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ABSTRACT 

 

 

 The evaluation of groundwater resources holds an important role for the development 

of sustainable reservoir management plans. An important step in that direction is the detailed 

characterization of subsurface systems. The use of pumping tests is standard technique for the 

estimation of subsurface hydraulic properties. The analysis of drawdown data from pumping 

tests is normally performed using graphical techniques based on the assumption of aquifer 

homogeneity. However, natural subsurface formations are heterogeneous with complex 

patterns of spatial variability. This heterogeneity plays an important role in subsurface flow 

and contaminant transport processes. Therefore, estimating the spatial variability of subsurface 

flow parameters is essential for the development of models that can accurately predict 

groundwater flow and contaminant transport. 

 

 This thesis examines the use of different interpretation methods for the analysis of 

time-drawdown data derived from pumping tests The main goal of the research was to estimate 

the flow parameters of the subsurface system, namely: transmissivity, storativity, conductance 

and leakance, and to infer some information about the spatial variability of these parameters. 

Both leaky and non-leaky confined aquifer systems were considered. The pumping test 

interpretation methods evaluated include conventional methods such as the Theis method, the 

Cooper-Jacob method for confined aquifers, and the Walton and Hantush inflection point 

method for leaky aquifers. In addition two recently developed methods, the Continuous 

Derivation method and the double inflection point method were tested. In order to demonstrate 

the effect of heterogeneity on pumping test interpretations, heterogeneous transmissivity fields 

were first generated and used to simulate transient drawdown data which was then used to 

estimate the flow parameters using the different interpolation methods. The interpretation 

methods were also applied to real field data. The resulting estimated parameters are shown to 

be space dependent and vary with the interpretation method since each method gives different 

emphasis to different parts of the time-drawdown data. Also, the heterogeneity in the pumped 

aquifer influences the estimates and they show different behaviors according to interpretation 

method. It was also shown that more information about the flow parameters can be obtained 

when the results of different interpretation methods are combined together. 
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ÖZET 

 

 

 Yeraltı suyu kaynaklarının değerlendirilmesi, sürdürülebilir havza yönetimi 

planlamasında önemli bir rol oynamaktadır. Bu yöndeki önemli adımlardan biri de yer altı 

sistemlerinin detaylı karakterizayonudur. Yeraltındaki suların özelliklerini hesaplamada 

standart yöntem olarak pompaj testleri kullanılır. Pompaj testlerinden çıkan su seviyesi düşme 

verileri, yaygın olarak akiferlerin homojenlik tahminlerine dayanan grafik yöntemleri ile analiz 

edilmektedir. Ancak, doğal yeraltı oluşumları heterojen bir yapıya sahiptir. Bu heterojen yapı, 

yeraltı akıntıları ve kirleticilerin taşınma süreçlerine önemli derecede etki etmektedir. Bu 

nedenle, yeraltındaki uzamsal değişkenlik parametrelerini hesaplamak, yeraltı sularının 

akışlarını ve kirleticilerin taşınmasını gerçeğe yakın şekilde öngören modellerin 

geliştirilmesinde temel unsur olarak karşımıza çıkmaktadır. 

 

 Araştırmanın temel hedefi, geçirimlilik, sutaşıma kapasitesi, iletkenlik ve geçirimlilik 

olarak sıralayabileceğimiz yeraltı sisteminin akış parametrelerinin tahmini ve bu 

parametrelerin uzamsal değişkenliğini gösterebilmektir. Çalışmada, hem sızdıran hem de 

sızdırmayan kapalı akifer sistemler incelemeye dâhil edilmiştir. Pompalama testi verileri, 

kapalı akiferler için Theis metodu, Cooper-Jacob metodu, sızdıran akiferler için eğri 

örtüştürme prensibine dayana Walton metodu ve Hantush bükülme noktası metodu gibi 

geleneksel yöntemler ile değerlendirilmiştir. Ayrıca, son dönemlerde geliştirilen iki yeni 

yöntem olan Devamlı Derivasyon yöntemi ve Çifte Bükülme noktası yöntemi de test 

edilmiştir. Pompalama testi yorumlarında heterojenliğin etkilerini gösterebilmek adına, 

sentetik heterojen geçirimlilik alanları oluşturulmuş ve geçici su seviyesi düşme verileri simüle 

edilerek, farklı analiz yöntemleri ile akış parametrelerinin hesaplamasında kullanılmıştır. 

Yorumlama yöntemleri aynı zamanda gerçek arazi verileri üzerinde de uygulanmıştır. 

 

 Sonuç olarak karşımıza çıkan parametrelerin, uygulanan alan ve kullanılan yorumlama 

yöntemlerine göre çeşitlilik gösterdiği ortaya çıkmıştır; çünkü her metot hesaplamasını, zaman-

su seviyesi düşme verilerinin farklı bölümlerine, farklı şekilde eğilerek gerçekleştirmektedir. 

Aynı zamanda, pompalanan akiferin homojenlik derecesi tahminleri etkilemekte ve her analiz 

yöntemine göre farklı davranışlar sergilemektedir. Ayrıca, farklı analiz metotlarının sonuçları 

bir arada değerlendirildiğinde, akış parametreleri hakkında daha fazla bilgi elde edilebildiği 

görülmüştür.  
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1. INTRODUCTION 

 

 

 Groundwater has become an indispensable natural resource for domestic use, 

agriculture and industry. The importance of groundwater resulted naturally from its global 

abundance and accessibility. Current estimates suggest that groundwater constitutes about 

two-thirds of world’s fresh-water. Additionally if one ignores polar ice because of its 

inaccessibility, about 96% of all the global freshwater is in the form of groundwater.  

(UNESCO, 1978). However, due to the excessive and unabated exploitation and 

mismanagement of this resource, regional groundwater budget is coming to its limits and 

large amounts of pollutants have found their way into groundwater systems.  

 

 One of the critical aspects of a reservoir is the sustainable amount of water that the 

reservoir can transmit. The amount of water dependents on characteristic parameters those 

affect water flow and storage in the reservoir. The effects of human activities on water 

level, groundwater storage, and discharge to streams and other surface–water bodies also 

influence the quantity and quality of groundwater discharge. The volume of water that can 

be removed from any aquifer is dependent on the subsurface material's ability to store 

water, and so the expansion and reduction of groundwater dominated reservoir are 

normally dictated by governing hydrogeological variables (Singha, 2008). The definition 

of hydrogeological variables, such as inflow, stage, and outflow may naturally have 

various sources of uncertainties (Yanmaz et al., 2008). 

 

 The hydrogeologic parameters of subsurface systems are normally characterized as 

heterogeneous, whereby the values of these parameters vary with space. It is widely 

recognized that heterogeneity, or the spatial variability of physical and chemical 

parameters, plays a critical role in the spread of contaminants (e.g., Dagan, 1989).  

Foremost among these parameters is the hydraulic conductivity. In order to be able to 

develop models that can accurately predict the spread of pollutants in the subsurface and 

for groundwater remediation activities, it is essential to be able to estimate the spatial 

variability of the flow parameters.  
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 Reservoir models have attracted a lot of attention particularly in the last twenty 

years. The first solutions were presented in the 60's (Warren, Root, 1963; Kazemi, 1969), 

but these only became commonly used much more recently. The publication of the paper 

of Freeze (1975) pointing out the spatial variability of hydraulic conductivity on 

groundwater flow across a column, brought to the attention of most hydrogeologists that 

aquifers are extremely heterogeneous. According to Ogilvy et al. (1969) hydraulic 

conductivity (K) is arguably the most heterogeneous parameter in nature. Laboratory 

measurements of K span more than 12 orders of magnitude. Even in seemingly 

homogeneous aquifers, measured values of transmissivity (T), which is the hydraulic 

conductivity integrated over the depth of the aquifer, may range over some orders of 

magnitude.  

 

 This realization spurred a large amount of work on the problem of finding the effect 

of heterogeneity on flow and transport such as Bear (1972), Mualem (1976), Gilham et al. 

(1976), and Dagan (1989). Since groundwater flow and contaminant transport is largely 

dependent on the value of the hydraulic conductivity and transmissivity, an immediate 

question is whether the heterogeneous distribution can be substituted by a representative 

value. As an example, Copty et al. (2006) developed analytic relation that expresses the 

equivalent transmissivity for leaky aquifers which can be defined as a representative value 

of heterogeneous field. 

  

 Reservoir heterogeneities are identified by variations in the pressure response. 

Sometimes the pressure data deviates from the homogeneous behavior only during the first 

minutes of the test period under investigation, in other cases it takes from several hours to 

several days before the heterogeneity becomes evident. The introduction of high accuracy 

pressure measurements and computerized log-log analysis technique explains today's 

recent use of heterogeneous interpretation models. In addition, the derivative of pressure 

exaggerates the characteristic features of the response.  

   

 In reality characterization of field applications are being conducted by limited field 

measurements which make the pattern of spatial variability hard to estimate. Recent works 

about spatial variability has overcome the limitation of field measurements with 

formulation of the groundwater problem in a stochastic formulation. From this point of 
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view, practice of stochastic approach referred to as geostatistics (Sanches-Vila, 1999b; Yeh 

et al., 1995, 1996; and Zhang and Yeh, 1997), the common methodology in related works 

is to define the hydraulic conductivity as a random spatial variable. The practice in this 

approach relies on to the statistical parameters such as the mean, variance and integral 

scale, by these statistical parameters definition of hydraulic conductivity field can be made. 

One advantage of the stochastic formulation is to make the quantification of the 

uncertainty determinable. 

 

 The most common method of determining in the field the hydraulic parameters of 

an aquifer is the performance of pumping tests (Batu, 1998).  In a pumping test water is 

extracted from the ground, and the response of the system (consisting of hydraulic head 

data as a function of time) is used to estimate the local hydraulic conductivity.  Typically, 

several of these tests are conducted at different locations, leading to several hydraulic 

conductivity estimates at various locations.  

 

One of the main goals of the analysis of pumping test is to estimate representative 

hydraulic parameters of the specified aquifer volume by using time-drawdown data. Even 

findings of representative parameters give information about aquifer hydrology because of 

the assumption of homogeneity of existing pumping test analysis methods this information 

would be limited. On the other hand, under such assumptions of homogeneity graphical or 

analytical methods can provide representative parameters of subsurface system sue to the 

quality of the drawdown data. As a few example related with pumping test practices was 

provided in the works of Theis (1935) for confined, Hantush and Jacob (1955) for leaky 

aquifers. As a comment to the limited character of the assumption of homogeneity in 

conventional analytical methods that interpreted flow parameters cannot represent the field 

heterogeneity, they only can provide a general averaged value of the whole system. In 

reality observations made from numerous fields demonstrate that hydraulic parameters are 

characterized by complex patterns of spatial variability (Dagan, 1989). 

 

 The accurate determination of hydraulic conductivity is an important element of 

successful groundwater flow modeling. However, the exhaustive measurement of this 

hydrogeological parameter is quite costly and, as a result, unrealistic. Alternatively, 
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relationships between hydraulic conductivity and other hydrogeological variables, such as 

soil properties, rock types from borehole log analyses, (Chapellier, 1992; Temples and 

Waddell, 1996) less costly to measure have been used to estimate this crucial parameter.  

 

Simulations using groundwater models are also useful tools for the visualization of 

behaviors of different special conditions and the responses of the subsurface water system 

to changes in the ambient conditions. Analog models to simulate the flow and transport in 

an aquifer are sometimes used such as the cross sectional Hele- Shaw model of coastal sea-

water intrusion (Bear, 1971; Collins et al., 1972), or electrical analog methods (Gupta et 

al., 2006). Experimental methods such as two-dimensional or three-dimensional sand 

boxes have been also developed and tested to observe contaminant transport paths and 

concentration distribution in porous media [for example, Beach et al. (2005); McCray et 

al.( 2004, 2005); Kechavarzi (2005)] . 

 

Analog models (especially sand box models) have several advantages such as good 

visualization of flow dynamics, easy to execute and the actual use of flow through porous 

media. On the other hand, they also have some disadvantages such as expensiveness of 

construction, hardness to represent field situations and scaling all processes (e.g., 

permeability and capillarity rise), non-flexibility of applications of field models (eg., 

applied to only one situation) (Illman et al., 2008). During the past several decades, 

computer models for simulating ground-water and surface-water systems have played an 

increasing role in the evaluation of ground-water development and management 

alternatives. The use of these models has provided an opportunity for water managers to 

quantitatively understand how ground water moves and to estimate the effects of human 

use of the water (Konikow and Reilly, 1999). Development of computer based models for 

simulations of the groundwater, reservoir systems helped to cope with the setbacks of 

analog models.  

 

In the most general terms, a model is a simplified representation of the appearance 

or operation of a real object or system (Apostel, 1961; Rollan et al., 1998). Groundwater 

flow models attempt to reproduce, or simulate, the operation of a real groundwater system 

with a mathematical counterpart (a mathematical model). Mathematical models may use 

different methods to simulate ground-water-flow systems (Konikow and Reilly, 1999). 
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One such method is called the finite-difference method (for example, McDonald and 

Harbaugh, 1988), which is the method employed in MODFLOW, the computer program 

used to simulate the pumping tests in this study. As a further approach multi-layer 

reservoir systems have been using which mainly initiated for modeling oil fields but then 

became commonplace in using for ground-water-flow models (Kernodle and Scott, 1986; 

Kernodle, Miller, and Scott, 1987; and Kernodle, McAda, and Thorn, 1995; Sanford and 

others, 2001). (For a schematic look see Figure 1.1)   

 

The main purpose of this study is to develop a novel pumping test interpretation 

method that can give information about the spatial variability of the flow parameters.  The 

specific objectives of this study are described in the next chapter. 

 

   

Figure 1.1. An example for generalized configuration of ground-water-flow model layers 

used along model and active cells in the ground-water-flow model grid (layer 1) of McAda 

and Barroll (2002). Different types of recharge and drain cells are shown. 
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2.  RESEARCH OBJECTIVES 

 

 

 The general objective of this study is to develop a novel pumping test interpretation 

method that can give information about the spatial variability of the flow parameters. The 

study will consider both confined aquifers (whereby the top and bottom boundaries of the 

aquifer allow no flow) and leaky aquifers defined as an aquifer that allows some flow 

through its top or bottom boundary. A theoretical vertical section of a leaky aquifer is 

shown in Figure 2.1. A leaky aquifer, also known as a semi-confined aquifer, is a 

completely saturated aquifer that is bounded below by an aquiclude (a layer that 

completely prevents flow across it) and above by an aquitard (a layer that allows some 

flow across it). If the overlying aquitard extends to the land surface, it may be partly 

saturated, but if it is overlain by an unconfined aquifer that is bounded above by the water 

table it will be fully saturated. If there is hydrological equilibrium, the piezometric level in 

a well tapping a leaky aquifer may coincide with the water table. In areas with upward or 

downward flow, in other words, in discharge or recharge areas, the piezometric level may 

rise above or fall below the water table.  

 

 A multi-layered aquifer is a succession of leaky aquifers sandwiched between 

aquitards (Figure 2.1). Systems of interbedded permeable and less permeable layers like 

this are very common in deep sedimentary basins. 
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Figure 2.1. Demonstration of aquifer systems and cross section of reservoir. The Lower 

Portneuf River Valley (Provided by Idaho Geological Survey). 

 

 Figure 2.1 shows three different types of aquifers: confined, unconfined, and 

perched. Recharge zones are typically at higher altitudes but can occur wherever water 

enters an aquifer, such as from rain, snowmelt, and river and reservoir leakage. Discharge 

zones can occur anywhere; in the diagram, discharge occurs not only in springs near the 

stream and in wetlands at low altitude, and also from wells and high-altitude springs. 

 

The Specific questions that this study will address include: 

 Can we use the drawdown data and its derivatives at one particular point in time to 

estimate the parameters? The method will particularly focus on the incorporation of 

the drawdown derivative in the estimation procedure because the derivative is more 

sensitive to variations in the flow parameters around the pumping test in 

comparison with the cumulative drawdown  

 Can we use the entire time drawdown data to estimate the representative flow 

parameters as a function of time? This would give use some information about the 
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heterogeneity as a function of distance from the well and needs more accurate 

method to differentiate the early data and late data.  

How do the parameters estimated from these novel methods compare with single 

―representative‖ estimates of the flow parameters obtained from conventional pumpingtest 

interpretation methods.  

 The developed method will be tested with synthetically generated pumping tests 

data and applied to real data collected from a series of pumping tests conducted in 

California, United States. As noted above, the identification of the aquifer heterogeneity is 

an essential step in the accurate modeling and prediction of contaminant transport. The 

specific practices in this study are (1) to develop a conceptual model representing the 

hydrogeological condition of the well-field based on ground observations and data 

analysis. (2) Simulating pumping tests using MODFLOW and acquisition of data from the 

simulation from different distances from the test well. (3) Using conventional and novel 

analytic methods, including derivative methods, (4) and the interpretation of the field data 

analysis to define if the aquifer system is Leaky/Confined, Non-leaky/Confined, 

Leaky/Unconfined and Non-leaky/Unconfined with the specific behavior of the drawdown 

data and its derivative (e.g. Figure 2.2) 
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Figure 2.2. Schematic diagrams of aquifers and respective drawdown (black) and 

derivative (red) curves: (a) unconfined with instantaneous delayed gravity drainage, (b) 

leaky confined, (c) confined with impermeable boundary. Variables used are s, drawdown; 

t, time; and, d, derivative. (Goetz, 2010) 
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3.  THEORETICAL BACKGROUND 

 

3.1.  Literature Review 

 

 Many complex geologic systems exist in which vertical fluxes through confining 

overlying and/or underlying layers are not negligible. These formations are commonly 

known as leaky or semiconfined aquifers. A classical example is that of alluvial 

multilayered aquifer-aquitard systems, which are present worldwide. The analysis of the 

drawdown due to pumping in a leaky aquifer allows the estimation of representative 

hydraulic parameters of both the aquifer being tested and the aquitard. Evaluations of the 

hydrological parameter estimations are essential for the proper management of the aquifer, 

the accurate prediction of contaminant migration, assessing vulnerability, and risk 

assessment in general. 

3.1.1.  Leaky Aquifer Hydraulics 

 

 The first mathematical analysis of well hydraulics in leaky aquifers was developed 

by Hantush and Jacob (1955). The authors presented the analytical solution for the 

transient drawdown due to constant pumping rate in leaky aquifers based on a series of 

simplifying assumptions: vertical flow in the aquitard, horizontal flow in the aquifer, 

negligible storage in the aquitard, constant hydraulic head in the unpumped (recharging) 

aquifer, and a pumping well of infinitesimal radius that fully penetrates the pumped 

aquifer. Under such conditions, the drawdown becomes a function of the hydraulic 

parameters of the aquifer (transmissivity, T and storage, S [dimensionless]) and the 

conductance of the aquitard, C, defined as the ratio of the vertical hydraulic conductivity 

over the thickness of the aquitard, C (K’/b’). Alternatively, the drawdown can be expressed 

as a function of the leakage factor, B, which combines two of the previous hydraulic 

parameters, given by: 

 

 
'

'

Tb
B

K
 (3.1) 
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 The solution of Hantush and Jacob formed the starting point in the development of 

other pumping test interpretation techniques such as the inflection point method (Hantush 

1956) and the type-curves method defined by Walton (1962).  

 

 Some of the assumptions made by Hantush and Jacob (1955) were relaxed in 

subsequent studies. Hantush (1960) accounted for the storage capacity of the aquitard. He 

obtained a series of type curves as a function of the leakage factor, B, and of a new 

parameter that depends on the storage of both the aquifer and the aquitard. Neuman and 

Witherspoon (1969a, 1969b) provided a more generic solution, taking into account the 

aquitard storage as well as the drawdown in the unpumped aquifer. The assumption of zero 

well radiuses was relaxed by incorporating the large-diameter well theory and accounting 

for wellbore skin (Moench 1985). All these solutions are based on the assumption that the 

hydraulic parameters of individual layers are homogeneous. 

 

 As an intrinsic characteristic, natural geologic formations are heterogeneous with 

their spatial variability. From this approach the problem of radially convergent flow has 

been investigated in heterogeneous aquifers for last decades and a number of publications 

has been made on this topic (e.g., Renard and de Marsily, 1997; Rubin, 2003; Raghavan, 

2004; Sanchez-Vila et al., 2006). Some papers focused on to the determination of effective 

hydraulic conductivity flow-parameter which can be accepted as the negative ratio between 

the expected values of the flow and the any local hydraulic gradient in Darcy’s theorem 

approach (e.g., Dagan, 1982, 1989; Sanchez-Vila, 1997; Riva et al., 2001). To consider the 

effective hydraulic conductivity as constant in investigated field within specified boundary, 

it was considered as intrinsic property of the said medium. However, in case of convergent 

flow such a constant value cannot be accepted as intrinsic property of any medium 

(Shvidler, 1962). The works of Indelman and Abramovich (1994) and Sanchez-Vila (1997) 

proved inaccuracy of the constant hydraulic conductivity approach. In general terms, 

effective hydraulic conductivity increases from the harmonic mean near the pumping well 

to the geometric mean at some distance from the well, and this distance depends on the 

correlation length of the hydraulic conductivity field (Copty et al., 2008). The paper of 

Dagan (1982) demonstrated that the effective flow parameters are functions of the flow 

spatial dimension and time. 
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 After building up the heterogeneity approach, some papers investigated the 

assessment of the effect of the heterogeneity of flow-parameters on the interpretation of 

pumping tests. Barker and Herbert (1982), Butler (1988), and Butler and Liu (1993) 

investigated the effect of heterogeneity as variability of T field on homogeneous plane 

specified high or low transmissivity values with deterministic approach. Also some 

analytical solutions have been developed relies on to the mean and variance transmissivity 

of confined aquifers correlated with the explorative statistics of drawdown data (Serrano, 

1997). Implementation of Cooper-Jacob method (Cooper and Jacob, 1946) also have been 

evaluated and tested in aquifers with heterogeneous transmissivity (Meier et al., 1998; 

Sanchez-Vila et al., 1999). They showed that the transmissivity estimated using the 

Cooper-Jacob method does not depend on the observation point location; differently 

storativity could significantly vary with the location of this point. Then as an advance 

approach Copty and Findikakis (2004) used Monte Carlo method to investigate the effect 

of spatial heterogeneity in confined aquifers and they proved that Cooper-jacob 

assumptions would be valid. Wu et al. (2005) also tried the Theis method to estimate 

hydrological parameters from a single observation well in a synthetically generated 

heterogeneous field for confined aquifer. According to study, Theis method estimates the 

transmissivity and storativity values from the early time-drawdown data. 

 

 Several researchers such as Bourdet et al. (1983), Horne (1995), and Bourdet 

(2002) proposed the interpretation of pumping tests using the time-derivative of the 

drawdown curve (diagnostic plot), which is more sensitive to changes caused by boundary 

conditions (impermeable or leaky limit, wellbore storage, skin effect).  Amin (2005) 

proposed a methodology for the estimation of the rate of leakage based on the analysis of 

the slope of the drawdown vs. time curve. Another method for the interpretation of 

pumping tests in leaky aquifers was developed, referred to as the double inflection-point 

(DIP) method. The method is based on the analysis of the first and second derivatives of 

the drawdown with respect to log time for the estimation of the flow parameters. In 

particular, the combination of the DIP method and Hantush method is shown to lead to the 

identification of contrasts between the local transmissivity in the vicinity of the well and 

the equivalent transmissivity of the perturbed aquifer volume Trinchero et al. (2008). 

 



 13 

3.1.2.  Pumping Tests in Heterogeneous Media 

 

 Most of the early pumping test analysis methods are based on the assumption of 

homogeneous field variables such as transmissivity and storativity. In reality heterogeneity 

of porous media has been a troublesome topic from the very beginning of groundwater 

hydrology as a quantitative science. Darcy (1856) recognized the necessity to quantify 

flow through porous media using a macroscopic, rather than a microscopic, viewpoint; he 

defined a flux based on average linear flow path through a representative volume of porous 

media. From this viewpoint, characterization of geological formations attempts to estimate 

representative values of the parameters rather than local small scale variability. In another 

early work, Meinzer (1932) also emphasized the importance as well as difficulty of 

quantifying aquifer parameters in the presence of heterogeneity. Shortly after this, Theis 

(1935) addressed the problem of heterogeneity by developing a way of calculating 

effective aquifer parameters. He demonstrated that by measuring the drawdown of water 

levels in response to pumping, it is possible to use an analytical solution to calculate 

effective aquifer parameters for average transmission and storage characteristics. Theis’ 

method, as the first analytical method to use pumping test values, replaces the 

heterogeneous aquifer with an equivalent homogeneous porous medium. However, as 

Theis criticized himself in his work in 1967, the equivalent homogeneous porous medium 

concept is not adequate for dealing with transport phenomena because the method cannot 

simulate accurately the transport of contaminants nor can it quantify the effect of 

uncertainty in hydraulic conductivity on the head distribution (Freeze, 1975).  

 

 The above developments show that the importance of the analysis of pumping test 

head, elevation and/or drawdown variables. In the last two decades several studies have 

focused on the interpretation of pumping tests in heterogeneous confined aquifers. 

Examples of earlier studies which take into account the heterogeneity of the medium were 

those of Barker and Herbert (1982), Butler (1988), Butler and Liu (1993). Their works 

however considered idealized system consisting of a uniform aquifer with an inclusion of 

different hydraulic properties embedded in the otherwise uniform aquifer. For very large 

times the slope of the drawdown versus log time was shown to be unaffected by the 

transmissivity of the inclusion. 
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 More recently, Meier et al. (1998) analyzed numerically the meaning of the 

parameters obtained using the Cooper-Jacob method (1946) to interpret pumping tests in 

heterogeneous confined aquifers. They found that for low to moderate levels of 

heterogeneity, the estimated transmissivity is very close to the geometric mean of the 

transmissivity field, while the estimated storage can vary by orders of magnitude 

depending on the location of the observation point. They also showed that the effective 

transmissivity estimated from the late drawdown data and the Cooper-Jacob method are 

practically independent of the location of the observation point. These results were 

confirmed analytically by Sanchez-Vila et al. (1993). Several researchers such as Bourdet 

et al. (1983), Horne (1995), Bourdet (2002) proposed the interpretation of pumping tests 

using the time-derivative of the drawdown curve which is more sensitive to changes 

caused by boundary conditions such as impermeable or leaky limit, well-bore storage, and 

skin effects and heterogeneity.  

