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PREDICTION OF AQUATIC TOXICITY OF PESTICIDES BY USING 

LINEAR AND NONLINEAR TECHNIQUES 

 

 

Economical and environmental considerations for assessing toxicity of chemicals have 

led to a considerable amount of studies on the computational techniques. Pesticides allocate a 

significant part in these chemicals, mainly for their toxic effects on nontarget organisms. In the 

present study, the toxicities of 91 organic compounds including pesticides to freshwater algae, 

Chlorella vulgaris; and the toxicities of a set of 34 pesticides to Oncorhynchus mykiss were 

modeled employing Counter Propagation Neural Network (CPNN) and Multiple Linear 

Regression (MLR). The analyses were performed with about 1500 descriptors calculated using 

Dragon 5.4, Spartan 06, and Codessa 2.2 software. Additionally, we used the Characteristic 

Root Index (CRI) which was proved to be a significant descriptor in previous QSPR/QSTR 

studies. Descriptor selection was made by Heuristic Method. Kohonen network was used for 

splitting the data set into training and test sets. Linear and nonlinear 3, 4 and 5-descriptor 

models were compared according to their statistics such as squared correlation coefficient and 

Root Mean Squared Error (RMSE). All models were validated externally by using test sets. 

BLTD48 from Dragon, electrophilicity from Spartan, and the CRI appeared to be significant 

for the developed QSTR models of Chlorella vulgaris. Oncorhynchus mykiss model 

underscores the Dragon descriptors. The statistical quality of the models for Chlorella vulgaris 

is compared to those of the previously published models using the same experimental data and 

found to be superior to those models. Oncorhynchus mykiss models are compared to literature 

models in terms of chemical classes, mechanism of action, and statistical tools and fits. Linear 

and nonlinear methods were found to be comparable for both species.  
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LİNEER VE LİNEER OLMAYAN YÖNTEMLERLE PESTİSİTLERİN 

SUDAKİ TOKSİSİTELERİNİN TAHMİN EDİLMESİ 

 

 

Ekonomik ve çevresel faktörler kimyasalların toksisitelerinin belirlenmesi konusundaki 

çalışmaların büyük bir çoğunluğunu hesaplama yöntemlerine yöneltmiştir. Pestisitler, hedef 

olmayan canlılar üzerindeki zararlı etkileri nedeniyle, kimyasallar içinde önemli bir yer 

tutarlar. Bu çalışmada, pestisit de içeren 91 organik kimyasalın tatlı su algi Chlorella 

vulgaris’e ve 34 pestisitin Oncorhynchus mykiss’e olan toksisiteleri Counter Propagation 

Neural Network (CPNN) ve Çoklu Doğrusal Regresyon (MLR) ile modellendi. Analizler 

Dragon 5.4, Spartan 06 ve Codessa 2.2 programları kullanılarak hesaplanan yaklaşık 1500 

tanımlayıcı ile yapıldı. Ek olarak, daha önceki QSPR/QSTR çalışmalarda önemli bir 

tanımlayıcı olduğu kanıtlanan Karakteristik Kök İndisi (CRI)’ni de kullandık. Tanımlayıcı 

seçimi Heuristic Yöntem’le yapıldı. Veri setini eğitim ve test setlerine ayırmada Kohonen 

ağları kullanıldı. Doğrusal ve doğrusal olmayan 3, 4 ve 5 tanımlayıcılı modeller korelasyon 

katsayısının karesi ve ortalama hatanın karekökü (RMSE) gibi istatistiklerine göre 

karşılaştırıldı. Bütün modellerin validasyonu test setler kullanılarak yapıldı. Dragon’dan 

BLTD48, Spartan’dan elektrofilisite ve CRI’ın Chlorella vulgaris için geliştirilen QSTR 

modellerinde önemli olduğu görüldü. Oncorhynchus mykiss modeli Dragon tanımlayıcılarını 

öne çıkardı. Chlorella vulgaris için olan modellerin istatistiksel kalitesi aynı veri seti 

kullanılarak yayınlanmış modellerle karşılaştırılmış ve bu modellerden daha üstün olduğu 

görülmüştür. Oncorhynchus mykiss modelleri literatür modelleriyle kimyasal sınıf, etki 

mekanizması, istatistiksel yöntemler ve uygunluk açısından karşılaştırıldı. Lineer ve lineer 

olmayan yöntemlerin her iki canlı türü için de karşılaştırılabilir olduğu görüldü. 
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1.  INTRODUCTION 

 

 

The increasing number of chemicals around us raises the problem of characterization, 

prediction, and evaluation of their consequences to human health and the environment (Gini et 

al., 2004). Since all pesticides are assumed to be hazardous to environment, their properties 

and toxicities should be known before they are used. The toxicity of new chemicals 

(pesticides) can be determined in two ways: (i) conducting experiments; (ii) predicting their 

values via modeling.  

 

Experimental investigations can be carried out to collect toxicity values of pesticides. 

However, the data collection procedure is extremely time consuming (Tao et al.; 2002). 

Additionally, the cost of in vivo testing is prohibitive and weighs heavily on the final price of 

chemicals. Beside economic constraints, ethical considerations and public pressure work to 

reduce tests on animals (Mazzatorta et al., 2005). 

 

Utilization of Quantitative Structure-Activity/Property/Toxicity Relationships 

(QSAR/QSPR/QSTR) can be an alternative way to predict toxic effects (Wang et al., 2000, 

Tao et al., 2002, Bermudez-Saldana and Cronin, 2006). Application of QSAR/QSTR to the 

aquatic toxicology field has started drawing attention in the late 1970's (Kaiser, 2003). Since 

then, QSAR has been used in regulatory assessment of chemicals. The New Chemicals Policy 

of The European Commission, Registration, Evaluation, Authorization and Restriction of 

Chemicals (REACH) regulation, also strongly recommends the use of QSARs. QSAR/QSPR 

technique is mainly employed in the fields of prediction of physico-chemical properties, 

environmental fate, ecotoxicity, and other activities related to human health (Roy and Ghosh, 

2007; Porcelli et al., 2008). The toxicity of the 24 phenol derivatives to Rana japonica was 

modeled by Wang et al. (2000). They reported that separating toxicants into subsets according 

to their mechanism of toxic action and deriving separate QSARs for each mechanism of toxic 

action increases the success of QSAR. Tao et al. (2002) developed a multivariate regression 

model to predict organic chemical toxicities to Daphnia magna. They also tested the accuracy 
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of their model based on coefficient of determination for the regression and associated residual 

values. Zvinavashe et al. (2009) proposed a QSAR model that can be used to predict fish 

toxicity with Daphnia magna toxicity values. Walker (2003) summarized the applications of 

QSARs by the US Government organizations. Saçan et al. (2005) developed models to predict 

water solubility, log Kow, and Henry's Law constant of PCDD/PCDF and phthalate esters. 

They concluded that the CRI which reflects branching and global molecular properties of a 

chemical was an important descriptor in these predictions. 

 

QSAR can be used for analyzing the toxicities of organophosphorous and carbamate 

compounds, which are widely used as insecticides. Bermudez-Saldana and Cronin (2006) 

modeled the toxicity of these pesticides to the rainbow trout. They stated that linear models 

which have datasets basing on the same mechanism of action (MOA) are more successful than 

those have heterogeneous datasets in terms of producing models for predictive purposes. 

Zvinavashe et al. (2009) developed linear models of the toxicity of organothiophosphate 

pesticides to Daphnia magna and Cyprinus carpio. They used quantum chemical molecular 

descriptors namely log Kow, ELUMO, and EHOMO. They also proposed a relationship between the 

toxicities of Daphnia magna and fish, and found a high correlation between them. A QSAR 

study of pesticide toxicity of rainbow trout was made by Mazzatorta et al. (2005). They 

developed linear and nonlinear models with chemical descriptors using the OpenMolGRID 

system.  They also compared linear and nonlinear approaches for ecotoxicological QSARs. 

Ultimately, they found the Genetic Algorithm (GA)/CPNN combination is the most suitable 

one among the methods tested. 

 

Historically, the first studies on QSAR models included homolog series of chemicals. 

Eventually, diverse datasets has been started to use in models to cover as much as possible 

chemicals. Of the methods used in QSAR/QSTR studies, MLR relates the dependent variable, 

y (toxicity), to a number of independent (descriptors) variables, xi, by using linear equations. 

Principal component analysis (PCA) is based on linear combinations of the variables and used 

for dimension reduction. PCA is able to arrange a good training set. However, the model has a 

poor ability to predict the test set. Additionally, it is difficult to discriminate outliers while 

applying PCA. Partial least squares (PLS) aims to explain the variance in the descriptors and 
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engages in obtaining a good correlation between activity and the descriptors. The primary 

advantage of PLS is that it is very useful when collinearity exists in the independent variables. 

Likewise PCA, there is outlier identification problem. An artificial neural network (ANN) is a 

mathematical model that “learns” from data just like learning of human brain via neurons. In 

every epoch of training, network adjusts the weights of each neuron. k-nearest Neighbor 

(kNN) is a clustering algorithm that assesses to which class an object belongs to. The class of 

the object is determined according to the class of the nearest neighbors of the object, typically 

by weighing based on the distances between the object and its neighbors. GA, inspired from 

the theory of evolution, attempts to solve problems or develop control strategies. It differs 

from most other artificial intelligence techniques due to its ability to develop many solutions 

in parallel. Each solution is regarded as an individual of the population, and its fitness to the 

environment is evaluated by a domain-specific function. GA improves the overall fitness of 

the population by applying natural selection of the individuals based on fitness, crossbreeding 

by recombination of parts of existing good solutions, and mutation (OECD, 2007). 

 

Toxicities of organic chemicals to a specific aquatic biota can be obtained by using 

QSTRs. Nonlinear models such as counter propagation artificial neural networks (CPNN) are 

usually more powerful than linear ones, but are often considered "black boxes" because they 

do not formulize the relationship between variables and response in clear numbers or 

coefficients. Mazzatorta et al. (2005) stated that linear methods are not capable of solving 

complex problems such as toxicities of a diverse database. Cronin et al. (2004) chose a 

nonlinear method, kNN, for modeling of organic chemicals toxicity to Chlorella vulgaris. 

They concluded that method selection in QSAR is task dependent and more complicated 

methods should be preferred only in clear need. 

 

1.1.  Purpose of the Study 

 

Most of the studies stated above Wang et al. (2000), Tao et al. (2002), Saçan et al. 

(2005), Bermudez-Saldana and Cronin (2006), Zvinavashe et al. (2009) are based on linear 

statistical methods such as multiple linear regression. Although they are useful models, they 

suffer from the limitation that in some cases the relationship between a molecular descriptor 
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and toxicity may be intrinsically nonlinear. In such cases, the use of linear statistical may not 

result in best models. Additionally, some models (Roy and Gosh, 2007) have high number of 

descriptors which are not preferable in QSAR studies. The first condition of model validity 

deals with the ratio of the number of chemicals over the number of selected descriptors which 

is called as Topliss ratio. The recommended Topliss ratio should have a value of at least 5 

(OECD, 2007). Therefore, in this study, considering this ratio we carried out two comparative 

studies of multiple regression vis-à-vis neural net methods in predicting the toxicity of two 

different data sets to two aquatic organisms. 

 

To look for more useful QSTR models in ecotoxicology will contribute to this field. 

The main aims of the present study are as follows: 1) to elaborate QSTR models for the 

prediction of toxicity values of two diverse sets of chemicals to Chlorella vulgaris and 

Oncorhynchus mykiss (Rainbow trout) by using a large number of theoretical descriptors 

generated from Spartan 06, Dragon 5.4, Codessa 2.2 software, and the CRI, 2) to compare the 

performance of linear (MLR) and nonlinear (CPNN) models, 3) to evaluate the validity of  the 

developed models according to the OECD principles and 4) to compare the predictive ability 

of the proposed models with literature QSTR models for the same toxicity data. 
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2.  THEORETICAL BACKROUND 

 

 

2.1.  Use of Pesticides 

 

The need for food is dramatically increasing owing to the world population is 

increasing rapidly. On the other hand, the arable land area is fixed. Moreover, erosion and 

construction of new buildings cause a decrease in total arable land area. But the more crucial 

point is that a number of crops are depleted by pests. In order to increase food production to 

feed six billion people, protecting the crops from pests is inevitable. The leading solution for 

fighting against pests is plant protection products, namely, pesticides.  

 

Pesticide chemicals have served humans for over 3000 years to control pests such as 

insects, weeds, and fungi (Crosby, 1998). Each year, 5 billion tons of pesticides are applied 

worldwide. Major proportion of this usage is for agricultural activities, and others are used in 

heavy metal industry (Wright and Welbourn, 2002). When we compare pesticide usage of 

Turkey with those of developed countries, it is observed that relatively small dosages are 

applied in Turkey. For instance; pesticide application per hectare is 0.63 kg in Turkey while it 

reaches 3.5 kg in the USA, 17.5 kg in Holland, and 4.4 kg in France (Dag et al., 2000).  

 

2.2.  Types of Pesticides 

 

There are multiple ways of classifying pesticides. They can be categorized in three 

broad groups with their respective percentages according to the type of pest they control: 

herbicides (70%), insecticides (20%), and fungicides (10%) (Wright and Welbourn, 2002). 

Pesticides can also be classified as synthetic pesticides and biological pesticides 

(biopesticides). 

 

Additionally, pesticides can be classified according to the pests they control as follows: 
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 Algicides or algaecides for the control of algae  

 Avicides for the control of birds  

 Bactericides for the control of bacteria  

 Fungicides for the control of fungi and oomycetes  

 Herbicides (e.g. glyphosate) for the control of weeds  

 Insecticides (e.g. organochlorines, organophosphates, carbamates, and pyrethroids) for 

the control of insects - These can be ovicides (substances that kill eggs), larvicides 

(substances that kill larvae) or adulticides (substances that kill adults) 

 Miticides or acaricides for the control of mites  

 Molluscicides for the control of slugs and snails  

 Nematicides for the control of nematodes  

 Rodenticides for the control of rodents  

 Virucides for the control of viruses (e.g. H5N1)  

 

Chemically-related pesticides can be grouped as follows: 

 Organophosphate pesticides 

 Carbamate pesticides 

 Organochlorine insecticides 

 Pyrethroid pesticides 

(EPA, 2010; Miller, 2004). 

 

2.2.1.  Organophosphates  

 

Organophosphates constitute one of the main classes of insecticides acting on the 

acetylcholinesterase enzyme (AChE). Starting at the mid 1940s, the first developed 

organophosphate pesticide was tetraethylpyrophosphate (TEPP). Eventually parathion came 

into use. Parathion is a phosphorothionate ester which is metabolically converted to paraoxon. 

Paraoxon attaches to the active site of the AChE, which makes it extremely toxic to non-target 

organisms. Their toxicity is augmented by their ability to be absorbed through the skin. It is, 

therefore, important to develop organophosphorous compounds as pesticides that can be 
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metabolized by mammals to less toxic forms. Malathion and dichlorvos are the best known 

examples (Wright and Welbourn, 2002).  

 

The general chemical structure of organophosphorous pesticides is shown in Figure 

2.1. They are classified into two main groups, organophosphates (P=O) and organothio-

phosphates (P=S) depending on whether oxygen or sulphur forms a double bond with the 

central phosphorous atom (Zvinavashe et al., 2009). 

 

 

Figure 2.1. General chemical structure of organophosphorous pesticides. The atom that forms 

a double bond to P is either O (organophosphate; P=O) or S  (organothiophosphate; P=S) 

 

The AChE inhibition of some organophosphorous pesticides can take place through 

metabolic activation. For example, the P=S bond of the organothiophosphate pesticides is 

converted to oxon form (P=O bond) because oxygen is more electronegative than sulphur, thus 

the P=O bond is more polarized than the P=S bond. After then, the pesticide becomes being 

able to inhibit AChE. Organothiophosphates are manufactured more than organophosphates as 

they are considered to be safer and more selective due to the biotransformation step to the 

organothiophosphate that is necessary to exhibit full toxicity (Bermudez-Saldana and Cronin, 

2006; Zvinavashe et al., 2009). 

 

2.2.2.  Carbamates 

 

The carbamate pesticides are esters of carbamic acid. Similar to organophosphate 

pesticides, they act as AChE inhibitors and are toxic to non-target organisms. They also affect 

the immune system. Unlike organophosphates, carbamate pesticides have lower dermal 

toxicity (Wright and Welbourn, 2002). Most carbamates are narrow spectrum insecticides, 
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unlike organochlorines and organophosphates, which are toxic to only a few types of insects. 

General chemical structure of carbamates is given in Figure 2.2. 

