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CARDIAC MOTION ANALYSIS IN MRI
FOR CLASSIFICATION

ABSTRACT

Although several techniques exist for the analysis of cardiac tagged MR images, a
rapid screening tool do not yet exits. Our proposed technique tries to perform rapid
classification to diagnose the abnormalities in human left ventricle and the final aim of this
study is to identify the investigated myocardium in the analyzed tagged MR images as

pathological and non.

In this thesis, images are first analyzed using harmonic phase (HARP) analysis and
synthetic tags are computed over the myocardium. The data is normalized to perform a
comparison between different myocardiums having various tag lines and time frames. The
aim of the normalization is to eliminate the shift, scale and rotation variance. Cubic curves
are fitted to the normalized tags and curve parameters are compared at various regions of
the myocardium. In this initial study, the curve parameters are examined with probability
density function between normal and diseased hearts, such as left ventricles with dilated

cardiomyopathy (DCM) and infarcted regions.

Finally, the confusion matrix is evaluated to examine the correctness of the
segmentation algorithm. This method could be a very fast and automatic screening tool for

identifying diseased locations in tagged MRI.

Keywords: tagged MRI, HARP, cardiac motion analysis



KARDiYAK MR GORUNTULERINDE SINIFLANDIRMA AMACLI
HAREKET ANALIZi

OZET

Manyetik isaretlenmis (fagged) kardiyak MR goriintiilerini iglemek i¢in pek ¢ok
teknik var olsa da izl bir analiz hala saglanamamustir. Oneridigimiz teknik ile insan sol
karmciginda tetkik yapilabilmesi igin siiratli bir simiflandirma gergeklestirilmektedir.
Calismamizin ana hedefini manyetik isaretlenmis kalp MR gériintiilerinde hastalik olup

olmadiginin tespit edilebilmesi olusturmaktadir.

Tez galismamizda oncelikle kardiyak goriintiilerde harmonik faz (HARP) analizi
uygunlanmis ve myokardiyum {izerinde sentetik manyetik isaretler hesaplanmugtir.
Bulunan manyetik isaret noktalari, manyetik isaretleri ve zaman dilimleri farkli gekilmis
myokardiyum goriintiileri ile karsilastirabilmek i¢in normalize edilmistir. Normalizasyon
islemi kaydirma, oranlama ve dondiirme olarak ti¢ adim igin gergeklestirildi. Normalize
edilen manyetik isaret noktalari, kiibik egrilere yerlestirilerek, myokardiyumun belli
bolgelerinde egri parametreleri karsilastirildi. Kiibik egri parametreleri olasilik yogunluk

fonksiyonuna konularak saglikli ve hastalikli kalp incelemesi gergeklestirilmistir.

Sonuglar, konfiizyon matrisine yazilarak segmentasyon algoritmasinin dogruluguna
bakilmistir. Uygulanan metod manyetik igaretlenmis MR goriintiilerinde, hastalik teshisi

i¢in gok hizli ve otomatik bir analiz yontemi olarak goriinmektedir.

Anahtar Sézciikler: manyetik isaretlenmis MRG, HARP, kalp hareketi analizi
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1. INTRODUCTION

1.1 Motivation and Objectives

A fundamental problem in image processing and computer vision is the computation
of a deforming object's motion from image sequence data. One deforming object, the
heart, has received a great deal of attention in recent years because of its complex motion
and the fact that analysis of cardiac motion can be used to diagnose heart muscle damage
caused by a heart attack. Characterization of myocardial deformation during systolic
contraction is necessary to understand the physiology of the normal heart and the effects of
cardiovascular disease. Image sequences of the heart can be acquired with several
modalities including ultrasound, computed tomography (CT), and magnetic resonance
(MR) imaging. MR in particular has shown great promise for imaging cardiac motion

because of a technique called “tagging”.

In cardiac tagging, tag deformation pattern provides useful qualitative and
quantitative information about the functional properties of underlying myocardium.
Tagged images appear as a spatially encoded pattern that moves with the heart tissue as it
moves through the heart cycle. Usually tags are imposed at end-diastole and subsequent
images are acquired during systole, revealing the contraction within the wall muscle. The
images are usually acquired over several heartbeats, with the assumption that the heart
motion is periodic. In this case, breathing is a problem and one of the acceptable solutions

is breath holding which is not preferred for cardiac patient.

The advantage of imposing the tags is that they can be identified in the acquired
images and they depict the motion inside the wall muscle. Moreover, the regularity of the
tags’ shape enables measuring the motion quantitatively, i.e. producing numerical
measurements indicating the regional function. So far, tagging has been successful in

producing reliable regional measurements that would become a gold standard.



This study is concerned with estimating heart motion from tagged MR image
sequences, and the final aim is to perform rapid classification of tagged cardiac MR images

as normal and abnormal.

The main contribution is to describe an image analysis approach for tagged MR
images of the heart. The cardiac left ventricle is one of the most crucial and thoroughly
studied structures in the human body. This thesis will provide the basis for the estimation
of complex motion parameters of the left ventricle (LV). This information of the tag

deformation pattern can be utilized for diagnosis of cardiac pathologies.

1.2 Outline

In Chapter 2, the anatomy of the human heart, heart imaging technique, MR tagging

and harmonic phase (HARP) imaging are explained.

Chapter 3 gives the detailed information about the method used in this study such as
the image acquisition and image processing techniques like contouring and tag detection,
motion tracking, normalization of the selected LV images, and the confusion matrix

generation.

Chapter 4 includes the results of the proposed technique for training and test dataset,
and finally, in chapter 5 the normal and pathological human heart left ventricles are

evaluated using confusion matrices.



2. BACKGROUND

2.1 Cardiac Anatomy

The heart is composed of four chambers as shown Figure 2.1: the right atrium (RA),
left atrium (LA), right ventricle (RV) and left ventricle (LV). The atria and ventricles are
surrounded by muscle tissue called the myocardium and together form a pump that moves
blood throughout the body. Contraction and relaxation of the muscle fibers in the
myocardium cause the pumping action of the heart. The gray region in the short-axis
cross-section of the heart in Figure 2.2(b) represents the myocardium. The inner surface of

the myocardium is called the endocardium, and the outer surface is called the epicardium.

Pulmonary
Artery

fiMyocardium

Figure 2.1 Long-axis cross-section of the heart [1].



2.2 Cardiac Physiology

The heart cycle is composed of systole and diastole phases. At the end of diastole,
the atria are fully contracted and the ventricles are filled with blood. During systole the
ventricles contract and pump blood into the pulmonary artery from the right ventricle and
the aorta from the left ventricle. At the same time, the atria fill with blood from the veins
into the right atria and the lungs into the left atria. At end-systole, the ventricles are fully

contracted and the atria are filled with blood. During diastole the atria contract and fill the

ventricles with blood.

Myocardium

Epicardium

Endocardlux/

(b) (©

Figure 2.2 (a) Short-axis cross-section of the heart. (b) Location of the LV wall and RV
wall in a short-axis image [1]. (c) Original short-axis MR image.

The systolic contraction of the heart is most easily observed in the LV. The
contraction of the LV wall is characterized by circumferential shortening and radial
thickening of the myocardium. The LV wall is significantly more muscular than the RV,
because the blood pressure in the aorta is roughly four times the pressure in the pulmonary
artery, and as a result the LV must produce four times more pressure than the RV [1,2].
The LV must generate high pressure to overcome the resistance of the systemic circulation.
It typically contains the great majority of cardiac muscle configured in a roughly
cylindrical shape. By contrast, the right ventricle (RV), only facing the low resistance of
the capillary beds in the lungs, typically has a thin myocardium and a flattened shape that



curves around the LV. Another result of this pressure difference is that any damage to the
LV wall will have a significant effect on cardiac performance. Most research efforts are

accordingly focused on LV performance.

Healthy cardiac contraction generally causes concentric sections of the myocardial
wall to move inward, thereby decreasing the volume of the respective cardiac chamber and
forcing blood out through the appropriate valve. Impaired or dead myocardial tissue may
still move inward by being dragged passively by neighboring healthy tissue, but this occurs
without the normal increase in wall thickness. Thus, as a pump the heart may be analyzed
via imaging data by determining the position of the valves and the motion and thickness of

the myocardium.

The pathological data used in this thesis work are images of human LV of infarcted
and dilated cardiomyopathy (DCM) patients. Cardiomyopathy means heart (cardio)
muscle disease (myopathy). The cardiomyopathies are best classified according to their
anatomic and pathophysiologic types as dilated, hypertrophic, or restrictive. The cause or
causes may or may be not known in each category [3]. “DCM is characterized by an
increase in LV or biventricular internal dimensions without an appropriate increase in
septal and free wall thicknesses. The essential physiologic impairment is in systolic
function (depressed contractility). Ventricular volumes increase as ejection fractions fall,
and the ventricles progressively dilate, especially the left. Stroke volume is initially,
maintained despite depressed ejection fraction, and compensatory tachycardia may help

maintain cardiac output [3].

One of the most common types of damage to the LV wall occurs during a heart
attack when one of the coronary arteries, which are responsible for supplying the LV wall
with blood, becomes occluded and deprives a region of heart wall of the blood flow. That
deprived region is called ischemic. If the region is deprived of blood flow long enough,
the muscle tissue dies, and the dead region is called an infarct. Part of the diagnosis and

treatment of the heart attacks is identifying these regions of ischemia and infarction.



There are two main characteristics of ischemic and infarcted tissue that can be used
to distinguish them from healthy tissue. First infarcted and ischemic regions exhibit
reduced blood flow (perfusion) [4]. Second, infarcted and ischemic regions exhibit
reduced contraction during systole [S]. Perfusion techniques that try to identify reduced
blood flow image the blood flow into the myocardium using an injection of a radioactive
tracer [6] or contrast agent [4] into the blood stream. Diagnostic techniques trying to
identify regions of reduced contraction use cardiac motion analysis [S]. Both perfusion
and motion analysis techniques are in clinical use today. Because of the required drug
injection, perfusion techniques are invasive. Many motion analysis techniques, however,

have the advantage of being non-invasive.

2.3 MR Tagging

New magnetic resonance imaging techniques allow assessing non-invasively the 2
and 3 dimensional (3-D) motion of the human heart during the cardiac cycle. Prior to an
electrocardiogram (ECG) triggered multi-heart phase magnetic resonance imaging
procedure, the muscle tissue of the myocardium is labeled by a spatially periodic
modulation of the magnetization. Then 12 to 20-heart phase images are acquired with a
temporal resolution of 35 ms. In these images, the periodic grid of modulated spins
appears as a grid pattern of dark stripes, which are fixed with respect to the muscle tissue

(Figure 2.3).

Figure 2.3 A sequence of images from a tagging protocol designed to measure myocardial
deformation over the entire heart cycle. The top row shows the deformation of
tags that were place in the myocardium at end-diastole. The bottom row shows
a sequence of images after the tags have been placed in the heart at end-systole.



Measurement of heart wall motion during contraction is a fundamental challenge in
the study of cardiac mechanics. Motion measurement has the potential to be used as a
diagnostic tool for assessment of heart disease and as a theoretical tool for physiological
analysis. From the displacement, the rotation, and the distortion of this pattern the heart
wall motion can be derived. For the identification of the grid and the quantification of the
motion, a computer supported procedure is applied which ends up by the calculation and
the visualization of the vector plots indicating the motion of any arbitrary point of the
myocardium. However conventional tagging techniques suffer from a rapid fading of the
grid so that only the contraction phase may be assessed. Furthermore the through plane
motion of the myocardium is neglected. To overcome these shortcomings new and more
elaborate slice following tagging techniques (CSPAMM; complementary spatial
modulation of the magnetization) have been developed which allow the motion analysis
throughout the entire cardiac cycle [7]. From this data parameters such as ejection
fraction, local radial displacement and rotation angle, local shear rates between epi- and

endocardium, can be calculated.



2.3.1 Introduction to Tagging

The technique for tracking the motion of the left ventricle of the heart during
contraction uses a sequence of magnetic resonance images and an established imaging

method known as "tagging”.

MRI tagging means ‘marking’ the myocardium non-invasively. In tagging, spatially
encoded magnetic saturation planes, tags, are created within tissues. The creation of tags
consists in the application of radio frequency pulses in plane(s) perpendicular to the
imaging plane, prior to the application of the radio frequency pulses required for imaging
[8]. These act as temporary markers and move with the tissue. In cardiac tagging, tag
deformation pattern provides useful qualitative and quantitative information about the

functional properties of underlying myocardium.

MR tags are produced by a radio frequency (RF) pulse refers to as the “tagging pulse”
applied in addition with pulsed magnetic field gradients. These gradient pulses are triggered
by the rising edge of the R-wave in the patient's ECG. The resulting perturbating spins decay
at the rate of the longitudinal relaxation of the tissue. At a prescribed delay time after the tags
are generated, images are taken using standard spin-echo methods. The tags appear in the
image as a dark pattern that moves with the tissue. The regions where the magnetization of
the hydrogen nuclei has been perturbed prior to imaging and therefore produce a signal
difference with non-tagged regions for a time proportional to T1 are called myocardial tags.
Since the tags result from perturbations of the magnetization of the tissue itself, the

deformation of the tags accurately reflects the motion of the underlying tissue [9].

The movement of the heart through short axis image planes is known as cardiac
through-plane motion (Figure 2.3). To study the myocardial motion during systolic
contraction, tags are generated during end-diastole by using ECG gating for synchronization,
and images are acquired at several times during systolic contraction. The pulses are used to
saturate parallel planes of magnetization perpendicular to the imaging plane. At the
intersection of the tag plane and imaging plane a dark line appears in the image. At end-
diastole the lines are parallel; as the heart contracts the deformation of the lines shows the
underlying deformation of the myocardium. The measured deformation of a single tag plane

contains only unidirectional information of the past motion. In order to track the motion of a



cardiac material point, this sparse, single dimensional data has to be combined with similar
information gathered from other tag sets and all time frames. So to obtain myocardial
deformation information over the entire LV, many images containing several MR tags must

be acquired.

Although “tag lines” is the normal term for these induced features, tags generally
consist of sheets of dark tissue. Tag lines are the intersection of these “tag surfaces”
(deformed tag plane) with image planes. This concept is illustrated in the next image, which
shows a single tag surface intersecting a set of images (Figure 2.3). The tag surface
contributes one tag line to each of the image planes. A standard tagged MRI data set consists
of many such tag surfaces arranged in a regular 3-D grid (Figure 2.5). The contracting heart
deforms this regular grid and from such deformation, motion information is extracted (Figure

2.4).

Figure 2.5 Tag surfaces viewed as a regular material grid [10].
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Past approaches for measuring heart motion can be divided into two types. One type
tracks the movement of material markers, which are either implanted or naturally occurring
landmarks within the heart [7,9-11]. The second type of approach uses tagged magnetic

resonance imaging techniques to estimate the displacement field for all points within the heart

[8,12,13].

Grid reconstruction must be performed because the position of the tag surfaces is
only known within image planes. Between image planes, the tag surfaces are estimated
using cubic splines, which individually interpolate each surface. The complete

reconstructed tag lines are the combination of the cubic spline surfaces.

A comparison of standard cardiac MR images with tagged MR images in the same
heart is shown in Figure 2.6. The images on the left are at end-diastole, which is the phase
of the heart cycle in which the ventricular cavity has achieved maximum filling. The
images on the left are at end-systole, the phase of the heart cycle when the maximum

amount of blood has been ejected and the muscle is at maximum contraction.,

i

Figure 2.6 Non-tagged and tagged healthy human LV.
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2.3.2 Cardiac Tagging Techniques

Cardiac tagging uses a very simple principle. A saturation pattern is placed in the
imaging volume and the volume is imaged after some time delay; the change in shape of the
saturation pattern in the image reflects the change in shape of the underlying body containing
the saturation pattern. The principle of "tagging" spins was first demonstrated by Zerhouni et.
al. that the same principle could be used to visually mark tissue with tagged magnetization to
measure the more complex deformations of the heart [14]. Axel and Dougherty subsequently
proposed a very efficient scheme for generating parallel planes of saturation throughout the

entire imaging volume [15].

The process of cardiac tagging can be investigated in three stages:
(1) a saturation pattern is placed in the myocardial tissue with spatially selective RF
pulses,
(2) a sequence of MR images is obtained in which the motion of the saturation pattern
can be observed,
(3) the motion of the saturation pattern is used to solve for the motion of the

myocardium.

