 775-778.

MacDade, L.A., 1995. Hybridization and phylogenetics. In: Hoch, P.C., Stephenson A.G. (Eds). Experimental and Molecular Approaches to Plant Biosystematics. Missouri Botanical Gardens, St. Louis, Missouri, 305-331.

Mai, J.C., Coleman, A.W., 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants, Journal of Molecular Evolution, 44 (3), 258-271.

McDade, L.A., 1992. Hybrids and phylongenetic systematics II. The impact of hybrids on clasdistic analysis, Evolution, 46, 1329-1346.

Musters, W., Boon, K., van der Sande, C.A.F.M., van Heerikhuizen, H., Planta, R.J., 1990. Functional analysis of transcribed spacers of yeast ribosomal DNA, EMBO, 9, 3989-3996.

Nues, R.W. van, Rientjes, M.J., Sande, C.A.F.M. van, Zerp, S.F., Sluiter, C., Venema, J., Planta, R.J., Raue, H.A., 1994. Separate structural elements within internal transcribed spacer 1 of Saccaromyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA, Nucleic Acid Research, 22, 912-919.

Palmer, J.D., Herbon, L.A., 1987. Unicircular structure of the Brassica hirta mitochondrial genome. Current Genetics, 11(6-7), 565-70.

Parker, P.G., Snow, A.A., Schug, M.D., Booton, G.C., Fuerst, P.A., 1998. What molecules can tell us about Populations: choosing and using a molecular marker, Ecology, 79(2), 361-382.

Saitou, N. and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees, Molecular Biology and Evolution, 4, 406-425.

Sande, C.A.F.M. van der, Kwa, M., Nues, R.W. van, Heerikhuizen, H. van, Raue, H.A., Planta, R.J., 1992. Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA, Journal of Molecular Biology, 223, 899-910.

Soltis, D.E. and Soltis, P.S., 2003, The role of phylogenetics in comparitive genetics. Plant Physiology, 132: 1790-1800.

Suh, Y., Thien, L.B., Zimmer, E.A., 1992. Nucleotide sequences of the internal transcribed spacers and 5.8S rRNA gene in Canella winterana, Nucleic Acid Research, 20, 6101-6102.

Taberlet, P., Gielly, L., Pautou, G., Bouvet, J., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant Molecular Biology, 17, 1105-1109.

Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Molecular Biology and Evolution 10, 512-526.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice, Nucleic Acids Research, 22(22): 4673-80.

Troitsky, A.V., Melekhovets, Y.F., Rakhimova, G.M., Bobrova, V.K., Valiejo-Roman, K.M, Antonov, A.S., 1991. Angiosperm origins and early stages of seed plant evolution deduced from rRNA sequences, Journal of Molecular Evolution, 32, 253-261.

Webb, D.A., 1978. The European species of Galanthus L.. Botanical Journal of the Linnean Society. 76 (4), 307-313.

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of funghal ribosomal RNA genes for phylogenetics, M.Innis, D. Gelfand, J. Sninsky and T. White (Eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, California, 315-322.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafaski, J.A., Tingey, S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acid Research, 18, 6531-6535.

Wolfe, K.H., Li, W.H., Sharp, P.M., 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs, Proceedings of the National Academy of Science USA, 84, 9054-9058.

Wolfe, K.H., Morden, C.W., Palmer, J.D., 1991. Ins and outs of plastid genome evolution. Current Oppinions in Genetics Development, 1(4), 523-529.

Zimmer, E.A., Martin, S.L., Beverley, S.M., Kan, Y.W., Wilson, A.C., 1980. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin, Proceedings of the National Academy of Sciences USA, 77, 2158-2162.

Zonneveld, B.J.M., Grimshaw, J.M., Davis, A.P., 2003. The systematic value of nuclear DNA content in Galanthus. Plant Systematics and Evolution. 241, 89-102.

Zuker, M., Mathews, D.H., Turner D.H., 1999. Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide in RNA Biochemistry and Biotechnology. Barciszewski, J., Clark, B.F.C, (Eds.), NATO ASI Series, Kluwer Academic Publishers.

Zurawski, G., Perrot, B., Bottomley, W., Whitfeld, P.R., 1981. The structure of the gene for the large subunit of ribulose 1,5 -bisphosphate carboxylase from spinach chloroplast DNA, Nucleic Acid Research, 9(14), 3251-70.

Appendix A. Construction of the consensus ITS region sequences.

 Samples 1-5: G. plicatus subsp. byzantinus, 6-9: G.xvalentinei nothosubsp. subplicatus and 10-11: G. $\operatorname{nivalis}(T R)$| | 5 | 15 | 25 | 35 | 45 | 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S-01 | TTGAGGCCCG | AATGAATGAT | AGCGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-02 | TTGAGGCCCG | AATGAATGAT | AGCGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-03 | TTGAGGCCCG | AATGAATGAT | AGCGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-04 | TTGAGGCCCG | AATGAATGAT | AGCGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-05 | TTGAGGCCCG | AATGAATGAT | AGCGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| G.pli.sb. | TTGAGGCCCG | AATGAATGAT | AGCGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-06 | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-07 | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-08 | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-09 | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| G.xval/n(TR) | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-10 | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |
| S-11 | TTGAGGCCCG | AATGAATGAT | AGTGAACTTG | TAATACACCT | GTGGGGAGAA | TGTAGTGGGG |