 

 

Figure 2.2. Chemical structure of carbamates 

 

2.2.3.  Organochlorines 

 

Organochlorines are organic compounds containing at least one covalently bonded 

chlorine atom. Organochlorine insecticides are stable solids of limited vapor pressure, very 

low water solubility, and high lipophilicity. Some of them are highly persistent in their 

original form or as stable metabolites. The most known organochlorine pesticide is the 

insecticide DDT (dichloro diphenyl trichloroethane). Launched in the 1940’s, DDT was 

widely used in agriculture around the world for many years. DDT was banned in many 

countries in the 1970s because of their unacceptably slow degradation and subsequent 

bioaccumulation linking DDT with damage to wildlife. Since then, agricultural uses of DDT 

have been outlawed worldwide (Wright and Welbourn, 2002; Walker et. al, 2006). The 

chemical structure of organochlorine pesticides 1,2-dichlorobenzene and endosulfan are 

shown in Figure 2.3 (a) and (b), respectively. 

 

  

 (a)  (b)  

Figure 2.3. Chemical structure of (a) 1, 2-dichlorobenzene and (b) endosulfan 
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DDT and other chlorinated hydrocarbons are very resistant to metabolic breakdown. 

However, in animals and humans, DDT is degraded to DDE (dichlorodiphenyl 

dichloroethylene) or DDD (dichlorodiphenyl dichloroethane or rhothane). A limited 

conversion of DDT to DDE occurs in human subjects. The conversion is catalyzed by DDT 

dehydrogenase, and the resultant DDE is a stable metabolite (Yu, 2001). Formation of DDD 

and DDE from DDT are shown in Figure 2.4. (a) and (b), respectively. DDD and DDE are in 

our rainbow trout data set. 

 

 

(a) Reductive dechlorination of DDT to form DDD 

 

 

(b) Degradation of DDT to form DDE by an elimination of HCl 

 

Figure 2.4. Metabolites of DDT (a) DDD and (b) DDE 

 

 

2.3.  Concerns on Pesticide Use: Distribution and Environmental Fate 

 

Pesticides are supposed to have following properties. An ideal pesticide kills only the 

target organism, has no health effects on non-target organisms, is broken down into harmless 

chemicals in a fairly short time, is unlikely to develop genetic resistance in target organisms, 

and is economical to use comparing to having no action. However, there is no such pesticide 

(Corrigan et al., 1997). Beginning their first uses in the history, chemical industry has been 
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working on new chemicals which are effective on target organisms, but less noxious to 

environment.  

 

Beside their effective use in agriculture against pests, pesticides also have their 

negative aspects. Essential effects are listed as their persistence in the biosphere and their 

chronic toxicity to non-target species such as birds, fish, even humans (Wright and Welbourn, 

2002).  

 

Once a pesticide is used, it inevitably disperses in all phases via leaching, runoff, 

volatilization, and precipitation. Besides staying as it is, a pesticide may be transformed to 

another substance. The fate of pesticides comprises hydrolysis, aqueous photolysis, 

photodegradation on soil, volatility, sorption, and bioaccumulation in living organisms. There 

are numerous studies in the literature about the distribution and environmental fate of 

pesticides (Goldsborough and Crumpton, 1998; Centofanti et al. 2008; Acero 2008; Atasoy et 

al. 2009; Ozcan and Aydin, 2009). The fate of pesticides in the environment is summarized in 

Figure 2.5. 

 

 

Figure 2.5. The fate of pesticides in the environment 

sorption to soil 

particles 

wind erosion photodegradation 

microbial or chemical 

degradation 

runoff 

Plant uptake 

leach to 

groundwater 

volatilization 



 

 

11 

In order to interpret the existence of the pesticide concentrations and their effects to the 

environment, research has focused on their measurements, estimations, and compilation of the 

data. In a study reported by Vijver et al. (2008), many pesticide measurements from surface 

waters of the Netherlands were compiled. A freely available tool, Dutch pesticides atlas, is 

also provided to promote the use of monitoring data in the process of risk mapping. The atlas 

can be used to present all measurements of pesticides in surface water on the level of 

individual active ingredients in a spatial framework. Predictions can also be made where a 

pesticide might be exceeding environmental standards. Laabs et al. (2002) studied on 

monitoring 29 pesticides and 3 metabolites in
 
surface water, sediment, and rainwater during

 

the main application season of northeastern Pantanal basin in Brasil. They provided 

information on pesticide distribution and dynamics in the area. 

 

Even though the bans have taken place and usage has been restricted, DDT and their 

metabolites have still been used and there are numerous studies about their existence and 

effects around the world. For instance, Sibali et. al. (2009) studied the determination of DDT 

and metabolites in surface water and sediment of Jukskei River in South Africa. They 

suggested that there is a recent contamination of the river by DDT metabolites. Dörr and 

Liebezeit (2009) analyzed bivalve mollusks of Wadden Sea for organochlorine compounds. 

They found these contaminants in all samples and evidenced that there is an increase in levels 

of contaminants compared to last 6 years. DDT is used for indoor residual spraying in South 

Africa to control malaria. Findings of Barnhoorn et al. (2009) show that water and food may 

be major routes of human exposure to DDT and metabolites, thus expose people to adverse 

health effects. Measurements of organochlorine pesticides concentrations including DDTs in 

sediments of Haihe River of China between 2006 and 2008 were made by Chi (2009). The 

study showed that there is a significant decrease in levels of hexachlorocyclohexanes (HCHs) 

and DDTs comparing to the levels in 2003. The author states that this may be due to the 

decrease in production and usage of these chemicals and biodegradation of HCHs and DDTs 

in sediment.  

 

Since the most affected people by pesticides are farmers, research has been done to 

determine concentrations in human body fluids. Exposure of farmers' children to pesticides 
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has been measured as an EPA project (Lu et al., 2006). The study demonstrated that saliva can 

be used to assess exposures to diazinon in pesticide applicators and their children. 

 

Short-term pollution events via runoff are typical of streams in agricultural areas. 

Berenzen et al. (2005) developed a model that can predict runoff-related pesticide 

concentrations in many streams on a landscape level. They validated their model by predicting 

the pesticide load of 18 small lowland streams and compare against measured concentrations 

obtained by runoff-triggered sampling. The authors suggested that the presented model is 

suitable for use in routine exposure assessment of pesticides on a landscape level. 

As research being done and the public awareness increases, bans and restrictions on 

pesticides are on the agenda. At the beginning of 2008, cosmetic pesticides usage in lawns, 

gardens, school yards and parks has been banned in Canada. The ban came into effect in order 

to protect families, especially children from toxic chemicals (OME, 2009). Formerly safe-

called pesticide endosulfan has been banned by the Australian Pesticides and Veterinary 

Medicines Authority. This decision follows a recent assessment of new information by the 

Department of Sustainability, Environment, Water, Population and Communities (DSEWPC) 

that the prolonged use of endosulfan is likely to lead to adverse environmental effects via 

spray drift and run-off (APVMA, 2010). 

 

2.4.  QSTR Studies 

 

Preliminary studies of QSAR/QSTR go back to first half of 19
th

 century. Blake noted 

that “salts of isomorphous bases have a similar action” in 1841. This finding appears to be the 

first example of an attempt to relate the activity of some compound to a physical property. At 

the International Congress in 1860, Canizzaro showed that Avogadro’s law of combining 

volumes could be used to derive the correct empirical formula for simple compounds. 

Horsford reported in 1851 that the taste of some compounds could be related to their 

composition. Pelikan in 1854 observed that toxic effects depended on composition. Borodin in 

1858 expressed that toxicological property of compounds and their chemical compositions are 



 

 

13 

closely interrelated. Additionally, Borodin stated that similar substances or substances taking 

part in similar chemical reactions exert similar actions on the organism. Between 1858 and 

1870, Kekule, Couper and Crum-Brown developed the concept of molecular structure. Crum-

Brown and Fraser proposed the existence of a mathematical relationship between structure and 

bioactivity in 1868 (Charton, 2008).  

 

Quantitative-structure toxicity relationship (QSTR) studies are expected to reduce the 

cost and the number of organisms used for toxicity testing and to fill the existing data gaps 

within the REACH regulatory framework in the EU. Many QSTR studies in ecotoxicology are 

carried out with different types of descriptors using statistical methods like regression analysis 

(Cronin et al., 2004, Saçan et al., 2007), PLS (Roy and Gosh, 2006 and 2007) and ANN (Roy 

and Roy, 2009) for diverse set of chemicals.  Pavan et al. (2006) used multivariate linear 

regression and GA for modeling the toxicity of heterogenous chemicals to fathead minnow. 

Kahn et al. (2007) compared the best multilinear regression approach and the heuristic back-

propagation neural networks (BPNN) for modeling the toxicity of chemicals to the organism 

Tetrahymena pyriformis. Papa et al. (2005) modeled toxicity of organic chemicals to fathead 

minnow with Dragon descriptors. Saçan et al. (2007), modeled the toxicity of aromatic 

compounds to the algae Scenedesmus obliquus using the quantum-chemical descriptor (the 

energy of the lowest unoccupied molecular orbital (ELUMO)) calculated by Spartan 06, together 

with the CRI.  

 

In developing QSAR/QSTR models, the approach begins with the compilation of 

available endpoint data sets for a variety of chemicals. If endpoint data are available for a 

sufficient number of chemicals, the data set is often divided into a training set used in the 

model development, and a test set containing chemicals not used in the derivation of the model 

but used to evaluate the model. The method used for splitting the data set should be clear in 

proposed model. Methods available include those based on similarity analysis, for example, 

D-optimal distance (Hasegawaa and Funatsub, 1998), Kohonen map or self-organizing map 

(SOM) (Vracko et al., 2006), the k-means cluster analysis (Caballero and Fernandez, 2006), 

sphere-exclusion algorithms (Golbraikh et al., 2003) or random selection through activity 

sampling (Gramatica, 2007). The selection of variables in the model, referred to as 
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predictors/descriptors, can be performed by one of the techniques such as Heuristic Method 

(HM), GA, PCA or Factor Analysis (FA). 

 

2.5.  Literature Studies on Chlorella vulgaris and Oncorhynchus mykiss 

 

Adverse effects of chemicals on aquatic organisms, especially algae, are of special 

concern. For the assessment of the environmental impact of toxicants, fresh water algae 

Chlorella vulgaris is particularly important because they are habitants of freshwaters that are 

threatened by a variety of pollutants, their experiments are economical, and green algae 

respond to chemicals very rapidly. Cronin et al. (2004) developed QSTR models to predict the 

15-min toxicity values of a diverse set of chemicals to Chlorella vulgaris using both MLR and 

kNN with three descriptors, namely, hydrophobicity, log Kow, electrophilicity expressed by 

ELUMO, and first order Δ valence connectivity index (Δ
1

). In another study, Roy and Gosh 

(2007) used four different statistical techniques in modeling the same algal toxicity data used 

by Cronin et al. (2004). They highlighted the importance of extended topochemical atom 

(ETA) and non-ETA descriptors in their QSTR models. 

 

For an aquatic risk assessment, the toxicity of pesticides to non-target organisms is 

assessed to evaluate the toxic potential of the compounds in an aquatic environment. The 

environmental hazard on vertebrates in aquatic systems is evaluated by performing acute and 

chronic fish experiments. The most widely performed test is the acute fish toxicity test 

(Knauer et al., 2007). The rainbow trout is a preferred species to meet this requirement since it 

is sensitive, and considered as a representative cold water fish species by regulatory bodies 

(Mazzatorta et al., 2005). Rainbow trout is also the most frequently used species among the 

studied fish in ECOTOX database of EPA (Hrovat et al., 2009). Hrovat et al. (2009) also 

stated that life stage differences and test conditions such as temperature, pH, and water 

hardness can have a clear influence on the LC50 test results. Capkin et al. (2006) have studied 

toxicity of endosulfan to Oncorhynchus mykiss. They also examined the effects of fish size 

temperature, alkalinity, and hardness to the toxicity tests. They ultimately found that all the 

items except hardness have an effect on rainbow trout toxicity tests. 
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2.6.  Artificial Neural Networks 

 

Artificial Neural Network (ANN) analysis, which is an accepted nonlinear technique in 

QSAR studies, was adopted to investigate nonlinear patterns in the data. ANN is an 

information processing paradigm that resembles biological nervous systems, such as the brain. 

The functioning of a neural network also resembles human brain in that it learns by examples. 

The whole network is an interconnected group of artificial neurons that uses a mathematical 

model. Each neuron receives an input signal which has the total information from other 

neurons, processes it locally through an activation function and produces a transformed output 

signal to other neurons or external outputs as represented in Figure 2.6 (Zhang et al., 1998). 

 

 

Figure 2.6. A typical feed-forward neural network 

 

ANNs typically start out with randomized weights for all their neurons. This means 

that they do not "know" anything and must be trained to solve the particular problem for 

which they are used. The training process is usually as follows: first, examples of the training 

set are entered into the input nodes. The activation values of the input nodes are weighted and 

accumulated at each node in the first hidden layer. The total is then transformed by an 

activation function into the node’s activation value. It in turn becomes an input into the nodes 

in the next layer, until eventually the output activation values are found. The training 
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algorithm is used to find the weights that minimize some overall error measure such as the 

sum of squared errors (SSE) or mean squared errors (MSE). Hence the network training is 

actually an unconstrained nonlinear minimization problem (Zhang et al., 1998).  

 

The appropriate training and test algorithms were chosen in the course of the model 

development process, as the structure of the models (which is difficult to predict beforehand) 

is the most important factor behind the decisions regarding algorithm selection. 

 

The CPNN models generally have two layers, the input (Kohonen) layer and the output 

layer. CPNNs are built up from two layers of neurons arranged in 2D rectangular matrices. 

The Kohonen layer receives the input variables. Afterwards, it converts 3D input into 2D map 

such that similar compounds (having similar descriptors) are located in the same neuron. The 

output layer, which has the same topological arrangement of neurons as the input layer, 

receives the target (toxicity) values during the learning process. Architecture of a CPNN, 

together with Kohonen network, is shown in Figure 2.7 (Mazzatorta et al., 2003). Details 

about Kohonen maps and architecture and learning strategy of CPNN can be found in 

numerous text books and articles (Devillers, 1996; Zupan and Gasteiger, 1999; Vracko, 2005). 

We tested different network architectures and different number of learning steps (epochs), 

roughly more than hundred models in total, to obtain each of the models. 

 

 

 

Figure 2.7. Architecture of a typical CPNN 
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3.  MATERIALS AND METHODS 

 

 

We followed the workflow for the development of linear and nonlinear models for the 

toxicity of different classes of chemicals including pesticides to fish and algae (Figure 3.1). 

The details of each step are given in corresponding subtitles. 

 

3.1.  Data Sets 

 

A structurally heterogeneous data set on acute toxicity of 91 organics from different 

chemical classes such as, cresols, monohalogenated and mononitro-substituted benzenes, 

anilines and phenols, and 10 pesticides to algae Chlorella vulgaris were taken from Cronin et 

al. (2004). Toxicity (pT) is defined as the negative logarithm of the concentration which 

affects 50% of the population (pT = -log (EC50)(mM)) in 15 min static monitoring test. 

 

The second data set of 34 chemicals includes organophosphates, carbamates, and 

organochlorines (Bermudez-Saldana et al., 2005). Authors have compiled 96 h pT (-log LC50) 

experimental values (mM) of Oncorhynchus mykiss from ECOTOX database from U.S. EPA. 

 

3.2.  Molecular Descriptors 

 

A large number of molecular descriptors were calculated for each of these data sets 

using three software packages, namely, Dragon 5.4 (Talete, 2006), Spartan 06 (Wavefunction, 

2006) and Codessa 2.2 (Semichem, 1996), and the CRI. Before the calculation step, the 

structures of the compounds were sketched using the Spartan 06 software package and 

geometrically optimized employing the semi-empirical PM3 method. The molecular 

geometries corresponding to the lowest energy conformer were selected for the calculation of 

the molecular descriptors. Calculated Spartan descriptors were saved as a text file format for 

further descriptor selection step using the Codessa 2.2 software package. Molecular structures 

prepared as MDL mol files were loaded into Codessa software for the calculation of pre-
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integrated Codessa descriptors (Katritzky, 1994). MDL mol files were also used for the 

generation of descriptors employing Dragon 5.4 software package. The total pool of 1356 

Dragon descriptors, 125 Codessa descriptors and 5 Spartan descriptors were computed. 

 

The Dragon 5.4 software yields 20 descriptor groups, which cover 1664 descriptors. 

The descriptor group details and the number of descriptors in each group are provided in Table 

3.1. 

 

The Codessa descriptor set includes constitutional, topological, geometrical, and 

electrostatic descriptors (Katritzky, 1994). 

