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ABSTRACT 

 

 

PREDICTIVE ANALYSIS OF FLIGHT TRAFFIC AT NEW YORK JFK 

AIRPORT ON AIR POLLUTION USING MACHINE LEARNING 

 

 

Anthropogenic activities like transportation result in the emission of numerous pollutants like 

NO2, CO, SO2, PM2.5-10, O3, and Pb, which are identified as major air pollutants by environmental 

and health agencies. Emissions of those major pollutants result in negative health impacts like 

cardiovascular and respiratory diseases. Even though emissions from on-road traffic have decreased 

in recent years due to stricter regulations and technological advancements, less strict regulations on 

aircraft have resulted in an increase in emissions with the increasing air traffic. This study aims to 

estimate NO2 emissions from commercial flights at John F. Kennedy Airport (JFK) in New York and 

their impacts on air quality.  The study combines numerical modeling using the AERMOD air 

dispersion model along with a machine learning model to predict NO2 concentration distributions as 

a function of space and time. To achieve this goal, departure and arrival flight data of John F. Kennedy 

Airport (JFK) in New York for the year 2018 is used. After the data is cleaned and prepared for the 

analysis, AERMOD is used to simulate atmospheric pollutant dispersion. The results of this study 

indicate that aircraft emissions can lead to significant NO2 concentrations in the vicinity of the airport. 

The simulated concentrations are then used in the training of a machine learning model. Decision 

tree-based extreme gradient boosting (XGBoost) is used as a machine learning model. It is shown 

that training in the emission prediction model has resulted in a well-generalized and well-performing 

model. Overall, this study demonstrates that machine learning modeling can be an effective tool for 

estimating pollutant dispersion. 
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ÖZET 

 

 

NEW YORK JFK HAVALİMANINDAKİ UÇUŞLARIN HAVA KİRLİLİĞİNE 

ETKİSİNİ MAKİNE ÖĞRENMESİ YARDIMIYLA TAHMİN ANALİZİ 

 

 

Ulaşım gibi antropojenik aktiviteler, çevre ve sağlık kuruluşları tarafından başlıca hava kirletici 

maddeler olarak tanımlanan, NO2, CO, SO2, PM2.5-10, O3 ve Pb gibi kimyasalların emisyonuna yol 

açmaktadır. Bu kirleticilerin emisyonları, kardiyovasküler ve solunum yolu hastalıkları gibi olumsuz 

sağlık etkilerine sebep olmaktadır. Karayolu taşıtlarındaki standartlar ve yönetmelikler yardımıyla 

yıllar boyunca emisyonların azaltılmasına rağmen, uçaklarla ilgili daha az katı düzenlemeler, artan 

hava trafiğiyle emisyonların artmasına neden olmaktadır. Bu çalışma, New York'taki John F. 

Kennedy (JFK) Havalimanı’nda gerçekleşen ticari uçuşların neden olduğu NO2 emisyonlarını tahmin 

etmeyi amaçlamaktadır ve belirli bir lokasyonda NO2 emisyonlarını tahmin etmek amacıyla 

AERMOD hava dispersiyon modeli ile bir makine öğrenme modelini kullanarak sayısal modellemeyi 

birleştirmektedir. Bu çalışmayı gerçekleştirmek için, 2018 yılında New York'taki John F. Kennedy 

(JFK) Havalimanı'ndaki uçakların kalkış ve varış uçuş verileri kullanılmıştır. Veriler temizlendikten 

ve analiz için hazırlandıktan sonra, AERMOD, kirletici dağılımını simüle etmek ve bir makine 

öğrenim modelinin eğitiminde kullanılmak üzere emisyon dağılım verileri üretmek için 

kullanılmıştır. Karar ağacı esaslı ileri seviye gradyan artırma (XGBoost), bu çalışmada makine 

öğrenme modeli olarak kullanılmıştır. Bu çalışmanın sonucunda, emisyon tahmini modelinin eğitimi 

iyi genelleştirilmiş ve iyi performans gösteren bir modelle sonuçlanmıştır. Genel olarak, bu çalışma 

makine öğrenim modelinin kirletici dağılımını tahmin etmede etkili bir araç olabileceğini 

göstermektedir. 
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1.  INTRODUCTION 

 

 

Air pollution can be defined as, the release of chemicals, which are both toxic to human health 

and to the environment, into the atmosphere as a result of natural and anthropogenic activities. 

Volcanic eruptions and biological activities are examples of natural sources of air pollutions, while 

fossil fuel combustion and industrial processes are examples of anthropogenic activities. It is possible 

to partition anthropogenic sources into stationary or point and areal sources, and mobile or linear 

sources. Stacks, flues, and chimneys are among point sources, whereas clusters of typically small 

sources dispersed across the area like industrial complexes such as steelworks or emissions from 

urban household heating and landfills are areal sources. Vehicles like cars, trains, ships, and airplanes 

form mobile sources. Routes of vehicles are the main linear sources. 

 

Environmental agencies and health organizations around the world like Environmental 

Protection Agency (EPA), European Environmental Agency (EEA), and World Health Organization 

(WHO) state the followings as major air pollutants, 

• Nitrogen dioxide (NO2), 

• Sulfur dioxide (SO2), 

• Carbon monoxide (CO), 

• Particulate matter (mainly PM2.5 and PM10), 

• Ground-level ozone (O3), 

• Lead (Pb) 

 

Pollutants can also be classified into two categories based on their release into the atmosphere. 

The first is primary pollutants, which are directly emitted to the atmosphere, such as SO2 from 

industrial plants and power stations, and CO as a result of incomplete combustions. The other 

category is secondary pollutants which are formed in the atmosphere as a result of chemical reactions 

between atmospheric chemicals and pollutants, for instance, O3 produced by photochemical reactions 

in the atmosphere (Tiwary et al., 2018).   

 

Once released into the atmosphere, discharged air pollutants are continuously distributed and 

diluted. Meteorological conditions such as atmospheric stability, turbulence and the direction and 

magnitude of wind speed affect the distribution and dilution of the air pollutants particularly. Since 

they are affected by shortwave radiation, air temperature, and humidity, chemical reactions are also 

dependent on the ambient weather conditions (Mayer, 1999). 
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Urban air pollution started to gain importance after the 1952 London Smog when sulfurous 

smoky fog released from coal-burning stoves and local factories settled in London and caused the 

death of over 4000 people (Wilkins, 1954). With the establishment of the Clean Air Act in 1956 in 

the US, smoke and SO2 concentrations have decreased over the years as a result of the use of clean 

fuels such as natural gas, the decline of some heavy industry, the use of more environmentally friendly 

process designs in power plants, and the relocation of power plants outside of cities (Giussani, 1994). 

Even though gasoline and natural gas are considered as a cleaner alternative compared to other fossil 

fuels such as coal and lignite, emissions from various sectors such as transportation have continued 

to increase with time due to the significant increase in land, air and marine transport. Nitrogen dioxide 

and particulate matter (PM) are the primary pollutants of most concern that are emitted into the 

atmosphere within exhaust gases from the fuel. Photochemical reactions in the atmosphere also result 

in an increase in ground-level ozone concentrations (Brimblecombe, 2006).  

 

Inhalation and ingestion are the main routes of exposure to air pollutants for humans.  Dermal 

contact has relatively less importance. Air pollution leads to a range of food and water contamination, 

making ingestion the main route of the intake of contaminants in several instances (Thron, 1996). Air 

pollution is a major environmental risk to health by having negative impacts on cardiovascular and 

respiratory health. In recent studies, it is found that a 10 μg/m
3
 increase in NO2 concentration causes 

a 0.41% increase in cardiovascular disease mortality, 0.34% increase in respiratory disease mortality, 

and a 0.30% increase in total mortality (T. M. Chen et al., 2007). Moreover, lung functions have been 

negatively associated with PM10 (particulate matter small than 10 µm), nitrogen dioxide, and sulfur 

dioxide in a series of studies from different communities around the world, with various symptoms 

such as bronchitis (Brunekreef et al., 2002). Acute human NO2 exposure at concentrations above 150 

ppm (282 mg/m
3
) can cause death, either quickly due to pulmonary edema or after a few weeks due 

to severe fibrosis bronchiolitis obliterans (Last et al., 1994). Another study shows that exposure to 

NO2 increased the risk of dementia indirectly as cardiovascular diseases are linked with cognitive 

decline and dementia risk (Paul et al., 2019). 

 

Since the establishment of the Clean Air Act in the US, important developments in relation to 

air pollution have been taking place. For example, in 1974, Global Environment Monitoring System 

(GEMS) was founded by the United Nations Environment Program (UNEP) and WHO, to monitor 

air quality in over 50 cities in 35 countries worldwide (Mage et al., 1996). Throughout the years, with 

the mission of reducing the concentrations of pollutants, national or regional environmental agencies 

had been established, guidelines had been published, regulations and standards had been formed in 

different countries according to their diverse characteristics (Baldasano et al., 2003). On the other 
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hand, developing countries with high concentrations of air pollutants, show a tendency to increase in 

concentrations while they continue to develop.  

 

Following the Clean Air Act, the EPA developed the National Ambient Air Quality Standard 

(NAAQS) to indicate standards for major air pollutants and formed the Air Quality Index (AQI) to 

inform the public with the air quality data, both standard and index are used today in the USA. Table 

1.1 presents standards for various chemicals corresponding to different exposure periods. Table 1.2 

shows air quality index levels and their color codes as well as the meaning of every level. 

 

Table 1.1.  National Ambient Air Quality Standard (NAAQS). 

Pollutant Standard Type Standards Averaging Times 

Carbon Monoxide (CO) primary 

9 ppm 8 hours 

35 ppm 1 hour 

Lead (Pb) primary and secondary 0.15 μg/m
3
 Quarterly average 

Nitrogen Dioxide (NO2) 

primary 100 ppb (188 μg/m
3
) 1 hour 

primary and secondary 53 ppb (100 μg/m
3
) Annual Mean 

Particulate matter (PM10) primary and secondary 150 μg/m
3
 24 hours 

Particulate matter (PM2.5) 

primary 12 μg/m
3
 Annual Mean 

secondary 15 μg/m
3
 Annual Mean 

primary and secondary 35 μg/m
3
 24 hours 

Ozone (O3) primary and secondary 0.07 ppm 8 hours 

Sulfur Dioxide (SO2) 

primary 75 ppb 1 hour 

secondary 0.5 ppm 3 hours 

 

In Turkey revised air quality regulations were announced in 2008. These regulations call for the 

gradual decrease of major pollutant standards starting in 2014 until they are in line with the EU 

standards. The Turkish, EU and World Health Organization (WHO, 2006) standards for key 

emissions related to fossil fuel burning: SO2, NO2, PM10, and CO are presented in Table 1.3. The 

standards are defined for different exposure times ranging from 1 hour to annual for the different 

pollutants. The Turkish Regulations allow for some exceedances of the standards as indicated in Table 

1.3. Moreover, the Turkish Air Quality regulations allow some time lag before the new standards 

come in effect. The lag time varies with parameter and exposure time. 
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Table 1.2.  Air Quality Index (AQI). 

Category AQI Value and Color Meaning 

Good 0 to 50 (Green) 
Air quality is considered satisfactory, and air pollution poses 

little or no risk. 

Moderate 51 to 100 (Yellow) 

Air quality is acceptable; however, for some pollutants, there 

may be a moderate health concern for a very small number of 

people who are unusually sensitive to air pollution. 

