AN OPEN GRAPHICS LIBRARY (OPENGL) BASED
TOOLBOX FOR BIOMEDICAL IMAGE DISPLAY AND
PROCESSING

YOEREKOCRETIM KURULD
':'Mnnmw wERKEH

by

Mehmet Olcay Kilig

B.S. in Electronics and Telecommunications Engineering

Istanbul Technical University, 1995

Submitted to the Institute of Biomedical Engineering
in partial fulfillment of the requirements
for the degree of
Master of Science
in

Biomedical Engineering

Bogazici University

September, 2001

il

AN OPEN GRAPHICS LIBRARY (OPENGL) BASED
TOOLBOX FOR BIOMEDICAL IMAGE DISPLAY AND
PROCESSING

T.C. YUKSEXKHCRETIVG KURULD
DOKDOMANTASYON |
APPROVED BY:

Assoc.Prof. Ahmet Ademoglu
(Thesis Supervisor)

Assoc.Prof. Mehmed Ozkan

Assoc.Prof. Aysin Baytan Ertiiziin

DATE OF APPROVAL: September 28, 2001

iii

ACKNOWLEDGMENTS

At first, I would like to thank my thesis supervisor Assoc.Prof. Ahmet Ademoglu
for his patience, sincerity and endless support. I acknowledge his support and guidance

with great respect.

I would like to thank Assoc.Prof. Mehmed Ozkan and Assoc.Prof. Aysin Baytan

Ertiiziin for participating in my thesis committee.

In order to honour them, I would also like to thank my parents, Meliha, Mustafa,
Rana, Tuncay, Dingay and Zeynep Kilig. Thank you for endless support and endless

patience during my whole lifetime.

iv

ABSTRACT

AN OPEN GRAPHICS LIBRARY (OPENGL) BASED
TOOLBOX FOR BIOMEDICAL IMAGE DISPLAY AND
PROCESSING

By the development of Computerized Tomography (CT) in the late 70’s and
Magnetic Resonance Imaging (MRI) at the beginning of 80’s, three dimensional images
of the human body were generated in terms of slices of 2-D images. The availability
of 3-D images gives researchers a better morphological, relational, and functional as-
sessment of the anatomical structures. An Open Graphics Library (OpenGL) based
image display and processing toolbox, called 3SDVIEW, has been developed for the 3-D
visualization of human tissues using the MRI/CT data. The 3-D rendering and visual-
ization are performed via the OpenGL library routines while the basic image processing
routines and Windows based Graphics User Interface (GUI) are developed using the
Borland Object Windows 2.0 programming language and Borland C++ Version 4.5
compiler. The toolbox is capable of displaying the MRI/CT images in 2-D and 3-D as
well as performing basic image processing techniques such as filtering, edge enhance-
ment, and histogram watching. The Seeded Region Growing Algorithm (SRGA) is also
included for the segmentation and 3-D visualization of different tissues. The toolbox is
almed to be an interface to which someone studying biomedical images can add other

functions to perform his/her routine analysis and visualization.

Keywords: OpenGL, Borland C++, ObjectWindows Programming, Image

Processing, Segmentation.

OZET

BIYOMEDIKAL GORUNTULERI ISLEMEK VE
GORUNTULEMEK ICIN OLUSTURULMUS OPENGL
TABANLI BiR ARAC KUTUSU

1970’ 1i yallarin sonunda Bilgisayar Tomografi ve 1980’ 1i y1llarin baginda Manyetik
Rezonans Goriintiileme alanlarindaki gelismeler sonucu, insan viicudunun iig boyutlu
goriintiileri, iki boyutlu gériinti dilimleri halinde elde edilmeye baglanmigtir. Ug
boyutlu gériintiiler sayesinde aragtirmacilar, viicut yapilarini, gekilsel, iligkisel ve fonksi-
yonel yonlerden daha iyi degerlendirebilirler. 3DVIEW isimli, OpenGL tabanl goriintii
igleme ve goriintilleme arag kutusu, MRI ve CT verilerini kullanarak insan doku-
larinin goriintiilenmesi icin geligtirilmigtir. ﬂg boyutlu parcalama ve goriintiileme,
OpenGL kiitiiphane fonksiyonlarn kullanilarak; temel goriintii igleme fonksiyonlar: ve
Windows tabanl grafiksel kullanici arayiizii ise Borland Object Windows 2.0 program-
lama dili ve Borland C++ Versiyon 4.5 derleyici kullamlarak geligtirilmigtir. Arag
kutusu, MRI/CT goriintiilerini iki boyutlu ve ii¢ boyutlu olarak gériintiileyebilmekte,
siizgecleme, kenar iyilegtirme ve histogram egleme gibi temel goriintii igleme tekniklerini
yerine getirebilmektedir. Degisik dokularn bolitlendirilmesi ve ii¢ boyutlu olarak
goriintiilenmesi icin ayrica nokta baglangich alan biiylitme (SRG) algoritmas: dahil
edilmigtir. Arag¢ kutusu, biyomedikal goriintiilerle ilgilenen kigilerin, bagka fonksi-
yonlar ekleyerek, bu fonksiyonlarin incelenmesini ve gorsellegtirilmesini saglayacak bir

arayiiz olarak amaclanmigtir.

Anahtar Kelimeler: OpenGL, Borland C++, Nesnesel Programlama, Goriinti

Isleme, Boliitlendirme.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS e e e e e iii
ABSTRACT e e e e e iv
OZET . . . oo v
LIST OF FIGURES e X
LIST OF TABLES o e e e e e e e xii
LIST OF SYMBOLS e e e e e e e e xiii
LIST OF ABBREVIATIONS it xiv
1. INTRODUCTION e e 1
1.1 ThesisOutline. 2
2. MATHEMATICAL ELEMENTS IN 2-D and 3-D WORLD 4
2.1 The Rectangular Coordinate System 4
2.2 Spherical Coordinate System 4
2.3 Relationship between the rectangular and spherical coordinate systems 5
2.4 2-D Rotation on 2-D coordinate system 6
2.5 Mathemetical 3-D Operations 8
2.5.1 Generalized Transformation Matrix for 3-D Operations 8

252 3-DRotation 8

253 3-DTranslation 10

254 3-DScaling 11

255 3-DReflection. 11

2.6 Viewport Planning for 3-D Graphics 12
2.6.1 Viewport Mapping 13

3. OPENGL e 14
3.1 OpenGL Programming 14
3.1.1 OpenGL Command Syntax 15

3.1.2 OpenGL as a State Machine 16

3.1.3 OpenGL Related Libraries 17

314 IncludeFiles. 18

vil

3.2.1 Rendering Points, Lines and Polygons 21
3.2.2 Basic State Management oL 24
3.2.3 Vertex ATTays ¢ v v v v i e e e e 25
324 Enabling Arrays. o 26

3.2.5 Specifying Data for the Arrays. 26

3.3 OpenGL Viewing o i i it ittt 28
3.3.1 The Viewing Transformation. 29
3.3.2 The Modeling Transformation 29
3.3.3 The Projection Transformation 30
3.3.4 The Viewport Transformation 30

3.4 General Purpose Transformation Commands 31
3.5 Modeling Transformations 32
3.5.1 Translation Transformation 33
3.5.2 Rotation Transformation 33
3.5.3 Scaling Transformation 34

3.6 Viewing Transformations 35
3.6.1 gluLookAt() Function 36

3.7 Projection Transformations 36
3.7.1 Perspective Projection, 37
3.7.2 Orthographic Projection 38

3.8 Viewport Transformation. 40
3.8.1 Viewing Volume Clipping 40
3.8.2 Defining the Viewport 40

. BASIC IMAGE PROCESSING TECHNIQUES 41
4.1 Introduction to Image Processing 41
4,2 Point Processes e 41
4.2.1 Tmage Negation 42
4.2.2 Thresholding, 42
4.2.3 DBrightness Adjustment00 42
4.2.4 Histogram Equalization 43

4.3 Area Processes e 43

4.3.1 Neighbourhood Averaging 44

43.2 LowPassFiltering 44
4.3.3 Laplacian Edge Enhancement 44

44 2-D Segmentation 46
4.4.1 Seeded Region Growing Algorithm (SRGA) 46
44.1.1 Algorithm Description 46

4.5 3-D Segmentation 47.

. WINDOWS PROGRAMMING and OBJECT ORIENTED SOFTWARE IM-

PLEMENTATION e e e e e e e e 48
5.1 Windows Programming Principles 48
5.1.1 Working with Class Hierarchies 48
5.1.1.1 Usingaclass 48

9.1.1.2 Inheritance 49

5.1.1.3 Member Functions 49

5.1.2 Object Typology, 50
5.1.2.1 Window Classes 51

5.1.2.2 DialogBoxes Classes 51

5123 ControlClasses 51

5.1.2.4 Graphics Classes 52

5.1.2.5 Printing Classes 52

5.1.2.6 Modules and Applications Classes 52

9.1.27 Doc and View Classes 52

5.1.2.8 Miscellaneous Classes 52

5.2 Object Oriented Software Implementation 53
5.2.1 New Application Class Declaration 53

5.2.2 OwlMain and Run Function 54
5.2.3 New Windows Class Declaration. 55
5.2.4 Response Table Declaration 58

5.2.5 Adding a Menu Resource to the Main Window 59

5.2.6 Changing The Current Menu Resource 61
5.2.7 Adding New Functions for New Algorithms 62
5.2.7.1 Adding a New Pop-up Menu to the Menu Resource . . 62

5.2.7.2 Adding a New Menuitem to the Menu Resource 63

T.C. YOKSEXOCRETIM KURULD

DOKDMANTASYON MERKERZL

ix

5.2.8 Adding Decorations to the Main Window 64

5.2.9 Creatingthe Control Bar. 65

5.2.10 New Dialog box class declaration 68

5.2.10.1 Adding a New DialogBox 71

6. IMPLEMENTATION 73
6.1 Toolbox Construction. 73
6.2 Inserting New Algorithms 76

7. DISCUSSIONS, CONCLUSIONS and FUTURE WORK 95
APPENDIX A. DEVELOPED SOFTWARE LISTING 98

REFERENCES e e 100

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1

LIST OF FIGURES

Mathematical system representations.

2-D rotation with the angle 61.

3-D rotation about the z axis, y axis and x axis respectively.
Examples for the concave polygons.

Examples for the convex polygons.

Polygon rendering by passing the GL POLYGON parameter to
the glBegin function.

Set of points rendering by passing the GL POINTS parameter
to the glBegin function.

OpenGL workflow.

Case 1: Firstly a rotation and secondly a translation is applied
to the object.

Case 2: Firstly a translation and secondly a rotation is applied
to the object.

Translation Transformation.

Rotation Transformation.

Scaling Transformation.

Default camera position.

Perspective Viewing Volume.

Orthographic Viewing Volume.

BRW, requesting a new resource.

BRW, creating a new MENU resource..

BRW, inserting a new Pop-up Menu Resource to the toolbox.
BRW, inserting a new Menu-item resource to the toolbox.

BRW, creating a new BITMAP resource for a button gadget.

BRW, constructing a new BITMAP resource for a button gadget.

BRW, creating a new dialog box resource.
BRW, constructing a new dialog box resource.

Constituted Window by using C++ Object Windows 2.0.

22
22

23

23
29

32

33
33
34
35
37
38
39
61
62
63
64
66
67
71
72
74

Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21

Preferences, Directory Path Definitions menu-item.
Preferences, Directory Path Definitions Dialog Box.
Slice pop up menu and its menuitems.

Open Slice Common Dialog Box.

Save Slice Common Dialog Box.

Processing pop up menu and its menuitems.
Original slice for the evaluation of processing results.
Histogram equalization process result.

Thresholding input dialog Box.

Thresholding process result.

2-D segmentation seed count parameter representation.

2-D segmentation seed representation.
2-D segmentation process result.

3-D segmentation process startup.