$65 \quad 75 \quad 85 \quad 95 \quad 105$
S-01 GTAGCAAATC CATGGCTTTT GCACCTTATG GTGCCCTTGT CATCGTCACC TTGCATGTTG
S-02 GTAGCAAATC CATGGCTTTT GCACCTTATG GTGCCCTTGT CATCGTCACC TTGCATGTTG
S-03 GTAGCAAATC CATGGCTTTT GCACCTTATG GTGCCCTTGT CATCGTCACC TTGCATGTTG
S-04 GTAGCAAATC CATGGCTTTT GCACCTTATG GTGCCCTTGT CATCGTCACC TTGCATGTTG
S-05 GTAGCAAATC CATGGCTTTT GCACCTTATG GTGCCCTTGT CATCGTCACC TTGCATGTTG
G.pli.sb GTAGCAAATC CATGGCTTTT GCACCTTATG GTGCCCTTGT CATCGTCACC TTGCATGTTG

S-06 GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG S-07 GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG S-08 GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG S-09 GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG G. xval/n(TR) GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG S-10 GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG S-11 GTAGCAAATC CATGGCTTTT GCACCTTATG GTACCCTTGT CATTGTCACC TTGCATGTTG

	$\begin{aligned} & .\|\ldots .\| \\ & 125 \end{aligned}$	1.1 135	145	155	165	175
S-01	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCTTGTT
S-02	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCTTGTT
S-03	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCTTGTT
S-04	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCTTGTT
S-05	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCTTGTT
G.pli.sb	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCTTGTT
S-06	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT
S-07	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT
S-08	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT
S-09	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT
G.xval/n(TR)	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT
S-10	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT
S-11	TGTGGGATAG	TTTGCAGGAA	CAAAGTTTTG	GTGTAGTTCG	CGCCAAGGAG	CAACCCTGTT

	185	195	205	215	225	235
S-01	TGGATTGAGT	AGTATGTGAC	AAGTATTATA	TTGTAGTATG	TGGCATGATC	TCGATATATT
S-02	TGGATTGAGT	AGTATGTGAC	AAGTATTATA	TTGTAGTATG	TGGCATGATC	TCGATATATT
S-03	TGGATTGAGT	AGTATGTGAC	AAGTATTATA	TTGTAGTATG	TGGCATGATC	TCGATATATT
S-04	TGGATTGAGT	AGTATGTGAC	AAGTATTATA	TTGTAGTATG	TGGCATGATC	TCGATATATT
S-05	TGGATTGAGT	AGTATGTGAC	AAGTATTATA	TTGTAGTATG	TGGCATGATC	TCGATATATT
G.pli.sb	TGGATTGAGT	AGTATGTGAC	AAGTATTATA	TTGTAGTATG	TGGCATGATC	TCGATATATT
S-06	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT
S-07	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT
S-08	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT
S-09	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT
G.xval/n(TR)	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT
S-10	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT
S-11	TGGATTGAGT	AGTGTGTGAC	AAGTATTATA	TTATAGTACG	TGGCATGATC	TCGATATATT

 $245 \quad 255 \quad 265 \quad 275 \quad 285 \quad 295$ S-01 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-02 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-03 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-04 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-05 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA G.pli.sb AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA

S-06 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-07 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-08 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-09 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA G. xval/n(TR) AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-10 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA S-11 AACTTGCATG ACTCTTGGCA ACGAATATCT TGGCTCTGGC ATTGATGAAG AATGTAGCGA

S-01 AATATGTTAT TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-02 AATATGTTAT TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-03 AATATGTTAT TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-04 AATATGTTAT TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT
S-05 AATATGTTAT TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT
G.pli.sb AATATGTTAT TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT

S-06 AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT
S-07 AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-08 AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-09 AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT G. xval/n(TR) AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-10 AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT S-11 AATATGTTAC TTGGTGTGAA TTGCAGAATC TTGTGAACCA TCGAGTCTTT GAATGCAAGT
 S-01 TGCGCTCAAG GTTATTAGAC TAAGGGCACT CTTGCCTGGG CATCACGCCT ATTGACGCTC S-02 TGCGCTCAAG GTTATTAGAC TAAGGGCACT CTTGCCTGGG CATCACGCCT ATTGACGCTC S-03 TGCGCTCAAG GTTATTAGAC TAAGGGCACT CTTGCCTGGG CATCACGCCT ATTGACGCTC S-04 TGCGCTCAAG GTTATTAGAC TAAGGGCACT CTTGCCTGGG CATCACGCCT ATTGACGCTC S-05 TGCGCTCAAG GTTATTAGAC TAAGGGCACT CTTGCCTGGG CATCACGCCT ATTGACGCTC G.pli.sb TGCGCTCAAG GTTATTAGAC TAAGGGCACT CTTGCCTGGG CATCACGCCT ATTGACGCTC

S-06 TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC S-07 TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC S-08 TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC S-09 TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC G. xval/n(TR) TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC
S-10 TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC

S-11 TGTGCTCAAG GTTATTAGGC TAAGGGCACT CCTGCCTGGG CATCACACCT ATTCACGCTC

425435445455465
S-01 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-02 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-03 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-04 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-05 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC
G.pli.sb TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC

S-06 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-07 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-08 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-09 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC G. xval/n(TR) TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-10 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC S-11 TCTGCCTTTT GCAATTTCAT GTCTTGCGAT TAGACAGTAG GTATTGATGT GGAGATTGCC

```
    ...|....| ...|...|| ...| ...| ...||....| ....|....| ....|....|
    485 495 505 515 525 535
S-01 CCCTTCCTCG TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCGATC GTGATGGACG
S-02 CCCTTCCTCG TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCGATC GTGATGGACG
S-03 CCCTTCCTCG TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCGATC GTGATGGACG
S-04 CCCTTCCTCG TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCGATC GTGATGGACG
S-05 CCCTTCCTCG TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCGATC GTGATGGACG
G.pli.sb CCCTTCCTCG TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCGATC GTGATGGACG
S-06 CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
S-07 CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
S-08 CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
S-09 CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
G.xval/n(TR) CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
S-10 CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
S-11 CCCCTCCTAA TACATCATTA GGTGGTGGGT CTAATTGTTA GTTGTCAATC GTGATGGACG
```