The theory of k-space excitation is the simplest method for designing saturation
patterns for myocardial tagging [16,17]. For example, a sequence of non-selective RF
pulses separated by gradient pulses and the resulting tagging pattern are shown in Figure
2.7. First, the RF/gradient tagging pulse is transformed to show the components in
excitation k-space. From there, a simple Fourier transform is used to predict the basic
pattern of M, saturation from the tagging pulse, as shown in the tagging pattern box in
Figure 2.7. Using highly crafted RF pulses for tag definition is not an optimal use of

imaging time, because the precision of tag detection is not a sensitive function of tag

shape.
‘Togging Fudsa
w Exrlintionb-gexs Togging Puitern
Gy /V\Mf\ ‘ ;
= [l [T
il o 7
| e

Figure 2.7 The excitation k-space description of the generation of a tagging pattern [17].
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Therefore, some of the many tagging patterns proposed for imaging myocardial
deformation are: starburst radial tags, parallel line patterns, tagging grids, striped radial

tags, sinc modulated comb functions, and contrast enhanced difference patterns [17].

Consideration of the rate and extent of the motion must be taken into account when
designing the appropriate tagging pattern and imaging protocol. Because of the simple
nature of the saturation pattern virtually any imaging sequence can have tagging pulses
added to it. Figure 2.8 shows a sketch of the timing diagram for a tagged segmented k-

space sequence [18].

BCG

IR IS T

* *
*ay, -
& e,

Deday « # as eday = 150 wms Deday -« 300 s

Figure 2.8 The basic principle of cardiac tagging is shown above [18].

First, a saturation pulse illustrated in the bold box on the left, is played after a trigger
signal from the ECG. In this example, movie frames of the cardiac cycle are produced by
segmented k-space imaging. The shaded boxes show the 7 TR intervals that are grouped
together to form one movie frame. The delay from the ECG trigger of the movie frame is

given as the center of the 7 TR image acquisition window [18].

Tagged images provide an immediate visualization of myocardial wall motion in the
heart. However, in order to make quantitative estimates of the extent and severity of the
wall motion abnormality, the full displacement field from the tagging data must be
reconstructed. The displacement d of the tag point, which is measured at a given time at
the tag point T, gives only one component of the past trajectory, so it cannot be mapped

back uniquely. For example, point 7' might originate from p1, or from p2 (Figure 2.9).
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Reference A . ;
TogPlme -~ Defortagd | .~
Tag Plane

Figure 2.9 Displacement field measurement from planar tagged images [19].

Only by incorporating the tag displacement information sampled from other tag
planes, the correct matching point p] at the undeformed state can be found. Using all tags
at a given time frame, we can locate point pI, but we cannot be sure of its trajectory (the
lines numbered as 2 and 3 are two of the many possible paths). Using the matching points

at every time frame, a final forward motion field and correct trajectory can be calculated.

2.3.3 The Challenges of Tagged MRI

The challenges of tagged MRI in the field of imaging can be divided into four

categories:

1. Image Acquisition: Sequences of tagged MR images are obtained
noninvasively using a "pulse sequence" that takes advantage of the physics behind
magnetic resonance. Designing the pulse sequence or analyzing the resulting images

requires modeling of the underlying physics.

2.  Data Extraction: Once a tagged MR image has been obtained, relevant
information must be extracted from each image. For example, the boundaries of

anatomical objects may be segmented or the location of tag lines may be identified.
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3.  Data Fusion: Next, the information extracted from one or more images must
be combined to calculate meaningful parameters describing cardiac function. For example,
the motion of tag lines over time can be used to estimate the buildup of strain during
contraction of cardiac tissue. For a single heart, this step typically involves hundreds of

images arrayed in time and spatial position.

4.  Display and Use: Finally, the functional parameters must be put to use. In a
clinical setting, these parameters, which often compose a 3-D field, must be displayed in a

manner that allows physicians to make diagnoses.
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2.4 Harmonic Phase Imaging

Tagging has been successful in producing reliable regional measurements that may
become the gold standard. Unfortunately, such success has not been translated into a
clinical tool for assessing the cardiac function. In the clinical arena, speed, automation,
and costs are determinant factors for choosing tagging, and the most successful methods
that have been developed so far to deal with tags lack these factors. Harmonic phase
magnetic resonance imaging (HARP-MRI) is a promising new method that overcomes the
drawbacks of the other existing methods and brings tagging closer to the clinical
applications [20,21]. It is based on a different perception and understanding of the tagging
process. Moreover, HARP-MRI is not limited to an image processing tool, but it paves the

way to new imaging techniques based on its principles [22,23].

By using tagging, energy concentrations occur on the image spectrum (k-space),
which HARP technique utilizes. Setting band-pass filters on the first harmonic peak of the
spectrum, the first harmonic is isolated and with inverse Fourier transformation a complex

HARP image consisting of one amplitude and one phase image data is created.

Figure 2.10 shows the overview of HARP for a short axis, tagged MR image of a
healthy human heart at end-systole. The left ventricle appears as an annulus at the center
of the image, and the tag lines, which are straight at end-diastole, are bent due to the heart
contraction. The magnitude of the Fourier transform of the original image of Figure 2. 10
(a) is shown in Figure 2.10(b). These clusters in Figure 2.10(b) are produced by the
tagging process. There are five spectral peaks; the one at the center is the DC spectral
peak and the other peaks above and below are called the harmonic spectral peaks. The DC
harmonic contains no tagging information. The outcoming harmonic peaks are directly

dependent of the applied RF pulse and the created tagging pattern (Figure 2.11).

The tagging pattern is periodic, at least when the tags are imposed and before
motion; thus, it can be expanded using the Fourier series into summation of sinusoids or
harmonics. Each of these harmonics when multiplied by the untagged tissue produces a
harmonic peak shifted in the spectrum with a frequency proportional to the tagging
frequency. For the other higher harmonics, their shifts are multiples of the tagging

frequency. The shifting is in direction orthogonal to the tag orientation.
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It’s useful, therefore, to define the tagging vector as the vector orthogonal to the tag

lines and its magnitude is the reciprocal of the tags period. Because of this harmonic

expansion, any tagged MR image can be written as a summation of images. Each of the

terms in the summation is a complex image corresponding to single harmonic peak. These

complex images are called the harmonic images.
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Figure 2.10 (a) A tagged LV image. (b) It’s Fourier transform showing the magnitude.

(c) Filtered spectrum. (d) Magnitude and (€) Phase of the complex image.
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Figure 2.11 Getting the harmonic peaks after the creation and application of tagging

pattern: On the left side column, from top to bottom; a synthetic LV image,

a tag pattern, and the final tagged LV image is to be seen. The Fourier

transforms of each image is placed on its opposite column. The FFT of the

final image is the convolution of the other represented FFT’s. According to

the applied sinusoidal tagging pulse, the amount of the harmonic peaks is

ascertained. The amplitude modulation of the underlying signal intensity is

described by a pattern of cosines.

Because a cosine has two symmetric

spectral peaks in Fourier space (right column middle graph in upper figure),

a 1-D SPAMM pattern generated with N RF pulses has 2N-1 spectral peaks.
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Assuming that the harmonic images are well separated, it is possibly to extract the
harmonic image from the summation using a bandpass filter. In fact, the region shown in
Figure 2. 10 (c) represents the passregion of a bandpass filter. In digital image processing,
filtering in the spatial domain is widely used. In the spatial domain, an image i(x,y) has to

undergo a complex two-dimensional convolution with a filter %(x,y) to yield a new, filtered

image j(x,y).
ixy) =ixy)*h(x,y) 2.1)
J(u,v) =I(u,v)H(u,v) 2.2)

The convolution, denoted as (*), is a combination of many arithmetic operations to
be performed between a convolution kernel (the filter) and each image pixel as the kernel

moves over the image.

Filtering in the frequency domain, after Fourier transformation of the image, is both
versatile and straightforward [24]. In the frequency domain, the complex convolution
between image and filter is reduced to a simple multiplication given in the Equation 2.1 of

their corresponding Fourier transforms (Figure 2.11).

When zeroing everything outside the square and compute the inverse Fourier
transform, a complex image is produced. We can decompose the complex image into
magnitude and phase. HARP imaging isolates with a bandpass filter the k-th spectral peak
centered at frequency wy - typically the lowest harmonic frequency in a certain tag

direction.

The inverse Fourier transform of the bandpass region yields a complex harmonic

image I(x,y) (Figure 2. 10.d-):
D,(y)e’*") = IFFT {Filter {FFT[1(x, y)] } (2.3)

where Dy is called the harmonic magnitude image and ¢ is called the harmonic phase
image. The harmonic magnitude image Dy(y, ¢) reflects both the changes in geometry of
the heart and the image intensity changes caused by tag fading. The motion causes a

spreading of the energy around the spectral peak. In short axis images with tag planes
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parallel to the long axis, the spreading is reasonably localized and it is possible to design a
bandpass filter whose band-pass region isolates only a single spectral peak including most

of the effects of phase modulation [20].

The magnitude of the harmonic image is called the harmonic magnitude, to
distinguish it from the usual magnitude MR image. Figure 2.10 (d) shows the magnitude
image of the harmonic image corresponding to the filtered peak in Figure 2.10 (c). This
harmonic magnitude looks similar to the tagged image in Figure 2.10 (a) with two
observations: The tag lines are absent, and the image is blurred. The latter is due to the
filtering process, which reduces the resolution of the image. Despite this loss in resolution,
the harmonic magnitude can be used for segmentation. Multiplying the binary images of
the left ventricles with the phase images masking is done, and the results for one healthy
human data are shown in Figure 2.12. This mask is useful for visualization and contains

tagged and masked the cine MR images of a healthy human LV. The end-diastolic phase

until end-systole is seen clearly in the Figure 2.12.

Figure 2.12 Masked LV with tags while systole.
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The other component of the harmonic image that is called the harmonic phase, or
simply HARP, can only be computed between the -180 to 180 degrees. The measured

phase is wrapped version of the phase. The harmonic phase ¢ of I(x,y) is an image given

by:

¢ (v)=,p(xy) 2.4)

where ay refers to as the locations of the spectral peaks and p(x,y) is representing the

denoted points. A HARP image is defined as the calculated phase of the complex image
I(x,y) {21,25]:

a,(x.y)= 21,(x,) 2.5)
where
AIml} P oaso
Re{Ik } (2 6)
élk (xs y) = *
Im{7, }

7 +tan™ , otherwise
Re{l, }

Because of the inverse tangent operator, a HARP image is principal value of its
corresponding phase image, and is restricted to be in the range [-m,+=m) [21,23,26].
Formally a HARP image is related to the phase image as follows:

a,(x, y)=W (3, (x, ) Q2.7

where the nonlinear wrapping function W(¢g) is given by:

W($)=mod(¢ + z,27) — 7 (2.8)
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Figure 2.13(b) shows the phase of the image in Figure 2.13(a) masked using the
harmonic magnitude, which we have described. earlier. The sharp features that we see are
due to the change of value from 180 to -180 degrees caused by wrapping (Equation 2.8).
A keen observation of the phase shows that the sharp features bend similar to the tag lines
in the original image. This observation indicates that the tag lines are represented in the
phase of the harmonic image. It can be shown that the phase actually depends on the
underlying motion as well as the tagging parameters. In fact, the motion is not only

represented at the sharp features in the HARP image, but at other points as well.
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Figure 2.14 (a) Masked Image of the original MR image in Figure 2.13(a).
(b) Calculated tags representation after analysis.
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Mathematically, it is shown that the phase of the harmonic images is lincarly
dependent on the motion direction orthogonal to the tags (in the direction of the tagging
vector) (Equation 2.4), and distorted by a nonlinear wrapping function (Equation 2.8). The
tag lines in the phase image (Figure 2.13b) correspond to the transition in angle from +x to
-m caused by the wrapping. Since these lines define well the apparent movement of the tag
pattern itself, they demonstrate the fact that the tag pattern phase is a material tissue

property, remaining constant despite fading and intensity variations of the tag pattern.

The spectrum of the harmonic image is definitely spread over the whole spatial
frequencies. It can be argued that most of the spectrum will concentrated around the
corresponding harmonic peak shown earlier. The size of the spectral peak can be
considered containing most of the energy of the harmonic peak (for example 90%). The
size of this region and location is definitely going to be affected by the underlying motion
of the heart. The contraction of the heart causes increase in the size of the area
(spreading), with its maximum at end-systole (where maximum tags bending occur). The
spreading of the spectrum can be explained by the changes in the local spatial frequency of
the tags due to strain. For regions where contraction is orthogonal to the tag lines, a certain
increase in tagging frequency occurs in proportion to the strain. On the contrary, a
stretching in the tissue causes decrease in the local frequency. Since the spectrum is
similar to the distribution of these local frequencies, its distribution is bound by the
maximum changes in the local frequencies, which is dependent on the maximum local

strains [22].

In case of the heart, the local strain is bound by the local contractility of the fibers.
Thus, the expected size of the harmonic is expected to be limited. Doing some simulations
it’s assumed that the radius of the harmonic is of the order of the maximum strain and the
tagging frequency. “Literally, if the maximum shortening in the case of the heart is 40%,
we assume that the radius of the harmonic peak and the filter is 40% of the tagging
frequency” [22].

The harmonic images intensity fades in accordance with the tags fading, thus
reducing the SNR of the harmonic image. A spill over from other harmonics (interference)
into the filter passregion is another artifact. The design of the filter, and the imaging pulse

sequence in the future, should address these factors to minimize its effects.
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3. METHODS

3.1 Cardiac Motion Estimation

The main objective in cardiac motion analysis is estimating measures of local LV
wall contraction in order to identify pathological regions like ischemia, infarction, and
DCM, which is not a local pathology. These measures are typically derived from a local
motion description estimated from the time sequences of cross-sectional, in our case short

axis LV images.

The primary difficulty in estimating local cardiac motion from a standard MR image
sequence is the inability to observe motion in a direction orthogonal to the image intensity
gradient, which means the motion cannot be determined in the tangential direction.
Motion in the radial direction can be determined from the position of the endocardial

boundary in each frame.

The motion of a tag pattern provides indirect information about the underlying tissue
motion. An inverse problem that is known in the image processing and computer vision
literature as the motion estimation problem must be solved to obtain a quantitative estimate
of LV motion from the motion of the tag pattern. There are two basic approaches to the
motion estimation problem: optical flow and feature-based methods [1,23]. Optical flow
methods estimate a dense velocity or displacement field from the intensity changes in the
image sequence. Feature-based methods identify a relatively sparse set of points, lines,
planes, etc. in each image in the sequence. An inter-frame correspondence is established
between these features and, along with constraints such as rigid-body motion or motion

smoothness, this is used to estimate a set of motion parameters.

Once the features have been identified and tracked, some type of a priori motion
constraint is used to estimate motion parameters of the entire object from the motion of the
features. Examples of such motion constraints include isometric (length and angle
preserving) motion and homothetic (uniform expansion or contraction) motion. The
complex motion of the LV wall does not fit any of the constraints’ categories and

necessitates the use of a more general motion constraint.
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3.2 Reliability of HARP Technique

Before analyzing the human cardiac left ventricles with the proposed technique, the
reliability of HARP method is tested. The analyzing method is proved by the synthetic
images shown in Figures 3.1, 3.2(b), and 3.3. All steps of the technique are represented in

next figures.

Figure 3.1 Short axis tagged synthetic LV.

Figure 3.2 (a) Harmonic peaks of the original synthetic image. (b) The energy spectrum
after bandpass filtering.
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After applying the Fourier transform, the energy spectrum in Figure 2.14(a) is
achieved. The first harmonic peak is being filtered by the bandpass filter (Figure 2.14b).
As a result of HARP technique, the complex image is found, and it’s phase and magnitude

images are represented in the Figure 2.15.

Figure 3.5 (a) Calculated tags of a deformed (b) synthetic LV.