 

 By comparison relatively few papers have focused on the analysis of pumping tests 

in heterogeneous leaky aquifers. Some of these methods have emphasized the importance 

of incorporating the drawdown derivative, also called the diagnostic plot, in the parameter 

estimation procedure. Copty & Findikakis (2004) examined the impact of the local-scale 

heterogeneity of the transmissivity on the transient drawdown due to pumping. Amin 

(2005) proposed a methodology for the estimation of the rate of leakage based on the 

analysis of the slope of the drawdown versus time curve. Trinchero et al. (2008) specified 

that the estimated representative parameters are also dependent on the interpretation 

method used and developed a novel diagnostic method usable for the heterogeneous media.   

3.1.3.  Stochastic Approach to Heterogeneity  

 

 Geo statistics is the application of statistical techniques to the field of earth sciences 

including groundwater flow and contaminant transport. Geostatistics is used routinely to 

interpolate values of parameters at unsampled locations from nearby measurements. In 

some cases, geostatistics is combined with deterministic approaches to forecast 

uncertainty. At a more academic level, geostatistics is used extensively to study physical 

processes in heterogeneous aquifers. However, the practical use of the stochastic methods 

to the real applications is primarily to define the heterogeneity of the parameters (e.g., 
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Transmissivity, Storativity) and state variables (e.g., groundwater levels, concentrations, 

Temperature) (Renard, 2007). 

 

 From a practical point of view, the main advantage of stochastic techniques is their 

ability to quantify the uncertainty inherent to any underground study (Winter 2004). It 

allows evaluating risks resulting from heterogeneity and lack of information on design and 

management. Stochastic hydrogeology is used to understand the impact of heterogeneity 

on processes and models. For example, it allows for the derivation of expressions to 

estimate effective governing laws for composite media and effective properties (Sanchez- 

Vila et al., 2006). The scientific and engineering sides of stochastic hydrogeology are 

tightly linked. For instance, improvements in the understanding of effective behaviors had 

a large impact on simulation techniques such as the multiscale approach (Lunati and Jenny 

2006) later used by practitioners.  

 

 In 1975, Freeze published the first paper that analyzed one-dimensional (1D) flow in 

porous medium in a stochastic manner (Freeze 1975). In the model constant values are taken 

randomly in a lognormal distribution and independently in each grid cell. Freeze applied the 

Monte Carlo method to analyze the first moments of heads. In a Monte Carlo approach, a large 

number of plausible parameter values are randomly generated using the available data and the 

problem is solved for each set of parameters. The resultant output is then analyzed statistically. 

The variation in the outputs is attributed to uncertainty in the definition of the input 

parameters. Subsequent studies (e.g., Dagan 1976; Freeze 1977; Gellar et al., 1977), 

contributed to the generalization of the stochastic concepts to flow in more than one dimension 

(Bark et al., 1978), stochastic analysis of the random coefficients of partial differential 

equations that frequently used (Sager 1978), One of the first papers that addressed the issue of 

conditional simulation was by Delhomme (1979).  

  

 Practical application of this works included the identification of potential locations for 

new water supply, estimation of water resources, design of water supply wells, aquifer 

protection, identification of contamination sources, design of remediation systems, aquifer 

management, design of dewatering schemes, etc. In all these application information is 

collected that allows characterizing the geometry and the physical and biogeochemical 

properties of the subsurface. The main purpose of using geostatistical methods is the 

identification of the spatial distribution of hydrological parameters.  
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4.  METHODOLOGY 

 

 

 This chapter describes the existing methods used to estimate the hydrological 

parameters of leaky and non-leaky aquifers. To test and evaluate these methods, synthetic 

pumping tests were simulated using the computer program MODFLOW (Harbaugh et al., 

2000). These synthetic pumping tests require the generation of hypothetical transmissivity 

distributions to be used as input in the groundwater flow model. Hence this section also 

includes the data generation procedure used for this purpose. 

 

 In addition to the conventional methods recently developed methods that have 

attempted to characterize the heterogeneity of parameters will be described in this section 

and evaluated, along with the conventional methods, in the following chapter.  

 

4.1.  Analytical Methods for the Analysis of Pumping Tests 

  

 Accurate definition of subsurface flow parameters is an essential step in any 

hydrogeological study. A common approach for the estimation of flow parameters is 

through the interpretation of pumping tests. As conventional and still widely used  

pumping test interpretation techniques Theis method (Theis, 1935) and Cooper –Jacob 

method (Cooper and Jacob, 1946) for confined aquifers, and the Hantush inflection point 

method (Hantush, 1956) and the graphical Walton method (Walton, 1962) for leaky 

aquifers has been used in this work. All these methods assume that the subsurface system 

can be represented by one or at most a few homogeneous units. However, in reality natural 

subsurface systems are heterogeneous and, hence, hydraulic parameters are spatially 

variable and support-dependent. Hence it is expected that these conventional methods will 

be only provide limited information about the aquifer properties because of the 

homogeneous assumptions embedded in these assumptions. Difference from the 

homogeneity was estimated with simple statistical methods such as sum of difference 

squared estimator (Trinchero, 2009).  
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4.1.1.  Conventional Methods Used for Non-leaky Confined Aquifer 

 

 A confined aquifer is bounded above and below by an aquiclude. In a confined 

aquifer, the pressure of the water is usually higher than that of the atmosphere, so that if a 

well taps the aquifer, the water in it stands above the top of the aquifer, or even above the 

ground surface (Figure 4.1). In confined aquifer, the loss of hydraulic head propagates 

rapidly because the release of water from storage is entirely due to the compressibility of 

the aquifer material and that of the water (Batu, 1998). The drawdown will be measurable 

at great distances from the well, and if it is non-leaky and unbounded the drawdown never 

reaches steady–state. For such non-steady or transient flow to the well in a confined 

aquifer, the two most used pumping test interpretation techniques are the Theis type curve 

method (1935), Cooper-Jacob (1946) time drawdown and distance drawdown methods.  

 

 

Figure 4.1. Homogeneous and Heterogeneous Confined aquifers, both isotropic and 

anisotropic (from Analysis and Evaluation of Pumping Test Data, G.P Kruseman, N.A de 

Ridder) 

 

The general assumptions of conventional methods for confined non-leaky aquifers are; 

 The aquifer has infinite areal extend; 

 The aquifer is homogeneous, isotropic, and of uniform thickness over the area 

influenced by the test; 

 Prior to pumping, the water table and/or the piezometric level is over the area 

that will be influenced by the test; 
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 The aquifer is pumped at a constant–discharge rate; 

 The water removed from storage is discharged instantaneously with decline of 

head. 

4.1.1.1.  Theis’s Method.  Theis (1935) was the first to develop a formula for unsteady-

state flow that introduces the time factor and the storativity. He noted that when a well 

penetrating an extensive confined aquifer is pumped at a constant rate, the influence of the 

discharge extends outward with time. The rate of decline of head, multiplied by the 

storativity and summed over the area of influence, equals the discharge. The unsteady-state 

(or Theis) equation, which was derived from the analogy between the flow of groundwater 

and the conduction of heat, is written as; 
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where 

 s: drawdown measured in a piezometer at a distance r from the pumping well.  

 Q; constant well discharge.  

 T: transmissivity. 

 u: characteristic time, 
2

4

r S
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      S: storativity of the aquifer. 

 W(u): well function 

 

 Figure 4.2 shows the Theis well function W(u) plotted against l/u on log-log plot. 

To use the Theis method to interpret a pumping test, the observed drawdown data as a 

function of time are plotted on a log-log scale and matched to the theoretical well function, 

W(u) by moving the two curves sideways or upwards/downwards. Once an acceptable 

match is obtained, a match point is selected as Shown in Figure 4.2 and the flow 

parameters are calculated from the coordinates of the match point and Equation(4.1) above. 

 

 In applying the Theis curve-fitting method, and consequently all curve-fitting 

methods, one should, in general, give less weight to the early data because they may not 
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closely represent the theoretical drawdown equation on which the type curve is based. 

Among other things, the theoretical equations are based on the assumptions that the well 

discharge remains constant and that the release of the water stored in the aquifer is 

immediate and directly proportional to the rate of decline of the pressure head. In fact, 

there may be a time lag between the pressure decline and the release of stored water, and 

initially also the well discharge may vary as the pump is adjusting itself to the changing 

head. This probably causes initial disagreement between theory and actual flow. As the 

time of pumping extends, these effects are minimized and closer agreement may be 

attained; if the observed data on the logarithmic plot exhibit a flat curvature, several 

apparently good matching positions, depending on personal judgment, may be obtained. In 

such cases, the graphical solution becomes practically indeterminate and one must resort to 

other methods. 

 

Figure 4.2. Theis graphical method, drawdown stated in red line 

4.1.1.2.  Cooper-Jacob Method.  Another commonly used pumping test analysis method 

valid for constant-rate pumping tests in confined aquifers is the Jacob’s method (Cooper 

and Jacob, 1946). It consists of plotting drawdown versus log time and fitting a straight 

line to late time data points. Estimates of the transmissivity (T) and storage coefficient (S) 

are obtained from the slope and intercept of this line (Figure 4.3). It is generally accepted 

Match Point 
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that the estimated values (Test and Sest) derived from Jacob’s method are representative 

values for the test area (some area surrounding the pumping and observation wells). This 

method again uses infinite series from the Theis solution. At later times, the Theis well 

function exhibits a straight-line segment. The Theis-Jacob method is based on this 

phenomenon. This method showed that for the straight-line segment, Equation (4.1) can be 

approximated by  
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 The properties of a confined aquifer can be found by developing the time-

drawdown relationship based on Equation(4.2). If the pumping time is sufficiently long, a 

plot of the drawdown s(r,t) observed in a particular piezometer at a distance r from the 

pumped well versus the logarithm of time t, will appear as a straight line. 

 

Figure 4.3. Time Drawdown data analyzed with the Cooper-Jacob method, drawdown 

stated in red line 

 

 Test values calculated from a single pumping test using drawdown measured at 

different observation wells tend to be fairly constant. However, the corresponding Sest 

U <0.01 
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∆s 
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Curve 
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values display large variability (Meier et al., 1998). Actually, Meier et al. (1998) and 

others have shown that these effects in Test and Sest are a consequence of the homogeneity 

assumption used in the interpretation. Thus, in pumping tests performed in heterogeneous 

media, the variability in the transmissivity field is apparent as variability in the S estimates, 

while the estimated T values remain almost constant.  

4.1.2.  Conventional Methods Used for Leaky Confined Aquifer 

 

 A leaky aquifer (Figure 4.4, A and B), also known as a semi-confined aquifer, is an 

aquifer whose upper and lower boundaries are aquitards, or one boundary is an aquitard 

and the other is an aquiclude. Water is free to move through the aquitards, either upward or 

downward. If a leaky aquifer is in hydrological equilibrium, the water level in a well 

tapping it may coincide with the watertable. The water level may also stand above or 

below the watertable, depending on the recharge and discharge conditions. In deep 

sedimentary basins, an interbedded system of permeable and less permeable layers that 

form a multi-layered aquifer system (Figure 4.4) is very common. But such an aquifer 

system is more a succession of leaky aquifers, separated by aquitards, rather than a main 

aquifer type. 

 

 

Figure 4.4. Vertical leaky aquifers (A,B) and Multi-layered Aquifer System (from 

Analysis and Evaluation of Pumping Test Data, G.P Kruseman, N.A de Ridder) 

 

 With regard to the analysis of pumping tests in leaky aquifers, the solution of 

Hantush and Jacob (1955) formed the starting point in the development of pumping test 

interpretation techniques such as the inflection point method (Hantush, 1956) and the type 

curves method defined by Walton (1962). The vertical cross-section of the leaky aquifer 
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system considered in this study is similar to that analyzed by Hantush and Jacob (1955). 

The system consists of two horizontally unbounded aquifers, separated by an aquitard. A 

fully penetrating pumping well of infinitesimal radius is placed in one aquifer and is fully 

isolated from the other (Figure 4.5). Before pumping, the system is assumed to be at 

equilibrium, with both aquifers and the aquitard having the same hydraulic head. The 

aquitard is assumed to have no storage capacity. Because of the large contrast in hydraulic 

conductivity values, the flow induced by the pumping is approximately vertical in the 

aquitard and horizontal in the aquifer.  

 

 

Figure 4.5. Conceptual model of cross section of a pumped leaky aquifer   

(http://www.ansdimat.com/schemes.shtml) 

 

The general assumptions of conventional methods for semiconfined aquifers are 

summarized below: 

 All assumptions specified in section 4.1.1 before; 

 Aquifer is leaky; 

 Flow in aquitard is vertical and the aquitard is incompressible; 

 Drawdown in unpumped aquifer is negligible.  

 
When the well is pumped, water is released from storage, leaks through the aquitard from 

the unpumped aquifer. Over time, more and more of the water pumped comes from storage 

in the unpumped aquifer until a steady state is reached. 



 23 

4.1.2.1.  Walton’s Curve-Fitting Method.  Walton’s curve fitting method is similar with 

Theis’s curve fitting method explained before, but with one important difference: Walton’s 

method does not just rely on one curve but a family of curves as a function of leakance. 

With the effects of aquitard storage considered negligible, the transient drawdown for a 

homogeneous aquifer–aquitard system due to pumping in a leaky aquifer is described by 

the following formula which is the modification of Equation (4.1) (Hantush and Jacob 

1955). 
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where r is the radial coordinate, with origin at the pumping well, s(r, t) is the drawdown; Q 

is the constant pumping rate, T is the spatially uniform transmissivity, and W(u, r/B) is the 

leaky well function. The curve-fitting method (Walton, 1962) finds the representative 

hydraulic parameters by comparing the observed time-drawdown data on a log-log plot to 

a family of type curves developed based on the analytical solution given in equation(4.3). 

 

One important comment is during unsteady-state flow, storage capacity of the 

aquifer needs to be accounted for. If it is not, conductivity (K) in leaky aquifer can be 

overestimated or underestimated in aquitard; there would be also false impression of 

heterogeneity in aquifer. 

 

Parameters may be estimated by two different procedures via Walton’s Curve 

Fitting Method. The first is simple manual fitting by visually matching the appropriate 

theoretical curve and determining approximate aquifer parameters (Figure 4.6). The other 

practice is with the trial and error approach that minimizes sum of squared differences 

between simulated drawdown and the theoretical drawdown (e.g., Copty et. al., 2008) 

which has the similar logic with the residual statistics used for curve fitting practices. The 

sum of squares differences is given by: 
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where, s(r, ti) is the observed drawdown at distance r from the pumping well and time ti 

and s (r, ti) is the trial drawdown derived from the type curves. 

 

Figure 4.6. Interpretation of the synthetic pumping test using the type-curve method of 

Walton. Fit curves are a) r/B = 1.5 and b) r/B = 2.0.(Trinchero et al., 2008) 

 

 In this study both procedures were used with the Walton’s method.  For the 

procedure involving the minimization of the sum of square differences method, a 

FORTRAN code was prepared. An example of this code is shown in Figure 4.7. 

 

 To obtain the unique fitting position of the data plot with one of the type curves, a 

sufficient number of the observed drawdown data should fall within the early period when 

leakage effects are negligible, or r/B should be rather large.  
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Figure 4.7. Walton’s Type Curves numerical application, (A, B, C; different 

heterogeneous simulations. Blue lines are theoretical curves) 

 

4.1.2.2.  Hantush Inflection Point Method.  The inflection point method developed by 

Hantush (1956) is based on the drawdown equation for leaky confined aquifers originally 

developed by Hantush and Jacob (1955), Eq. (4.3). The inflection-point method uses 

analytically derived relationships of the drawdown versus log-time curve to estimate the 

flow parameters. In particular, it uses the ratio between the drawdown, sp, and its 

derivative at the inflection-point location, ∆sp, is function of the ratio r/B only [Hantush, 

1956], 

 


02,3 exp( / ) ( / )p

p

s
r B K r B

s
 (4.5) 

 

 

The time corresponding to the inflection point, tp, can be written in terms of the different 

system parameters.  

 

Sim. T(m
2
/d) r/B SSD 

A 2 0.224 0.00413 

B 0.655 0.391 0.0322 

C 0.625 0.4 0.05421 
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Once the leakage factor, B, is estimated from Equation (4.5), the transmissivity, T, and 

storativity, S, of the perturbed aquifer can be determined sequentially from equations (4.6) 

and the steady drawdown equation, sm as given by de Glee (1930), Equation(4.7). 
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  It is possible to demonstrate analytically that the steady-state drawdown, sm, is 

twice the drawdown at the inflection point sm = 2sp. Hence, in real applications, there are 

two different ways of applying the Hantush inflection point method. First, from the steady-

state drawdown, one can estimate sp = 0.5sm. Then from the drawdown curve, we estimate 

Tp and ∆sp. As another application of inflection - point method, which is more sensitive, is 

that one can locate the inflection-point as the point where the derivative of the drawdown 

vs. log-time is maximum, and from that determine sp and ∆sp. While in homogeneous 

media both methods would render the same parameter values, in real (heterogeneous) 

media this is not necessarily true (Figure 4.8). The two variants of the method will be 

compared and evaluated as part of the present study. 

 

 

Figure 4.8. Hantush’s Infliction point method for, a) Heterogeneous realization A, b) 

Theoretical Realization 

Max Sm 

Inf. Point 

Max 
Sm 
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 It is hard to specify the exact maximum point for the inflection point in 

heterogeneous case, which is normally encountered in real world applications. So it is 

decided that to find the slope or the trend of the drawdown curve, and use the equation 

(4.8) to estimate aquifer parameters, (Figure 4.9). 
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where; m is the drawdown slope. For practical solutions of the Hantush Infliction-Point 

method a script based on the slope approach was written in FORTRAN to estimate aquifer 

parameters of simulated well tests.  

 

 
 

Figure 4.9. Drawdown versus time variation at an observation well of semiconfined 

aquifer due to constant rate water extraction 

 

4.1.3.  The Double Inflection Point Method 

 

 Recently, a new method for the interpretation of pumping tests in leaky aquifers 

was developed, referred to as the double inflection-point (DIP) method (Trinchero et al., 

2008). The system considered in the development of this methodology is the same as that 

defined by Hantush and Jacob (1955) and described in the section 4.1.2. The analytical 
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solution is based on the same principle described in Hantush (1956) including well 

function, shown in Equation(4.3). 

  

 The DIP method requires the estimation of the ratio τ = tp/2ts1 or τ = tp/2ts2 where tp 

is the time corresponding to the inflection point [Equation(4.6)] and ts1 and ts2 are the times 

corresponding to the two inflection points of the first derivative of the drawdown with 

respect to the logarithm of time (Figure 4.10). Once τ is estimated, the leakage factor is 

computed directly from (Trinchero et al., 2008): 
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After the leakage factor, B, is estimated, the other flow parameters (T, S, and C) are 

calculated from equations(4.7), (4.6) and(3.1), respectively. Because t can be based either 

on ts1 or ts2, two sets of parameters are estimated with the DIP method. 

 

 
 

Figure 4.10. Drawdown and its first and second derivatives as a function of log time based 

on homogeneous assumption (from Trinchero et al., 2008) 

ts1 

ts2 

tp 

Q = 2 m3/d 
T = 1 m2/d 
S = 0,0001 
C = 0.1 
r/L   0.316  
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 The derivative of the drawdown with respect to the base-10 logarithm of time can 

be written as follows: 

 

 


  
     
   

2

2

2.3
' 2.3 exp

log 4 4

s s Q r S Tt
s t

t t T Tt B S
 (4.10) 

 

Equation (4.10) also allows us to find the inflection point without slope approach specified 

in previous section. Specification of the time values those; ts1 that corresponds to 

maximum derivative value and ts2 which corresponds to minimum derivative value can be 

calculated by the second derivation equation(4.11) with the same approach in equation(4.9) 

(Figure 4.10): 
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Figure 4.11. First and second derivative of the drawdown from the synthetic pumping test 

in the heterogeneous aquifer and in the equivalent homogeneous aquifer (defined in terms 



 30 

of the geometric mean of the transmissivity field). The double arrows show the shift of the 

singular points. 

 

 Pumping test interpretation techniques both conventional (e.g. Theis, Cooper-

Jacob, Hantush, Walton), and novel methods [e.g. Double Inflection Point (Trinchero, 

2008a), Hydraulic Tomography (Yeh & Liu, 2000) methods ] use drawdown data collected 

at different times to estimate representative values of the flow parameters. For example, 

the graphical curve fitting approach attempt to fit drawdown data observed at different 

times to normalized drawdown curves. The Cooper-Jacob method is based on a straight 

line fit to the late drawdown data. The DIP method uses the location of the inflection point 

tinf and tsi1 (or tinf and tsi2), while the Hantush inflection method combines the steady state 

drawdown with the drawdown and drawdown slope at the inflection point. Hydraulic 

tomography method compares the data sets adopted from different vertical portions or 

intervals of the aquifer different than other novel methods. 

 

 However, we know that for heterogeneous formations, the representative 

parameters changes as the drawdown cone expands with time. Desbarats & Srivastava 

(1991) found moderately good agreement between the transmissivity predicting using 

Gelhar & Axness’s (1983) theory for an infinite, two-dimensional, statistically anisotropic 

field, but found excellent agreement with the theoretical value of effective transmissivity 

predicted for an infinite, two-dimensional (2D), statistically isotropic field, which is the 

geometric mean. In addition to this, at early time the transmissivity influencing the 

pumping test is close to the transmissivity at the well Tw, while at late times, the 

transmissivity influencing the test is equal to some spatial mean that may or may not be 

equal to the geometric mean of the transmissivity. The magnitude of this spatial mean 

would depend on the local transmissivity at the well, the characteristic length scales of the 

problem, namely: the integral scale and the leakage factor for leaky aquifers, and the 

transmissivity variance especially fields have high heterogeneity. 

 

 Using drawdown data observed at different times may yield some ―representative‖ 

value of the transmissivity but this value is dependent on the method used because each 

method gives different emphasis to different portions of the drawdown time series.  This 

may complicate the efforts to characterize the spatial variability of the flow parameters. It 
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is also seen that in the case leaky aquifers where the transmissivity has a monotonic trend 

(Copty et al., 2008) the estimated transmissivity may not actually match the actual 

transmissivity used in the simulations. To open the comment up, for decreasing trend with 

distance from the well, the estimated transmissivity was exceeding the largest value, Tw; 

for an increasing trend with distance, the estimated transmissivity was smaller than the 

smaller value. 

 

 Another limitation of the Cooper-Jacob for confined aquifers and the DIP and 

Hantush methods for leaky aquifers is that although they are all straight forward and 

simple to apply, they use only part of the available information. In the case of the Cooper- 

Jacob method we use drawdown date for u<0.1, while the Hantush and DIP method use 

information only at the inflection points and ignore the remaining portions of the time-

drawdown. 

 

4.2.  Data Smoothing and Differentiation Techniques 

 

 As discussed above, well testing is one of the most commonly applied methods 

used to characterize the hydraulic properties of aquifers. It involves imposing a 

perturbation such as pumping in a well and measuring the response of the aquifer, in terms 

of head variations or pressure measurements. Those data are then interpreted with the help 

of analytical or numerical models in order to infer the hydraulic properties of the aquifer. 

 

 Chow (1952) who was the first to use the drawdown derivative in the interpretation 

of pumping tests demonstrated that the transmissivity of an ideal confined aquifer is 

proportional to the ratio of the pumping rate by the logarithmic derivative of the drawdown 

at late time. Chow (1952) developed also a graphical technique to apply this principle, but 

this proposition had some limitations such as it is only relying on the late data until the 

work of Bourdet and his colleagues (Bourdet et al., 1989; Bourdet et al., 1983). They 

generalized the idea and analyzed the behavior of the log-derivative for a large number of 

classical models of flow around a pumping well. 

 

 Those developments opened a new approach in pumping test well analysis by 

which we focus on diagnostic plots for the analysis of the test well data. In particular the 
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drawdown derivative is considered more sensitive to subtle variations in the shape of the 

drawdown curve. It allows detecting behaviors that are difficult to observe on the 

drawdown curve alone (Renard et al., 2009). The analysis of the diagnostic plot of a data 

set facilitates the selection of a conceptual model. For both Hantush Inflection point and 

DIP methods the values of the derivative have been analyzed and used to estimate rapidly 

the parameters of the model. 

 

 When data collected from the field are used, the logarithmic derivative has to be 

evaluated numerically from a discrete series of n drawdown si and time ti values. These n 

couples of values are the circles represented in Figures 2.2, 4.8, 4.9, 4.10, 4.11.There are 

many ways to compute the log derivative. The simplest derivation is demonstrated in 

equation(4.12).  
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This approximation is associated with the time tm corresponding to the centre of the time 

interval ( 1( ) / 2m i it t t   ) and hence it is called Central Difference Method. To get an 

accurate result using such simple differentiation approximation, frequent measurements 

should be made and the noise in the data (both simulated and field) should be minimal, or 

some noise reduction techniques would be needed. Figure 4.13 shows the second 

derivative of a specific time-drawdown data differentiated by the central difference method 

with the lowest differential interval. 
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Figure 4.12. First and second derivatives of heterogeneous synthetic drawdown by using 

the central difference method, A and C shows in turn the maximum and minimum peak 

points, B shows the middle point of the second derivative which corresponds to peak point 

of the first derivative. 

 

 In order to minimize the artifacts exemplified in Figure 4.12, more robust numerical 

differentiation schemes have been proposed. Bourdet et al. (1989), Spane and Wurstner 

(1993), Horne (1995), and Veneruso and Spath (2006) discuss and present different 

techniques such as smoothing the data prior to the computation of the derivative, or 

smoothing the derivative. The differentiation algorithm used in this study was proposed by 

Bourdet et al. (1989). The algorithm is based on the slopes of the drawdown change versus 

the change in time. Instead of using the arithmetic average of corresponding time, the 

drawdown derivatives for the points of interest are calculated using the modified 

relationship of the equation as presented Bourdet et al. (1989): 
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where t is calculated using the equivalent time function, ∆te, presented by Agarwal (1980), 

also demonstrated in equation(4.14).  

 
 
 

p

e

p

t t
t

t t


 

 
 (4.14) 

 

 In the above equation, tp is the duration of discharge test and ∆t is the time since 

discharge terminated. Essentially, equation (4.13) is a weighted average of slopes 

computed from data points on either side of data point i. In the above formula, the two 

slopes are the left derivative; 1 1/i is t   and the right derivative; 1 1/i is t   . 

 

 

 

Figure 4.13. Comparison of Central Difference and Bourdet Derivation. (L: 0.017) 

 

 In addition to Bourdet differentiation approximation method, Spane and Wurstner 

(1993) presented an alternative method for computing derivatives. Like the Bourdet 

method, the Spane method uses a logarithmic differentiation interval; however, instead of 

using three points in the derivative computation, the Spane method computes the left and 

right derivatives by applying linear regression to all of the points falling within the 

differentiation interval. In many cases, according to Figure 4.14 the Spane method 

A 

B 

C 
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produces slightly smoother derivative than the Bourdet method, particularly if the data is 

noisy. 