 $545 \quad 555 \quad 565 \quad 575$ 585 595

S-01	TGGCGAGAGG	tgtagtigac	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGgTGACGCA
S-02	TGGCGAGAGG	TGTAGTTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGgTGACGCA
S-03	TGGCGAGAGG	tgtagtigac	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGGTGACG
S-04	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGGTGACGCA
S-05	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AAC	GGGTGACGCA
G.pli.sb	TGGCGAGAGG	TGTAGTTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGG
S-06	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCT	GG
S-07	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCT	GGgTGACGCA
S-08	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGGTGACGCA
S-09	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGGTGACGCA
G.xval/n(TR)	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGGTGAC
S-10	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAGT	AACTTAGCTT	GGGTGA
S-11	TGGCGAGAGG	TGTA-TTGAC	ACACATTCTA	TCATGGAAG	AACTTAGC	GGG

	605	615	625	635	45
S-01	CCGGAgTAAC	CTATGCTAAT	tggtgacatg	TGAGTATTAC	TTGGAACATG
S-02	CCGGAGTAAC	CTATGCTAAT	tgGtgacatg	tGAGTATTAC	TTGGAACAT
S-03	CCGGAGTAAC	CTATGCTAAT	tGGTGACAT	TGAGTATTA	TTGGAACA
S-04	CCGGAGTAAC	CTATGCTAAT	tggtgacatg	tGAGTATTAC	tTGGAACA
S-05	CCGGAGTAAC	CTATGCTAAT	tggtgacatg	tGAgTATTAC	ITGGAACAT
G.pli.sb	CCGGAGTAAC	CTATGCTAAT	TGGTGACATG	TGAGTATTAC	TTGGAA
S-06	CCGGAGTAAC	CTATGCTAAT	tggtgacatg	tgagtattac	TTGGAACA
S-07	CCGGAGTAAC	CTATGCTAAT	tggtgacatg	tgagtattac	TTGGAACAT
S-08	CCGGAGTAAC	CTATGCTAAT	tgGtgacatg	TGAGTATTAC	TTGGAACAT
S-09	CCGGAGTAAC	CTATGCTAAT	tGgTGACATG	TGAGTATTAC	ITGGAACAT
G.xval/n(TR)	CCGGAGTAAC	CTATGCTAAT	TGGTGACATG	TGAGTATTAC	TTGGAACATG
S-10	CCGGAGTAAC	CTATGCTAAT	TGGTGACATG	TGAGTATTAC	TTGGAACA
S-11	CGGGAGTAA	T	GAC	GAGTATT	GGA

Appendix II. Construction of consensus trnL(UAA) intron and trnL(UAA) 3'exon$\operatorname{trnF}(\mathrm{GAA})$ intragenic spacer sequences. Samples 1-5: G. plicatus subsp. byzantinus, 6-9: G.xvalentinei nothosubsp. subplicatus and 10-11: G. nivalis(TR)

	$\left.\right\|_{5} \ldots \text { \| }$	15	$\begin{aligned} & 1 . \\ & 25 \end{aligned}$	35	45	55
S1	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S2	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S3	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S4	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S5	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
G.pli.sb.	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	A ${ }^{\text {CTA }}$ AAAAT	GGGCAATCCT	GAGCCAAATC
S6	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S 7	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S8	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S9	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
Gxval.	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S10	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
S11	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC
G.niv(TR)	TGGGAACTTC	CAAATTCAGA	GAAACCCTGG	AACTAAAAAT	GGGCAATCCT	GAGCCAAATC

	${ }_{65} . . . \mid$	$\begin{aligned} & 1 . \\ & 75 \end{aligned}$	$\begin{aligned} & 1 . \\ & 85 \end{aligned}$	95	105	115
S1	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S2	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S3	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S 4	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S5	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
G.pli.sb.	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S6	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S 7	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S8	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S9	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
Gxval.	TTTATTTTTA	GAAAAACAAG	GGITTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S10	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
S11	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT
G.niv(TR)	TTTATTTTTA	GAAAAACAAG	GGTTTGAAAA	ACTAGAAAGG	GATAGGTGCA	GAGACTCAAT

	125	135	145	155	165	175
S1	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S2	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S3	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S 4	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S5	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
G.pli.sb.	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGITGCGTCG	GTAACTGGCT	ATCGAAATTA
S6	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S 7	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S8	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S9	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
Gxval.	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGITGCGTCG	GTAACTGGCT	ATCGAAATTA
S10	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
S11	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGTTGCGTCG	GTAACTGGCT	ATCGAAATTA
G.niv(TR)	GGAAGCTGTT	CTAACGAATG	GAGTTGACTA	CGITGCGTCG	GTAACTGGCT	ATCGAAATTA