26

The harmonic phase derived tag detection error in synthetic data is acceptable. There
appear to be only minor differences between HARP isocontours and tag contours estimated
using Findtags. The positions of MR tags placed on synthetic images were found with an
error of 0.562 + 0.016 pixel [27]. This was shown to be robust at the expected noise levels.
For the tag lines on a healthy human myocardium, the calculated locations were compared
to tag points that are found using Findtags. For various frames in the cardiac cycle these
errors were: 0.14+0.12; 0.18 +0.17; 0.24+0.22; 0.29+0.33 pixel. Although the same
examination is done for noise applied synthetic LV representations, and the tag lines
detected by our algorithm corresponds the tags found by Findtags (Figure 3.6). The noise
ratio is defined as the ratio of the noise standard deviation to the maximum image
magnitude (the reciprocal of the SNR is used so that the zero-noise case can be plotted). It

is typical that the performance degrades gradually as the noise increases.

Figure 3.6 Noise applied synthetic left ventricles.
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3.3 Image Processing

3.3.1 Contouring and Tag Detection

The first step in any feature-based method is to identify a set of features in each
image to establish an interframe correspondence between them. In the MR tagged cardiac
motion estimation problem, the features of interest are tag points and their interpolated tag
lines on the tag planes. The endocardial and epicardial contours of the LV may also be
identified. These LV contours are used for segmentation. Guttman, et al. proposed a semi-
automated algorithm, Findtags, for detecting and tracking endocardial and epicardial
contours and tag lines from planar-tagged MR images based on differential edge detection
and template matching techniques [28-30]. In Figure 3.7, the tag lines estimation of the

Findtags software program is seen.

Figure 3.7 The Findtags interface. A short axis tags for a specific slice.
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Figure 3.8 The manually applied and by Findtags interpolated LV and RV contour is set
on the original image (a) in blue color. (b) The contour is represented in binary
image. (¢) Contoured ventricles masked with the angle image.
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Using data from the normal and abnormal human subject, Findtags is used to detect
the contours (endo and epicardium) in images (Figure 3.8). The estimated and stored
contour data for each data set is used to mask the angle image, and the relating HARP

image is get to estimate the tag lines.

The analysis is continued by detecting the tag locations, which corresponds to phase
discontinuities. Theory predicts that tag brightness minima should be located at a phase
angle of = radians, and therefore m isocontours of HARP images should be very close to
the tag points identified by Findtags [31]. There appear to be only minor differences
between HARP isocontours and tag contours estimated using Findtags [27]. By analyzing
the HARP phase images, there are several practical problems with the direct use of the

Equation 2.7. The phase image ¢ is not available, and its wrapped version a must be used

in its place. It’s clear from Equation 2.7 that the gradient of a, is the same as that of ¢,
except at a wrapping artifact, points of discontinuity (Figure 3.8c), where the gradient
magnitude is theoretically infinite and practically very large [20,21,23]. Adding = to a,
the rewrapping shifts the wrapping artifact by % spatial period, leaving the gradient of this

result equal to that of ¢, wherever the original wrapping artifact occurred. In other words,
the HARP angle isocontour value g, ‘is set to = so that the generated tag lines coincided

with the tag lines in the original image. So the determining of the tag lines is converted to
the problem of tag localization to zero-crossing detection at each row/column using n/2-
shifted harmonic phase image [21]. The zero-crossings that define the tag points are
calculated for each time frame of healthy and discased-tagged MR images (Figure 3.9).

Points detected on each tag line are registered in space and time.

Figure 3.9 Representation of 7/2-shifted HARP image to estimate the zerocrossings.
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3.3.2 Motion Tracking

The motion tracking algorithm used and adapted in this thesis study is based on the
cubic splines analysis. It was used to reconstruct a surface from a scattered set of data
samples. The method is geometry dependent; therefore shift, scale and rotation

normalization is applied to every data.

Several reasons for choosing cubic spline interpolation method were: That it has a
very tractable, easy-to-code form. When the heart contracts, the thin, essential planar,
surface of tagged tissue is subjected to deforming stress. Also, the interpolation can be
used with the irregular sampling patterns of tag line data. It does not require boundary
conditions, and at last, it has the desirable characteristic of being continuously

differentiable.

3.3.3 Cubic Spline Field Fitting

A problem with polynomial interpolation is that higher-order polynomials sometimes
produce undesirable fluctuations when the polynomials are forced to fit the data exactly.
Small errors in the data can then have undesirable effects on interpolated values. The
spline provides a technique for obtaining a smoother interpolation formula. A cubic spline
s(x) is constructed for each interval between data points by determining the four
polynomial coefficients as follows. One of the requirements is that the endpoints of the

polynomial match the data ( is the number of spline fitting points):

s(x,)= f(x,) i=1,.,N 3.1

The two other constraints arise from the requirement that the first and second
derivatives be the same as in adjoining intervals. (These constraints only provide two
constraints, because they are shared with the nearby data intervals). It is conventional to
specify that the second derivatives vanish at the endpoints of the data set. This then
specifies a set of simultaneous equations to be solved for the interpolating function [32].

Computer routines are readily available to perform these interpolations.
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The estimation of the value of the cubic curve coefficients throughout a particular
region of interest in our case the LV is done by the given discrete samples of that
parameter (tag points) in and around that region. The calculated tag points are fitted to

cubic-splines to find out the coefficients for each tag line (/) in every frame (f);
F,(x)=A4,x+B,,x*+C,,x +D,, (3:2)

where F(x) defines the tag line function with A, B, C and D the cubic curve coefficients.
In displacement field-fitting, the parameter of interest is the 3D displacement vector and
the samples are the values of 1D displacement measured at points on tags in the heart wall.
Although field-fitting is generally applicable to any motion detection method, it has been
applied here to the analysis of the cubic curve coefficients of displacement measurements
from parallel tagged MR images. This type of data is depicted in Figure 3.10, which
diagrams a short axis image and a deformed set of tags. The calculated tag points and its

interpolated line are represented in this figure.

Tag points

/i//\ i

I

Figure 3.10 Depiction of a short image at some time after initial tagging. The inset depicts
an enlarged view of one deformed tag line after detection of tag points at 1
mm intervals.
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3.4 Normalization of the Calculated Tag Lines

To be able to make a classification of the data set according to analysis of the normal
tagged LV images, the contoured left ventricles images should be normalized. To adjust
the coordinates of the tag points to shift, scale and rotation invariance, following steps are

fulfilled:

First, the origin of every investigated LV is fixed by detecting the edges of the
relating LV contour in binary image (Figure 3.8(b)). Edging the endo- and epicardium
contours of the LV, the coordinates of its origin is ascertained. Every LV is set then to a
new coordinate system, where the origin of the LV contour is its coordinate system’s
origin (Figure 3.11). Next, the straight line for each calculated tag line is estimated by one
dimensional curve fitting (Figure 3.11a). So the angle between the fitted straight line and
the investigated tag line is found. The LV is rotated then for that angle value. For each

LV mostly straight lying coordinates are found in this way (Figure 3.11c¢).

Rotated Tag Lines Representation
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Rotated Tag Lines Representation Regions to select the Tage
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Figure 3.11 Normalization steps: Calculated origin. Coordinate system’s origin is on the
center of the LV, (¢) Red lines represents the straight lines to find the rotation
angle, (d) Rotated and segmented LV contour.
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To calculate the normalization factor of each slice, the first and the last tag lines in
the HARP image is found and the distance Ay between these two tag lines is calculated.
The y-coordinates of the tags are divided by that value. Also, for every tag line, the x-
coordinates are normalized for the value calculated by each tag line’s own Ax, which lies
in interval [-0.5, 0.5]. Asymmetric scaling is done by that way. Before setting the tags
into the cubic curve fitting, the origin of the coordinate system is carried to the middle of
the investigated tag line. The reason to do this normalizing is to examine every tag line
independent of any other tag, and the coordinate system. So every single tag line is
examined on its own, and a classification may be allowed according to these procedures.
For the classification, the LV contour is set to three regions of interests (Figure 3.11d).
The segmented regions will lead to compare the tag lines in the same regions of interest

even if the LV is tagged much or less in another examined data.
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3.5 Application of Probability Density Function

To ascertain the data whether it is pathological or healthy, probability density
function for multivariate normal distribution is used. We worked on the end-diastolic and
end-systolic time frames of every examined image sequence, which corresponds to the
relaxed and maximum contracted phases of the LV. First, we selected totally 8 tag lines
from the images sequences that are shown as pink dots in Figure 3.5d. For each time
frame, and each tag line of this time frame, the coefficients calculated by fitting the tag
points to the cubic spline, are stored in matrixes. So to examine the coefficients separately
by using Equation 3.3, the column of the selected tag’s coefficient is found, and set into the
probability density function, where the mean value is calculated from the data of the

training set.

1 ~(1/2)(x—pze) Cl (x-,
o 2N ) C o (x—pte) (3.3)

oy, (3. %)) =
) e i)

where x and _are each 8 by 1 vectors with components x; and E{X,}, respectively, for
0<k<1. There are 8 elements of the examined data x, since 8 tag lines are selected from
each sample in end-diastolic and end-systolic time frames. The four curve parameters are
investigated separately. As a result of the parameter analysis, it’s seen that the motion

difference affects highly the first coefficient of the curves. Therefore x is an 8 by 1 vector

containing the A’ s of the tested tag line, and C,, is the associated 8 by 8 covariance

matrix. The symbol det(C,,) denotes the determinant of the covariance matrix [33].

3.6 Identification of Data by Confusion Matrix

The data includes 5 normal, 4 DCM, and 5 human infarct tagged MR images. The
data is shared into training and test dataset. So the training data has 3 normal, 2 DCM, and

3 infarct subject, where the test dataset is the rest with 2 healthy, 2 DCM, and 3 infarct
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image set. To differentiate normal and diseased myocardium using their curve parameters

the test data is examined. The evaluation of the reliability of the algorithm is tested with

the training dataset. The training and test data analysis results are arranged in confusion

matrices as shown in Table 3.1 and Table 3.2. The dataset from which the test tag lines are

chosen are placed at the first column of these tables. The abbreviations N, D1, and D2 on

the table stand for normal, DCM and infarcted data. The first row shows the distribution of

segmentation among three tissues. For example, in the third row, 2 test data compared

among 2 timeframes as mentioned before while end-diastole and end-systole and 8 selected

tag lines for each are classified as 2 diseased of second type (D2). The training normal (N)

data is also classified as normal with 100% success.

Classification results of 7 training dataset.

Table 3.1

Result of identification

End-Diastole N D1 D2
N 3 0 0
Samples from
which the tags DI 0 2 0
are chosen D2 0 0 7
Table 3.2
Classification results of 7 test dataset.
Result of identification
Mid-Systole N D1 D2
N 2 0 0
Samples from
which the tags DI 1 1 0
are chosen D2 1 0 )

On the Table 3.2, the results of test data analysis are expressed. The classification is

fully successful for the healthy data. On the other hand, in each diseased dataset one

sample fails to be identified correctly.
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4. RESULTS AND DISCUSSION

In this study, the motion analysis of the human left ventricle is achieved to identify
the dataset whether there is pathology in the LV or not. The next paragraphs introduce the

explanation of the results for in vitro and in vivo analysis of the cardiac images.

Before analyzing the human data, the HARP method is proved to be correct by using
the Findtags software as gold standard as mentioned in Chapter 3.2. The calculated tag
lines’ error for synthetic LV is 0.562 £ 0.016 pixel. For various frames in the real cardiac
cycle these errors were: 0.14+0.12; 0.18 £0.17; 0.24:£0.22; 0.29+0.33 pixel [27,34,35].

To examine the test data coefficients, which consist of 3 normal, and 4 pathological
data with 2 DCM, and 2 infarction, the mean values of the normal and diseased data
coefficients of the training dataset are found, and placed in the probability density function
in Equation 3.3. The test data includes 2 normal, and 4 pathological data with 2 DCM, and
3 infarcted LV. At the beginning of the test we admit the test data as unknown dataset. To
compare and identify the results of the probability density function for training and test
data, confusion matrix is created. Table 3.1 and Table 3.2 give the outcome of the
identification algorithm. One sample in each diseased dataset failed to be identified
correctly. So 1 of 2 DCM, and 1 of 3 infarcted data are classified as healthy data in the
analysis. The reason for this failure might be the selection of the tags. The motion
information of the underlying tissue is on every tag applied on the myocardium, but in
diseased data the fact changes, because of the pathology on the LV wall the tags are not
well contracted even in mid-systole. Therefore the information from such a tag could be
defined as normal behavior of the LV and identified as healthy tissue. But because the first
and last tags on most LV fade while mid-systole, we were not able to add them to the

analyzed tags; they are left out on purpose.

The time frames and tag line number of the LV sequences of the data are different.
To overcome this difference, the end-diastolic and end-systolic time frames are selected.
The tag lines to examine are chosen from the 3 region of interest for each image sequence.
The aim of selecting the mentioned two time frames is that the motion variation is known,

and similar conditions are expected in between the datasets. In fact, in examining the
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diseased data, the coefficients’ values are not in a similar partition. The coefficients A, B,
C and D of the abnormal dataset are different then normal-to-normal data comparison
(Figure 4.1). That’s expected because the DCM and infarct myocardium differs in systolic
motion compared to the healthy myocardium. Therefore according to the variances in the

four coefficients, the classification can be done successfully.

The curve-fit to the tag line passing through the mid-myocardium at the top portion
of the LV for each data set at end-systole is performed to get the coefficients A, B, C and
D. For the selected coefficient (A), the changes between normal and diseased, and relaxed
and contracted time frames are presented in Figure 4.1 and Figure 4.2. The changes for the
8 tag lines can be seen on the figures. Because of the contraction while systole, the blue
(healthy) coefficient A changes, which is expected. The green and pink colored diseased
data curve coefficient doesn’t differ much and its variance between end-diastole and end-

systole is not the value of healthy sample coefficient’s variance [36].
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Figure 4.1 Normalized LV curve coefficient A at end-diastole; Blue lines represent the
healthy data, and the pathological data is represented in green (infarcted) and
pink (DCM) color. The x-axis represents the selected 8 taglines, and the y-
axis is the first curve coefficient A.
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Figure 4.2 Normalized LV curve coefficient A at end-systole; Blue lines represent the
healthy data, and the pathological data is expressed in green (infarcted) and
pink (DCM) color. The x-axis represents the selected 8 taglines, and the y-
axis is the first curve coefficient A.

The tag points for the end-diastolic and end-systolic frame of a healthy cardiac
systole are displayed in Figure 4.3. Figures 4.4 shows the initial analysis for the first tag

line of Figure 4.3. In most cases, the simple cubic polynomial curve-fit is adequate.

zorsmat - tagline1 zorsmat - tagline 10

o0 T e L —

6y e |
130 | RS G (Y +
» - ey S R EE R Rt P 5 @ 1251 g ydibt
P o
....... 1 ‘
=
I X R $os
o A T R e ‘
el
| ]
10 o o . e — I\O[
108! L i L 105 . i T
W T iR e i s e e i e T e e

Click to select in order: smin, smax, min, max! 1 Click to select in order. smin, smax, min, rmax! 10

Figure 4.3 Calculated tag points for healthy human heart at end-diastole (left) and (right)
end-systole.
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Figure 4.4 Cubic spline and polynomial data interpolation of the first tag line of tag points

represented in Figure 4.2.

As mentioned, the diseased data consists of human dilated (DCM) and infarcted

cardiac MR images. The analyzed tag points for the diseased data in end-systolic time

frame, where the contraction must be maximum, are displayed in Figure 4.5 for DCM and

in Figure 4.6 for infarcted LV. The curve-fit results for the tag points appear sometimes in

an exaggerated curvature. That’s because of zooming on the tag and unequal scaling of

both axes.

0 120 130 40 150 160 170

s 10 10
Click to select in order: smin, smax, min, max! 2

Figure 4.5 Calculated tag points of a DCM image while end-systole.

zorsmat - taglinet

i

e 1
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Click to select in order: smin, smax, min, rmax! 9

Figure 4.6 Determined tag points of an infarct data while contraction.
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The expected changes show up in the results. As represented in Figure 4.5 and 4.6,
the DCM and infarct myocardium differs in systolic motion compared to the healthy

myocardium (Figure 4.3). Our method has been a verification of the facts.

In this study, we had limited number of images on the dataset. To deliver an
automatic classification for the diseased images, the calculation must be done for many

MR tagged cardiac images.
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5. CONCLUSION AND FUTURE DIRECTIONS

The aim of this research was to rapidly classify the tagged human cardiac MR

images, whether they are normal or abnormal.