 

 

 

Figure 4.14. Comparison between the Bourdet and Spane & Wurstner differentiation 

methods 

  

There are two options specified by Spane & Wurstner (1993) for calculating of the 

mean slopes before and after the point of interest: fixed end-point and least squares 

regression. The fixed end–point is recommended for calculating pressure derivatives for 

type–curve values (Cooper et al., 1967) or test data that are relatively free of noise. 

Because of the noisy data mainly been encountered in the field data, the least–square 

regression option is preferred.  

 

4.2.1.  Smoothing Techniques 

 

 Inherent in the collection of test well data taken over time is some form of random 

noise. Several methods exist for reducing of canceling the effect due to random variation. 

An often-used technique in statistics is "smoothing". This technique in general, when 

properly applied, reveals more clearly the underlying trend, seasonal and cyclic 
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components. Even the practice mainly done in some other data types, smoothing 

techniques can be used for the trend estimation of drawdown data sets. Smoothing methods 

were not used as differentiation methods; those are used to smooth the estimated 

derivatives of the data.  

 

 The purpose of smoothing data sets is to create an approximating function that 

attempts to capture important patterns in the data, while leaving out noise. There are 

mainly accepted as two distinct group of smoothing methods; Averaging Methods and 

Exponential Smoothing Methods. In this study we different averaging and exponential 

smoothing methods those were evaluated. Statistical measures were used to find the best 

method to diagnostic analysis. Six smoothing methods were applied on the data: Moving 

Average, Single Exponential Smoothing, Linear Exponential Smoothing, Holt-Winter’s 

method and LOESS (Locally Weighted Regression). 

4.2.1.1.  Moving Average Method.  The general expression for the moving average is as a 

simple arithmetic average; 

  1 /t t t t NM s s s N      (4.15) 

 

the practice is made with placing the average in the middle of the time interval of arranged 

periods. It is decided to use odd time periods.  

4.2.1.2.  Exponential Smoothing Methods.  Exponential Smoothing assigns exponentially 

decreasing weights as the observation get older. In exponential smoothing, however, there 

are one or more smoothing parameters to be determined (or estimated) and these choices 

determine the weights assigned to the observations. There are three exponential smoothing 

methods named as single, double and triple exponential smoothing methods. The names 

are given according to constants the methods have.  

 

The basic equation of single exponential smoothing as in equation (4.16) and the 

constant or parameter α is called the smoothing constant. (Hunter, 1986); 
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After adding one more parameter, ɣ, there should be two equations associated with 

Double Exponential Smoothing: 
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where α and ɣ are smoothing parameters, and b denotes the trend of the drawdown. The 

resulting set of equations is called the "Holt-Winters" (HW) method also named as Triple 

Exponential Smoothing, with the sum of all previous equations and their representatives 

are; 
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 (4.18) 

   

y is the observation value, s is the smoothed observation, b is the trend factor, I is the 

seasonality. 

4.2.1.3.  LOESS Smoothing.  Loess smoothing is considered as one of the modern 

regression methods; however, it does not require the user to specify a single type of 

function to fit the entire data set. LOESS, originally proposed by Cleveland (1979) and 

further developed by Cleveland and Devlin (1988), specifically denotes a method that is 

more descriptively known as locally weighted polynomial regression.  

 

 At each point in the data set a low-degree polynomial is fit to a subset of the data, 

with explanatory variable values near the point whose response is being estimated. The 

polynomial is fit using weighted least squares, giving more weight to points near the point 

whose response is being estimated and less weight to points further away. Useful values of 

the smoothing parameter typically lie in the range 0.25 to 0.5 for most LOESS 

applications. 
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4.2.2.  Fitting Methods 

 

Another method of estimating the derivatives of data series is to fit the data to some 

easily differentiable function.  The derivatives can then be estimated by taking the 

derivatives of the fitted functions. Three different fitting functions were considered in this 

study: Polynomial Fitting, Rational Fitting and Smoothing Spline. Each method is 

described in the following sections. 

4.2.2.1.  Polynomial Fitting.  Polynomial fitting is a simple to observe the pattern of 

drawdown data. Polynomial fitting has been considered by several authors (e.g., Illman and 

Neuman, 2001, Sudicky et al., 2010). Mathematically, a polynomial of degree n can be 

written as:  
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Higher degree polynomials (4
th

 degree polynomial or higher) were considered because they 

better fitted the drawdown data.  

4.2.2.2.  Rational Fitting.  The rational fitting method can also be considered as a pseudo-

polynomial method because it is evaluates the ratio of different polynomial functions as 

shown in equation (4.20)  
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where n is the degree of the numerator polynomial and 0 5n  , while m is the degree of 

the denominator polynomial and 1 5m  . Note that the coefficient associated with xm is 

always 1. This makes the numerator and denominator unique when the polynomial degrees 

are the same. 

4.2.2.3.  Smoothing Spline.  The logic of the smoothing spline is similar to the derivative 

method of Spane, except that smoothing splines are piecewise polynomials and is 
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considered a nonparametric fit type which is defined to be a function on a sample that has 

no dependency on a statistical parameter. 

 

 The smoothing spline s, which represents the spline function, is constructed for the 

specified smoothing parameter p and the specified weights wi. The smoothing spline 

minimizes (Green and Silverman, 1994) 
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If the weights are not specified, they are assumed to be 1 for all data points. Where p is 

defined between 0 and 1; ix is the actual iy  is the predicted value  

 

4.3.  Numerical Simulation 

 

 In the thesis, we primarily focus on to the spatial variability of the transmissivity 

field and utilized existing conventional methods and novel relatively untested pumping test 

interpretation methods, on heterogeneous media. Two sets of pumping tests were 

considered in this study; synthetically simulated pumping tests and actual pumping tests. 

This section describes how the synthetic pumping test data in heterogeneous aquifers were 

generated. 

 

 The steps for the simulation in order are i) heterogeneous transmissivity fields were 

generated using the turning bands method (Mantoglou and Wilson, 1982), ii) using the 

generated transmissivity data, a pumping test under a constant pumping rate is simulated 

using MODFLOW (Harbaugh et al., 2000) a commonly used finite-difference code that 

simulated flow through porous media. iii) The time-drawdown data at selected points were 

analyzed to estimate the flow parameters Test and Sest. 

 

 For the generation of heterogeneous transmissivity field, we assumed that the log 

transform of the transmissivity is a multivariate Gaussian random spatial function with 

exponential semivariogram, zero mean (TGeometric = 1) as stationary mean, variance of σ
2
 = 

http://en.wikipedia.org/wiki/Parameter
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1 and integral scale equal to 8 length units. The realizations of log transmissivity field 

(Figure 4.16) as spatially variable parameters were generated using the turning bands 

method (Mantoglou and Wilson, 1982). Five different realizations were generated in order 

to test semiconfined and confined pumping test interpretation methodologies that were 

presented in the previous sections. 

 

 

Figure 4.15. Randomly-generated transmissivity fields 

 

 The leaky aquifer system is composed of two layers with the confining aquifer 

assumed to have no storage, as defined by Hantush and Jacob (1955).  The leaky aquifer 

system can be altered to a confined aquifer system by assuming the vertical conductivity of 

the aquitard equal to zero. The pumping test simulated on the field that consists of 481

481 uniform grid cells each 11 m, with constant flow rate of 2 m
3
/d. The pumping well is 

assumed to be a fully penetrating well. It is also assumed to be located at the center of the 

domain and pumping from the semiconfined aquifer. Parameters of conductance of the 

aquitard and the storage coefficient of the aquifer are considered uniform, with values of 

0.1 1/d and 0.0001, respectively. The upper unpumped aquifer is assumed to be unaffected 

by the pumping. 
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 The simulations were performed with using the finite difference model 

MODFLOW (Harbaugh et al., 2000) which solves the governing partial differential 

equations (PDEs) describing groundwater flow in porous media. For the simulation the 

initial water level was prescribed as 20 m and drawdown are estimated from the maximum 

head condition. The test duration was 2 days so it can be also considered as stress period, 

and a variable time step was used in the simulations, starting with 1 s, and gradually 

increasing it as the test progressed. Drawdown data were simulated at the cell were the 

pumping well is placed (corresponds to a distance of about 0.2 m) and at 1 m intervals until 

20 m distance from the test well. After that observation points continued with 2 m 

intervals. The preparation of the data was done using a FORTRAN script shown in 

Appendix D. 

  

 

Figure 4.16. Boundary conditions and location of observation scheme for synthetically 

simulated pumping test 
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5.  CONTINUOUS DERIVATION METHOD 

 

 

 In this chapter a novel procedure for the analysis of pumping tests in heterogeneous 

confined and semiconfined aquifers is presented. The Continuous Derivation (CD) method 

is developed to address the limitation of conventional methods which attempt to estimate a 

single estimate of the flow parameters even if the aquifer is heterogeneous. For instance, as 

explained in the methodology part, the methods based on graphical curve fitting approach 

attempt to fit drawdown data observed at different times to normalized drawdown curves. 

The Cooper-Jacob method is based on a straight line fit to the late drawdown data. The 

DIP method uses the location of the inflection points tinf and tsi1 (or tinf and tsi2), while the 

Hantush inflection method combines the steady state drawdown with the drawdown and 

drawdown slope at the inflection point. All methods explained above rely on the 

homogeneous field assumption.  

 

 However, we know that for heterogeneous formations, the representative 

parameters changes as the drawdown cone expands with time. For example, at early time 

the transmissivity influencing the pumping test is close to the transmissivity at the well Tw, 

while at late times, the transmissivity influencing the test is equal to some spatial mean that 

may or may not be equal to the geometric mean of the transmissivity. The magnitude of 

this spatial mean is would depend on the local transmissivity at the well, the characteristic 

length scales of the problem, namely: the integral scale and the leakage factor, and the 

transmissivity variance.   

 

 Using drawdown data observed at different times may yield some ―representative‖ 

value of the transmissivity but this value is dependent on the method used because each 

method gives different emphasis to different portions of the drawdown time series, another 

words it cannot be estimated how the formation so the parameters of the field varies by 

conventional and DIP methods. This may complicate the efforts to characterize the spatial 

variability of the flow parameters. We foresee that in the case leaky aquifers where the 

transmissivity has a monotonic trend, the estimated transmissivity may not actually match 

the actual transmissivity used in the simulations.   
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 CD method has a simple procedure for the analysis of pumping tests in 

heterogeneous media as firstly explained in the work of Copty et al. (2011). The main 

novelty of the proposed method is that it uses the drawdown data and its derivatives at one 

particular point in time to estimate the flow parameters. The method is repetitively applied 

to all times in order to develop an estimate of transmissivity and storativity as the cone of 

depression expands in time along to particular distance. The derived estimates are then 

compared to the spatial average of the transmissivity around the well for synthetic data 

derivations; however, this comparison cannot be applied for the real pumping test results 

on a real field. 

 

 Through the application of CD methods we attempt to address the following 

questions: 

 Can we use the drawdown data and its derivatives at one particular point in time 

to estimate the parameters?   

 Can we use the entire time drawdown data to estimate the representative flow 

parameters as a function of time?  This would give use some information about 

the heterogeneity as a function of distance from the well. 

 Can these methods be used to help identify the type of the aquifer (non-leaky 

confined, unconfined, etc…? 

5.1.  Continuous Derivation for Confined Aquifer 

 

 For radially convergent flow in a confined aquifer, the parameters those controlling 

the transient drawdown are transmissivity and storativity. CD-Confined method can be 

included into the derivative methods family; in this method we only need the first 

derivative of the drawdown. We would need 2 equations at one particular time to estimate 

these 2 parameters. Assuming homogeneous flow conditions the drawdown in a confined 

aquifer is given by equation (4.1) and its first derivative is calculated by; 

 

 
22.3

' exp
log 4 4

ds Q r S
s

d t T tT 

 
   

 
 (5.1) 
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 At any point in time, using the ratio of the drawdown and its derivative observed at 

that particular time, the interpreted flow parameters are estimated (Copty et al., 2011). The 

ratio of equations (4.1) to (5.1) gives: 

 

    
2.3

exp
'

c

s
W u u

s
    (5.2) 

 

The characteristic behavior of c   is given in Figure 5.1. 

 

 

Figure 5.1. Plot of c , ratio of drawdown to drawdown rate, as a function of 1/u (from 

Copty et al., 2011) 

 

According to figure 5.1, c  increases as the dimensionless time 1/u increases. For any 

particular value of c  at some time t, the corresponding u and the well function can be 

estimated directly. The transmissivity is then estimated from. 
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while the storativity is estimated from: 

 

 
2

4
i

tTu
S

r
  (5.4) 

 

so the procedure of the CD confined method as follows 

i. From the ratio s/s’ at any point in time, we can calculate u 

ii. From Equation (5.3), we calculate Ti 

iii. From the definition of u, so the Equation (5.4) we calculate Si   

 

 Previous steps direct us to the estimation of flow parameters as a function of time. 

To convert the time relationship into a radial relationship, we use following relationship: 

 

 
* 4

1.65

tT
r

S
  (5.5) 

 

where r
*
denotes calculated distance, T, transmissivity, S, storativity and t, corresponding 

time. The conversion equation has been derived in the work of Copty et al. (2011).  

 

5.2.  Effect of Leakage on CD Method 

 

 This section describes the effect of the leakage to CD method for non-leaky aquifer. 

For the field data it cannot be exactly known what is the type of the aquifer so using CD-

Confined method for a leaky aquifer can give inaccurate results.  For radially convergent 

flow towards a well in a leaky aquifer (with constant head in the unpumped aquifer and no 

storage capacity in the aquitard), there are three parameters controlling the transient 

drawdown: transmissivity, storativity and leakage factor. We would need 3 equations at 

one particular time to visualize the effect of leakage as a function of 1/u with repetitive 

calculation s for every point.  These equations can be obtained by making use of the first 

and second derivatives of the drawdown. Note that in principle this is not very different 

from the DIP, except that we try to avoid combining data from different times. 
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 Based on the homogeneity assumption the drawdown in a leaky aquifer is given in 

Equation(4.3). We modified the equations explained in DIP method are first and second 

derivatives of drawdown nonlinear function, and used the value = r/B in the equations. 

The derivation below can be seen as an extension or a generalization of the DIP equation 

because we start from the same equations, however, the method do not be limited only to 

the inflection points. 
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Equations(4.3), (5.6) are the two algebraic nonlinear equations to calculate unknowns: u, T, 

. Equation (5.6) is the drawdown derivative as a function of logarithm (bas 10) of time. 

  

Taking the ratio of Equations (4.3) and (5.6) yields an expression that is function of the 

drawdown and its derivatives and u: 
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Equation (5.7) is the equivalent of Equation(5.2) but for leaky aquifers. It allows us to 

compare the difference between the behavior of confined and semiconfined aquifer in case 

of using CD method. To see the characteristic behavior of leaky  L  is given in Figure 5.2. 
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Figure 5.2. Plot of L , ratio of drawdown to drawdown rate, as a function of 1/u for leaky 

aquifer 

 

 To see effect of the estimation of hydrological parameters using CD-Confined 

method on a leaky aquifer drawdown data, we consider the following example Using CD–

Confined method on highly leaky aquifer in this case r/B = 1, if we calculate 10sc   as 

seen from the Figure 5.2, characteristic time for non-Leaky aquifer becomes approximately 

8000, and for Leaky aquifer it becomes 10. To see the ratio of storativity over 

transmissivity, we use the equation 2 / 4u r S Tt  explained in Equation(4.1). If we assume 

that the r = 1 m and t = 100 seconds the calculations will be; 
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 It can be concluded from the calculations that if T value accepted as constant, the 

confined aquifer assumption underestimates the S values. In case of constant S value, T 

values are overestimated. On the other hand, from the Figure 5.2, for early data ( 1/u < 1) 

r /B 
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or in case of slightly leaky aquifer (r/B < 0.01), CD-Confined method gives close 

estimations with respect to actual ones. 

 

 In the case of the leaky aquifer an estimate of the leakance or aquitard vertical 

conductance is available (such as for example from other interpretation methods like the 

Walton method), then the procedure that was explained for the confined aquifer can be 

applied to drawdown data from leaky aquifers using however the appropriate r/B curve in 

Figure 5.2.  
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6.  FIELD PROPERTIES AND PUMPING TESTS 

 

  This chapter describes the field pumping test data used in this study. The data 

utilized consists of 3 constant rate pumping tests. The correcting made to the data before 

using them in the interpretation is also discussed below. 

 

6.1.   Pumping Tests 

 

6.1.1.  Constant Rate Pumping Tests 

 

 The different interpretation methods were used to analyze synthetic as well as real 

pumping test data. This section describes the field pumping test data. 

 

 Constant-rate pumping tests were conducted at each test well for typically 72 hours. 

Background water levels and recovery water levels were measured for periods at least as 

long as the pumping period at each well. The pumping tests were performed in accordance 

with ASTM D 4050 (ASTM International, 2002c). Pumping rates ranged from 31 gpm 

(gallon per minute) to 256 gpm. In the first pumping field two test wells were performed: 

Test of TW 2A has a constant pumping rate of 194 gpm, and TW -2B has 256 gpm. In the 

second pumping test field as procedure 72 hours constant pumping test was performed at 

TW-5A at a constant pumping rate 199 gpm. During the pumping tests, data loggers 

recording the data in a certain time interval.  

 

 Figure 6.1 shows, local area A where test wells 2A and 2B are located. The 

monitoring wells include 2A, 2B, 2C and 2D to TW-2A, and piezometers PZ-2A, PZ-2B. 

Test well 2B is located in the southern part of the local area and the monitoring wells in the 

vicinity of the test well are 2E, 2F and 2G, and piezometers PZ-2C and PZ-2D. In the field 

area B, there is one test well named TW-5A. The monitoring wells placed in the vicinity of 

test well 5A (Figure 6.2) are MW-5A, which is adjacent to test well, MW-5B, 5C. The 

monitoring wells placed more distant than MW-5 group are 4A and 4B; those have 

approximately 1000 ft (302 m) distance. Piozemeters PZ-5A, and PZ-5B which are located 
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between the points ST-7 and 8, was also used. In addition to the monitoring wells, and 

piezometers borehole BH-68 data was used for the evaluation. 

 

 

Figure 6.1. Research A showing the location  of test wells, monitoring wells, boreholes 

and piezometers. (Source of USGS Aerial Digital Orthophoto Quadrangles: Terraserver-

USA.com) 

 

 In the field data evaluations both in Area A and B, data points in the vicinity of test 

wells were generally selected. However, to also evaluate the interconnectivity between 

aquifers, points far from the test wells were also considered. For instance, a comparison 

should be made between the data measured from MW-2A and MW-2B during the pumping 

test that was performed at testing well 2B, or for the area B, between the measures of MW-

5A and ST-7. 

Area A 
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Figure 6.2. Research B showing the location of test wells, monitoring wells, boreholes and 

piezometers. (Source of USGS Aerial Digital Orthophoto Quadrangles: Terraserver-

USA.com) 

 

6.2.  Correction of the Data 

 

 Normally data adopted from the pumping tests performed in the field exhibit 

fluctuations that stem from the external influences Thus, prior to using the data for 

analysis, the data must to be corrected to the extent possible for any influences not related 

to pumping. The purpose of this is to minimize errors in determining the actual drawdown 

in response to discharge from the test well. Three influences were identified that required 

correction. The first influence is water level changes caused by fluctuations in barometric 

pressure, which can cause instantaneous changes in the water level recorded by a well or 

vibrating-wire piezometer. The second influence is apparent visual trends in the water level 

not related to pumping the test well. The third influence is occasional disturbance of the 

transducer cable during the period of monitoring.  

 

Area B 
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 A regional water level trend that is rising (or declining) will cause the magnitude of 

drawdown to be underestimated (or estimated) if the reference water level is simply the 

value at the beginning of the test. To eliminate this potential bias, the pre-pumping 

hydrographs were visually examined for trends and if one was observed, a linear regression 

was fitted to that portion of the hydrograph and then extrapolated through the period of 

pumping and recovery. The actual drawdown or recovery was then calculated as the 

difference between the extrapolated water level trend and the measured water level. 

 

 Disturbances to the transducer cable were evident from an instantaneous rise or fall 

of water level. The timing of the incidents tended to correlate with manual measurements 

of water level, intended to verify the electronic measurements. These shifts were corrected 

by adding or subtracting the magnitude of the shift to all water level measurements 

following observance of the shift. 

 

 In the field data considered in this study, the dominant effect to the drawdown data 

was deemed to be caused by barometric pressure. Therefore, the barometric pressure 

provides primary external effect on water levels. The correction for fluctuations caused by 

barometric pressure and tide effect are described in the following subsection. 

 

6.2.1.  Barometric Pressure and Trend Corrections 

 

 Toll and Rasmussen (2007) describe a method for the removal of barometric or 

earth tide effects which is titled as regression deconvolution. This is a standard procedure 

(Dawson and Istok 1991) that needs to be applied whether one uses diagnostic plots or not. 

This method is based on the general principle of the establishment of a linear set of 

equations to estimate the unknown barometric response function (Box and Jenkins, 1976); 

 
0
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W t i B t i
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     (6.1) 

 

where ( )W t and ( )B t are the changes in water level and barometric pressure at time t, 

so ( )B t i   is the change in the barometric pressure i time steps before time t, ( )i is the 

unit response function for the correction at lag i, and m is the maximum time lag of the 

pressure data.  
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 To determine out whether the barometric correction is necessary, one has to analyze 

the local trend in the hydraulic head or water table and whether unidirectional or rhythmic 

changes on to the water level exist. Water level measurements are taken from piezometers 

that are sufficiently far such that the water level is not affected by pumping. These 

measurements represent the water level that would have occurred if presumably only 

barometric pressure is present. The trend correction is based on the calculation of the 

difference between the interpolated water level at the well using the far away piezometers 

and the water level corrected for barometric effect that occurs during the pumping.   

 

 It is observed that after the recovery period when the discharge has stopped, in 

some cases, especially in area B, the constant water level is different than the observed 

level of the pretesting period (Observations before pumping test). Therefore, this suggests 

that in some cases there are external events influencing the hydraulic head during the test. 

The estimated trend lines are shown on the hydrographs (Figure 6.3). 

 

Figure 6.3. Two examples of monitoring well water elevation data, and background trend 

was specified (from Pumping test data report). 
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 The practice of measuring high resolution barometric records has became common 

place with the use of electronic down-well pressure transducers with data logging 

capabilities, and that are not vented to the atmosphere which is also implemented in field 

measurements. In order for a non-vented logger record to represent changes in water levels 

the barometric pressure must be subtracted. Barometric pressure effect causes non-

rhythmic regular fluctuations, for instance, to changes in atmospheric pressure.  In wells or 

piezometers tapping confined and leaky aquifers, the water levels are continuously 

changing as the atmospheric pressure changes. When the atmospheric pressure decreases, 

the water levels rise in compensation, and vice versa.  

 

 Under these conditions, for correcting the field data for barometric pressure 

influences (Figure 6.3, red lines) which causes non-rhythmic regular fluctuations as 

described by Kruseman and de Ridder (1994). The correction is based on the calculation of 

mean level of barometric pressure for the period of water level in each well and 

piezometer. As a second step, the deviation of the barometric pressure from the mean was 

calculated, for the time of that water level measurement. This deviation from the mean was 

multiplied by an estimated constant, the barometric efficiency (BE) which is the sensitivity 

of water level response and the resulting value added to the water level measurement for 

that time. The BE was found by overlying the raw field data curve with those obtained by 

the method specified in equation(6.2). The barometric corrections have been made 

according to observation of noise reduction in field data (Figure 6.3).    
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where WLiCorrected, is corrected water level at a specific time, WLi measured water level at 

the same time, BE; barometric efficiency (%), BPi barometric pressure at a time i, N is 

number of pressure readings. 
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Figure 6.4. Elevation data from a monitoring well for different BE values to correction 

[The first line is MWL (Monitoring well level) also equal to BE = 0 curve, the best fit for 

this elevation data is BE = 0.6] 

6.3.  Structure of Drawdown Data 

 

 After barometric and tidal corrections, reduction of the noisy elevation data, 

drawdown data profiles has been developed for every observation point including the 

observations at the test wells. Pumping tests conducted at test wells 2A, 2B and 5A with a 

constant flowrate for a 72-hour period, and measurements have been made from the 

observation points those were placed at different locations from the test wells. Although 

the duration of the constant pumping tests were 72 hours, the water levels at the test wells 

and piezometers were monitored over a 144-hour period (includes 72 hours of recovery). 

However in this test only the drawdown during the pumping tests were considered, while 

the recovery data were excluded. 

 

 Distance-drawdown analyses are performed to obtain independent estimates of the 

aquifer properties in addition to the estimates obtained from the time drawdown analyses 

of each piezometer and monitoring well separately. This allows the consistency of the 

resulting aquifer properties to be checked. As can be seen from Figure 6.5, rates of the 

drawdown curves are nearly same however the values of the drawdown are decreasing 

with distance from the test wells. Other than classical single well tests, it would be sound 

strategy to use several different monitoring points for distance-drawdown analysis related 
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with point-to-point connectivity between test wells. Thus, comparison of the estimated 

flow parameters can be done. 

 

 

 

Figure 6.5. Corrected drawdown measurements of monitoring wells in area A. (a) 

Constant rate test application of test well 2B, (b) Constant rate test application of test well 

2A, 

  

End of the constant 
discharge from TW 2B 

Data used in the analysis 

End of the constant 
discharge from TW 2A 

Data used in the analysis 
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7.  RESULTS AND DISCUSSION 

 

         

 This section presents the results of the pumping tests analysis methods. The section 

includes the results obtained with synthetically generated data and with field data. The 

benefit of using synthetic data is that the underlying parameters that were used in the 

simulation of the drawdown data are know. Hence, the results obtained from the different 

pumping test interpretation methods can be compared to the original data used in the 

drawdown simulation. 

 

 The conventional analysis methods considered in this section are the Theis and 

Cooper-Jacob methods, described in section 4.1.1, for non-leaky confined aquifer and the 

Walton and Hantush inflection point methods, described in section 4.1.2 leaky confined 

aquifer. Two novel methods were also considered: the DIP method for leaky aquifers 

which was described in section 4.1.3, and the Continuous Derivation (CD) method which 

is presented in chapter 5. As noted in Chapter 5, the CD method has two different 

variations; one is for non-leaky confined aquifer (CD-Confined) and the other for leaky 

confined aquifer (CD-semiconfined).  