	185	195	205	215	225	235
S1	AAGTAAAGAA	tgacctatat	Atctantacg	CACGTATACA	tactggcata	TCAAACGATT
S2	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactggcata	TCAAACGATT
S3	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	TACTGGCATA	TCAAACGATT
S4	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactgacata	TCAAACGATT
S5	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactggcata	TCAAACGATT
G.pli.sb.	AAGTAAAGAA	tGACCTATAT	ATCTAATACG	CACGTATACA	TACTGGCAT	TCAAACGATT
S6	AAGTAAAGAA	tgacctatat	AtCTAATACG	CACGTATACA	TACTGGCATA	TCAAACGATT
S7	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactgacata	TCAAACGATT
S8	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactgacata	TCAAACGATT
S9	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactgccat	TCAAACGATT
Gxval	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	tactggcata	TCAAACGATT
S10	AAGTAAAGAA	tgacctatat	ATCTAATACG	CACGTATACA	TACTGGCATA	TCAAACGATT
S11	AAGTAAAGAA	tgacctatat	AtCTAATACG	CACGTATACA	tactggcata	TCAAACGATT
G.niv(TR)	AAGTAAAGAA	tGACCTATAT	ATCTAATACG	CACGTATACA	TACTGGCATA	TCAAACGATT

	245	255	265	275	285	295
S1	AATCGAGAAA	CGAATCCATA	CCGAATCCAT	AtAtAtATAC	GCAATATATT	TTAAATTCGG
S2	AATCGAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATATT	ITAAATTCGG
S3	AATCGAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATATT	TTAAATTCGG
S4	AATCGAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATATT	TTAAATTCGG
S5	AATCGAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATATT	TTAAATTCGG
G.pli.sb.	AATCGAGAAA	CGAATCCATA	CCGAATCCAT	atatatatac	gcantatatt	ITAAATTCGG
S6	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	ATATATATAC	GCAATATATT	TTAAATTCAG
S7	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATATT	ItaAAtTCAG
S8	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATAT	TTAAATTCAG
S9	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	ATATATATAC	gCAATATATT	TTAAATTCAG
Gxval.	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	atatatatac	GCAATATATT	ITAAATTCAG
S10	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	AtAtATATAC	GCAATATATT	ITAAATTCAG
S11	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	Atatatatac	GCAATATATT	TTAAATTCAG
G.niv(TR)	AATCTAGAAA	CGAATCCATA	CCGAATCCAT	atatatatac	gcantatatt	TTAAATTCAG

	305	315	325	335	345	355
S1	Agttattgtg	gatctattct	AATCGAAGTT	AAAGGAATAA	tcanatattc	AGTGATCAAA
S2	AGTtAttgig	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATT	AgTGATCAAA
S3	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATT	AGTGATCAAA
S4	Agttattgig	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	Agtgatcana
S5	AgTtattgig	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	Agtgatcana
G.pli.sb.	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATT	AGTGATCAAA
S6	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	AGTGATCAAA
S7	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	AGTGATCAAA
S8	AgTtattgig	GATCTATtCT	AATCGAAGTT	AAAGGAATAA	TCAAATATT	AgTGATCAAA
S9	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATI	AgTGAtCAAA
Gxval	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	Agtgatcana
S10	AGTTATTGTG	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	AGTGATCAAA
S11	Agttattgig	GATCTATTCT	AATCGAAGTT	AAAGGAATAA	TCAAATATTC	AgTGATCAAA
G.niv(TR)	AGTTATTGTG	GATCTATTC	ATCGAAG	AGGAAT	TCAAATAT	GTGAT

 tCATtCATtC CAGAGTtTGA TAGACCATtT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTITGA TAGACCATTT TTTCAAAAT GATTAATCGG ACGAGAATAA TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA $\begin{array}{ll}\text { Gxval } & \text { TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA }\end{array}$ S11 TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA G.niv(TR) TCATTCATTC CAGAGTTTGA TAGACCATTT TTTCAAAAAT GATTAATCGG ACGAGAATAA

	425	435	445	455	465	475
S1	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATtTtTAA	TA
S2	AgAGAGAGTC	CCAttctaca	TGTCAATACC	GACAACAATG	AAAT--TTAA	CT
S3	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATTITTA	CTICTTAACT
S4	AGAGAGAGTC	CCATtCTGCA	TGTCAATACC	GACAACAATG	AAATI	Cttcttanct
S5	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATTTTTAA	CTTCTTAACT
G.pli.sb.	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATITTTAA	CITCTTAACT
S6	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATTTTTAA	CTICTTAACT
S7	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATTTTTA	CTTCTTA
S8	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATtTtTAA	Attcttanct
S9	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATTTTTAA	CTTTTTAACT
Gxval	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAACAATG	AAATTTTTAA	CTICTTAACT
S10	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAGCAATG	AAATITTTAA	CTTCTTAACT
S11	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAGCAATG	AAATTTTTA	CtTCTTAACT
G.niv(TR)	AGAGAGAGTC	CCATTCTGCA	TGTCAATACC	GACAGCAA	AAATTTTTA	CTTCTT

....|....||....||....||....||....||....|
$485495 \quad 505$ 515 525 535
S1 ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S2 ATtTATCTTA tTtTtTtTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S3 ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S4 ATTTATCTTA TTTTTTTTC- -ATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S5 ATTTATCTTA TTTTTTTTT- -ATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA G.pli.sb. ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S6 ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S7 ATTTATCTTA TTTTTTTTTT CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S8 ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S9 ATTTATCTTA TTTTTTTTTT CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA GXval ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S10 ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA S11 ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA
G.niv(TR) ATTTATCTTA TTTTTTTTT- CATAAGCGGT TCAAATAAAA TTCAATATTT TTCTCATTCA

 TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT | S9 | TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT |
| :--- | :--- |
| GXval | TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT | S10 TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT S11 TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT G.niv(TR) TTCTACTCTT TAACAAATGG ATCCAAACAT AAATCTTTTG ATCTTATACC AATTTGGTTT