To evaluate the correctness of the segmentation algorithm the confusion matrix
method is used. Although, the sample number was not sufficient, the whole 14 tagged

human cardiac images are divided into test and training datasets.

In our approach, we used the cubic curve fit and we found the polynomial
coefficients of the tag line at the end systolic time frame, where the tag displacement is
high compared to the first time frame. All of the examined dataset of diseased samples
differs in cubic curve coefficients that have been normalized and calculated before
classification process. The four coefficients of the training and test dataset are calculated,
and compared to identify whether the examined data is healthy or diseased. The
significantly differences between the dispersion of the coefficients lead to classify the

datasets.

In this work, we had limited number of images on the dataset. To deliver an
automatic classification for the diseased images, the calculation must be done for many
MR tagged cardiac images. Our future work consists in cluster analysis to identify

unknown datasets upon their coefficient variation.
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APPENDIX

LISTING OF SOFTWARE

Matlab Code for Calculating the HARP Images: normal7.m
%

% code for running the whole time frame (12 slice)

% HARP for images HFC7.006.I1.069-080!!!

%

I=zeros(256,256,12);

for k=69:80

t=k-68;
I(:,:,t)=getsigna3(['C:\WINDOWS\Desktop\imgeler\normal7\I.1',int2stx(k)]);

beta=0.5;

figure;imagesc(I(:,:,t));axis image;colormap gray;title(['Original
Image' int2str(t)]):;brighten(beta);

show the original image

oo o oe

gfor t=1:12

$figure; imagesc(I(:,:,t)); axis image; colormap gray:;
3title('original image')

%end;

if 0 % use if you notice aliasing
I2 = repmat (hanning(256)"',256,1) .* I;
else,
12
end;

I;

%

% fft of the image

%

for t=1:12;
£fI(:,:,t) = £££2(I12(:,:,t));
fIs(:,:,t) = fftshift(£I(:,:,t));
absfIs(:,:,t) = abs(fIs(:,:,t));

%$%phase image is figured%%

¢figure; imagesc(angle(fIs(:,:,t))):
%colormap gray; axis image;
%title('fft (phase) image');
%
if t==
%beta=0.5;
figure;imagesc(absfIs(:,:,t), [0 80000]);
$brighten(beta) % this scale can be adjusted to view better
colormap gray:
axis image;
title(['fft (magnitude) image' int2str(t)]):
set (gcf, 'Tag’, '£ftimage');
end;



if t==
fig=findobj ('Tag', 'fftimage’);
figure(fig):
[Xc,Yc] = ginput(l);

Xc = round(Xc);
Yc = round(Yc);
%

% make the edges of filter round
% size of the filter should be determined automatically in the
final progam

oo

sigma = 8;
wsize = 31;
midp = (wsizetsigma-1)/2;
filtl = myfilter(wsize,sigma);
end;
end;
%
% select only the first harmonic
%
if 1
filt2 = zeros(256);
filt2 ((Yc-midp) : (Yc+midp), (Xc—-midp) : (Xc+tmidp)) = £iltl;
for t=1:12;
fIs2(:,:,t) = £ilt2 .* £fIs(:,:,t):
end;
else,
fIs2 = fIs((Yc-midp): (Yc+midp), (Xc-midp) : (Xc+midp) ) ;
end;

%%

$%%filtered spectrum is figured for 12 time frames
%%
$for t=1:12;
%figure;imagesc{abs(fIs2(:,:,t)), [0 100000]);
%colormap gray; axis image;
$title(["filtered spectrum' int2str(t)]):;
%end;
¥pause
%
% inverse fft of the filtered amplitude image
%
for t=1:12;
12(:,:,t) = 1ifft2 (fftshift (fIs2(:,:,t)),256,256);
I2abs(:,:,t) = abs(I2(:,:,t));
I2ang(:,:,t) = angle(I2(:,:,t));

if 0,
sel = I2abs(:,:,t)<10;
I2abs(sel) = 0;
I2ang(sel) = 0;
end;
end;
if 0 .
imwrite (uint8 (I2abs(:,:,t)), 'tags.tif’, 'compression’', 'none');
end;

$figure; imagesc(angle(I2(:,:,t))}));
%axis image; colormap gray;
%title ([ 'HARP angle of ' int2str(t)]):
%end;
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save (['LV_049 060' int2str(t)], 'I2abs’','I2ang’);
% title(['HARP amplitude' int2str(t)]);
imwrite (uint8(I2abs(:,:,t)),'tags.tif', 'compression', 'none');

%
% ROI for the heart
%
for t=1:12;

xXroic = 128;

yroic = 128;

roisize = 100;

figure;

subplot(1,3,1);

imagesc (I ((xroic-roisize) :{xroic+roisize), (yroic-roisize)
: {yroictroisize),t ));:

axis image; colormap gray;

title(['Orig image' int2str(t)]):

subplot(1,3,2);

imagesc(I2ang((xroic-roisize) :(xroic+roisize}, (yroic=~roisize)
: (yroict+roisize),t ));

axis image; colormap gray;

title(['HARP angle' int2str(t)]):

subplot(1,3,3);

imagesc (I2abs ((xroic-roisize) :(xroictroisize), (yroic-roisize)
: (yroictroisize), t));

axis image; colormap gray;

title(['HARP amplitude' int2str(t)]):

pause
end;

clear k t fIs2 fI absfIs sigma midp wsize
clear roisize filtl £ilt2 Xc Yc =xroic yroic fIs fig

Matlab Code for Contouring the LV: poi_normal7.m

normal7: HFC7.006.I.069-080 Points files of the sequence to be read

oP oP do

poi normal7=readpoints('C:\FTP Data\Points\hfc7\', 'normal7’,'006"');
p_normal7=poi normal7;
p_normal7 (9)=poi normal7(1);
p_normal7 (10)=poi_normal7(2);
p_normal7 (11l)=poi_normal7(3);
p_normal7(12)=poi normal7(4);
p_normal7(2)=poi normal7(5);
p_normal7 (3)=poi normal7(6);
p_normal7(4)=poi normal7(7);
p_normal7 (5)=poi normal7(8);
p_normal7 (6)=poi normal7(9);
p_normal7 (7)=poi_normal7(10);
p_normal7(8)=poi normal7(11);
p_normal7(1l)=poi normal7(12);
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save p_normal7.mat p normal7;

clear poi_normal7;

for r=1:12;
inner_c{:,:,r)=p_normal7(l,r).inner contour;
outer_c(:,:,r)=p_normal7(1l,r).outer_contour;
in_c(:,:,r)=inner c(:,:,r)/1.4063; %mm_per pixel:1.4063 !!!
out_c(:,:,r)=outer c(:,:,r)/1.4063;

end;

% endo and epicardium contours are calculated.

for r=1:12;
[bwl(:,:,r),x1(:,:,r),yl(:,:,r)]= roipoly

(I{:ysyr),in c(l,:,r),in_c(2,:,1));
[bw2(:,:,x),%2(:,2,r),y2(:,:,r)]= roipoly

(I(:y:yxr),0ut_c(l,:,r),out_c{2,:,r));
$figure; imagesc(bwl(:,:,r));colormap(gray);hold on;imagesc(bw2(:,:,r))
$l:white, 0O:black
bw(:,:,r)=xor(bwl(:,:,r),bw2(:,:,r));
figure;imagesc(bw(:,:,r));colormap (gray)
title(['LV Contour of normal7 - ' int2str(r)]):
pause

end;

clear r in c out_c¢ x1 yl %2 y2 inner_c outer_c;

Matlab Code for Finding the Edges of the LV: ec.m

sb=size (bw,3):;

MEC=zeros (2,2,sb);

Rx=zeros(sb, 1) ;Ry=zeros(sb,1l):;

for p=1:sb
ec(:,:,p)=edge{bwl(:,:,p));
% figure;imshow(ec(:,:,p));title(['Binary Image Contour' int2str(p)]l);
% pause
[ecx ecy]l=find(ec(:,:,p)): % edge coordinates
mxcx=max (ecx) ;mncx=min (ecx); % min&max of the edge coordinates
mxcy=max (ecy) ;mncy=min (ecy) ;

eval (['mncx' int2str(p) ' =mncx;']);eval(['mxcx' int2str(p) '
=mxcx;']);

eval (['mncy' int2str(p) ' =mncy;']):eval(['mxcy' int2str(p) °
=mxcy;'1);

eval (['MEC(:,:,p)=[" 'mncx' int2str(p) ',' 'mxcx' int2str(p) ';'
'mncy' int2str(p) ',' 'mxcy' int2str(p) '1:;']):

eval (['Rx' int2str(p) '= mean(MEC(1l,:,p))' ';' 'Ry' int2str(p)
'=mean (MEC(2,:,p)):"']);

eval (['Rx(p)=" 'Rx' int2str(p) ';' 'Ry(p)=' 'Ry' int2str(p) ';']):

%ec=~ec;%0:white; l:black

$figure;imshow(ec(:,:,p));title{['Binary Image Contour & Center '
int2str(p)l):;

ghold on;plot (Rx(p),Ry(p),'.x');

%pause

eval ([ 'clear mncx mxcx mncy mxcy;'l);

eval ({'clear mncx' int2str(p) ' mxcx' int2str(p) 1):
eval (['clear mncy' int2str(p) ' mxcy' int2str(p) 1);
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end;
for p=1:sb;

ALL(p, :)=[Rx(p),Ry(p)]; % Center coordinates in matrix ALL
end;

Sbw2=~bw2;
for r=1:sb;
biw(:,:,r)=bw(:,:,r); %bw(:,:,r) was calculated in poi norm7!
[bwx bwyl=find(biw(:,:,xr));
mat=[bwx bwy]:;
sm=size (mat);
smm=sm (1)+1;
new=zeros (smm,sm(2));
ek(r,:)=ALL(r,:);
for de=1:sm(1)
new (de, : )=mat (de, :) ;
new (smm, : )=ek(xr, :);

end;
eval (['coord' int2str(r) ' =new;']l);
end;
for p=1l:sb
eval (['cpix' int2str(p) '=zeros(256,256);']);
eval(['s' '"=' 'size' '(' 'coord' int2str(p) '):'l);

122= I2ang(:,:,p)-pi;
I22(122<(-pi))= I22(I22<(-pi)) + 2*pi;

for t=1:s
eval (['cx' int2str(p) '=' 'coord' int2str(p) '(t,1)' ';'1):
eval (['cy' int2str(p) '=' 'coord' int2str(p) '(t,2)' ':;'l);
eval (['cpix' int2str(p) '(' 'cx' int2str(p) ',' 'cy' intZ2str(p) ")’
T=Y TI22' (' 'cx' int2str(p) ',' 'cy' int2str(p) "):'1);
end;

$figure;imagesc(['cpix' int2str(p)]):;colormap (gray);title(['Masked
Phase ' int2str(p)l):;

%pause

eval (['clear cx' int2str(p) ' coord' int2str(p)l);

eval{['clear cy' int2str(p) ' Rx' int2str(p) ' Ry' int2str(p)]l):

end;
clear t s p r ec ecy ecx de I22 sb mat new ek sm smm biw Rx Ry;

Matlab Code to Calculate the Zero-Crossings: zcrsmat_normal7.m

%%
% zcrsmatl-12 for HFC7 will be found.
%%

init=1;

£in=256;

TF=12;

M=zeros (256,256, TF);
M(:,:,1)=cpixl’;
M(:,:,2)=cpix2’;
M(:,:,3)=cpix3’';
M(:,:,4)=cpix4d’';
M(:,:,5)=cpix5’;
M(:,:,6)=cpix6';



46

M(:,:,7)=cpix7";
M(:,:,8)=cpix8';
M(:,:,9)=cpix9’';
M(:,:,10)=cpixl10"';
M(:,:,11)=cpixll’;
M(:,:,12)=cpixl2"';
zcrsmat seri genel= zeros(256,256,TF);
for mm=1:TF;
for i=init:fin

row=M (i, :,mm) ;
a=find(row) ;
sa=size(a);
sacol=sa(2);
for j=l:sacol

newrow (j)=row(a(j));
end

%else

NEWrow =row;

sacol = length (newrow)-1;
$end

$ind=zeros(1l,sacol); % created to store the (-) values after (+)’s.
dd=1; ;
clear h hh;
for d=2:sacol
if newrow(d-1)>0 & newrow(d)>=0 & O>newrow(d+l),
h(:,dd)=[newrow(d) newrow(d+1l)]';
ind (dd)=d;
dd=dd+1;
%elseif newrow(d)==0,
% h(:,dd)=[0 0]"';
% ind(dd)=d;
% dd=dd+1;
end
end

if dd>1
hh=h;
is = size(hh,2);
fitp=zeros(2,1is);

xo=[-1,11";
for g=l:is,

fitp(:,g)=(hh(:,qg) '*inv([ind(g) ind(g)+1l; 1 1]))"';
end

zcrs=(-fitp(2,:)./fitp(1,:))-1;

zcrsmat seri_genel (i, l:length(zcrs),mm)=zcrs;
end;

end;

end;

clear M fitp dd hh h g ind mm is zcrs newrow sacol a row init fin d i j p

sa Xo



Matlab Code for Calculating the Tag Points upon Normalization:
taglines n7 dnm.m

zcrsmat=zcrsmat normal7;
TL=12;
for gs=9; % gs=number of time frames
for bik=1:TL; % bjk= number of tag lines
[R,C,S]=find (zcrsmat(:,:,g9s)}); % ss9=163x1
for h=1:size(R,1)
R(h)=R(h) -mean (ALL(:,2));S(h)=8(h)~mean(ALL(:,1));

end;
plot(R,S,'.");hold on;plot(0,0,'ro');xlabel('R");ylabel ('S');grid on
xlabel (['Sirasiyla smin, smax, rmin, rmax i¢in taiklayiniz ! '

int2str(gs)])
hold on;title(['zcrsmat - tagline' int2str(bjk)]):;
gin=ginput (4);
smin=round(gin(1,2))
smax=round (gin(2,2))
rmin=round(gin(3,1))
rmax=round (gin{4,1))

intrv=find {S>=smin & S<=smax & R>=rmin & R<=rmax):;

snkt=S (intrv) ; rnkt=R (intrv);
eval (['snkt' int2str(bjk) '=snkt;rnkt' int2str(bjk) '=rnkt;']);
eval (['[' 'a' int2str(bjk) ',"' 'd' int2str(bjk) ']' '=' 'polyfit'
' (rnkt,snkt,1);']1); %snkt original points
eval (['LN' int2str(bjk) '=dilekfun' '(' 'a' int2str(bjk) ',rnkt' ');'l);
%LN points of the best fitting smooth line
clear rnkt snkt;
end;
end;

figure;plot(R,S,"'.") ;hold on;plot(0,0,'ro');xlabel ('R");ylabel ('S'");grid

on

hold on;plot (rnktl,LN1, 'r-")

hold on;plot (rnkt2,ILN2, 'r-")

hold on;plot{rnkt3,ILN3, 'r-"')

hold on;plot (rnkt4,IN4, 'r-")

hold on;plot (rnkt5,LN5, 'r-")

hold on;plot(rnktG,LNG,'r—')

hold on;plot{(rnkt7,LN7,'r-")

hold on;plot (rnkt8,LN8,'r-")

hold on;plot (rnkt9,LN9, 'r-")

hold on;plot (rnkt10,LN1O, 'r-'")

hold on;plot (rnkt1l,IN11,'r-")

hold on;plot (rnktl2,LN12, 'r-")

axis([~-30 30 =30 30]):;

%%

angles

%%

% polar coordinates to rotate the coordinate system for difference angle

%%

% ang var>0 --> subtract ang var

for bjk=1:TL
eval (['SL=size{ILN' int2str(bjk) ',1);'1);
eval (['Line' int2str(bjk) ‘'=zeros(SL,2);’'
$for main points:snkt
eval (['[TH' int2str(bjk) ',' 'radius' int2str(bjk) ']=cartZpol('

'rnkt' int2str(bijk) ',snkt' int2str(bjk) ');'1):

1)
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eval (['TH' int2str(bjk) '=TH' int2str(bjk) '-(ang_var);'l);

eval (['[LN_x' int2str(bjk) ',' 'LN_y' int2str(bjk) 'l=pol2cart(TH'
int2str(bjk) ',radius' int2str{bjk) ');'1l);

eval (['Line' int2str(bjk) '(:,:)=[LN_x' int2str(bjk) ',LN_y'
int2str(bjk) '1;'])

$fitted lines after shifting

%smooth Lines: LN

eval (['[LTH' int2str(bjk) ',' 'Lradius' int2str(bjk) 'l=cartZpol(’'
'rnkt' int2str(bjk) ',LN' int2str(bjk) '):;'l);

eval (['LTH' int2str(bjk) '=LTH' int2str(bjk) '-(ang var);'l):

eval (['"[LLN x' int2str(bjk) ',' 'LLN_y' int2str(bjk) 'l=pol2cart(LTH'
int2str{bjk) ',Lradius' int2str(bjk) ');'1):

eval (['LLine' int2str(bjk) '(:,:)=[LLN x' intZ2str(bjk) ',LLN_y'
int2str (bjk) '1:'1):

clear SL
end;

$shifted tag points representation:
figure;plot (Linel(:,1),Linel(:,2),'b.