 

The Spartan descriptors used are dipole moment (μ), the energy of the lowest 

unoccupied molecular orbital (ELUMO), the energy of the highest occupied molecular orbital 

(EHOMO), the gas phase energy (E), CPK volume (V), and area (A). The rest of the calculated 

descriptors such as, ELUMO-EHOMO gap, hardness, electronegativity, softness, and 

electrophilicity (ω) were calculated from the energies obtained from Spartan 06 and using the 

formula reported for each by LoPachin et al. (2007). The parameters, molecular volume and 

molecular area belong to the calculated descriptors very frequently used in many QSAR 

studies (Netzeva et al., 2004; Aptula et al., 2005). Since the use of variables with different 

scales may weight the variables with larger scale, the ratio of volume to area obtained from 

CPK model (a molecular model in which atoms are represented by spheres, the radii of which 

correspond to van der Waals radii) in Spartan 06 was calculated and designated as (V/A), 

instead of using autoscaling or standardized values of these descriptors. Aqueous phase energy 

of molecules containing phosphorous could not be calculated due to the limitations of Spartan 

06 software. Therefore, only gas phase energies were calculated for all molecules. 

 



 
Figure 3.1. Workflow of present study 
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Table 3.1. Descriptor groups in the Dragon 5.4 software 

 

Dimension Descriptor Blocks Number of descriptors 

0D Constitutional descriptors 48 

1D Functional group counts 154 

1D Atom-centered fragments 120 

2D Topological descriptors 119 

2D Connectivity indices 33 

2D 2D autocorrelations 96 

2D Burden eigenvalues 64 

2D Eigenvalue-based indices 44 

2D Walk and path counts 47 

2D Information indices 47 

2D Edge adjacency indices 107 

2D Topological charge indices 21 

3D Randic Molecular Profiles 41 

3D RDF descriptors 150 

3D WHIM descriptors 99 

3D Geometrical descriptors 74 

3D 3-D MoRSE descriptors 160 

3D GETAWAY descriptors 197 

others Charge descriptors 14 

others Molecular Properties 29 

 

 

The CRI parameter which is an eigenvalue-based descriptor and has been shown to be 

effective in modeling various properties of chemicals including the toxicity (Saçan et al., 

2007) was also included in the descriptor pool. The procedure to calculate the CRI and 

relevant references were reported previously (Saçan and Inel, 1993; Saçan and Inel, 1995; 

Saçan and Balcioglu, 1996; Saçan et al., 2004; Saçan et al., 2007). The only difference 
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between the new CRI and the previous one is the eigenvalues of the characteristic matrix 

stored in Microsoft Excel were calculated with Matlab 6 (Mathworks, 2000), instead of 

Scientific Workplace. 

 

In order to reduce the number of descriptors, HM algorithm running in Codessa 2.2 

was performed. The HM selects the descriptors according to the following criteria. The 

program calculates all correlations between individual descriptors and property (toxicity) and 

eliminates descriptors with F-test’s value is less than 1, correlation coefficient is less than the 

set value (0.1) and the t-value is less than the set value (0.1). It selects only one of the highly 

intercorrelated descriptors. Additionally, descriptors with low variance (<0.1) and with 

variance inflation factor (VIF) values close to five after heuristic analysis were eliminated 

from the descriptor list.  

 

A significant drawback of obtaining chance correlation in MLR models was eliminated 

by using the HM. This phenomenon occurs especially when the ratio of the number of 

molecules to the number of descriptors is very low. Thus, there is a very low probability for 

obtaining chance models. Nevertheless, the developed models were evaluated for over-fitting, 

generalization and predictivity by cross-validation as well as using an external test set. 

 

We also forced to use the CRI parameter in the derived correlations because it was 

proved to be a prevailing descriptor in our previous studies involving algal toxicity (Saçan et 

al., 2007) and several physicochemical/biological properties (Saçan and Inel, 1993; Saçan and 

Inel, 1995; Saçan and Balcioglu, 1996; Saçan and Balcioglu, 1998; Saçan et al., 2004; Saçan 

et al., 2005; Saçan et al., 2007). Therefore, the potential of the CRI in QSTR modeling can be 

further verified for different organisms. 

 

3.3.  Model Development and Validation 

 

QSTR models for each organism were developed using both MLR and CPNN 

considering the OECD principles.  
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The OECD principles of QSAR validation give five basic elements for a reliable 

model. 

1.  a defined endpoint; 

2.  an unambiguous algorithm; 

3.  a defined domain of applicability; 

4.  appropriate measures of goodness-of-fit, robustness, and predictivity; 

5.  a mechanistic interpretation, if possible. 

According to Principle 4, a QSAR model should have appropriate measures of goodness-of-fit, 

robustness, and predictivity. While the internal performance of a model determined by using a 

training set, the predictivity is determined by using an appropriate test set (OECD, 2007). 

Therefore, before performing the modeling procedure, the data set was divided into training 

and test set using Kohonen Neural Network alias Self-Organizing Maps (SOM). SOM are able 

to select a meaningful training set and a representative test set. Kohonen networks have been 

adequately explained by Devillers (1996), and Zupan and Gasteiger (1999). Kohonen 

networks project multi-dimensional space onto 2D array of neurons. The projection, which is 

called learning of network, runs in two steps. In the first step, an object (represented by a 

vector) is presented to all neurons and the algorithm selects the neuron that is most similar to 

it. The selected neuron is called “winning neuron”. In the second step, the weights of the 

winning neuron are modified to the vector values and in the same time the neighboring 

neurons are modified to become similar to it (Vracko, 2005). We used different networks for 

each developed model and approximately 70-75% of the data set was allocated for training set. 

In order to compare the performance of the linear with that of nonlinear models, the same 

training and test set of compounds were used. 

  

3.3.1.  Multiple Linear Regression 

 

MLR models were obtained using the Statistical Package for Social Scientists (SPSS® 

17.0) for Windows (SPSS Inc., 2008). In MLR, as a rule of thumb, the number of independent 

variables (descriptors) should not be higher than the number of observations (chemicals) 

otherwise the results would be biased, and there is a chance correlation.  
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For robustness of MLR models, number of compounds (n), squared correlation 

coefficient (R
2
), adjusted (for degrees of freedom) squared correlation coefficient ( 2

adjR ), 

Fischer statistics (F) and standard error of the model (SE) are calculated. For training and test 

sets of all models root mean square error (RMSE) and average absolute error (AAE) are 

calculated. Formula for RMSE is given in Equation 3.1.  

 

RMSE = 
n

yy
n

i

ii

1

2)ˆ(

 (3.1) 

where, n is the number of compounds, iŷ  is predicted and yi is observed toxicity value 

 

Internal validation of all models was tested with the leave-one-out (LOO) procedure 

and cross-validation correlation coefficient ( 2

cvR ) was calculated. However, leave-many-out 

(LMO) procedure was performed only for MLR models using Weka 3.6.1 (2009) software. 

 

Correlations between the independent variables in each of the models were examined. 

Collinearity was tested with respect to the VIF value for each of the independent variables, 

defined as 1/ (1-R
2
), where R is the correlation coefficient for one independent variable against 

others. Large VIF values (over five) imply that there is multicolinearity.  

 

The reliability of MLR models was also tested by response randomization (Y-

scrambling) procedure. For model randomization, the dependent variables of the training set 

are shuffled and new correlation coefficients are calculated. The process is repeated several 

times. Kiralj and Ferreira (2009) demonstrated that it is sufficient to perform 10-25 y-

randomization runs for a model validation. The significantly low correlation coefficients of the 

new models indicate that the originally proposed model was not obtained by chance 

correlation. Y-scrambling procedure was run in MDM 2010.2 (Molegro Data Modeler, 2007-

2010). 
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3.3.2.  Counter Propagation Neural Network 

 

Prior to CPNN modeling, pT and descriptor values were normalized in the range from 

0 to 1 as stated by Vracko et al. (2006) using the PREDATA program developed by National 

Institute of Chemistry Ljubljana. The performance of the network was checked by various 

network size epochs. Correlation coefficient (R
2
), cross-validation coefficient ( 2

cvR ), and 

RMSE of the model played an important role in selecting the best network-epoch combination. 

Over-training was abstained by selecting different training/test set divisions, networks, and 

epochs. After selection of the best models and monitoring the outliers, the normalized values 

were converted into re-normalized values to obtain comparable predicted toxicity, residual, 

RMSE and AAE values to those of MLR models. 

 

3.3.3.  Validation 

 

The statistical quality of the MLR models was judged by the parameters like the square 

of correlation coefficient (R
2
), standard error of the estimate (SE) and variance ratio (F) at 

specified degrees of freedom. Leave-one-out (LOO) cross-validation statistics (
2

cvR ) and 

leave-many-out cross-validation was applied on the final model. 

 

In order to obtain compounds for external validation, the available set of chemicals 

was divided into a training set and a test set. Dividing was carried out by self-organized maps 

explained above. 

 

With the best developed equations, toxicities of chemicals outside the sample set were 

predicted and compared with the reported literature data and models. Furthermore, to compare 

the predictive performance of the model developed in this study with those of the literature 

models, both AAE of and RMSE values were also reported for model comparison. 

 

Consonni et al. (2009) formulated a novel external correlation coefficient (
2

3FQ ) for the 

test set based on sum of squares (SS) referring to mean deviations of observed values from the 
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training set mean over the training set instead of the external evaluation set. They concluded 

that correlation coefficients using either training set activity mean or test set activity mean 

have drawbacks. Therefore, the external predictive ability of the models should have 

information about the whole data set. They proposed Equation 3.2 to test the external 

predictive ability of the models, 
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where, iŷ  is the predicted test set compound, iy  is the observed value, try  is the mean of 

training set compounds, ntest  is the number of compounds in test set and ntr  is the number of 

compounds in training set. 

 

We adopted the criteria of Golbraikh et al. (2003) which correspond to OECD 

principle no 4 (OECD, 2007). Models were considered acceptable, if they satisfied all of the 

following conditions: 

  

I. 2

cvR  > 0.5 

II. 2R  > 0.6,  

III. 2

0R  or 
2'

0R  close to R
2
.   

i.e.: (a) (R
2
 −

2

0R )/ R
2
 < 0.1 and 0.85 ≤ k ≤ 1.15 or  

 (b)  R
2
 −

2'

0R )/ R
2
 < 0.1 and 0.85 ≤ k' ≤ 1.15  

IV. │
2

0R -
2'

0R │< 0.3,  

where 2R  is predicted vs. observed, 2'R  is observed vs. predicted, k and k' are slopes, 

2

0R  and 
2'

0R are squared correlation coefficients (without intercept). 
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3.3.4.  Outliers and Applicability Domain 

 

The presence of outliers in any model can significantly change its predictive power. 

There are a variety of methods to highlight outliers including identification of those 

compounds with significantly high standard residuals from regression-based techniques. We 

identify a compound as a response outlier in MLR models if its predicted value is higher than 

2.5 standard residuals. Standardized residuals are calculated as given in Equation 3.3.  

 

SRi = 
sd

yy ii
ˆ

 (3.3) 

 

where SRi is the standardized residual of the i
th

 compound, iŷ  is the predicted and yi is the 

observed toxicity value, and sd is the standard deviation of the errors. 

 

Additionally, chemicals structurally very influential in determining model parameters, 

i.e., creating leverage effect, were demonstrated in the Williams plot. The leverage of a 

chemical provides a measure of the distance of the chemical from the centroid of its training 

set. This graph is obtained by plotting hat values (h) versus standardized residuals to verify 

prediction reliability. In this approach, if the hat value of a test set compound is greater than 

the critical hat value (h*), then the compound is identified as structural outlier. Critical hat 

value is set at 3p/n, where p is the number of descriptors plus one and n is the number of 

compounds in the model (Papa, et al., 2007). If the vector of observed values is denoted by y 

and the vector of estimated values by ŷ, then ŷ =H y, where H is the hat matrix. Diagonal 

elements of the hat matrix are the leverage values. The hat matrix is given as H = X (X
T
 X)

-1
 X

T
 

where X is the design matrix consist of descriptors (Egan and Morgan, 1998). 

 

Compounds with normalized absolute error greater than 0.1 for training set and greater 

than 0.2 for the test set are considered as possible outliers in the CPNN models. These 

compounds with high absolute error require further processing as described by Mazzatorta et 

al. (2003). 
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Not a single model is expected to predict toxicity/property/activity of all the chemicals. 

In fact, predictions for chemicals of a well defined domain can be reliable. Therefore, defining 

an Applicability Domain (AD) of a model is necessary. The AD of MLR models was verified 

by using the ranges of descriptors and toxicity values, and the leverage approach. First, the 

range of the variables is defined, and then the leverage values were calculated for tuning of 

AD of linear models. Outliers having (i) high leverage and low discrepancy do not affect the 

regression line but tend to increase R
2
 and reduce the standard error; (ii) low leverage and high 

discrepancy tend to influence the intercept but not the slope of the regression or R
2
, while 

usually inflating the standard error; and (iii) both a high leverage and a high discrepancy 

influence the slope, the intercept, and the R
2
 value. Compounds in the external data set that are 

predicted due to overextrapolation of the model (i.e. fall outside the applicability domain) are 

detected when their leverage values are far from h*. Nonlinear model ADs are defined by only 

descriptor and toxicity ranges.  
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4.  RESULTS AND DISCUSSION 

 

 

The aim of present study was to compare linear and nonlinear techniques to derive 

predictive models for a freshwater algae and a fish toxicity of two diverse data sets of 

chemicals. After preprocessing of descriptors with the HM, a number of models that involve 

3-5 descriptors were obtained for these two organisms.  For each MLR model a separate 

nonlinear model was developed. In other words, CPNN models were trained by the descriptors 

appeared in corresponding linear models. Best 10 models for Chlorella vulgaris are given in 

section 4.1. and one  linear and one nonlinear model are given for the Oncorhynchus mykiss 

data set in Section 4.2. The total number of descriptors presented in all resulted models is 15. 

Table 4.1 presents the abbreviations and the full description of parameters previously selected.  

 

4.1.  MLR and CPNN Models for Chlorella Vulgaris 

 

Molecular descriptors obtained from the same software modeled with the toxicity 

separately or in combination with the other software descriptors provide 3-5 descriptor models 

with comparable statistical quality. Ten linear and nonlinear models were developed for 

Chlorella vulgaris. They were given in Table 4.2 and 4.3, respectively. The predictivity of 

MLR models was compared to CPNN models in terms of internal and external validation 

parameters. In general, CPNN models have higher correlation coefficient than MLR models 

for training sets. However, MLR models have higher cross-validation coefficients. If one 

considers test set correlation coefficient for predictive ability of the models, obviously MLR 

models have similar or superior R
2

test values than that of CPNN models. On the other hand, 

CPNN models have lower AAEs and RMSE for training sets compared to MLR models (Table 

4.2.). Furthermore, MLR and CPNN models produced using Spartan 06 descriptors together 

with the CRI had lower correlation coefficients compared to other models. Phenylazophenol 

appeared as a response outlier in five out of seven MLR models (Model no: 2, 3, 6, 7, and 10). 

All models were subjected to the test for the criteria of external validation as recommended by 

Golbraikh et al. (2003) (Table 4.4). All of the models are presented in Table 4.2 and Table 4.3 
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without any improvement (e.g., elimination of outliers) fulfilled all the criteria given in 

section3.3.3.It is interesting to note that BLTD48 is a common descriptor in all models when 

Dragon descriptors are used. Furthermore, electrophilicity (ω) appears as a common descriptor 

when Spartan descriptors are included in models. 

 

As it was stated in Section 3.2, the CRI appeared to be an important descriptor in our 

previous studies. Therefore, we forced the CRI to obtain models together with Spartan 

descriptors (model no: 3, 4, and 5) and Spartan and Dragon descriptors (model no 8 and 9). 

For the latter models, we also forced electrophilicity and BLTD48, which are frequently 

appearing descriptors from Spartan and Dragon software respectively, in model development. 
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Table 4.1. The abbreviations and full names of descriptors selected by the HM 

 

Descriptor Meaning of descriptor 
a
 Type 

DRAGON 5.4 
b
   

BLTD48 
Verhaar model of Daphnia base-line toxicity from 

MLOGP (mM) 
Molecular property 

X1sol Solvation connectivity index (
-1

) Connectivity index 

HOMT HOMA total Geometrical descriptor 

piPC07 Molecular multiple path count of order 07 Walk and path count 

ATS1m 
Broto-Moreau autocorrelation of a topological 

structure –lag 1 / weighted by atomic masses 
2D autocorrelation 

EEig05r 
Eigenvalue 05 from edge adj. matrix weighted by 

resonance integrals 
Adjacency index 

R4e 
R autocorrelation of lag 4/ weighted by atomic 

Sanderson electronegativities 
GETAWAY descriptor 

RDF080p 
Radial Distribution Function – 8.0 /weighted by 

atomic polarizabilities 
RDF descriptor 

HATS6m 
Leverage-weighted autocorrelation of lag 6/ 

weighted by atomic masses 
GETAWAY descriptor 

Mor27u 3D-MoRSE-signal 27/ unweighted 3D-MoRSE descriptor 

SPARTAN 06
 c
   

E Gas-phase energy 
Semi-empirical quantum 

chemical descriptor 

EHOMO Highest occupied molecular orbital energy 
Semi-empirical quantum 

chemical descriptor 

Electrophilicity 

(ω) 
Electronegativity

2
/(ELUMO-EHOMO)

  d
 

Semi-empirical quantum 

chemical descriptor 

   

V/A CPK Volume/CPK Area  Spatial descriptor 

CODESSA 2.2
 e
   

Max Partial 

Charge for a 

Carbon Atom 

 

Maximum partial charge for a carbon atom 
Electrostatic descriptor 

EXCEL 2003 & 

MATLAB 6
 f
 

  

CRI Characteristic root index 
Eigenvalue-based 

descriptor 

                                                
a Todeschini and Consonni (2000) ); b Talete (2006); c Wavefunction (2006); d LoPachin (2007); e Semichem 

(1996); f Mathworks (2000) 



 

 

31 

Table 4.2. Statistical summary of MLR models for Chlorella vulgaris. The models are numbered as cited in the text. 