S1 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S2 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S3 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S4 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S5 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT G.pli.sb. GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S6 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S7 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S8 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S9 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT GXval GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S10 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT S11 GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT
G.niv(TR) GAATAGATAT GATACCCGTA CAAATGACCA TATATGGCCA TGGAATTCCT ATTATTGAAT

$665 \quad 675 \quad 685 \quad 705$
S1 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT S2 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT S3 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT S4 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTAAAAATCT S5 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT G.pli.sb. CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT
S6 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT
S7 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT
S8 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT S9 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT GXval CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT S10 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT S11 CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT G.niv(TR) CATTCACAGC CCATATCATT ATCCTTACAT TCACAAAGAA AGTCTTCTTT GTGAAAATCT
...|....||....||....||....||.....||.....|
$725 \quad 735 \quad 745 \quad 755 \quad 765 \quad 775$

S1	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTTTTT	TGAGTCTATT	TCATtTACAT
S2	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTTTTT	TGAGTCTATT	TC
S3	AATAAATTAG	GGGACTAGGT	CAAAATTITT	AATACTITIT	TGAGTCTATT	TCATITACAT
S4	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AAtACttttt	TGAGTCTATT	TCATTTACAT
S5	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTITTT	TGAGTCTATT	TCA
G.pli.sb.	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTITTT	tGAGTCTATT	TCATTTACAT
S6	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTTTTT	TGAGTCTATT	TCATtTACAT
S7	AATAAATTAG	GGGACTAGGT	CAAAATTITT	AATACTITT	TGAGTCTAT	TCATTTACAT
S8	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTITTT	TGAGTCTATT	TCATtTACAT
S9	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTTTTT	TGAGTCTATT	TCATTTACAT
Gxval	AATAAATTAG	GGGACTAGGT	CAAAATTTTT	AATACTITTT	tGAGTCTATT	TCATTTACA
S10	AATAAATTAG	GGGACTAGGT	CAAAATTITT	AATACTITTT	TGAGTCTATT	TCATTTACAT
S11	AATAAATTAG	GGGACTAGGT	CAAAATTITT	AATACTITTT	TGAGTCTATT	tcatttacat
G.niv(TR)	AATAAATTAG	GGGACTAGGT	CAAAATTITT	AATACTIT	TGAGTCTA	TCATTTACA

	785	795	
S1	AgATACAAAT	ACTCTACTAG	GA
S2	AGATACAAAT	ACtCtactag	GA
S3	AgAtACAAAT	ACtCtactag	GA
S4	AgAtACAAAT	ACTCTACTAG	GA
S5	AGATACAAAT	ACtCtactag	GA
G.pli.sb.	AGATACAAAT	ACTCTACTAG	GA
S6	AgATACAAAT	ACTCTACTAG	GA
S7	AGATACAAAT	ACTCTACTAG	GA
S8	AgAtACAAAT	ACtCTACtAg	GA
S9	AGATACAAAT	ACtCtactag	GA
Gxval	AGATACAAAT	ACTCTACTAG	G GA
S10	AgATACAAAT	ACTCTACTAG	GA
S11	AGATACAAAT	ACTCTACtAg	GA
G.niv(TR)	AGATACAAAT	ACTCTACTAG	GA

Appendix III. DNA Sequences of the species of Galanthus series used in phylogenetic analysis.

G.nivalis

TGGGAACTTCCAAATTCAGAGAAACCCTGGAACTAAAAATGGGCAATCCTGAGCCAAATCTTTATTTTTAGAAAAACAAGGGTTTGAAAAACTAGAA~~~ G.plicatus

TGGGAACTTCCAAATTCAGAGAAACCCTGGAACTAAAAATGGGCAATCCTGAGCCAAATCTTTATTTTTAGAAAAACAAGGGTTTGAAAAACTAGAA~~~ G.pli.sb.

TGGGAACTTCCAAATTCAGAGAAACCCTGGAACTAAAAATGGGCAATCCTGAGCCAAATCTTTATTTTTAGAAAAACAAGGGTTTGAAAAACTAGAA ~~~ G.xvalentinei

TGGGAACTTCCAAATTCAGAGAAACCCTGGAACTAAAAATGGGCAATCCTGAGCCAAATCTTTATTTTTAGAAAAACAAGGGTTTGAAAAACTAGAA~~~ G.nivalis (TR)

TGGGAACTTCCAAATTCAGAGAAACCCTGGAACTAAAAATGGGCAATCCTGAGCCAAATCTTTATTTTTAGAAAAACAAGGGTTTGAAAAACTAGAA ~~~ S.lutea

TGGGAACTTCCAAATTCAGAGAAACCCTGGAACTAAAAATGGGCAATCCTGAGCCAAATCTTTATTTTTA~~~~~~~~~GGGTTTGAAAAACTGGAATAA

110	120	130	140	150	160	170	180	190	200

G.nivalis
 G.plicatus
 G.pli.sb.

~~~~~~~~~AGGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGGAGTTGACTACGTTGCGTCGGTAACTGGCTATCGAAATTAAAGTAAAG G.xvalentinei
\(\sim \sim \sim \sim \sim \sim \sim \sim A G G G A T A G G T G C A G A G A C T C A A T G G A A G C T G T T C T A A C G A A T G G A G T T G A C T A C G T T G C G T C G G T A A C T G G C T A T C G A A A T T A A A G T A A A G ~\) G.nivalis (TR)
~~~~~~~~AGGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGGAGTTGACTACGTTGCGTCGGTAACTGGCTATCGAAATTAAAGTAAAG

\section*{S.lutea}

AAAATAAAAAGGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGGAGTTGACTACGTTGCGTTGGTAACAGGCTATCGAAATTAAAG-AAAG

G.nivalis

AATGACCTATATATCTAATACGCACGTATACATACTGGCATATCAAACGATTAATCGCGAAACGAATCCATACCGAATCCATATATATATACGCAATATA G.plicatus

A-TGACCTATATATCTAATACGCACGTATACATACTGGCATATCAAACGATTAATCGCGAAACGAATCCATACCGAATCCATATATATATACGCAATATA G.pli.sb.