3-D segmentation seed representation.
3-D segmented region view, white matter.
Slice by Slice menu-item and result.

3-D zooming menu and result.

3-D Rotation menu and result.

3D view of 20-100 slice interval.

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

xii

LIST OF TABLES

Table 3.1 OpenGL specific data type table. Corresponding ANSI C data

types are also given in the table. 16
Table 3.2 OpenGL specific buffers. Their corresponding enumarated mask
values are also given in the table. 20
Table 3.3 OpenGL geometric primitive names. OpenGL can easily render
these geometric primitives. 24
7.C. YOKSEXOGRETIM KURULD

rKOMANTASYON Mepxeed

LIST OF SYMBOLS

j th Seed Region

Laplacian of the function f(z,y)

Immediate neighbours of pixel x

Set of pixels that border at least one A;

Intensity Similarity value of pixel x

xiii

3DVIEW

BRW

CT

GLUT

MRI

RGBA

SRG

SRGA

SSL

LIST OF ABBREVIATIONS

Two Dimensional

Three Dimensional

The Name of the Developed Programme

Borland Resource Workshop

Current Modelview Matrix

Computerized Tomography

Graphics Library Utility Toolkit

Transformation Matrix

Magnetic Resonance Imaging

Red, Green, Blue, Alpha

Seeded Region Growing

Seeded Region Growing Algorithm

Sequentially Sorted List

T.C. M MERKEZD

BOKDMANTASYO

1. INTRODUCTION

Today, imaging modalities such as CT and MRI are very common almost in every
medical center. 3-D images are obtained by using these modalities. These images are

mostly being used for pre-surgical, research, educational or post-surgery purposes.

The objective of this work is to create a toolbox for 2-D and 3-D display and
visualization of tissues using MRI/CT data. A researcher may want to view these
biomedical images in two or three dimensions slice by slice or in addition to basic
image processing techniques, may want to add some new processing algorithms for
the algorithm performance evaluation. 3DVIEW provides a base platform for these

operations.
The toolbox consists of three main parts:

1) Windows programming part,
2) OpenGL programming part,

3) Processing part.

Menu driven graphical user interface resources have been created by the re-
source generator and compiler, BRW (Borland Resource Workshop) and whole code
has been written in C/C++ programming language using Object Windows 2.0. For
the compilation, Borland 32-bit C++ compiler has been used.

OpenGL is a powerful software interface to the graphics hardware and it is
basically a library of functions for drawing, manipulating and rendering 2-D or 3-D
shapes. This graphics library is responsible for the drawing part of the toolbox. The
toolbox makes it possible to display and process 3-D biomedical images by taking

advantage of OpenGL. The OpenGL is created for computer graphics applications and

it facilitates the matrix calculations and matrix operations. This leads to a remarkable
enhancement in the software performance. The user may view the related slice in 2-D
or 3-D manner or may display some set of slices in 3-D. The toolbox can render some
portion or the whole biomedical volume and can make it possible to apply some 3-D

operations such as 3-D rotations in x, y and z coordinates and 3-D zooming.

For the processing part, basic image processing algorithms such as histogram
equalization, image negation, brightness adjustment, thresholding, filtering, edge en-
hancement, 2-D and 3-D segmentation utility have been implemented. All these func-
tions are in modular structure and new menu-item or algorithm functions can be in-

serted into the toolbox by making some modifications on the software.

1.1 Thesis Outline

Chapter 1 provides an introduction to the problem.

Chapter 2 gives detailed information about the mathematical world of 2-D and

3-D graphics.

Chapter 3 deals with the all aspects of OpenGL including the OpenGL princi-

ples, specific OpenGL commands or functions and the OpenGL interior world.

Chapter 4 presents detailed information about the image processing techniques

and algorithms realized in this study.

Chapter 5 provides a basic background of WINDOWS programming concept
with some object oriented coding samples realized in the toolbox. This chapter also
explains the steps should be taken for inserting a new Windows resource or adding a

new algorithm to the toolbox.

Chapter 6 presents the results of toolbox implementation in detail.

The discussions, conclusions and the recommendations for future work are given

in Chapter 7.

2. MATHEMATICAL ELEMENTS IN 2-D and 3-D
WORLD

There are two common ways to represent points in the real world: The Rectan-

gular Coordinate System and the Spherical Coordinate System [1].

2.1 The Rectangular Coordinate System

In this representation, points are identified by ordered triples (x, y, z) of numbers
with X, Y and Z coordinates providing the directed distance from the point to the YZ,

XZ and XY planes respectively.

2.2 Spherical Coordinate System

In this system, each point is represented by an ordered triple of numbers (D, 6,
¢). The distance from the point P to the origin is D. The angle between the line OP
and the positive direction of the Z axis is ¢, the angle between the positive direction
of the X axis and the line OP’ (projection of OP onto the XY plane) is §. This angle

is measured in counterclockwise direction from the X axis.

These system representations are given in Figure 2.1

T.C. YOKSEKOCRETIM KURULD
DOKOUMANTASYON MERKEZ!

Figure 2.1 Mathematical system representations.

2.3 Relationship between the rectangular and spherical coor-

dinate systems

Since both rectangular and spherical coordinate systems are being used in
computer graphics, it is often necessary to convert between the two systems. From
trigonometry, we can establish the following relationships between two coordinate sys-

tems.

z=D-sin¢ cosf (2.1)

y=D sin¢g- sinf (2.2)

z=D-cos¢ (2.3)

Figure 2.2 2-D rotation with the angle 81.

and

D = /(2?2 + y% + 2?) (2.4)

§ = arctan (y/z) (2.5)

¢ = arccos (2/D) (2.6)

2.4 2-D Rotation on 2-D coordinate system

The effect of rotation of point P on two dimensional coordinate system is shown

in Figure 2.2. 81 is the rotation angle.

We obtain the following equations:

z=D-cos62 (2.7)
z' = D - cos(61 + 62) (2.8)
z' = D - cos(61) - cos(82) — D - sin(#1) - sin(62) = z - cos(01) — y - sin(f1) (2.9)

and,

y = D -sin(62) (2.10)
y = D -sin(61 -+ 62) (2.11)
y' = D -sin(01) - cos(02) + D - cos(81) - sin(2) = ¢ = z - sin(01) + y - cos(61) (2.12)

Therefore, for 2-D rotation operation, we obtain the following transformation

matrix used in equation 2.13.

(2.13)

cosfl sinfl
—sinfl1 cosfl

=, y'] = [z,4] [

2.5 Mathemetical 3-D Operations

2.5.1 Generalized Transformation Matrix for 3-D Operations

The generalized 4 x 4 transformation matrix for a point in a 3-D homogeneous

coordinate system is:

b«Q@b;
ST o RV
~
o

and it can be partitioned into three sub-matrix:

Ist III3x1

RUPE 1

Sub-matrix I allows us to perform scaling, reflection and rotation of 3-D objects.
Sub-matrix II produces linear translation and Sub-matrix III permits us to combine

the translation and the transformation in multiplication form [2].

2.5.2 3-D Rotation

Let us consider first a rotation about the z axis as it is shown in Figure 2.3. In
this case, the z dimension does not change so the transformation matrix will have zeros
in the third row and third column, except for unity on the main diagonal. The other
terms are determined by the Equation 2.13 considering the rotation of the point in two

dimensional coordinate system. As a matter of convention, we measure the rotation

7.C. YOKSEXOCRETIM KURULD

e crBina . aoma cuna TRRel

Z Z Z
ts % s
] g
-l
,/‘ ~ «
v Nk <

X

Figure 2.3 3-D rotation about the z axis, y axis and x axis respectively.

angle 6 counterclockwise.

These leads to the following transformation matrix used in Equation 2.14 for a

rotation of angle 8 about the z axis:

(cosf sinf 0 0
-sinf cosf 0 O
[,y 2,1] = [z,9,2,1] (2.14)
0 0 10
0 0 01|
For the rotation of angle 8 about the Y axis,
[cosd 0 -sinf O]
0 1 0 0
[x’ay’7z,71] = [xayaza 1] (215)
sind 0 cosf O
0 0 0 1

equation is obtained.

The transformation matrix that realizes rotation of angle # about the X axis

10

takes it place in the equation shown below.

1 0 0 o]
0 cosf® sinf 0O
[y, 2, 1] = [z, y,2,1] (2.16)
0 -sinf cosf® 0
] 0 0 0 1]

2.5.3 3-D Translation

The transformation that translates a point (x, y, z) to a new point (x', y’, z’)

through (L, M, N) is expressed by the equation shown below:

[z, ¢, 2, 1] = [2,9,2,1] (2.17)

= o O O

N o © =
£ o = o
2 = o o

where L, M and N are the distances to be moved from x, y and z, respectively.

11

2.5.4 3-D Scaling

The scaling matrix:

[,y 2, 1] = [z, 9, 2, 1] (2.18)

o O O 9
o
o o ©

This indicates that we can scale each of the coordinates individually. If the

object is to be enlarged by a factor of two, we simply choose:

A=E=1=2 (2.19)

2.5.5 3-D Reflection

An object is reflected through a plane by manipulating the diagonal elements
in the 3-D transformation matrix. This is provided by generating a mirror image of all
points of the object on the opposite side of the plane. For an example, in a reflection
through the XY plane, only the Z coordinate values will be affected, and these will be

reversed in sign. Here is the transformation matrix for the reflection process mentioned

above:

100

01 0
[xl, yl) Zli 1] = [x’ y) Z? 1]

00 -1

(01 0

Similarly, for the reflection through the YZ plane the equation is,

-1 00
0 10
[mla yla zla 1] = [-’17, Y, z, 1]
0 01
| 0 10
and for a reflection through the XZ plane, it is:
B
1 0 0
0 -1 0
[',, 2, 1] = [2,y, 2,1]
0 0 1
(0 1 0

2.6 Viewport Planning for 3-D Graphics

_H o O O

= O o o

12

(2.20)

(2.21)

(2.22)

Three dimensional viewport planning involves clipping the contents of the data

against the boundaries of the desired view. This clipping process is to ensure that only

the visible portions of the picture are transformed into plotting instructions for the

13

display device [3].

If we want to specify a limited view volume, we simply introduce a front clipping
plane and a back clipping plane. Both clipping planes are parallel to the view plane and
both are specified by a distance along the view plane normal from the view reference
point. In other words, these planes are assumed to be perpendicular to the line of

sight.

2.6.1 Viewport Mapping

After clipping a picture against the view volume, the final step is to map it to

the viewport. Then the actual screen coordinates on the physical device are determined

[4].

14

3. OPENGL

The OpenGL graphics system is a software interface to graphics hardware [5).
The GL stands for Graphics Library. OpenGL is really a hardware independent speci-

fication of a programming interface and it is constituted by Silicon Graphics company.

3.1 OpenGL Programming

Before using the OpenGL, one should know how to program in the C pro-
gramming language and should have some background in mathematics especially in

geometry, trigonometry and linear algebra.

OpenGL is a software interface to graphics hardware. This interface consists
of about 150 distinct commands that you use to specify the objects and operations

needed to produce interactive two or three dimensional applications.

OpenGL is designed as a hardware independent interface to be implemented
on many different hardware platforms. OpenGL doesn’t provide high level commands
for describing models of three dimensional objects. With OpenGL, you must build up

your desired model from a set of geometric primitives points, lines, and polygons.

Basic steps for writing applications on OpenGL are:

e Constructing shapes from geometric primitives, thereby creating mathematical
descriptions of objects. OpenGL considers points, lines, polygons, images, and

bitmaps to be primitives.

e Arranging the objects in three dimensional space and selecting the desired point

for viewing the composed scene.

e Calculating the color of all the objects.

T.C. YOKSEKOSRETIM KURULU
DPOKUIMANTASYON !

15

o Converting the mathematical description of objects and their associated color

information to pixels on the screen. This process is called rasterization.