Unhealthy for 

Sensitive 

Groups 

101 to 150 (Orange) 
Members of sensitive groups may experience health effects. 

The general public is not likely to be affected. 

Unhealthy 151 to 200 (Red) 
Everyone may begin to experience health effects; members of 

sensitive groups may experience more serious health effects. 

Very 

Unhealthy 
201 to 300 (Purple) 

Health alert: everyone may experience more serious health 

effects. 

Hazardous 301 to 500 (Maroon) 
Health warnings of emergency conditions. The entire 

population is more likely to be affected. 

 

 

Table 1.3.  Turkish, EU and WHO regulations for SO2, NO2 and PM10. 

Pollutant 
Exposure 
Time 

Concentration (µg/m3) 

Turkish 
Regulation5

 

EU 
Regulation 
2008/50/EC 

WHO 
(2006) 

Sulfur Dioxide (SO2) 

1-hour
1
 

350 by 01-2019 

410 in 2017 

350  

24-hour
2
 125 125 20 

Annual 20   

Nitrogen Dioxide 
(NO2) 

1-hour
3
 

200 by 01-2024 

270 in 2017 

200 200 

Annual 40 40 40 
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Table 1.3.  Turkish, EU and WHO regulations for SO2, NO2 and PM10 (continued). 

Pollutant 
Exposure 
Time 

Concentration (µg/m3) 

Turkish 
Regulation5

 

EU 
Regulation 
2008/50/EC 

WHO 
(2006) 

Particulate Matter 
(PM10) 

24-hour
4
 

50 by 01-2019 

70 in 2017 

50 50 

Carbon Monoxide 
(CO) 

Annual 40 40 20 

1can be exceeded up to 24 times per year 

2 can be exceeded up to 3 times per year 

3can be exceeded up to 18 times per year 

4 can be exceeded up to 35 times per year 

5 from the 2008 Turkish air quality regulations.  
 

The major sources of outdoor air pollution in cities include transportation like road vehicles, 

aviation, and naval traffic. In the USA, besides PM production, it is estimated that mobile sources 

contribute up to 45% of NO2 emissions, 2% of SO2 emissions, 81% of CO emissions, and 37% of  

Volatile Organic Compounds (VOC) (Peden, 2008). Pollution resulting from transportation also 

causes respiratory diseases. In a study, 1759 children from 12 cities in Southern California, were 

observed from age 10 until they are 18. At the end of the study, it was reported that pollutants from 

vehicular fuel use like NO2 and PM2.5 are correlated to a decrease in lung functions (Gauderman et 

al., 2004). 

 

Over the years, with enhanced regulations and improved technology, pollution levels of six 

common pollutants have decreased. However, regulations on airplanes and ships are not as strict as 

road vehicle regulations (Harrison et al., 2015). Aviation fuels and automotive fuels have similar 

volatility range; however, the sulfur content of automotive fuels has decreased by regulations to lower 

than 10 ppm whereas, the limit for aviation fuel has stayed at 3000 ppm and the real concentrations 

are reported to be in the range of 300 to 1100 ppm (Harrison, 2015). Therefore, an increase in air 

traffic remains a major problem in terms of air pollution and its health effects. The increase in air 

traffic and passenger counts in both worldwide and the USA is shown in Figure 1.1.  It is clear that 

air traffic has increased rapidly worldwide and will continue to increase in the future. 
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Figure 1.1.  Registered carrier departure counts and passenger counts worldwide and in the USA since 

1970 (data retrieved from International Civil Aviation Organization (ICAO)). 

 

Ideal combustion in aircraft engines is not possible; hence, it results in unwanted chemical 

emissions like CO, SO2, PM (soot), VOC and oxides of nitrogen (NOx) as depicted in Figure 1.2. 

NOx is a collective term used to refer to nitrogen monoxide (nitric oxide or NO) and NO2, which are 

formed as a result of the oxidization of atmospheric nitrogen (N2) during combustion. Improved 

combustion techniques can reduce the emissions of NOx, CO, and VOC. However, over the past 

decades, there is an increase in the emission of NOx as a result of burning kerosene at high 

temperatures, which is the major trace gas emission during a flight (Ruijgrok et al., 2005).  
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Figure 1.2.  The combustion process in an aircraft engine (Ruijgrok, 2005). 

 

There has been an unambiguity on the effect of low-altitude aircraft emissions on air quality. 

Aircraft emissions show changes with the different engine thrust settings during the landing and take-

off (LTO) phase. While CO and unburnt hydrocarbons (HC) have predominant emissions in lower 

thrust settings, NOx and PM2.5 emissions increase with the thrust settings. Table 1.4 shows fuel 

consumption and emission factors at different thrust settings for Airbus A306 aircraft. 

 

Table 1.4.  Fuel consumption and emission factors of Airbus A306 type aircraft for different engine 

thrust settings (retrieved from EEA, 2019). 

        Engine thrust setting (% of maximum thrust) 

        Taxi in/out Approach Climb out Take off 

        7 30 85 100 

Rate of fuel burn (kg/s/engine) 0.2110 0.6820 2.004 2.481 

Rate of emission of CO 

(kg/s/engine) 
0.004429 0.001282 0.001082 0.0009924 

Rate of emission of HC 

(kg/s/engine) 
0.0003756 0.00009548 0.00004008 0.0002233 

Rate of emission of NOX 

(kg/s/engine) 
0.001013 0.008048 0.04749 0.07493 

Rate of emission of PM2.5 

(kg/s/engine) 
0.000016 0.000048 0.000166 0.000229 

 

As mentioned before, NOx describes the sum of NO and NO2. The ratio of NO/NO2 in NOx 

changes with different thrust settings; NOx is dominated by NO at higher thrust levels, at low powers, 

more than 80% of the total NOx can consist of NO2 (Wormhoudt et al., 2007).It is estimated that the 
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toxicity of NO2 based on pulmonary reactions as a result of acute exposures is about thirty times that 

of NO (Last, 1994). Moreover, NO2 is a reactive chemical in the air; it causes O3 formation in the 

troposphere by reacting with hydrocarbons in the presence of sunlight. It also causes acid rain by 

reacting with O2 in the air. 

 

The aim of this study is to estimate NO2 emissions caused by commercial flights John F. 

Kennedy Airport (JFK) in New York. JFK Airport is selected because it is one of the most crowded 

airports in the world and because of the existence of abundance of data to estimate NO2 emissions 

and to perform both air dispersion model and machine learning model. Specifically, the study will 

combine numerical modeling using the AERMOD air dispersion model along with a machine learning 

model to predict NO2 spatial and temporal distributions in the vicinity of the JFK airport. To conduct 

this study, departure and arrival flight data of John F. Kennedy Airport (JFK) in New York for the 

year 2018 are used. After the data is cleaned and prepared for the analysis, AERMOD was used to 

simulate pollutant dispersion and to generate emission dispersion data for use in the training of a 

machine learning model. The performance of XGBoost, a decision tree based gradient boosting 

model, to reproduce the complex air pollution data is evaluated.   
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2.  LITERATURE REVIEW 

 

 

2.1.  Study Area 

 

New York, John F. Kennedy Airport, which is the subject of this study, is the fifth busiest airport 

in the U.S. and twenty-first in the world with 455,542 flights and 61.6 million passengers in the year 

2018. As New York City's main airport, JFK sees arrivals and departures from nearly every 

international airline in the world. It is located in the southeast part of New York City as shown in 

Figure 2.1, which is the most populated city in the U.S. with 8.6 million people.  

 

 

Figure 2.1.  JFK International Airport, New York City on the map. 

 

JFK has six operational terminals numbered 1-8, but Terminal 3 and Terminal 6 were demolished 

after Terminal 5 was expanded in 2011 and 2013. Also, the JFK runway system consists of two pairs 

of parallel runways aligned with right angles: 4L-22R, 4R-22L, 13L-31R and 13R-31L. The total 
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runway length is nearly fifteen kilometers. The terminals and runways of JFK Airport are shown in 

Figure 2.2. 

 

 

Figure 2.2.  Terminals and runways of JFK Airport, New York City. 

 

Over the years, air quality has improved in New York, but within a year there are still days of 

unhealthy status in the AQI index. Daily AQI values in 2018 for both total and NO2 in New York 

City can be seen in Figure 2.3 and Figure 2.4. 

 

 

Figure 2.3.  Daily AQI values of New York City in 2018 for all pollutants (retrieved from U.S. EPA 

AirData). 
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Figure 2.4.  Daily AQI values of New York City in 2018 for NO2 (retrieved from U.S. EPA AirData). 

 

2.2.  Aircraft Emissions and Landing/Take-off (LTO) Cycle 

 

Air pollutants emitted from aircraft primarily originate from the burning of jet fuel and aviation 

gasoline used for aircraft fuel. The main pollutants emitted from aircraft are: 

• CO2 

• NOx 

• H2O vapor 

• Methane (CH4) 

• CO 

• Sulfur oxides (SOx) 

• VOCs 

• PMs 

 

Figure 2.5 shows the combustion process in aircraft, what it results, and also shows the 

composition of input and output gas.  
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Figure 2.5.  Aircraft engine combustion process and composition of its input and output gas 

(retrieved from EEA, 2019).  

 

Aircraft emissions can change with respect to engine model, each engine has its own emission 

factors set by environmental agencies like EPA and EEA. Those emission factors also change with 

the different parts of the aircraft movement phases. LTO is the phase when an aircraft is moving near 

to the airport under 3000 ft (914 m). On the other hand, when an aircraft is moving above 3000 ft, it 

is called the Cruise phase as illustrated in Figure 2.6.  

 

 

Figure 2.6.  Movement phases of an aircraft (from EEA, 2019). 

 



13 

 

 

2
1
 

Duration of take-off, approach and climb out phases have standard durations set by ICAO, 

however, taxi-in and taxi-out times differ by airports. In Table 2.1, duration of take-off, approach and 

climb out, set by ICAO, and taxi-in, taxi-out set by FAA for JFK Airport is given. 

 

Table 2.1  Duration of LTO cycle phases ( from FAA, 2018; ICAO, 2019). 

Phase Duration (minutes) 
Taxi-out 27.5 

Take-off 0.7 

Climb out 2.2 

Approach 4 

Taxi-in 9 

 

Emissions of PM and NOx in some Airbus and Boeing airframes are observed to be higher in 

landing and take-off phases compared to the idle phase (Mazaheri et al., 2009). In the world’s second 

busiest airport, Beijing Capital International Airport (ZBAA), aircraft are the main source of 

emissions around the airport. The emission rates may vary with the seasons, but on average, NOx, 

CO, PM2.5, SO2 are accounted for 86.3%, 78.7%, 48.0%, and 95.6% of total emissions in ZBAA, 

respectively (Yang et al., 2018). Moreover, a study held in London Heathrow Airport shows that NOx 

emissions caused by aircraft in the airport area can be easily detected from 2.6 km away. While airport 

accounts for 27% of NOx emissions around the airport area, emissions are diluted by a factor of 5 in 

1-1.5 km distance from the airport, and it accounts for 12-14% of NOx emissions at that area (Carslaw 

et al., 2006).  