 

    Training Set Test Set 

Model No 

Model 

 name Descriptors 

Training / 

test set R
2
 R

2
cv RMSE AAE R

2
 RMSE AAE 

1 D3 
ATS1m, BLTD48,  

piPC07 
64/27 .916 .901 .486 .299 .954 .450 .355 

2 D4 
ATS1m, BLTD48,  

EEig05r, R4e 
63/28 .939 .929 .463 .270 .937 .444 .348 

           

3 SCRI 3 V/A, ω, CRI 71/20 .736 .694 .767 .560 .888 .569 .442 

4 SCRI 4 V/A, ω, CRI, E 68/23 .818 .780 .667 .462 .886 .614 .494 

5 SCRI 5 
V/A, E, CRI, 

ω, EHOMO 
70/21 .842 .801 .612 .436 .926 .476 .383 

           

6 DS 3 
BLTD48,  

X1sol, ω 
64/27 .928 .914 .474 .307 .930 .427 .320 

7 DS 4 
BLTD48, X1sol,  

ω, HOMT 
61/30 .926 .906 .450 .301 .958 .357 .293 

           

8 
DS- 

CRI 3 
BLTD48, ω, CRI 63/28 .916 .904 .543 .306 .919 .580 .470 

9 
DS- 

CRI 4 

BLTD48, HOMT, 

ω, CRI  
66/25 .923 .906 .439 .301 .955 .352 .300 

           

10 DCS 4 
BLTD48, X1sol,  

MPC for a C, ω 
65/26 .923 .912 .433 .289 .965 .359 .299 

Bold model indicates the best 3-descriptor model. The abbreviations used for model names are as follows: D: Dragon descriptors; SCRI: Spartan descriptors 

and the CRI; DS: A combination of Dragon and Spartan descriptors; DS-CRI: Dragon and Spartan descriptors and the CRI; DCS: Dragon, Codessa, and 

Spartan descriptors; DCS-CRI: Dragon, Codessa and Spartan descriptors and the CRI. Note that the training and test sets are the same for the two methods. 
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Table 4.3. Statistical summary of CPNN models for Chlorella vulgaris. The models are numbered as cited in the text. 

 

    Training Set  Test Set  

Model 

No 

Model 

 name Descriptors 

Training / 

test set 

Network size 

and epochs R
2
 R

2
cv RMSE AAE R

2
 RMSE AAE 

1  D3 
ATS1m, BLTD48,  

piPC07 
64/27 8x8 200 .964 .757 .253 .159 .915 .633 .485 

2  D4 
ATS1m, BLTD48,  

EEig05r, R4e 
63/28 7x7 100 .955 .774 .309 .222 .929 .529 .433 

            

3  SCRI 3 V/A, ω, CRI 71/20 8x8 100 .937 .757 .325 .252 .893 .636 .474 

4  SCRI 4 V/A, ω, CRI, E 68/23 9x9 100 .958 .740 .235 .199 .896 .652 .493 

5  SCRI 5 
V/A, E, CRI, 

ω, EHOMO 
70/21 9x9 100 .950 .757 .274 .224 .857 .654 .520 

            

6  DS 3 
BLTD48,  

X1sol, ω 
64/27 8x8 200 .964 .846 .270 .178 .937 .474 .386 

7  DS 4 
BLTD48, X1sol,  

ω, HOMT 
61/30 8x8 800 .969 .774 .242 .133 .926 .506 .375 

            

8  
DS- 

CRI 3 
BLTD48, ω, CRI 63/28 8x8 200 .966 .828 .242 .138 .918 .702 .517 

9  
DS- 

CRI 4 

BLTD48, HOMT, 

ω, CRI  
66/25 8x8 800 .968 .774 .247 .151 .946 .414 .340 

            

10  DCS 4 
BLTD48, X1sol,  

MPC for a C, ω 
65/26 9x9 100 .960 .792 .233 .200 .886 .613 .460 

Bold model indicates the best 3-descriptor model. The abbreviations used for model names are as follows: D: Dragon descriptors; SCRI: Spartan descriptors 

and the CRI; DS: A combination of Dragon and Spartan descriptors; DS-CRI: Dragon and Spartan descriptors and the CRI; DCS: Dragon, Codessa, and 

Spartan descriptors; DCS-CRI: Dragon, Codessa and Spartan descriptors and the CRI. Note that the training and test sets are the same for the two methods. 
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Table 4.4. Additional statistics for the test set of MLR and CPNN models for Chlorella 

vulgaris 

 

Model 

No Name 

Te 

Ro
2
 

Te 

Ro' 
2
 

(R
2
 − R0

2
 )/ 

R
2
 k 

(R
2
 − R0' 

2
 )/ 

 R
2
  k' 

MLR 

1 DRG 3 0.923 0.930 0.032 0.913 0.026 1.045 

2 DRG 4 0.912 0.914 0.026 0.848 0.024 1.105 

        

3 SCRI 3 0.886 0.888 0.002 0.838* 0.000 1.060 

4 SCRI 4 0.886 0.886 0.000 0.932 0.000 0.951 

5 SCRI 5 0.913 0.917 0.014 0.902 0.010 1.027 

        

6 DS 3 0.918 0.921 0.013 0.925 0.010 1.005 

7 DS 4 0.950 0.952 0.009 0.903 0.007 1.061 

        

8 
DS- 

CRI 3 
0.885 0.890 0.037 0.928 0.031 0.991 

9 
DS- 

CRI 4 
0.950 0.952 0.005 0.971 0.003 0.983 

        

10 DCS 4 0.958 0.960 0.007 0.882 0.005 1.095 

CPNN 

1 DRG 3 0.843 0.865 0.078 0.884 0.055 1.035 

2 DRG 4 0.866 0.873 0.068 0.915 0.061 1.015 

        

3 SCRI 3 0.831 0.857 0.070 0.820 0.040 1.089 

4 SCRI 4 0.865 0.871 0.035 0.819 0.028 1.094 

5 SCRI 5 0.834 0.844 0.026 0.854 0.015 1.003 

        

6 DS 3 0.906 0.912 0.034 0.983 0.027 0.953 

7 DS 4 0.890 0.900 0.039 0.877 0.028 1.055 

        

8 
DS- 

CRI 3 
0.817 0.837 0.111 0.830 0.089 1.105 

9 
DS- 

CRI 4 
0.926 0.933 0.021 0.933 0.014 1.013 

        

10 DCS 4 0.858 0.870 0.032 0.847 0.018 1.046 

*The italic values are outside the criteria limits. 
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The CRI and X1sol are highly correlated descriptors. X1sol is also a measure of 

branching of the molecules as the CRI. On this account, we employed the CRI instead of 

X1sol in model 6 (given in Equation 4.1a) and used the same training and test sets to inspect 

performance of the CRI (Equation 4.1b) in toxicity modeling. Phenylazophenol appeared 

again as a response outlier with a high standardized residual (>3). The 95% confidence 

intervals are given in parentheses. All the -coefficients are significant at 95% level. 

 

pT = -5.583 (±0.225) - 0.949 (±0.060) BLTD48 + 0.272 (±0.042) X1sol + 0.298 

(±0.073)  ω 

n = 64,  R
2 
= 0.928, F3, 60 = 257, SE = 0.397 (4.1a) 

 

pT = -5.756 (±0.260) - 0.923 (±0.086) BLTD48 + 0.342 (±0.091) CRI + 0.594  

(±0.060)  ω 

n = 64,  R
2 
= 0.902, F3, 60 = 183, SE = 0.463 (4.1b) 

 

 

Table 4.5 Statistical summary of models with X1sol and the CRI 

 

 Training Set Test Set 

Model R
2
 

2

adjR  2

cvR  RMSE R
2
 RMSE 

2

3FQ  

Equation 4.1a 0.928 0.924 0.914 0.474 0.930 0.427 0.911 

Equation 4.1b 0.902 0.897 0.887 0.449 0.938 0.461 0.896 

After removal of outlier 

Equation 4.2a 0.937 0.934 0.926 0.354 0.935 0.424 0.893 

Equation 4.2b 0.920 0.915 0.906 0.401 0.939 0.468 0.890 

 

Removal of outlier in Equation 4.1a and Equation 4.1b resulted in Equations 4.2a and 

4.2b, respectively. Their correlation coefficients are comparable (Table 4.5). 
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pT = -5.597 (±0.208) – 0.956 (±0.056) BLTD48 + 0.246 (±0.040) X1sol + 0.333  

(±0.068)  ω 

n = 63,  R
2 
= 0.937, F3, 59 = 294, SE = 0.365 (4.2a) 

 

pT = -5.743 (±0.232) – 0.913 (±0.077) BLTD48 + 0.334 (±0.081) CRI + 0.599  

(±0.053)  ω 

n = 63,  R
2 
= 0.920, F3, 59 = 225, SE = 0.414 (4.2b) 

 

Our next attempt was to inspect CPNN models with the same descriptors and 

training/test set division and compare it with MLR model. To find the best performance for 3-

descriptor CPNN model, the trials for network and epoch combinations together with their 

statistical parameters are given in Table 4.6. 

 

Replacing X1sol with the CRI in CPNN model resulted in a comparable correlation 

coefficient (Table 4.6). A comparison of the overall statistical parameters of 3-descriptor MLR 

and CPNN models including the CRI with those of 3-descriptor MLR and CPNN models 

including X1sol showed that the latter models have better statistical parameters than the 

former models, although their correlation coefficients are comparable. 

 

Model 6 of MLR models from Table 4.2 is important because it gives high R
2
 (0.928) 

with a few variables and hence is considered relatively simple compared to other model, from 

which we get still high R
2
 (model 2, R

2 
= 0.939) but with 4 descriptors. Similarly, in CPNN 

models (Table 4.3), only 4-descriptor models have higher correlation coefficients than model 6 

has. 
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Table 4.6. Comparison of the best performance of two different 3-descriptor CPNN models for 

Chlorella vulgaris 

 

Training set Test set 

R Rcv Network Epochs R R
2
 RMSE 

BLTD48- ω- X1sol 

0.97 0.91 7x7 100 0.95624 0.91440 0.07480 

0.97 0.91 7x7 200 0.95300 0.90820 0.07700 

0.97 0.92 7x7 400 0.95276 0.90775 0.07716 

0.97 0.92 7x7 800 0.95275 0.90773 0.07712 

0.98 0.91 7x7 1000 0.95275 0.90773 0.07711 

0.97 0.92 8x8 100 0.97100 0.94285 0.06330 

0.98* 0.92 8x8 200 0.96812 0.93725 0.06622 

0.98 0.91 8x8 400 0.95275 0.90773 0.07712 

0.99 0.90 8x8 800 0.94910 0.90079 0.08142 

0.98 0.90 8x8 1000 0.95141 0.90519 0.07803 

BLTD48- ω-CRI 

R Rcv Network Epochs R R
2
 RMSE 

0.98 0.87 8x8 100 0.96338 0.92810 0.07022 

0.99 0.89 8x8 200 0.96493 0.93109 0.06933 

0.98 0.88 8x8 400 0.96500 0.93123 0.06959 

*The compared networks are written in bold. 

 

 

Having known that the use of few descriptors has important advantages when 

constructing regression equations, we performed a MLR analysis on the entire data set of 91 

compounds to develop a model with three descriptors appearing in model 6. The linear 3-

descriptor model and corresponding statistics is shown below (Equation 4.3).  
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pT = -5.640 (±0.183) - 0.988 (±0.048) BLTD48 + 0.226 (±0.033) X1sol + 0.371 

(±0.060) ω  

n = 91,  R
2 
= 0.928,  2

adjR  = 0.926,  2

cvR   = 0.921,  

 F3, 87 = 374,  SE = 0.400 (4.3) 

 

Equation 4.3 is a three variable equation with 92.1 % predicted variance and 92.6% 

explained variance. The 95% confidence intervals are given in parentheses. All the -

coefficients are significant at 95% level. Additionally, the small difference between 2

cvR and R
2
 

indicates a stable model. However, one response outlier was apparent in this model. This 

could be due to the unique structure of phenylazophenol. It should be noted that it is the only 

compound studied with an azo (-N=N-) group. Removal of this outlier resulted in a 

statistically more robust model given in Equation 4.4. 

 

pT = -5.642 (±0.173) - 0.988 (±0.046) BLTD48 + 0.211 (±0.031) X1sol + 0.394 

(±0.057) ω  

n = 90,  R
2 
= 0.935,  2

adjR  = 0.932,  
2

cvR   = 0.927,  

 F3, 86 = 410,  SE = 0.378 (4.4) 

 

The splitting of the original data set in a representative training set of 64 and a 

validation set of 27 was obtained by applying SOM. After many tries with different network 

architectures and number of epochs (Table 4.7), the Kohonen network constructed of 10x10 

neurons and 100 epochs were selected to obtain this ratio of training and test sets. The 

statistical parameters of the MLR model (model 6) developed based on these three variables 

are highlighted in Table 4.2. 

 

Phenylazophenol appeared in the list of training set compounds and has a large 

standardized residual (>2.5 s). The removal of this outlier resulted in Equation 4.2a. Finalized 

linear model do not have any response outliers. 
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Table 4.7. Kohonen division trials of data set for Chlorella vulgaris 

 

Architecture Network size Epochs 
Number of compounds in 

training/ test set 

1 10x10 100 64/27 

2 10x10 200 64/27 

3 11x11 100 69/22 

4 11x11 200 66/25 

5 12x12 100 68/23 

6 12x12 200 74/17 

 

 

pT = -5.597 (±0.208) - 0.956 (±0.056) BLTD48 + 0.246 (±0.040) X1sol + 0.333 

(±0.068)  ω 

n training = 63,  R
2 
= 0.937,  2

adjR  = 0.934, 
2

cvR  = 0.926,  F3, 59 = 294,  SE = 0.365; 

ntest = 27, R
2 
= 0.935,

 2

0R  = 0.919, SE = 0.440, 
2

3FQ = 0.893 (4.2a) 

 

The [(R
2
-R0

2
)/R

2
 and k values for Equation 4.2a are found to be within the acceptable 

range with values being equal to 0.014 and 0.916, respectively. The t-values for partial 

correlation coefficients in Equation 4.2a are -17.208, 6.193 and 4.876 for the BLTD48, X1sol 

and ω, respectively. On the basis of the t-values for the BLTD48, X1sol and ω, it can be 

concluded that BLTD48 explains the toxicity more than the others. An empirical descriptor 

BLTD48 is related to hydrophobicity and computed with Verhaar model of Daphnia base-line 

toxicity (48-h) from MLOGP (mM). X1sol is the solvation connectivity index, which 

represents the linear fragment of one carbon atom that is defined in order to model solvation 

entropy and to describe dispersion interactions occurring in solutions. This index coincides 

with the Randic connectivity index '  for the hydrocarbons (Todeschini and Consonni, 2000) 

and has a direct relationship with toxicity. Electrophilicity (chemical potential) is related to 

electron affinity (Todeschini and Consonni, 2000) and tells us about the global reactivity of 
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the studied molecules thereby having a direct relationship with toxicity as stated by Roy et al. 

(2005). 

 

The squared correlation coefficients of the training and test sets were 0.937 and 0.935, 

respectively. The R
2
 value of 0.935 for the prediction set indicates that the MLR model can 

explain 93% of the variances. A chance model has low ability to reproduce y-variable of the 

external test set molecules. The model shown in Equation 4.2a represents high external 

prediction ability, similar to self prediction ability. It is interesting to note that removing 27 

molecules as prediction set from the original data did not change the statistical quantity of 

Equation 4.2a and also slight changes were observed in the coefficients. This is a result of 

obtaining a representative training set with Kohonen network algorithm. 

 

For training set of 63 compounds, 7, 9, 21, and 63 fold cross validations were run using 

Weka 3.6.1 (Waikato, 2009). The overall results of random deletion study statistics are 

summarized in Table 4.8. 

 

Table 4.8. Leave-many-out cross validation results for Equation 4.2a. 