 

 Because some of the methods described above require the estimation of first and 

second derivatives of the drawdown, this chapter will first present the results obtained with 

the different smoothing and differentiation techniques described in Section 4.2. This is 

followed by a presentation of the results obtained with the different pumping test 

interpretation methods. 
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7.1.  Calculation of the first and second derivative of drawdown  

 

 Estimations of derivatives are needed for the Hantush’s inflection point, Double 

Inflection Point and Continuous Derivation Methods. Derivative analysis is considered a 

powerful diagnostic tool for determining the type of aquifer (leaky vs. non-leaky, confined 

vs. unconfined) and for detecting the presence of boundaries and for identifying variation 

in the spatial distribution of the hydrological parameters.  

 

 The derivation method considered is the Bourdet derivation method with Spane and 

Wurstner modification, (see Section 4.2). To take derivations and at the same time to get 

smoothed derivatives, the derivations were computed for differentiation intervals 0.001 to 

0.5 (Number/Number). The impact of the differentiation interval, denoted as L space 

which is the ratio of the chosen distance between the abscissa of the points and that of 

point i with the whole data (Bourdet et al., 1989), is also discussed.  

 

 

 The derivation method was firstly used on the synthetic data before applying it to 

the real field data. The application to synthetic data was first applied to homogeneous 

aquifer cases were an analytic expression of the derivative is available and can be used for 

comparison.  

 

7.1.1.  Homogeneous Case 

 

7.1.1.1.  Non-leaky Confined Aquifer.  The homogeneous case is for a discharge rate of 2 

m3/d, from a confined homogeneous aquifer with 1 m
2
/d transmissivity and with 0.0001 

storativity. 
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Figure 7.1. First derivatives for the case of non-leaky confined aquifer and observation 

points located at (a) 0.2 m radius, (b) 1 m radius, (c) 2 m radius, (d) 3 m radius, (e) 4 m 

radius, (f) 5 m radius from the pumping well for different L values.  

 

 Figure 7.1 shows the first derivative of the drawdown with respect to time at 

different distances from the well and using different interval values.  Higher differential 

interval causes more data loss but on the other hand data becomes smoother. Smoothing 

with higher differential interval shows a shift in the early data, especially in drawdown 

measured in the vicinity of the wells, (see Figure 7.1 A). At late times and for observations 

made further from the test well, less differences between the different curves are observed. 

On the other hand, it can be observed that after a specific time all derivation curves 

become similar, and the derivative becomes independent of the differential interval and 

radius  
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7.1.1.2.  Leaky Confined (Semiconfined) Aquifer.  For the case of a leaky confined 

aquifer, numerical methods will be used to estimate the first and second derivatives of the 

drawdown because the second derivative in particular can be very noisy (Figure 4.13, 

section 4.2.) Additional smoothing methods were used as was discussed in Chapter 4 

 

 Two methods were used for the estimation of the first derivative of simulated 

drawdown data, namely: the Bourdet method and the Spane  and Wurstner method. For the 

non-leaky aquifer data application of those two methods show no significant differences. 

However, for the Hantush inflection point method and the DIP method, it is critical that to 

estimate the inflection points accurately, so derivatives were estimated for observation 

points at different distances from the pumping well and using different differential 

intervals. 

 

 For demonstration, the different derivation methods were applied to the case of a 

homogeneous leaky aquifer with Transmissivity T=1 m
2
/d, storativity S= 0.0001, vertical 

conductance C = 0.1, and a discharge rate of 2 m
3
/d. Figure 7.2 shows the first derivative 

of the drawdown estimated using the Bourdet method for different distances and 

smoothing values. As observed in the figure the same shifting effect in non leaky confined 

aquifer exists in leaky one. The peak point of the first derivative is needed for the 

estimation of hydraulic parameters when using the Hantush’s inflection point and DIP 

method. It is seen from the figure that the values of the peak points depend on 

differentiation interval. Higher differential intervals, such as values 0.1 and 0.2, cause over 

smoothing. The agreement with the analytic solution of the derivative diminishes when 

higher smoothing interval is used. Curves also show different responses according to 

observation distances from the test well. In particular, for observation points located less 

than 1 m from test well (Figure 7.2 a) larger differences are observed. For later times, all 

derivative estimates are close to each other. Moreover, at distances greater than 1 m all 

smoothing techniques give consistent estimates for the time and peak point derivation. 
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Figure 7.2. First derivatives of the drawdown from a leaky confined aquifer using the 

Bourdet method and for different smoothing intervals for (a) 0.2 m radius, (b) 1m radius, 

(c) 2m radius, (d) 3m radius, (e) 4m radius, (f) 5m radius. 

 

 Based on these test results, it is decided to use a differentiation interval between 

0.001-0.01 for the estimation of the first derivative. For much higher values, such as 0.2, it 

can be observed from Figure 7.2 that the derivative curve is significantly different that the 

analytic one with different peak values and loss of data at early times.   

 

 Figure 7.3 shows the first derivates for the same problem but calculated using the 

Spane & and Wurstner method. The results with the Spane & and Wurstner and Bourdet 

methods are similar to each other. However, there is less data loss in higher differential 

intervals with the Spane & and Wurstner method than with the Bourdet method. 
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Figure 7.3. First derivatives of the drawdown from a leaky confined aquifer using the 

Spane & Wurstner method and for different smoothing intervals for A) 0.2 m radius, B) 1 

m radius, C) 2 m radius, D) 3 m radius, E) 4 m radius, F) 5 m radius. 

 

 Overall, it is seen that the smoothing interval influences the derivative estimation 

more than the method of estimation. This is further confirmed by examining the mean 

square error (MSE), presented in Table 7.1, which show that there is no significant 

difference between Spane & Wurstner and Bourdet methods for the first derivatives of 

simulation data.  
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Table 7.1. MSE estimates for comparison of derivation methods 

   MSE values 

  Radius (m)) <1 1 2 3 4 5 

 
Bourdet 
Method 

L 
va

lu
es

 
0.007 0.00241 4.76E-05 5.13E-06 2.36E-06 1.06E-06 5.22E-07 

0.01 0.00239 4.74E-05 5.24E-06 2.45E-06 1.11E-06 5.59E-07 

0.05 0.00142 2.49E-05 2.77E-05 2.01E-05 1.34E-05 8.73E-06 

0.1 0.00068 0.00010 0.00020 0.00015 9.56E-05 5.97E-05 

0.2 0.00045 0.00113 0.00101 0.00070 0.00045 0.00027 

 
Spane & 

Wurstner 
Method 

0.007 0.00244 4.77E-05 5.19E-06 2.44E-06 1.11E-06 5.58E-07 

0.01 0.00240 4.69E-05 5.43E-06 2.77E-06 1.35E-06 7.18E-07 

0.05 0.00170 4.38E-05 1.57E-05 1.31E-05 8.98E-06 5.86E-06 

0.1 0.00077 0.00024 0.00015 0.00013 9.1E-05 5.86E-05 

0.2 0.00066 0.00160 0.00147 0.00089 0.00053 0.00031 

    

 It can be seen from the table above that for the small L values, MSEs obtained from 

the two methods are close to each other. According to previous findings the best fit with 

the analytic curves are for curves higher than 1 m radius. However, this is mostly due to 

the discrepancy between the numerically simulated drawdown at the well which depends 

on the size of the finite difference grid used in the simulation and the analytic solution 

derived for drawdown at the well. Findings also show that the best results have been 

adopted from the value L = 0.007 with Bourdet method and L = 0.05 with the Spane and 

Wurstner method. Below we examine the performance of the different methods for the 

estimation of the second derivative. 

  

 Figure 7.4 shows the estimation of the second derivatives by Bourdet derivation 

using differential interval of 0.007 and 0.05 which were found to produce optimal results 

for the first derivative. As seen from the figure, the inflection points (max. and min. points) 

have different values depending on the interval value used. It can be seen that the inflection 

points of the derivative for a value of 0.007 are closer to the analytic inflection points. So, 

it is observed that the first derivatives taken with high differentiation interval causes some 

discrepancy compared to the homogeneous curves. This discrepancy is most apparent for 

second derivatives.  However, high levels of noise are observed even for a low 0.007 

interval,. Thus, derivation with low intervals may cause the second derivative to be noisy 

especially in field data which are unavoidably corrupted by noise. Also we should note that 

test data in homogeneous case are the one that have less noise. 
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Figure 7.4.Comparison of second derivations calculated with the Bourdet method for     

(a): 1 m, (b):2 m,(c):3 m, (d):4 m, (e): 5 m radius and. 1) L: 0.007; 2) L: 0.05 
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 The MSE of the second derivative estimated using the Bourdet method is presented 

in Table 7.2. Two set of data has been used for the second derivatives those are first 

derivatives smoothed with the L values 0.007 and 0.05. 

 

Table 7.2. MSE values of the second derivates estimated using the Bourdet method 

   MSE Values 

  Radius (m) 1 2 3 4 5 

 
 

 L = 0.007 
(first 

derivative) 

L 
va

lu
es

 

0.01 0.00062 7.97E-05 4.58E-05 2.39E-05 1.43E-05 

0.03 0.00051 0.00010 7.14E-05 4.79E-05 3.43E-05 

0.05 0.00029 0.00028 0.00025 0.00021 0.00017 

0.1 0.00086 0.00163 0.00170 0.00140 0.00103 

0.2 0.00437 0.00755 0.00716 0.00499 0.00323 

 
 

L = 0.05 
(second 

derivative) 

0.01 0.01202 0.00379 0.00101 0.00017 5.58E-07 

0.03 0.01210 0.00381 0.00103 0.00017 7.18E-07 

0.05 0.01246 0.00394 0.00109 0.00019 5.86E-06 

0.1 0.01294 0.00426 0.00128 0.00031 5.86E-05 

0.2 0.01021 0.00508 0.00202 0.00077 0.00031 

 

 The results in Table 7.2 suggest that the smallest interval yields estimates that are 

closer to the analytic second derivative curves. Thus, optimal results were obtained with 

the values of 0.01 and 0.03. However, from the figures it can be observed that the noise 

increases when the interval decreases for the derivation. In case of homogeneity drawdown 

data have minimum noise so derivations with the small differential interval can be 

acceptable, but, on the other hand, for noisy data (such as those observed in the field for 

heterogeneous case), higher differentiation interval of first and second derivatives may be 

needed. 

 

 For comparison, the same differential values were used with the Spane & Wurstner 

method and compared to the results obtained with the Bourdet method and with the 

analytical solution. Figure 7.5 shows the corresponding curves obtained with the Spane & 

Wurstner method, while Table 7.3 presents the MSE values for Spane & Wurstner method. 

As seen from the Figure 7.5 the behavior of the Spane & Wurstner method are similar to 

that obtained with the Bourdet method. In addition, it can be observed that the noise 

observed when using the Spane & Wurstner method with lower differential interval tends 

to be less than that observed with the Bourdet method. 
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Figure 7.5. Comparison of second derivations calculated with the Spane method for (a):1 

m, (b):2 m,(c):3 m, (d):4 m, (e): 5 m radius and. 1) L: 0.007; 2) L: 0.05 
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Table 7.3. MSE values of the second derivates estimated using the Spane & Wurstner 

method 

 

   MSE Values 

  Radius (m) 1 2 3 4 5 

  
 

L = 0.007 

L 
va

lu
es

 

0.01 0.00061 7.98E-05 4.84E-05 2.61E-05 1.59E-05 

0.03 0.00058 9.8E-05 6.94E-05 4.62E-05 3.29E-05 

0.05 0.00061 0.00020 0.00018 0.00014 0.00011 

0.1 0.00113 0.00149 0.00148 0.00125 0.00095 

0.2 0.00433 0.00683 0.00710 0.00508 0.00327 

 
 

L = 0.05 

0.01 0.00051 0.00019 0.00018 0.00015 0.00012 

0.03 0.00046 0.00023 0.00023 0.00020 0.00016 

0.05 0.00036 0.00037 0.00040 0.00034 0.00027 

0.1 0.00066 0.00175 0.00172 0.00143 0.00106 

0.2 0.00447 0.00509 0.00534 0.00452 0.00306 

 

 Table 7.3 shows that the MSE values are generally low. MSE values corresponding 

to 0.01-0.03 are lower than the ones in Table 7.2 obtained with the Bourdet method. 

Moreover, in the case of high differential intervals, the Spane & Wurstner method 

produces lower MSE, however some reduction in the value of the inflection points 

remains.  

7.1.2.  Heterogeneous Case 

 

 Drawdown data from heterogeneous aquifers will have an irregular shape that 

depends on the spatial distribution of the flow parameters and hence differs from that 

obtained when the aquifer is homogeneous. In this chapter, the estimations of the first and 

second derivatives have been developed and response behaviors of drawdown data have 

been observed both in confined and semiconfined aquifer realizations. However, in 

heterogeneous case it is not possible to measure the accuracy with respect to analytic 

solution because such a solution does not generally exist.  

7.1.2.1.  Non-leaky Confined Aquifer.  For the evaluation of derivative estimation methods 

of drawdown data from heterogeneous aquifers, five different transmissivity fields have 

been generated as explained in section 4.3. In accordance with the findings of 

differentiation intervals in homogeneous case, we used the optimum L values between 

0.001-0.1 for the first derivatives of the heterogeneous synthetic drawdown data as shown 
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in Figure 7.6 Although the distances to the observation points were the same for all 5 

realizations, the drawdown and its derivative vary because of the heterogeneity of the 

transmissivity. It is a unique characteristic for all the heterogeneous non-leaky realizations 

that there is no fixed point as in the homogeneous case which is confined ideal aquifer.  

 

 Overall, the curves with smaller L values tend to produce higher peak values of the 

derivative. In general, small variability exists between the different estimates. With respect 

to Bourdet and Spane & Wurstner derivative methods central difference derivation method 

(CDD) were also applied for the first derivatives. It is however not possible to specify in 

general terms which methods yields better estimates for the first derivatives.   
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Figure 7.6. Estimates of the first derivative of the drawdown for the case of heterogeneous 

aquifer using the Spane method and for different L values for 1 m and 2 m radiuses. 
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7.1.2.2.  Leaky Confined Aquifer.  The calculation of the derivative was also repeated for 

the case of heterogeneous leaky confined aquifer. Figure 7.7 shows the first derivative of 

the drawdown at r=1 and r=2 respectively obtain from the 5 different transmissivity 

realizations. The Spane & Wurstner method was used to estimate the derivatives using 

different differentiation intervals. For comparison of the analytic drawdown derivative for 

the case of homogeneous leaky aquifer system is also shown on these figures. As observed, 

some of the heterogeneous cases show lower values of the derivative compared to the 

homogeneous one, while others cases have higher values. 

 

 To have an idea how much the first derivatives of the heterogeneous realizations 

differ from analytical derivative, mean of square differences (MSD) statistic has been used 

and results tabulated in Table 7.4. From Figure 7.7. the MSD value close to the zero is 

considered as also closer to homogeneous case. It can be observed that the L values of 

0.007 and 0.01 gives best results for this case as shown in homogeneous case.  

 

Table 7.4. MSD statistics for the degree of difference from homogeneous case in 

realizations for first derivatives 

  Realizations 

  A B C 

 Radius (m) 1 2 1 2 1 2 

L 
V

al
u

es
 

0.007 0.884 0.236 0.520 0.247 0.688 0.115 

0.01 0.886 0.237 0.515 0.244 0.675 0.112 

0.05 0.914 0.255 0.443 0.205 0.585 0.084 

                                            Realizations   

  D E   

 Radius (m) 1 2 1 2   

L 
V

al
u

es
 

0.007 14.007 1.302 0.682 0.115   

0.01 13.914 1.287 0.675 0.112   

0.05 12.648 1.091 0.585 0.084   

 

 

 The MSD results in the table above suggest that realization D is highly variable; on 

the other hand realization B has the lowest variation of transmissivity parameter among 

others. So, it can be said that the realization D has higher a variation with respect to 

analytical homogeneous case based on the first derivatives.  
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Table 7.5. MSD statistics for the degree of difference from homogeneous case in 

realizations for second derivatives 

   Realizations 

   A B C 

  Radius (m) 1 2 1 2 1 2 

L 
= 

0
.0

0
7

 

L 
V

al
u

es
 

0.007 1.855 0.884 1.243 0.740 2.359 0.688 

0.01 1.858 0.891 1.218 0.718 2.316 0.664 

0.05 1.941 0.993 0.937 0.459 1.794 0.392 

  Realizations 

  D E   

 Radius (m) 1 2 1 2   

L 
V

al
u

es
 0.007  63.910 10.518 2.359 0.688   

0.01 62.959 10.299 2.316 0.664   

0.05 50.791 7.6300 1.794 0.392   

    
Realizations 

   A B C 

  Radius (m) 1 2 1 2 1 2 

L 
= 

0
.0

5
 

L 
V

al
u

es
 0.007 1.855 0.884 1.243 0.740 2.359 0.688 

0.01 1.858 0.891 1.218 0.718 2.316 0.664 

0.05 1.964 1.444 0.452 0.203 0.709 0.198 

  Realizations 

  D E   

 Radius (m) 1 2 1 2   

L 
V

al
u

es
 0.007 63.910 10.518 2.359 0.688   

0.01 62.959 10.299 2.316 0.664   

0.05 22.907 2.860 0.709 0.198   

  

 The analysis of the second derivatives for the 5 heterogeneous test cases is 

presented in Appendix A. As an example Figure 7.8 shows the second derivative for 

realization A for the distances of 1 m and 2 m (in which first graphs shows 1 m distance 

second ones shows 2 m distance from the test well). The derivative curves which were 

computed with L=0.007 show less variability than the curves with L=0.05. In addition, 

minimal differences are observed in the values of the inflection points and the times were 

they occur when different L values are considered. However, it should be noted that field 

data which will invariably be noisier than the synthetically simulated drawdown used in 

this exercise. 
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Figure 7.7. First derivatives of the drawdown data for 5 randomly generated 

heterogeneous field realizations, (each letter denotes different realizations. First row of 

graphs shows 1 m radius while second column shows 2 m radius) 
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Figure 7.8. Second derivatives of the drawdown data for realization A, using different 

intervals by Spane and CDD methods. First row of graphs shows 1 m radius while second 

row shows 2 m radius) 

 

 Figure 7.8 also shows that the derivatives calculated with Central Difference 

methods have poorer data quality. Same L values was used for each method for 

comparison, however, it is observed that derivatives computed from the central differences 

are prone to noise. 

 

7.2.  Estimation of Flow Parameters- Synthetic Data from Confined Aquifers 

 

 In this section the pumping test interpretation methods described in Section 4.1 are 

applied to synthetically generated pumping test data. Three methods are applicable to 

pumping tests conducted in confined aquifers: Cooper-Jacob, Theis and CD-Confined 

methods. The latter is a novel recently developed method that has not been tested 

previously, because conventional methods (Cooper-Jacob, Theis) are based on the 

assumption of homogeneity, they provide a single ―representative‖ value when applied to 

pumping tests conducted in heterogeneous aquifers. By applying these methods to 
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synthetically generated drawdown data obtained solutions can be compared to the 

underlying hydrological parameters that were used in the data simulation. 

 

 Different from the estimations of the conventional methods, the CD method 

repetitively calculates estimates of the flow parameters yielding time and distance 

dependent spectrum of the heterogeneous parameter estimates. Conventional methods were 

used not only for the estimation of the hydrological parameters but also for the comparison 

of the findings of CD method. 

 

 When applying standard interpretation methods to a hydraulic test we obtain a 

parameter value that is somehow ―representative‖. The difference here is that the value 

obtained depends on the interpretation method. In field applications, hydrogeologists 

typically interpret pumping tests using conventional methods (such as the Theis or Cooper-

Jacob methods) to obtain a value that they would later use in flow and contaminant 

transport models or calculations. 

 

7.2.1.  Conventional Methods  

 

 Conventional methods (Theis, Cooper-Jacob) have been applied as explained in 

section 4.1.1. These methods require no derivative data. Table 7.6 presents the estimates of 

the transmissivity and storativity obtained with the Theis method for 5 randomly generated 

realizations marked A through E. Table 7.7 presents the results obtained with the Cooper-

Jacob method. In these realizations the transmissivity was assumed to be spatially variable 

with geometric mean of 1 m
2
/day, while the storativity was assumed to be uniform equal to 

0.0001. The FORTRAN computer code used for the interpretation of the data is listed in 

Appendix E.  
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Table 7.6. Estimates of Hydrological parameter using Theis Method 

  Transmissivity 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 1.20 1.00 0.90 0.90 0.90 

B 0.90 0.90 0.90 0.90 0.90 

C 0.70 0.70 0.80 0.80 0.80 

D 0.10 0.40 0.60 0.80 1.00 

E 0.80 0.90 1.00 1.10 1.10 

  Storativity 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 0.00099 0.00039 0.00028 0.0002 0.00016 

B 0.00013 0.00006 0.00006 0.00007 0.00007 

C 0.00016 0.00009 0.00009 0.00009 0.00008 

D 0.00026 0.00006 0.00008 0.00008 0.00009 

E 0.00013 0.00006 0.00007 0.00011 0.00015 

 

 Table 7.6 shows that the estimated transmissivity is close to the geometric mean of the 

data (T = 1 m2/day). The estimates tend to approach the mean with increase in distance for the 

well. Although a uniform storativity of S=0.0001 was used for all realizations, the estimated 

storativity values show wider fluctuations between the different realizations and as a function 

of distance. This suggests that the spatial variability of the transmissivity is influencing the 

estimation of the storativity to a larger degree than the estimation of the transmissivity.  

 

Table 7.7. Estimates of hydrological harameters using the Cooper-Jacob Method 

  Transmissivity 

 Distance (m) 0.2 1 2 3 4 

R
e

al
iz

at
io

n
s A 0.572 0.572 0.572 0.572 0.573 

B 0.592 0.592 0.591 0.591 0.591 

C 0.586 0.586 0.586 0.587 0.587 

D 0.587 0.586 0.586 0.586 0.586 

E 0.580 0.579 0.579 0.579 0.579 

  Storativity 

 Distance (m) 0.2 1 2 3 4 

R
e

al
iz

at
io

n
s A 0.1604 0.0123 0.0044 0.0025 0.0017 

B 0.0162 0.0032 0.0019 0.0016 0.0013 

C 0.0032 0.0012 0.0013 0.0011 0.0009 

D 0.0000 0.0001 0.0007 0.0013 0.0018 

E 0.0095 0.0033 0.0029 0.0032 0.0028 
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 The results obtained with the Cooper-Jacob method (Table 7.7) are in general 

similar to those obtained with the Theis method. The transmissivity values are close to the 

geometric mean. The storativity on the other hand shows larger fluctuations. 

 

7.2.2.  CD – Confined Method 

 

 The CD method has a different logic than the conventional method because it 

provides continuous values of the parameters. Therefore, comparison of the CD method 

with the conventional methods cannot be done exactly because conventional methods 

cannot explain the variability of the field data. Nevertheless, some qualitative comparison 

between the two sets of estimates is possible.   

 

 Figure 7.9 shows the estimates of the transmissivity and storativity estimated using 

the CD method and drawdown data from observation points at 1m and 2 m from the 

pumping wells.  

 

 

Figure 7.9. Estimated transmissivity and Storativity data as a function of time (every line 

corresponds to a different realization) 
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 At early times, the transmissivity estimates obtained for the different realizations 

are very different.  At later times, however, the transmissivity estimates tend to approach 

tends to approach the geometric mean (1 m
2
/day). The behaviors of the curves are different 

due to the heterogeneity that they have. If we compare the findings of the conventional 

method with CD-Confined method, findings of the transmissivity data are consistent for all 

methods, however, we can infer that the Theis method gives average results corresponding 

to the late CD-Confined method estimates. Storativity estimates again exhibit more 

variability as was also shown with the conventional methods.  

  

 

Figure 7.10. Transmissivity and Storativity data as a function of distance for the 

realization A, estimated from different observation points (1m to 4 m from the pumping 

test) 

 Figure 7.10 shows the plot of the transmissivity and storativity estimates with the x 

axis converted to distance as described in Section 5.1. Only the results for realization A are 

shown. Estimates in Figure 7.10 shows that the transmissivity estimates are inversely 

proportional to storativity. Transmissivity values show a slight change based on where the 

drawdown data has been taken. On the other hand, storativity estimates show different 

results in first 20 m distance over a continuously increasing circle centered at the pumping 
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well. These results are consistent with previously reported findings (e.g., Trinchero et al., 

2008). The estimates of the parameters as a function of distance are also consistent with the 

single representative estimates from conventional methods, All estimates by CD-Confined 

method for all other realizations can be found over Appendix B. 

 

 As the pumping test progresses in time a larger portion of the aquifer starts to 

influence the pumping test.  Hence, the interpreted transmissivity gradually varies from the 

transmissivity at the well to the geometric mean of the entire domain at late times. Beyond 

this time, the aquifer starts to behave as a homogeneous aquifer with transmissivity equal 

to the geometric mean of the entire domain which was assumed to be 1 for these five cases. 

7.3.  Estimation of Flow Parameters- Synthetic Data from Leaky Aquifers 

 

 In this section the interpretation methods for leaky aquifer system (described in 

Section 4.1.2) are applied to synthetically generated pumping test data. Two conventional 

methods are considered: the Walton’s Type Curve and Hantush’s Inflection Point, and the 

novel Double Inflection Point (DIP) method. Because Walton’s Type Curve and Hantush’s 

Inflection Point are based on the assumption of homogeneity, they provide a single 

―representative‖ value when applied to pumping tests conducted in heterogeneous aquifers. 

The DIP method on the other hand provides two estimates. Results from all methods are 

compared to each other and to the underlying parameters used in the simulation of the 

drawdown data.  

  

 As explained in the methodology section, the DIP method requires the estimation of 

the first and second derivatives (first and second inflection points), while the Hantush 

inflection point method requires the estimation of the first derivative. One disadvantage of 

Hantush method to estimate parameters accurately steady-state drawdown value should be 

apparent to point out the inflection point. On the other hand, In DIP method instead of the 

estimation of slope as in Hantush’s method, [see. Figure 4.9 and Equation(4.8)] second 

derivatives are used for estimation of leakage factor.  
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7.3.1.  Conventional Methods  

 

 The parameter estimates obtained with the Walton and Hantush inflection point 

methods are presented in Tables 7.8 and 7.9, respectively. The results are for 5 randomly 

generated realizations assuming a uniform storativity value S=0.0001 and uniform vertical 

conductance C= 0.1. The calculations were repeated for drawdown data from different 

observation points (r=0.2 m, 1 m, 2 m, 3 m, and 4 m). The FORTRAN program used for 

the interpretation of the drawdown data is listed in Appendix E.   