 

2.3.  Atmospheric Dispersion Modelling of Aircraft Emissions and Predictive Analysis 

 

After entering the environment, air pollutants can spread through the air, water, soil, living 

organisms, and food. The distribution paths differ considerably depending on both the source of 

emissions and the relevant pollutants. Distribution rates and patterns are also largely dependent on 

environmental conditions. Dispersion of the air pollutants is affected by several factors like 

meteorology, the height of emission, geographical features and source type (Peden, 2008).  

 

Pollutants are subjected to a broad variety of transformations and transportations during 

dispersion. Dilution takes place due to incorporation with air. Depending on the physical properties 

of the pollutant, deposition, separation or accumulation of pollutants take place. Chemical reactions 

can lead to the fragmentation of pollutants or turn them into new compounds. Besides, some 

contaminants can be eliminated from the transport mechanism through sedimentation, for instance, 

by gravity, precipitation or retention by plants and other obstacles (Arya, 1999). 
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In environments like cities and towns, many pollutants show very complicated forms of 

distribution, because these environments have a variety of emission sources and a wide range of 

environmental conditions. This complex spatial pattern signifies that it is usually challenging to 

model or determine pollution patterns and trends, and so to estimate the grade of human exposure 

(Mayer, 1999). 

 

Over the years, complex mathematical equations were developed to analyze and understand the 

transfer of emissions by taking the above-mentioned conditions into account. Mathematical 

simulation of the dispersion of air pollutants in the atmosphere with those equations is called 

atmospheric dispersion modeling. It is achieved with computer programs, which include algorithms 

to solve the numerical equations that describe the dispersion of pollutants. The dispersion models aim 

to calculate the atmospheric downwind concentration of air pollutants and chemicals from sources 

such as industrial plants, vehicles or unintentional chemical exposures. Predicting future 

concentrations like emission change in the source is another way to use these models in certain 

scenarios. Capabilities of these models allow them to be used when air quality policies are formed 

(Lin et al., 2009).  

 

The USEPA recommends the use of the steady-state air dispersion model AERMOD and the 

Lagrangian puff model CALPUFF to demonstrate near field (<50 km) and far-field (>50 km) 

regulatory compliances, respectively (Rood, 2014). The AERMOD model was first developed in 

1991 by the American Meteorological Society and by EPA, with the intention of integrating 

established concepts of planetary boundary layer into regulatory models. The model addresses the 

analysis of both surface and elevated sources like point sources, area sources, and volume sources in 

simple and complex terrain domains (Cimorelli et al., 1998). The modeling system CALPUFF is a 

non-steady-state Lagrangian puff model that simulates transport, transformation, and deposition of 

pollutants in a spatially and temporally variable wind field of three dimensions. Both local and 

regional scales can be applied in this model (Scire, Strimaitis, et al., 2000). 

 

Both models consist of different modules. For AERMOD there are AERMET, a meteorological 

pre-processor, and AERMAP, a terrain pre-processor. AERMAP produces base elevation and hill 

height data for receptors and sources by examining the surrounding terrain. AERMET processes 

surface, upper-air and on-site meteorological data and it creates new merged data which is used as 

input in AERMOD (EPA, 2018, 2019a). On the other hand, CALPUFF includes CALMET, a 

meteorological model that creates a three-dimensional hourly wind field in a grided modeling domain. 
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The output of CALMET serves as an input file of the dispersion model CALPUFF (Scire, Robe, et 

al., 2000). CALPUFF includes various features such as dry deposition, wet deposition, and chemical 

transformations that can be turned on or off depending on the problem being simulated. The third 

module is CALPOST which reads the concentration and deposition files of CALPUFF and creates a 

time-averaged concentration and deposition output together with visibility impacts (Scire, 2000). 

 

2.4.  Machine Learning Models 

 

Machine learning is a subfield of artificial intelligence (AI) that typically tries to understand the 

structure of the data and fit the data into models that people can understand and use. Figure 2.7 shows 

the sub-segments of the field of AI. Even though machine learning resides under computer science, 

it is different from conventional computational approaches. Algorithms are types of explicitly 

programmed instructions that computers use to calculate or solve problems in traditional computing. 

Instead, machine learning algorithms enable computers to train data inputs and use statistical analyzes 

to generate values within a certain range. Machine learning thus enables computers to construct 

models from sample data to ensure decision-making processes are automated based on data input 

(Tom Michael Mitchell, 2006). 

 

More formal definition of machine learning made by Tom M. Mitchell is “A computer program 

is said to learn from experience E with respect to some class of tasks T and performance measure P 

if its performance at tasks in T, as measured by P, improves with experience E.” (Tom M Mitchell, 

1997). Machine learning can be used to address a problem in broad categories, and over time, 

advanced methodologies like brain-inspired neural networks have been coming up with ongoing 

researches around the world (Sze et al., 2017).  

 

Today, every technology user benefits from machine learning. Examples of machine learning 

are everywhere in our daily lives. For example, speech recognition is relied on to turn speech into 

text, make life easier with virtual assistants, and help to improve speaking ability in foreign languages 

(Hu et al., 2011). Social media platforms tag people in images to help users share photos of friends 

with facial recognition (Yamaguchi, 2012). Machine learning powered recommendation engines 

suggest what films or TV shows are to be watched next, based on user expectations (Hallinan et al., 

2016). The consumer may soon have access to self-driving cars that rely on machine learning 

(Bojarski et al., 2016). 
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Forecasting is one of the important applications of machine learning. Machine learning has been 

used to predict air pollution. For instance, a study used neural networks with air quality data from 4 

different stations to forecast maximum 1-hr average O3 concentrations for the next day in Istanbul 

(Inal, 2010). The decision tree-like model random forest is shown to be more accurate than Naïve 

Bayes, logistic regression and neural network when predicting Air Quality Index (AQI) for the city 

of Shenyang in China by using historical data (Yu et al., 2016). In another study, features from images 

of Shanghai, Beijing (China) and Phoenix (U.S.) are used in a machine learning model alongside 

meteorological data to predict pollution of PM2.5 (Liu et al., 2016). 

 

Dispersion models require a wide range of data including emission data, land use, topography, 

and meteorological data. On the contrary, machine learning models require input data and 

corresponding output data to learn and form a mathematical model which is called supervised 

learning. In some cases, only input data is sufficient to train the model and this is called unsupervised 

learning. (Russell et al., 2016). The breakdown of machine learning into three sub-field and examples 

for each sub-field is illustrated in Figure 2.8. 

 

 

 

 

Figure 2.7.  Artificial intelligence from general to the specific (retrieved from Sze et al., 2017). 
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Figure 2.8.  Methods of machine learning in general (retrieved from Chugh, 2018). 

 

Machine learning models can be potentially used to predict dispersion from a source. If output 

training data is not available for model development, then dispersion models can be used as a ground 

truth. Coupled Gaussian dispersion model and neural network, which is a form of machine learning 

inspired by the brain, where concentrations from an atmospheric model used for training in the 

machine learning model, results nine times better than only the machine learning model with respect 

to negative mean square error (Pelliccioni et al., 2006). In a study, 1.5 years of daily data from 74 

cities in China is used to calculate AQI values with WRF-Chem, a new generation regional air quality 

modeling system. The calculated AQI values are used as labels in machine learning models to create 

a classifier, and the generated model performs better than using WRF-Chem only (Xi et al., 2015). 

Operations data for Nanjing Lukou International Airport (ZSNJ) in 2017, the second largest airport 

of eastern China, is used to calculate AQI data with the Gaussian dispersion model. Calculated AQI 

data used as labels in training of supervised machine learning model to classify air quality and the 

random forest method provides the best result with around 90% accuracy (Tian et al., 2019).  

 

In this study air dispersion modeling and machine learning will be combined to examine the 

problem of air pollution in the vicinity of the JFK airport in New York, one of the largest airports in 

North America and the world.  



18 

 

 

2
1
 

3.  MATERIALS AND METHODS 

 

 

3.1.  Data Collection 

 

Arrival and departure flight data at JFK in 2018 were gathered from a community-based receiver 

network called OpenSky to use in this study. Air traffic surveillance data is continuously collected 

and stored in a historical database to make it accessible to researchers by the OpenSky Network 

(Schäfer et al., 2014). The JFK dataset has around 120 million of signal data for approximately 

450,000 unique flights. A sample of the collected raw data is given in Table 3.1. Thecolumns of the 

dataset are as follows: 

 

• icao24; the 24-bit unique address of an aircraft assigned by ICAO which can be used to 

track that aircraft over different flights, 

• callsign: generally indicates the airline and the flight number, 

• altitude: measured by the barometer and depends on factors such as weather, 

• geoaltitude: determined using the GPS sensor, 

• track: the direction of movement as the clockwise angle from the geographic north, 

• groundspeed: the speed over ground of the aircraft in meters per second, 

• vertrate: the vertical speed of the aircraft in meters per second. A negative number 

indicates that the aircraft was descending, a positive number indicates a ascend 

respectively, 

• hour,: marks the beginning of the hour to which the data belongs, 

• timestamp: the timestamp in seconds for which data is received, 

• latitude: aircraft coordinate 

• longitude: aircraft coordinate 

• onground: a flag that indicates whether the aircraft is broadcasting surface positions 

(true) or airborne positions (false). 

 

The EEA, European Aviation Safety Agency (EASA) and the U.S. Federal Aviation 

Administration (FAA) established emission factors for calculating the emission concentrations 

emitted by aircraft (EASA, 2019; EEA, 2019; FAA, 2018a). These datasets include fuel consumption 

for each aircraft during the different LTO phases: take-off, climb out, approach and idle. The fuel 

consumption is in units of kg of fuel flow per second. In addition, the databases also have emission 
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factors expressed in g of emitted pollutants per kg fuel consumption for each engine type in each LTO 

phase. The focus in this study is on NOx emissions which are a major pollutant related to the burning 

of fossil fuels. Sample data for fuel flow and NOx emission index (EI) for an engine in each LTO 

phase is shown in Table 3.2.  

  



 
 

 20 

 
Table 3.1.  Preview of arrival and departure flight data on 2018 at JFK collected from OpenSky Network. 