 

Number of compounds 

deleted 

Average 

2

LMOR  

Average 

RMSE 

1 0.926 0.385 

3 0.927 0.381 

7 0.929 0.376 

9 0.929 0.376 

 

Moreover, the model robustness was also checked by response randomization (Y-

scrambling). The toxicity values were shuffled randomly between the molecules and 

regression models were developed. Random shuffling of response was repeated several times 

(25) for Equation 4.2a. R
2
 values were between 0.002 and 0.173, and the average R

2
 was 
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0.044. The results confirm that the proposed model is well founded and not just the result of a 

chance correlation. 

 

The predicted vs. observed toxicity values of the training and test set compounds 

obtained from Equation 4.2a is shown in Figure 4.1. The outlier of the training set, 

phenylazophenol, is marked as a triangle in Figure 4.1.  

phenylazophenol
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Figure 4.1. Scatter plot of predicted vs. observed toxicity of the proposed MLR model for 

Chlorella vulgaris 

 

Outliers, in other words, compounds with high leverage values were shown in the 

Williams plot (Figure 4.2). Two structural outliers were apparent from the MLR model. 

Methidathion and piperine have higher leverage values than the critical hat value which is at 

0.190. Methidathion is the only sulfur-containing aromatic heterocyclic compound in the data 

set. Piperine has a saturated heterocyclic ring called piperidine. These compounds are from the 

training set and can be called influential chemicals which are important in developed model. 

However, compounds having high leverage and low discrepancy do not affect the regression 

line but tend to increase R
2
 and reduce the standard error and accepted as good leverage. Two 

test set compounds are appeared to have high leverage values: phosmet and malathion, 

however these compounds have very low residuals. For the test set, a leverage greater than h* 

means that the prediction is the result of substantial extrapolation of the model and could not 
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be reliable. It is interesting to note that the three of the four chemicals with high leverage 

values belong to the pesticides. 

 

For the comparison of linear and nonlinear models, a CPNN model was developed by 

using all of three descriptors appeared in Equation 4.1a using the same training and test 

compounds. Training set of 64 compounds was trained according to the parameters defined in 

Table 4.9. Different network and epochs (Table 4.10) were tried to find best architecture. 

Generally, a network having number of neurons (8x8 = 64) close to the number of compounds 

of the training set (64) is appropriate. As network size and epoch increase, possibility of 

overtraining (very high correlation coefficient) appears (Architecture no: 4, 9, and 10). 

Although Rcv of architecture no 6 is higher than that of no 2, its test set parameters are worse. 

Taking into account of best training and test set statistics simultaneously, i.e., high correlation 

coefficient and low RMSE while abstaining overtraining, the best performance was obtained 

using 8x8 network and 200 epochs. The scatter plot of predicted vs. observed values is 

illustrated in Figure 4.3. The squared correlation coefficients of the training and test sets are 

0.964 and 0.937, respectively (CPNN model 6  in Table 4.3), which are higher than the 

corresponding linear model. The resulted model has cross-validation coefficient 
2

cvR = 0.846 

and predictive 
2

3FQ  = 0.890. Three descriptors, BLTD48, X1sol, and electrophilicity were 

found to be important and sufficient in nonlinear modeling of algal toxicity. 
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Figure 4.2. Williams plot of Chlorella Vulgaris data set. Filled circles are training set 

compounds, empty circles are test set compounds. (h* = 0.19) 
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Table 4.9. Parameters used for CPNN model of Chlorella vulgaris 

 

Parameter Value Range 

random number for 

initialization 
1234 >0 

number of neurons in x 

direction 
8 1-35 

number of neurons in y 

direction 
8 1-35 

number of weights in each 

neuron 
4 1-1400 

toroid boundary conditions no yes; no 

type of neighborhood 

correction 
triangular 

flat; triangular;  

chef hat function; 

Mexican hat function 

furthest neuron for 

corrections 
8 1-8 

maximal correction factor 0.50 0.1-0.9 

minimal correction factor 0.01 
0.00-maximal correction 

factor 

epochs 200 1-∞ 
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Table 4.10. Trials to find the best performance of 3-decriptor CPNN model for 

Chlorella vulgaris* 

 

Architecture 

no 

Architecture Training set Test set 

Network Epochs R Rcv R
2
 RMSE 

1 8x8 100 0.97 0.92 0.943 0.0633 

2 8x8 200 0.98 0.92 0.937 0.0662 

3 8x8 400 0.98 0.91 0.907 0.0771 

4 8x8 800 0.99 0.90 0.901 0.0814 

5 8x8 1000 0.98 0.90 0.905 0.0780 

6 9x9 100 0.98 0.93 0.921 0.0734 

7 9x9 200 0.98 0.92 0.913 0.0720 

8 9x9 400 0.98 0.93 0.905 0.0740 

9 9x9 800 0.99 0.93 0.904 0.0752 

10 9x9 1000 0.99 0.92 0.904 0.0753 

* Statistics are obtained from normalized pT and descriptor values. 
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Figure 4.3. Scatter plot of predicted vs. observed toxicity values for the 3-descriptor CPNN 

model for Chlorella vulgaris (Model 6  in Table 4.3) 
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Compounds of the training set with an absolute error (AE) greater than 0.1 were 

analyzed as possible outliers of the model. Based on this criteria, possible outliers of 3-

descriptor CPNN model (Model 6  in Table 4.3) methidathion (no. 31) and thiometon (no. 68) 

located in neuron (8, 1) (Figure 4.4 (a)). These compounds are located in the same neuron 

because they have very similar descriptor values. If these compounds have the similar toxicity 

values, then we have a confirmation of our model. If their toxicity values differ essentially, 

there is an implication of real outliers. Selection of these outliers is made by inspecting 

toxicity values of the neuron containing possible outliers and surrounding neurons. Outlier 

selection procedure is simulated in Figure 4.4 (b). Since the compound no 31 (methidathion) 

has a very different toxicity than the other neighboring compounds, it is identified as an outlier 

and shown in Figure 4.3. The same compound has been reported as an outlier in kNN 

modeling of the same data set by Cronin et al. (2004). Reason for being an outlier of the model 

could be due to the fact that methidathion is the only compound with a sulfur-containing 

aromatic heterocyclic structure in the pesticide sub-set. None of the test set compounds had 

AE greater than 0.2, therefore test set do not have any outliers.  
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 (a) (b) 

Figure 4.4. Outlier analysis for CPNN model for 

Chlorella vulgaris (a) Top map of the training 

algorithm. Grey cells are occupied neurons, black neuron have the possible outlier(s). (b) In 

each cell, normalized toxicity value is under the compound number 

 

Methidathion was removed from the training set and using the same parameters as in 

Table 4.9, a new model was developed. We obtained R
2
 = 0.983 and 2

cvR  = 0.846 for training 

set and R
2
 = 0.912 and RMSE = 0.547 for the test set. Removing the outlier from training set 

resulted in higher R
2
, however test set R

2
 was decreased and RMSE was increased. It may be 

concluded that methidathion act as an influential chemical in the determination of model 

descriptors. Therefore, we proposed the final model including methidathion.  

 

AD of the proposed models (Equation 4.2a for MLR and model 6' for CPNN) is defined 

by the following limits given in Table 4.11. 

 

Table 4.11. Boundaries of the proposed MLR and CPNN models for Chlorella vulgaris 

 

 Training set  Test set 

   min  max min  max 

pT -4.06  3.10 -3.32  1.71 

Electrophilicity   1.04   5.37  0.993  5.17 

BLTD48 -5.05 -1.16 -5.68 -0.55 

X1sol  1.41 10.33   1.00 10.87 

 

Pesticides, the CAS numbers, descriptor values, their observed and predicted toxicity 

values to Chlorella vulgaris, and residuals obtained from both methods are given in Table 

4.12. 
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47 

Table 4.12 The CAS numbers, descriptors, observed and predicted toxicity values obtained from MLR (Equation 4.2a) and CPNN 

(Model no 6') for Chlorella vulgaris 

       
pTpred 

MLR CPNN 

Comp 
no 

CAS 
number 

Compound name ω BLTD48 X1sol pTobs 
from  

Eq 4.2a 
res 

from  
Model no 6' 

res 

Training set 

1 67-56-1 Methanol                           0.993 -0.55 1.000 -4.06 -4.49 0.43 -3.62 -0.44 

3 75-65-0 2-methyl-propan-2-ol               1.107 -2.08 2.000 -3.16 -2.75 -0.41 -3.62 0.46 

5 868-77-9 2-hydroxyethyl methacrylate 2.559 -1.73 4.181 -2.82 -2.06 -0.76 -2.79 -0.03 

7 96-33-3 Methyl acrylate                    2.830 -1.77 2.808 -2.75 -2.27 -0.48 -2.37 -0.38 

9 78-93-3 Butanone                           2.115 -1.94 2.270 -2.51 -2.48 -0.03 -2.37 -0.14 

10 80-62-6 Methyl methacrylate                2.529 -2.16 3.181 -2.24 -1.91 -0.33 -2.21 -0.03 

11 96-22-0 Pentan-3-one                       2.084 -2.33 2.808 -2.23 -1.98 -0.25 -2.37 0.14 

12 4170-30-3 Crotonaldehyde                     2.757 -1.84 2.414 -1.98 -2.33 0.35 -2.37 0.39 

13 6728-26-3 Trans-2-hexenal                    2.756 -2.59 3.414 -1.94 -1.36 -0.58 -1.95 0.01 

15 108-95-2 Phenol                             2.085 -2.75 3.394 -1.46 -1.44 -0.02 -1.46 0.00 

16 96-05-9 Allyl methacrylate                 2.295 -2.77 4.181 -1.42 -1.16 -0.26 -1.20 -0.22 

17 62-53-3 Aniline                            1.858 -2.75 3.394 -1.34 -1.51 0.17 -1.35 0.01 

18 110-43-0 2-heptanone                        2.101 -3.03 3.770 -1.18 -1.07 -0.11 -0.98 -0.20 

19 100-66-3 Anisole                            2.044 -3.09 3.932 -1.09 -0.99 -0.10 -0.98 -0.11 

20 367-12-4 2-fluorophenol                     2.398 -3.18 3.394 -1.08 -0.92 -0.16 -1.07 -0.01 

23 150-76-5 4-methoxyphenol                    2.017 -2.50 4.326 -0.97 -1.47 0.50 -1.20 0.23 

26 87-62-7 2,6-dimethylaniline                1.817 -3.40 4.215 -0.87 -0.70 -0.17 -0.36 -0.51 

27 100-52-7 Benzaldehyde                       2.900 -3.00 3.932 -0.81 -0.80 -0.01 -0.81 0.00 

30 98-95-3 Nitrobenzene                       3.637 -3.11 4.305 -0.78 -0.35 -0.43 -0.77 -0.01 

31 950-37-8 Methidathion                       5.172 -1.07 9.621 -0.73 -0.49 -0.24 0.12 -0.85 

32 106-44-5 4-cresol                           2.004 -3.09 3.788 -0.66 -1.04 0.38 -0.98 0.32 

34 104-87-0 4-tolualdehyde                     2.818 -3.32 4.326 -0.65 -0.42 -0.23 -0.30 -0.35 

35 94-71-3 2-ethoxyphenol                     2.093 -2.82 4.843 -0.62 -1.01 0.39 -0.62 0.00 
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Table 4.12 (continued) 

 

       
pTpred 

MLR CPNN 

Comp 

no 

CAS 

number 
Compound name ω BLTD48 X1sol pTobs 

from  

Eq 4.2a 
res 

from  

Model no 6' 
res 

36 24964-64-5 3-cyanobenzaldehyde            3.454 -2.65 4.864 -0.57 -0.72 0.15 -0.57 0.00 

37 99-08-1 3-nitrotoluene                     3.510 -3.45 4.698 -0.50 0.03 -0.53 -0.49 -0.01 

38 106-48-9 4-chlorophenol                     2.216 -3.34 4.076 -0.42 -0.66 0.24 -0.37 -0.05 

39 97-02-9 2,4-dinitroaniline                 4.013 -2.65 6.020 -0.36 -0.25 -0.11 -0.34 -0.02 

40 106-41-2 4-bromophenol                      2.348 -3.50 4.365 -0.35 -0.39 0.04 -0.09 -0.26 

41 106-40-1 4-bromoaniline                     2.150 -3.50 4.365 -0.33 -0.46 0.13 -0.33 0.00 

42 108-42-9 3-chloroaniline                    2.102 -3.34 4.076 -0.31 -0.70 0.39 -0.37 0.06 

43 2495-37-6 Benzyl methacrylate                2.323 -3.78 6.198 -0.21 0.32 -0.53 -0.16 -0.05 

44 618-87-1 3,5-dinitroaniline                 4.306 -2.65 6.003 0.03 -0.15 0.18 0.04 -0.01 

45 89-98-5 2-chlorobenzaldehyde               2.999 -3.57 4.631 0.06 -0.05 0.11 -0.30 0.36 

46 540-38-5 4-iodophenol                       2.536 -3.66 4.654 0.16 -0.11 0.27 -0.09 0.25 

48 58-27-5 2-methyl-1,4-naphthoquinone    3.927 -3.44 6.198 0.16 0.52 -0.36 0.19 -0.03 

49 88-69-7 2-isopropylphenol                  2.049 -3.70 4.715 0.17 -0.22 0.39 -0.36 0.53 

50 626-43-7 3,5-dichloroaniline                2.321 -3.91 4.759 0.24 0.09 0.15 0.26 -0.02 

51 603-71-4 1,3,5-trimethyl-2-nitrobenzene 3.045 -4.07 5.520 0.25 0.67 -0.42 0.62 -0.37 

53 88-18-6 2-tert-butyl phenol                2.022 -3.99 5.016 0.29 0.13 0.16 0.26 0.03 

54 95-50-1 1,2-dichlorobenzene                2.453 -4.62 4.382 0.37 0.72 -0.35 0.36 0.01 

55 99-65-0 1,3-dinirtobenzene                 4.737 -3.11 5.609 0.38 0.33 0.05 0.54 -0.16 

58 99-61-6 3-nitrobenzaldehyde                4.009 -2.85 5.236 0.45 -0.25 0.70 0.43 0.02 

60 298-00-0 Methylparathion                    4.753 -2.84 8.659 0.60 0.83 -0.23 0.97 -0.37 

62 99-30-9 2,6-dichloro-4-nitroaniline        3.540 -3.76 6.097 0.64 0.68 -0.04 1.06 -0.42 

64 121-14-2 2,4-dinitrotoluene                 4.526 -3.45 6.020 0.70 0.69 0.01 0.54 0.16 

65 2636-26-2 Cyanophos                          4.379 -2.55 8.287 0.79 0.34 0.45 0.78 0.01 
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Table 4.12 (continued) 

 

       
pTpred 

MLR CPNN 

Comp 

no 

CAS 

number 
Compound name ω 

BLTD4

8 
X1sol pTobs 

from  

Eq 4.2a 
res 

from  

Model no 6' 
res 

66 3531-19-9 6-chloro-2,4-dinitroaniline      4.150 -3.24 6.719 0.80 0.54 0.26 0.79 0.01 

67 99-28-5 2,6-dibromo-4-nitrophenol     3.851 -4.06 6.674 0.81 1.21 -0.4 0.82 -0.01 

68 640-15-3 Thiometon                          5.026 -2.24 7.852 0.94 0.15 0.79 0.12 0.82 

69 89-61-2 2,5-dichloronitrobenzene    3.680 -4.27 5.686 0.97 1.11 -0.14 0.98 -0.01 

70 94-62-2 Piperine                           3.046 -3.77 10.327 0.97 1.56 -0.59 1.02 -0.05 

71 939-97-9 4-tert-butylbenzaldehyde        2.814 -4.18 5.537 1.00 0.70 0.3 0.62 0.38 

72 634-93-5 2,4,6-trichloroaniline             2.415 -4.47 5.475 1.11 0.83 0.28 1.30 -0.19 

73 83-42-1 2-chloro-6-nitrotoluene            3.355 -4.02 5.415 1.17 0.70 0.47 1.16 0.01 

77 2463-84-5 Dicapthon 4.791 -3.40 9.359 1.36 1.55 -0.19 0.97 0.39 

78 128-37-0 2,6-di-tert-butyl-4-methyl phenol 1.897 -5.29 7.032 1.45 1.82 -0.37 1.83 -0.38 

79 3481-20-7 2,3,5,6-tetrachloroaniline         2.671 -4.76 6.191 1.48 1.37 0.11 1.30 0.18 

80 609-89-2 2,4-dichloro-6-nitrophenol      3.821 -3.76 6.097 1.50 0.77 0.73 1.06 0.44 

86 89-69-0 1,2,4-trichloro-5-nitrobenzene     3.882 -4.83 6.386 1.88 1.88 0.00 1.86 0.02 

87 6284-83-9 1,3,5-trichloro-2,4-dinitrobenzene 4.783 -4.57 7.724 1.89 2.27 -0.38 1.86 0.03 