")
hold on;plot(Line2(:,1),Line2(:,2),'b.")
hold on;plot(Line3(:,1),Line3(:,2),'b.")
hold on;plot{Line4(: ,1) Line4(:,2),'b.")
hold on;plot{Line5(:,1),Line5(:,2), 'b.")
hold on;plot(Line6{:,1),Line6(:,2),'b.")
hold on;plot(Line7(:,1),Line7(:,2),'b.")
hold on;plot(Line8(:,1),Line8(:,2), 'b.")
hold on;plot(Line9(:,1),Line9(:,2),'b. )

hold on;plot(LinelO(:,1),Linel0(:,2), 'b.")
hold on;plot(Linell(:,1),Linell(:,2),'b.")
hold on;plot{Linel2(:,1),Linel2(:,2),'b.")
plot (0,0, 'ro");xlabel ('R");ylabel('S');grid on
title('Rotated Tag Lines Representation')
axis([-30 30 -30 301]);

%%
$LINES FITTED TO THE SHIFTED TAGPOINTS!
%%

hold on;plot(LLinel(:,1),LLinel 'r-1)

(:,2),
hold on;plot(LLine2(:,1),LLine2(: 2),'r—')
hold on;plot (LLine3(:,1),LLine3(:,2), 'x-")
hold on;plot(LLine4(:,1),LLine4(:,2),'r-")
hold on;plot (LLine5(:,1),LLine5(: ,2),‘r—‘)
hold on;plot(LLine6(: ,1),LL1ne6( 1 2),'r=")
hold on;plot{LLine7(:,1),LLine7(:,2),'r-")
hold on;plot(LLine8(:,1),LLine8(:,2),'c-")

hold on;plot(LLineQ(:,l),LLine9(:,2),'r—')

hold on;plot(LLinelO(:,1),LLinel0(:,2),"'r-")
hold on;plot(LLinell(:,1),LLinell(:,2),'r-")
hold on;plot(LLinel2(:,1),LLinel2(:,2),'r-")

%% points defining the regions (code : cross)
% axes crossing of the first & last tag lines

Linel{:,:)={ILN x1,LN yl];
[ml,cl]=polyfit(ILN_x1,LN_yl,1);
Pust=ml (2):

eval (['Line' int2str(TL),"'(:,:)=[LN_x'

int2str(TL),',IN y',int2str(TL),"']1:']):

eval (['[m2,c2]=polyfit (LN _x',int2str(TL),',ILN_y',int2str(TL),',1):']);
Palt=m2(2);



P=[Pust Palt};

Abstand=(Pust+abs (Palt))/3;norm fac=Abstand*3;
Pl=Pust~-Abstand;P2=Pl-Abstand;
$P3=P2~Abstand;%$P3=Palt verification: % variance=Palt-P3=zeroc!
figure;plot(Linel(:,1),Linel (:,2),'b.");

hold on;plot(Line2(:,1),Line2(:,2),'b."
hold on;plot(Line3(:,1),Line3(:,2),'b."’
hold on;plot(Lined(:,1),Line4(:,2),'b."’
hold on;plot(Line5(:,1),Line5(:,2),'b."
hold on;plot(Line6(:,1),Line6(:,2),'b."
hold on;plot (Line7(:,1),Line7(:,2),'b."
hold on;plot(Line8(:,1),Line8(:,2),"' b '
hold on;plot(Line9(: ,1) Line9(:,2)
hold on;plot(LinelO(:,1 ,LinelO(.,Z) b ')y
hold on;plot(Linell(:,1),Linell(:,2),'b.");
hold on;plot(Linel2(:,1),Linel2(:,2),'b.");
plot(0,0,'ro');xlabel ('R');ylabel('S");grid on
hold on;plot(0,P1, 'm*")

hold on;plot(0,P2, 'm*');%axis([-30 30 -30 301);
title('Regions to select the Tags')

)
)
)i
Y
)y
Yi
)
')

for bjk=1:TL

eval (['middle’ int2str(bjk) '=(max(LN_x' int2str(bjk) ')-+min (LN x'
int2str(bijk) "))/2;'1):

eval (["newx' int2str(bjk) '=LN x' intZstr(bjk) '-middle' int2str (bjk)
AF RN D]

eval (['ratio' int2str(bjk) '=(max (LN _x' int2str(bjk) ')-min(LN_ x'
int2str (bjk) ")):;'1);

eval (['newx' int2str(bjk) '=newx' int2str(bjk) './ratio' int2str(bjk)
AR DN

eval (['[m' int2str(bjk) ',c' int2str(bjk) 'l=polyfit (LLN x'
int2str(bjk) ',LLN_y' int2str(bjk) ',1):'1):

eval (['pay' int2str(bjk) '=m' int2str(bjk) '(2);']);

eval (["newyy' int2str(bjk) '=LN_y' int2str(bjk) '-pay' int2str (bjk)
1)

eval (['newy' int2str(bjk) '=newyy' int2str(bjk) './norm fac;'l);

eval (['newLine',int2str (bjk), "' (:,:)=[newx’
int2str (bjk),',newy',int2str(bjk),"'1;:;"'1):
end;

for bjk=1:TL

eval (['meanratio(bjk)=[ratio' int2str(bjk) '1:;']);
end;
meanratio=mean (meanratio);

figure;plot(newLinel(:,1),newlLinel(:,2),"'g."') ;hold
on;plot (newlLine2(:,1),newlLine2(:,2),'m.");

hold on;plot(newLine3(:,1),newline3(:,2),'b.") ;hold
on;plot {newLine4 (:,1) ,newlLined (:,2),'b."');

hold on;plot (newLine5(:,1),newLine5(:,2), 'b."');hold
on;plot (newLine6(:,1),newlLine6(:,2),'b.");

hold on;plot{newLine7(:,1),newlLine7(:,2),'b."');hold
on;plot (newLine8(:,1),newlLine8(:,2),'b.");

hold on;plot(newLine9(:,1),newLine9(:,2), 'b.");hold
on;plot (newLinel0(:,1),newlkinel0(:,2),'b.");

hold on;plot(newLinell(:,1),newkLinell(:,2),'b.");
hold on;plot(newlLinel2(:,1),newlLinel2(:,2),'b.");
title('Rotated Tags devided by the Normalization Factor')
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Matlab Code for Finding the Angle for Rotation Normalization: angles.m

oo

code to calculate the angles between taglines and x-axis

P o0 oP

oo

slope=zeros(TL,1l); %slopes of every tag line in a single matrix.
for ft=1:TL
eval(['slope(ft,1l)=a' int2str(ft) '(1);'1):

end;
m2=0; % x-axis : y=0
for ft=1:TL

phi(ft,l)=aci(slope(ft),m2);
ph=phi (ft);
phi_degree(ft,1)=degree(ph);
end;
aci sapmasi=mean (phi_degree)
ang_var=mean (phi)

Matlab Code to Fit the Normalized Tagpoints into Cubic Spline: pp_n7N_dnm.m

%%

% All tags’ coefficients are calculated for the l.time frame
%%

figure;plot (newlLinel(:,1),newLinel(:,2),'g.’);hold
on;plot (newLine2(:,1),newlLine2(:,2), 'm.");

hold on;plot(newlLine3(:,1),newkLine3(:,2), 'b.");hold
on;plot (newLined (:,1),newLined (:,2),'b.");

hold on;plot (newLine5(:,1),newLine5(:,2),'b.");hold
on;plot (newLine6(:,1),newline6(:,2),'b.");

hold on;plot(newLine7(:,1),newLine7(:,2), 'b.") ;hold
on;plot (newlLine8(:,1),newlLine8(:,2),'b.");

hold on;plot(newLine9(:,1),newLined(:,2),'b.") ;hold
on;plot (newLinelO(:,1),newlLinel0(:,2),'b.");

hold on;plot (newLinell(:,1),newLinell(:,2),'b.");

hold on;plot (newLinel2(:,1),newLinel2(:,2),'b.");

title ('Rotated Tags devided by the Normalization Factor')

TL=12;%tag line
TF=12;%time frame
pp_n7N_dnm22=zeros (TL,4,1);
%load zcrsmat_normall.mat
for gs=1%:TF; %gs=number of time frames
for bjk=1:TL;%bjk= number of tag lines
eval ([ 'newlLine=newlLine' int2str(bjk)} ';'1);
$figure;plot (nlnewlLinel(:,1),nlnewlLinel (:,2),"g.") hold
on;plot (nlnewlLine2(:,1),nlnewlLine2(:,2),'m.");
$plot (0,0, 'ro");xlabel ('R');ylabel('S'");
grid on
title(['Rotated Tag Lines Representation' int2str(bjk)]);
if bjk==1 & gs==
eval (['[a_first,d_first] = polyfit (newLine' int2str (bjk)
'(:,1),newline’' int2str{bjk) '(:,2),1);'1);
elseif bjk==TL & gs==
eval(['[a_ last,d_last] = polyfit(newLine' int2str (bjk)
'(:,1),newLine' int2str(bjk) '(:,2),1);'1);
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eval (['LN_f=dilekfun(a first,newlLine' int2str(bjk) '(:,1));
eval (['LN_l=dilekfun(a_ last,newline' int2str(bjk) '(:,1));"
end
eval (['LN_x=newLine' intZstr(bjk) '(:,1);'1);
eval (['LN_y=newLine' int2str(bjk) '(:,2);']):
prods=spline (LN _x,LN_y,min(LN_x):.0l:max(LN_x));
[pp,ss]l=polyfit (min(LN_x):.0l:max(LN_x),prods,3);
pp_n7N_dnm22 (bjk, : ,gs)=pp;

des=0;
for er=min(LN_x):.0l:max(LN_x)

des=des+1;

denek (des)=pp (1) *er*3+pp(2) *er*2+pp (3) *er+pp(4) ;
end

x=[min (LN x):.1l:max(LN x)];

y=pp (1) *x."3+pp (2) *x."2+pp (3) *x+pp (4) ;

gfigure;plot(x,y,'r."'); title('Coefficients fitted on the array')
$hold on;plot (newLine(:,1),newLine(:,2),"'g.")

hold on;plot (min(IN_x):.0l:max(LN_x),prods, 'b-');
hold on;plot (min (LN x):.0l:max (LN_x),denek,'r-"');
title('Blue:Spline fitted points; Red:Calculated Coefficients on

Curve')

clear denek prods LN x LN y;

pause

end;

end;

save pp_n7N_dnm22.mat pp_n7N_dnm22

Matlab Code to Segment the Myocardium into Region of Interests: cross.m

% axes crossing of the first & last tag lines

Linel(:,:)=[LN_x1,LN yl];
[ml,cli=polyfit (LN _x1,LN yl1,1);
Pust=ml (2);

eval (['Line' int2str(TL),'(:,:)=[LN_x'
int2str(TL), "', IN_y',int2str(TL),'];"'1);

eval (['[m2,c2]=polyfit (LN x',int2str(TL),"',LN_y',int2str(TL),',1);"']);
Palt=m2 (2);

P=[Pust Palt]:

Abstand= (Pust+abs (Palt))/3;

norm_fac=Abstand*3;

P1l=Pust-Abstand;

P2=P1l-Abstand;

hold
hold
hold
hold
hold
hold
hold
hold

on;plot(Line2(:,1),Line2(:,2),'b.")
on;plot(Line3(:,1),Line3(:,2),'b.")
on;plot(Line4(:,1),Lined (:,2),'b.")
on;plot(Line5(:,1),Line5(:,2),'b.")
on;plot(Line6(:,1),Line6(:,2),'b.")
on;plot(Line7(:,1),Line7(:,2),'b.")
on;plot(Line8(:,1),Line8(:,2),'b.")
on;plot{Line%(:,1),Line%(:,2),'b.")



hold
hold
hold
hold
hold
hold
hold

plot (0,0, 'ro'):;xlabel('R');ylabel('S');grid on

hold
hold

on;plot (Linel0(:,1),Linel0(:,2
on;plot (Linell(:,1),Linell(:,2
on;plot(Linel2(:,1),Linel2(:,2
on;plot(Linel3(:,1),Linel3(:,2
on;plot(Linel4 (:,1),Lineld (:,2
on;plot(Linel5(:,1),Linel5(:,2
on;plot (Linel6(:,1),Linel6(:,2

on;plot(0,PLl, 'm*")
on;plot(0,P2, 'm*"');

title('Regions to select the Tags')
for bjk=1:TL
eval(['Li' int2str(bjk) '=Line'

end;

figure;plot(Lil(:,1),Lit(:,2),'b.");hold on;plot(Li2(:,1),Li2(:,2),'b.")

hold on;plot(Li3(:,1),Li3(:,2),'b.");hold
on;plot(Lid(:,1),Li4(:,2),'b.");
hold on;plot(Li5(:,1),Li5(:,2),'b.");hold
on;plot(Li6(:,1),Li6(:,2),'b.");

hold

on;plot (Li7(:,1),Li7(:,2),'b."')hold on;plot(Li8(:,1),Li8(:,2

hold on;plot(Li9(:,1),Li9%(:,2),'b."');hold
on;plot (Lil1l0(:,1),Lil0(:,2),'b.")

hold on;plot(Lill(:,1),Lill(:,2),'b.");hold

on;plot(Lil2(:,1),Lil2(:,2),'b.")

hold on;plot(Lil3(:,1),Lil3(:,2),'b.") ;hold

on;plot(Lild(:,1),Lil4(:,2),'b.")

hold on;plot(Lil5(:,1),Lil5(:,2),'b.");hold

on;plot(Lil6(:,1),Lil6(:,2),'b.");
P1N=(Pust-Abstand) /norm_fac;
P2N=(P1l~Abstand) /norm_fac;

hold
hold

title('Rotated Tags devided by the Normalization Factor')

Matlab Code to Select Fix Tags from each Region of Interest: selected_tags n3R.m

on;plot(0,P1IN, 'm*")
on;plot (0,P2N, 'm*');

for bjk=1:TL

eval (['ortLN y' intZstr(bjk)
eval (['ortLineY (bjk,1)=[ortLN y' int2str(bjk)

if ortLineY (bijk)>=P1

elseif ortLineY(bjk)>P2 & ortLineY(bjk)<P1

LY up(bjk,1l)=ortLineY (bjk):
in=size (LY up,1);
ind up=(1l:in]"';

LY mid(bjk,1)=ortLineY (bjk);
inm=size (LY _mid,1);
ind mid=[1:inm]';

else ortlLineY(bjk)<=P2;

LY bot(bjk,1)=ortLineY (bjk):
inb=size (LY bot,1);
ind bot=[1l:inb]"':

end

end;

int2str(bjk)

'=mean (LN_y' int2str(bjk)

'/norm_fac;']);
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LineY up=[ind up,LY upl;
[Y,up] = min(LineY up); n3R_up=up(l,2)

LineY mid=[ind mid, LY mid};
n3R md min=min(find (LY mid));
n3R md max=max(find (LY mid))
LlneY bot={ind bot,LY bot];
n3R_bt_max—max(flnd(LY_bot))
n3R bt min=min(£find (LY bot})

save n3R_up.mat n3R_up;save n3R_md max.mat n3R_md max;
save n3R md min.mat n3R md min;
save n3R bt max.mat n3R_bt max;save n3R bt min.mat n3R bt min;
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Matlab Code to Load the Calculated Curve Coefficients & Selected Tags: loading.ni