AATGACCTATATATCTAATACGCACGTATACATACTGGCATATCAAACGATTAATCGAGAAACGAATCCATACCGAATCCATATATATATACGCAATATA G.xvalentinei

ААТGACCTATATATCTAATACGCACGTATACATACTGGCATATCAAACGATTAATCTAGAAACGAATCCATACCGAATCCATATATATATACGCAATATA G.nivalis(TR)

AATGACCTATATATCTAATACGCACGTATACATACTGGCATATCAAACGATTAATCTAGAAACGAATCCATACCGAATCCATATATATATACGCAATATA S.lutea

AATGACCTATATATCTAATACGCACGTATACATACTGGCATATCAAACGATTAATCGCGAAACGAATCCATACCAAATCCATATATATATATGCAATATA

G.nivalis

TTAAAAATTCAGAGTTATTGTGGATCTATTCTAATCGAAGTTAAAGGAAGAATCAAATATTCAGTGATCAAATCATTCATTCCAGAGTTTGATAGACCAT G.plicatus

TTTTAAATTCAGAGTTATTGTGGATCTATTCTAATCGAAGTTAAAGGAATAATCAAATATTCAGTGATCAAATCATTCATTCCAGAGTGTGATAGACCAT G.pli.sb.

TTTTAAATTCGGAGTTATTGTGGATCTATTCTAATCGAAGTTAAAGGAATAATCAAATATTCAGTGATCAAATCATTCATTCCAGAGTTTGATAGACCAT G.xvalentinei

TTTTAAATTCAGAGTTATTGTGGATCTATTCTAATCGAAGTTAAAGGAATAATCAAATATTCAGTGATCAAATCATTCATTCCAGAGTTTGATAGACCAT G.nivalis (TR)

TTTTAAATTCAGAGTTATTGTGGATCTATTCTAATCGAAGTTAAAGGAATAATCAAATATTCAGTGATCAAATCATTCATTCCAGAGTTTGATAGACCAT S.lutea

TGAAAAATTCAGAGTTATTGTGGATCTATTCTAATCGAAGTTAAAGGAAGAATCGAATATTCAGTGATCAAATCATTCATTCCAGAGTTTGATAGATCAT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 610 & 620 & 630 & 640 & 650 & 660 & 670 & 680 & 690 & 700 \\
\hline
\end{tabular}

\section*{G.nivalis}

ATACCAATTTGGTTTGAATAGATATGATACCCGTACAAATGACCATATATGGCCATGGAATTCCCATTATTGAATCATTCACAGCCCATATCATTATCCT G.plicatus

ATACCAATTTGGTTTGAATAGATATGATACCCGTACAAATGACCATATATGGCCATGGAATTCCTATTATTGAATCATTCACAGCCCATATCATTATCCT G.pli.sb.

ATACCAATTTGGTTTGAATAGATATGATACCCGTACAAATGACCATATATGGCCATGGAATTCCTATTATTGAATCATTCACAGCCCATATCATTATCCT G.xvalentinei

ATACCAATTTGGTTTGAATAGATATGATACCCGTACAAATGACCATATATGGCCATGGAATTCCTATTATTGAATCATTCACAGCCCATATCATTATCCT G.nivalis (TR)

ATACCAATTTGGTTTGAATAGATATGATACCCGTACAAATGACCATATATGGCCATGGAATTCCTATTATTGAATCATTCACAGCCCATATCATTATCCT S.lutea

ATACCAATTTGGTTTGAATAGATATGATACCCGTACAAATGAATATATATGGTCATGGAATTCCCATTATTGAATCATTCACAGTCCATAGCATTATCCT

G.nivalis

TACATTCACAAAGAAAGTCTTCTTTTTGAAAATCTAAGAAATTAGGGGACTAGGTCAAAATTTTTA-ATACTTTT--TTGAGTCT-ATTTC-ATTTACAT G.plicatus

TACATTCACAAAGAAAGTGTTCTTTGTGAAAATCTAATAAATTAGGGGATTAGGTCAAAATTTTTAGATACTTATGTTTGAGTCTTATTTCTATTTACAT G.pli.sb

TACATTCACAAAGAAAGTCTTCTTTGTGAAAATCTAATAAATTAGGGGACTAGGTCAAAATTTTTA-ATACTTTT--TTGAGTCT-ATTTC-ATTTACAT G.xvalentinei

TACATTCACAAAGAAAGTCTTCTTTGTGAAAATCTAATAAATTAGGGGACTAGGTCAAAATTTTTA-ATACTTTT--TTGAGTCT-ATTTC-ATTTACAT G.nivalis (TR)