89 90134-10-4 4-(dibutylamino) benzaldehyde 2.376 -4.62 8.312 2.18 1.66 0.52 1.83 0.35 

90 117-18-0 2,3,5,6-tetrachloronitrobenzene 3.922 -5.12 7.102 2.34 2.35 -0.01 2.33 0.01 

91 608-71-9 Pentabromophenol                   3.421 -5.68 8.351 3.10 3.03 0.07 3.05 0.05 

88 1689-82-3 Phenylazophenol 2.918 -3.86 7.343 2.16 0.87 1.29 2.12 0.04 

Test set 

2 64-17-5 Ethanol 1.041 -1.16 1.414 -3.32 -3.79 0.47 -3.62 0.30 

4 78-92-2 Butan-2-ol 1.122 -2.08 2.270 -2.98 -2.68 -0.30 -3.62 0.64 

6 818-61-1 2-hydroxyethyl acrylate 2.985 -1.37 3.808 -2.79 -2.36 -0.43 -2.79 0.00 

8 71-36-3 Butan-1-ol 1.058 -2.08 2.414 -2.73 -2.66 -0.07 -3.62 0.89 
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Table 4.12 (continued) 

 

       
pTpred 

MLR CPNN 

Comp 

no 

CAS 

number 
Compound name ω 

BLTD4

8 
X1sol pTobs 

from  

Eq 4.2a 
res 

from 

Model no 6' 
res 

14 1576-87-0 Trans-2-pentenal 2.756 -2.23 2.914 -1.88 -1.83 -0.05 -2.20 0.32 

21 348-54-9 2-fluoroaniline 2.130 -3.18 3.394 -1.05 -1.01 -0.04 -0.98 -0.07 

22 108-39-4 3-cresol 2.004 -3.09 3.788 -1.01 -1.04 0.03 -0.98 -0.03 

24 95-55-6 2-hydroxyaniline 1.868 -2.65 3.805 -0.91 -1.51 0.60 -1.35 0.44 

25 90-05-1 2-methoxyphenol 2.181 -2.50 4.343 -0.88 -1.41 0.53 -1.20 0.32 

28 95-48-7 2-cresol 2.066 -3.09 3.805 -0.81 -1.02 0.21 -0.98 0.17 

29 90-02-8 2-hydroxybenzaldehyde 2.879 -2.90 4.343 -0.80 -0.80 0.00 -0.81 0.01 

33 95-65-8 3,4-dimethylphenol 1.999 -3.40 4.198 -0.65 -0.65 0.00 -0.37 -0.28 

47 4748-78-1 4-ethylbenzaldehyde 2.838 -3.62 4.864 0.16 0.01 0.15 -0.30 0.46 

52 608-31-1 2,6-dichloroaniline 2.267 -3.91 4.793 0.26 0.07 0.19 0.27 -0.01 

56 51-28-5 2,4-dinitrophenol 4.387 -2.65 6.020 0.40 -0.12 0.52 0.04 0.36 

57 100-25-4 1,4-dinitrobenzene 5.078 -3.11 5.609 0.41 0.45 -0.04 0.54 -0.13 

59 732-11-6 Phosmet 4.860 -2.29 10.691 0.47 0.84 -0.37 0.97 -0.50 

61 121-75-5 Malathion 5.371 -1.79 10.543 0.64 0.50 0.14 0.12 0.52 

63 86-50-0 Methyl azinphos 5.073 -2.57 10.868 0.69 1.22 -0.53 0.97 -0.28 

74 5388-62-5 4-chloro-2,6-dinitroaniline 4.245 -3.24 6.719 1.19 0.57 0.62 0.79 0.40 

75 528-29-0 1,2-dinitrobenzene 4.722 -3.11 5.626 1.23 0.33 0.90 0.54 0.69 

76 100-00-5 1-chloro-4-nitrobenzene 3.780 -3.70 4.987 1.25 0.43 0.82 0.31 0.94 

81 83-38-5 2,6-dichlorobenzaldehyde 3.082 -4.13 5.331 1.50 0.69 0.81 0.62 0.88 

82 55-38-9 Fenthion 3.961 -3.69 9.255 1.56 1.53 0.03 0.97 0.59 

83 96-76-4 2,4-di-tert-butylphenol 1.942 -5.05 6.621 1.60 1.51 0.09 1.82 -0.22 

84 87-86-5 Pentachlorophenol 2.952 -5.03 6.907 1.69 1.89 -0.20 1.45 0.24 

85 122-14-5 Fenitrothion 4.603 -3.14 9.070 1.71 1.17 0.54 0.97 0.74 
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The descriptors used in the present study with those reported by Cronin et al. (2004) 

for describing the toxicity of the same compounds are coherent. They have reported 3- 

descriptor model in which they have selected two descriptors (log Kow and ELUMO) empirically 

as a result of their experience in modeling acute toxicity. The third descriptor appeared in their 

model was ∆
1

. As demonstrated in the literature (Pontolillo and Eganhouse, 2001), the 

octanol–water partition coefficient of a given compound could be subject to high variability 

due to the applied experimental procedure or the selected calculation method. Thus, the 

accuracy and quality of a QSAR model are often greatly affected by the specific log Kow used. 

Since BLTD48 appearing in our models is a hydropobicity related parameter like log Kow and 

calculated directly from the molecular structure, the use of this descriptor instead of log Kow 

will eliminate the drawbacks related to log Kow. Electrophilicity in our toxicity model 

coincides with ELUMO which quantifies the electrophilic potency of biochemically reactive 

compounds, whereas X1sol which is a type of connectivity index coincides with the third 

descriptor, ∆
1

, reported by Cronin et al. (2004).  

 

It is of our interest to compare the results of the optimized model with those of recently 

published studies in which QSTR models were developed using the same data set and using 

same number of descriptors (Table 4.13). Considering the whole data set, our MLR model 

reveals a better performance than its counterparts. 3-descriptor CPNN model seems to perform 

the best in terms of R
2
 for the training set. Of the results reported in Table 4.13, all of our 

models have lower errors than the other models. Additionally, in our MLR model 
2

cvR  and R
2 

of test set are better than those of reported by Cronin et al. (2004). The reason for this can be 

due to the different training/test set ratio. On the other hand, their nonlinear model parameters 

for the test set are slightly better than ours. It should be noted that their test set compounds is 

less than ours. The best 4-descriptor model developed in this study was compared with the 4-

descriptor model utilized by Roy and Gosh (2007). Both 4-descriptor MLR and CPNN models 

are superior to the 4-descriptor PLS model in terms of statistical parameters. 

 



 

Table 4.13. Comparison of different QSTR models of algae Chlorella vulgaris 

 

 3-descriptor Models 4-descriptor Models 

 Cronin et al., (2004) 
Roy and 

Gosh (2007) 
Present Study* 

Roy and 

Gosh (2007) 

 

Present Study 

 

Technique MLR kNN 
MLR (ETA 

descriptors) 
MLR CPNN 

PLS (ETA 

descriptors) 

Model no 

21 

MLR 

 
CPNN 

 

Full set    Eq. 4.3     

R
2
 0.890 0.824 0.849 0.928 -    
2

cvR  0.875 0.623 0.832 0.921 -    

SE 0.494 - 0.580 0.400 -    

F 235 - 163 374 -    
2

adjR  - - 0.844 0.926 -    

N 91 91 91 91     

         

Training set    Eq. 4.2a Model 6'  Model 2 Model 2' 

R
2
 0.892 0.824 - 0.937 0.964 0.915 0.939 0.955 
2

cvR  0.878 - - 0.926 0.846 0.897 0.929 0.774 

SE 0.496 0.623 - 0.365 -    

F 189 - - 294 - 169 225  

N 73 73  63 64 68 63 63 

         

Test set         

R
2
 0.901 0.941 - 0.935 0.937 0.812 0.937 0.929 
2

0R  0.860 0.937 - 0.919 0.906 -   

n 18 18  27 27 23 28 28 

*Results of present study are written in bold. 
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4.2.  MLR and CPNN Models for Oncorhynchus Mykiss  

 

The 3-descriptor MLR model developed for a small and heterogeneous data set 

without an outlier is given in Equation 4.5. HM selected three descriptors from Dragon 

software namely, HATS6m, Mor27u, and RDF080p and yielded the best MLR model for 

rainbow trout. The 95% confidence intervals are given in parentheses. All the -

coefficients are significant at 95% level. 

 

pT =  -0.491 (±0.134) – 2.534 (±0.231) HATS6m – 3.296 (±0.585) Mor27u +  

0.161 (±0.045) RDF080p 

 

n = 34, R
2 
= 0.837,  2

adjR  = 0.820, 
2

cvR  = 0.760,  

F3, 21 = 51.23,  SE = 0.461

 (4.5) 

 

Data set was split into training and test sets using Kohonen network. We wrote in 

bold the selected 6x6 network and 1000 epochs combination in Table 4.14.  

 

Table 4.14. Kohonen division trials of data set for Oncorhynchus mykiss 

 

Architecture Network size Epochs 
Number of compounds in 

training/ test set 

1 6x6 100 23/ 11 

2 6x6 200 22/ 12 

3 6x6 800 23/ 11 

4 7x7 100 27/ 7 

5 6x6 1000 25/ 9 

 

For the training set selected by Kohonen network described above, the following 

MLR model developed without an outlier. 
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pT =  -0.484 (±0.172) – 2.456 (±0.264) HATS6m – 2.605 (±0.796) Mor27u +  

0.139 (±0.056) RDF080p 

 

n training = 25,  R
2 
= 0.819,  2

adjR  = 0.794, 2

cvR  = 0.696,  

F3, 21 = 31.75,  SE = 0.486; 

ntest = 9, R
2 
= 0.867,

 
R0

2
 = 0.867, SE = 0.508, 2

3FQ = 0.817

 (4.6) 

 

The t-values for partial correlation coefficients in Equation 4.6 are 9.312, -3.274, 

and 2.467 for the HATS6m, Mor27u and RDF080p, respectively. On the basis of the t-

values, it can be concluded that HATS6m explains the toxicity significantly more than the 

others. 

 

The predicted vs. observed toxicity values of the training and test set compounds 

obtained from Equation 4.6 are shown in Figure 4.5. 
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Figure 4.5. Scatter plot of predicted vs. observed toxicity of the proposed MLR model 

for Oncorhynchus mykiss 

 

Descriptors appearing in proposed MLR model are all Dragon descriptors. 

Mor27u is a 3D-MoRSE-signal 27/unweighted descriptor which is calculated by summing 

atom weights viewed by a different angular scattering function. MoRSE (Molecule 

Representation of Structures based on Electron diffraction) descriptors are used in many 
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QSAR study. For instance, Mor27u was used by Gramatica et al. (2003) in a mutagenicity 

model. Their model pointed out the importance of structural descriptors. HATS6m is a 

GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) descriptor obtained 

from Dragon. This descriptor is leverage-weighted autocorrelation of lag 6/ weighted by 

atomic masses (lag is a topological distance equal to seven). Consonni et al. (2002) 

reported that the GETAWAY descriptors have an overall good modeling capability, 

proving their usefulness in QSAR/QSPR studies. HATS6m was successfully used in 

mitochondrial toxicity modeling with support vector machine (SVM) method combined 

with GA by Zhang et al. (2009). RDF descriptors are calculated from the radial 

distribution function of an ensemble of N atoms that can be interpreted as the probability 

distribution of finding an atom in a spherical volume of radius r. RDF080p is a radial 

distribution function descriptor weighted by atomic polarizabilities and take into account 

the atoms inside virtual spheres of 8.0 Ǻ spheres.  

 

The statistical parameters of MLR models were compared to those of CPNN 

models in terms of internal and external validation parameters (Table 4.15).  

  

Table 4.15. Statistical summary of MLR and CPNN models for Oncorhynchus mykiss 

 

 Training Set Test Set 

Network size 

and epochs R
2
 R

2
cv RMSE AAE R

2
 RMSE AAE 

MLR 

 0.819 0.696 0.445 0.386 0.867 0.448 0.376 

CPNN 

5x5   200 0.945 0.497 0.239 0.108 0.830 0.521 0.460 

 

 

The Golbraikh’s criteria results indicate a trend of underestimation of the toxicity 

for the test set compounds (Table 4.16). When inspecting the test set graphs of predicted 

vs. observed values both for MLR and CPNN (Figure 4.6 (a) and (b), respectively), it is 
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obvious that predicted values are compressed to about between -1 and 1 for both models. 

This may be due to the small size of test set. 

 

 

Table 4.16. Additional statistics for the test set of MLR and CPNN models for 

Oncorhynchus mykiss 

 

 

Te 

Ro
2
 

Te 

Ro' 
2
 (R

2
 − R0

2
 )/ R

2
 k (R

2
 − R0'

2
 )/ R

2
  k' 

MLR 0.867 0.867 0.000 0.651* 0.000 1.331 

CPNN 0.827 0.830 0.000 0.568 0.000 1.462 

* The italic values are outside the criteria limits. 
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Figure 4.6. Scatter plot of predicted vs. observed toxicity values of the test set compounds 

of proposed (a) MLR model (b) CPNN model 

 

 

For training set of 25 compounds, 5 and 8 fold cross validations were run using 

Weka 3.6.1 (Waikato, 2009). The overall results of random deletion study statistics are 

summarized in Table 4.17. 
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Table 4.17. Leave-many-out cross validation results for MLR model of  

Oncorhynchus mykiss 

 

Number of compounds 

deleted 

Average 

2

LMOR  

Average 

RMSE 

1 0.696 0.581 

3 0.667 0.608 

5 0.711 0.566 

 

Endosulfan seems to be an influential compound of the training set with a high 

leverage value as seen in the Williams plot (Figure 4.7). However, this compound was 

well predicted with a low residual. In this case, this compound is labeled as “good 

leverage” (Gramatica, 2007). On the other hand, although, endosulfan had higher leverage 

(h = 0.51) and yet closer to h* of 0.48, therefore, it is not considered structurally the most 

influential in determination of the model descriptors. The toxicity value of endosulfan is 

much higher than the compounds in the data set because endosulfan has significantly 

higher water solubility than other organochlorines (Walker et. al, 2006). It is likely that 

high toxicity of this compound is due to its water solubility. Being a high leverage 

compound is consistent with the fact that cyclodiene structure of endosulfan is very 

different than the structures of the other compounds in the aromatic chlorines set.   
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Figure 4.7. Williams plot of Oncorhynchus mykiss data set. Filled circles are training set 

compounds, empty circles are test set compounds (h* = 0.48) 

 

Moreover, the model robustness was also checked by response randomization (Y-

scrambling). The toxicity values were shuffled randomly between the molecules and 

regression models were developed. Random shuffling of response was repeated several 

times (25) for MLR equation. R
2
 values were between 0.007 and 0.302, and the average 

R
2
 was 0.078. The results reveal that the proposed model is well founded and not just the 

result of a chance correlation. 

 

A CPNN model was developed by using three descriptors appeared in Equation 

4.6. Training set of 25 compounds was trained according to the parameters defined in 
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Table 4.18. The best performance was obtained using 5x5 network architecture and 200 

epochs (Table 4.19). The squared correlation coefficients of the training and test sets are 

0.945 and 0.830, respectively. The resulted model has cross-validation coefficient 2

cvR = 

0.497 and predictive 2

3FQ  = 0.753. Predicted vs. observed values are illustrated in Figure 

4.8. Although statistical quality is sufficient, it is not superior to MLR model.  

 

Table 4.18. Parameters used for CPNN model of Oncorhynchus mykiss 

 

Parameter Value Range 

random number for 

initialization 
1234 >0 

number of neurons in x 

direction 
5 1-35 

number of neurons in y 

direction 
5 1-35 

number of weights in each 

neuron 
4 1-1400 

toroid boundary conditions no yes; no 

type of neighborhood 

correction 
triangular 

flat; triangular; chef hat 

function; Mexican hat function 

furthest neuron for 

corrections 
8 1-8 

maximal correction factor 0.50 0.1-0.9 

minimal correction factor 0.01 0.00-maximal correction factor 

epochs 200 1-∞ 
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Table 4.19. Trials to find the best performance of CPNN model for 

Oncorhynchus mykiss * 

 

Architecture 

no 

Architecture Training set Test set 

Network Epochs R Rcv R
2
 RMSE 

1 5x5 100 0.92 0.68 0.805 0.1009 

2 5x5 200 0.97 0.70 0.830 0.1006 

3 5x5 400 0.95 0.69 0.847 0.1130 

4 5x5 800 0.97 0.63 0.829 0.1006 

5 5x5 1000 0.96 0.70 0.536 0.1404 

6 6x6 100 0.98 0.60 0.826 0.1107 

7 6x6 200 0.98 0.64 0.859 0.0969 

8 6x6 400 0.98 0.64 0.774 0.1127 

9 6x6 800 0.98 0.65 0.796 0.1100 

10 6x6 1000 0.98 0.67 0.726 0.1009 

* Statistics are obtained from normalized pT and descriptor values. 