%% HEALTY(BLUE) vs. UNHEALTHY (PINK) DISPLAY :
$% uploading the coefficients

% NORMAL DATA

load pp nIN dnm22.mat;load pp nlR dnm22.mat;
load pp n2N dnm22.mat;load pp nZ2R dnm22.mat;
load pp_. n3N dnm22 .mat;load pp_| n3R dnm22.mat;
load pp_né4N_ ~dnm22.mat; load pp_n4R_ _dnm22.mat;
load pp | n7N dnm22.mat;load pp_| n7R dnm22 .mat;

% DCM

load pp_bivN_dnm22.mat;load pp_bivR_dnm22.mat;
load pp padN dnm22.mat;load pp padR dnm22.mat;
load pp shiN dnm22.mat;load pp_shiR dnm22.mat;
load pp tay_ dnm22 .mat; load pp_tayR dnm22.mat;

% INFARCT

load pp_ab3_dnm22.mat;load pp _ab3R _dnm22.mat;
load pp_ab6 dnm22 mat;load pp ab6R dnm22 .mat;
load pp_. abll _dnm22.mat;load pp_ abllR dnm22 .mat;
load pp_abl2 dnm22 mat;load pp ab12R dnm22.mat;
load pp abld dnm22 mat;load pp_ ab14R dnm22.mat;

ppl=pp nlN dnm22; pplR=pp_nlR dnm22;
pp2=pp n2N_dnm22; pp2R=pp n2R dnm22;
pp3=pp_n3N_dnm22; pp3R=pp_n3R_dnm22;
ppé4=pp_ndN_dnm22; pp4R=pp n4R dnm22;
pp5=pp_n7N_dnm22; ppS5R=pp n7R dnm22;
pp6=pp_bivN_dnm22;pp6R=pp bivR_ dnm22;
pp7=pp_padN_dnm22;pp7R=pp_padR_dnm22;
pp8=pp_shiN dnm22;pp8R=pp_shiR_dnm22;
pp9=pp_tay dnm22; pp9R=pp_ tayR dnm22;
pplO0=pp_ab3_dnm22;pplOR=pp ab3R_dnm22;
ppll=pp abé —dnm22;ppllR=pp ab6R_dnm22;
pplZ2=pp_abll dnm22;ppl2R=pp abllR dnm22;
ppl3=pp_abl2_ dnm22;ppl3R=pp_abl2R dnm22;
pplé=pp abl4_dnm22;ppl4R=pp_ abl4R . _dnm22;



%% related sections' selected tags for every

% 1A) normal - diastole

lead nllN upl.mat;load
nlliN bt minl.mat;%load
load nllN up2.mat;load
nlliN_bt min2.mat;%load
load n2lN upl.mat;load
n2lN bt minl.mat;%load
load n21N_up2.mat;load
n2lN_bt min2.mat;%load
load n31N _upl.mat;load
n31N bt minl.mat;%load
load n31N_up2.mat;load
n31N_bt min2.mat;%load
load n4l1N _upl.mat;load
n4lN bt minl.mat;%load
load n4l1N_up2.mat;load
nd4lN bt min2.mat;%load
load n71N upl.mat;load
n71N_bt minl.mat;%load
load n71N_up2.mat;load
n71iN_bt min2.mat;%load

% 1B) normal -~ systole
load nlRN upl.mat;load
nlRN_bt minl.mat;%load
load nlRN _up2.mat; load
nlRN_bt_min2.mat;%lcad
load n21R upl.mat;load
n21R_bt minl.mat;%load
load n21R up2.mat;load
n2lR_bt min2.mat;%load
load n31R upl.mat;load
n31R bt minl.mat;%load
load n31R _up2.mat;load
n31R_bt min2.mat;%load
load n4RN upl.mat;load
n4RN_bt minl.mat;%load
load n4RN up2.mat;load
n4RN_bt min2.mat;%load
locad n7RN_upl.mat;load
n7RN_bt minl.mat;%load
load n7RN_up2.mat; load
n7RN_bt min2.mat;%load

% 2A) dcm - diastole
load bivIN_upl.mat;load
bivliN md minl.mat;%load
load bivlN_up2.mat;load
bivIN md min2.mat;%load
load pale upl.mat;load
padlN md minl.mat;%load
load pale up2.mat; Load
padlN md min2.mat;%load
load shilN_upl.mat;load
shilN md minl.mat;%load
load shilN _up2.mat;load
shilN md min2.mat;%load

nllN md minl.mat;load
nliN bt maxl.mat;
nllN md min2.mat;load
nllN bt max2.mat;
n21N_md minl.mat;load
n2IN_bt maxl.mat;
n2lN _md min2.mat;load
n2lN_bt max2.mat;
n31IN_md minl.mat;load
n31N_bt_maxl.mat;
n31N md min2.mat;load
n31N bt _maxZ.mat;
n41N md minl.mat;load
n4lN bt maxl.mat;
n4lN md min2.mat;load
n4lN_bt_max2.mat;
n71N md minl.mat;load
n71N_bt maxl.mat;
n71N_md min2.mat;load
n71N_bt max2.mat

nlRN md minl.mat;load
nlRN bt maxl.mat;
nlRN md min2.mat;load
nlRN bt max2.mat;
n2lR md minl.mat;locad
n2lR bt maxl.mat;
n2lR md min2.mat;load
n2lR bt max2.mat;
n31R md minl.mat;load
n31R | _bt maxl mat;
n31R md min2.mat;load
n31R bt max2 mat;
n4RN md minl.mat;load
n4RN_bt_max1 mat;
n4RN md min2.mat;load
ndRN_bt max2.mat;
n7RN_md minl.mat;load
n7RN_bt maxl.mat;
n7RN_md min2.mat;load
n7RN_bt max2.mat;

data set:

nllN md maxl.mat;load
nllN md max2.mat;load
n2lN_md maxl.mat;load
n21N_md max2.mat;load
n31N_md maxl.mat;load
n31N_md max2.mat;load
n41N md maxl.mat;load
n41N_md_max2.mat;load
n71N_md maxl.mat;load

n71N md max2.mat;load

nlRN md maxl.mat;load
nlRN _md max2.mat;load
n21R_md_max1.mat;ioad
n21R md max2.mat;load
n31R md maxl.mat;load
n31R md max2.mat;load
n4RN md maxl.mat;load
n4RN_md_max2.mat;load
n7RN_md maxl.mat;load

n7RN_md _max2.mat;load

bivlN bt minl.mat;load bivlIN_md maxl.mat;load
blVlN bt maxl mat;
bivIN bt m1n2 mat;load bivlN_md max2.mat;load
blVlN bt max2 mat;
padlN_| bt mlnl mat;load padlN md maxl.mat;load
pale_bt_maxl mat;
padlN bt min2.mat;load padlN_md max2.mat;load
padlN_bt max2 mat;
shilN_bt minl.mat;load shilN_md_maxl.mat;load
shllN_bt_maxl mat;
shilN bt min2.mat;load shilN md max2.mat;load
shilN_bt max2.mat;



load taylN upl.mat;load
taylN md minl.mat;%load
load taylN_upZ2.mat;load
tayIN md min2.mat;%locad

taylN bt minl.mat;load
taylN_bt maxl.mat;
taylN bt min2.mat;load
taylN_bt max2.mat;

taylN md maxl.mat;load

taylN md max2.mat;load

% 2B) dcm - systole

load bivRN upl.mat;load
bivRN _md maxl.mat;%load
load bivRN up2.mat;load
bivRN md max2.mat;%load
load padRN_upl.mat;load
padRN _md maxl.mat;%load
load padRN_up2.mat;load
padRN_md max2.mat; %load
load shiRN upl.mat;load
shiRN md maxl.mat;%load
load shiRN up2.mat;load
shiRN md max2.mat;%load
load tayRN upl.mat;load
tayRN_md maxl.mat;%load
load tayRN_up2.mat;load
tayRN_md max2.mat;%load

% 3A)
load ab31l upl.mat;load
ab3l bt minl.mat;%load
load ab3l_upZ2.mat;load
ab31l bt min2.mat;%load
load ab6l upl.mat;load
ab6l bt minl.mat;%load
load ab6l up2.mat;load
ab6l_bt min2.mat;%load
load ablll_upl.mat;load
ablll bt minl.mat;%load
load ablll_up2.mat;load
ablll bt min2.mat;%load
load abl2l upl.mat;load
abl2l bt minl.mat;%load
load abl2l upZ.mat;load
abl2l bt minZ.mat;%load
load abl4l upl.mat;load
abl4l bt minl.mat;3%load
load abl4l up2.mat;load
abl4l bt min2.mat;%load

$ 3B) infarct - systole
load ab3R _upl.mat;load
ab3R bt minl.mat;%load
load ab3R _up2.mat; load
ab3R_bt min2.mat;%load
load ab6R_upl.mat;load
ab6R_bt minl.mat;%load
load ab6R _up2.mat;load
ab6R_bt min2.mat;%load

bivRN bt minl.mat;load
bivRN bt maxl.mat;;
bivRN bt min2.mat;load
bivRN_bt_max2.mat;;
padRN_bt minl.mat;load
padRN_bt maxl.mat;;
padRN_bt min2.mat;load
padRN_bt_max2.mat;;
shiRN bt minl.mat;load
shiRN bt maxl.mat;:;
shiRN_bt min2.mat; load
shiRN_bt max2.mat;;
tayRN_bt minl.mat; load
tayRN_bt maxl mat;
tayRN_bt m1n2 mat; load
tayRN_bt_maxZ mat;;

infarct - diastole
ab31l md minl.mat;load ab31 md maxl.mat;load
ab31l bt maxl mat;
ab31_md_m1n2 mat;load ab3l md max2.mat;load
ab3l bt max2.mat;
ab6l md minl.mat;load ab6l_md maxl.mat;load
ab6l bt maxl.mat;
ab6l md " min2. mat;load ab6l md max2.mat;load
abb6l bt max2 mat;

ablll_md_mlnl mat; load
ablll bt maxl.mat;
ablll md min2.mat;load
ablll bt max2.mat;
abl2l md minl.mat;load
abl2l bt maxl.mat;
abl2l md min2.mat;load
abl2l bt _max2.mat;
abl4l md minl.mat;load
abl4l bt maxl mat;
abldl md min2.mat;load
ab14l_bt_max2 mat;

bivRN md minl.mat;load
bivRN md min2.mat;load
padRN_md minl.mat;load
padRN_md min2.mat;load
shiRN md minl.mat;load
shiRN md min2.mat;load
tayRN md minl.mat;load

tayRN_md min2.mat;load

ablll md maxl.mat;load
ablll md max2.mat;load
abl2l md maxl.mat;load
abl2l md max2.mat;load
abl4l_md maxl.mat;load

abl4l md max2.mat;load

ab3R md minl.mat;load ab3R md maxl.mat;load

ab3R_bt maxl.mat;

ab3R md min2.mat;load ab3R md max2.mat;load

ab3R bt max2 mat;

ab6R md minl.mat;load ab6R md maxl.mat;load

ab6R bt maxl mat;

ab6R md ]  min2. mat;load ab6R md max2.mat;load

ab6R bt max2 mat;

abllR md minl.mat;load abllR md maxl.mat;load
abllR bt maxl mat;
abllR md min2.mat;load abllR md max2.mat;load
abllR bt max2 mat;
ablZR_md_mlnl mat;load abl2R md maxl.mat;load
abl2R_bt_maxl.mat;

load abllR upl.mat;load
abllR bt minl.mat;%load
load abllR up2.mat;load
abllR bt min2.mat;%load
load abl2R _upl.mat;load
abl2R_bt_minl.mat;%load



load abl2R up2.mat;load abl2R md min2.mat;load abl2R md max2.mat;load
abl2R bt min2.mat;%load ab12R bt max2 mat;
load abl4R_upl.mat;load ab14R_md_m1n1 mat;load abl4R_md maxl.mat;load
abl4R bt minl.mat;%load abl4R_bt_maxl.mat;
load abl4R up2.mat;load abl4R md min2.mat;load abl4R_md max2.mat;load
abl4R_bt min2.mat;%load abl4R_bt_max2.mat;

% analyzed time frame is the first tf : enddiastole
% WRITE & SORT SELECTED TAGS IN A MATRIX

% NORMAL & DIASTOLE

tg niN=[nllN_upl,nliIN up2,nllN_md minl,nllN_md min2,nllN_md _maxl,nllN_md_
max2,nllN_bt minl,nllIN_bt m1n2], %tg detected tag line

tg_ nlN—sort(tg nliN);
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tg_n2N=[n21N_upl,n21N_up2,n2IN_md minl,n21N_md min2,n21N_md_maxl,n21N_md_

max2,n21N_bt minl,n2lN_bt min2];

tg n2N=sort(tg nilN);

tg n3N=[n31N_upl,n31N_up2,n31N md minl,n31N md _min2,n31N_md_maxl,n31N_md
max2,n31N bt minl,n31N bt m1n2],

tg_n3N= sort(tg n3N) ;

tg nd4N=[n41N_upl,n41N up2,n41N_md minl,nd4IN md min2,n41iN_md maxl,n4iN _md
max2,n41N bt minl,nd4lN_bt min2];

tg n4N~sort(tg n4N} ;

tg n7N=[n71N_upl,n7IN_up2,n7IN_md minl,n71N_md min2,n7IN_md maxl,n71N_md
max2,n71N bt minl,n71N_bt m1n2],

tg_n7N=s ort(tg_n?N)

% NORMAL & SYSTOLE

tg nlR=[nlRN upl,nlRN up2,nlRN_md minl,nlRN md min2,nlRN_md maxl,nlRN md_

max2,nlRN bt minl,nlRN bt min2];

tg_nlR=sort(tg nlR);

tg_n2R=[n21R upl,n21R_up2,n2lR md minl,n21R md min2,n21R md maxl,n21R_md_
max2,n2lR bt minl,n2lR bt m1n2],

tg_ n2R—sort(tg nlR);

tg _n3R={n31R_upl,n31R up2,n31R_md minl,n31R md min2,n31R md i maxl,n31R_md
max2,n31R bt minl,n31R_bt m1n2],

tg_ n3R—sort(tg n3R) ;

tg n4R=[n4RN_upl,n4RN_up2,n4RN md minl,n4RN _md min2,n4RN_ md maxl,n4RN _md
max2,n4RN_bt minl,n4RN_bt m1n2],

tg_ n4R—sort(tg n4R) ;tg n4R—tg n4R;

tg n7R=[n7RN_upl,n7RN_up2,n7RN_md minl,n7RN_md min2,n7RN_md  maxl,n7RN_md
max2,n7RN_bt _minl, n7RN_bt_m1n2],

tg_n7R=sort (tg_n7R);

% DCM & DIASTOLE

tg_bivIN=[bivliN_upl,bivlN up2,bivIN_bt minl, bivIN bt min2,bivlN_md_maxl,
biviN md max2,biviN md minl,biviN_: md min2],

tg biviN= sort (tg_| blVlN),

tg_padlN=[padlN_upl,padlN_up2,padlN_bt minl,padlN_bt_min2,padlN_md | maxl1,
pale;md_maXZ,pale_md_mlnl,pale_md_m1n2],

tg_padlN=sort (tg_padlN);

tg_shilN=[shilN_upl, shilN_up2,shilN_bt_minl,shiIN_bt min2,shilN_md maxl,
shilN_md max2,shilN md minl,shilN md | min2];

tg_ ShilN= =sort (tg shilN);

tg_taylN=[taylN_upl, taylN_up2,taylN_bt minl, taylN_bt_min2,taylN_md maxl,
taylN md max2,taylN md_minl, tale_md_m1n2],

tg taylN=sort (tg_taylN);
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%$DCM & SYSTOLE
tg_bivR=[bivRN_upl,bivRN_up2,bivRN_bt minl,bivRN bt min2,bivRN md maxl,
bivRN_md max2,bivRN md minl,bivRN md min2];
tg_padR=[padRN_upl,padRN_up2,padRN_bt minl,padRN_bt min2,padRN_md maxl,
padRN_md max2,padRN md minl,padRN md min2];

tg_padR=sort (tg_padR);

tg_shiR=[shiRN_upl,shiRN _up2,shiRN_bt minl,shiRN bt min2,shiRN_md maxl,
shiRN md max2,shiRN md minl, shiRN md | min2];

tg_sth—sort(tgﬁsth)

tg tayR=[tayRN_upl,tayRN_up2,tayRN bt minl,tayRN bt min2, tayRN md maxl,
tayRN_md max2,tayRN md minl,tayRN md m1n2],

tg_ tayR—sort(tg tayR) ;