During these stages, OpenGL might perform other operations, such as eliminat-
ing parts of objects that are hidden by other objects. Rendering is the process by which
a computer creates images from models. These models are constructed from geometric
primitives namely points, lines, and polygons that are specified by their vertices. The
final rendered image consists of pixels drawn on the screen. A pixel is the smallest

visible element the display hardware can put on the screen.

Information about the pixels for instance, what color they are supposed to be
is organized in memory into bitplanes. A bitplane is an area of memory that holds one
bit of information for every pixel on the screen. The bitplanes are themselves organized
into a framebuffer, which holds all the information that the graphics display needs to

control the color and intensity of all the pixels on the screen.

3.1.1 OpenGL Command Syntax

OpenGL commands use the prefix gl and initial capital letters for each word
making up the command name (glClearColor(), for example). Similarly, OpenGL
defined constants begin with GL, and use all capital letters and use underscores for

separating the words like GL. .

Sometimes, seemingly extraneous letters are appended to some command names
for example, the 3f in glColor3f function. In particular, the 3 part of the suffix indicates
that three arguments are given and the f part of the suffix indicates that the arguments

are floating point numbers.

Some OpenGL commands accept as many as eight different data types for their

arguments and these data types are defined in Table 3.1.

16

Table 3.1

OpenGL specific data type table. Corresponding ANSI C data types are also given in the table.

Suffix Data Type Corresponding ANSI C Data Type | OpenGL Type

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint

s 32-bit floating float GLfloat

d 64-bit floating double GLdouble
ub 8-bit unsigned integer unsigned char GLubyte
us 16-bit unsigned integer unsigned short GLushort
ui 32-bit unsigned integer unsigned long GLusint

Thus, the two commands, glVertex2i(1,3) and glVertex2£(1.0,3.0) are equivalent,
except that the first one specifies the vertex coordinates as 32 bit integers, and the

second specifies them as floating numbers.

Some OpenGL commands can take a final letter v, which indicates that the com-
mand takes a pointer to a vector of values rather than a series of individual arguments

as it is in the example shown below:

Glfloat color_ array[]={1.0, 0.0, 0.0}

GlColor3fv(color. array);

3.1.2 OpenGL as a State Machine

OpenGL is a state machine. You put it into various states (or modes) that then
remain in effect until you change them. For example, you can set the current color to
white, red, or any color and every object is drawn with that color until you set the

current color something else. The current color is only one of many state variables

17

that OpenGL maintains. Polygon drawing modes, positions and characteristics of
lights, and material properties of the objects, viewing and projection transformations
are the examples for the states that OpenGL maintains. Many state variables refer to

modes that are enabled or disabled with the command glEnable or glDisable.

Each state variable or mode has a default mode, and any point you can query
the system for each variable’s current value. Typically, you use one of the six folowing

commands to do this:

glGetBooleanv(),

glGetDoublev(),

glGetFloatv(),

glGetIntegerv(),

glGetPointerv(),

gllsEnabled().

3.1.3 OpenGL Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and all
higher level drawing must be done in terms of these commands. A number of libraries

exist to allow you to simplify your programming tasks, including the following:

The OpenGL Utility Library (GLU) contains several routines that use lower level
OpenGL commands to perform such tasks as setting up the specific matrix for specific
viewing orientations and projections, performing polygon tessellation, and rendering

surfaces. GLU routines use the prefix glu.

For every Window system, there is a library that extends the functionality

18

of that window system to support OpenGL rendering. For machines that use the
X Window System (GLX) is provided as an adjunct to OpenGL. GLX routines use
the prefix glX. For Microsoft Windows, the WGL routines provide the Windows to
OpenGL interface. All WGL routines use the prefix wgl. For IBM 0S/2, the PGL is

the Presentation Manager to OpenGL interface, and its routines use the prefix pgl.
The OpenGL Utility Toolkit (GLUT) is a window system independent toolkit

to hide the complexities of differing window systems APIs. GLUT routines use the

prefix glut.

3.1.4 Include Files

Every OpenGL source file begins with include <.../gl.h> command.

If we are directly accessing a window interface library to support OpenGL, such
as GLX, AGL, PGL or WGL, you must include additional header files. For example,
if you are calling GLX, you may need to add that line to your code:

include <.../glx.h>

and if you are using GLUT for managing your window manager tasks, you

should include

include <.../glut.h>

Note that since the glut.h includes gl.h, glu.h and glx.h automatically, including

three files is redundant.

As it is mentioned before, OpenGL contains rendering commands but is designed
to be independent of any window system or operating system. Consequently, it contains

no commands for opening windows or reading events from the keyboards or mouse.

19

GLUT makes it possible to deal with the Window Management. However, since the
3DVIEW is based on Object Oriented Windows Programming principles, it is not
needed to use GLUT library.

3.2 State Management and Drawing Geometrical Objects

In OpenGL, unless you specify otherwise, everytime you issue a drawing com-
mand, the specified object is drawn. In some other systems, you first make a list of
things to draw and when your list is complete, you tell the graphics hardware to draw

the items. The first style is called immediate mode graphics and is the default OpenGL
style.

Before drawing something, it is necessary to clear the window entirely. The
color you use for the background depends on the application. For a word processor,
you might clear to white. As it is mentioned before, the colors of pixels are stored in
the graphics hardware known as bitplanes. There are two methods of storage. Either
the red, green, blue and alpha (RGBA) values of a pixel can be directly stored in the
bitplanes, or a single index value that references a color look up table is stored. As an

example, these lines of code clear an RGBA mode window to black.
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL- CLEAR. BUFFER. BIT);

The first line sets the clearing color to black, and the next command clears the
entire window to the current clearing color. The single parameter to glClear() indicates
which buffer is to be cleared. These masks are represented in Table 3.2. In this case
the code only clears the color buffer. For example, to clear both the color buffer and

the depth buffer, you would use the following sequence of commands.

20

glClearColor(0.0, 0.0, 0.0, 0.0);

glClearDepth(1.0);

glClear(GL. COLOR_ BUFFER.- BIT | GL. DEPTH. BUFFER. BIT);

Typically, you set the clearing color once, early in your application, and then
you clear the buffers as often as necessary. OpenGL keeps track of the current clearing
color as a state variable rather than requiring you to specify it each time a buffer is
cleared.

Command form : void glClearColor(red, green, blue, alpha);

Command form : void glClear(mask);

Table 3.2

OpenGL specific buffers. Their corresponding enumarated mask values are also given in the table.

Buffer Mask Name
Color Buffer GL. COLOR.BUFFER._BIT
Depth Buffer GL_.DEPTH. BUFFER_ BIT

Accumulation Buffer | GL. ACCUM. BUFFER. BIT
Stencil Buffer GL_- STENCIL. BUFFER. BIT

Before issuing a command to clear multiple buffers, you have to set the values

to which each buffer is to be cleared by commands shown below:

glClearColor(),

glClearDepth(),

glClearAccum(),

glClearIndex(),

21

e glClearStencil().

3.2.1 Rendering Points, Lines and Polygons

This section explains how to describe OpenGL geometric primitives. All geo-
metric primitives are eventually described in terms of their vertices and coordinates

that define the points themselves.

One difference comes from the limitations of computer based calculations. In
any OpenGL implementation, floating point calculations are of finite precision, and
they have round off errors. Another important difference arises from the limitations of
a raster graphics display. On such a display, the smallest displayable unit is a pixel,
and although pixels might be less than 1/100 of an inch wide, they are still far from
the mathematician’s concepts related with infinity. In OpenGL, many different points

with slightly different coordinates could be drawn by OpenGL on the same pixel.

A point is represented by a set of floating point numbers called the vertex.
Vertices specified by the user as two dimensional (that is, with only x and y coordinates)
are assigned as z coordinate equal to zero by OpenGL. In OpenGL, the term line
refers to a line segment. Polygons are the areas enclosed by single closed loops of line
segments. OpenGL makes some strong restrictions on what constitutes a primitive
polygon. First, the edges of OpenGL polygons can not intersect. Second, OpenGL
polygons must be convex. Concave and convex polygon samples are illustrated in

Figure 3.1 and Figure 3.2 respectively.

With OpenGL, all geometric objects are ultimately described as an ordered set

of vertices. You use the glVertex() command to specify a vertex.

Void glVertex{234}{sifd}{v}{coords};

Calls to glVertex() function are only effective between a glBegin() and glEnd()

22

A &

Figure 3.1 Examples for the concave polygons.

4 <9

Figure 3.2 Examples for the convex polygons.

pair. You can supply up to four coordinates (x, y, z, w) for a particular vertex or as
few as two (x, y) by selecting the appropriate version of the command. If you use a
version that does not specify z or w, z is understood to be 0 and w is understood to

be 1. Some examples are given below.
glVertex2s(2, 3); (Z coordinate is assumed as 0)
glVertex3d (0.0, 0.0, 3.1415); (Double precision floating point representation)
glVertex4f(2.3, 1.0, 2.2, 2.0); (Euclidean form, all coordinates are divided by 2)
In order to create a set of points, a line, or a polygon from those vertices you
bracket each set of vertices between a call to glBegin() and a call to glEnd(). The argu-
ment passed to glBegin() determines what kind of geometric primitive is constructed

from these vertices.

glBegin(GL_ POLYGON);

23

Figure 3.3 Polygon rendering by passing the GL POLYGON parameter to the glBegin function.

Figure 3.4 Set of points rendering by passing the GL POINTS parameter to the glBegin function.
glVertex2£(0.0, 0.0);
glVertex2£(0.0, 3.0);
glVertex2£(4.0, 3.0);
glVertex2£(6.0, 1.5);
glVertex2£(4.0, 0.0);
glEnd();
The graphical results are represented in Figure 3.4 and Figure 3.3 respectively.
The function void glBegin(mode) activates the primitive rendering. The type of

primitive is indicated by the mode parameter, which can be any of the values shown

in Table 3.3. The function void glEnd(); function marks the end of a vertex data list.

24

Instead of calling glVertex() functions, vertex arrays can be used in order to

enhance the software performance.

Table 3.3

OpenGL geometric primitive names. OpenGL can easily render these geometric primitives.

Value Meaning
GL_. POINTS Individual Points
GL. LINES Pair of vertices interpreted as line segments
GL_ LINE_ STRIP Series of connected line segments
GL.LINE_ LOOP Same as above with segment between last and first vertex
GL- TRIANGLES Triples of vertices are interpreted as a triangle
GL. TRIANGLE._ STRIP Linked strip of triangles
GL_- QUADS Quadruples of vertices are interpreted as a four sidéd polygon
GL.QUAD_STRIP Linked strip of Quadrilaterals
GL_POLYGON Convex polygon

3.2.2 Basic State Management

OpenGL maintains many states and state variables. By default, most of these
states are initially inactive. To turn on and turn off many of these states, two simple

commands are being used:
void glEnable(capability);
void glDisable(capability);

glEnable() function turns on a capability, and glDisable() turns it off. There
are over 40 enumerated values that can be passed as a parameter to glEnable() or

glDisable(). The function gllsEnabled(capability) returns GL. TRUE or GL_ FALSE,

depending upon whether the capability is currently activated or not. The states have

T.C. YOXSEKOCRETIM KURULU
POKOMANTASYON MERKRZ

25

two settings: on and off.

By default, a point is drawn as a single pixel on the screen, a line is drawn solid

and one pixel wide, and polygons are drawn solidly filled in.

In order to control the size of a rendered point, glPointSize() function is used

and the desired size in pixels is passed as the argument.

void glPointSize(Glfloat size); (size range is (0.0 ; 1.0) and by default it is 1.0)

3.2.3 Vertex Arrays

Drawing a 20 sided polygon requires 22 function calls: one call to glBegin(),
one call for each of the vertices, and a final call to glEnd(); These function calls have
a great deal of overhead and can hinder performance. An additional problem is the

redundant processing of vertices that are shared between adjacent polygons.