 

methidathion

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4

observed pT

p
r
e
d

ic
te

d
 p

T

Training set

Test set

Outlier

 

Figure 4.8. Scatter plot of predicted vs. observed toxicity values of the proposed CPNN 

model for Oncorhynchus mykiss 

 

Determination of outliers was done in three steps. First, we analyzed the absolute 

errors. Absolute errors greater than 0.1 for the training set and greater than 0.2 for the test 
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set were labeled as possible outliers. Compounds of the training set with an absolute error 

higher than 0.1 are listed in Table 4.20. 

 

Table 4.20. Possible outliers for the training set (AE > 0.1) 

 

ID name AE nx ny 

4 methidathion 0.102 3 5 

34 dicofol 0.103 3 5 

22 carbofuran 0.124 5 1 

25 pebulate 0.125 5 1 

 

In the second step, we analyzed if two or more compounds are located on the same 

neuron. These compounds are located in the same neuron because they have very similar 

descriptor values. Outlier selection procedure is simulated in Figure 4.9. 

 

Selection of these outliers is made by inspecting toxicity values of the neuron 

containing possible outliers and surrounding neurons. For the objects associated with 

neuron (5, 1) (Figure 4.9 (b)), it was not possible to determine an outlier because the 

neighboring neurons do not present a clear trend. Therefore, in this case, all the objects 

were kept. However, in neuron (3, 5) (Figure 4.9 (c)), compound no 4 (methidathion) has 

a very different toxicity value comparing with its neuron-mate and neighboring neurons. 

Thus, methidation is identified as outlier of this model. It is seen that this compound was 

underestimated by model. This might be due to the metabolite of methidathion or having 

different MOA. Another reason could be the structure of this compound because 

methidathion is the only compound with a sulfur-containing five-membered aromatic 

heterocyclic ring in the data set. The model may not be representing this compound with 

these descriptors. None of the test set compounds had AE greater than 0.2, therefore test 

set do not have any outliers. 

 

Methidathion was removed from the training set and using the same parameters as 

in Table 4.18, a new model was developed. We obtained R
2
 = 0.951 and 

2

cvR  = 0.429 for 
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training set and R
2
 = 0.858 and RMSE = 0.501 for the test set. Removing the outlier from 

training set resulted in higher R
2
; however cross-validation correlation coefficient dropped 

well below the acceptable limit (0.5). Although test set statistics are improved, because of 

the low 2

cvR  value, this model was not accepted.  

 

5      

4      

3      

2      

1      

 1 2 3 4 5 

 (a) 

 

(b) (c) 

Figure 4.9. Outlier analysis for CPNN model for Oncorhynchus mykiss (a) Top map of the 

training algorithm. Grey cells are occupied neurons; black neurons have the possible 

outlier(s). Neurons near neuron (5,1) (b) and (3,5) (c). In each cell, normalized toxicity 

value is under the compound number 

 

Since MLR and CPNN models have the same training and test sets, both models 

have the same AD. AD of models is defined by the following limits given in Table 4.21. 
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Pesticides, the CAS numbers, descriptor values, their observed and predicted 

toxicity values to Oncorhynchus mykiss, and residuals obtained from both methods are 

given in Table 4.22. 

 

Table 4.21. Boundaries of the proposed MLR and CPNN models for Oncorhynchus 

mykiss 

 

 Training set Test set 

   min  max min  max 

pT -1.62 3.09 -2.10 1.70 

RDF080p  0.00 6.92  0.00 6.31 

HATS6m  0.00 1.66  0.00 0.38 

Mor27u -0.11 0.39 -0.11 0.45 

 

Studies done with the same species and similar compounds were inspected. The 

statistical fits of these models are much lower than our models have. Furthermore, they 

generally lack external validation.  

 

Bermudez-Saldana et al. (2005) studied the toxicity in fish of pesticides. They 

estimated retention factors of pesticides to use them as descriptors in toxicity prediction 

models. Aquatic toxicity of pesticides having only one type of MOA (non-polar narcosis) 

excluding endosulfan was modeled. They demonstrated that retention factors are useful 

parameters in fish toxicity estimation of non-polar narcosis compounds. However, this 

finding was not validated by an external test set. Another drawback of their model is the 

retention factors. This descriptor is obtained by an experiment and not available for all 

chemicals. Although this descriptor seems to be effective, this parameter has a drawback 

of being an experimental parameter, and it is preferably obtained from the same lab to 

reduce the experimental errors. Their model covering only one type of MOA is expected 

to have high statistical quality. On the other hand, our models with a more diverse data 

set (including both carbamates and organophosphorous pesticides), are more valuable. 

The compounds in our data set have two types of MOA, non-polar narcosis and AChE 

inhibitors.  
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Table 4.22 The CAS numbers, descriptors, observed and predicted toxicity values obtained from MLR and CPNN models for 

Oncorhynchus mykiss 

 Training set 
 

   
 

pTpred 

MLR CPNN 

Comp 

no 
CAS number Compound name RDF080p HATS6m Mor27u pTobs 

from  

Eq 4.6 
res 

Proposed 

model 
res 

1 10265-92-6 Methamidophos 0.000 0.000 0.199 -1.3979 -1.002 0.395 -1.399 0.000 

2 52-68-6 Trichlorfon 0.000 0.222 0.040 0.0758 -0.043 -0.119 0.078 0.000 

4 950-37-8 Methidathion 3.164 0.775 0.040 1.8539 1.756 -0.098 1.327 -0.529 

5 121-75-5 Malathion 6.920 0.160 0.133 0.9547 0.527 -0.428 0.954 0.000 

6 732-11-6 Phosmet 4.206 0.369 0.289 0.2764 0.255 -0.021 0.275 0.000 

7 298-00-0 Parathion-methyl 0.788 0.159 0.163 -0.5077 -0.408 0.099 -0.508 0.000 

8 29232-93-7 Pirimiphos-methyl 2.725 0.134 0.109 0.1646 -0.059 -0.224 0.166 0.000 

10 5598-13-0 Chlorprifos-methyl 0.797 1.095 0.336 0.9208 1.441 0.520 0.923 0.000 

11 333-41-5 Diazinon 2.869 0.125 -0.106 0.1972 0.499 0.302 0.068 -0.130 

12 55-38-9 Fenthion 0.666 0.153 0.127 0.0757 -0.346 -0.422 0.073 -0.005 

14 56-72-4 Coumaphos 3.890 0.147 -0.091 -0.0627 0.656 0.719 0.068 0.130 

15 2921-88-2 Chlorpyrifos 1.886 0.675 -0.036 1.8468 1.530 -0.316 1.845 0.000 

16 23135-22-0 Oxamyl 1.080 0.080 0.107 -0.6477 -0.416 0.232 -0.648 0.000 

17 1646-88-4 Aldoxycarb 0.944 0.091 0.386 -1.6232 -1.135 0.489 -1.622 0.000 

18 16752-77-5 Methomyl 0.790 0.070 0.270 -0.1761 -0.905 -0.729 -0.176 0.000 

21 17804-35-2 Benomyl 3.850 0.099 0.100 0.6383 0.035 -0.603 0.638 0.000 

22 1563-66-2 Carbofuran 0.552 0.070 -0.017 0.4202 -0.191 -0.611 -0.223 -0.643 

24 2212-67-1 Molinate 1.429 0.053 0.020 -0.9191 -0.207 0.712 -0.917 0.000 

25 1114-71-2 Pebulate 0.440 0.049 0.000 -0.8692 -0.302 0.567 -0.223 0.648 

27 99-30-9 Dicloran 0.000 0.064 0.016 -0.2041 -0.369 -0.164 -0.223 -0.021 

28 95-50-1 1,2-Dichlorobenzene 0.000 0.000 -0.034 -0.1987 -0.395 -0.197 -0.223 -0.026 

30 33213-65-9 Endosulfan 0.000 1.661 0.322 3.0889 2.756 -0.332 3.089 0.000 

32 3547-04-4 DDE 2.961 0.601 0.087 1.301 1.178 -0.123 1.327 0.026 

33 72-54-8 DDD 1.279 0.438 0.018 1.1549 0.723 -0.432 1.151 -0.005 

34 115-32-2 Dicofol 3.651 0.776 0.136 0.7922 1.576 0.784 1.327 0.534 
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Table 4.22 (continued) 

       pTpred 

Test set      MLR CPNN 

Comp 

no 
CAS number Compound name RDF080p HATS6m 

Mor27

u 
pTobs 

from  

Eq 4.6 
res 

Propos

ed 

model 

res 

3 60-51-5 Dimethoate 0.811 0.197 0.207 -0.8337 -0.427 0.407 -0.508 0.326 

9 2642-71-9 Azinphos-ethyl 6.305 0.182 -0.045 1.6990 0.957 -0.742 0.954 -0.745 

13 2310-17-0 Phosalone 2.499 0.379 -0.105 0.8239 1.068 0.244 0.070 -0.754 

19 23103-98-2 Pirimicarb 1.555 0.070 0.448 -2.0934 -1.263 0.830 -1.621 0.473 

20 114-26-1 Propoxur 0.638 0.113 0.231 -0.9138 -0.720 0.194 -0.178 0.736 

23 63-25-2 Carbaryl 2.697 0.056 0.045 -0.1537 -0.089 0.065 0.190 0.344 

26 108-90-7 Chlorobenzene 0.000 0.000 0.012 -0.7724 -0.515 0.257 -0.223 0.550 

29 106-46-7 1,4-Dichlorobenzene 0.000 0.000 0.000 -0.0492 -0.484 -0.435 -0.223 -0.174 

31 120-82-1 1,2,4-Trichlorobenzene 0.000 0.000 -0.035 -0.1847 -0.393 -0.208 -0.223 -0.038 
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Mazzatorta et al. (2005) modeled 274 chemicals with 319 descriptors employing 

MLR, PLS, and BPNN. These models cannot comparable to ours because of the number of 

descriptors. Another model with seven descriptors was developed using GA-CPNN 

combination. Their training and test set correlation coefficients and RMSEs for training 

and test sets are 0.81, 0.79, 0.68, and 0.73, respectively. Our CPNN model reveals better 

statistical fit and predictive ability with the corresponding results as 0.945, 0.830, 0.239 

and, 0.521.Their data whose details were not elucidated may explain this statistical 

difference. 

 

Bermudez-Saldana and Cronin (2006) modeled toxicity of 75 pesticides covering 

organophosphates and carbamates. They started with a set of 75 compounds and remove 

five of them for several reasons (eg. volatility and degradation possibilities, low water 

solubility, etc.). MLR modeling of these 70 compounds with five descriptors resulted in 

four outliers and a poor statistical output. The final model has somewhat acceptable 

statistical fit; n = 66, 2

adjR  = 0.71, 
2

cvR  = 0.69, and SE = 0.68 with four descriptors. They, 

then, divide the data set into two groups according to their MOA: specifically acting 

compounds and non-specifically acting compounds. MOA based models had relatively 

better statistical fits. For instance, specifically acting pesticides have the model: n = 49, 

2

adjR  = 0.73, 
2

cvR  = 0.69 and SE = 0.70 with three descriptors. In their study, a test set for 

external validation to measure predictive ability is not available. 

 

Slavov et al. (2008) modeled 125 aromatic compounds obtained form ECOTOX 

database of EPA. The results include 2D and 3D QSAR analyses. They obtained a 

multilinear QSAR equation using 96 compounds out of 125. The forward stepwise 

multilinear regression resulted in a 3-descriptor model which has a low correlation 

coefficient. Moreover, scrutiny of predictive ability of model was not performed with a 

test set. They concluded that the electrostatic interactions are of much lesser importance 

for the aquatic toxicity than the steric interactions. Due to the moderate quality of the 2D-

QSAR model, they split the data set into training and test sets to apply CoMFA 

(Comparative molecular field analysis) for 3D analysis. The PLS analysis for the steric 

interactions resulted in much higher statistical significance. They again concluded that 
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steric interactions play more important role than the electrostatic one for the aquatic 

toxicity. They emphasize that the CoMFA produces highly predictive models. 

Nevertheless, drawback of their model is that it is good for only data sets of similar 

compounds. Our data set has both aromatic and aliphatic compounds; therefore, it is more 

diverse than their data set. 
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5.  CONCLUSIONS 

 

 

The quality of prediction is sensitive to the dependence of various parameters such 

as response variable being considered on structural specificity/ diversity present in the data 

set, data set size, type of descriptors, statistical techniques used, and the range of response 

values. Therefore, in this thesis, all these parameters were kept constant in modeling 

toxicity of freshwater algae Chlorella vulgaris and Oncorhynchus mykiss except the 

statistical techniques used. 

 

The contribution of this study is to obtain a very large number of descriptors with 

only knowledge of the three- dimensional structure of chemicals available through various 

specialized software packages to enable an efficient variable selection procedure like 

heuristic; and a training-test set splitting methodology like Kohonen networks and to 

compare the outputs of linear and nonlinear modeling applied to these data sets. MLR 

(linear) and CPNN (nonlinear) were used to model the structure and toxicity relationships. 

Both methods with three descriptors resulted in useful MLR and CPNN models with good 

generalization and prediction ability as it was measured by cross-validation and application 

of it to predict the toxicity of compounds in the test set. These models have a conclusive 

mechanistic interpretation since the descriptors used in the model are considered as 

relevant to toxicity. Their mechanistic meanings reflect the same mechanisms as stated in 

the literature. The proposed models have been proved to fulfill the fundamental points set 

down by OECD principles for regulatory QSAR acceptability. These models could be used 

to predict reliable toxicities for only those compounds with unknown toxicity belonging to 

the AD of the models.  

 

Data sets which are more homogeneous are expected to have better statistical fit.  

Although Chlorella vulgaris data set is more diverse, Chlorella vulgaris models have 

much better statistical fits than Oncorhynchus mykiss models. This might be probably due 

to the source of the data set. Chemicals of Chlorella vulgaris models came from the same 

laboratory, yet Oncorhynchus mykiss data set was compiled from ECOTOX. As apprised 
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in Section 2, bioassay results from different labs may have different test conditions and 

should be undertaken attentively.  

 

Proposed models for Chlorella vulgaris have various descriptors from the used 

software packages. However, in Oncorhynchus mykiss models, Dragon descriptors 

suppressed the other descriptors. The CRI is a significant descriptor in Chlorella vulgaris 

models, whereas it did not appear in Oncorhynchus mykiss models. 

 

Phenylazophenol was an outlier in the proposed MLR model for Chlorella vulgaris. 

The reason might be its unique structure in the data set. Methidathion and piperine with a 

high leverage value in the training set can be classified as influential chemicals in 

determination of the model descriptors, but they are accepted as good leverages since they 

are better predicted with small prediction residues. Note that, methidathion is a pesticide. 

Additionally, malathion and phosmet are high leverage compounds of the test set again are 

pesticides. However, none of the compounds in the external validation data had leverage 

values far from methidathione. Predicted values for these compounds are not obtained due 

to over extrapolation, but also their absolute residuals were small. 

 

Methidathion appeared to be a response outlier in both CPNN models of Chlorella 

vulgaris and Oncorhynchus mykiss data sets. Therefore, care should be taken while using 

CPNN models for the prediction of toxicity of compounds having a structural similarity to 

methidathion. Endosulfan is the high leverage compound of Oncorhynchus mykiss training 

set. Although endosulfan has a much higher toxicity than other chemicals in the 

organochlorines subset, both of our models are able to make precise estimations. 

Additionally, endosulfan had higher leverage (h = 0.51) and yet closer to h* of 0.48, 

therefore, it may not be considered structurally the most influential in determination of the 

model descriptors. 

 

We investigated the linear and nonlinear models of Chlorella vulgaris and 

Oncorhynchus mykiss data sets. Training sets of CPNN models generally have higher 

correlation coefficients and lower RMSEs than MLR models. On the other hand, MLR 

models have higher cross-validation values. It can be concluded that correlation 
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coefficients and cross-correlation coefficients are not proportional in both methods. 

Additionally, test sets of MLR models generally have higher correlation coefficients. This 

may be interpreted as MLR models have higher predictive abilities. If one considers 

models in the outlier aspect, MLR and CPNN models have somewhat similar outlooks. 

However, unlike MLR models, removing outliers did not improve the statistical quality of 

the CPNN models. 