 

Table 7.8. Estimates of hydrological parameters using the Walton’s Type Curve method 

with synthetic heterogeneous data 

  Transmissivity (m2/day) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 2.10 2.10 2.10 1.90 1.90 

B 0.80 0.80 0.70 0.90 0.50 

C 0.70 0.70 0.80 1.00 0.40 

D 0.10 0.20 0.40 0.50 0.60 

E 0.50 0.80 0.70 0.80 0.90 

  Storativity 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 0.00021 0.00011 0.00012 0.00014 0.00015 

B 0.00021 0.00008 0.00008 0.00009 0.00007 

C 0.00019 0.00010 0.00012 0.00012 0.00007 

D 0.00024 0.00011 0.00012 0.00012 0.00014 

E 0.00030 0.00009 0.00009 0.00011 0.00013 

  B (m) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s A 0.06 0.20 0.40 0.70 1.00 

B 0.09 0.30 0.65 0.85 1.60 

C 0.09 0.35 0.70 0.90 1.90 

D 0.40 0.80 1.00 1.40 1.80 

E 0.20 0.30 0.75 1.20 1.60 

  

 Estimations for the Walton’s type curve method were based on the curve fitting 

principle as in Theis method, but with an additional parameter, B. As tabulated in Table 7.8 

transmissivity values of realization A is higher and realization D is lower consistent with 

the estimations of confined methods. On the other hand storativity values are consistent for 
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every realization and there are no extreme values. Also it can be seen that leakance shows 

variation as a distance. As noted earlier, although constant C and S values were used in the 

simulation of the drawdown, the estimates show some variability showing that the spatial 

variability of the transmissivity influences the estimation of all parameter. 

 

Table 7.9. Estimates of hydrological parameters using the Hantush’s Inflection Point 

Method 

  Transmissivity (m2/day) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 1.856 2.287 2.065 1.783 1.571 

B 0.646 0.693 0.695 0.735 0.734 

C 0.520 0.551 0.686 0.696 0.711 

D 0.086 0.172 0.292 0.338 0.356 

E 0.500 0.614 0.665 0.926 1.109 

  Storativity 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 0.00024 0.00010 0.00012 0.00014 0.00014 

B 0.00028 0.00009 0.00008 0.00009 0.00008 

C 0.00029 0.00011 0.00012 0.00011 0.00010 

D 0.00028 0.00011 0.00011 0.00010 0.00010 

E 0.00029 0.00010 0.00009 0.00012 0.00015 

  B (m) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s A 0.084 0.173 0.418 0.748 1.132 

B 0.152 0.363 0.666 0.999 1.304 

C 0.173 0.466 0.802 1.159 1.438 

D 0.439 0.904 1.238 1.695 2.230 

E 0.199 0.429 0.779 1.095 1.436 

 

 The estimates obtained with the Walton method and Hantush’s inflection point 

methods are highly correlated, but transmissivity values are slightly less than the ones in 

Walton’s type curve method. In general the differences between two methods are not 

significant. The storativity and leakance values obtained with the two methods are in 

general quite close to each other. 
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7.3.2.  DIP Method 

 

 Estimates obtained with the DIP estimates are shown in Tables 7.10 and 7.11, 

respectively. As a characteristic of DIP method there are two estimates of flow parameters 

due to early and late data with respect to inflection points. 

 

Table 7.10. Estimates of hydrological parameters using DIP method for early data for 

synthetic heterogeneous data 

  Transmissivity (m2/sec.) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 0.358 0.599 2.157 1.626 0.898 

B 0.211 0.545 0.573 0.569 0.737 

C 0.177 0.321 0.462 0.496 0.498 

D 0.041 0.090 0.232 0.400 0.201 

E 0.153 0.400 0.341 0.717 0.948 

  Storativity 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 1.32E-05 8.634E-05 0.00354 0.00207 0.00083 

B 2.48E-05 0.00043 0.00053 0.00056 0.00089 

C 2.49E-05 0.00016 0.00037 0.00046 0.00045 

D 1.69E-05 5.024E-05 0.00021 0.00045 0.00015 

E 1.69E-05 0.0002204 0.00019 0.00062 0.00095 

  B (m) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s A 0.227 1.128 5.060 3.714 2.577 

B 0.285 2.048 2.536 2.538 3.076 

C 0.279 1.264 1.864 2.126 2.332 

D 0.220 0.729 1.420 1.920 1.476 

E 0.241 1.480 1.608 2.338 2.570 
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Table 7.11. Estimates of hydrological parameters using DIP method for late data for 

synthetic heterogeneous data 

  Transmissivity (m2/sec.) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 2.741 2.92915 1.71738 1.67392 1.20739 

B 0.756 0.60163 0.57810 0.61627 0.60700 

C 0.653 0.50954 0.64754 0.47549 0.37996 

D 0.028 0.12737 0.22204 0.13956 0.19466 

E 0.680 0.63354 0.55979 0.99966 1.28022 

  Storativity 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s 

A 0.00367 0.00373 0.00215 0.00218 0.00131 

B 0.00059 0.00054 0.00054 0.00064 0.00065 

C 0.00062 0.00041 0.00067 0.00044 0.00031 

D 0.00001 0.00009 0.00020 0.00010 0.00015 

E 0.00060 0.00057 0.00042 0.00107 0.00151 

  B (m) 

 Distance (m) 0.2  1 2 3 4 

R
e

al
iz

at
io

n
s A 8.26941 9.98055 3.86312 3.80382 3.01678 

B 1.86932 2.30000 2.55429 2.66875 2.76299 

C 1.89177 1.96214 2.38301 2.07742 2.07014 

D 0.17058 0.89763 1.38590 1.24078 1.46035 

E 1.91925 2.42389 2.24112 2.88106 3.01325 

 

 

 Conventional methods use limited part of drawdown data; Walton’s method 

estimates according to part of the data which comes over a specific curve, Hantush’s 

inflection point method estimates the parameters according to inflection point which 

cannot represent early and late data. On the other hand, DIP method uses three distinctive 

points of drawdown data with their derivatives. From Tables 7.10 and 7.11, estimations 

also show that variation in three parameters with respect to distances (radiuses) is more 

apparent. The first DIP estimates tends to put more weight on the transmissivity near the 

well, while the second DIP estimates put more weight on the later data. Variability of 

parameters shows that DIP method is better tool for representation of heterogeneity and 

gives information about a larger portion of the leaky aquifer.  

 

 In summary, the application of the different interpretation methods to 

heterogeneous media indicates that different methods may produce different estimates that 
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may differ from the actual parameters of the system (defined by the constant input values 

for S, C, and some average value of T). It is obvious that all findings from different 

methods show high consistency in storativity and transmissivity values but we may not say 

parameters have increasing or decreasing trend according to monitoring point radiuses. 

 

7.4.  Estimation of Flow Parameters-Field Data from Confined Aquifer Approach 

 

 In this section the different pumping test interpretation methods are applied to field 

data. A description of the site, the pumping test, and the structure of test data were 

presented in Chapter 6. The data that will be used in this analysis are the constant rate 

pumping tests as explained in more detailed in section 6.1.1. 

 

 The analytic methods used with the synthetic data were also used for the field data. 

Often in the field the nature of the aquifer, (leaky vs. confined) may not be known prior to 

conducting the pumping test  as seen from the Figure 6.5 in which drawdown data do not 

reach steady state because of the end of constant tests. However, the shape of the 

drawdown data can provide some information on the aquifer type. In this section the 

interpretation results of the aquifers tests that have been classified as confined are 

presented. 

 

 The application of the conventional methods (Theis and Jacob-Cooper) and CD-

Confined method were applied to the field data in a similar manner to the application to the 

synthetic data. In the application of synthetic data, drawdown data from multiple 

observation points were present and comparisons of the estimates for different realizations 

have been made from different observations points. A similar approach was taken with the 

field data where data from several observation points are present for the same pumping 

test. This comparison has been made also with the CD-confined method which yields a 

continuous estimate of the flow parameters. 
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7.4.1.  Fitting and Derivation on Field Data 

 

 To use the CD-confined method, an estimate of the derivative is needed.  This 

section presents the results of this step, which is similar to what was used with the 

synthetic data. However, unlike the synthetic data, real field data, even preliminary 

corrections made (Tidal and Barometric corrections), have noisier characteristic as 

explained in previous sections which makes field data more challenging to analyze 

accurately. 

 

 The same procedure for derivation in synthetic data has been followed for the real 

field data. The chosen technique of Spane & Wurstner method was applied to the 

drawdown data Different from the application to synthetic data, fitting techniques 

(Described in Section 4.2.2) were also applied to the field data, in order to provide some 

comparison between the derivation techniques.  

 

 For the field data application, the chosen observation points for the test well 2A are 

monitoring wells 2A, 2B, 2C and 2D; for the test well 2B the observation points are 2B, 

2C, 2E, 2F and 2H and for the last group of the test well 5A monitoring wells are 1, 5B, 5, 

7, 8 and borehole 68-80. 

 

 To exemplify some of the difficulty typically encountered with field data, the data 

collected at test well 2A and related observation points are analyzed here in detail. The 

decision of which method can produce workable as well reliable derivative estimates were 

made according to these four observation points. The results of the Spane & Wurstner 

method to the real data are presented in Figure 7.11.  
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Figure 7.11. First derivatives of drawdown at four different monitoring points as a 

function of time due to pumping from TW2A for real field data. 

  

 As seen from Figure 7.11, although the general pattern of the drawdown curve is 

somewhat visible, the level of noise is substantial and, as a result, it is impossible to use 

derivatives in any interpretation method reliably. The noise of the curves increases through 

the late drawdown data, in part because the change in the drawdown towards the end of the 

test slows down and due to the small time intervals between data points, which is further 

diminished due to the logarithmic scale of the time. Therefore, it was decided to apply 

smoothing methods to the raw field data to reduce the fluctuations and the high noise level 

in the data. 
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7.4.1.1.  Smoothing of the Field Drawdown Data.  The smoothing techniques explained in 

section 4.2 were applied to the second derivatives of synthetic data. The second derivatives 

were generated via central difference derivation with the time intervals of the collected 

drawdown data (approximately 4500 min). As a result, the derivative estimates were highly 

noisy (see Figure 4.13). To compare the smoothing methods Figure 7.12 was plotted using 

synthetic heterogeneous data. 

 

Figure 7.12. Application of different smoothing techniques to the second derivative of the 

synthetic heterogeneous drawdown at observation point in 1 m radius due to pumping 

 

 All methods were applied to the field data at the same smoothing power according 

to the application results for synthetic heterogeneous drawdown; the smoothest results 

were obtained when using moving average and Loess smoothing methods. For instance in 

this case the moving average method was applied using a 9-point interval so the Loess 

method was also applied with an alpha (α) value of 0.04 which corresponds to the value for 

9 data point interval for this data set. 

 



 87 

7.4.1.2.  Derivation of Smoothed Curves.  The field drawdown data were smoothed prior to 

the estimation of the drawdown derivatives Smoothing was tested for different smoothing 

coefficient (alpha value for the Loess method). Alpha values ranging from 0.3 to 0.9 were 

considered. For each smoothing value the derivative of the smoothed drawdown data was 

estimated using the Spane method for distinct differential intervals.  

 

 The first derivative of the drawdown due to pumping from TW 2A as a function of 

time for different smoothing parameters are presented in Figure 7.13. The results show that 

alpha values 0.3 and 0.5 gives smoothed results for the early data. The value of the 

derivative at the inflection point is about 0.25 m occurring around 620 minutes for all 

cases, indicating that the estimated derivative curves are consistent with each other. This 

information would be sufficient to apply the Hantush’s inflection point Cooper–Jacob 

methods. The late data which is used in the CD methods have exhibit a break in the curve. 

These problems appear to be solved by considering higher values of the smoothing 

parameter. Moreover, no drastic difference between the derivatives for alpha values 0.8 

and 0.9.  

 

 If the derivatives are estimated with the differential interval approach, a shifting 

problem in the early data, as the case with synthetic data, may develop. For all cases 

differential interval 0.02 (Corresponds to 20 data points for each interval for this data set) 

gives best results and is least skewed one with respect to other curves. However, although 

the problem is alleviated with a differential interval of 0.2, significant early data loss in the 

early data is observed. 

 

 The other conspicuous character of the curves is ambiguity of the derivatives to 

define the type of the aquifer. There is a decreasing trend in the curves for all cases but it 

cannot be certainly said what is the dominant cause for this decrease, which can be either 

leakance or heterogeneity of the field (Similarity can be observed from the Figure 7.6 

which shows confined heterogeneous realizations). Different than other confined aquifer 

examples derivatives are not starting from zero, therefore, early character of the drawdown 

cannot be observed. 
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Figure 7.13. First derivatives of smoothed real drawdown data for monitoring wells 2A 

and 2B 
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Figure 7.14. First derivatives of smoothed real drawdown data for monitoring wells 2C 

and 2D 
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7.4.1.3.  Fitting Procedure and Derivations of Fitting curves.  Because of the ambiguity of 

the derivatives, the polynomials fitting methods and Spline interpolation methods 

explained in section 4.2.2 were applied. Figure 7.15 shows the different fitted polynomials 

and Splines applied to the Field drawdown data. The residual, defined as the difference 

between the observed and interpolated values are also shown.  

 

 
Figure 7.15. Drawdown fitted polynomials/Splines and residuals  

 

 As seen from Figure 7.15, residual demonstrations according to fitting curves were 

observed and analyzed. The residual values designate closeness of fit of the data to the 

assumed model. Small residuals mean the correction of the noise in the base data, on the 

other hand big residuals as shown in MW2B figure is overestimating which leads 

inaccurate estimation of aquifer parameters. The quality of each fit was also evaluated in 

terms of goodness of fit some statistics (Table 7.12).  
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Table 7.12. Goodness of Fit Statistics 

  SSE   R-square   Adjusted R-square   RMSE 
M

W
2

A
 

Poly 4 0.167 0.9986 0.9986 0.0139 

Poly 6 0.138 0.9988 0.9988 0.0126 

Poly 9 0.126 0.9989 0.9989 0.0121 

Spline 0.8 0.124 0.9989 0.9989 0.0120 

Spline 0.95 0.138 0.9988 0.9988 0.0127 

M
W

2
B

 

Poly 4 0.186 0.9983 0.9983 0.0146 

Poly 6 0.102 0.9991 0.9991 0.0109 

Poly 9 0.085 0.9992 0.9992 0.0099 

Spline 0.8 0.103 0.9991 0.9991 0.0110 

Spline 0.95 0.083 0.9993 0.9992 0.0098 

M
W

2
C

 

Poly 4 0.054 0.9995 0.9995 0.0079 

Poly 6 0.054 0.9995 0.9995 0.0079 

Poly 9 0.041 0.9996 0.9996 0.0069 

Spline 0.8 0.062 0.9994 0.9994 0.0084 

Spline 0.95 0.030 0.9997 0.9997 0.0059 

M
W

2
D

 

Poly 4 0.130 0.9988 0.9988 0.0122 

Poly 6 0.060 0.9995 0.9995 0.0083 

Poly 9 0.053 0.9995 0.9995 0.0078 

Spline 0.8 0.053 0.9995 0.9995 0.0079 

Spline 0.95 0.042 0.9996 0.9996 0.0070 

 

 

 The above table shows the results of the residual analysis for the goodness of fit 

values. It includes sum of squared errors (SSE) for measuring the total deviation of the 

response values; R-square to show how successful the fit is in explaining the variation of 

the data, in short it is the square of the correlation coefficient, adjusted R-square is based 

on the degrees of freedom; root mean squared error which is also known as the fit standard 

error and the standard error of the regression.  

 

 The statistics show that nearly all fits explain about 99% of the total variation in the 

data about the average, suggesting that all fitting curves represents the real data well. SSE, 

RMSE statistics indicates that 9
th

 order polynomials and Spline in smoothing value (p) 0.8 

and 0.95 have smaller random error component, and that the fits may be more useful for 

the prediction.  
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 However, the main goal of this analysis is to see which curve provides smooth and 

representative derivatives of the data, not to find accurate predictions. So, from the residual 

statistics it can be inferred that 4
th

 and 6
th

 order polynomial fits partially on the field data, 

thus they are not giving reliable representations. After residual diagnostics, the derivatives 

of fitting are presented in Figure 7.16. 

 

Figure 7.16. Derivatives of fitting curves for the field data from test well 2A and 

monitoring wells 2A, 2B, 2C and 2D  

 

 The results of the derivatives show consistent values with smoothed derivatives in 

Figure 7.13. and Figure 7.14. Comparing to the smoothed derivatives inflection points are 

viable, but different than smoothed derivatives, fitted derivatives provide us early data 

information. It can be seen that for the cases of MW2A and MW2B Spline 0.95 gives 

smooth and useable results; for cases MW2C and MW2D there are fluctuations which 

makes hydrological parameter estimation more uncertain. Although the statistics indicated 

that the 9
th

 order polynomial is useful for the prediction; the derivative graphs show that it 

contains unrealistic fluctuations that may have stemmed from barometric fluctuations. On 

the other hand, observations show that Spline 0.8 curve has no fluctuation and appears to 
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be good representation for hydrological parameter estimation. Plots of the derivatives of 

other observation points computed with the Spline method using p values 0.8 and 0.95 are 

presented in Appendix C. 

 

7.4.2.  Conventional Methods  

 

 In this section two conventional methods will be applied to the field data: the 

Cooper-Jacob method for non-leaky aquifers and Walton’s method for leaky aquifers.  

 

 In real subsurface systems completely non-leaky aquifer may not be present; 

aquifer with very small leakance can be considered as non-leaky aquifer. In case of very 

high leakage factor (B) the aquifer is classified as non-leaky confined. Unlike synthetic 

data applications for confined aquifer, the type of aquifer may not be known with certainty 

in real pumping test data applications. Therefore, Walton’s method can be used also for 

non-leaky aquifer, in case of very small r/B curve (specified in Walton’s curve family as 

r/B < 0.001) the parameter estimations will be similar to Theis method.  

 

Table 7.13. Estimated Parameters using the Walton and Theis methods for real data 

 Pumping 
well 

Observation 
point 

T(m2/s) S B(m) r(m) r/B 

W
al

to
n

's
 a

n
d

 T
h

ei
s'

s 
Ty

p
e 

C
u

rv
e TW

2
A

 

MW2B 0.0096 0.10813 8423 8.42 0.001 

MW2A 0.0083 0.00004 4724 9.45 0.002 

MW2C 0.0096 0.00067 108953 108.95 0.001 

MW2D 0.0093 0.00012 113386 113.39 0.001 

TW
2

B
 

 MW2E 0.0072 0.00039 5944 11.89 0.002 

MW2F 0.0089 0.00027 2906 87.17 0.03 

 MW2H 0.0093 0.00007 5385 161.54 0.03 

MW2C 0.0097 0.00001 7742 232.26 0.03 

MW2B 0.0084 0.00022 14712 294.25 0.02 

TW
5

A
 

BH68-80 0.0111 0.00562 163 4.88 0.03 

 ST8 0.0128 0.00105 427 8.53 0.02 

MW5B 0.0138 0.00021 6309 126.19 0.02 

NW05 0.0266 0.00019 12771 255.42 0.02 

ST7 0.0226 0.00016 11931 417.58 0.035 

MW1 0.0328 0.00010 27081 541.63 0.02 
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 Tables 7.13 and 7.14 list the parameter estimates using the Walton method and the 

Cooper-Jacob method respectively. The results suggest all of the drawdown data aquifers 

being tested exhibit some leaky aquifer characteristics. Drawdown data from monitoring 

wells (especially MW2C and MW2D) have higher leakage factors proportional to radius of 

the monitoring points. Overall, the curves are close to the Theis’s (no leaky) curve but 

none of them fall exactly on to it.  

 

Table 7.14. Parameter Estimations of Cooper-Jacob method for real data 

 Pumping 
well 

Observation 
point 

T (m2/s) S r(m) 

C
o

o
p

e
r 

- 
Ja

co
b

 M
et

h
o

d
 

TW
2

A
 

MW2B 0.010 8.62E-06 8.42 

MW2A 0.011 7.63E-02 9.45 

MW2C 0.010 1.03E-04 108.95 

MW2D 0.010 1.03E-04 113.39 

TW
2

B
 

 MW2E 0.008 1.91E-04 11.89 

MW2F 0.009 2.22E-04 87.17 

 MW2H 0.010 7.96E-05 161.54 

MW2C 0.010 7.96E-05 232.26 

MW2B 0.011 6.71E-05 294.25 

TW
5

A
 

BH68-80 0.015 1.52E-03 4.88 

 ST8 0.016 6.58E-04 8.53 

MW5B 0.017 1.46E-04 126.19 

NW05 0.031 1.29E-04 255.42 

ST7 0.026 8.59E-05 417.58 

MW1 0.033 1.58E-04 541.63 

 

 The transmissivity values obtained with the Cooper-Jacob methods is generally 

consistent with the values obtained with the Walton method. Because the Cooper-Jacob 

method does not include the effect of leakance, there is a tendency to calculate higher 

transmissivity values and lower storativity values. This exercise also exemplifies the high 

level of uncertainty in its estimates; the difference in the storativity for each observation 

point is apparent. On the other hand, storativity estimations for each method are 

comparable.  

 

 In summary, the results obtained from each method for each observation point are 

generally consistent. The aquifers where the pumping tests were conducted can be 
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considered as slightly leaky, but the leakage is sufficiently low such that using non-leaky 

aquifer interpretation methods may yield acceptable results, particularly the transmissivity 

estimates. Therefore, it was decided that both leaky and non-leaky methods will be applied 

and the results will be compared to each other. 

7.4.3.  CD Method 

 

 In this section, application of the new method titled as Continuous Derivation 

method for non-leaky confined aquifer is discussed. The method was described in section 

5.1 and applied to the synthetic data in section 7.2.2. Conventional methods provide single 

representative estimates of hydrological parameters and types of the aquifers; they cannot 

give variability of parameters as a function of time and distance.  

 

In addition to the estimation of flow parameters, the CD method provides a method for the 

identification of the type of aquifer present as described in the following section 

7.4.3.1. Identification of Aquifer type.  As shown in the Figure 5.2 which was developed 

for the Hantush leaky aquifer system, shows that L  should increase with time. Depending 

on the value of r/B, L  increases rapidly at late times as the drawdown approaches steady 

state. In general, the L  curves depicted in Figure 7.17 exhibit a relatively shaper increase 

in L  at late times suggesting that the aquifer system is slightly leaky. Test well 5A 

appears to have the highest increase in L  at the end of pumping tests and, hence, has 

relatively higher leakage (r/B value). Moreover, variations between different individual L  

may reveal important information about the aquifer conditions. For example the response 

at MW2A and MW2B which are both less than 10 m away from TW2A are significantly 

different, demonstrating the complexity of the geologic conditions. MW2A exhibits a 

larger drawdown at early times, resulting in a larger initial L  value compared to MW2B. 

Because both monitoring wells are at the same distance from the test well, the smaller L  

value of MW2B corresponds to a lower value of 1/u (Figure 5.2).   
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 This may be an indication of a higher ―apparent‖ storativity value for MW2B 

caused by poorer connectivity to the pumping well. This is indeed consistent with the 

geology within the vicinity of TW2A. Monitoring well MW2A is completed at the same 

elevation and within the same sand/gravel layer as TW2A and, hence, is well connected to 

the pumping well. MW2B is completed in a hydraulically connected sand/gravel above the 

elevation of the test well, with less connectivity to the pumping well. The lower 

connectivity to MW2A manifests itself as a higher storativity value. 

 

 Unlike the transmissivity, the estimated storativity varies significantly from about 

10
-6

 to as high as 10
-1

 for TW2A-MW2B (which was predicted qualitatively based on the 

shape of the L  curves). The variation in the estimation of the storativity stems in part from 

its dependence on the point-to-point connectivity of the heterogeneous transmissivity field 

(e.g., Sanchez-Vila et al., 1999). 
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Figure 7.17. 
s

s
L




3.2
  estimated from the drawdown data and its time derivative 
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7.4.3.2. Estimation of Flow Parameters.  Figure 7.18 and Figure 7.19 show the results of 

different fitting curves. Each interpolation curve was denoted in terms of the fitting method 

applied to drawdown data and will serve as input to the CD-Confined computer program 

(see Appendix G). The flow parameters are first estimated as a function of time and the x-

axis is later converted to distance as described in Section 5.1. 

 

The results show in general that, for any particular test, the estimated parameters as 

a function of time or distance do not vary much irrespective of the interpolation method 

used. This suggests that the results are not very sensitivity to the considered interpolation 

method. The spread in the estimates at any particular time (or distance) is a measure of the 

uncertainty in the definition of the drawdown derivatives. 
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Figure 7.18. Estimation of flow parameters using the CD–Confined method for test wells 

2A and 2B and for different drawdown fitting methods 
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Figure 7.19. Estimation of flow parameters using the CD-Confined method for test wells 

2C and 2D and for different drawdown fitting methods  
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 Different than the field data, synthetic data estimates for CD-Confined method was 

not affected by real pumping test conditions such as skin effect, head losses due to 

plugging of the aquifer with drilling mud, head losses in the gravel pack, and head losses in 

the screen. Consequently, calculations of early data in synthetic fields can be interpreted as 

storativity values are relatively close to the real value at early times and distance. In real 

applications, however, estimation of storativity is error prone since the interpreted values 

are also affected by a number of processes such as well storage or well development, 

among others. Therefore, estimates at early times, unlike the case with synthetic data were 

mainly excluded, as seen from solutions (Figure 7.18, Figure 7.19 and for other cases in 

Appendix C) 

 

 From the figures it can be observed that the relative variation of the storativity is 

higher than the variation in the transmissivity estimations. This again shows that pumping 

tests generally yield more reliable transmissivity estimates than storativity estimates. 

Another feature of the results that the transmissivity and storativity estimates exhibit 

negative correlation; for high transmissivity estimates, the storativity estimates are low and 

vice versa. Transmissivity and storativity values appear consistence in spite of the 

differences in some cases, for instance MW2B from the test well 2A have approximately 

closer  transmissivity estimate with respect to other cases, however storativity estimates 

are very high. In test well 2A group, estimates of cases are alike except MW2B solutions, 

which probably stem from the low quality of the data.  