OpenGL has vertex array routines that allow you to specify a lot of vertex
related data with just a few arrays and to access that data with equally few function
calls. Using vertex array routines, all 20 vertices in a 20 sided polygon could be put
into one array and called with one function. Arranging data in vertex arrays increases
the performance of the application. In 3DVIEW, vertex arrays were generated and
vertex array functions were used in order the enhance the overall performance. This
technique also makes the software more friendly by reducing the code size. Also, it

allows non redundant processing of shared vertices.

There are three steps to using vertex arrays to render geometry:

1) Enabling up to six arrays, each to store a different type of data. The arrays are

vertex coordinates, RGBA colors, color indices, surface normal, texture coordi-

26

nates, or polygon edge flags.

2) Putting data into the array or arrays. The arrays are accessed by the addresses

of (that is, pointers to) their memory locations.

3) Drawing geometry with the data. OpenGL obtains the data from all activated

arrays by using the pointers.

Interleaved vertex array data is another common method of organization. In-
stead of having up to six different arrays, each maintaining a different type of data,

you might have different type of data mixed into a single array.

3.2.4 Enabling Arrays

void glEnableClientState (array name) activates the chosen array. In 3DVIEW

toolbox, vertex array and color array were activated by this function call shown below.

glEnableClientState();

void glDisableClientState(array name) function specifies the array to disable.

3.2.5 Specifying Data for the Arrays

void glVertexPointer(size, type, stride, *pointer);

The function shown above specifies where spatial coordinate data can be ac-
cessed. Pointer is the memory address of the first coordinate of the first vertex in
the array. Type specifies the data type (GL- SHORT, GL. INT, GL_ FLOAT, or
GL_DOUBLE) of each coordinate in the array. Size is the number of coordinates per

27

vertex, which must be 2, 3, or 4. Stride is the byte offset between consecutive vertices.

If stride is 0, the vertices are understood to be tightly packed in the array.

Except glVertexPointer() function, there are five similar functions:

1) void glColorPointer(size, type, stride, *pointer);

2) void glindexPointer(type, stride, *pointer);

3) void glNormalPointer(type, stride, *pointer);

4) void glTexCoordPointer(size, type, stride, *pointer);

5) void glEdgeFlagPointer(stride, *pointer);

Using a stride of other than zero can be useful, especially when dealing with

interleaved-arrays.
void glDrawArrays(mode, first, count);

glDrawArrays function constructs a sequence of geometric primitives using array
elements starting at first and ending at first+count—1 of each enabled array. Mode

specifies what kinds of primitives are constructed.

It is a fact that there is always a trade off between the display speed and
the quality of the image. If there are millions of points, it probably looks good but
might take a long time to render. If the image consists of small number of geometric

primitives, it renders quickly but might have a jagged appearence.

28

3.3 OpenGL Viewing

This section explains how to use OpenGL to accomplish these tasks: how to
position and orient models in three dimensional space and how to establish the location
of the viewpoint. A series of three computer operations convert an object’s three

dimensional coordinates to pixel positions on the screen.

1) Transformations, which are represented by matrix multiplication, include model-
ing, viewing, and projection operations. Such operations include rotation, trans-
lation, scaling, reflecting, orthographic projection, and perspective projection.

Generally, you use a combination of several transformations to draw a scene.

2) Since the scene is rendered on a rectangular window, objects that lie outside
the window must be clipped. In three dimensional computer graphics, clipping

occurs by throwing out object on one side of a clipping plane.

3) Finally, a correspondence must be established between the transformed coordi-

nates and screen pixels. This is known as viewport transformation.

This flow is summarized in Figure 3.5. In the software code, the viewing trans-
formations must precede the modeling transformations but the projection and viewport

transformations can be specified at any point before drawing occurs.

Modeling and viewing transformations are combined to form the modelview
matrix, which is applied to the incoming object coordinates to yield eye coordinates.
Next, OpenGL applies the projection matrix to yield clip coordinates. This transfor-
mation defines a viewing volume; objects outside this volume are clipped so that they
are not drawn in the final scene. Finally, the transformed coordinates are converted
to window coordinates by applying the viewport transformation. You might correctly
suppose that the x and y coordinates are sufficient to determine which pixels need to
be drawn on the screen. However, all the transformations are performed on the z co-

ordinate as well. Suppose that two vertices have the same x and y values but different

29

¥
Vertex v Modelvigw Projection Viewport
z I} Tvlatrix [> Tvlatrix [:} Transformation [:)
w
object eye clip window
coordinates coordinates coordinates roordirates

Figure 3.5 OpenGL workflow.

z values. OpenGL can use this information to determine which vertex is obscured by

the other and can avoid drawing the hidden vertex (hidden surface removal or z buffer

algorithm).

3.3.1 The Viewing Transformation

Before the viewing transformation can be specified, the current matrix is set to
the identity matrix with glLoadIdentity() function call. This step is necessary since
most of the transformation commands multiply the current matrix by the specified
matrix and then set the result to be the current matrix. The viewing transformation is
specified with gluLookAt() function. The arguments for this command indicate where
the camera (or eye position) is placed, where it is aimed, and which way is up. If
gluLookAt() was not called, the camera has a default position and orientation. By
default the camera is situated at the origin, points down the negative z axis. The

command gluLookAt() encapsulates a series of rotation and translation commands.

3.3.2 The Modeling Transformation

You use the modeling transformation to position and orient the model. For

example, you can rotate, translate, or scale the model or perform some combination of

30

these operations. For example glScalef() is the modeling transformation for enlarging
the object in any dimension. If all the arguments are 1.0, this command has no effect.
Instead of moving the camera with a viewing transformation it ié possible to the cube
away from the camera with a modeling transformation. This is also why modeling and

viewing transformations are combined to modelview matrix.

3.3.3 The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera.
You can think of this transformation as determining what the field of view or viewing
volume is and therefore what objects are inside it and to some extent how they look.
This is equivalent to choosing among wide angle, normal, and telephoto lenses, for

example.

In addition, the projection transformation determines how object are projected
onto the screen. Two basic types of projections are provided in OpenGL. One type
is perspective projection, which matches how you see thing in daily life. Perspective
makes objects that are far from you appear smaller. The command glFrustum() is used
for perspective vision in OpenGL. The other type of projection is orthographic, which
maps object directly onto the screen without affecting their relative size. Therefore,
the final image reflects the measurements of objects rather than how they might look.
In order to set the projection transformation, the OpenGL command glMatrixMode()
is performed with the argument GL_ PROJECTION. This indicates that the current

matrix specifies the projection transformation.

3.3.4 The Viewport Transformation

Together, the viewport and the projection transformation determine how a scene

gets mapped onto the computer screen. The projection transformation specifies the

31

mechanics of how the mapping should occur, and the viewport indicates the shape of the
available screen area into which the scene is mapped. Since the viewport specifies the
region the image occupies on the screen, you can think of the viewport transformation

as defining the size and the location of the final processed photograph.

The arguments to glViewport describe the origin of the available screen space
within the window. The width and the height of the screen area, all measured in pixels
are determined with this transformation. If the window’s size changes, the viewport

needs to change accordingly.

3.4 General Purpose Transformation Commands

As described in the preceding section, it is necessary to state whether you want
to modify the modelview or projection matrix before supplying a transformation com-

mand. The command glMatrixMode() is used for that purpose.

Void glMatrixMode(mode); specifies whether the modelview, projection matrix
will be modificd, using the argument GL. MODELVIEW, GL_. PROJECTION for
mode. Subsequent transformation commands affect the specified matrix. Note that
only one matrix can be modified at a time. By default, the modelview matrix is
the one that is modifiable and every matrix contain the identity matrix. With the
command glLoadIdentity(), it is possible fo clear the currently modifiable matrix for
future transformation commands. It is necessary to call this command before specifying
protection or viewing transformations, but it can also be used before specifying a

modeling transformation.

Void glLoadIdentity(void); command sets the currently modifiable matrix to the
4x4 identity matrix. Void glMultMatrix(*m); command multipies the matrix specified
by the sixteen values pointed to by m by the current matrix and stores the result as

the current matrix.

32

4 y
N
bt b
z e

Figure 3.6 Case 1: Firstly a rotation and secondly a translation is applied to the object.

All viewing and modeling transformations are represented as 4x4 matrix. Each
successive transformation command or glMultMatrix() command multiplies a new 4x4
matrix M by the current modelview matrix C to yield CM. Finally, vertices v are

multiplied by the current modelview matrix (CMv).

3.5 Modeling Transformations

Viewing and modeling transformations are combined into a single modelview
matrix. Let’s think about transformations. A 90 degree counterclockwise rotation
about the origin around the z axis, and a translation down the x axis. Figure 3.6
shows this case. If we translate it down the x axis first and then rotate about the
origin the object takes another place in real world coordinates. Figure 3.7 shows the
second case. If you do transformation A and then transformations B, you almost always

get something different than if you do them in the opposite order.

Three OpenGL routines for modeling transformations are glTranslate(), glRo-
tate, and glScale(). All these three commands are equivalent to producing an appro-
priate translation, rotation, or scaling matrix, and then calling glMultMatrix() with
that matrix as the argument. However, these three routines might be faster than using

giMultMatrix() command.

33

¥ Pii
L " ®
Z Z

Figure 8.7 Case 2: Firstly a translation and secondly a rotation is applied to the object.

Figure 3.8 Translation Transformation.

3.5.1 Translation Transformation

Void glTranslate(x, y, z); moves the local coordinate system by the values spec-

ified as arguments. Figure 3.8 shows the effect of glTranslate(3, 0, 0); command.

3.5.2 Rotation Transformation

Void glRotate(angle, x, y, z); function multiplies the current matrix by a matrix
that rotates an object (or the local coordinate system) in a counterclockwise direction
about the ray from the origin through the point (x, y, z). The angle parameter specifies

KURULD
T.C. MW

34

Figure 3.9 Rotation Transformation.

the angle of rotation in degrees. The effect of glRotate(90.0, 0.0, 0.0, 1.0), which is a

rotation of 90 degrees about the z axis, is shown in Figure 3.9.

3.5.3 Scaling Transformation

Void glScale(x, y, z); function multiplies the current matrix by a matrix that
stretches, shrinks, or reflects an object along the axis. Each x, y, z coordinate of every
point in the object is multiplied by the corresponding argument x, y, z. With the local
coordinate system aproach, the local coordinate axis are stretched, shrunk or reflected
by the x, y, and z factors. Figure 3.10. shows the effect of glScale(0.5, -0.5, 0.0)

transformation operation.

The command glScale() is the only modeling transformation command that

changes the size of an object.

35

Figure 3.10 Scaling Transformation.

3.6 Viewing Transformations

A viewing transformation changes the position and the orientation of the view-
point. It positions the camera tripod, pvointing the camera toward to the model. View-
ing transformations are generally composed of translations and rotations. A modeling
transformation that rotates an object counterclockwise is equivalent to a viewing trans-
formation that rotates the camera clockwise. The viewing transformation commands

must be called before any modeling transformations are performed.

Since the viewpoint is initially located at the origin and since objects are often
constructed there as well, in general you have to perform some transformation so that

the object can be viewed.

In the simplest case, you can move the viewpoint backward, away from the

objects; this has the same effect as moving the objects away from the viewpoint.

36

3.6.1 gluLookAt() Function

Programmers construct a scene around the origin or some other convenient
location, then they want to look at it from an arbitrary point to get a good view of
it. The command gluLookAt() is designed for just this purpose. It takes three sets of
arguments, which specify the location of the viewpoint, define a reference point toward
which the camera is aimed, and indicate which direction is up. Choose the viewpoint
to yield the desired view of the scene. The reference point is typically somewhere in

the middle of the scene. It might be a little trickier to specify the correct up vector.

Void gluLookAt(eyex, eyey, eyez, centerx, centerx, centerx, upx, upy, upz)

The command shown above defines a viewing matrix and multiplies it to the
right of the current matrix. The desired viewpoint is specified bye eyex, eyey, and eyez.
The centerx, centery, and center z arguments specify any point along the desired line
of sight, .but typically they are some point in the center of the scene being look at. The
upx, upy, and upz arguments indicate which direction is up (that is, the direction from

the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, looking down the negative
z axis, and has the positive y axis as straight up as it is shown in Figure 3.11. This is

the same as calling

gluLookAt (0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0); function.