 

ICAO24 Callsign Altitude Geoaltitude Track Groundspeed Vertical Rate Hour Timestamp Latitude Longitude Onground 

89901c CAL012 -250 75 300.964 128.281 -768 1514764800 2018-01-01 00:03:59 40.64282227 -73.75726318 FALSE 
400f0b VIR9M -325        1514764800 2018-01-01 00:03:59 40.64331572 -73.76926075 TRUE 
a6c3ca JBU2153 900 1050 286.323 145.880 1920 1514764800 2018-01-01 00:03:59 40.64396667 -73.8104248 FALSE 
a6c3ca JBU2153 950 1075 286.213 146.840 1792 1514764800 2018-01-01 00:04:00 40.64396667 -73.8104248 FALSE 
400f0b VIR9M -325        1514764800 2018-01-01 00:04:00 40.64331572 -73.76926075 TRUE 
89901c CAL012 -275 75 300.964 128.281 -768 1514764800 2018-01-01 00:04:00 40.64282227 -73.75726318 FALSE 
a6c3ca JBU2153 1000 1125 285.627 148.489 1664 1514764800 2018-01-01 00:04:01 40.64443297 -73.81251942 FALSE 
400f0b VIR9M -325        1514764800 2018-01-01 00:04:01 40.64331572 -73.76926075 TRUE 
89901c CAL012 -275 75 300.964 128.281 -768 1514764800 2018-01-01 00:04:01 40.64282227 -73.75726318 FALSE 
89901c CAL012 -300 75 300.964 128.281 -768 1514764800 2018-01-01 00:04:02 40.64282227 -73.75726318 FALSE 
400f0b VIR9M -325        1514764800 2018-01-01 00:04:02 40.64331572 -73.76926075 TRUE 
a6c3ca JBU2153 1025 1150 285.054 150.153 1536 1514764800 2018-01-01 00:04:02 40.64460754 -73.81347656 FALSE 
a83108 JBU2231 -325        1514764800 2018-01-01 00:04:03 40.64608383 -73.77200317 TRUE 
400f0b VIR9M -325        1514764800 2018-01-01 00:04:03 40.64331572 -73.76926075 TRUE 
a6c3ca JBU2153 1050 1150 284.128 151.585 1408 1514764800 2018-01-01 00:04:03 40.64471229 -73.81395513 FALSE 
89901c CAL012 -300 -25 300.885 124.679 -576 1514764800 2018-01-01 00:04:03 40.64457263 -73.76114585 FALSE 
a92e6e   -325        1514764800 2018-01-01 00:04:03 40.65096192 -73.76804352 TRUE 
a92e6e   -325        1514764800 2018-01-01 00:04:04 40.65096192 -73.76804352 TRUE 
a6c3ca JBU2153 1050 1175 283.583 153.287 1344 1514764800 2018-01-01 00:04:04 40.64483643 -73.81481934 FALSE 
400f0b VIR9M -325        1514764800 2018-01-01 00:04:04 40.64331572 -73.76926075 TRUE 
a83108 JBU2231 -325        1514764800 2018-01-01 00:04:04 40.64608383 -73.77200317 TRUE 
89901c CAL012 -325 -25 300.885 124.679 -576 1514764800 2018-01-01 00:04:04 40.64457263 -73.76114585 FALSE 
a83108 JBU2231 -325        1514764800 2018-01-01 00:04:05 40.64608383 -73.77200317 TRUE 
400f0b VIR9M -325        1514764800 2018-01-01 00:04:05 40.64331572 -73.76926075 TRUE 
89901c CAL012 -325 -25 300.885 124.679 -576 1514764800 2018-01-01 00:04:05 40.64457263 -73.76114585 FALSE 
a92e6e   -325        1514764800 2018-01-01 00:04:05 40.65096192 -73.76804352 TRUE 
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Table 3.2.  Sample of fuel flow and NOx emission index for aircraft engines in each LTO phase. 

UID Engine Model 
NOx EI 

Take-Off 
(g/kg) 

NOx EI 
Climb-Out 

(g/kg) 

NOx EI 
Approach 

(g/kg) 

NOx EI 
Idle 

(g/kg) 

Fuel Flow 
Take-Off 
(kg/sec) 

Fuel Flow 
Climb-Out 

(kg/sec) 

Fuel Flow 
Approach 
(kg/sec) 

Fuel Flow 
Idle 

(kg/sec) 
6AL005 RR AE3007A1 19.66 16.63 7.1 3.47 0.3826 0.318 0.113 0.0461 
6AL006 RR AE3007A1 22.41 19.58 7.2 3.19 0.3826 0.318 0.113 0.0461 
3BR001 RR BR700-710A1-10 17.07 13.93 8.2 4 0.707 0.588 0.22 0.089 
4BR008 RR BR700-710A1-10 18.79 15.07 7.68 4.69 0.713 0.594 0.214 0.089 
1CM003 CFM CFM56-2-C5 18.5 16 8.2 4 0.985 0.819 0.311 0.128 
1CM004 CFM CFM56-3-B1 17.7 15.5 8.3 3.9 0.946 0.792 0.29 0.114 
20CM091 CFM LEAP-1A26CJ 30.8 13.38 8.75 4.61 0.861 0.71 0.244 0.091 
20CM092 CFM LEAP-1A29 49.48 21.03 9.27 4.72 0.946 0.777 0.261 0.094 
8GE113 GE CF34-8E2 13.6 11.82 10.29 4.45 0.591 0.485 0.168 0.062 
8GE111 GE CF34-8E2A1 14.61 12.55 10.72 4.59 0.644 0.527 0.179 0.064 
11GE134 GE GEnx-1B54 14.96 9.18 8.07 3.98 1.878 1.553 0.523 0.184 
11GE135 GE GEnx-1B58 18.04 11.02 8.41 4.08 2.019 1.667 0.554 0.19 
1IA004 IO V2528-D5 30.5 25.1 9.6 4.9 1.209 0.996 0.353 0.134 
1IA005 IO V2530-A5 33.8 27.1 10.1 5 1.331 1.077 0.377 0.138 
1PW011 PW JT8D-15A 18.1 13.9 6.6 3.1 1.115 0.8955 0.312 0.1372 
1PW012 PW JT8D-17 19.2 15.23 6.1 3.3 1.245 0.997 0.354 0.147 
3RR028 RR RB211-535E4 44.88 32.06 6.78 3.46 1.86 1.51 0.52 0.18 
1RR016 RR SPEY Mk511 22.7 17.3 7.2 3.6 0.891 0.726 0.278 0.127 
3RR032 RR TAY 651 17.56 13.77 5.42 2.52 0.87 0.72 0.26 0.12 
2RR025 RR Trent 877 34.76 27.59 10.59 4.75 3.21 2.66 0.9 0.28 
2RR026 RR Trent 884 40.05 30.63 11.07 5.04 3.56 2.89 0.97 0.31 
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These emission factor datasets use engine models, and more specifically unique engine 

identifiers (UID) to map factors with a single aircraft. In order to calculate NOx emissions for flights, 

it is required to know how many engines and which engine model does an aircraft have. Therefore, 

datasets that contain ICAO24, aircraft model, engine model, engine count, and UID as it is shown in 

Table 3.3, were requested from two different aviation-related data platforms, AvDelphi and 

Planespotters.net (AvDelphi, n.d.; Planespotters.net, n.d.). 

 

Table 3.3.  Sample from the dataset for mapping ICAO24 to UID. 

ICAO24 Aircraft Model Engine Model Engine Count UID 

3949ed Boeing 777-200 GE GE90-94B 2 6GE091 
424590 Airbus A320-200 CFMI CFM56-5B4/3 2 8CM055 
3c6506 Airbus A340-600 RR Trent 556-61 4 6RR041 
89901c Boeing 777-300 GE GE90-115B 2 7GE099 
407177 Boeing 737-800 CFMI CFM56-7B26E 2 11CM072 
a5a98d Boeing 747-400 GE CF6-80C2B1F 4 1GE023 
4ca84c Boeing 737-800 CFMI CFM56-7B26 2 3CM033 
4cabb9 Boeing 737-800 CFMI CFM56-7B26E 2 11CM072 
424117 Airbus A320-200 CFMI CFM56-5B4/3 2 8CM055 
89639d Airbus A380-800 GP7270 4 9EA001 
4ba930 Airbus A330-200 PW PW4168A 2 4PW067 
39840e Airbus A320-200 CFMI CFM56-5B4/3 2 8CM055 
3424ce Boeing 737-800 CFMI CFM56-7B26 2 3CM033 
4b8685 Airbus A321-200 CFMI CFM56-5B3/P 2 3CM025 
ac25c4 Boeing 777-200 GE GE90-110B1 2 7GE097 
151d41 Airbus A319-100 CFMI CFM56-5B7/3 2 8CM058 
4690e3 Airbus A320-200 IAE V2527-A5 2 1IA003 
a1d8fd Boeing 777-200 PW PW4090 2 10PW099 
750156 Airbus A319-100 CFMI CFM56-5B7/P 2 6CM044 
76cdb0 Airbus A350-900 RR Trent XWB-84 2 14RR075 
461fa3 Airbus A321-200 IAE V2533-A5 2 3IA008 

 

Emission calculations are made by an approach that takes total activity in an LTO mode (e.g. 

taxi in, taxi out, approach, climb-out, and take-off) into account for all types of aircraft in the studied 

airport (ICAO, 2011). This approach is formulated as, 

 

 !"#$ = 	'()#$ × 60 ×	--#$ × !".#$ × /0#            (1) 
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where,  

Eijk total emissions of pollutant i, in grams, produced by aircraft type j for mode k (e.g. taxi 

in, taxi out, approach, climb-out, and take-off);  

TIMjk time-in-mode for mode k, in minutes, for aircraft type j; 

FFjk fuel flow for mode k, in kilograms per second (kg/s), for each engine used on aircraft 

type j; 

Eiijk emission index for pollutant i in grams per pollutant per kilogram of fuel (g/kg of fuel), 

in mode k for each engine used on aircraft type j;  

Nej number of engines used on aircraft type j.  

 

In order to create proper input data for both dispersion model and machine learning model, data 

cleaning and simplification was made on the JFK dataset. The runway of an airplane and whether it 

is a departure or arrival flight is determined by observing its position and altitude over time. Dataset 

is simplified into unique departure and arrival flights with reduced size of features. Afterward, NOx 

emissions in gram for every LTO mode are calculated with Equation 1, even though arrival and 

departure flights consist of different phases of LTO. Sample from cleaned and simplified, final form 

of JFK dataset is given in Table 3.4. 
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Table 3.4.  Sample from cleaned and simplified JFK dataset. 

Date Status Runway Aircraft Model Engine Model Take-off 
(g NOx) 

Climb-out 
(g NOx) 

Approach 
(g NOx) 

Taxi-out 
(g NOx) 

Taxi-in 
(g NOx) 