TACATTCACAAAGAAAGTCTTCTTTGTGAAAATCTAATAAATTAGGGGACTAGGTCAAAATTTTTA-ATACTTTT--TTGAGTCT-ATTTC-ATTTACAT S.lutea

TACATTCACAAAGAATGTCTTCTTTTTAAAAATCTAAGAAATTTGGGGACTAGGTCAAAATTTTTA-ATACTTTT-TTTTAGTCT-ATTTA-ATTTACAT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{ITS1} \\
\hline 810 & 820 & 830 & 840 & 850 & 860 & 870 & 880 & 890 & 900 \\
\hline . . . \({ }^{\text {. . . . }}\). & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{G.nivalis} \\
\hline \multicolumn{10}{|l|}{A-GATACAAATACTCTACTAGAATGATGCGCGGGGAATCGGCCCGAATGAATGATAGCGAACTTGTAATACACCTGTGGGGAGA} \\
\hline \multicolumn{10}{|l|}{G.plicatus} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{ACGATACAAATACTCTACTAGGATGATGTGCGGG-AATCGGCC GAATGAATGATAGCGAACTTGTAATACACCTGTGGGGAGAATGTAGTGGGGGTAGC G.pli.sb.}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{A-GATACAAATACTCTACTAGGATGATGCGCGGGGAATCGGCCCGAATGAATGATAGCGAACTTGTAATACACCTGTGGGGAGAATGTAGTGGGGGTAGC G.xvalentinei} \\
\hline \multicolumn{10}{|l|}{A-GATACAAATACTCTACTAGGATGATGCGCGGGGAATCGGCCCGAATGAATGATAGTGAACTTGTAATACACCTGTGGGGAGAATGTAGTGGGGGTAGC} \\
\hline \multicolumn{10}{|l|}{G.nivalis(TR)} \\
\hline \multicolumn{10}{|l|}{A-GATACAAATACTCTACTAGGATGATGCGCGGGGAATCGGCCCGAATGAATGATAGTGAACTTGTAATACACCTGTGGGGAGAATGTAGTGGGGGTAGC} \\
\hline \multicolumn{10}{|l|}{S.lutea} \\
\hline \multicolumn{10}{|l|}{GATACAAATACTCTACTAGG} \\
\hline
\end{tabular}

G.nivalis
----CCATGGCTTTTGC-ACCTTATGGTGCCCTTGTCATCGTCACATTGCATGTTGTATGGGATAGTTTGCAGGAACAAAGTTTTGGTGTAGTTCGCGC G.plicatus

AAAT-CCATGGCTTTTGC-ACCTTATGGTGCCCTTGTCATCGTCACCTTGCATGTTGTGTGGGATAGTTTGCAGGAACAAAGTTTTGGTGTAGTTCGCGC G.pli.sb.

AAAT-CCATGGCTTTTGC-ACCTTATGGTGCCCTTGTCATCGTCACCTTGCATGTTGTGTGGGATAGTTTGCAGGAACAAAGTTTTGGTGTAGTTCGCGC G.xvalentinei

AAAT-CCATGGCTTTTGC-ACCTTATGGTACCCTTGTCATTGTCACCTTGCATGTTGTGTGGGATAGTTTGCAGGAACAAAGTTTTGGTGTAGTTCGCGC G.nivalis(TR)

AААТ-ССАТGGCTTTTGC-ACCTTATGGTACCCTTGTCATTGTCACCTTGCATGTTGTGTGGGATAGTTTGCAGGAACAAAGTTTTGGTGTAGTTCGCGC S.lutea

GCCCGTCGTTGCCACAGCCTCCTTG-GGTGCCCCTGCCG-CGCCGCCCTGCACGTGCTGCGGGACGAGCGGTGGGAACAAT-TTCCGGCGCGGTGCGCGC

\begin{abstract}
5.8S

G.nivalis

CAAGGAGCAACCCTGTTTGGATTGAGTAGTGTGTAACAAGTATTATATTGTAGTATGTGGCATGATCTTGATATAT-TAACTTGCATGACTCTTGGCAAC G.plicatus

CAAGGAGCAACCTTGTTTGGATTGAGTAGTATGTGACAAGTATTATATTGTAGTATGTGGCATGATCTCGATATAT-TAACTTGCATGACTCTTGGCAAC G.pli.sb.

CAAGGAGCAACCTTGTTTGGATTGAGTAGTATGTGACAAGTATTATATTGTAGTATGTGGCATGATCTCGATATAT-TAACTTGCATGACTCTTGGCAAC G.xvalentinei

CAAGGAGCAACCCTGTTTGGATTGAGTAGTGTGTGACAAGTATTATATTATAGTACGTGGCATGATCTCGATATAT-TAACTTGCATGACTCTTGGCAAC G.nivalis (TR)

CAAGGAGCAACCCTGTTTGGATTGAGTAGTGTGTGACAAGTATTATATTATAGTACGTGGCATGATCTCGATATAT-TAACTTGCATGACTCTTGGCAAC
S.lutea

CAAGGAGCAACCCTGTTTGGATAGCGCAGCGTGCGGCGAGCGCACCATCGCAGCGCGCGACGCGATCCTGGTACGCCTAACCTGCATGACTCTCGGCAAC
\end{abstract}

G.nivalis

GAATATCTTGGCTCTGGCATTGATGAAGAATGTAGCGAAATATGTTACTTGGTGTGAATTGCAGAATCTTGTGAACCATCGAGTCTTTGAATGCAAGTTG G.plicatus

GAATATCTTGGCTCTGGCATTGATGAAGAATGTAGCGAAATATGTTATTTGGTGTGAATTGCAGAATCTTGTGAACCATCGAGTCTTTGAATGCAAGTTG G.pli.sb

GAATATCTTGGCTCTGGCATTGATGAAGAATGTAGCGAAATATGTTATTTGGTGTGAATTGCAGAATCTTGTGAACCATCGAGTCTTTGAATGCAAGTTG G.xvalentinei

GAATATCTTGGCTCTGGCATTGATGAAGAATGTAGCGAAATATGTTACTTGGTGTGAATTGCAGAATCTTGTGAACCATCGAGTCTTTGAATGCAAGTTG G.nivalis (TR)