3.7 Projection Transformations

This section explains how to define the desired projection matrix, which is also

used to transform the vertices in your scene.

37

T up vector

o
.

Figure 3.11 Default camera position.

glMatrixMode(GL- PROJECTION);
glLoadIdentity();

commands are issued so that the commands affect the projection matrix rather
than the modelview matrix. The purpose of the projection transformation is to define
a viewing volume, which is used in two ways. The viewing volume determines how an
object is projected onto the screen(that is, by using a perspective or an orthographic
projection), and it defines which portions of the objects are clipped out of the final

image.

3.7.1 Perspective Projection

The farther an object is from the camera, the smaller it appears in the final
image. This occurs because the viewing volume for a perspective projection is a frustum
of a pyramid. Objects that fall within the viewing volume are projected toward the
apex of the pyramid, where the camera or viewpoint is. Objects that are closer to the
viewpoint appear larger because they occupy a proportionally larger amount of the
viewing volume than those that are farther away, in the larger part of the frustum.

T.C. YU KSEKOGRETTN "m &ww
Do TiAMTASY O MERCEZ

38

Figure 3.12 Perspective Viewing Volume.

Perspective view is illustrated in Figure 3.12.

Void glFrustum left, right, bottom, top, near, far); command creates a matrix
for a perspective view frustum and multiplies the current matrix by it. The frustum’s
viewing volume is defined by the parameters: (left, bottom, near) and (right, top, near)
specify the (x, y, z) coordinates of the lower left and upper right corners of the near
clipping plane; near and far give the distances from the viewpoint to the near and far

clipping planes.

3.7.2 Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular, or more

informally, a box shown in Figure 3.13.

The size of the viewing volume does not change from one end to the other, so
distance from the camera doesn’t affect how large an object appears. This type of
projection is used for applications such as computer aided design where it is crucial to

maintain the actual sizes of objects and angles between them as they’re projected.

Void glOrtho(left, right, bottom, top, near, far) command creates a matrix for

39

top

left
right

S —

toward the viewpoint

hear bottom far

Figure 3.13 Orthographic Viewing Volume.

an orthographic parallel viewing volume and multiplies the current matrix by it. (left,
bottom, near) and (right, top, near) are points on the near clipping plane that are

mapped to the lower left and upper right corners of the viewport window, respectively.

For the special case of projecting a two dimensional image onto a two dimen-
sional screen, use the Utility Library routine gluOrtho2D(). This routine is identical to
the three dimensional version, glOrtho(), except that all the z coordinates for objects
in the scene are assumed to lie between -1.0 and 1.0. If you are drawing two dimen-
sional objects using the two dimensional vertex commands, all the z coordinates are

zero; thus, none of the objects are clipped because of their z values.

Void glOrtho2D(left, right, bottom, top); creates a matrix for projecting two
dimensional coordinates onto the screen and multiplies the current projection matrix
by it. The clipping region is a rectangle with the lower left corner at (left, bottom)
and the upper right corner at (right, top).

40

3.8 Viewport Transformation

3.8.1 Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the
modelview and projection matrix, any primitives that lie outside the viewing volume

are clipped.

The viewport is the rectangular region of the window where the image is drawn.
The viewport is measured in window coordinates, which reflect the position of pixels
on the screen relative to the lower left corner of the window. Keep in mind that all
vertices have been transformed by the modelview and projection matrix by this point,

and vertices outside the viewing volume have been clipped.

3.8.2 Defining the Viewport

By default the viewport is set to the entire pixel rectangle of the window that
is opened. You use the glViewport() command to choose a smaller drawing region;
for example, you can subdivide the window to create a split screen effect for multiple

views in the same window.

Void glViewport(x, y, width, height); command defines a pixel rectangle in the
window into which the final image is mapped. The (x, y) parameter specifies the
lower left corner of the viewport, and width and height are the size of the viewport
rectangle. By default the initial values are (0, 0, winWidth, winHeight). The aspect
ratio of a viewport is equal to the aspect ratio of the viewing volume. If the ratios are
different, the projected image will be distorted when mapped to the viewport. Note
that subsequent changes to the size of the window don’t affect the viewport. The

application should detect window resize events and modify the viewport appropriately.

41

4. BASIC IMAGE PROCESSING TECHNIQUES

4.1 Introduction to Image Processing

Image processing algorithms to manipulate the images mathematically involve
integrals, however the necessity of sampling the images for computer use simplifies
these formulae in terms of replacing integration operations by summation operations:
Manipulation of the image can be of many forms. Briefly, the main goals in classical

image processing are:

1) Image enhancement, to improve the appearance or highlight certain details of an

image,

2) Image segmentation, the categorization or classification of elements or structures

within an image,

3) Image manipulation, a general term including translation, scaling, rotation.

4.2 Point Processes

Point processes are algorithms to modify images on a pixel by pixel basis. Each
pixel is replaced by a new pixel whose value depends only on the current pixel’s value,
and/or its location. These processes require only a single pass over the image data.
Some of the examples for point processing are the image negation, thresholding, bright-

ness adjustment and histogram equalisation.

42

4.2.1 Image Negation

Image negation is to make an image resemble a photographic negative. All the
light regions of an image should be made dark, and all the dark regions should be
made light. In practise, this can be achieved by stepping through the image pixel by
pixel, subtracting the current pixel value from the maximum possible value. The result
of this operation becomes the new pixel value. Alternatively, image negation can be
achieved with the use of a lookup table. For a 256 level greyscale image, the first entry
in the lookup table would contain the pixel value 255, and the last entry would contain

the value 0. The lookup table is then applied to the image, thus negating it.

4.2.2 Thresholding

This technique is based upon a simple concept. If the grey—level interval is
0—65500, a parameter called the brightness threshold 6 is chosen and applied to the

image afx,y] as follows:

if alz,¥] < 6, alz,y] =0,

else afz,y] = 65500.

4.2.3 Brightness Adjustment

The object of brightness adjustment is to make the image lighter or darker by
some factor. This can be done by stepping the image pixel by pixel, incrementing the
pixel value by a positive constant to make the image lighter, or by a negative constant

to make it darker. A lookup table can also be used for this purpose.

43

4.2.4 Histogram Equalization

An image histogram is a graph of pixel intensity distribution, showing the dy-
namic range of pixel values for that image. Specifically, it plots the number of oc-

curences of each pixel value in the image, against pixel value.

The image histogram can also be thought of as a chart of the likelihood of a
certain pixel value occuring at any point in the image, which we will call a probability
table. In practise, to convert number of occurences to probability of occurence, the
image histogram data should be normalised between 0 and 1. This is achieved by
dividing the number of occurences of each pixel value by the total number of pixels in
the image (65536 pixels for a 256 by 256 image). The result of this is that the sum of
all the histogram data adds up to 1.

The next step is to create a lookup table where the n th value in the table is
equal to the sum of the first n values in the probability table. This is sometimes called
the cumulative histogram. Finally each item in the lookup table should be normalised
between the minimum and the maximum pixel values, and rounded to the nearest

integer.

4.3 Area Processes

Area processes transform an image, on a pixel by pixel basis, giving each pixel
a new value, depending on the values, and/or positions, of its neighbours. The neigh-
bourhood of a pixel forms a N by N grid around the pixel, where N is an odd number.
An area process requires only a single pass over the image data, but it is computation-
ally expensive than point processes, as the number of pixels read to calculate each new
pixel value is N? greater than equilavent point process. Spatial filtering is used in this
study for specific applications such as neighbourhood averaging, edge enhancement,

low pass filtering.

44

4.3.1 Neighbourhood Averaging

Neighbourhood averaging is a smoothing process, performed by setting the value
of each pixel in an image to the arithmetic mean of all the pixels in its neighbourhood.
If the pixel neighbourhood is of size N by M, a convolution kernel of NxM weights
is used, each set to 1, and the sum is divided by a scale factor of NxM. Repeated

application of the neighbourhood averaging filter causes a greater degree of smoothing.

Below is the neighbourhood averaging kernel used in this study:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

4.3.2 Low Pass Filtering

Low pass filters attenuate the high frequency content of an image, whilst low
frequencies are passed. This can help to remove the noise from an image, or allow the
low frequency portion of an image to be examined more closely. Below is the low pass

filter kernel used in this study.

1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16

4.3.3 Laplacian Edge Enhancement

Laplacian edge enhancement uses an approximation of the Laplacian operator

used throughout engineering and mathematics. It highlights the edges in all directions,

45

and gives sharper edge definition than most other edge enhancement algorithms.

The Laplacian of a function f(x, y) is:

L(f(z,y) = d*f/dz® + d’f [dy’? (4.1)

where d?f/dz? is the second partial derivative of f with respect to x, and d?f/dy? is
the second partial derivative of f with respect to y. For discrete functions, the second

partial derivatives can be approximated by,

d*f/dz® = f(z +1) — 2f(z) + f(z — 1) (4.2)

and

dfldy’ = fly+1)—2f(y) + fly—1) (4.3)

The Laplacian can therefore be approximated by,

L(f(z,y) = flz+ Ly)+ fz - Ly) + flz,y+) + f(z,y — 1) —4f(z,y) (44)

46

Convolution kernel representing the Laplacian transform is shown below.

0 1 0
1 -4 1
0 1 0

4.4 2-D Segmentation

One of the early tasks in image analysis is to segment an image into its con-
stituent parts. By the segmentation process some portion of the image is extracted
and accepted as an object. Image segmentation is an essential step in medical imaging
applications. Especially in medical imaging, accurate segmentation is very crucial. In

this study, Seeded Region Growing Algorithm (SRGA) [6] nbox for olcayki

4.4.1 Seeded Region Growing Algorithm (SRGA)

Since some commercial packages prefer using SRG algorithm for segmenting
biomedical images, in this study, SRG algorithm has been implemented. The algorithm
is fast, robust and parameter free. It takes an intensity image and a set of seeds as
inputs. The seeds are represented as individual points. In the application, the user
mark the seed or seeds to each object to be segmented. The SRG algorithm operates
on the premise that the pixels within a region are similar. The algorithm grows the
seed regions in an iterative fashion.At each iteration all those pixels that border the
growing regions are examined. The pixel that is most similar to a region is appended

to that region.

4.4.1.1 Algorithm Description. The SRG approach to image segmentation is
to segment an image into regions with respect to a set of n seed regions. Each seed

region is a connected component comprising one or more points and is represented by

T.€. YUKSEKOGRETIM KURULD
BOKIMANTASYON

47

a set A;, where j = 1,2,...,,n. Let T be the set of all unallocated pixels that border at
least one of the A, i.e., T =1z ¢ UA; : N(z) NUA; # 0 where N(x) represents the set
of immediate neighbours (8-connectivity) of the pixel x. A single step of the algorithm
involves examining the neighbours of each z € T in turn. If N(x) intersects a region
Aj then a measure, §(z), of the difference (similarity) between x and the intersected
region is calculated. In the simplest case §(z) is defined: 6(z) =| g(z) —meanyeca;9(y) |
where g(x) is the intensity grey value of the pixel x. If N(x) intersects more than one
region then Aj is taken to be that region for which 4(z) is minimum. In this way
a 0(z) value is determined for each z € T. Finally the pixel 2 € T that satisfies
§(z) = mingerd(z) is appended to the region. This process continues till all the image
pixels have been assimilated. In implementing the SRG algorithm Adams and Bischof
utilise a data structure called the sequentially sorted list (SSL). According to them,
SSL is a linked list of pixel addresses, ordered with respect to d(z). A pixel can be
arbitrarily inserted into the list in the position prescribed by its §(z) value. However
only the pixel with the smallest §(z) value can be removed from the SSL. Effectively,
the SSL stores the points of the set T ordered according to §(z). Adams and Bischof
noted that their implementation does not update the previous entries in the SSL to
reflect new differences from a region whose mean has been updated. They stated that

”this leads to negligible difference in the results, but greatly enhanced speed” [6].