 

Nonlinear modeling methods such as CPNN are effective in complex and diverse 

data sets with high number of compounds which are from various chemical classes and 

different MOAs. The Chlorella vulgaris data set is relatively more diverse data set than 

fish data set. In this aspect we can say that CPNN successfully covered phenylazophenol 

compound which is an outlier in MLR model. 
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Appendix A Significant descriptors of Chlorella vulgaris data set     

Comp 

No 
HOMT 

Max 

Partial 

Charge for 

a C Atom 

CRI ATS1m R4e EEig05r piPC07 E ω EHOMO Z 

1 0.000 0.000 0.447 0.847 0.000 0.000 0.000 -2.250 0.993 -11.138 0.666 

2 0.000 0.000 0.924 1.204 0.375 0.000 0.000 -2.547 1.041 -11.127 0.724 

3 0.000 0.000 1.623 1.674 2.402 0.000 0.000 -3.091 1.107 -11.277 0.795 

4 0.000 0.000 1.583 1.674 1.506 0.000 0.000 -3.058 1.122 -11.231 0.793 

5 -0.875 0.082 1.965 2.335 1.323 0.000 0.000 -5.283 2.559 -10.738 0.837 

6 -0.353 0.081 1.583 2.233 0.819 -0.052 0.000 -4.933 2.985 -10.795 0.826 

7 -0.411 0.080 1.136 1.945 0.911 -0.734 0.000 -2.922 2.830 -11.067 0.790 

8 0.000 0.000 1.580 1.674 1.245 0.000 0.000 -3.020 1.058 -11.011 0.807 

9 0.000 0.033 1.403 1.674 1.060 0.000 0.000 -2.510 2.115 -10.654 0.789 

10 -0.984 0.080 1.504 2.079 1.684 -0.301 0.000 -3.266 2.529 -10.754 0.829 

11 0.000 0.034 1.816 1.846 1.198 -0.618 0.000 -2.723 2.084 -10.534 0.828 

12 -0.290 0.037 1.161 1.674 0.756 0.000 0.000 -1.255 2.757 -10.485 0.785 

13 -0.290 0.038 1.955 1.990 1.163 -0.215 0.000 -1.704 2.756 -10.490 0.819 

14 -0.317 0.038 1.585 1.860 0.869 -0.717 0.000 -1.469 2.756 -10.500 0.805 

15 5.897 0.026 1.353 2.200 0.705 0.000 0.000 -0.940 2.085 -9.175 0.858 

16 -1.059 0.081 1.990 2.302 1.631 0.000 0.000 -2.389 2.295 -10.379 0.831 

17 5.894 0.000 1.404 2.100 1.130 0.000 0.000 0.924 1.858 -8.609 0.853 

18 0.000 0.033 2.548 2.120 1.415 0.098 0.000 -3.225 2.101 -10.625 0.848 

19 5.894 0.024 1.607 2.268 0.747 0.185 2.784 -0.628 2.044 -9.140 0.876 

20 5.832 0.061 1.369 2.294 0.772 0.375 0.000 -2.837 2.398 -9.432 0.856 

21 5.778 0.063 1.447 2.277 1.288 0.222 2.151 -0.945 2.130 -8.776 0.853 

22 5.879 0.026 1.760 2.233 1.241 0.432 0.000 -1.341 2.004 -8.951 0.866 

23 5.828 0.029 1.719 2.398 0.895 0.587 2.784 -2.558 2.017 -8.710 0.868 

24 5.749 0.032 1.541 2.251 1.341 0.233 2.151 -0.948 1.868 -8.382 0.853 

25 5.797 0.039 1.764 2.398 1.126 0.578 3.169 -2.521 2.181 -9.140 0.866 

26 5.732 0.000 2.176 2.319 1.439 0.653 2.784 0.230 1.817 -8.478 0.884 

27 5.106 0.040 1.546 2.233 0.822 0.280 3.446 -0.462 2.900 -10.050 0.871 

28 5.828 0.027 1.755 2.233 1.336 0.243 2.151 -1.314 2.066 -9.062 0.874 
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Appendix A (continued)         

Comp 

No 
HOMT 

Max 

Partial 

Charge for 

a C Atom 

CRI ATS1m R4e EEig05r piPC07 E ω EHOMO Z 

29 5.534 0.044 1.651 2.367 0.972 0.666 3.663 -2.539 2.879 -9.351 0.884 

30 5.921 0.040 1.527 2.423 0.905 0.254 4.123 0.630 3.637 -10.602 0.855 

31 0.000 0.091 2.758 3.718 1.445 1.518 3.761 -4.672 5.172 -9.552 0.861 

32 5.872 0.026 1.734 2.233 1.302 0.000 0.000 -1.341 2.004 -8.951 0.866 

33 5.838 0.026 2.111 2.335 1.396 0.450 2.151 -1.712 1.999 -8.894 0.880 

34 5.143 0.040 1.902 2.335 1.393 0.733 3.446 -0.877 2.818 -9.756 0.877 

35 5.776 0.039 2.231 2.485 0.837 0.920 3.524 -2.786 2.093 -9.012 0.886 

36 4.896 0.040 1.798 2.442 0.869 1.368 4.627 1.091 3.454 -10.348 0.880 

37 5.777 0.040 1.950 2.508 1.308 0.596 4.407 0.220 3.510 -10.275 0.863 

38 5.930 0.035 1.805 2.423 0.721 0.000 0.000 -1.231 2.216 -9.009 0.861 

39 5.620 0.051 1.874 2.816 1.654 2.000 5.139 0.204 4.013 -9.867 0.859 

40 5.931 0.028 2.325 2.707 0.703 0.000 0.000 -0.613 2.348 -9.312 0.865 

41 5.889 0.020 2.398 2.696 1.173 0.000 0.000 1.245 2.150 -8.781 0.860 

42 5.893 0.034 1.889 2.409 1.194 0.318 0.000 0.625 2.102 -8.760 0.856 

43 4.908 0.081 2.748 2.708 1.589 2.000 4.095 -2.028 2.323 -9.742 0.885 

44 5.815 0.048 1.908 2.816 1.493 2.000 5.316 0.314 4.306 -9.872 0.845 

45 4.933 0.045 2.013 2.508 0.903 0.567 3.663 -0.693 2.999 -9.706 0.881 

46 5.843 0.027 2.682 2.939 0.681 0.000 0.000 -0.016 2.536 -8.840 0.874 

47 5.147 0.040 2.380 2.428 1.367 1.372 4.095 -1.076 2.838 -9.830 0.882 

48 1.036 0.047 2.527 2.751 1.370 2.040 5.507 -1.373 3.927 -10.255 0.929 

49 5.805 0.027 2.532 2.428 1.607 0.692 3.663 -1.722 2.049 -9.046 0.908 

50 5.872 0.040 2.371 2.644 1.178 0.473 0.000 0.339 2.321 -8.910 0.859 

51 5.847 0.040 2.707 2.658 1.468 0.990 4.343 -0.405 3.045 -10.040 0.872 

52 5.719 0.044 2.406 2.644 1.356 0.473 2.784 0.361 2.267 -8.738 0.872 

53 5.747 0.027 2.868 2.512 2.228 0.713 3.992 -1.838 2.022 -9.012 0.930 

54 5.864 0.048 2.187 2.557 0.574 0.160 2.151 0.483 2.453 -9.294 0.871 

55 5.733 0.045 1.772 2.744 1.109 2.000 5.094 0.400 4.737 -11.470 0.851 

56 5.732 0.059 1.809 2.826 1.241 2.000 5.139 -1.523 4.387 -10.948 0.841 
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Appendix A (continued)        

Comp 

No 
HOMT 

Max 

Partial 

Charge for 

a C Atom 

CRI ATS1m R4e EEig05r piPC07 E ω EHOMO Z 

57 5.706 0.043 1.696 2.744 1.205 2.000 5.440 0.440 5.078 -11.304 0.850 

58 4.829 0.042 1.818 2.611 1.032 1.542 4.808 -0.807 4.009 -10.869 0.864 

59 6.194 0.069 3.154 3.717 1.664 2.389 5.514 -5.734 4.860 -9.360 0.889 

60 5.846 0.042 2.701 3.480 1.586 2.000 5.220 -6.097 4.753 -9.809 0.870 

61 0.000 0.085 4.121 3.688 1.095 1.956 3.219 -11.573 5.371 -9.706 0.839 

62 5.692 0.051 2.578 2.909 1.578 1.157 4.766 -0.014 3.540 -9.416 0.865 

63 7.487 0.076 3.391 3.726 1.600 2.433 5.586 -2.160 5.073 -9.515 0.887 

64 5.642 0.046 2.084 2.806 1.597 2.000 5.139 0.088 4.526 -11.190 0.859 

65 5.863 0.032 2.672 3.413 1.247 1.553 5.094 -4.209 4.379 -9.568 0.893 

66 5.181 0.056 2.407 2.979 1.856 2.203 5.388 0.000 4.150 -9.784 0.867 

67 5.751 0.053 2.084 3.255 1.037 1.099 4.766 -0.517 3.851 -10.288 0.872 

68 0.000 0.000 2.352 3.536 1.208 1.220 1.946 -4.732 5.026 -9.378 0.848 

69 5.879 0.060 2.448 2.844 1.445 0.826 4.495 0.259 3.680 -9.778 0.866 

70 5.640 0.056 4.597 3.264 1.672 2.480 5.715 -2.692 3.046 -8.769 0.939 

71 5.132 0.040 3.030 2.590 2.304 1.603 4.766 -1.424 2.814 -9.813 0.915 

72 5.823 0.049 2.939 2.834 1.357 0.473 2.784 0.087 2.415 -8.719 0.873 

73 5.858 0.045 2.368 2.723 1.531 0.981 4.577 0.140 3.355 -9.944 0.873 

74 4.867 0.056 1.987 2.979 2.052 2.000 5.388 0.055 4.245 -9.464 0.874 

75 5.143 0.057 1.811 2.744 1.148 2.000 4.868 1.076 4.722 -11.323 0.872 

76 5.814 0.043 1.972 2.655 0.919 0.598 4.123 0.366 3.780 -10.221 0.858 

77 5.815 0.054 3.170 3.567 1.587 2.235 5.360 -6.260 4.791 -9.820 0.886 

78 5.557 0.029 4.727 2.853 2.290 2.285 5.124 -2.945 1.897 -8.699 0.955 

79 5.800 0.063 3.163 2.994 1.364 1.055 3.446 -0.112 2.671 -8.911 0.884 

80 5.460 0.063 2.548 2.918 1.083 1.110 4.766 -1.867 3.821 -9.545 0.872 

81 4.809 0.050 2.447 2.724 0.988 0.629 3.841 -0.845 3.082 -9.523 0.893 

82 5.731 0.032 3.219 3.542 1.279 1.532 4.915 -6.026 3.961 -8.689 0.901 

83 5.747 0.027 4.291 2.793 2.412 2.152 4.868 -2.838 1.942 -8.844 0.951 

84 5.556 0.078 3.699 3.139 0.869 1.220 3.841 -2.094 2.951 -9.136 0.891 



 

 

81 

 

Appendix A (continued)        

Comp 

No 
HOMT 

Max 

Partial 

Charge for 

a C Atom 

CRI ATS1m R4e EEig05r piPC07 E ω EHOMO Z 

85 5.718 0.043 3.099 3.510 1.466 2.145 5.309 -6.401 4.603 -9.775 0.888 

86 5.855 0.063 2.863 3.002 1.464 1.072 4.577 0.043 3.882 -9.793 0.872 

87 5.416 0.079 3.192 3.195 1.378 2.444 5.265 0.304 4.783 -10.299 0.897 

88 11.612 0.028 2.840 2.892 0.613 2.000 5.469 1.962 2.918 -8.974 0.905 

89 5.199 0.040 4.719 2.936 1.586 2.119 4.990 -2.086 2.376 -8.572 0.933 

90 5.033 0.081 3.481 3.139 1.077 1.220 4.888 0.020 3.922 -9.524 0.893 

91 5.356 0.059 6.391 3.728 0.758 1.161 3.841 1.066 3.421 -9.650 0.911 
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Appendix B Significant descriptors of Oncorhynchus mykiss data set 

 

Comp 

No 
CRI Volume Area 

Dipole 

moment 
ELUMO E HOMO E 

ELUMO – 

E HOMO 
Hardness 

Electro-

negativity 
Z Softness ω 

1 1.213 122.580 161.359 3.505 -1.355 -9.493 -5.485 8.138 4.069 5.424 0.760 0.246 3.615 

2 3.184 187.317 227.829 0.389 -0.327 -10.535 -9.898 10.208 5.104 5.431 0.822 0.196 2.890 

3 2.270 202.544 244.823 2.839 -2.568 -9.647 -5.898 7.078 3.539 6.107 0.827 0.283 5.270 

4 2.758 246.187 285.929 6.079 -2.514 -9.552 -4.672 7.038 3.519 6.033 0.861 0.284 5.172 

5 4.121 303.986 362.256 3.758 -2.627 -9.706 -11.573 7.079 3.539 6.166 0.839 0.283 5.371 

6 3.154 279.444 314.506 7.914 -2.330 -9.360 -5.734 7.030 3.515 5.845 0.889 0.284 4.859 

7 2.701 226.118 256.389 7.351 -2.166 -9.823 -6.130 7.657 3.829 5.994 0.882 0.261 4.693 

8 4.489 298.380 337.107 3.582 -1.650 -8.793 -6.438 7.142 3.571 5.222 0.885 0.280 3.817 

9 4.388 312.271 348.293 7.895 -2.350 -9.382 -2.342 7.031 3.516 5.866 0.897 0.284 4.894 

10 3.696 238.924 278.764 4.174 -1.802 -9.144 -6.180 7.341 3.671 5.473 0.857 0.272 4.080 

11 4.797 302.433 340.628 4.400 -1.677 -9.391 -6.873 7.714 3.857 5.534 0.888 0.259 3.970 

12 3.219 259.280 287.912 4.576 -1.776 -8.689 -6.026 6.913 3.457 5.233 0.901 0.289 3.961 

13 3.822 317.114 353.795 3.471 -2.471 -9.314 -6.502 6.843 3.421 5.892 0.896 0.292 5.074 

14 5.142 316.629 346.214 1.978 -2.027 -9.169 -9.224 7.142 3.571 5.598 0.915 0.280 4.387 

15 4.807 274.675 310.546 5.738 -1.749 -9.132 -6.634 7.383 3.691 5.441 0.884 0.271 4.010 

16 2.812 212.141 253.129 3.217 -0.602 -9.384 -2.487 8.781 4.391 4.993 0.838 0.228 2.839 

17 3.290 209.604 245.084 1.903 -0.514 -10.094 -4.239 9.580 4.790 5.304 0.855 0.209 2.937 

18 1.988 159.155 196.611 2.633 -0.214 -9.160 -1.407 8.946 4.473 4.687 0.809 0.224 2.455 

19 3.950 255.106 289.765 1.401 -0.256 -8.701 -2.738 8.445 4.223 4.479 0.880 0.237 2.375 

20 3.429 223.767 250.344 1.611 0.117 -9.259 -4.307 9.377 4.688 4.571 0.894 0.213 2.228 

21 4.534 296.416 327.113 2.906 -0.434 -9.099 -3.757 8.664 4.332 4.767 0.906 0.231 2.622 

22 3.571 231.482 258.494 2.385 0.094 -9.043 -4.361 9.138 4.569 4.474 0.896 0.219 2.191 

23 2.987 211.520 229.702 4.615 -0.839 -9.093 -1.427 8.253 4.127 4.966 0.921 0.242 2.988 

24 3.318 202.799 226.709 1.565 -0.344 -9.327 -2.349 8.983 4.491 4.835 0.895 0.223 2.603 

25 4.043 234.820 269.143 1.353 -0.362 -9.450 -3.122 9.088 4.544 4.906 0.872 0.220 2.648 

26 1.343 112.322 129.989 0.954 0.063 -9.389 0.723 9.452 4.726 4.663 0.864 0.212 2.300 

27 2.574 157.556 182.067 6.025 -1.302 -9.416 -0.014 8.114 4.057 5.359 0.865 0.246 3.540 

28 2.187 125.269 143.752 1.351 -0.168 -9.294 0.483 9.126 4.563 4.731 0.871 0.219 2.453 

29 2.191 125.472 144.876 0.000 -0.242 -9.237 0.438 8.994 4.497 4.739 0.866 0.222 2.497 

30 5.433 261.886 272.522 7.021 -0.421 -9.404 -4.087 8.983 4.491 4.912 0.961 0.223 2.686 
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Appendix B (continued)          

Comp 

No 
CRI Volume Area 

Dipole 

moment 
ELUMO E HOMO E 

ELUMO – 

E HOMO 
Hardness 

Electro-

negativity 
Z Softness ω 

31 2.651 138.403 158.605 0.666 -0.435 -9.241 0.208 8.807 4.403 4.838 0.873 0.227 2.658 

32 4.792 266.850 285.082 0.015 -0.515 -9.099 1.819 8.584 4.292 4.807 0.936 0.233 2.692 

33 4.989 271.525 288.113 0.714 -0.365 -9.429 0.895 9.064 4.532 4.897 0.942 0.221 2.645 

34 5.509 290.686 299.618 1.334 -0.491 -9.460 -0.718 8.969 4.485 4.976 0.970 0.223 2.760 

 