01-01-2018 00:00 Departure 31L F22   (Lockheed Martin F-22 Raptor) CFMI CFM56-7B26E 2.220 4.446 1.419 1.522 0.498 
01-01-2018 00:02 Departure 31L A332   (Airbus A-330-200) GE CF6-80E1A4 10.526 18.694 3.618 3.461 1.133 
01-01-2018 00:03 Departure 31L A319   (Airbus A-319) IAE V2527-A5 2.344 5.181 1.363 1.985 0.650 
01-01-2018 00:05 Departure 31L B737   (Boeing 737-700) CFMI CFM56-7B27 3.333 6.526 1.843 1.837 0.601 
01-01-2018 00:06 Departure 31L A332   (Airbus A-330-200) PW PW4168A 10.098 20.832 5.615 3.027 0.991 
01-01-2018 00:08 Departure 31L B736   (Boeing 737-600) CFMI CFM56-7B26 2.954 5.934 1.752 1.753 0.574 
01-01-2018 00:10 Arrival 31R A319   (Airbus A-319) IAE V2527-A5 2.344 5.181 1.363 1.985 0.650 
01-01-2018 00:11 Arrival 31R E145   (Embraer ERJ-145ER) AE3007A 0.650 1.453 0.437 0.619 0.203 
01-01-2018 00:11 Departure 31L B772   (Boeing 777-200) GE GE90-85B 13.937 27.641 4.202 5.950 1.947 
01-01-2018 00:13 Departure 31L CL60   (Canadair Challenger 600) CF34-3A1 0.397 0.895 0.392 0.625 0.205 
01-01-2018 00:14 Departure 31L CRJ9   (Canadair Regional Jet CRJ-900) CF34-8C5 0.800 1.762 0.925 0.976 0.319 
01-01-2018 00:15 Arrival 31R A321   (Airbus A-321) CFMI CFM56-5B3/3 3.795 6.645 1.693 1.715 0.561 
01-01-2018 00:15 Arrival 31R CRJ9   (Canadair Regional Jet CRJ-900) CF34-8C5 0.800 1.762 0.925 0.976 0.319 
01-01-2018 00:16 Departure 31L A388   (Airbus A-380-800) GP7270 18.487 35.926 8.805 8.093 2.649 
01-01-2018 00:18 Arrival 31R F22   (Lockheed Martin F-22 Raptor) CFMI CFM56-7B26E 2.220 4.446 1.419 1.522 0.498 
01-01-2018 00:18 Departure 31L A319   (Airbus A-319) CFMI CFM56-5B7/3 2.069 4.271 1.342 1.420 0.465 
01-01-2018 00:19 Arrival 31L CL60   (Canadair Challenger 600) CF34-3A1 0.397 0.895 0.392 0.625 0.205 
01-01-2018 00:20 Arrival 31R F22   (Lockheed Martin F-22 Raptor) CFMI CFM56-7B26E 2.220 4.446 1.419 1.522 0.498 
01-01-2018 00:22 Arrival 31R A321   (Airbus A-321) CFMI CFM56-5B3/3 3.795 6.645 1.693 1.715 0.561 
01-01-2018 00:23 Departure 31R A319   (Airbus A-319) IAE V2527-A5 2.344 5.181 1.363 1.985 0.650 
01-01-2018 00:24 Arrival 31R A319   (Airbus A-319) IAE V2527-A5 2.344 5.181 1.363 1.985 0.650 
01-01-2018 00:24 Arrival 31R E145   (Embraer ERJ-145ER) AE3007A 0.650 1.453 0.437 0.619 0.203 
01-01-2018 00:24 Departure 31L B752   (Boeing 757-200) RR RB211-535E4 8.234 14.431 2.052 2.696 0.882 
01-01-2018 00:25 Departure 31R A319   (Airbus A-319) IAE V2527-A5 2.344 5.181 1.363 1.985 0.650 
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3.2.  Atmospheric Dispersion Modelling 

 

AERMOD Gaussian dispersion model is used in this study to calculate NO2 emission dispersion 

around JFK airport. The data needed for the model are atmospheric emissions, land use, geographical 

and meteorological data. AERMET and AERMAP are the two main pre-processor of the AERMOD 

model. AERMET itself has two preprocessors, AERMINUTE and AERSURFACE, the schema of 

AERMOD is graphed in Figure 3.1 (EPA, 2019b). Each of these modules are described in the 

following paragraphs. 

 

 
Figure 3.1.  Data flow of the AERMOD Modelling System (Bajoghli et al., 2016). 

 

AERSURFACE determines the surface characteristics needed for the air dispersion model which 

are obtained from the USGS National Land Cover Data 1992 archive (EPA, 2008). The data can be 

download from Multi Resolution Land Characteristics Consortium (MRLC, n.d.). Moreover, EPA 

created AERMINUTE to utilize the ASOS 1-min wind data to address a large number of calms and 

variable winds recorded in the hourly ASOS data files (EPA, 2015). The 1-minute ASOS wind data 

is available from the National Climatic Data Center (NCDC) (NOAA, n.d.). The output files of both 

AERSURFACE and AERMINUTE can be directly inputted into AERMET. 

 

AERMET is EPA's meteorological data pre-processor for the AERMOD model. AERMET 

processes freely available National Weather Service (NWS) data or site-specific meteorological data. 
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AERMET generates the surface and profiles meteorological data files that are read by AERMOD 

(EPA, 2019a). Data taken from the station at JFK Airport are for 1-minute meteorological data and 

hourly surface meteorological data. On the other hand, the upper air meteorological data are taken 

from a station at Brookhaven, New York. Average hourly wind data at JFK airport are shown in 

Figure 3.2 for the year of 2018. 

 

 
Figure 3.2.  Annual wind profile of JFK airport in 2018. 

 

AERMAP is EPA's terrain pre-processor for the AERMOD model. AERMAP determines the 

elevation and hill height scale for each receptor based on the US Geological Survey (USGS) digital 

terrain data (EPA, 2018). The digital elevation model (DEM) file is required to run AERMAP to get 

terrain data for receptors and sources. The 1/3 arc-second DEM file is obtained from USGS’s 

interactive map, the National Map, by selecting the requested area on the map (USGS, 2018). Two 

DEM files are obtained, which, when combined, cover the desired area. Visualization of the data is 

possible with the software called Global Mapper using the two DEM files. Area topography of the 

study area can be viewed in Figure 3.3. As can be seen, elevation around the airport is up to a few 
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meters since it is located in the South of New York City near Jamaica Bay, which merges with the 

North Atlantic Ocean. New York City is mainly a flat area, however, in the North Coast, the elevation 

increases to between 50 - 100 meters. 

 

 
Figure 3.3.  Visualization of terrain data for the study area. 

 

AERMOD performs the calculation at selected receptors. In the current analysis, receptors are 

distributed uniformly over a 24 km x 24 km field around the airport with 500-meter spacing, as shown 

in Figure 3.4. Asides of the uniformly distributed receptors, in order to make a comparison with 

measured NO2 data and show what proportion the aircraft's NO2 emissions effect, two measurement 

centers in the Queens College are also included as receptors. 
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Figure 3.4.  Receptor distributions around the airport and monitoring station in Queens College. 

 

Emission sources are runways while aircraft is in take-off, climb-out and approach modes. When 

aircraft are in taxi-in and taxi-out, the source is the airport area itself. In both cases, the emission 

source type is areal. Runways are split into several areas because LTO modes can be different in 

different parts of the runway, also the height of emission can be different too. As illustrated in Figure 

3.5, departure and arrival flights are mainly using the same part of the runway at the same elevation. 

For instance, the very beginning of a runway is an area source with a height of 50 m because a flight 

approaching the airport, or a flight just took off passes the same part in approximately the same 

elevation. 
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Figure 3.5.  Movement of an aircraft during the LTO cycle (Elbir, 2008). 

 

Therefore, runway sources are split into areas with a length of 500 m and the same width as the 

runway, which is mostly 60 m, only runway 13L and 31R have a width of 45m. Emission sources are 

not limited to the length of the runway, there are 3 to 5 more area sources defined before a runway 

starts or after a runway ends, to account for the climb-out or approach phase until 800 m elevations. 

Figure 3.6 shows the taxi area as a polygon. It also shows all the runways, with the runways split into 

smaller areas. The figure also shows the length of each runway. Since they are longer than the other 

runways, 13R and 31L are split to 15 areas, while the other runways are split into 14 areas. 
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Figure 3.6.  Taxi area, runways and where the runways are split into areas. 

 

After AERMAP and AERMET runs are finished, hourly emission data is prepared using 

previously mentioned NOx emissions ready JFK dataset. First, the area source of every flight is 

changing according to which runway is used and whether it is departure or arrival flight. Therefore, 

every flight’s emissions corresponding to their flight status are considered, for instance, an arrival 

flight does not have take-off, climb-out, and taxi-out emissions; it only has approach and taxi-in. Then 

emission in an LTO mode is divided by how many area sources are defined for that mode in that 

runway. After that, it is divided by the area of source in m2 and time period in that source in seconds 

to obtain emission rate of NOx produced by an aircraft during an LTO mode in g/(s·m2). Finally, 

every calculated emission for every area source is summed up in hourly blocks. The following Table 

3.5 shows a preview of hourly emission data for every source, it is defined as HOUREMIS in 

AERMOD. The first two letters of source names other than ‘AIRPORT’, annotates whether it’s 

departure space (DS), climbing space (CS) or arrival space (AS), the last two digits annotate which 

part of the runway it is, and the middle part is runway’s name.   
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Table 3.5.  Hourly emission data for every area source. 

Year Month Day Hour Source Concentration 
18 5 7 24 AIRPORT 0.000005848059 
18 5 7 23 DS22R09 0.000000000000 
18 5 7 23 DS22R10 0.000000000000 
18 5 7 23 CS22R11 0.000000000000 
18 5 7 23 CS22R12 0.000000000000 
18 5 7 23 CS22R13 0.000000000000 
18 5 7 23 CS22R14 0.000000000000 
18 5 7 23 AS4L01 0.000036151233 
18 5 7 23 AS4L02 0.000036151233 
18 5 7 23 AS4L03 0.000036151233 
18 5 7 23 AS4L04 0.000036151233 
18 5 7 23 AS4L05 0.000036151233 
18 5 7 23 AS4L06 0.000036151233 
18 5 7 23 DS4L06 0.000121206067 
18 5 7 23 DS4L07 0.000121206067 
18 5 7 23 DS4L08 0.000121206067 
18 5 7 23 DS4L09 0.000121206067 
18 5 7 23 DS4L10 0.000121206067 
18 5 7 23 CS4L11 0.000278872024 
18 5 7 23 CS4L12 0.000278872024 
18 5 7 23 CS4L13 0.000278872024 
18 5 7 23 CS4L14 0.000278872024 
18 5 7 23 AS4R01 0.000022527961 
18 5 7 23 AS4R02 0.000022527961 
18 5 7 23 AS4R03 0.000022527961 
18 5 7 23 AS4R04 0.000022527961 
18 5 7 23 AS4R05 0.000022527961 
18 5 7 23 AS4R06 0.000022527961 
18 5 7 23 DS4R06 0.000115564668 

 

The NOx conversion method is one of the required inputs to define when running AERMOD to 

calculate NO2 emission dispersion. There was a method called ARM which uses a fixed conversion 

rate to calculate how much of the NOx is converted to NO2 (Kimbrough et al., 2017). However, it is 

reported that defining a fixed rate is not a valid way to calculate the conversion since variability over 

time is very high. Therefore, a more advanced version of ARM comes into play, ARM Version 2 

(ARM2). A large dataset of observed NO2/NOx conversion ratios in diverse conditions of source-

monitoring distance, atmospheric dispersion conditions, and atmospheric ozone concentrations are 

used to create an empirical equation in which the upper bound of the conversion factor can be 

estimated as a function of NOx (Podrez, 2015). ARM2 is used as a conversion method to run 

AERMOD in this study. 
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3.3.  Machine Learning Modeling 

 

Tree-based learning algorithms are regarded as one of the best and frequently used supervised 

learning methods. Tree-based approaches allow for high precision, consistency and ease of analysis 

for predictive models, in contrast to linear models, non-linear relationships are quite well mapped. 

They can be modified to solve any type of problem such as classification or regression problems 

(Clark et al., 2017). The evolution of the tree-based algorithm is shown in Figure 3.7. 

 

 
Figure 3.7.  Evolution of tree-based models from decision trees to extreme gradient boosters 

(XGBoost) (Morde, 2019). 

 

The decision tree is a graphical instruction of the decision-making process. It is an “if … then 

… else” type of process which makes it a good fit for the programmatic structure. A sample decision 

tree is illustrated in Figure 3.8. 
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Figure 3.8.  An example visualization of a decision tree (Li, 2019). 

 

Like any other model, a tree-based model often suffers from bias and variance. Bias is the 

difference between predicted and actual values; if the difference is high then the bias is high. A high 

biased model can not effectively learn relationships between features and oversimplifies it. Therefore, 

it would underfit the dataset which leads to high error in training and test data. Variance is the amount 

of change in model prediction if different training datasets were used. High variance causes the model 

to memorize the training data and does not generalize well on the data that it has not seen before. In 

other words, models with high variance show good performance on training data but show low 

performance and high error rates on test data (Geurts, 2002). Figure 3.9 shows the contribution of 

bias and variance on total error, while Figure 3.10 shows the graphical illustration of bias and 

variance. 