4.5 3-D Segmentation

3-D segmentation is based on 2-D segmentation process in this study. After the
user represens the seeds interactively on the central slice, the toolbox calculates the
seed intensity averages and then it calls the auto_ seeding function which is responsible
for representing the seeds automatically for the rest of the dataset. The toolbox then
asks for the slice interval to be segmented. The resulted files are kept in the pre-defined
directory and region view utility is used for viewing all the segmented regions in 3-D

manner. This function also support zooming and rotation utilities.

48

5. WINDOWS PROGRAMMING and OBJECT
ORIENTED SOFTWARE IMPLEMENTATION

This chapter explains the basic principles of Windows Programming for the
design of GUI (Graphical User Interface) using the Borland ObjectWindows C++

programming language.

5.1 Windows Programming Principles

This section describes the ObjectWindows 2.0 classes, explains how each class

fits together with the others, and how to use each class.

5.1.1 Working with Class Hierarchies

e What can we do with a class,
e Inheriting members,

e Types of member functions.

5.1.1.1 Using a class. There are three basic things we can do with a class:

e Deriving a new class from it,
e Adding its behaviour to that of another class,

e Creation an instance of it.

49

class TNewWindow : public Twindow

public:

TNewWindow(...);

.....

In order to use a class, we must create an instance of it. Constructors are being
used for this purpose. The constructors call the base class’ constructors and initialize

any needed data members.

5.1.1.2 TInheritance. With ObjectWindows, we can derive new classes that in-
herit the behaviour of more than one class. Such "mixed” behaviour is different from
the behaviour you get from a single inheritance derivation. Instead of inheriting the

behaviour of the base class, we are inheriting and combining the behaviour of several

classes.

TInputDialog inherits all the data members of TDialog and TWindow and adds
the data members it needs to be an input dialog box. TInputDialog makes it possible

to store and retrieve user input data.

5.1.1.3 Member Functions. There are four types of ObjectWindows member

functions:

50

e Virtual,

Pure Virtual,

Nonvirtual,

Default Placeholder.

Virtual functions can be overridden in derived classes. They differ from Pure
Virtual functions in that they don’t have to be overridden in order to use the class.
Pure Virtual functions must be overridden in derived classes. Nonvirtual and De-
fault placeholder functions can also be overridden in the derived class. For example,
TWindow::SetCaption is nonvirtual since we don’t need to change the way a window’s
caption is set. TWindow::EvLButtonClk function is an example for a Default place-
holder function and it performs the default message processing. It can be overridden

in the generated new class.

5.1.2 Object Typology

The ObjectWindows hierarchy has many different types of classes that you can

use, modify or add to. We can seperate what each class does into the following groups:

Windows,

Dialog boxes,

Controls,

Graphics,

Printing,

Modules and applications,

Doc and View applications,

51

o Miscellaneous Windows elements.

5.1.2.1 Window Classes. An important part of any Windows applicaton is, of

course, the window. ObjectWindows provides several different window classes for dif-

ferent types of window.

e Windows : TWindow,

Frame windows : TFrameWindow,

MDI windows : TMDIClient, TMDIChild, TMDIFrame,

Decorated windows : TDecoratedMDIFrame, TDecoratedFrame.

5.1.2.2 Dialog Boxes Classes.

e Common Dialog boxes : TFileOpenDialog and TFileSaveDialog, TChooseFont-
Dialog, TPrintDialog, TFindDialog, TReplaceDialog,

e Other dialog boxes : TInputDialog.

5.1.2.3 Control Classes.

e Standard Windows controls : List boxes, scroll bars, buttons, radio buttons,

group boxes, edit controls, static controls and combo boxes,
e Widgets : THSlider, TVSlider,
o Gadgets,

e Decorations : TMessageBar, TControlBar, TToolBox, TStatusBar.

7.C. YOKSEKOGRETIM KURULD
DPOKOMANTASYON

5.1.2.4 Graphics Classes.

e DC classes : TDC,

e GDI objects : TGDI Object.

5.1.2.5 Printing Classes.

e Printing classes : TPrinter and TPrintout.

5.1.2.6 Modules and Applications Classes.

e Modules and Applications classes : TApplication, TModule.

5.1.2.7 Doc and View Classes.

e Documentation and view classes : TDocManager, TDocument, Tview.

5.1.2.8 Miscellaneous Classes.

e Menus : TMenuy,

e Clipboard : TClipboard.

52

53

5.2 Object Oriented Software Implementation

5.2.1 New Application Class Declaration

In the study, simple application code shown below was realized. Since the
application uses the TApplication and TFrameWindow Object Window classes, the

source file must include applicat.h and framewin.h header files.

The class Application is derived from the ObjectWindows TApplication class.
Every ObjectWindows application has a TApplication object known as the application
object (Application). Overriding TApplication gives you access to the workings of the
application object and lets you override the necessary functions to make the application

work the way you want. The code shown below shows the Aplication class used in the

study.

class Application : public TApplication

public:

Application();

void InitMainWindow();

h

Application::Application() : TApplication() { }

54

5.2.2 OwlMain and Run Function

In addition to an application object, every ObjectWindows application has an
OwlMain function. The application object is actually created in the OwlMain function
with a simple declaration. OwlMain is the ObjectWindows equivalent of the WinMain
function in a regular Windows application. You can use OwlMain to check command-

line arguments (not used in 3DVIEW) before the application begins execution.

int OwlMain(int /*argc*/, char* /*argv*/[])

{ return Application().Run(); }

To start execution of the application, we first call the application object’s Run
function. The Run function first calls the InitApplication function. After the InitAp-
plication function returns, Run calls the InitInstance function, which initialize each
instance of the application. The default InitInstance function calls the function Init-
MainWindow, which initializes the application’s main window then creates and displays
the main window. Application function overrides the InitMainWindow function. This
makes it possible to design the main window however you want it. The SetMainWindow
function sets the application’s main window to a TFrameWindow or TFrameWindow
derived object passed to the function and the title is ” VIEW”. GetMainWindow func-
tion makes it possible to add the MENU and window icon to the main window. MENU
and ICON resources was constructed by using BRW utility. Whole code written for all

the things mentioned above is shown below.

void Application::InitMainWindow()

TApplication::InitMainWindow();

95

SetMainWindow(new DecFrame (0,” VIEW” new TGLWindow, true));
GetMainWindow()— > AssignMenu(MENU._ 1);

GetMainWindow()— >Setlcon(this, ICON.1);

5.2.3 New Windows Class Declaration

The class TGLWindow is derived from Twindow class and it looks like this:

class TGLWindow : public TWindow

HGLRC hRC;

HDC hDC;

public:

TGLWindow(TWindow™* = 0,const char far* = 0, TModule* = 0);

~TGLWindow();

void AssignMenu();

void SetupWindow();

bool bSetupPixelFormat(HDC);

96

void draw();

void init();

void EvPaint();

void EvSize(uint,T'Size&);

void EvLButtonDown(uint, TPoint&);

void EvRButtonDown(uint, TPoint&);

DECLARE. RESPONSE. TABLE(TGLWindow);

The response table definition sets up your class to handle Windows events and
to pass each event on the proper event-handling function. As a general rule, event-
handling functions should be protected. This prevents classes and functions outside
your own class from calling them. The response table declaration should take its place

in the class declaration.

class DecFrame : public TDecoratedFrame

public:

DecFrame(TWindow*,const char far*,TWindow™*, bool track);

private:

57

TDirPath Dirpath;

DECLARE. RESPONSE. TABLE(DecFrame);

void cm._ fileopen();

void cm_ filesave();

void cm- show_ hist();

void cm_ smoothing();

void cm_ 3d- segmentation();

void cm.- 2d_ segmentation();

void cm- 3d- region_ view();

void cm_ about();

void cm_ help();

b

SetMainWindow(new DecFrame (0,” VIEW” new TGLWindow, true)); com-
mand in the InitMainWindow function binds the application with a new window with

title ”VIEW”, and with a decorated frame.

o8

5.2.4 Response Table Declaration

The first line of a response table definition is always the DEFINE_. RESPONSE
- TABLEX macro. The value of X depends on your class’ inheritance, and is based
on the number of immediate base classes your class has. The last line of a response
table definition is always the END_ RESPONSE_. TABLE macro, which end the event
response table definition. Between the DEFINE_. RESPONSE. TABLEX macro and
the END_ RESPONSE_ TABLE macro other macros with their handling functions
take place.

Response Table for the TGLWindow

DEFINE_ RESPONSE_ TABLE1(TGLWindow, TWindow)

EV_WM_ PAINT,

EV_WM._ SIZE,

EV_WM_LBUTTONDOWN,

EV_WM. RBUTTONDOWN,

END. RESPONSE_ TABLE;

Response Table for DecFrame

DEFINE. RESPONSE_ TABLE1(DecFrame,TDecoratedFrame)

EV_COMMAND(CM. FILEOPEN,cm. fileopen),

EV_COMMAND(CM. FILESAVE,cm_ filesave),

59

EV_COMMAND(CM._ SHOW_ HIST,cm. show_ hist),
EV_COMMAND(CM. SMOOTHING,cm_ smoothing),

EV_ COMMAND(CM. 3D_ SEGMENTATION,cm- 3d- segmentation),

END. RESPONSE_ TABLE;

The parameters that are passed to the EV_ COMMAND macro:

1) The enum value of the event is defined in BRW while constructing the MENU
resource. These values are stored in one of the include header files and shown

below.

2) The event-handling function.

As it can be seen, four protected functions in the TGLWindow are EvLButton-
Down, EvLButtonDown, EvPaint and EvSize. When TGLWindow receives a WM.
LBUTTONDOWN event, it passes it to the appropriate function.

5.2.5 Adding a Menu Resource to the Main Window

Here is the definition of Event Identifiers. These identifiers were constituted by
BRW utility automatically in the trial.rc. All the Menu items such as Open File, Save
File, 2-D Segmentation etc. were designed by BRW utility.

define CM_ FILEOPEN 1008

define CM_ FILESAVE 1009
OCRETIM KURULD
T.C. YOESEK poiaprieir

60
define CM_ SHOW_ HIST 1006
define CM_ SMOOTHING 1007

define CM_ ABOUT 1000

define CM. 2D_ SEGMENTATION 106

The menu resource is attached to application in the InitMainWindow function.
This is done by calling the main window’s AssignMenu function shown below. In order
to get the main window GetMainWindow function is called. In addition, ICON_ 1
resource that is constituted by BRW is added to the main window by the Setlcon
function. This icon takes its place at the left up corner of the window.
void Application::InitMainWindow()
{;
TApplication::InitMainWindow();
SetMainWindow(new DecFrame (0,” VIEW” new TGLWindow,true));

GetMainWindow()— >AssignMenu(MENU._ 1);

GetMainWindow()— >SetIcon(this, ICON. 1);

YUKSEKOERETIM KURULY
e ASYON ME

61
5.2.6 Changing The Current Menu Resource
Whenever the user attempts to add a resource to the toolbox, it is necessary to

request a new resource from BRW as it is shown in Figure 5.1. Then by using BRW

tools the resource is designed.

ACCELERA
DIALOG: IDD_INPUTDIALOG (32514

DU N IS
: e e
| Create a new resource

Figure 5.1 BRW, requesting a new resource.

In order to change the MENU resource completely by adding a new MENU
resource to the toolbox, a new menu resource is requested from BRW as it is shown
in Figure 5.2. When the user completes the MENU design, in the software, the As-
signMenu function parameter which is an identifier for the MENU resource, should be
updated by the new MENU resource identifier. Then in the InitMainWindow function

new MENU resource will be automatically inserted to the window.