 

 Nearly all of the cases show decreasing storativity behavior after steady storativity 

estimation between specific range, after that range transmissivity values tend to increase, 

which is probably due to the derivatives of the late drawdown data. This further indicates 

that some leakage may be as discussed in section 5.2. In addition, according to these 

interpretations CD method allows us to define what the types of the aquifers are. We can 

also diagnose at what time and distance the effect of leakage is evident. For the test well 

2A the effect of leakage is active between time ranges 21000–40000 seconds, and 

distances between 10–650 m; observations of the test well 2B indicate that active leakage 

time range is 600–20000 seconds, distance range is 50–800 m; for TW5A leakage becomes 

significant for range between <100–4500 seconds and 10–300 m. The minimum values 

estimated from the monitoring points those have the smallest radius and maximum values 
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from the monitoring points those have highest radius. According to findings to see the 

parameter variations in furthest distance, the monitoring point with the highest radius 

should be analyzed. In order to understand the characteristics of the aquifer, the drawdown 

data set obtained from the constant rate pumping test, which was conducted for maximum 

12 hours of duration, is sufficient for this case.   

 

 Comparison of the estimates obtained with the CD–Confined method and the 

estimates obtained with the conventional methods indicates that the transmissivity 

estimates are generally consistent. However, the CD method provides estimates as a 

function of distance from the pumping test, whereas the Walton and CJ methods give 

single estimates only. The storativity estimates on the other hand shows that the values 

estimated by Walton’s and Cooper-Jacob methods as implied before corresponds to 

different times of CD method parameter curves, however in late data there is decrease in 

storativity parameters especially in test well 5A cases, which proves the effect of leakage is 

higher or in other words leakage factor is smaller in this case. 

 

 For pumping test TW2A, the Walton method predicted a transmissivity of about 

0.01 m
2
/s, and a storativity of about 0.0001 at all wells except for TW2A-MW2B where 

the storativity was about 0.1). Similar storativity and transmissivity values were also 

obtained with the CD method (See Figure 7.18). However, the estimated parameters 

obtained with the CD method exhibit some variation particular at early distance (or time).  

At later times, the transmissivity estimate tends to stabilize suggesting that the aquifer 

system is behaving close to a homogeneous system. This corresponds to a distance of 

about 600 to 800 m for monitoring wells MW2A, MW2C and MW2D. For MW2B, which 

has a much higher apparent storativity value due to its lower connectivity to the test well, 

the aquifer system starts to behave as a homogeneous aquifer. These distances are 

representative of the characteristic length scale of the heterogeneous transmissivity field.  

Furthermore, the estimated transmissivity values at the very early times are mostly 

dependent on the transmissivity values in the immediate vicinity of the test well.  

Therefore, the variability of the transmissivity values at early times can be indicative of the 

transmissivity variance of the aquifer system provided that a sufficient number of tests is 

available to satisfy the ergodicity requirement.   
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 For applications with scales larger than the characteristic length of the the 

transmissivity field, a conventional deterministic approach may be appropriate.  However, 

for applications of smaller scales the results of this approach may be inaccurate a stochastic 

approach would be required to quantify the uncertainty in any predictions of the response 

of the system to future changes and stresses.   

 

 Inspection of the observed data also indicates that the selected different derivatives 

estimation techniques do not yield significantly different estimates of the flow parameters, 

suggesting that the results of the pumping test analysis method are not too sensitive to the 

methods selected for derivative estimation. 

 

7.5.  Estimation of Flow Parameters- Field Data from Leaky Aquifers 

 

 The examples presented in section 7.3 focused on synthetic data analysis from 

leaky aquifer data and showed that in a heterogeneous system, different interpretation 

methods provide different parameter estimates as in the analysis from synthetic non-leaky 

confined aquifer data. Thus using all methods may provide insight into the actual spatial 

variability of flow parameters. 

 

 In this section, one conventional (Hantush’s Inflection Point) and one novel (DIP) 

method were applied to the field data. As another conventional method Walton’s type 

curve method had been used in section 7.4.2 because this method is a generalized version 

of Theis's method that can also account for leakance; that is, Theis method is for the 

special case of r/B = 0. However, it was observed that all real field data have slight leaky 

aquifer features. Estimations in Table 7.13 were also compared with the findings of the 

methods applied in this section. 

 

7.5.1.  Conventional Method  

 

 As explained previously the Hantush inflection point method requires that the 

steady-state drawdown at the end of the pumping test has been reached (see section 

4.1.2.2), however, when the pumping test data do not extend up to the steady state, 
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previously used fitting methods have been used to extrapolate until the curve reaches 

steady state (see Figure 7.19). One disadvantage of extrapolation is the high level of 

uncertainty in the value of the maximum (steady-state) drawdown. The best fitting 

techniques to extrapolate were chosen as polynomial and rational fittings.  

 

 

Figure 7.20. Different extrapolation of the drawdown data for the determination for the 

maximum drawdown points (four monitoring wells data of test well 2A) 

 

 Approximation to steady-state drawdown, sm, obtained from different extrapolation 

methods are shown in Figure 7.20. The uncertainty of the definition of the steady state will 

invariably affect the estimate of the leakance factor. However the analysis will be guided 

by the results of previous analysis methods which indicated low r/B values. 
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Table 7.15. Parameters estimated with the Hantush’s Inflection Point method with 

extrapolation 

 Pumping 
well 

Observation 
point 

T(m2/s) S B(m) r(m) r/B 

H
an

tu
sh

's
 In

fl
ec

ti
o

n
 P

o
in

t 
M

et
h

o
d

 TW
2

A
 

MW2B 0.0089 0.00002648 179 8.42 0.01433 

MW2A 0.0090 0.00000106 8765 9.45 0.00033 

MW2C 0.0089 0.00000018 1717 108.95 0.01934 

MW2D 0.0086 0.00000010 4295 113.39 0.00805 

TW
2

B
 

 MW2E 0.0135 0.00000014 88710 11.89 0.00004 

MW2F 0.0112 0.00000011 8072 87.17 0.00329 

 MW2H 0.0117 0.00000004 10160 161.54 0.00485 

MW2C 0.0102 0.00000003 7420 232.26 0.00954 

MW2B 0.0100 0.00000003 6875 294.25 0.01305 

TW
5

A
 

BH68-80 0.0130 0.00003087 387 4.88 0.00384 

 ST8 0.0141 0.00000850 837 8.53 0.00311 

MW5B 0.0123 0.00000019 1361 126.19 0.02825 

NW05 0.0240 0.00000005 2683 255.42 0.02902 

ST7 0.0162 0.00000003 2047 417.58 0.06218 

MW1 0.0181 0.00000002 2238 541.63 0.07376 

 

 The hydrological parameters estimated with the Hantush inflection method are 

shown in Table 7.15. The transmissivity values are consistent with the estimates from 

Walton’s method (see Table 7.13) and early estimates of CD-Confined method. However, 

it can be seen that there is wide variability in leakage factors which were underestimated 

along with the storativity values in comparison with the values from other leaky aquifer 

methods especially in test well 5A case. So, it can be interpreted, instead of using 

extrapolation the last data point could be used as the maximum drawdown value for 

inflection method. 
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Table 7.16. Parameters estimated with the Hantush’s Inflection Point method assuming the 

steady-state drawdown is equal to the drawdown at the end of test  

 Pumping 
well 

Observation 
point 

T(m2/s) S B(m) r(m) r/B 

H
an

tu
sh

's
 In

fl
ec

ti
o

n
 P

o
in

t 
M

et
h

o
d

 

TW
2

A
 

MW2B 0.0089 0.0000257 179 8.42 0.01433 

MW2A 0.0090 0.0000018 8749 9.45 0.00033 

MW2C 0.0089 0.0000028 1717 108.95 0.01934 

MW2D 0.0085 0.0000019 3395 113.39 0.01018 

TW
2

B
 

 MW2E 0.0135 0.0000002 78205 11.89 0.00005 

MW2F 0.0112 0.0000009 6272 87.17 0.00424 

 MW2H 0.0117 0.0000012 8925 161.54 0.00552 

MW2C 0.0089 0.0000028 6543 232.26 0.01082 

MW2B 0.0100 0.0000011 5626 294.25 0.01594 

TW
5

A
 

BH68-80 0.0130 0.0005589 387 4.88 0.00384 

 ST8 0.0141 0.0002944 837 8.53 0.00311 

MW5B 0.0123 0.0000545 1361 126.19 0.02825 

NW05 0.0240 0.0000453 2683 255.42 0.02902 

ST7 0.0141 0.0000292 2047 417.58 0.06218 

MW1 0.0130 0.0005589 2067 541.63 0.07986 

 

 Estimations of Hantush inflection point method indicate that there is no remarkable 

difference between extrapolated data and maximum points of non-fitted drawdown data. 

Even there is consistency in synthetic data estimates of inflection point method comparing 

to other conventional and new methods, unapparent steady-state drawdown value 

culminated with inaccurate leakage factor estimations and underestimated storativity 

values. These observations point to the difficulty of interpreting field data particularly at a 

complex site such as the one considered in this study. 

7.5.2.  DIP Method  

 

 In this section the drawdown data from the field pumping tests were interpreted 

with the double inflection point (DIP) method. The FORTRAN computer code used for 

this purpose is listed in Appendix H. 

 

 The DIP method requires the estimation of the second derivative in the application 

of the CD method; fitting curves of the drawdown were developed. So the second 

derivatives were determined by differentiation of the fitted curves. As indicated earlier the 
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Spline method was used for curve fitting unlike the second derivatives of synthetic data the 

heterogeneity in the field data is apparent. As explained in methodology part three 

distinctive inflection points were determined to estimate leaky aquifer parameters. 

 

 The behavior of second and first derivatives can be observed from Figure 7.20. In 

general, the shape of the curves differs significantly from the analytic solution developed 

for homogeneous conditions. However, locations of the maximum and minimum points 

(inflection points) of second derivatives are sufficiently distinct for parameter estimation.  

 

 

Figure 7.21. First and second derivatives of drawdown using LOESS smoothing and 

Spline fitting method, A is inflection point, tp, B and C are ts1 and ts2 

 

 The DIP method first gives an estimate of the leakance, which is then used to 

estimate the storativity and transmissivity. That approach is based on using the first 

inflection point (ts1, denoted as B in Figure 7.20) that is based mostly on the early portion 

of the drawdown data and second inflection point (ts2, denoted as C in Figure 7.20) uses the 

late and intermediate portions of the drawdown curve. Hence, the DIP method provides 
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two sets of estimates can be determined depending on whether the first or second inflection 

point is used, thereby, providing some information about the heterogeneity of the aquifer. 

 

Table 7.17. Parameters estimated using the DIP the field data based on the first inflection 

point and second inflection point of the second derivatives 

   (First Inflection Point)ts1 

Pumping 
well 

Observation 
point 

r (m) B(m) r/B(early) T(m2/s) S 

TW
2

A
 

MW2B 8.42 7.2 1.16 0.00131 0.20630 

MW2A 9.45 7.4 1.27 0.00037 0.08181 

MW2C 108.95 529.8 0.21 0.00522 0.00140 

MW2D 113.39 97.5 1.16 0.00081 0.00124 

TW
2

B
 

MW2E 11.89 3.1 3.88 0.00002 0.00017 

MW2F 87.17 129.9 0.67 0.00239 0.00017 

MW2H 161.54 38.2 4.23 0.00003 0.00101 

MW2C 232.26 419.4 0.55 0.00462 0.00004 

MW2B 294.25 6638.1 0.04 0.01026 0.00006 

TW
5

A
 

BH68 80 4.88     

ST8 8.53 12.9 0.66 0.00228 0.01423 

MW5B 126.19 155.3 0.81 0.00307 0.00019 

NW05 255.42 1082.4 0.24 0.01683 0.00009 

ST7 417.58 927.8 0.45 0.01075 0.00008 

MW1 541.63 618.9 0.88 0.00701 0.00006 

 

  (Second Inflection Point)ts2 

Pumping 
well 

Observation 
point 

r (m) B(m) r/B(Late) T(m2/s) S 

TW
2

A
 

MW2B 8.42 10.0 0.84 0.002070 0.236451 

MW2A 9.45 9.0 1.05 0.000509 0.301456 

MW2C 108.95 125.9 0.87 0.001447 0.005362 

MW2D 113.39 93.2 1.22 0.000755 0.003961 

TW
2

B
 

MW2E 11.89 62.8 0.19 0.002856 0.003819 

MW2F 87.17 99.6 0.88 0.001743 0.000539 

MW2H 161.54 28.5 5.67 0.000006 0.000001 

MW2C 232.26 158.0 1.47 0.001223 0.000102 

MW2B 294.25 395.9 0.74 0.001957 0.000637 

TW
5

A
 

BH68 80 4.88 73.4 0.07 0.008175 0.002741 

ST8 8.53 24.0 0.36 0.003942 0.043529 

MW5B 126.19 152.5 0.83 0.003005 0.000614 

NW05 255.42 559.5 0.46 0.010550 0.000369 

ST7 417.58 433.1 0.96 0.004704 0.000237 

MW1 541.63 323.9 1.67 0.002380 0.000128 
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 In Table 7.17, estimations of DIP method for field data are presented, for DIP 

method two distinct group of estimates are exist, one is the estimate based on the ts1 and tp , 

and the other is based on ts2 and tp (see Figure 4.10). The change of the flow parameters 

between specific times can be observed with this characteristic of DIP method.  

 

 Specifically, the critical parameter is to focus on the estimation of the leakage 

factor, which is subsequently used in the estimation of the other flow parameters. 

Transmissivity values of DIP method are not changing drastically and findings are close to 

the estimations of previous methods. It is observed that the analysis of time-drawdown data 

of observation points located closer to the test wells gives lower transmissivity estimates 

than of interpretation methods for confined aquifer. Also compared to the Hantush’s 

inflection point method, the DIP method produces lower leakage factor in other words high 

leakance. With respect to CD-confined method, late data, especially second inflection 

point, estimates do not show decreasing storativity and estimations from the observation 

points located at large distances from the pumping test are consistent with estimates from 

nearby observation points. For the second estimates of DIP, it can be said that r/B values, 

which corresponds to late data, show increasing trend which was also seen from CD-

confined estimations curves as leakage effect. 

 

 A measure of the variability of the parameters can be viewed by the comparing the 

estimations of DIP method based on the first and second inflection points. It has been 

reported in the literature that the local transmissivity at the well is positively correlated 

with the DIP estimate based on ts1 and negatively correlated with the DIP estimate based 

on ts2 (Trinchero et al., 2008). 

 

 Finally, because each of the used methods gives weight to different parts of the 

time drawdown data, some information of the heterogeneity of the site can be determined 

by the synthesis of all the data obtained with the different methods and using drawdown 

data from different pumping test. Such estimates can then be used in a numerical model to 

simulate groundwater flow and contaminant transport in support of groundwater field 

investigations, remedial investigations or remedial feasibility studies. 

  



 110 

8.  CONCLUSIONS AND RECOMMENDATIONS 

 

 
 Groundwater flow and contaminant transport are strongly influenced by the 

heterogeneity of the subsurface and the spatial variability of the flow parameters such as 

the hydraulic conductivity. Although heterogeneity of subsurface parameters is often 

encountered in the field, most existing pumping test analysis techniques are based on the 

assumption of homogeneity. The purpose of this study is to apply different interpretation 

methods to pumping test data in order to provide some information about the spatial 

variability of the flow parameters. 

 

Two types of aquifer systems were considered: confined aquifers whereby the 

upper and lower boundaries do not allow flow and semi-confined (leaky) where the 

boundaries allow some leakage. Analytical methods for the interpretation of pumping tests 

have been applied according to aquifer types to estimate flow parameters, namely: the 

transmissivity, the storativity, and the leakage factor (for leaky aquifer systems only).  

 

 The pumping test interpretation methods that were evaluated in this study can be 

grouped into two categories: conventional methods and novel methods. Conventional 

methods are based on the assumption of homogeneity and include the type-curve approach 

developed by Walton (1962) and the inflection point method developed by Hantush (1956) 

for leaky aquifer, and Theis (1935) and Cooper and Jacob (1946) methods for confined 

aquifers. Such methods, which are often used in practice, provide a single estimate of the 

flow parameters, although the real aquifer system may be heterogeneous. The two novel 

methods examined in this study are the DIP (Double Inflection Point) method which was 

proposed for leaky aquifer (Trinchero at al., 2008) and the CD (Continuous Derivation) 

method which was recently developed by Copty et al. (2011). The CD method attempts to 

provide information about the spatial variability of flow parameters rather than estimating 

a single representative value of the perturbed aquifer with respect to conventional methods. 

The method uses the ratio of the drawdown to the drawdown derivative at a single point in 

time to estimate the transmissivity and storativity at the considered time. The time-

dependent interpreted transmissivity is then expressed as a function of radial distance from 

the well. The DIP method uses the time at the inflection points (where the second 
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derivative peaks positive or negative) of the second derivative to estimate the flow 

parameters. A common characteristic of these methods, including Hantush’s inflection 

point method, is that they need the first and (in some cases) the second derivatives of time-

drawdown data. 

 

 Two kinds of pumping tests were evaluated in this work; synthetic pumping test 

data and real field data. The advantage of the synthetic pumping tests is that the spatial 

distribution of the parameters is known, unlike the case in real aquifer systems. The 

synthetic pumping tests were developed by first generating transmissivity fields using the 

turning bands method (Mantoglou and Wilson, 1982). Using the generated transmissivity 

field the drawdown due to pumping was simulated using the MODFLOW (Harbaugh et al., 

2000) computer program for both confined and semi-confined aquifer systems. 

Interpretation of the drawdown data using conventional methods shows that each method is 

influenced differently by the transmissivity of the aquifer volume surrounding the well. 

The methods that use mainly the first part of the drawdown curve provide an estimated 

value which is close to the actual value at the well, while those that analyze the late 

transient part of the curve give an estimate that provides a representative average value of 

the entire aquifer. This average value is shown to be equal to the geometric mean of the 

transmissivity field. The results of conventional methods indicate that different 

interpretation methods yield similar results at large distances from the well. Moreover the 

heterogeneity of the transmissivity field influences the estimation of the other parameters 

such as the storativity. 

 

 Different derivation methods have been applied to the drawdown data from 

synthetic pumping tests. It was observed that the Bourdet (Bourdet et al., 1989) and Spane 

& Wurstner methods (Spane and Wurstner, 1993) give similar results when the drawdown 

data are slightly noisy. In general, depending on the parameters used in smoothing, over 

smoothing of the drawdown may results, particularly at locations near the well, leading to 

some distortion of the derivative curve. 

 

 The synthetically generated time-drawdown data were also analyzed using the 

novel CD method.  The estimates obtained with the CD method based on early data 

generally exhibited large variability. On the other hand, estimates calculated from the end 
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of the parameter curves, which represents the late data, exhibit less variability and were 

highly correlated with the spatial average of the flow parameters S, C and T used in the 

data generation. The information provided by the observation points located near the well 

is most useful in the characterization of these contrasts in flow parameters. Also with using 

the CD method, it was observed that each conventional method (Cooper-Jacob, Theis) 

gives more emphasis to different portion of pumping test data. 

 

 Although the generated transmissivity field was the same in confined and semi-

confined cases; the results indicate that confined aquifer interpretation methods gave closer 

estimations relative to leaky aquifer method estimations to the defined input flow 

parameters. Calculations showed that storativity parameter gives higher response to the 

heterogeneity than transmissivity parameter in heterogeneous field. Also flow parameters 

in leaky aquifer exhibit higher variability because of the continual change in leakage 

factor.  

 

 The different interpretation methods were also applied to field pumping test data. 

The first step in the interpretation of the real data was to remove the effect of barometric 

and tidal variations on the drawdown. To get better representation of drawdown data and to 

reduce the noise in the data differentiation, various fitting methods were applied. The 

Spline method was chosen as the optimal fitting method and LOESS smoothing method 

was used in some cases as an initial smoothing procedure. To identify the type of aquifer 

system present, Walton’s type curves method was applied and the estimates indicate that 

time-drawdown data of real pumping test show slightly leaky aquifer characteristics.  

 

According to the findings of conventional methods, the transmissivity was 

estimated to be about 0.01 m
2
/s for test wells 2A and 2B, and around 0.02 m

2
/s for test well 

5A. However, the different interpretation methods did not yield a single storativity value 

because of the variability according to distance and monitoring point. The estimated 

storativity ranged from 0.0001 – 0.00008 for test wells 2A and 2B (excluding MW2B 

which was screened in a different layer), and 0.0001 – 0.001 for test well 5A, 

demonstrating the difficulty of estimating a reliable estimate of the storativity. It can be 

implied from the interpretation of conventional methods that  two different aquifer zones 

exist, one in the vicinity Test wells 2A and 2B and the other around test well 5A. Both 
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aquifers have similar transmissivity values, however, the leakage is higher in the vicinity 

of test well 5A. 

 

 Findings of CD- method indicate that variability in transmissivity data is lower than 

the variability in storativity data. The effect of leakage can easily be observed from the 

parameter curves. Due to the slightly leaky characteristics Si(t) and Ti(t) values were 

estimated up to a distance of 1 km from the pumping well. This study demonstrates that, 

with appropriate data fitting, the CD-confined method can be applied to the real data from 

non-leaky or slightly leaky aquifers. However, it is important to collect frequent 

(automated) high quality data. 

 

 The application of DIP method demonstrated that the difference between early and 

late data estimations is not always apparent. The transmissivity and storativity values are 

close to the estimates obtained from other methods. However, it is seen from the estimation 

tables for each method, r/B or Leakage factor is hard to diagnose. In general DIP method 

demonstrated lower leakage factor (higher leakance) estimations than conventional leaky 

aquifer methods. Diagnoses of the flow parameters according to analytical methods 

demonstrated that storativity and transmissivity parameters are inversely proportional. 

Moreover, with DIP method it was observed that lower leakage factor results in a decrease 

in the transmissivity and storativity estimates. The main difficulty of the application of the 

DIP method is that steady-state conditions are needed (or need to be extrapolated) and that 

second derivatives are prone to error. On the other hand, the method is simple to use once 

the inflection points and state-steady have been estimated. 

 

 In summary, the results presented in this study show that additional information 

about the spatial variability of transmissivity can be derived from time-drawdown data. 

While conventional single-well pumping test interpretation methods use time-drawdown 

data to estimate a single representative estimate of the transmissivity, other newly 

developed methods can provide additional information. Through the combination of all 

methods a better interpretation of the subsurface system is achieved.  
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Future research related to this study could focus on: 

 

 Combining data from different pumping tests into the parameter estimation 

problem, instead of using data from each well independently and then combining 

the results,  

 Testing the novel methods at other sites and compare results to other types of field 

data such as slug tests, geologic maps and geophyically derived data.  This will 

provide a good tool to evaluate the performance of these novel methods. 

 Estimation of the transmisisivty spatial structure, spficically, the transmisisivty 

variance and integral scale  

 Incorporate the estimates of the flow parameters in a groundwater flow and 

contaminant transport model. For the development of realistic flow and transport 

models, information on the spatial variability of the flow parameters must be 

identified and included in the model. These models can then be used to different 

problems such as prediction of contaminant transport, evaluation of different 

remedial alternatives, and identification of effective monitoring strategies.  
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APPENDIX A: SECOND DERIVATIVES OF SYNTHETIC 

HETEROGENEOUS DATA 

 

Figure A. 1. Second derivatives of synthetic pumping test data for each realization for 1m 

radius 



 125 

Figure A. 2. Second derivatives of synthetic pumping test data for each realization for 1m 

radius 
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APPENDIX B: CD-CONFINED METHOD ESTIMATIONS FOR 

SYNTHETIC HETEROGENEOUS DATA 

 

 

Figure B. 1. Estimations of CD-confined method from synthetic data for realizations A 

and B 
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Figure B. 2. Estimations of CD-confined method from synthetic data for realizations C 

and D 
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Figure B. 3. Estimations of CD-confined method from synthetic data for realization E  
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APPENDIX C: CD-CONFINED METHOD ESTIMATIONS FOR 

FIELD DATA 

 
Figure C. 1. Estimations of CD-confined method from real data for MW2B and MW2C 
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Figure C. 2. Estimations of CD-confined method from real data for MW2E and MW2F 



 131 

 
 

Figure C. 3. Estimations of CD-confined method from real data for MW2H and MW5B 
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Figure C. 4. Estimations of CD-confined method from real data for NW5 and ST7 
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Figure C. 5. Estimations of CD-confined method from real data for MW1 and BH68 



 134 

Figure C. 6. Estimations of CD-confined method from real data for ST8  
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APPENDIX D: PROGRAM FOR SIMULATED DATA READING 

 

 

c     post1.for 

c     reads the output head file of MODFLOW-2000 and writes the head 

c     as a function of time at selected observation points. 

c     The output is written to file: xxx.obs 

c     *************************************************************** 

      implicit double precision (a-h,o-z) 

      Parameter (nstep0=300, nx0=481, ny0=481) 

      dimension h(nx0,ny0) 

      open(4,file='xxx.hds',status='old') 

      open(5,file='xxx.obs',status='unknown') 

c     read the head data 

      do 20 n=1,nstep0 

      read(4,*) ndummy 

      do 30 i=1,nx0 

      read(4,*) (h(i,j),j=1,ny0) 

30    continue 

c     write at well, then every cell for 4I, every 2 cells for 4I and every 4 cells for 8I 

c     Therefore, farthest point is 16I: 128 m from well 

c     observation points are along SOUTH direction 

      write(5,1)ndummy,h(241,241), 

     &h(241,240),h(241,239),h(241,238),h(241,237), 

     &h(241,236),h(241,235),h(241,234),h(241,233), 

     &h(241,232),h(241,231),h(241,230),h(241,229), 

     &h(241,228),h(241,227),h(241,226),h(241,225), 

     &h(241,224),h(241,223),h(241,222),h(241,221), 

     &h(241,220),h(241,219),h(241,218),h(241,217), 

     &h(241,216),h(241,215),h(241,214),h(241,213), 

     &h(241,212),h(241,211),h(241,210),h(241,209), 

 

     &h(241,207),h(241,205),h(241,203),h(241,201), 

     &h(241,199),h(241,197),h(241,195),h(241,193), 

     &h(241,191),h(241,189),h(241,187),h(241,185), 

     &h(241,183),h(241,181),h(241,179),h(241,177), 

 

     &h(241,173),h(241,169),h(241,165),h(241,161), 

     &h(241,157),h(241,153),h(241,149),h(241,145), 

     &h(241,141),h(241,137),h(241,133),h(241,129), 

     &h(241,125),h(241,121),h(241,117),h(241,113) 

c     write at well, and 1, 4, 8, 12, 16, 32, 48, 64 cells away (including the diagonals) 

c     observation points start at NORTH and rotate clockwise 

c      write(5,1)ndummy,h(241,241),  

c     &h(241,242),h(242,242),h(242,241),h(242,240),h(241,240),h(240,240), 

c     & h(240,241),h(240,242), 

c     &h(241,245),h(245,245),h(245,241),h(245,237),h(241,237),h(237,237), 

c     & h(237,241),h(237,245), 

c     &h(241,249),h(249,249),h(249,241),h(249,233),h(241,233),h(233,233), 
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c     & h(233,241),h(233,249), 

c     &h(241,253),h(253,253),h(253,241),h(253,229),h(241,229),h(229,229), 

c     & h(229,241),h(229,253), 

c     &h(241,257),h(257,257),h(257,241),h(257,225),h(241,225),h(225,225), 

c     & h(225,241),h(225,257), 

c     &h(241,273),h(273,273),h(273,241),h(273,209),h(241,209),h(209,209), 

c     & h(209,241),h(209,273), 

c     &h(241,289),h(289,289),h(289,241),h(289,193),h(241,193),h(193,193), 

c     & h(193,241),h(193,289), 

c     &h(241,305),h(305,305),h(305,241),h(305,177),h(241,177),h(177,177), 

c     & h(177,241),h(177,305) 

c      write(5,1) ndummy, h(241,225),h(241,229),h(241,233), 

c     &           h(241,237),h(241,241) 

1     format(i5,65f12.7) 

20    continue 

      stop 

      end 
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APPENDIX E: PROGRAM FOR THE APPLICATION OF 

CONVENTIONAL AND DIP METHOD ANALYSIS TO THE 

SYNTHETIC DATA 

 

 

c     Calculates:   

c     i)   effective leakance vL_eff, transmissivity T_eff, and storativity S_eff 

c          of a leaky confined aquifer using the  

c             a) Cooper-Jacob for non-leaky aquifers (ileak=0) 

c             b) Hantush (1956) inflection point method (ileak=1) 

c             c) Walton (1962) Type curve method (ileak=2) 

c           and for steady state flow, effective transmissivity using  

c             d) The Double Inflection Point Method (DIPM)  (ileak=4) 

c     ii)  calculates the cummulative distribution function (CDF) for each of the effective 

parameters 

c     iii) calculates the probability density function (pdf) for each of the effective parameters 

c ******************************** 

 implicit double precision (a-g,o-z) 

      parameter(nreal=5,ngroup=1,nobs=5,nsim=nreal*ngroup,nstep=300 

     &  ,xmin1=0.,xmax1=1.,xmin2=0.,xmax2=10. 