 

 
Figure 3.9.  Contribution of bias and variance on total error (Fortmann-Roe, 2012). 
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Figure 3.10.  Bullseye diagram to show bias variance trade-off (Fortmann-Roe, 2012). 

 

In order to balance the trade-off between bias and variance, model complexity can be increased, 

which will reduce the bias. However, making the model more complex after a level will cause 

overfitting, which makes the model suffer from high variance. One way to manage bias variance 

trade-off is ensemble learning (Zhang et al., 2012). Bagging is an ensemble learning technique to 

reduce variance by taking multiple simple classifiers (weak learners) created by sub-samples of the 

same data. It combines their result for a given input and takes the most frequent result as a prediction 

among them (Prasad et al., 2006). 

 

The random forest is one of the algorithms that use the bagging method to make predictions over 

many different decision trees. It also uses feature randomness when to build each tree to try to create 

a forest of uncorrelated trees whose prediction by the committee is more precise than that of each 

individual tree (Breiman, 2001). Furthermore, boosting is another method that trees are built 

sequentially and each subsequentially built tree aims to reduce the errors of the previous trees. Each 

tree learns from residual errors that are updated by the tree that came before. Trees created in boosting 

have fewer splits when compared to the bagging technique used model types like the random forest. 

Initial weak learners in boosting have a high bias; however, being interpretable because of their small 

size makes the boosting’s final learner have low bias and variance at the end of the iterative learning 

process (Schapire, 2003). Below in Figure 3.11, the illustration of comparison bagging and boosting 

is given. 
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Figure 3.11.  Comparison of bagging and boosting methods (Aporras, 2016). 

 

Gradient boosting, as a supervised learning algorithm, tries to predict a target variable accurately 

by combining predictions of a series of simpler and weaker models. If regression is made by using 

gradient boosting, regression trees are used as weak learners, and every weak learner takes input data 

to calculate a score to pass on its leaves continuously. Training in gradient boosting is an iterative 

process. Errors of previous trees are calculated after adding new trees, then both trees are combined 

to make a new prediction. It is referred to as gradient boosting because a gradient descent algorithm 

is used to minimize loss when adding new models (Taieb et al., 2014).  

 

Gradient boosting machines (GBM) differ from boosting algorithms while handling the 

shortcoming of weak learners. Similar to how neural networks use gradient descent to optimize 

weights, GBM also uses gradients to minimize a loss function. Every training round builds the weak 

learner and compares its predictions to the correct result that is expected. The distance between 

prediction and the true value represents the model's error rate, and this error can be used to calculate 

the gradient. The main focus in GBM is to make changes in the model’s predictions by using gradient 

descent to get a sum of residuals closer to 0 so that predictions will be close to actual values as well 

(Natekin et al., 2013).  

 

XGBoost is an improved implementation of the gradient boosted trees algorithm by systems 

optimization and algorithmic enhancements. It is also an open-source project optimized by 

implementing parallelization, adding stopping criterion for tree splitting, handling big sized data 

frames that do not fit into memory. Furthermore, the algorithm is enhanced by adding L1 and L2 

regularization method to have better control on overfitting, also with handling missing data with 

sparsity awareness and being able to make cross-validation (T. Chen et al., 2016). The superiority of 
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XGBoost then the other algorithms like GBM, random forest and even logistic regression are shown 

in Figure 3.12, a benchmark test made on a classification dataset. Even though XGBoost and GBM 

are almost identical in terms of accuracy, XGBoost is 86 times faster than GBM.  

 

 
Figure 3.12.  Benchmark of XGBoost and other machine learning algorithms on a classification 

dataset (Morde, 2019). 

 

XGBoost is a supervised learning method where the training data xi is used to predict target 

variable yi. The supervised learning model generally constructed on a mathematical model, like the 

linear model, where prediction is a linear combination of weighted input features. Classification or 

regression can be the task that the prediction by the model is interpreted. During the model training, 

parameters θ, which are coefficients in the linear model, are expected to be learned from the data. 

 

 !"# =%θ'()'
'

              (2) 

 

In order to measure how well the model finds the best parameters θ that best fit the training data 

xi and labels yi, an objective function is defined. Objective functions are consisting of two parts, 

training loss functions L and regularization term Ω.  

 

 L(θ)=L(θ)+Ω(θ)              (3) 
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One of the common loss functions is mean absolute error (MAE), which measures, without 

considering their direction, the average magnitude of the errors in a sequence of predictions.  

 

 MAE =
1
3
%4!' − !6# 4

7

'89

              (4) 

 

Another loss function that is commonly used is the root mean squared error (RMSE), which also 

measures the average magnitude of the error as a quadratic scoring method. 

 

 RMSE = <
1
3
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7

'89

              (5) 

 

The model will not generalize well and overfit if there is noise in the data, in order to avoid this, 

regularization term shrinks or regularizes these learned estimates towards zero to discourage learning 

a more complex or flexible model. It is used to find the optimum model complexity in the bias-

variance tradeoff as it is illustrated previously in Figure 3.10. 

 

XGBoost which uses classification and regression trees (CART) as weak learners, is different 

than the regular decision trees which only give the decision values in the leaf. CART gives real 

prediction scores associated with each leaf, which makes possible much better interpretations. In 

Figure 3.13, tree ensemble can be seen as, prediction scores of two trees summed up to get the final 

result. 
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Figure 3.13.  Tree ensemble of two trees (T. Chen, 2016). 

 

Here is the dataset @ = {((), !)): D = 1⋯3, () ∈ ℝH, !) ∈ ℝ}, n observations with m features 

each and with a true label y. The model uses this data to generalize on and give a result of ŷi, it can 

be represented as in follows,   

 

 !"# = %JK(())
L

K89

, JK ∈ ℱ              (6) 

 

where K is the number of trees, fk is a regression tree among ℱ, which is all possible CARTs, 

and score given to i-th observation by the k-th tree is represented as fk (xi). The following regularized 

objective function should be minimized to get an accurate result for ŷi, 

 

 ℒ(θ) =%O(!), !"#)
7

)

+%Ω(JK)
L

K89

              (7) 

 

 where	Ω(J) = UV +
1
2
X|Z|?              (8) 

 

l is the loss function and Ω is a regularization term, where T is the number of leaves, w is the 

magnitude of leaf weights and the penalty is controlled by parameters γ and λ to prevent the increase 

in model complexity. Optimization of the model cannot be made as in the traditional methods which 

simply take the gradient since it is difficult to learn all the trees at once. Therefore, an additive strategy 
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is used by adding a new tree to the prediction of the i-th instance at the t-th iteration, ŷ)
(\) that is 

already made. 

 

 ℒ(]) = %O ^!), ŷ)
(\_9) + J\(`a)b

7

)89

+ Ω(J\)              (9) 

 

Simplification of the objective function Eq. 9 can be made by using the Taylor expansion. A tree 

greedily splits in every possible direction by taking the remaining features in the tree into account. 

Then the new loss is calculated for each split, and with the loss reduction formula (Eq. 10), it's decided 

to pick the tree which reduced the loss most. 

 

 ℒcde)\ =
1
2
f
=∑ h))∈ij >

?

∑ ℎ))∈ij + X
+
=∑ h))∈il >

?

∑ ℎ))∈il + X
−
(∑ h))∈i )?

∑ ℎ))∈i + X
m − 	U            (10) 

 

IL and IR are the scores on the new left and right leaves after the split, I is the score on the 

original leaf. In order to find the best tree, it is intractable to sort all the trees possible and choose 

the best one. Therefore, evaluation of the split candidates by one level at a time is made by Eq. 10. 

 

3.4.  Implementation of the Machine Learning Model to Aircraft Emissions 
 

In this study, a model is trained to predict using XGBoost pollutant atmospheric concentrations 

at a given location near the JFK airport due to aircraft emissions. Inputs are hourly meteorological 

data at the airport and hourly emission data calculated using engine emission factors. Hourly 

concentration distributions calculated from AERMOD for receptors distributed with 4000 m spacing 

are used as labels to train the model (Figure 3.14). Data from 49 evenly distributed receptors are used 

for training, and data from 2 receptors at Queens College are used as test data. 
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Figure 3.14.  Receptors used in model training. 

 

The dataset used in model training consists of 9 features and 1 label. The 9  features are: 

- distance of a receptor to the center of the airport (latitude: 40.641, longitude: -73.779) in 

meters;  

- direction, heading, of the receptor to the center of the airport in degrees;  

- hourly meteorological values around the airport like wind speed, wind direction, temperature, 

precipitation, relative humidity, and pressure;  

- hourly total NOx emitted by aircraft in the airport area in grams;  

The label is hourly NO2 concentrations at every receptor calculated by AERMOD. Since 1 year-

long data from 49 receptors are used to train the model, this means that the length of our training 

data is 429,240. The sample from the training dataset is shown in Table 3.6. 

 

Pollutant concentrations at receptors acquired from AERMOD to use as labels in the machine 

learning model contains clusters of data at 0, especially in the farther areas to the source. In order to 

handle this kind of data, the Tweedie distribution is used as a learning objective in XGBoost 

(Jørgensen, 1987). It is a special case of an exponential distribution. It is useful for modeling when 

there is a mixture of zeros and non-negative data points, like medicine and genetics, biology research, 

insurance claims, and rainfall data (Bonat et al., 2016; Hasan et al., 2012; Kendal, 2004; Kendal et 

al., 2000; Smyth et al., 2002). The Tweedie model is a good candidate in the case of having a spike 

at zero when a histogram is drawn with the owned dataset. With the changing power parameter, some 

well-known distributions fall into the Tweedie distribution as illustrated in Figure 3.15. With the 

power parameter close to 1, the distribution is a Poisson distribution; if the power parameter is close 

to 2, it gives gamma distribution (Gilchrist et al., 2000). 
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Figure 3.15.  Four Tweedie histograms with the power parameter from 1.2 to 1.9. 

 

There are sets of parameters that can be adjusted according to the problem that is being to be 

solved with the available dataset and re-tuned with the machine learning results. Bias variance 

tradeoff is the main concern of parameters in XGBoost. The predictive power of the model and model 

complexity are the subjects that the best model should trade. Parameters of XGBoost are defined as 

follows: 

 

• num_boost_round is the number of iterations for boosting or building trees. Other 

parameters have an effect on it; therefore, it might need to be re-tuned after a parameter 

is updated. 

• early_stopping_rounds are to stop training when there is no improvement after N rounds 

(defined by early_stopping_round) after the training stopped, the best number of 

boosting rounds are kept. 

• evals is a list of pairs to evaluate the model on, it’s usually the training dataset and an 

evaluation dataset together. 

• max_depth is the maximum number of nodes permitted from the root to the tree's farthest 

point. Deepening trees can form more complex relationships by adding additional nodes, 
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but as we deepen, tree splits become less important and sometimes due to noise, causing 

the model to overfit (default=6). 

• min_child_weight is the required minimum weight to create a new node in the tree, 

smaller weight results in creating a child, which is a leaf node created after a partition, 

by using fewer samples. By default, all the samples are used to create a child (default=1). 

• subsample is the fraction of how much of the rows or in other words observations used 

to subsample at each step. In default, all the rows are used (default=1). 