% INFARCT & DIASTOLE

tg_ab3N=[ab31 upl,ab3l md minl,ab31l md maxl,ab3l bt minl,ab31 up2,ab3l md
_min2,ab31 md max2, ab31 bt _min2];

tg_ab3N= sort(tg ab3N) ;

tg _ab6N=[ab6l_upl,ab6l_md minl,ab6l md min2,ab6l _md maxl,ab6l_ bt minil,
ab6l_up2,ab6l md max2, ab61 _bt_min2];

tg_ab6N= sort(tg ab6N),

tg _abllN=[ablll upl,ablll md minl,ablll_md maxi,ablll bt minl,ablll up2,
ablll md min2,ablll md max2,ablll bt m1n2],

tg abllN—sort(tg abllN);

tg abl2N=[abl2l upl,abl2]l md minl,abl2l md maxl,abl2l bt minl,abl2l up2,
abl2l md min2,abl2l md max2 abl121 bt m1n2},

tg ablZN—sort(tg abl2N) ;

tg abl4N=[abl4l upl,abldl md minl,abl4l md maxl,abl4l_bt minl,abl4l up2,
abl4l md min2,abl4l _md : max2 abl4l bt m1n2],

tg_ab14N-sort(tg_ab14N),

% INFARCT & SYSTOLE
tg_ab3R=[ab3R_upl,ab3R md minl,ab3R md maxl,ab3R bt minl,ab3R up2,ab3R_md

_min2,ab3R_md max2,ab3R bt min2];

tg_ab3R=sort (tg_ab3R);

tg_ab6R=[ab6R_upl,ab6R _md minl,ab6R md maxl,ab6R bt minl,ab6R_up2,ab6R _md
_min2,abéR md max2, ab6R bt _min2];

tg ab6R—sort(tg ab6R) ;

tg abllR=[abllR upl,abllR md minl,abllR md maxl,abllR bt minl,abllR_up2,
abllR md min2,abllR _md I max2 abllR bt m1n2],

tg abllR—sort(tg abllR);

tg _abl2R=[abl2R_upl,abl2R md minl,abl2R md maxl,abl2R bt _minl,abl2R _up2,
abl2R md min2,abl2R md : max2 ab12R bt m1n2],

tg_. ablZR—sort(tg ab12R),

tg_abl4R=[abl4R upl,abl4R md minl,abl4R md maxl,abl4R bt minl,abl4R_up2,
abl4R md minZ,abl4R md max2 abl4R _bt m1n2],

tg_ abl4R—sort(tg abl4R) ;

sz_tg=size(tg_abl4R,2);
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Matlab Code to Represent the Calculated Curve Coefficients: pink.m

loading

for cf=1:4;

figure;hold on;plot(ppl(tg_nlN,cf),'b.—');hold

on;plot (pp2 (tg_n2N,cf), 'b.=");

hold on;plot (pp3{tg n3N,cf),'b.-");hold on:plot (pp4 (tg n4N,cf), 'b.=");
hold on;plot(pp5(tg nN,cf),'b.-");

hold on;plot(pp6(tg_biv1N,cf),'m.—');plot(pp7(tg_pad1N,cf),'m.—')

hold on;plot (pp8(tg shilN,cf),'m.~');hold on;plot (pp%(tg_taylN,cf), 'm.-")
hold on;plot (ppl0(tg ab3N,cf),'g.-"');hold on;plot (ppll (tg_ab6N,cf),'g.-")
hold on;plot(ppl2(tg abliN,cf),'g.-');hold on;plot (ppl3(tg abl2N,cf),'g.-
') ¢

hold on;plot(pp14(tg_ab14N,cf),'g.-');axis([O sz_tg -0.6 0.8]);

ylabel ([int2str (cf) . Coefficients Value'l);
xlabel ('BLUE:HEALTHY PINK:DCM GREEN: INFRACT') ;
title ('DISTRIBUTION WHILE DIASTOLE') ;

¢ ylabel ('First Coefficients (A) Values'):

% xlabel ('BLUE:HEALTHY PINK:DCM GREEN: INFRACT') ;

figure;plot (pplR{tg nlR,cf),'b.-");hold on;plot (pp2R(tg n2R,cf),'b.~"};
hold on;plot (pp3R(tg n3R,cf),'b.-');hold on;plot (pp4R(tg_n4R,cf), 'b.-");
hold on;plot (pp5R(tg n7R,cf),'b.~");

hold on;plot (pp6R(tg bivR,cf), 'm.-");plot (pp7R(tg_padR,cf), 'm.-")

hold on;plot(ppSR(tg_shiR,cf),’m.-');hold on;plot (pp9R(tg tayR,cf), 'm.-")
hold on;plot (pplOR(tg ab3R,cf),'g.-"};

hold on;plot(ppllR(tg_abGR,cf),'g.—’);

hold on;plot(ppl2R(tg abllR,cf),’'g.-");

hold on;plot (ppl3R(tg abl2R,cf),'g.-');

hold on;plot(ppl4R(tg_ab14R,cf),'g.—');axis([O sz_tg -0.6 0.8]);

ylabel ([int2str (cf) . Coefficients Value'l):

xlabel ('BLUE:HEALTHY PINK:DCM GREEN: INFARCT') ;

title ('DISTRIBUTION WHILE SYSTOLE')

figure;

subplot(1,2,1);

plot(ppl(tg_nlN,cf),'b.—’);hold on;plot (pp2 (tg_n2N,cf),'b.-");

hold on;plot (pp3(tg n3N,cf),'b.-");hold on;plot (pp4 (tg _n4N,cf),'b.=");
hold on;plot (pp5(tg n7N,cf),'b.-"};

hold on;plot(pp6(tg_biv1N,cf),'m.—');plot(pp7(tg_pale,cf),'m.—')

hold on;plot(ppS(tg_shilN,cf),‘m.—');hold on;plot(pp9(tg~tale,cf),'m.—‘)
hold on;plot(pplO(tg_abBN,cf),'g.—');hold on;plot(ppll(tg_abGN,cf),'g.—')
hold on;plot(ppl2(tg ablliN,cf),'g.~");

hold on;plot(ppl3(tyg_abi2N,cf),'g.=");

hold on;plot (ppld(tg_abldN,cf),'g.-");axis ([0 sz_tg -0.6 0.81);
ylabel([int2str (cf) '. Coefficients Value'l);

xlabel (' BLUE:HEALTHY PINK:DCM GREEN:INFARCT');

title ('DISTRIBUTION WHILE DIASTOLE')

subplot(1,2,2);plot(ple(tg_an,cf),'b.—’);hold

on;plot (pp2R(tg_n2R,cf),'b.="};

hold on;plot (pp3R(tg n3R,cf),'b.-");hold on;plot (pp4R{tg_n4R,cf), 'b.-"');
hold on;plot(pp5R(tg_n7R,cf),'b.—’);

hold on;plot(pp6R(tg_bivR,cf),'m.—');plot(pp7R(tg_padR,cf),'m.—')

hold on;plot(ppBR(tg_shiR,cf),'m.~');hold on;plot (pp9R(tg_tayR,cf),'m.-")
hold on;plot (pplOR(tg ab3R,cf),'g.~"');

hold on;plot (ppllR{tg_ab6R,cf),'g.~");

hold on;plot(pplZR(thabllR,cf),'g.—');



hold on;plot (ppl3R(tg_abl2R,cf),'g.-");

hold on;plot(ppl4R(tg _abl4R,cf),'g.-');axis ([0 sz_tg -0.6 0.8]);
3ylabel ('First Coefficients (A) Values');xlabel ('BLUE:HEALTHY PINK:DCM

GREEN:INFARCT');
title ('DISTRIBUTION WHILE SYSTOLE')

3%

%% NORMAL at systole & diastole

%%

figure;hold on;plot (ppl(tg_nlN,cf), 'k.~-");hold
on;plot(pp2(tg n2N,cf), 'k.~-");

hold on;plot (pp3(tg n3N,cf),'k.-")hold on;plot(pp4(tg n4dN,cf),'k.-");
k.-")

hold on;plot (pp5{tg n7N,cf),’

hold on;plot (pplR(tg_niR,cf),'r.-");hold on;plot (pp2R(tg_n2R,cf),'r.-
') 7hold on;plot (pp4R(tg_n4R,cf),'r.-

hold on;plot (pp3R(tg_n3R,cf), 'r.-
hold on;plot (pp5R(tg_n7R,cf), 'r.-")
ylabel ([int2str(cf) '. Coefficients Value'l);

xlabel ('BLACK: HEALTHY DIASTOLE RED:HEALTHY SYSTOLE');
title('CHANGES WITHIN HEALTY (A)s')

figure;
subplot(2,3,1);

plot (ppl(tg_niN,cf), 'k.-");hold on;plot (pplR(tg nlR,cf),'r.=-");

subplot(2,3,2);

plot(pp2(tg_n2N,cf), 'k.-");hold on;plot(pp2R(tg_n2R,cf),'r.-");

title ('CHANGES WITHIN HEALTY DATA')

subplot(2,3,3);

")
")

hold on;plot(pp3(tg n3N,cf),'k.-'); hold on;plot(pp3R(tg n3R,cf),'r.-")

subplot (2,3,4);plot (pp4 (tg_n4dN,cf), 'k.-") ;hold
on;plot (pp4R(tg ndR,cf),'r.-");
ylabel ([int2str(cf) '. Coefficients Value']);

subplot(2,3,5);

hold on;plot (pp5(tg n7N,cf), 'k.-');hold on;plot (ppS5R(tg_n7R,cf}, 'r.-")

xlabel ('BLACK:HEALTHY DIASTOLE RED:HEALTHY SYSTOLE'):

subplot(2,3,6);

plot (ppl(tg_niN,cf), 'k.-");hold on;plot(pp2(tg_n2N,cf), 'k.-");

hold on;plot (pp3(tg n3N,cf),'k.~");hold on;plot(pp4 (tg_n4N,cf),'k.~");

hold on;plot(pp5(tg n7N,cf),'k.~-");

hold on;plot (pplR(tg nlR,cf),'r.~");hold on;plot{(pp2R(tg n2R,cf),'r.-
hold on;plot(pp3R(tg n3R,cf),'r.-');hold on;plot (ppdR(tg_n4R,cf), 'r.~

hold on;plot(pp5R(tg n7R,cf),'r.-");

%%

%% DCM at systole & diastole
%%

figure;hold on;plot (pp6(tg_bivlN,c
hold on;plot (pp8(tg_shilN,cf),
hold on;plot (pp9(tg taylN,cf),
hold on;plot (pp6R{tg_bivR,cf), 'r>-
hold on;plot (pp7R(tg_padR,cf),

-~ = = = bh

hold on;plot (pp8R(tg shiR,cf), 'r>-");hold on;plet (ppIR(tg_tayR,cf), 'r>-")

ylabel ([int2str(cf) '. Coefficients Value']);
xlabel ("BLACK:DCM DIASTOLE  RED:DCM SYSTOLE');

.
14
r

14
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title ('CHANGES WITHIN DCM DATA')

figure;subplot(2,3,1);

plot (pp6 (tg bivliN,cf), 'k.-") ;hold on;plot(pp6R(tg bivR,cf),'r.-");
subplot(2,3,2);

plot (pp7 (tg _padlN,cf),'k.-');hold on;plot(pp7R(tg padR,cf),'r.-");

title ('CHANGES WITHIN DCM COEFFICIENTS')

subplot(2,3,3):

plot (pp8(tg shiliN,cf),'k.-");hold on;plot (pp8R(tg _shiR,cf),'r.-');
subplot(2,3,4);

plot(pp2(tg_taylN,cf),'k.-");hold on;plot (pp9R(tg tayR,cf),’'r.-');
subplot(2,3,5);

plot (pp6 (tg bivlN,cf), 'k.-");plot(pp7 (tg _padlN,cf), 'k.-");

hold on;plot (pp8(tg_shilN,cf), 'k.-');hold on;plot (pp9(tg taylN,cf), 'k.-")
hold on:plot (pp6R(tg bivR,cf),'r.~");hold on;plot (pp7R(tg padR,cf), 'r.-")
hold on;plot (pp8R(tg shiR,cf),'r.-');hold on;plot (pp9R(tg tayR,cf),'r.-')
xlabel ("BLACK:DCM DIASTOLE RED:DCM SYSTOLE');

%%

%% INFARCT at systole & diastole

%%

figure;plot (ppl0(tg_ab3N,cf), 'kx-");hold on;plot (ppll(tg ab6N,cf), "'kx-")
hold on;plot({ppl2(tg abllN,cf), 'kx-");

hold on;plot (ppl3(tg_ablaN,cf), "kx-");
hold on;plot (ppld (tg abldN,cf), "'kx-");
hold on;plot(pplOR(tg_ab3R,cf), 'rx-");
hold on;plot (ppllR(tg_abéR,cf), 'rx-')
hold on;plot(ppl2R(tg_abllR,cf),'rx-");
hold on;plot(ppl3R(tg _abl2R,cf), 'rx-");
hold on;plot (ppl4R(tg_abl4R,cf), 'rx-"');

ylabel ([int2str(cf) '. Coefficients Value']);
xXlabel ( 'BLACK: INFARCT DIASTOLE RED: INFARCT SYSTOLE') ;
title ('CHANGES WITHIN INFARCT (A)s')

subplot (2,3,1);

plot (pplQ(tg ab3N,cf), 'kx-");hold on;plot(pplOR(tg_ab3R,cf), 'rx~"');
subplot(2,3,2);

plot (ppll(tg_ab3N,cf), 'kx~') ;hold on;plot(ppllR(tg _ab3R,cf), 'rx-");
title ("CHANGES WITHIN INFARCT DATA')

subplot(2,3,3);

plot (ppl2 (tg_ab3N,cf), 'kx-');hold on;plot (ppl2R(tg ab3R,cf), 'rx-"');
subplot(2,3,4);

plot (ppl3(tg_ab3N,cf), 'kx-"):;hold on;plot (ppl3R(tg_ab3R,cf),'rx-");
subplot(2,3,5):

plot(ppl4 (tg ab3N,cf), 'kx-"');hold on;plot(ppl4R(tg_ab3R,cf), 'rx-");
xlabel ('BLACK: INFARCT DIASTOLE RED: INFARCT SYSTOLE');
subplot(2,3,6);

plot (ppl0(tg _ab3N,cf),'k.-");hold on;plot (ppll(tg_abé6N,cf),’'k.-")
hold on;plot(ppl2{tg abliN,cf),'k.-");

hold on;plot (ppl3(tg_abl2N,cf),'k.-"');

hold on;plot(ppl4 (tg abléN,cf), 'k.~");

hold on;plot (pplOR(tg ab3R,cf),'r.-");

hold on;plot (ppllR(tg abéR,cf),'r.-");

hold on;plot(ppl2R(tg_ablliR,cf),'r.-");

hold on;plot (ppl3R(tg abl2R,cf),'r.-");

hold on;plot(ppl4R(tg abl4R,cf),'r.-");

pause

close all

end;



Matlab Code for Calculating Standard Deviation & Mean Values: st dv.m

loading
for cf=1:4
sigmaNl (:,cf)=std(ppl (tg_niN,cf),1);
sigmaN2 (:,cf)=std(pp2 (tg_n2N,cf),1);
sigmaN3(:,cf)=std(pp3(tg_n3N,cf),1);
sigmaN4 (:,cf)=std (pp4 (tg_n4N,cf), 1) ;%test
sigmaN>5 (:,cf)=std (pp5(tg n7N,cf}, 1) ;%test
sigmademl (:,cf)=std(pp6(tg bivIiN,cf),1);
sigmadem2 (:,cf)=std(pp7(tg_padiN,cf),1);
sigmadcm3 (:,cf)=std(pp8(tg shilN,cf),1);%test
sigmadcmd (:,cf)=std (pp9(tg_taylN,cf)},1);%test
sigmall(:,cf)=std(ppl0(tg_ab3N,cf),1);
sigmal2(:,cf)=std(ppll(tg_abbN,cf),1);
sigmal3(:,cf)=std(ppl2(tg_abliN,cf),1l);%test
sigmald(:,cf)=std(ppl3(tg abl2N,cf),1);%test
sigmalb5 (:,cf)=std{ppld(tg_abl4N,cf),1);%test
end;

sgmNN=[sigmaNl; sigmaN2;sigmaN3];
sgmN=orta (sgmNN) % Normal Training Data st dev. Of (A,B,C,D)!!!