     &  ,xmin3=0.,xmax3=0.001,xmin4=0.,xmax4=100.,nbin=50,q=2.,h0=20. 

     &  ,ileak=4) 

c   ileak=0  infinity leakance (NO seepage through confining layer) 

c   ileak=1  transient with finite leakance (Hantush 1956 inflection point method) 

c   ileak=2  trasient with finite leakaknce (Walton, 1962 Type curve method) 

c    

c   ileak=4  transient with finite leakance based on the Double Inflection Point Method 

c 

      dimension h(nobs,nstep),s(nobs,nstep),radius(nobs) 

      dimension time(nstep),tao(nstep)   

      dimension vL_eff(nsim,nobs),T_eff(nsim,nobs),S_eff(nsim,nobs), 

     &          vKB_eff(nsim,nobs) 

      dimension vKB_true(ngroup) 

      

c  parameters needed for the inflection point method (ileak=1) 

      dimension s_p(nobs),tao_p(nobs),t_p(nobs),delta_sp(nobs) 

 

c  parameters needed for the curve fitting approach (ileak=2) 

      dimension u(11*90),RoverL(194),wellfunc(11*90,194) 

      dimension trans(100),stor(100),utest(nstep),stest(nstep) 

 

c  parameters needed for the double inflection point method (ileak=4) 

 dimension dsdt(nobs,nstep),ds2dt2(nobs,nstep),ds3dt3(nobs,nstep), 

     &          tao1(nstep),tao2(nstep),tao3(nstep), 

     &          t1(nobs),t2(nobs),t3(nobs) 

 dimension dsdtmax1(nobs),dsdtmax2(nobs),dsdtmax3(nobs) 

 

c  parameters needed CDF and pdf computations 
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      dimension xcum1(nsim,nobs),xcum2(nsim,nobs),xcum3(nsim,nobs), 

     &          xcum4(nsim,nobs) 

      dimension xpdf1(nbin*ngroup,nobs),xpdf2(nbin*ngroup,nobs), 

     &          xpdf3(nbin,nobs),xpdf4(nbin,nobs) 

      dimension bin1(nbin+1),bin2(nbin+1),bin3(nbin+1),bin4(nbin+1) 

c   xmin1: lower limit of the vL_eff 

c   xmax1: upper limit of the vL_eff 

c   xmin2: lower limit of the T_eff 

c   xmax2: upper limit of the T_eff 

c   xmin3: lower limit of the S_eff 

c   xmax3: upper limit of the S_eff 

c   xmin4: lower limit of the vKB_eff 

c   xmax4: upper limit of the vKB_eff 

 

      character filein*10,  casenum*2, runnum(nreal)*8 

c input/output file names: 

      open(4,file='dummy',status='old') 

      open(14,file='file.nam',status='old') 

      open(5,file='time.txt',status='old') 

      open(6,file='temp.out',status='unknown') 

      open(7,file='parameters1.out',status='unknown') 

      open(8,file='parameters2.out',status='unknown') 

      open(9,file='parameters3.out',status='unknown') 

      open(10,file='parameters4.out',status='unknown') 

      open(12,file='t1.out',status='unknown') 

      open(13,file='t2.out',status='unknown') 

      open(18,file='t3.out',status='unknown') 

      open(16,file='cdf.out',status='unknown') 

      open(17,file='pdf.out',status='unknown') 

      open(11,file='wellfunc.out',status='unknown') 

      open(19,file='sss.out',status='unknown') 

 

c     calculate the effective parameters usings  

c     Cooper-Jacob Equation (ileak=0), 

c     inflection Point method (ileak=1), 

c     Walton Type method (ileak=2) 

c     DIPM, Double ,nflection point method (ileak=4) 

c if ileak=1 estimate the effective parameters using the inflection method 

      if(ileak.eq.1)then 

c     drawdown at the inflection point  

      do 70 i=1,nobs 

 s_p(i)=0.5*s(i,nstep) 

      do 80 j=1,nstep 

 if(s(i,j).le.s_p(i).and.s(i,j+1).gt.s_p(i))  

     &then 

c     calculate t_p (time at inflection point) 

      slope=(tao(j+1)-tao(j))/(s(i,j+1)-s(i,j)) 

      tao_p(i)=tao(j)+slope*(s_p(i)-s(i,j)) 

      t_p(i)=10**(tao_p(i)) 
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c     calculate drawdown rate: ds_p/dtao 

      delta_sp(i)=(s(i,j+1)-s(i,j))/(tao(j+1)-tao(j)) 

      goto 81 

      endif 

80    continue 

c     calculate L using Bessel function of the second kind of order 0 

81    do 90 j1=-5,2 

      do 95 j2=100,999 

      w=2.3*s_p(i)/delta_sp(i) 

      rL1=float(j2)/100.*10**(float(j1)) 

      rL2=float(j2+1)/100.*10**(float(j1)) 

      w1=exp(rL1)*dbsk0(rL1) 

      w2=exp(rL2)*dbsk0(rL2) 

 if(w.gt.w2.and.w.le.w1)then 

      slope=(rL2-rL1)/(w2-w1) 

      rL=rL1+slope*(w-w1) 

      write(6,91) k1,k2,j1,j2,rL 

91    format(4i5,f12.5) 

 goto 99 

      endif 

95    continue 

90    continue 

c     write a warning statement that j1/j2 are not sufficient for  

c     estimation of r/L (by trial and error 

 write(6,92)k1,k2,i,rL 

92    format('WARNING j1/j2 range insufficient for calculation of r/L', 

     &   3i5,f12.5) 

99    vL_eff((k1-1)*nreal+k2,i)=radius(i)/rL 

c     calculate transmissvity 

      T_eff((k1-1)*nreal+k2,i)= 2.3*q*exp(-rL)/4/3.14159/delta_sp(i) 

c     calculate storativity 

      S_eff((k1-1)*nreal+k2,i)= 2.*T_eff((k1-1)*nreal+k2,i) 

 &*t_p(i)/(vL_eff((k1-1)*nreal+k2,i)*radius(i)) 

c     calculate Kv/B = aquitard vertical conductivity divided by aquitard thickness 

  vKB_eff((k1-1)*nreal+k2,i)=T_eff((k1-1)*nreal+k2,i) 

 &                       /vL_eff((k1-1)*nreal+k2,i)**2 

70    continue  

      endif 

 

c     estimate the effective transmissivity, T_eff, and storativity  

c     using the Cooper-Jacob method: T=2Q/4pi/Delta_S*log(t2/t1) if(ileak.eq.0)then 

c     with there is no leakance vKB=C=0. 

 if(ileak.eq.0) then 

      do 60 i=1,nobs 

      T_eff((k1-1)*nreal+k2,i)=0.183*2.*log10(0.993636/0.878235)/ 

     &      (s(i,203)-s(i,200)) 

 S_eff((k1-1)*nreal+k2,i)=2.25*t_eff((k1-1)*nreal+k2,i)*0.993636 

 &  /radius(i)**2*10.**(-t_eff((k1-1)*nreal+k2,i)*s(i,203)/0.183/2.) 

 vKB_eff((k1-1)*nreal+k2,i)=0. 
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60    continue  

 endif 

 

c if ileak=2 estimate the effective parameters using the Walotn (1962) Type Curve method 

c calculacte the Walton Family of type curves 

 if(ileak.eq.2) then 

 write(*,*)k1,k2 

c     calculate the leaky well function (once only) 

      if(k1.eq.1.and.k2.eq.1)then 

 call walton(u,wellfunc,RoverL) 

      do 310 kw=1,194 

 do 320 iw=1,11 

 do 330 jw=1,90 

 write(11,301) iw,jw,kw,RoverL(kw),u(jw+(iw-1)*90), 

     /              wellfunc(jw+(iw-1)*90,kw) 

301   format(3i5,3d13.6) 

330   continue 

320   continue 

310   continue 

      endif 

 

c     define range of transmissivity values: 0.1 to 10 

c     define range of storativity values: 0.00001 to 0.001 

 do 340 iw=1,100 

 trans(iw)=0.1+float(iw-1)*0.1 

 stor(iw)=0.00001+float(iw-1)*0.00001 

340   continue 

 

      do 345 i=1,nobs  

 diffmin=999999. 

 do 350 iw=1,100 

 do 360 jw=1,100 

 do 370 kw=1,194 

 diff=0. 

 lwmin=1 

 do 380 nt=nstep,1,-1 

c     calculate u_test value and corresponding  s_test value 

 utest(nt)=radius(i)**2*stor(jw)/4./time(nt)/trans(iw) 

c     interpolate 

 do 390 lw=lwmin,11*90-1 

 if(utest(nt).ge.u(lw).and.utest(nt).lt.u(lw+1))then 

 stest(nt)=wellfunc(lw,kw)+(wellfunc(lw+1,kw)-wellfunc(lw,kw))* 

     &(utest(nt)-u(lw))/(u(lw+1)-u(lw)) 

      stest(nt)=stest(nt)*q/4./3.14159/trans(iw) 

 lwmin=lw 

c     calculate the sum of squared differences 

      diff=diff+(stest(nt)-s(i,nt))**2 

c     if diff is already greater than diffmin, go to next test value 

 if(diff.gt.diffmin)then 
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 goto 370 

 else 

 goto 380 

 endif 

 endif 

390   continue 

c     write WARNING statement if utest(nt) is greater than u range 

      write(6,302) k1,k2,nt,iw,jw,kw,radius(i),utest(nt) 

302   format('WARNING u range insufficient',6i5,2d12.5) 

380   continue 

c     find minimum difference 

 diffmin=diff 

 iwmin=iw 

 jwmin=jw 

 kwmin=kw 

      write(6,371)iw,jw,kw,RoverL(kw),u(jw+(iw-1)*90),diff,diffmin 

371   format(3i5,4d12.5) 

370   continue 

360   continue 

350   continue 

c     copy solution to effective parameters arrays 

      vL_eff((k1-1)*nreal+k2,i)=radius(i)/RoverL(kwmin) 

       T_eff((k1-1)*nreal+k2,i)=trans(iwmin) 

      vKB_eff((k1-1)*nreal+k2,i)=T_eff((k1-1)*nreal+k2,i) 

 &                       /vL_eff((k1-1)*nreal+k2,i)**2 

        S_eff((k1-1)*nreal+k2,i)=stor(jwmin) 

345   continue 

 endif 

c     calculate the effective parameters using the Double Inflection point method 

 if(ileak.eq.4) then 

      do 150 i=1,nobs 

 dsdtmax1(i)=0. 

 dsdtmax2(i)=0. 

 dsdtmax3(i)=0. 

 do 160 j=1,nstep-1 

c calculate the first derivative of the drawdown 

 dsdt(i,j)=(s(i,j+1)-s(i,j))/(tao(j+1)-tao(j)) 

 tao1(j)=(tao(j+1)+tao(j))/2. 

c     find maximum value of first derivative of the drawdown 

      if(dsdt(i,j).ge.dsdtmax1(i))then 

 dsdtmax1(i)=dsdt(i,j) 

 t1(i)=10**(tao1(j)) 

 endif 

160   continue 

      do 165 j=1,nstep-5 

c calculate the second derivative of the drawdown 

 ds2dt2(i,j)=(dsdt(i,j+4)-dsdt(i,j))/(tao1(j+4)-tao1(j)) 

 tao2(j)=(tao1(j+4)+tao1(j))/2. 

c     find maximum (positive) value of second derivative of the drawdown 
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      if(ds2dt2(i,j).ge.dsdtmax2(i))then 

 dsdtmax2(i)=ds2dt2(i,j) 

 jpos=j 

 t2(i)=10**(tao2(j)) 

 endif 

c     find maximum (negative) value of second derivative of the drawdown 

c write(7,*)i,j,ds2dt2(i,j),ds3dt3(i,j) 

      if(-ds2dt2(i,j).ge.dsdtmax3(i))then 

 dsdtmax3(i)=-ds2dt2(i,j) 

 jneg=j 

 t3(i)=10**(tao2(j)) 

  endif 

165   continue 

      do 166 j=1,nstep-9 

c calculate the third derivative of the drawdown 

 ds3dt3(i,j)=(ds2dt2(i,j+4)-ds2dt2(i,j))/(tao2(j+4)-tao2(j)) 

 tao3(j)=(tao2(j+4)+tao2(j))/2.    

166   continue 

 if(i.eq.29)write(6,*)k1,k2,i,log10(t2(i)),k1 

c     refine calculation of t2 

      do 167, j=jpos-4,jpos+4 

 if(ds3dt3(i,j)*ds3dt3(i,j+1).le.0) then 

 slope=(tao3(j+1)-tao3(j))/(ds3dt3(i,j+1)-ds3dt3(i,j)) 

c t2(i)=10**(tao3(j)+slope*(0.-ds3dt3(i,j))) 

 if(i.eq.29)write(6,*)k1,k2,i,log10(t2(i)) 

 endif 

167   continue 

c     refine calculation of t3 

      do 168, j=jneg-3,jneg+3 

 if(ds3dt3(i,j)*ds3dt3(i,j+1).le.0) then 

 slope=(tao3(j+1)-tao3(j))/(ds3dt3(i,j+1)-ds3dt3(i,j)) 

 endif 

168   continue 

 

c     calculate the effective leakance 

   rrr=t3(i)/t1(i)/2. 

 write(*,*)i,t1(i),t2(i),t3(i) 

 vL_eff((k1-1)*nreal+k2,i)= 

 &     (rrr**2-0.25)**2/rrr/(rrr**2+0.25)*radius(i) 

c     calculate the effective transmissivity 

 T_eff((k1-1)*nreal+k2,i)=q/2./3.14159/s(i,220)* 

 &    dbsk0(radius(i)/vL_eff((k1-1)*nreal+k2,i)) 

c     calculate the effective storativity 

 S_eff((k1-1)*nreal+k2,i)=2.*t1(i)*T_eff((k1-1)*nreal+k2,i)/ 

     &    radius(i)*vL_eff((k1-1)*nreal+k2,i) 

c     calculate the effective capacitance 

 vKB_eff((k1-1)*nreal+k2,i)=T_eff((k1-1)*nreal+k2,i)/ 

     & vL_eff((k1-1)*nreal+k2,i)**2 

150   continue 
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 write(12,11)k1,k2,(t1(ii),ii=1,nobs) 

 write(13,11)k1,k2,(t2(ii),ii=1,nobs) 

 write(18,11)k1,k2,(t3(ii),ii=1,nobs) 

 endif 

 

 write(19,11)k1,k2,(s(ii,220),ii=1,nobs) 

 write(7,11)k1,k2,(vL_eff((k1-1)*nreal+k2,i),i=1,nobs) 

 write(8,11)k1,k2,(T_eff((k1-1)*nreal+k2,i),i=1,nobs) 

 write(9,11)k1,k2,(S_eff((k1-1)*nreal+k2,i),i=1,nobs) 

 write(10,11)k1,k2,(vKB_eff((k1-1)*nreal+k2,i),i=1,nobs) 

11    format(2i5,29f16.9) 

22    continue 

             write(7,*) 

20    continue 

 

         goto 999 

 

c     calculate the CDF of the parameters 

c     for each run, the effective parameters (vL_eff, T_eff, S_eff,vKB_eff) are  

c     ranked in increasing order 

      do 100 k1=1,ngroup 

      do 110 k2=1,nreal 

 do 120 i=1,nobs 

 xcum1((k1-1)*nreal+k2,i)=9.99e+09 

 xcum2((k1-1)*nreal+k2,i)=9.99e+09 

 xcum3((k1-1)*nreal+k2,i)=9.99e+09 

 xcum4((k1-1)*nreal+k2,i)=9.99e+09 

      do 130 kk=1,nreal 

 if(xcum1((k1-1)*nreal+k2,i).ge.vL_eff(kk+(k1-1)*nreal,i))then 

 xcum1((k1-1)*nreal+k2,i)=vL_eff(kk+(k1-1)*nreal,i) 

 min1=kk 

 endif 

 if(xcum2((k1-1)*nreal+k2,i).ge.T_eff(kk+(k1-1)*nreal,i))then 

 xcum2((k1-1)*nreal+k2,i)=T_eff(kk+(k1-1)*nreal,i) 

 min2=kk 

 endif 

 if(xcum3((k1-1)*nreal+k2,i).ge.S_eff(kk+(k1-1)*nreal,i))then 

 xcum3((k1-1)*nreal+k2,i)=S_eff(kk+(k1-1)*nreal,i) 

 min3=kk 

 endif 

 if(xcum4((k1-1)*nreal+k2,i).ge.vKB_eff(kk+(k1-1)*nreal,i))then 

 xcum4((k1-1)*nreal+k2,i)=vKB_eff(kk+(k1-1)*nreal,i) 

 min4=kk 

 endif 

130   continue 

 vL_eff(min1+(k1-1)*nreal,i)=9.99e+09 

 T_eff(min2+(k1-1)*nreal,i)=9.99e+09 

 S_eff(min3+(k1-1)*nreal,i)=9.99e+09 

 vKB_eff(min4+(k1-1)*nreal,i)=9.99e+09 
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120   continue 

110   continue 

100   continue 

c     calculate the pdf function of time 

c     define the bin ranges 

      do 200 i=1,nbin+1 

 bin1(i)=xmin1+float(i-1)*(xmax1-xmin1)/float(nbin) 

 bin2(i)=xmin2+float(i-1)*(xmax2-xmin2)/float(nbin) 

 bin3(i)=xmin3+float(i-1)*(xmax3-xmin3)/float(nbin) 

 bin4(i)=xmin4+float(i-1)*(xmax4-xmin4)/float(nbin) 

200   continue 

 do 210 k1=1,ngroup 

      do 220 k2=1,nreal 

 do 230 i=1,nobs 

 do 240 m=1,nbin 

 if(xcum1(k2+(k1-1)*nreal,i).ge.bin1(m).and. 

     &   xcum1(k2+(k1-1)*nreal,i).lt.bin1(m+1))then 

 xpdf1(m+(k1-1)*nbin,i)=xpdf1(m+(k1-1)*nbin,i)+1./float(nreal) 

 &/((xmax1-xmin1)/float(nbin)) 

 endif 

 if(xcum2(k2+(k1-1)*nreal,i).ge.bin2(m).and. 

     &   xcum2(k2+(k1-1)*nreal,i).lt.bin2(m+1))then 

 xpdf2(m+(k1-1)*nbin,i)=xpdf2(m+(k1-1)*nbin,i)+1./float(nreal) 

 &/((xmax2-xmin2)/float(nbin)) 

 endif 

 if(xcum3(k2+(k1-1)*nreal,i).ge.bin3(m).and. 

     &   xcum3(k2+(k1-1)*nreal,i).lt.bin3(m+1))then 

 xpdf3(m+(k1-1)*nbin,i)=xpdf3(m+(k1-1)*nbin,i)+1./float(nreal) 

 &/((xmax3-xmin3)/float(nbin)) 

 endif 

 if(xcum4(k2+(k1-1)*nreal,i).ge.bin4(m).and. 

     &   xcum4(k2+(k1-1)*nreal,i).lt.bin4(m+1))then 

 xpdf4(m+(k1-1)*nbin,i)=xpdf4(m+(k1-1)*nbin,i)+1./float(nreal) 

 &/((xmax4-xmin4)/float(nbin)) 

 endif 

240   continue 

c     check whether any values are greater than the max of the bin ranges 

 if(xcum1(k2+(k1-1)*nreal,i).ge.bin1(nbin+1))then 

 xpdf1(nbin+(k1-1)*nbin,i)=xpdf1(nbin+(k1-1)*nbin,i)+ 

 &  1./float(nreal)/((xmax1-xmin1)/float(nbin)) 

 endif 

 if(xcum2(k2+(k1-1)*nreal,i).ge.bin2(nbin+1))then 

 xpdf2(nbin+(k1-1)*nbin,i)=xpdf2(nbin+(k1-1)*nbin,i)+ 

 &  1./float(nreal)/((xmax2-xmin2)/float(nbin)) 

 endif 

 if(xcum3(k2+(k1-1)*nreal,i).ge.bin3(nbin+1))then 

 xpdf3(nbin+(k1-1)*nbin,i)=xpdf3(nbin+(k1-1)*nbin,i)+ 

 &  1./float(nreal)/((xmax3-xmin3)/float(nbin)) 

 endif 
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 if(xcum4(k2+(k1-1)*nreal,i).ge.bin4(nbin+1))then 

 xpdf4(nbin+(k1-1)*nbin,i)=xpdf4(nbin+(k1-1)*nbin,i)+ 

 &  1./float(nreal)/((xmax4-xmin4)/float(nbin)) 

 endif 

230   continue  

220   continue  

210   continue  

c     write the cdf  

      do 280 k1=1,ngroup 

 do 285 k2=1,nreal 

 write(16,8)k1,k2,(xcum2(k2+(k1-1)*nreal,i),i=1,nobs) 

8     format(2i5,29f12.6) 

285   continue 

c     write the pdf  

      do 290 m=1,nbin 

 write(17,9)k1,(bin2(m)+bin2(m+1))/2., 

 &          (xpdf2(m+(k1-1)*nbin,i),i=1,nobs) 

9     format(i5,30f12.6) 

290   continue 

280   continue 

999   stop 

      end 

 

 subroutine walton(u,wellfunc,RoverL) 

c     calculates the  leaky well function 

 implicit double precision (a-g,o-z) 

      dimension u(11*90),RoverL(194),func(11*90,194),wellfunc(11*90,194) 

 open(3,file='sub.out',status='unknown') 

 

c     define the r/L values from 0.001 to 14.9   

 do 10 k=1,194 

 if (k.le.18) RoverL(k)=0.001+0.0005*float(k-1) 

 if (k.ge.19.and.k.le.36) RoverL(k)=0.01+0.005*float(k-19) 

 if (k.ge.37.and.k.le.54) RoverL(k)=0.1+0.05*float(k-37) 

 if (k.ge.55) RoverL(k)=1.+0.1*float(k-55) 

 write(3,*)k,RoverL(k) 

10    continue 

 

c     define the u=r^2S/4tT values from 1e-8 to 1e+3   

 do 20 i=1,11 

 do 30 j=1,90 

 u(j+(i-1)*90)=(0.9+0.1*float(j))*10**(float(i-9)) 

 write(3,*)i,j,j+(i-1)*90,u(j+(i-1)*90) 

30    continue 

20    continue 

c     calculate the function (appearing in the integration) for u values from 1e-3 to 1e+11 

  do 40 k=1,194 

 do 50 i=1,11 

 do 60 j=1,90 
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 y=u(j+(i-1)*90) 

 func(j+(i-1)*90,k)=1./y*exp(-y-RoverL(k)**2/4./y) 

c write(3,*)k,i,j,j+(i-1)*90,u(j+(i-1)*90),func(j+(i-1)*90,k) 

60    continue 

50    continue 

c     calculate the well function for u values from 1e-8 to 1e+03 

c     or 1/u 1e-03 to 1e+8 

      do 70 i=11,1,-1 

 do 80 j=90,1,-1 

      if(i.eq.11.and.j.eq.90) goto 80 

c     calculate integral using Trapezoid Rule 

 u_ave=0.5*(u(j+(i-1)*90+1)+u(j+(i-1)*90)) 

 func_ave=1./u_ave*exp(-u_ave-RoverL(k)**2/4./u_ave) 

 wellfunc(j+(i-1)*90,k)=wellfunc(j+(i-1)*90+1,k)+ 

 &  (func(j+(i-1)*90,k)+4.*func_ave+func(j+(i-1)*90+1,k))* 

     &  (u(j+(i-1)*90+1)-u(j+(i-1)*90))/6. 

 if(k.eq.37.or.k.eq.55)write(3,1)k,u(j+(i-1)*90), 

     &    func(j+(i-1)*90,k),wellfunc(j+(i-1)*90,k) 

1     format(i5,3d12.5) 

80    continue 

70    continue 

40    continue 

 return 

 end 
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APPENDIX F: PROGRAM FOR THE APPLICATION OF CD-

CONFINED METHOD ANALYSIS TO THE SYNTHETIC DATA 

 

 

c      Calculates the apparent transmissivity and storativity as a function of time 

c      using the method of derivatives (CD-confined Method) for: 

c      CONFINED aquifers (iaquifer=1) 

c ******************************** 

 implicit double precision (a-h,o-z) 

      parameter(nreal=7,ngroup=1,nobs=2,nsim=nreal*ngroup,nstep=300, 

     &  q=2.,h0=20.,iaquifer=1,nwellf=17*1000) 

c   iaquifer=1  Confined Aquifers  

      dimension h(nobs,nstep),s(nobs,nstep),radius(nobs) 

      dimension time(nstep),tao(nstep),t_ave(nstep)       

      dimension u(nwellf),wellfunc(nwellf) 

      dimension trans(nobs,nstep),stor(nobs,nstep),diffus(nobs,nstep) 

      dimension t(481,481),tweight(nreal,240),tlweight(nreal,240) 

      dimension tmean1(240),tmean2(240),torder(nreal,240) 

      dimension t_cj(nobs),t_cj2(nobs),s_cj(nobs),s_cj2(nobs) 

      dimension dist0(4),t_scat(4) 

 

      character filein*10,  casenum*2, runnum(nreal)*8  

      character filein2*10, runsim(nreal)*8 

c input/output file names: 

      open(4,file='dummy',status='old') 

      open(14,file='file.nam',status='old') 

      open(5,file='time.txt',status='old') 

      open(6,file='temp.out',status='unknown') 

      open(7,file='parameters1.out',status='unknown') 

      open(8,file='parameters2.out',status='unknown') 

      open(9,file='parameters3.out',status='unknown') 

      open(11,file='wellfunc.out',status='unknown') 

      open(17,file='scatter.out',status='unknown') 

      open(18,file='cj.out',status='unknown') 

      open(19,file='sss.out',status='unknown') 

      open(3,file='dummy2',status='old') 

      open(12,file='effect.out',status='unknown') 

      open(13,file='quartiles.out',status='unknown') 

 

c      Define the distance from observation point to pumping well 

       do 12 i=1,nobs 

 if(i.eq.1)radius(i)=0.2 

 if(i.eq.2)radius(i)=1. 

 if(i.ge.3.and.i.le.33)radius(i)=radius(i-1)+1. 

 if(i.ge.34.and.i.le.49)radius(i)=radius(i-1)+2. 

 if(i.ge.50.and.i.le.65)radius(i)=radius(i-1)+4. 