62

Besource Workshop

- tnalic

o

RCDATA:
YERSIONI

Figure 5.2 BRW, creating a new MENU resource..

5.2.7 Adding New Functions for New Algorithms

The user may specify a new function or functions for specific algorithms and
then may want to see the results by using the viewing part of the toolbox. For this
purpose, A new pop-up menu or a new menu-item resource should be designed and
inserted to the toolbox. And also some addings should be done to the software. Below,

the necessary steps that should be taken for this purpose are given in detail.

5.2.7.1 Adding a New Pop-up Menu to the Menu Resource. The user may

want to attach a new pop-up menu to the current MENU resource for implementing

some algorithms on the image dataset. This is done by using the New Pop-up Menu

63

command in the BRW utility as it is shown in Figure 5.3.

‘Resource Workshop - MENU - MENU_1

2

MEN

o

MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MEMUITEM
MEMNUITEM
MENUITEM
—EndPopup___
FOPLIF
ME

R

Insert anew pop-upmenu

Figure 5.3 BRW, inserting a new Pop-up Menu Resource to the toolbox.

5.2.7.2 Adding a New Menuitem to the Menu Resource. Now, the next step
is to fill the pop-up menu list with the menu-items that will realize specific algorithms

for the biomedical image dataset. This is shown in Figure 5.4.

As it is mentioned before, we use the RESPONSE. TABLE to handle the event
handling functions and the parameters that are passed to the EV_. COMMAND macro:

1) The enumarated resource value of the event that is defined in BRW. These values

are stored in one of the include header files.

2) The event-handling function.

In the software, new menu-items’ resource identifiers and their event handling

64

esouice Workshop - MEN

1=

MENUITEM "&Save"
— EndPopup___
POPUP "Prokcessing”

MENUITEM

EMLITER

MENUITEM

MENUITEM

MENUITEM

MENUITEM

MENUITEM

MENUITEM

MENUITEM

i ,.
. = i
i Insert a new menu item !

Figure 5.4 BRW, inserting a new Menu-item resource to the toolbox.

function names (new algorithm function name) is written to window’s RESPONSE_ TABLE.
Then the function which will realize a specific algorithm is written and inserted to the

software.

5.2.8 Adding Decorations to the Main Window

In order to create a decorated window including a control bar and button gadgets

on it, these steps should be taken:

1) Changing the main window from a Twindow to a TdecoratedFrame.

2) Creating a control bar, along with its button gadgets, and inserting it into the

decorated frame.

3) Adding resources constituted by BRW, such as bitmaps for the button gadgets.

65

Changing from a Twindow to a TDecoratedFrame is quite easy. For this pur-
pose, Class DecFrame was constituted from TDecoratedFrame for overlapping and this
is passed as a parameter to the SetMainWindow function as it is shown below.

void Application::InitMainWindow()

{;

TApplication::InitMainWindow();

SetMainWindow(new DecFrame (0,”VIEW?” new TGLWindow,
true));

GetMainWindow()— >AssignMenu(MENU._ 1);

GetMainWindow() — >SetIcon(this, ICON_ 1);

5.2.9 Creating the Control Bar

Firstly, the actual TControlBar object is constructed. Then the gadgets that
make up the controls on the bar are created and inserted into the constructed control
bar.

Here is the control bar constructor:

TControlBar *cbar = new TControlBar(this);

Button Gadgets are used as control bar buttons. A button gadget is associated

with a BITMAP resource and the BITMAP resource can be created in BRW, as shown

66

in Figure 5.5 and Figure 5.6. Button gadgets associate a BITMAP button resource
with an event identifier. When the user presses a button gadget, it sends that event
identifier. You can set this up so that pressing a button on the control is just like
making a choice from a menu. Button gadgets are created using the TButtonGadget
class. The TButtonGadget constructor takes six parameters, of which we need to use

only the first two:

Figure 5.5 BRW, creating a new BITMAP resource for a button gadget.

The first parameter is a reference to a TResId object. This should be resource
identifier of the bitmap. The second parameter is the gadget identifier for this button
gadget. Once the gadgets are constructed, Insert function is used for inserting the
button gadgets into the control bar. Some button gadgets used in the study are given

below:

s
A RS > o = T TR hel

.ady . o Pen x 2Eiy. 8

——y

Figure 5.6 BRW, constructing a new BITMAP resource for a button gadget.

cbar— >Insert(*new TButtonGadget(BITMAP_ 3,CM_ ZOOMPLUS));

cbar— >Insert(*new TButtonGadget(BITMAP. 4,CM_ZOOMMINUS));

cbar— >Insert(*new TButtonGadget(BITMAP_ 7,CM_ ABOUT));

. For inserting a seperator gadget into the control bar the command shown below

was used.
cbar— >Insert(*new TTextGadget(—1, TTextGadget::Left,0.1, ””));

Up to now, button gadgets were created and inserted to control bar. Now

67

it

is time to insert the control bar into the decorated window. Insert command shown

below is used for that purpose.

68

Insert(*cbar, TDecoratedFrame::Top);

5.2.10 New Dialog box class declaration

A new dialog class called TDirPathDlg is inherited from the base class, TDialog
class. This dialog box will be used for setting up the directory paths that the toolbox
needs to access. For this purpose, by using BRW utility, a new dialog box resource,

DIR_ PATH_INFO was created.

class TDirPathDlg : public TDialog

public:

TDirPathDlg(TWindow* parent, const char* name, TDirPath transfer);

~TDirPathDlg()delete edit;

TEdit *edit;

b

Edit box controls in which we define the directory paths, are constructed by

using TEdit class object constructor shown below:

TDirPathDlg:: TDirPathDlg(TWindow™ parent, const char* name, TDirPath
transfer) : TDialog(parent, name), TWindow(parent)

69

edit = new TEdit(this, 140, sizeof(transfer.roi_ddp));
edit = new TEdit(this, 141, sizeof(transfer.roi. sdp));
edit = new TEdit(this, 142, sizeof(transfer.ddp. 2d. seg));
edit = new TEdit(this, 143, sizeof(transfer.sdp_ org- dataset));
edit = new TEdit(this, 144, sizeof(transfer.ddp. 3d. seg));
edit = new TEdit(this, 145, sizeof(transfer.sdp_ 3d. seg));
J
The second parameter in the TEdit object constructor refers to the resource
identifier of the designed dialog box, edit box objects. Now it is time to construct the

dialog box by using the Dialog box constructor shown in the following function.

void DecFrame::cm_ dir_ path_ definition()

FILE *fp;

if (TDirPathDlg(this,”DIR. PATH_ INFO”, DirPath).Execute() ==
IDOK)

fp=fopen(”C:/DIRINFO.TXT”) w-+t");

fwrite(DirPath.roi_ ddp,sizeof(DirPath.roi- ddp),1,fp);

70

fwrite(DirPath.roi. sdp,sizeof(DirPath.roi- sdp),1,fp);
fwrite(DirPath.ddp- 2d._ seg,sizeof(DirPath.ddp- 2d. seg),1,fp);
fwrite(DirPath.sdp- org- dataset,sizeof(DirPath.sdp- org- dataset),1,fp);
fwrite(DirPath.ddp_ 3d.- seg,sizeof(DirPath.ddp- 3d- seg),1,fp);
fwrite(DirPath.sdp_ 3d_ seg,sizeof(DirPath.sdp_ 3d. seg),1,fp);
fclose(fp); |

strepy(ddproi,DirPath.roi- ddp);

strepy(sdproi,DirPath.roi- sdp);
strepy(ddp2dseg,DirPath.ddp_ 2d_ seg);

strepy (sdporiginaldset,DirPath.sdp. org_ dataset);
strepy(ddp3dseg,DirPath.ddp. 3d.- seg);

strepy(sdp3dseg,DirPath.sdp_ 3d- seg);

The user edits the edit box in the constructed dialog box and then the rep-
resented directory paths are written to global variables as well as to the file called
DIRINFO.txt. This file is used as a retrieve file whenever the user runs the applica-

tion, the dialog box retrieves the previous saved directory paths from it.

71

5.2.10.1 Adding a New Dialog Box. By using the BRW, a new dialog box can
be added to the toolbox. To do this, a new dialog box resource is requested from the

BRW as it is shown in Figure 5.7.

BITMAP:
BITMAP:
BITMAP:
BITMAP:
BITMAP: BIT
BITMAP:
BITMAP:
BITMAP:

Figure 5.7 BRW, creating a new dialog box resource.

By using the BRW tools shown in Figure 5.8, the dialog box is constructed.

Co)

METeo

e e o e A e oo T

esource Workshop - DIALOG : DIALDG_1

di

Besouce Contiel Blian

Figure 5.8 BRW, constructing a new dialog box resource.

72

73

6. IMPLEMENTATION

6.1 Toolbox Construction

All the toolbox capability tests have been realized on Windows 95 and Windows
98 operating system platforms using a real human head dataset comprising 128 slices.
In the dataset, each slice is represented by 256x256 pixels and each pixel has two bytes

or one word in lenght.

As it is mentioned in Chapter 5, by using TWindow class, VIEW window was
created and the toolbox icon was connected to it. And also a pop up menu resource
has been attached to the main window frame. Both the toolbox icon and the menu
resource were designed by using the BRW utility. The SetMainWindow function sets
the application’s main window to a TDecoratedFrameWindow and the title is ” VIEW”.
GetMainWindow function was used in order to add the MENU and the toolbox icon
to the main window. The functions used for this purpose are the AssignMenu and
the Setlcon function called from the window’s InitMainWindow function. TDecorat-
edFrame has been created from TWindow and a control bar was inserted to it. All the
menu-item shortcuts designed as a bitmap resource and they all have been installed into
the contol bar. Firstly, the actual TControlBar object is constructed. Then the gad-
gets that make up the controls on the bar are created and inserted into the constructed

control bar.

The VIEWPORT area represents the work or graphics area that the toolbox can
use for drawing purposes. The software code result is shown in Figure 6.1. In addition,
the status bar was generated so that the toolbox gives an information whenever the
user strolls through the menu shortcuts (bitmaps) or menu-items. The strings for the

status bar has been represented in BRW.

Many applications work with pre—defined directories. 3DVIEW is one of them.

74

Pop-up Menu . |Men: shortcit icons

VIEWPORT

Status Bar

Figure 6.1 Constituted Window by using C++ Object Windows 2.0.

The Preferences popup menu is shown in Figure 6.2. By using the dialog box, full

directory paths for the input and the output files can be specified.

In order to create a new dialog box for directory path definitions, a new dialog
box resource has been requested from BRW and by using BRW tools, requested dialog
box shown in Figure 6.3 has been designed. The user edits the edit box in the con-
structed dialog box shown in Figure 6.3. And then the represented directory paths are
written to global variables as well as to the file DIRINFO.txt. This file is used as a
retrieve file, whenever the user open the application, the dialog box retrieves the saved

directory paths from it.

In Figure 6.4, Slice pop up menu is shown. In order to view the biomedical

K\muw
T,C.M “'0" ..uﬂﬂ

75

Figure 6.2 Preferences, Directory Path Definitions menu-item.

images slice by slice, Open Slice function was written. And also in order to save the

modifed image to disk, Save Slice function has been added to pop up menu.

Open Slice and Save Slice dialog box object has been created from Open File
Common Dialog Box class. Whenever the user attempts to open or to save a slice, the
dialog box showing the directories and files on the current disk appears on the screen.

The user selects a file interactively to work with it.

Open Slice dialog box and Save Slice dialog box are shown in Figure 6.5 and 6.6

respectively.

76

| Iﬂegion of interest creation destination directory palh:] { c:\roi_dataset\

[Hgion of interest creation source directory path:l F:\oliginal_dalasel\

Iz_d segmentation destination directory pathjl Ic:\3d_seg_result\

[griginal dataset source directory path:J Ic:\original_dataset\

];i_d segmentation destination directory path:' Ic:\&d_seg_resull\

[3g segmentation source directory path:l Eoriginal_dataset\

DIRECTORY
PATH
DEFINITIONS

Figure 6.3 Preferences, Directory Path Definitions Dialog Box.