GAATATCTTGGCTCTGGCATTGATGAAGAATGTAGCGAAATATGTTACTTGGTGTGAATTGCAGAATCTTGTGAACCATCGAGTCTTTGAATGCAAGTTG S.lutea

GGATATCTTGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTG

G.nivalis

CGCTCAAGGTTATTAGGCTAAGGGCACTCCTGCCTGGGCATCACGCCTATTGACGCTCTCTGCCTTTTGCAATTTCATGT---CTTGCGATTAGACATTA G.plicatus

CGCTCAAGGTTATTAGACTAAGGGCACTCTTGCCTGGGCATCACGCCTATTGACGCTCTCTGCCTTTTGCAATTTCATGT---CTTGCGATTAGACAGTA G.pli.sb.

CGCTCAAGGTTATTAGACTAAGGGCACTCTTGCCTGGGCATCACGCCTATTGACGCTCTCTGCCTTTTGCAATTTCATGT---CTTGCGATTAGACAGTA G.xvalentinei

TGCTCAAGGTTATTAGGCTAAGGGCACTCCTGCCTGGGCATCACACCTATTCACGCTCTCTGCCTTTTGCAATTTCATGT---CTTGCGATTAGACAGTA G.nivalis (TR)

TGCTCAAGGTTATTAGGCTAAGGGCACTCCTGCCTGGGCATCACACCTATTCACGCTCTCTGCCTTTTGCAATTTCATGT---CTTGCGATTAGACAGTA
S.lutea

CGCCCGAGGCTATCTGGCCAAGGGCACGCCTGCCTGGGCGTCACGCCTACCGACGCTCCGTGCCTCCTGCCCCCTCCCCTGCCCGTGCAGTTCGGCGGCA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1310 & 1320 & 1330 & 1340 & 1350 & 1360 & & & \\
\hline
\end{tabular}
G. nivalis

GGTATTGATGTGGAGATTGCTCCCCTCCTCATACATCATTAGGTGGTGGGTCTAATTGTTAGTTGTCGATCGTGATGGACGTGGCGAGAGGAGTT-TTGA
G.plicatus

GGTATTGATGTGGAGATTGCCCCCTTCCTCGTACATCATTAGGTGGTGGGTCTAATTGTTAGTTGTCGATCGTGATGGACGTGGCGAGAGGTGTA-TTGA G.pli.sb.

GGTATTGATGTGGAGATTGCCCCCTTCCTCGTACATCATTAGGTGGTGGGTCTAATTGTTAGTTGTCGATCGTGATGGACGTGGCGAGAGGTGTAGTTGA G.xvalentinei

GGTATTGATGTGGAGATTGCCCCCCTCCTAATACATCATTAGGTGGTGGGTCTAATTGTTAGTTGTCAATCGTGATGGACGTGGCGAGAGGTGTA-TTGA
G.nivalis (TR)

GGTATTGATGTGGAGATTGCCCCCCTCCTAATACATCATTAGGTGGTGGGTCTAATTGTTAGTTGTCAATCGTGATGGACGTGGCGAGAGGTGTA-TTGA S.lutea

GGCACTGATGCGGAGATTGGCCCC----TCACGCATCGTTGCGTGGCGGGTCGAAGTGCGGGTCGCCGGTCGGGTCGGACGCAGCGAGCGGTGGA-TCGA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1410 & 1420 & 1430 & 1440 & 1450 & 1460 & 1470 & 1480 & 1490 \\
\hline
\end{tabular}

G.nivalis

CACACATTCTATCATGGAAGTAACTTAGCTTGGGTGACGCACCGGAGTAACCTATGCTAATTGGTGACATGTGAGTATTACTTGGGACATG G.plicatus

CACACATTCTATCATGGAAGTAACTTAGCTTGGGTGACGCACCGGAGTAACATATGCTAATTGGTGACATGTGAGTATTACTTGGAACATG G.pli.sb.

CACACATTCTATCATGGAAGTAACTTAGCTTGGGTGACGCACCGGAGTAACCTATGCTAATTGGTGACATGTGAGTATTACTTGGAACATG
G.xvalentinei

CACACATTCTATCATGGAAGTAACTTAGCTTGGGTGACGCACCGGAGTAACCTATGCTAATTGGTGACATGTGAGTATTACTTGGAACATG
G.nivalis (TR)

CACACATTCTATCATGGAAGTAACTTAGCTTGGGTGACGCACCGGAGTAACCTATGCTAATTGGTGACATGTGAGTATTACTTGGAACATG S.lutea

CACGCGCGTTGCCGCCGGAGTGACCCGACTCGAGCGATGCACCGGAGGAACCCACGCGACGGGCGCACGT-TGTGCGCTCCTCGGAACACG~~~~~~~~~

[^0]: ${ }^{1}$ CITES: Convention on International Trade in Endangered Species of Wild Fauna and Flora, adopted in Washington in 1973

[^1]: ${ }^{2}$ GENBANK is the genetic database that contains publicly available DNA sequences on the internet. (www.ncbi.nlm.nih.gov/)

[^2]: ${ }^{3}$ MFOLD is available on http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html.

[^3]: ${ }^{4}$ BLAST: Basic Local Alignment Search Tool is found on the GENBANK database website.