12    continue 
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c read head data 

      do 15 j=1,nstep 

      read(5,*)time(j) 

      tao(j)=log10(time(j)) 

15    continue 

      do 20 k1=1,ngroup 

      read(14,'(a2)') casenum 

      do 22 k2=1,nreal 

      if(k1.eq.1) read(4,'(a8)') runnum(k2) 

      filein(1:2)=casenum 

      filein(3:10)=runnum(k2) 

      write(*,3)filein 

3     format(1x,a10) 

c      i=k2+nreal*(k1-1) 

      open(15,file=filein,status='old') 

      do 30 j=1,nstep 

      read(15,4)nt,(h(i,j),i=1,nobs)    

 

4     format(i5,65f12.7) 

      do 31, i=1,nobs 

 s(i,j)=h0-h(i,j) 

31    continue 

30    continue 

 

      if(k1.eq.1) read(3,'(a8)') runsim(k2) 

      filein2(1:2)=casenum 

      filein2(3:10)=runsim(k2) 

      write(*,3)filein2 

      open(16,file=filein2,status='old') 

      do 32 i=1,481 

      read(16,5)(t(i,j),j=1,481)    

5   format(10f10.6) 

32 continue 

 

c     calculate the effective transmissivity weighted average of the point transmissivity 

values 

      do 33 ii=1,240 

 tweight(k2,ii)=0. 

 weight=0.0 

 sumweigh=0.0 

      do 34 i=241-ii,241+ii 

      do 35 j=241-ii,241+ii 

 dist=sqrt((float(i-241))**2+(float(j-241))**2) 

 if(dist.le.0.01)dist=0.25 

 if(dist.gt.0.01.and.dist.le.float(ii)) then 

c weight=1./dist**2 

 weight=1 

 tlweight(k2,ii)=tlweight(k2,ii)+log(t(i,j))*weight 

 tweight(k2,ii)=tweight(k2,ii)+t(i,j)*weight 
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 sumweigh=sumweigh+weight 

 endif 

35    continue 

34    continue 

 tlweight(k2,ii)=tlweight(k2,ii)/sumweigh 

 tweight(k2,ii)=tweight(k2,ii)/sumweigh 

 write(12,6)float(ii),t(241,241+ii),tweight(k2,ii), 

     &           exp(tlweight(k2,ii)),sumweigh 

6      format(20f12.4) 

33    continue 

  

c **************************************** 

c     calculate the flow parameters using  

c     CD-confined method for Confined aquifers (iaquifer=1), 

 

789      if(iaquifer.eq.1)then 

 

c     calculate the  well function (once only) 

      if(k1.eq.1.and.k2.eq.1)then 

 call Well(u,wellfunc) 

 do 320 iw=1,nwellf 

 write(11,301) iw,u(iw),wellfunc(iw),wellfunc(iw)*exp(u(iw)) 

320   continue 

301   format(i5,3d15.8) 

      endif 

  write(*,*)"wellfunction computed" 

      do 70 i=1,nobs 

c     calculate T_cj(i) and S_cj(i) using the Cooper-Jacob  method  

      slope=(s(i,186)-s(i,130))/(tao(186)-tao(130)) 

 t_cj(i)=2.302*2./(4.*3.14159*slope) 

 abc=s(i,186)*4*3.14159*t_cj(i)/2.302/2. 

 s_cj(i)=2.25*t_cj(i)*time(186)/radius(i)**2/10**(abc) 

      slope=(s(i,201)-s(i,198))/(tao(201)-tao(198)) 

 t_cj2(i)=2.302*2./(4.*3.14159*slope) 

 abc=s(i,201)*4*3.14159*t_cj2(i)/2.302/2. 

 s_cj2(i)=2.25*t_cj2(i)*time(201)/radius(i)**2/10**(abc) 

      do 75 j=1,nstep-1 

c     initialize solution arrays 

      diffus(i,j)=-9. 

      trans(i,j)=-9. 

      stor(i,j)=-9. 

 www=0. 

c     calculate drawdown rate 

      ds=(s(i,j+1)-s(i,j))/(tao(j+1)-tao(j)) 

c     calculate time and drawdown at the center of the time interval 

 t_ave(j)=0.5*(tao(j+1)+tao(j)) 

 s_ave=0.5*(s(i,j+1)+s(i,j)) 

 u_ave=radius(i)**2*0.0001/4/10**(t_ave(j)) 
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c     the method is not applicable to very small t because the numerical and Theis solutions 

are not identical 

      if(u_ave.gt.100) goto 75 

      if(ds.ge.0.0000001)then 

 www=log(10.)*s_ave/ds 

 if(i.eq.2)write(19,*)j,www 

 do 81 k=1,nwellf 

c do 81 k=1,nwellf-1000 

 x1=wellfunc(k)*exp(u(k)) 

 x2=wellfunc(k+1)*exp(u(k+1)) 

 if(www.le.x1.and.www.gt.x2) then 

c     interpolate 

 slope=(u(k+1)-u(k))/(x2-x1) 

 u0=u(k)+slope*(www-x1) 

 slope=(wellfunc(k+1)-wellfunc(k))/(x2-x1) 

 well0=wellfunc(k)+slope*(www-x1) 

c     calculate diffusivity 

      diffus(i,j)=radius(i)**2/4./10**(t_ave(j))/u0 

c     calculate transmissivity 

      trans(i,j)=q*well0/4/3.14159/s_ave 

c     calculate storativity 

      stor(i,j)=trans(i,j)/diffus(i,j) 

 goto 80 

      endif 

 

81    continue 

 endif 

80 continue 

75    continue 

70    continue 

 

 do 84, i=1,nobs 

  write(18,11)k1,k2,radius(i),t_cj(i),t_cj2(i),s_cj(i),s_cj2(i) 

84    continue 

      do 85 j=1,nstep-1 

    write(7,11)k1,k2,10**(T_ave(j)), 

     &    radius(1),Trans(1,j), 

     &    radius(2),Trans(2,j) 

    write(8,11)k1,k2,10**(T_ave(j)), 

     &    radius(1),stor(1,j), 

     &    radius(2),stor(2,j)  

    write(9,21)k1,k2,10**(T_ave(j)), 

     &    radius(1),diffus(1,j), 

     &    radius(2),diffus(2,j) 

 if(trans(2,j).le.0.or.trans(2,j+1).le.0) goto 85 

 dist1=sqrt(4.*0.6*10**(T_ave(j))*Trans(2,j)/0.0001)  

 dist2=sqrt(4.*0.6*10**(T_ave(j+1))*Trans(2,j+1)/0.0001)  

c define location (r/I) for scatter plots of t_est and t_geom 

 dist0(1)=8. 
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 dist0(2)=16. 

 dist0(3)=32. 

 dist0(4)=64. 

 do 86 nn=1,4 

 if(dist0(nn).ge.dist1.and.dist0(nn).le.dist2)then 

 slope=(trans(2,j+1)-trans(2,j))/(dist2-dist1) 

 t_scat(nn)=trans(2,j)+slope*(dist0(nn)-dist1) 

 endif 

86    continue 

 

85    continue 

 write(17,11)k1,k2,t_scat(1),exp(tlweight(k2,8)), 

     &t_scat(2),exp(tlweight(k2,16)), 

     &t_scat(3),exp(tlweight(k2,32)), 

     &t_scat(4),exp(tlweight(k2,64)) 

       

11    format(2i5,66f16.9) 

21    format(2i5,66e16.9) 

   endif 

22    continue 

      write(7,*) 

20    continue 

 

c     order the transmissivity estimates to compute mean and upper/lower quartiles  

 

 do 169 m1=1,nreal 

  write(13,170)(tlweight(m1,ii),ii=1,240) 

169   continue 

 

c     order the weighted transmissivity data 

 do 166 ii=1,240 

      do 167 m1=1,nreal 

      torder(m1,ii)=+999. 

 do 168 m2=1,nreal 

 if(m1.eq.1)then 

 tmean1(ii)=tmean1(ii)+exp(tlweight(m2,ii))/float(nreal) 

 tmean2(ii)=tmean2(ii)+tlweight(m2,ii)/float(nreal) 

 endif 

      if(torder(m1,ii).gt.tlweight(m2,ii)) then 

      torder(m1,ii)=tlweight(m2,ii) 

 imin=m2 

      endif 

168    continue 

 tlweight(imin,ii)=+9999. 

167    continue 

166    continue 

 

 write(13,170)(torder(100,ii),ii=1,240) 

 write(13,170)(torder(250,ii),ii=1,240) 
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 write(13,170)(tmean1(ii),ii=1,240) 

 write(13,170)(tmean2(ii),ii=1,240) 

 write(13,170)(torder(500,ii),ii=1,240) 

 write(13,170)(torder(750,ii),ii=1,240) 

 write(13,170)(torder(900,ii),ii=1,240) 

170   format(240f10.4) 

 

999   stop 

      end 

  

  subroutine Well(u,wellfunc) 

c     calculates the  well function 

 implicit double precision (a-g,o-z) 

      parameter (nwellf=17*1000) 

 dimension u(nwellf),ulog(nwellf),func(nwellf),wellfunc(nwellf) 

 

 

c     define the u=r^2S/4tT values from 1e-15 to 1e+2   

      ulog(1)=-15 

 u(1)=10**(ulog(1)) 

 do 20 i=2,nwellf 

 ulog(i)=ulog(i-1)+0.001 

 u(i)=10**(ulog(i)) 

20    continue 

c     calculate the function (appearing in the integration) for u values from 1e-15 to 1e+2 

 do 50 i=1,nwellf 

 func(i)=exp(-u(i))/u(i) 

50    continue 

c     calculate the well function for u values from 1e-15 to 1e+2 

c     or 1/u 1e-02 to 1e+15 

      do 70 i=nwellf,1,-1 

      if(i.eq.nwellf) goto 70 

c     calculate integral using Trapezoid Rule 

 wellfunc(i)=wellfunc(i+1)+0.5*(func(i)+func(i+1))*(u(i+1)-u(i)) 

70    continue 

 return 

 end 
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APPENDIX G: PROGRAM FOR THE APPLICATION OF CD-

CONFINED METHOD AND COOPER-JACOB METHOD ANALYSIS 

TO THE FIELD DATA 

 

 

c      Calculates the apparent transmissivity and storativity as a function of time 

c      using the method of derivatives (CD-Confined Method) for: 

c      CONFINED aquifers (iaquifer=1) 

c ******************************** 

 implicit double precision (a-h,o-z) 

      parameter(nreal=1,nstep0=1000,iaquifer=1,nwellf=17*1000,nm0=10) 

c   iaquifer=1  Confined Aquifers  

      dimension s(nm0,nstep0),dsdt(nm0,nstep0) 

      dimension time(nstep0),tao(nstep0)        

      dimension u(nwellf),wellfunc(nwellf) 

      dimension trans(nm0,nstep0),stor(nm0,nstep0),diffus(nm0,nstep0), 

 &          dist(nm0,nstep0) 

       dimension t_cj(nm0),s_cj(nm0) 

        character title*60 

 

c input/output file names: 

      open(4,file='drawdown.dat',status='old') 

      open(7,file='parameters.out',status='unknown') 

      open(11,file='wellfunc.out',status='unknown') 

      open(18,file='cj.out',status='unknown') 

 

c read drawdown data 

      do 10 i=1,nreal 

      read(4,'(a60)')title 

      read(4,*) nm1,nm2,nstep,q,radius 

 do 15 j=1,nstep 

      read(4,*)time(j),(s(i,j),i=1,nm1),(dsdt(i,j),i=1,nm2) 

        tao(j)=log10(time(j)) 

15    continue 

10    continue 

 

c **************************************** 

c     calculate the flow parameters using  

c     CD-Confined for Confined aquifers (iaquifer=1), 

 

789      if(iaquifer.eq.1)then 

c     calculate the  well function (once only) 

 call Well(u,wellfunc) 

 do 320 iw=1,nwellf 

 write(11,301) iw,u(iw),wellfunc(iw),wellfunc(iw)*exp(u(iw)) 

320   continue 

301   format(i5,3d15.8) 
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  write(*,*)"wellfunction computed" 

c     calculate T_cj(i) and S_cj(i) using the Cooper-Jacob  method  

      do 70 i=1,nm1 

 slope=(s(i,200)-s(i,30))/(tao(200)-tao(30)) 

 t_cj(i)=2.302*q/(4.*3.14159*slope) 

 abc=s(i,200)*4*3.14159*t_cj(i)/2.302/q 

 s_cj(i)=2.25*t_cj(i)*time(200)/radius**2/10**(abc) 

  write(18,11)i,radius,t_cj(i),s_cj(i) 

70    continue 

       

        do 75 j=1,nstep 

        write(*,*)j 

c     initialize solution arrays 

      do 76 i=1,nm1 

      diffus(i,j)=-9. 

      trans(i,j)=-9. 

      stor(i,j)=-9. 

 www=0. 

 

 k=1 

 www=log(10.)*s(i,j)/dsdt(k,j) 

 do 81 k=1,nwellf 

 x1=wellfunc(k)*exp(u(k)) 

 x2=wellfunc(k+1)*exp(u(k+1)) 

 if(www.le.x1.and.www.gt.x2) then 

c     interpolate 

 slope=(u(k+1)-u(k))/(x2-x1) 

 u0=u(k)+slope*(www-x1) 

 slope=(wellfunc(k+1)-wellfunc(k))/(x2-x1) 

 well0=wellfunc(k)+slope*(www-x1) 

c     calculate diffusivity 

      diffus(i,j)=radius**2/4./10**(time(j))/u0 

c     calculate transmissivity 

      trans(i,j)=q*well0/4/3.14159/s(i,j) 

c     calculate storativity 

      stor(i,j)=trans(i,j)/diffus(i,j) 

      write(7,11)j,radius,time(j),dist(i,j),Trans(i,j),stor(i,j), 

     &           diffus(i,j) 

 goto 76 

 endif 

 

81    continue 

76 continue 

75 continue 

 

 do 84, i=1,nm1 

  write(18,11)i,radius,t_cj(i),s_cj(i) 

      do 85 j=1,nstep 

 if(trans(i,j).le.0) goto 85 
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 dist(i,j)=sqrt(4.*time(j)*Trans(i,j)/1.65/stor(i,j))  

      write(7,11)j,radius,time(j),dist(i,j),Trans(i,j),stor(i,j), 

     &           diffus(i,j) 

85    continue 

84    continue 

 

11    format(i5,66f16.9) 

 endif 

 

999   stop 

      end 

  

  subroutine Well(u,wellfunc) 

c     calculates the  well function 

      implicit double precision (a-g,o-z) 

      parameter (nwellf=17*1000) 

 dimension u(nwellf),ulog(nwellf),func(nwellf),wellfunc(nwellf) 

 

c     define the u=r^2S/4tT values from 1e-15 to 1e+2   

      ulog(1)=-15 

      u(1)=10**(ulog(1)) 

         do 20 i=2,nwellf 

      ulog(i)=ulog(i-1)+0.001 

      u(i)=10**(ulog(i)) 

20    continue 

c     calculate the function (appearing in the integration) for u values from 1e-15 to 1e+2 

 do 50 i=1,nwellf 

 func(i)=exp(-u(i))/u(i) 

50    continue 

c     calculate the well function for u values from 1e-15 to 1e+2 

c     or 1/u 1e-02 to 1e+15 

      do 70 i=nwellf,1,-1 

      if(i.eq.nwellf) goto 70 

c     calculate integral using Trapezoid Rule 

 wellfunc(i)=wellfunc(i+1)+0.5*(func(i)+func(i+1))*(u(i+1)-u(i)) 

70    continue 

 return 

 end 
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APPENDIX H: PROGRAM FOR THE APPLICATION OF DIP 

METHOD ANALYSIS TO THE FIELD DATA 

 

 

c      Calculates the apparent transmissivity and storativity as a function of time using: 

c      the method of derivatives (CD method) for CONFINED aquifers (iaquifer=1) 

c      the DIP method for LEAKY aquifers (iaquifer=2) 

c ******************************** 

 implicit double precision (a-h,o-z) 

      parameter(nstep0=1000,iaquifer=2,nwellf=17*1000,nm0=10) 

c   iaquifer=1  Confined Aquifers 

c   iaquifer=2  Leaky Aquifers DIP method 

      dimension s(nm0,nstep0),dsdt(nm0,nstep0),ds2dt2(nm0,nstep0) 

      dimension time(nstep0),tao(nstep0)  

      dimension u(nwellf),wellfunc(nwellf) 

      dimension trans(nm0,nstep0),stor(nm0,nstep0),diffus(nm0,nstep0), 

 &          dist(nm0,nstep0),nstep(nm0) 

      dimension t_cj(nm0),s_cj(nm0) 

 character title*60 

 

c input/output file names: 

      open(4,file='drawdown.dat',status='old') 

      open(7,file='parameters.out',status='unknown') 

      open(11,file='wellfunc.out',status='unknown') 

      open(16,file='dipm.out',status='unknown') 

      open(18,file='cj.out',status='unknown') 

 

c read drawdown data       

      read(4,*) nm 

 do 13 ii=1,nm 

 if(iaquifer.eq.1) then 

      read(4,'(a60)')title 

      read(4,*) nm1,nstep(ii),q,radius 

 radius=radius*0.3048 

 q=q*0.3048**3 

 do 15 j=1,nstep(ii) 

      read(4,*)tao(j),(s(i,j),i=1,nm1),(dsdt(i,j),i=1,nm1) 

 do 16 i=1,nm1 

 s(i,j)= s(i,j)*0.3048 

 dsdt(i,j)=dsdt(i,j)*0.3048 

16    continue 

        time(j)=10**(tao(j)) 

15    continue 

 Endif 

 

 if(iaquifer.eq.2) then 

      read(4,'(a60)')title 
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      read(4,*) nm1,nstep(ii),q,radius 

 radius=radius*0.3048 

 q=q*0.3048**3 

 do 25 j=1,nstep(ii) 

      read(4,*)tao(j),(s(i,j),i=1,nm1),(dsdt(i,j),i=1,nm1), 

     & (ds2dt2(i,j),i=1,nm1) 

 do 26 i=1,nm1 

 s(i,j)=s(i,j)*0.3048 

 dsdt(i,j)=dsdt(i,j)*0.3048 

 ds2dt2(i,j)=ds2dt2(i,j)*0.3048 

26    continue 

        time(j)=10**(tao(j)) 

 

25    continue 

 endif 

c **************************************** 

c     calculate the flow parameters using  

c     CD-Confined method (iaquifer=1), 

 

789      if(iaquifer.eq.1)then 

c     calculate the  well function (once only) 

 call Well(u,wellfunc) 

 do 320 iw=1,nwellf 

 write(11,301) iw,u(iw),wellfunc(iw),wellfunc(iw)*exp(u(iw)) 

320   continue 

301   format(i5,3d15.8) 

  

  write(*,*)"wellfunction computed" 

 

c     calculate T_cj(i) and S_cj(i) using the Cooper-Jacob  method  

      do 70 i=1,nm1 

 slope=(s(i,500)-s(i,150))/(tao(500)-tao(150)) 

 t_cj(i)=2.302*q/(4.*3.14159*slope) 

 abc=s(i,500)*4*3.14159*t_cj(i)/2.302/q 

 s_cj(i)=2.25*t_cj(i)*time(500)/radius**2/10**(abc) 

  write(18,11)i,radius,t_cj(i),s_cj(i) 

70    continue 

       

 do 75 j=1,nstep(ii) 

 write(*,*)j 

c     initialize solution arrays 

      do 76 i=1,nm1 

      diffus(i,j)=-9. 

      trans(i,j)=-9. 

      stor(i,j)=-9. 

 www=0. 

 

 k=1 

 www=log(10.)*s(i,j)/dsdt(k,j) 
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 do 81 k=1,nwellf 

c do 81 k=1,nwellf-1000 

 x1=wellfunc(k)*exp(u(k)) 

 x2=wellfunc(k+1)*exp(u(k+1)) 

 

 if(www.le.x1.and.www.gt.x2) then 

c     interpolate 

 slope=(u(k+1)-u(k))/(x2-x1) 

 u0=u(k)+slope*(www-x1) 

 slope=(wellfunc(k+1)-wellfunc(k))/(x2-x1) 

 well0=wellfunc(k)+slope*(www-x1) 

c    calculate diffusivity 

      diffus(i,j)=radius**2/4./time(j)/u0 

c     calculate transmissivity 

      trans(i,j)=q*well0/4/3.14159/s(i,j) 

c     calculate storativity 

      stor(i,j)=trans(i,j)/diffus(i,j) 

 goto 76 

 endif 

 

81       continue 

76 continue 

75 continue 

 

 do 84, i=1,nm1 

  write(18,11)i,radius,t_cj(i),s_cj(i) 

      do 85 j=1,nstep(ii) 

 if(trans(i,j).le.0) goto 85 

 dist(i,j)=sqrt(4.*time(j)*Trans(i,j)/1.65/stor(i,j))  

      write(7,11)j,radius,time(j),dist(i,j), 

     &  Trans(i,j),stor(i,j),diffus(i,j) 

85    continue 

84    continue 

 

11 format(i5,66e18.7) 

 endif 

  

c     calculate the flow parameters using the DIP method (iaquifer=2), 

 

      if(iaquifer.eq.2) then 

 

 do 210 i=1,nm1 

 dsdtmax1=0. 

 dsdtmax2=0. 

 dsdtmax3=0. 

 do 220 j=1,nstep(ii) 

  

c     find maximum value of first derivative of the drawdown 

      if(dsdt(i,j).ge.dsdtmax1)then 
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 dsdtmax1=dsdt(i,j) 

 t1=time(j) 

 endif 

c     find maximum (positive) value of second derivative of the drawdown 

      if(ds2dt2(i,j).ge.dsdtmax2)then 

 dsdtmax2=ds2dt2(i,j) 

 jpos=j 

 t2=time(j) 

 endif 

c     find maximum (negative) value of second derivative of the drawdown 

      if(-ds2dt2(i,j).ge.dsdtmax3)then 

 dsdtmax3=-ds2dt2(i,j) 

 jneg=j 

 t3=time(j) 

  endif 

 

 220  continue 

 

c     calculate the effective leakance using ts2 

      rrr2=t2/t1/2. 

 vL_eff2=(rrr2**2-0.25)**2/rrr2/(rrr2**2+0.25)*radius 

c     calculate the effective transmissivity 

 T_eff2=q/2./3.14159/s(i,502)*dbsk0(radius/vL_eff2) 

c     calculate the effective storativity 

 S_eff2=2.*t1*T_eff2/radius/vL_eff2 

c     calculate the effective vertical conductance 

 vKB_eff2=T_eff2/vL_eff2**2 

  

c     calculate the effective leakance using ts3 

      rrr3=t3/t1/2. 

 vL_eff3=(rrr3**2-0.25)**2/rrr3/(rrr3**2+0.25)*radius 

c     calculate the effective transmissivity 

 T_eff3=q/2./3.14159/s(i,502)*dbsk0(radius/vL_eff3) 

c     calculate the effective storativity 

 S_eff3=2.*t1*T_eff3/radius/vL_eff3 

c     calculate the effective vertical conductance 

 vKB_eff3=T_eff3/vL_eff3**2 

 

c     write the results obtained using ts2 and ts3 

      write(16,230)ii,i,vL_eff2,T_eff2,S_eff2,vKB_eff2, 

     & vL_eff3,T_eff3,S_eff3,vKB_eff3 

 230  format(2i5,10e14.7) 

 

 210  continue 

 

 Endif 

 

 13   continue 

999   stop 
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      end 

  

  subroutine Well(u,wellfunc) 

c     calculates the  well function 

      implicit double precision (a-g,o-z) 

      parameter (nwellf=17*1000) 

      dimension u(nwellf),ulog(nwellf),func(nwellf),wellfunc(nwellf) 

 

c     define the u=r^2S/4tT values from 1e-15 to 1e+2   

      ulog(1)=-15 

 u(1)=10**(ulog(1)) 

 do 20 i=2,nwellf 

 ulog(i)=ulog(i-1)+0.001 

 u(i)=10**(ulog(i)) 

20    continue 

c     calculate the function (appearing in the integration) for u values from 1e-15 to 1e+2 

 do 50 i=1,nwellf 

 func(i)=exp(-u(i))/u(i) 

50    continue 

c     calculate the well function for u values from 1e-15 to 1e+2 

c     or 1/u 1e-02 to 1e+15 

      do 70 i=nwellf,1,-1 

      if(i.eq.nwellf) goto 70 

 u_ave=0.5*(u(i+1)+u(i)) 

 func_ave=1./u_ave*exp(-u_ave) 

 wellfunc(i)=wellfunc(i+1)+(func(i)+4.*func_ave+func(i+1))* 

 *   (u(i+1)-u(i))/6. 

70    continue 

 return 

 end 

 

 

 

 

 

 

 

 

 