6.2 Inserting New Algorithms

The Processing pop up menu in which the image processing functions take place
is shown in Figure 6.7. The functions are undo operation, histogram equalization, low
pass filtering, laplacian edge enhancement, thresholding, histogram show, 2-D segmen-
tation, neigbourhood averaging, image negation and brightness adjustment. The way
of implementing some of these functions and their implementation results will be given

in the following parts.

Histogram equalization algorithm mentioned in Chapter 4, was applied to the
original image shown in Figure 6.8. The result is shown in Figure 6.9. As it is seen
from the image, the dark sides become clearer and it looks like the resulted image
is giving more information than the original one. This is tricky since the algorithm

actually leads to the loss of information while mapping the gray values into the new

Figure 6.4 Slice pop up menu and its menuitems.

7

Ghostgum

gs Program Files
Tdlocal TexMF (T rof_dataset
Mayura emp

MKTeX
@ My Documents Thesis

Figure 6.5 Open Slice Common Dialog Box.

78

Figure 6.6 Save Slice Common Dialog Box.

79

Figure 6.7 Processing pop up menu and its menuitems.

80

Figure 6.8 Original slice for the evaluation of processing results.

81

Figure 6.9 Histogram equalization process result.

82

83

ones. Actually, the algorithm spreads and moves the pixel grey values into more visible

part of the histogram graphic.

N T

HRESHOLDING FUNCTION w

Enter Threshold Value (0-65536]
|20000

Figure 6.10 Thresholding input dialog Box.

As it is mentioned in Chapter 4, in detail, the thresholding function makes it
possible to binarize the image. One threshold value is represented through the input
dailog box shown in Figure 6.10. Since the original image data includes the grey levels

from Q to 65536 the threshold value must be in this interval.

The resulting image, passing 20000 grey value as a threshold parameter to the
original image is shown in Figure 6.11. In the binarization process, below the threshold

value was represented as 0 and the others are 65536.

When the image to be segmented is opened, if we select the 2-D segmentation
menu-item from the process pop up menu, the 2-D segmentation process starts with
asking the total seed count for three regions, for example white matter, gray matter

and skull. This is shown in Figure 6.12. If the total seed count is 36 for example, 12

Figure 6.11 Thresholding process result.

84

85

3%

Figure 6.12 2-D segmentation seed count parameter representation.

seeds are represented for each region.

Seeds are represented interactively by clicking the left mouse while strolling

through the image. A seeded image sample is shown in Figure 6.13.

The function applies the SRGA for 2-D segmentation. The result is shown in

Figure 6.14 and the process time is approximately one and a half minute.

As it is mentioned in Chapter 4, 3-D segmentation was assumed as consecutive
repeat of 2-D segmentation process. When the menu-item is selected, the toolbox asks
for the total seed count for three region. These steps are shown in Figure 6.15 and in

Figure 6.16 respectively.

Then the slice which is in the middle of the 3-D dataset, is displayed on the screen

and the interactive seed representation starts. The toolbox realizes 2-D segmentation

86

Figure 6.13 2-D segmentation seed representation.

on this slices and determines the intensity intervals for each region by taking the seeds
represented by the user into account. Then by taking these average intensity values,
auto seeding function is called. This function is responsible for scanning the whole

dataset and representing new seeds in every slice.

After the auto seeding function, the toolbox asks for the slice interval. The
slices in this interval is subject to 2-D segmentation process with pre-defined seeds
represented in auto seeding function. The result is kept in the 3-D segmentation

destination directory given in path configuration.
Now the toolbox is ready to show the segmented images in 3-D manner. The
region view utility is used for this purpose. This utility asks for the segmented region

number and the segmented slice interval. The result is shown in Figure 6.17.

In order to see the whole dataset in 3-D manner, a function called slice by slice

87

" Figure 6.14 2-D segmentation process result.

view was written. This function call and the result for slice 40 and slice 60 interval (20

slices) are shown in Figure 6.18.

If we choose the interval between 0 and 127, we obtain the full dataset, viewing
in three dimensions. It is possible to have different camera views by using the utilities
such as zooming in and zooming out or rotation about x, y, or z axis. These utulities
are shown in Figure 6.19 and in Figure 6.20 respectively. The function responds these

commands by handling the windows event messages.

When the slice count is increased, the process time also increases. It is clear
that instead of using classical matrix transformations for three dimensional view and
rotation, using OpenGL makes the process time efficent. This is done by the quick

interface between the device context (graphics card) and the software, namely OpenGL.

The slice interval 20-100 3-D rendering result is shown in Figure 6.21.

Figure 6.15 3-D segmentation process startup.

88

Figure 6.16 3-D segmentation seed representation.

89

Figure 6.17

3-D segmented region view, white matter.

90

Figure 6.18 Slice by Slice menu-item and result.

i

A

A

&3

91

Figure 6.19 3-D zooming menu and result.

92

Figure 6.20 3-D Rotation menu and result.

93

Figure 6.21 3D view of 20-100 slice interval.

94

95

7. DISCUSSIONS, CONCLUSIONS and FUTURE WORK

For the implementation, menu driven graphical user interface resources such as
dialog boxes, bitmaps, pop-up menu and menuitems have been created by the resource
generator and compiler, BRW. Whole code has been written in Borland C/C++ pro-
gramming language using ObjectWindows 2.0. For the compilation, Borland 32-bit
C/C++ compiler version 4.5 has been used.

The toolbox functions are:

2-D Display

'3-D Display

2-D Image Processing

3-D Image Processing

2-D Segmentation

3-D Segmentation

3-D Segmented Region View

The toolbox makes it possible to display and process 3-D biomedical images by
taking advantage of OpenGL. The OpenGL is created for computer graphics applica-
tions and it facilitates the matrix calculations and matrix operations. This leads to a
remarkable enhancement in the software performance. The user may view the related
slice in 2-D or 3-D manner or may display some set of slices in 3-D. The toolbox can
render some portion or the whole biomedical volume and can make it possible to apply
some 3-D operations such as 3-D rotations in x, y and z coordinates, 3-D zooming.
Since the OpenGL library handles all the matrix conversions that are necessary for

translation, scaling and rotation operations, there is no need to deal with some matrix

96

multiplication and calculations. If the amount of matrix calculations are taken into
account, it is obviously confirmed that OpenGL increases the system performance and

the processing speed.

For the processing part, basic image processing algorithms such as histogram
equalization, image negation, brightness adjustment, thresholding, filtering, edge en-
hancement, 2-D and 3-D segmentation have been implemented. All these functions are
in modular structure and new Windows resources such as pop-up menu, menuitem,
button gadget(menu-item shortcut) or an algorithm function can be inserted into the
toolbox by making some modifications on the software. The user may insert a new al-
gorithm to the toolbox by just following the methods explained in Chapter 5 in detail.
He/she may observe the algorithm'results and make algorithm performance analysis
by using the toolbox facilities. By following the methods for creating new Windows
resources such as dialog box, button gadget, pop-up menu, menuitem, the user may

add new functionalities to the toolbox.

The user may open a specific slice from a dataset and after the modification,
that slice can be saved in pre-defined directory. All the working directory paths for the

input and the output files can be set in the toolbox.

The required minimum random access memory capacity is 16M. The graphics

card’s memory should not be less from 1M and a fast processor is recommended.

The source code only supports the biomedical images with the .RAW extension.
This extension is representing the binary coded imaging method. For future work, the

toolbox may handle different types of image formats such as JPEG, BMP, GIF, TIFF.

The toolbox can be upgraded so as to work in Windows 2000/NT or ME edition
operating systems. Since there are some restrictions coming from the OpenGL part,
the programme can not work in Windows 95/98 and Windows 2000 operating systems
at the same time. The compatibility for the Windows 2000 based operating systems

can be provided by building a flexible software which detects the operating system

97

automatically. Alternatively, a new executable application file can be built for the

Windows 2000 based operating systems.

For future work, the source code can be made flexible regarding the size of
biomedical image dataset. The code can be modified to support different size of
datasets. This can be done by utilizing a new dialog box asking the width and height
of the image in Open Slice menuitem. The size of the image can be introduced to the
toolbox via that dialog box. Alternatively, by taking the extension of the image into
account and by fetching the appropriate bytes from the image data, the image size can

be determined automatically by the software.

98

APPENDIX A. DEVELOPED SOFTWARE LISTING

A Compact Disk (CD) comprising the source code listing, used slice dataset,
header files, OpenGL related library files, executable application file, required DLL
files and related BRW source files has been included. CD also contains a file called

"READ.ME” in ASCII text file format, containing the sections mentioned below:

e Files in the compact disk
e The programme hardware requirements

e The programme software requirements

Files in the compact disk:

1) gl.exe : Executable 3DVIEW application file.
2) intl.cpp : C++ source code.
3) Opengl.dll : Opengl dynamic link library file.
4) Opengl32.dll : Opengl dynamic link library file for 32-bit applications.
5) Dciman.dll : Necessary dynamic link library file.
6) Dciman32.dll : Necessary dynamic link library file for 32-bit applications.
7) trial.rc : Resource file for the BRW programme.
8) trial.res : Resource file for the BRW programme.
9 trial.rws : Resource file for the BRW programme.
10) Tglwind.h : Header include file for int1.cpp file.

11) Cmdlg.h : Header include file for intl.cpp file.

99

12) Cmdlgr.h : Header include file for intl.cpp file.

13) Ids.h : Header include file for resource identifiers.

14) GLh : Header include file for OpenGL.

15) Glu.h : Header include file for OpenGL.

16) Glaux.h : Header include file for OpenGL.

17) Glut.h : Header include file for OpenGL.

18) openGLlib : Library file for OpenGL.

19) opengl32.1ib : Library file for OpenGL for 32-bit applications.
20) Glu.lib : Library file for OpenGL.

21) Dataset: Real human head dataset comprsing 128 slices.

22) README.txt : Readme text file.

Hardware Requirements:

The required minimum random access memory capacity is 16M. Display card

screen area resolution should be chosen as 640x480.

Software Requirements:

Toolbox software has been tested on Windows 95 and Windows 98 operating

system platforms.

10.

11.

12.

100

REFERENCES

Rogers, D., and J. Adams, Mathematical Elements for Computer Graphics, New
York: McGraw-Hill, 1976.

Foley, J., and A. V. Dam, Fundamentals of Interactive Computer Graphics, Mass.:
Addison-Wesley, 1982.

Blinn, J., and M.E.Newell, “Clipping using homogeneous coordinates,” Computer

Graphics, Vol. 12, pp. 245-251, August 1978.

Newman, W., and R. Sproull, Principles of Interactive Computer Graphics, New

York: McGraw-Hill, 1979.
Woo, M., and J. Neider, OpenGL Programming Guide, Addison-Wesley, 1997.

Adams, R., and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern Anal.
Machine Intelligence, Vol. 16, no. 6, pp. 641-647, 1994.

Yulong, Y., and X. Bao, “3-d imaging and stereotactic radiosurgery,” IEEE Engi-
neering in Medicine and Biology, Vol. 739, no. 5175, 1997.

Thomas, S., and U. Tiede, “Visualization blackboard,” IEEE Computer Graphics
and Applications, Vol. 16, no. 17, p. 272, 1996.

Verdina, J., Projective Geometry and Point Transformations, Boston: Allyn and

Bacon, 1971.

Robb, R. A., and C. Barillot, “Interactive display and analysis of 3-d medical
images,” IEEE Trans. Med. Imag., Vol. 8, no. 217, 1989.

Jackway, P., and A. Mehnert, “An improved seeded region growing algorithm,” 18
1065-1071, Elseiver Pattern Recognition Letters, 1997.

Anton, H., Linear Algebra, New York: Wiley, 1981.

2L YORSEKOGRETIM KURULD
BOKOMANTaSYGN Mroxend