• colsample_bytree is the fraction that determines how much of the features that will use, 

by default value 1, it uses all the features (default=1). 

• ETA is also called the learning rate. It is the amount of shrinkage of the feature weights 

after each round, it can also be defined as the correction amount at each step 

(default=0.3). 

• gamma is the minimum loss reduction needed to achieve by the previous split in order to 

make a new split (default=0). 

• lambda is an L2 regularization term on weights, it is used to handle the regularization 

part of XGBoost (default=1). 

• alpha is the L1 regularization term on weight, it is used to run the algorithm faster when 

the dimensionality is very high (default=0). 

• objective defines the loss function to be minimized (default=reg: squared error). 

• eval_metric is the metric to be used for validation data (default according to objective). 

• tweedie_variance_power is the parameter that controls the variance of the Tweedie 

distribution, it’s in range of between 1 and 2. Shifts towards a Poisson distribution if it’s 

set close to 1, otherwise, it shifts towards a gamma distribution (default=1.5). 

 

After a series of iteration, only the following parameters are optimized and changed to other than 

their default values: num_boost_round is set to 100,000 and early_stopping_rounds is set to 50 to 

stop the training after the training and evaluation stops converging; subsample is set to 0.8, for each 

tree to take the 80% of the rows to build the tree; ETA is set to 0.01 to make the boosting process 

more conservative; alpha is set to 0.8 and gamma is set to 1 to make the model more conservative 

and prevent overfitting; objective is set to previously mentioned Tweedie distribution, therefore, 

eval_metric is set to negative log-likelihood as a default of Tweedie distribution; 

tweedie_variance_power is set to 1.2 which shifts the model towards to Poisson distribution. 
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Table 3.6.  Input data used in XGBoost for training. 

Distance 
(m) 

Heading 
(degrees) 

Wind 
speed 
(m/s) 

Wind 
direction 
(degrees) 

Temperature 
(K) 

Precipitation 
(mm/h) 

Relative 
humidity 

(%) 

Station 
pressure 

(millibars) 
Total NOx 

(g/h) 
NO2 

(µg/m³·h) 

8946.751 334.2005 2.08 166 278.8 0 64 1035 683.5453 7.80073 
12003.2 180.7929 4.41 128 296.4 0 81 1019 773.8253 0 

11325.43 343.4379 8.61 188 304.2 0 72 1015 592.0355 0.14763 
12003.03 90.88727 9.3 185 290.9 0 96 1006 112.9384 0 
12652.7 252.2671 4.03 222 297 0 100 1016 175.8837 0 

14426.26 327.0453 7.5 137 296.4 2 100 1016 368.6152 2.57095 
12652.72 289.1382 6.47 233 285.9 0 50 1018 536.3279 0 
4001.045 90.82541 9.03 325 266.4 0 47 1029 800.305 0 
4001.049 180.7944 4.02 222 298.1 0 90 1015 823.092 0 
16975.36 225.7008 3.86 129 287.5 0 80 1021 626.877 0 
5658.32 135.8249 6.28 262 269.9 0 42 1027 471.9164 0 

8002.058 90.85641 6.75 253 284.9 0 50 1024 189.6323 0.7907 
5658.32 135.8249 8.03 293 279.9 0 48 1022 902.4589 0.52766 

14425.83 124.5758 4.39 186 296.4 0 100 1011 402.5945 0 
4001.049 180.7944 3.08 7 270.9 0 74 1022 305.1751 117.7305 
12652.7 252.2671 5.72 186 293.1 0 83 1021 712.1831 0 

5658.358 45.82628 6.92 183 303.8 0 68 1016 427.1357 0 
8002.179 0.796357 9.85 310 291.4 0 53 1012 487.0007 0 
12652.55 199.1972 8.79 254 266.4 0 54 1027 497.3833 0 
8946.788 297.2992 2.3 127 298.8 0 90 1022 116.8668 10.02926 
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A summary of the overall procedure followed in this study is given in Figure 3.16. Firstly, 

pollution sources were identified, and then pollution emissions were calculated by using specific 

emission factors. Afterward, pollutant concentrations were calculated from these emissions by using 

dispersion modeling, and later the model was trained using machine learning. Lastly, the ability of 

the model to predict aircraft emission was evaluated. 

 

  

Figure 3.16.  Overall Methodology for Emission Prediction with ML. 
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4.  RESULTS AND DISCUSSION 
 

 

4.1.LTO Cycle Emissions 
 

The NOx emissions for LTO cycles of all aircrafts and all runways combined at JFK airport were 

calculated using Eq. 1 mentioned in section 3.1. The calculated emissions of every phase of the LTO 

cycle and total annual emission are given in Figure 4.1. Examination of the calculated NOx emissions 

for JFK airport shows that the climb-out phase of the LTO cycle has the highest annual emission with 

1951 tons (t), followed by a take-off phase with 1047 t. The total number of flights in 2018 was 

455,000. Contributions to the NOx emissions of take-off, climb-out, approach, and taxi phases are 

25.3%, 47.1%, 12%, and 15.6%, respectively. In other words, when the engine thrust is higher, then 

the NOx emission is noticeably increased.  

 

The calculated NOx emissions for JFK airport are consistent with the reported values from the 

literature. Annual NOx emissions in another busy airport, Istanbul Ataturk Airport, is calculated as 

4249 t based on the 465,000 flights' data in 2015 (Kuzu, 2018). In Chania Airport, Greece, which is 

a relatively small airport with 10,324 flights during the year 2016, annual NOx emission is calculated 

as 137 t (Makridis et al., 2019). The average NOx emission per flight at JFK is 9.09 kg/flight which 

is close to that reported for Istanbul (9.14 kg/flight) and Chania (13.3 kg/flight). 

 

 

Figure 4.1.  Annual NOx emissions of phases of the LTO cycle and total annual emission. 
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Some variations in emissions between runways are also observed since their usage varies 

throughout the year. As can be seen in Figure 4.2, 22L is the busiest runway in the airport with both 

arrival and departure flights, followed by 31R. Therefore, they have the two highest emissions. 

Runway 22R and 31L also have high NOx emissions, however, they mostly have departure flights. 

 

 

Figure 4.2.  Annual NOx emissions by phases of the LTO cycle for every runway. 

 

The monthly number of flights varies throughout the year. As a result, NOx emissions also vary 

accordingly (Figure 4.3). As can be seen from the graph, NOx emissions are the lowest level in 

February, when the minimum number of flights took place. By contrast, NOx emissions are at the 

highest level in July, when the maximum number of flights took place. In general, the number of 

flights performed in holiday seasons like summer and spring is higher than in other months, and thus, 

the NOx emissions measured in these months are also higher than the monthly average, which is 

estimated as 344.42 tons/month.  

 

It is apparent that NOx emissions are strongly dependent on the number of flights, but there are 

slight variations in some months. The reason for this discrepancy can be attributed to the type of 

aircraft, such as the increasing number of charter flights in certain months which tends to increase the 

NOx emissions. 
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Figure 4.3.  Monthly flight counts and NOx emissions for all aircrafts using JFK airport. 

 

As shown in Figure 4.4, NOx emissions can also change hourly throughout the day depending 

on the rush hours. The ratio of peak hourly emissions to minimum hourly emissions is a factor of 10 

approximately. The least NOx emissions were measured between 2 and 5 a.m, while the highest NOx 

emissions were measured between 5 and 10 p.m. There was a rapid increase in NOx emissions from 

4 a.m to 7 a.m and a significant decline in NOx emissions from 9 p.m to 2 am of the following 

morning. 
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Figure 4.4.  Hourly average NOx emission distribution throughout the day. 

 

4.2.  Atmospheric Dispersion Modelling 
 

After the emissions are calculated for the different LTO phases of every arrival and departure 

flight, emission sources were defined and hourly emission data for use as input in AERMOD were 

created. Since an aircraft either ascends or descends in the LTO phases of take-off, climb-out, and 

approach, emission sources for those phases are defined as areal sources shown in Figure 4.5 (Wayson 

et al., 2003). By dividing the calculated total emissions of an aircraft for LTO phases by source areas, 

the emissions are converted from units of g/h to g/s*m2. Subsequently, they are evenly distributed 

over the corresponding area sources (Figure 4.5) to define the hourly emissions file for AERMOD. 

 

 

Figure 4.5.  Aircraft emission sources in take-off, climb-out and approach phases (Wayson, 2003). 
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AERMOD was used to calculate the hourly ground-level NO2 concentrations at all receptors 

(Figure 3.4). ARM2 is used to calculate NOx/NO2 conversion in AERMOD. It is a sixth-order 

polynomial regression based on 1-hr NOx measurements from 580 stations between 2001-2010 (EPA, 

2013).  

 

In order to compare results with the hourly air quality standard, the 19th highest hourly 

concentration are taken, since the EPA and WHO regulations allow for the exceedance of the hourly 

standard 18 times in a year. Moreover, the annual average of NO2 concentrations at every receptor 

was also computed and compared with annual air quality standards. On the other hand, a machine 

learning model requires hourly data to train a model. Therefore, hourly concentration data for the 

receptors that are shown in Figure 3.14 were used for model learning.  

 

The WHO hourly and annual NO2 air quality standards are 40 μg/m3and 200 μg/m3. Throughout 

the year, the hourly threshold of NO2 can be exceeded up to 18 times. Figure 4.6 shows the receptors 

(in red) where the air quality standard was exceeded 19 or more times.  Figure 4.7 depicts the receptors 

(designated in red) that have higher annual average emission than the threshold.  

 

 

Figure 4.6.  Receptors (shown in red) where the 19th highest hourly NO2 concentrations exceed the 

allowable hourly air quality standard of 40 μg/m3. 
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Figure 4.7.  Receptors (shown in red) where the average annual NO2 concentrations exceed the annual 

air quality standard of 200 μg/m3. 

 

According to the air dispersion modeling results, 853 of the 2403 receptors are exceeding the 

hourly limit more than 18 times. NO2 Concentrations around the airport area decrease rapidly with 

distance due to dispersion. It can be seen that the 19th highest hourly concentrations are correlated 

with the annual wind profile shown in Figure 3.2. On the other hand, the annual air quality standard 

is exceeded only at 74 receptors, all near to the airport. Concentrations are high near the runways 

which are the major emission sources. Contour plots of annual average concentrations and 19th 

highest hourly concentrations are illustrated in Figure 4.8 and Figure 4.9, respectively, It is observed 

that concentrations started to increase from both ends of the runways, reaching a peak value where 

the two runways intersect. 
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Figure 4.8.  Contour plot of the annual average NO2 concentrations around the airport. 

 

 

Figure 4.9.  Contour plot of the 19th highest hourly NO2 concentrations around the airport. 
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AERMOD results for Queens College and Queens Near Road air quality stations are compared 

with the real data in Figure 4.10 and Figure 4.11, respectively. It is important to note that the observed 

concentrations are the total NO2 concentrations due to all sources including vehicle traffic and heating 

while the simulated concentrations are due to aircraft emissions from JFK airport only. The average 

simulated concentrations are 1.79 µg/m3 and 1.94 µg/m3 at Queens College and Queens Near Road, 

respectively, while the average observed concentrations are 26.05 µg/m3 and 29.02 µg/m3 at Queens 

College and Queens Near Road. This suggests that NO2 concentrations due to aircraft emissions are 

about 6.7% of total observed concentrations. In both stations, at some points, modeled data are higher 

than the measured data, which is unexpected in normal conditions. Regulatory dispersion models 

such as AERMOD can provide good long-term estimates of atmospheric concentrations; however it 

can not necessarily produce accurate concentration vs time data. This may be attributed to the 

meteorological data used in the model.  With a 1 km by 1 km grid, it is not possible to accurately 

simulate the air flow field. Another reason for this discrepancy is the adjustments in land use data. 