sgmDD=[sigmadcml; sigmadcm2] ;
sgmDCM=orta (sgmDD)

sgmII={sigmall;sigmal2];
sgmINF=orta (sgmII)}

sgmDis=[sgmDCM; sgmINF] ;
sgmD=orta (sgmDis) %sigma diseased!!!

clear sgmNN sgmDD sgmII sgmN sgmDCM sgmINF

for cf=1:4
meanN (:,cf)=mean ([ppl(tg_nlN,cf),pp2(tg n2N,cf),pp3(tg n3N,cf)],2);
meanDCM (:,cf)=mean([pp6(tg bivIN,cf),pp7(tg padlN,cf)],2);
meanINF(:,cf)=mean([ppl0(tg ab3N,cf),ppll(tg abéN,cf)]1,2);
meanD (:,cf)=mean ([meanDCM (:,cf) ,meanINF(:,cf)],2);

end;

for cf=1:4
cik=pdf dg(pp8(tg shilN,cf),meanN(:,cf))
end;

for cf=1:4

meanN1 (:,cf)=mean (ppl (tg_nlN,cf),1);
meanN2 (:,cf)=mean (pp2 (tg_n2N,cf),1);
meanN3 (:,cf)=mean (pp3 (tg_n3N,cf),1);
meandcenml (:,cf) =mean (pp6(tg_bivlN,cf),1);
meandcm?2 (:, cf) =mean (pp7 (tg_padlN,cf),1);
meanlIl(:,cf)=mean (ppl0(tg_ab3N,cf),1);
meanlI2(:,cf)=mean (ppll(tg_abéN,cf),1);

end;

61
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Matlab Code to Compare & Identify if the Coefficients Diseased or Not: final.m

loading :

% STD FOR TRAIN SET FOR EVERY SELECTED TAGLINE ( "8"™ PER EACH TIMEFRAME)

for cf=1:4
st_devN(cf,:)=std([ppl(tg_nlN,cf),pp2(tg_n2N,cf),pp3(tg_n3N,cf)]')
st_devDCM(cf, :)=std ([pp6 (tg_bivlN,cf),pp7(tg_padlN,cf)]');
st_devINF (cf, :)=std([ppl0(tg_ab3N,cf),ppll(tg_ab6N,cf)]")

st_devN R{cf,:) =std([pplR(tg_nlR,cf),pp2R(tg_n2R,cf),pp3R(tg_n3R,cf)]"');
st _devDCM_R({(cf,:)= =std( [pp6R(tg bivR,cf),pp7R(tg_padR,cf)]’);
st devINF R(cf, )=std ([pplOR(tg_ab3R,cf),ppllR(tg_ab6R,cf)]’');

end;

st_devN=st_devN';st_devDCM=st_devDCM';st_devINF=st_devINF';
st_devN_r=st _devN R';st devDCM_R=st_devDCM R';st_devINF_R=st_devINF R';

for cf=1:4
st_devD(:,cf)=mean([st_ devDCM (:,cf),st_devINF(:,cf)1,2);
st_devD R(:,cf)=mean([st_devDCM R(:,cf),st_devINF_R(:,cf)],2);
end;

% STD FOR TRAIN_SET FOR EACH COEFFICIENT (aA,B,C,D)
for cf=1:4
sigmaN1 (:,cf)=std(ppl (tg niN,cf),1);
sigmaN2 (:,cf)=std(pp2(tg_n2N,cf),1);
sigmaN3 (:,cf)=std(pp3(tg_n3N,cf),1);
sigmaN4 (:,cf)=std(pp4 (tg_n4N,cf),1);%test
sigmaN5(:,cf)=std(pp5(tg_n7N,cf),1);3test
sigmademl (:,cf)=std(pp6 (tg _biviN,cf),1);
sigmadcm?2 (:,cf)=std(pp7(tg padlN,cf},1);
sigmadcm3 (:,cf)=std(pp8(tg_shilN,cf),1);%test
sigmadcm4 (:,cf)=std (pp9(tg_taylN,cf),1l);3test
sigmall(:,cf)=std(pplO(tg_ab3N,cf),1);
sigmal2(:,cf)=std(ppll(tg ab6N,cf),1);
sigmal3(:,cf)=std(ppl2(tg_abllN,cf),1):%test
sigmaI4(:,cf)=std(ppl3(tg_abl2N,cf),1l);%test
sigmal5(:,cf)=std(ppld(tg_abl4N,cf),1);%test

sigmaN1R(:,cf)=std (ppiR(tg_nlR,cf),1);
sigmaN2R(:,cf)=std (pp2R(tg n2R,cf),1);
sigmaN3R(:,cf)=std(pp3R(tg_n3R,cf),1);
sigmaN4R (:,cf)=std(pp4R(tg_n4R,cf),1);%test
sigmaN5R(:,cf)=std (pp5R(tg_n7R,cf),1);%test
sigmadcmlR(:,cf)=std(pp6R(tg bivR,cf),1);
sigmadcm2R(:,cf)=std (pp7R(tg_padR,cf),1};
sigmadem3R (:,cf)=std (pp8R(tg_shiR,cf),1);%test
sigmadcm4R (:,cf)=std (pp9R(tg_tayR,cf},1);%test
sigmaIlR(:,cf)=std(pplOR{tg ab3R,cf),1);
sigmaI2R(:,cf)=std(ppllR(tg_abéR,cf),1);
sigmaI3R(:,cf)=std(ppl2R(tg _abllR,cf),1l);%test
sigmaIl4R(:,cf)=std(ppl3R(tg abl2R,cf),1);%test
sigmaI5SR(:,cf)=std (ppl4R(tg_abl4R,cf),1l);%test
end;



sgmNN=[sigmaN1; sigmaN2;sigmaN3];
sgmN=orta (sgmNN) $ Normal Train. Patients' sigmaA,B,C,D values

sgmDD=[sigmadcml; sigmadcm?2] ;
sgmDCM=orta (sgmDD)

sgmII=[sigmall;sigmal2];
sgnINF=crta (sgmII)

sgmDis=[sgmDCM; sgmINF];
sgmD=orta (sgmDis) %sigma diseased.

sgmNNR=[sigmaN1lR; sigmaN2R; sigmaN3R] ;
sgmN_R=orta (sgmNNR)
sgmDDR=[sigmadcmlR; sigmadcm2R] ;
sgmDCM_R=orta (sgmDDR)
sgmIIR=[sigmallR;sigmal2R];

sgmINF R=orta(sgmIIR)
sgmDisR=[sgmDCM R;sgmINF R];
sgmD_R=orta (sgmDisR)

clear sgmNN sgmNNR sgmDD sgmDDR sgmII sgmIIR sgmN sgmDCM sgmINF sgmDisR
sgmbis

for cf=1:4
meanN (:,cf)=mean ([ppl (tg_nlN,cf),pp2 (tg n2N,cf),pp3 (tg n3N,cf)],2);
meanDCM (: ,cf)=mean ( [pp6(tg_biviN,cf),pp7(tg padlN,cf)1,2);
meanINF(:,cf)=mean([pplO(tg_ab3N,cf),ppll(tg_abGN,cf)],2);
meanD (:,cf)=mean ([meanDCM(:,cf),meanINF(:,cf)],2);

meanN R(:,cf)=mean ({pplR(tg nlR,cf),pp2R(tg n2R,cf),pp3R(tg n3R,cf)],2);
meanDCM_R(:,cf)=mean ([pp6R(tg _bivR,cf),pp7R(tg _padR,cf)],2};
meanINF R(:,cf)=mean([pplOR(tg ab3R,cf),ppllR(tg ab6R,cf)],2);
meanD R{:,cf)=mean([meanDCM R(:,cf),meanINF R{:,cf)],2);

end;

for cf=1l:4
testlN=pdf dg(pp4(tg ndN,cf),meanN(:,cf));
testlD=pdf dg(pp4(tg_n4N,cf),meanD(:,cf));

test2N=pdf dg(pp5(tg_n7N,cf),meanN(:,cf));
test2D=pdf dg(pp5(tg n7N,cf),meanD(:,cf));

test3N=pdf dg(pp8(tg_shilN,cf),meanN(:,cf)}));
test3D=pdf_ dg(pp8(tg_shilN,cf),meanD(:,cf));

test4N=pdf dg(pp9%(tg taylN,cf),meanN(:,cf));
test4D=pdf dg(pp9%(tg_taylN,cf),meanD(:,cf));

test5N=pdf dg(ppl2(tg_abllN,cf),meanN(:,cf));
test5D=pdf dg{ppl2(tg_abllN,cf),meanD(:,cf));

test6N=pdf dg(ppl3(tg_abl2N,cf),meanN(:,cf));
test6D=pdf dg(ppl3(tg_abl2N,cf),meanD(:,cf));

test7N=pdf dg(ppléd (tg_abldN,cf),meanN(:,cf));
test7D=pdf dg(ppld(tg_abldN,cf),meanD(:,cf));
%
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testl1DCM=pdf dg(pp4(tg néN,cf),meanDCM(:,cf));
test2DCM=pdf_ dg(pp5(tg_n7N,cf) ,meanDCM(:,cf));
test3DCM=pdf dg (pp8(tg_shilN,cf),meanDCM(:,ct))
test4DCM=pdf dg (pp9(tg_taylN,cf),meanDCM(:,cf))
testbDCM=pdf dg(ppl2(tg_abllN,cf),meanDCM(:,cf)
test6DCM=pdf dg (ppl3(tg_abl2N,cf),meanDCM(:,cf)
test7DCM=pdf dg(pplé (tg_abl4N,cf),meanDCM(:,cf)
%
testlDCMR=pdf_dg(pp4R(tg_n4R,cf),meanDCM_R(:,cf));
test2DCMR=pdf dg(ppbR(tg n7R,cf),meanDCM R(:,cf));
test3DCMR=pdf dg (pp8R(tg_shiR,cf),meanDCM R(:,cf));
test4DCMR=pdf dg(pp9R(tg_tayR,cf),meanDCM R(:,cf));
test5DCMR=pdf dg(ppl2R{tg_abllR,cf),meanDCM R(:,cf))};
test6DCMR=pdf dg (ppl3R(tg_abl2R,cf),meanDCM R(:,cf));
test7DCMR=pdf dg(ppl4R(tg_abl4R,cf),meanDCM R(:,cf));
Q
test1NR=pdf dg(pp4R(tg ndR,cf),meanN_R(:,cf));
testlDR=pdf dg(pp4R(tg_n4R,cf),meanD R(:,cf));
test2NR=pdf dg(pp5R(tg_n7R,cf),meanN R(:,cf));
test2DR=pdf dg(pp5R(tg_n7R,cf),meanD R(:,cf));
test3NR=pdf dg (pp8R(tg_shiR,cf),meanN_R(:,cf)
)
)
)

)7
)
)

) e )
test3DR=pdf_dg(pp8R(tg_shiR,cf),meanD R{:,cf})
test4NR=pdf dg(pp9R(tg_tayR,cf),meanN_R(:,cf));
test4DR=pdf dg(pp9R(tg_tayR,cf),meanD R({:,cf))
test5NR=pdf dg(ppl2R(tg_abllR,cf),meanN R(:,cf
test5DR=pdf dg(ppl2R(tg_abllR,cf),meanD R(:,cf
test6NR=pdf dg(ppl3R({tg_abl2R,cf),meanN R(:,cf
test6DR=pdf dg({ppl3R(tg _abl2R,cf),meanD R(:,cf
test7NR=pdf dg(ppl4R(tg_abl4R,cf),meanN R{:,cf)
test7DR=pdf dg(ppl4R(tg_abl4R,cf),meanD R{:,cf)
%
testlINF=pdf_dg(pp4(tg_n4N,cf),meanINF(:,cf));
test2INF=pdf dg(pp5(tg _n7N,cf),meanINF(:,cf));
test3INF=pdf dg(pp8(tg_shilN,cf),meanINF(:,cf));
test4INF=pdf dg(pp9(tg_taylN,cf),meanINF(:,cf));
test5INF=pdf dg(ppl2(tg_abllN,cf),meanINF(:,cf));

)i
)

)
)
)
)

test6INF=pdf dg(ppl3(tg_abl2N,cf),meanINF(:,cf)
test7INF=pdf dg(ppl4(tg_abldN,cf),meanINF(:,cf)
%

testlINFR=pdf dg(pp4R{tg_ndR,cf),meanINF R(:,cf)});
test2INFR=pdf dg(pp5R(tg_n7R,cf),meanINF_R(:,cf));
test3INFR=pdf dg(pp8R(tg_shiR,cf),meanINF R(:,cf));
test4INFR=pdf dg(pp9R(tg_tayR,cf),meanINF R(:,cf));
test5INFR=pdf dg(ppl2R(tg_abllR,cf),meanINF R(:,cf));
test6INFR=pdf dg(ppl3R(tg_abl2R,cf),meanINF_R(:,cf));
test7INFR=pdf dg(ppl4R(tg_abl4R,cf),meanINF_R(:,cf));
end;

for £f=1:7
if ff==3 | ff==4,
eval (['if abs(test' int2str(ff) 'N)<abs(test' int2str(£ff)
'DCM) , Test' int2str(ff) ' NORMAL=test' int2str(ff) 'N, elseif abs(test'
int2str (£ff) 'N)>abs(test' int2str(ff) 'DCM),Test' int2str(ff) '_DCM=test'
int2str(ff) 'DCM,end'])
eval (["if abs(test' int2str(ff) 'NR)<abs(test' int2str(£ff)
"DCMR) , Test' int2str({ff) 'R_NORMAL=test' int2str(ff} 'NR, elseif
abs(test' int2str(ff) 'NR)>abs(test' int2str(ff) 'DCMR),TestR'
int2str(ff) ' DCM=test' int2str(ff) 'DCMR,end'])
elseif ff==5 | ff==6 | ff==7,
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eval (['if abs(test' int2str(ff) 'N)<abs(test' int2str(ff) 'INF), Test'
int2str (£f) ' NORMAL=test' int2str(ff) 'N, elseif abs(test' int2str(ff)
'N)>abs(test' int2str(ff) 'INF),Test' int2str(ff) ' INFARCTED=test’
int2str (£f) 'INF,end']) -

eval (['if abs(test' int2str(ff) 'NR)<abs(test' int2str(ff)
'INFR),Test' int2str(ff) 'R_NORMAL=test' int2str(ff) 'NR, elseif
abs (test' int2str(ff) 'NR)>abs(test' int2str{ff) 'INFR),TestR'
int2str{£f) ' INFARCTED=test' int2str(ff) 'INFR,end'])
else

eval (['if abs(test' int2str(ff) 'N)<abs(test' int2str(ff) 'D), Test'
int2str(ff) ' NORMAL=test' int2str(ff) 'N, elseif abs(test' int2str(ff)
'N)>abs (test' int2str(ff) 'D),Test' int2str(ff) ' DISEASED=test'
int2str(£ff) 'D,end'])

eval (['1f abs(test' int2str(ff) 'NR)<abs{(test' int2str(ff) 'DR),Test'
int2str(ff) 'R NORMAL=test' int2str(ff) 'NR, elseif abs(test' int2str(ff)
'NR)>abs (test' int2str(ff) 'DR),TestR' int2str(ff) ' DISEASED=test’'
int2str(£f) 'DR,end'])
end
end

Matlab Code to Calculate the Probability Density Function: pdf dg.m

function [y]=pdf dg(test data,m _data);

covar=cov_dilek([m data,test data]);%8xl
constl=(2*pi)*2;

const2=det (covar) ;

const3=constl*const2;
consté4=sqrt (abs (const3));
const5=1/const4;

consté=test_data-m_data;

const7=(inv (covar));

const8=exp ((~0.5)* (const6')* (const7) * (const6));
y=constS5*const8;

(ZUIN ROASYINVINDYOG
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