For instance, NLCD1992 land cover data which is required for AERSURFACE could not be found 

in MLRC, therefore NLCD2011 data is used in the model (EPA, 2008). The emission factors used in 

the calculation of the emissions might be causing this overestimation since they are accepted as 

constants but ideally, a single value for all seasons and aircraft operation conditions may not 

accurately represent an aircraft’s actual emissions.  

 

 

Figure 4.10.  Comparison of modelled and observed NO2 concentrations at Queens College air quality 

station. 
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Figure 4.11.  Comparison of modelled and observed NO2 concentrations at Queens Near Road air 

quality station. 

 

Additionally, scatter plots between observed and modeled data for both stations were constructed 

to evaluate the correlation between the two data sets (Figure 4.12 and Figure 4.13). Even though 

modeled data come up with high values at some points, generally, it is either zero or close to zero. 

Since observed data represents NO2 concentrations resulted from every possible source, the 

correlation between two data for both stations is low as shown in Figure 4.12 and Figure 4.13.  

Another important feature of the AERMOD is the steady and spatially uniform wind distribution 

which in reality is much more complex. 
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Figure 4.12.  Correlation between observed and modeled concentrations in Queens College station. 

 

 

Figure 4.13.  Correlation between observed and modeled concentrations in Queens near road station. 

 

Analysis of daily average observed and modeled NO2 concentrations of both Queens College 

and Queens near road air quality stations is presented in Figure 4.15 and Figure 4.16, respectively. 

Contrary to the hourly concentrations, modeled data are lower than the observed data as expected. In 

Figure 4.16, the correlation between observed and modeled data in both stations are given, again 

measured data contains concentrations from every other source, therefore, the correlation coefficient 

R2 values are low. 
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Figure 4.14.  Daily average observed and modeled concentrations at Queens College.  

 

 

Figure 4.15.  Daily average observed and modeled concentrations at Queens near road. 
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Figure 4.16.  Correlation between daily average observed and modeled concentrations in A) Queens 

College and B) Queens near road. 

 

4.3.  Machine Learning Modelling 
 

As noted above, hourly emission results for the 51 receptors displayed in Figure 3.4 were 

obtained from the atmospheric dispersion model. These 51 receptors, located at 4000 m spacing, are 

a subset of the receptors used in the AERMOD simulations. Two of the 51 receptors, Queens College 

and Queens Near Road, are separated as evaluation and test set; the remaining 49 receptors, which 

include 429,240 data points, are used as the training set in the machine learning model. During 

training, the model use input data and Eq. 6 to generate predictions. The generated results are 

subsequently compared with the AERMOD concentrations.  The agreement between the two sets is 

evaluated in terms of the mean absolute error (MAE), the root-mean-square of the error (RMSE) and 

the negative log-likelihood. Eq. 10 is used to select the tree which reduced the loss the most. When 

training is performed, it is seen that the error in both training and evaluation datasets decreased with 

a correlation. Early stopping stepped in to avoid overfitting when there are 50 steps with no 

improvements and stopped the training in the 83150th step. Negative log-likelihood and RMSE of 

both training and evaluation sets are decreased and converged during the training as illustrated in 

Figure 4.17 and Figure 4.18, respectively.  

 

A B 



57 
 

 43 

 

Figure 4.17.  Negative log-likelihood errors of training and evaluation during model training. 

 

 

Figure 4.18.  Root mean square error (RMSE) of training and evaluation during model training. 

After the training step, error calculations for both evaluation and test datasets were made and 

were found to be close to each other in terms of error metrics, negative log-likelihood, and RMSE. 

The evaluation and test errors were computed as 4.60 and 4.92 for negative log-likelihood, and 0.70 

and 0.78 for RMSE, respectively. A plot of prediction and label of the training dataset is given in 

Figure 4.19. Orange lines show true concentration values at the given data points, while blue lines 

are the predictions made by the model. The y-axis represents every single hourly emission data point 

from 49 receptors. It can be seen that the machine learning model achieved to learn pollutant 

concentration correlations at the 49 receptors distributed around the airport.  
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Figure 4.19.  Training results of the model. 

 

The agreement of the training results is not sufficient to evaluate the quality of the machine 

learning model as the model might memorize the dataset and this can lead to overfitting. In order to 

check whether the model generalizes well in other datasets, predictions on Queens College and 

Queens Near Road are made. Both Figure 4.20 and Figure 4.21 show that the model is trained to 

generalize on datasets that it did not see before. Despite the fact that the model is applied to highly 

turbulent data like emission dispersion and meteorology together, it is seen that it is capable of 

producing small deviations while predicting at some points.  

 

Further improvements can be made by gathering more than 1 year of air traffic data and/or data 

from more than 1 airports to let the model learn how emissions are dispersed under different 

geographical and meteorological conditions. On the other hand, for the labeling of the dataset, more 

advanced atmospheric models like CALPUFF or FAA’s modified AERMOD model, AEDT, which 

can more accurately simulate the three-dimensional wind distribution, can be used (Kenney, 2017; 

Scire, 2000). Also, more complex neural network models like recurrent neural networks can be used 

to learn emission dispersion with respect to change in time (Arsie et al., 2010).  
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Figure 4.20.  Predictions on Queens College datasets with its true labels. 

 

 

Figure 4.21.  Predictions on Queens Near Road datasets with its true labels. 

 

Model performance can also be evaluated by looking into the correlation between predicted and 

true values in training, evaluation and test datasets. In Figure 4.22, it is illustrated that all three 

datasets have an R2 value above 0.99, which means that the model almost perfectly predicted true 

values with the corresponding input data. 
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Figure 4.22.  Correlation between predicted and true concentration in A) training, B) evaluation and 

C) test datasets. 

 

Figure 4.23 presents the feature importance scores which indicates which features (or variables) 

are most useful and has more value when building boosted decision trees during the model training. 

The relative importance of a feature increases depending on whether it contributes to making an 

important decision in the decision trees. In order to compare and rank features, importance value for 

every feature in the dataset is calculated. The feature importance was given by XGBoost at the end 

of the training. Based on this figure, it can be said that wind direction and magnitude along with NOx 

source have the most dominant effect on predicting NO2 concentrations at the given location. On the 

other hand, precipitation is by far the less important feature.  

 

A B 

C 
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Figure 4.23.  Feature importance values of every attribute in the trained model. 
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5.  CONCLUSIONS 
 

 

Over the years, there has been an increasing trend in air pollution caused by anthropogenic 

activities like industries, household heating, landfills, and transportations. Numerous pollutants, NO2, 

SO2, CO, O3 PM2.5-10, and Pb, which are released into the atmosphere from these activities are 

identified as major pollutants by health and environmental organizations like WHO, EPA, and EEA. 

Emitted pollutants are dispersed through the atmosphere to wide areas primarily due to 

meteorological conditions, which can lead to the contamination of the air, water and food production 

at large distances from the release point.  Therefore, inhaling or ingesting the pollutants can result in 

serious adverse health effects, such as cardiovascular, cerebrovascular and respiratory diseases. Some 

of these pollutants are also carcinogenic. (Paul, 2019). 

 

One of the important sources of urban air pollution is transportation, which includes land, air, 

and marine transport. Even though there are significant efforts to lower the pollution levels of major 

pollutants through advanced technologies and stricter regulations and standards, aircraft emissions 

continue to increase due to increasing air traffic demand since the regulations on aircraft pollutions 

are not as strict as road vehicles. Due to the high air traffic in metropolitan areas, aircraft result in a 

high amount of emissions during the LTO cycle. The latest flight counts in the world per year are 

around 300 million; at JFK Airport only, over 450,000 flights took place in 2018. Due to non-ideal 

combustion, aircraft result in a high concentration of PM2.5 and NOx emissions. 

 

Atmospheric dispersion modeling gained significant importance year after year with models like 

AERMOD and CALPUFF. These and similar models have undergone significant improvements in 

recent years to reflect the latest scientific developments in the field. These models can be readily used 

to compute the impacts of different sources on air quality. The focus of this study is to estimate the 

NO2 emissions from air traffic at JFK Airport and the resulting impact on air quality. To achieve this 

goal, air traffic data in JFK Airport for the year 2018 were gathered from air traffic surveillance 

platform called OpenSKY, in order to calculate NO2 emissions. The emissions were calculated using 

emission factors gathered from environmental and aviation agencies like EEA, FAA, and EASA. The 

emissions data were then used as input in AERMOD to calculate NO2 concentrations in the vicinity 

of the JFK airport. From the results of the AERMOD dispersion model, it is seen that the hourly NO2 

air quality standard is exceeded at 853 of evenly distributed 2403 receptors distributed within the 

airport and the surrounding area. Moreover, the annual average concentrations exceeded the limit at 

74 receptors. It is important to note that these exceedances are due to a single source of NOx, aircraft 
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emissions during the LTO cycle. There are also various sources of NOx such as heating and vehicular 

emissions that would contribute further to NO2 concentrations in the atmosphere. 

 

When the calculated hourly emissions of two air quality stations are compared with the 

measurements, it is seen as the dispersion model calculated high values at some points. This is 

attributed to the lack of detailed meteorological data at a fine grid and some limitations of defining 

land-use types in AERMET, the meteorological pre-processor of AERMOD. Another limitation of 

AERMOD to calculate accurate concentrations on farther points is that it uses steady and uniform 

hourly wind distribution, instead of a fully transient 3-dimensional wind profile. Further 

investigations on improving the model results will be made in future studies. 

 

Hourly emission results for 51 receptors from AERMOD were used alongside with the 

meteorology data in XGBoost, a decision tree based gradient boosting model. A model trained on the 

data of 49 receptors while it is evaluated and tested by the other 2 receptors. Training results show 

that the model can learn to make a correlation between emissions at the airport, meteorology and 

dispersion model results. Meanwhile, the model’s predictions on evaluation and test datasets show 

that even though the model generalizes well, there is still room for improvement. The advantage of 

the machine learning models is that they can potentially predict air pollution concentrations when 

sufficient data are available from meteorological stations and air dispersion models. 

 

For future studies, advanced atmospheric dispersion models like CALPUFF or AEDT (Aviation 

Environmental Design Tool), or even more advanced Eulerian models like CMAQ (Community 

Multiscale Air Quality Model) or CAMx (Comprehensive Air Quality Model with Extensions) 

coupled with a meteorological forecasting model like WRF (Weather Research and Forecasting 

Model) should be used to get more accurate labels for machine learning modeling.  

 

Furthermore, increasing data variety by increasing time interval and location may increase the 

model’s performance by adapting it to different geographical and meteorological conditions. 

Moreover, similar modeling efforts can also be applied to other airports such as the new Istanbul 

airport, which is one of the busiest airports in the world. Future studies can develop and test machine 

learning models that also include more pollution sources from industry, land transport, and heating. 

Last but not least, using advanced neural network models, like a recurrent neural network that is 

favored by sequential data, could also be examined in future studies to obtain improved model 

performance. 
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