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ABSTRACT

WAVELET TRANSFORM BASED ELECTROCARDIOGRAM
COMPRESSION AND COMPARISON WITH DCT/DST METHODS

In this thesis we investigate wavelet transform based ECG compression
techniques and compare them with conventional approaches. A major issue addressed is
how to guarantee a user-specified error limit measured by the percent root mean square
difference (PRD ) for the reconstructed ECG signal to be controlled at every segment
while keeping the compression ratio (CR) as large as possible with reasonable

implementation complexity.

Two wavelet transform based compression methods, one based on discrete
orthonormal wavelet transform (DOWT ) and the other based on wavelet packet
transforms are studied in detail. Decomposition, uniform quantization, and entropy
coding are applied successively to compress the digital ECG signal while entropy
decoding, and inverse transformation are applied to reconstruct the original signal.
Different types of wavelet families are used to analyze the effect on CR and PRD.
More conventional discrete sine / cosine transform based methods are also studied for

comparison purposes.

Two numerical metrics PRD and CR are used as the major performance
evaluation parameters to quantitatively compare one method to another. The CR is a
measure of compression efficiency; the PRD gives information about the performance
of the compression scheme and the distortion measured. Using the techniques
developed, two different types of ECG signals (normal and an arrhythmic) are
compressed analyzed and the results are reported. In each technique, while the PRD
increases, the CR also increases. In general, the highest CR values are obtained with
the wavelet transform; the lowest PRD values are obtained with the wavelet packet

transform.

Keywords: Biomedical Signal Compression, Electrocardiogram, Wavelet Transform,

Discrete Sine Transform, Discrete Cosine Transform, Arrhythmia.



OZET

ELECTROKARDIOGRAM iSARETLERININ DALGACIK
DONUSUMU YONTEMI ILE SIKISTIRILMASI VE DCT/DST
METODLARIYLA KARSILASTIRILMASI

Bu tez c¢aligmasinda, elektrokardiogram isaretinin dalgacik doniisiimii temelli
sikistirilmast incelenmis ve bu yontem geleneksel sikistirma yaklasimlar ile
kargilastirilmigtir. Tez ¢aligmasinda ele alinan en 6nemli konu, yeniden elde edilen her
bir EKG pargasinda, denetlenen yanilgilarin karelerinin toplamlarinin karekokii (PRD)
ile, kullanici tarafindan tanimlanan yanilg:1 diizeyini giivence altina almak ve sikistirma
oranin1 (CR) benimsenilen uygulama karmasikligi ile birlikte, olabildigince yiiksek
diizeyde tutmaktir.

Birisi ayrik birimdik dalgacik doniisiimii ve digeri ise dalgacik paket doniigiimii
temelli iki sikistirma yontemi {izerinde detayli olarak c¢aligilmistir. Sayisal
elektrokardiogram isaretini sikigtirmak i¢in sirasiyla ayristirma, diizgiin kuantalama ve
entropi kodlama uygulanmaktayken, 6zgiin isareti yeniden elde etmek icin de, entropi
kodg6zme ve ters doniisiim uygulanmaktadir. CR ve PRD parametreleri tizerindeki
etkileri ¢oztimleyebilmek i¢in farkl tipte dalgacik aileleri kullanilmistir. Ayni zamanda,
daha geleneksel ayrik siniis / kosinlis doniisiim temelli yontemler {izerinde de
karsilastirma amagli olarak ¢aligilmistir.

PRD ve CR metrikleri, bir yontemi digeri ile sayisal olarak karsilastirmak
amaciyla en Onemli basarim degerlendirme Olgiitleri olarak kullanilirlar. CR bir
sikistirma verimliliginin Olgiitiidiir; PRD ise sikistirma basarimi ve Olgililen isaret
bozunumu ile ilgili bilgi verir. Iki farkli elektrokardiogram isareti (olagan ve aritmik)
gelistirilen yontemler kullamilarak, sikistirilmig, c¢oziimlenmis ve  sonuglar
raporlanmistir. Her bir yontemde PRD artarken CR de artmaktadir. Genel olarak, en
yiiksek CR degerleri dalgacik doniisiimii ile elde edilirken, en diisiik PRD degerleri ise

dalgacik paket dontigiimii ile elde edilmektedir.

Anahtar Kelimeler: Biomedikal Isaret Sikistirma, Elektrokardiogram, Dalgacik

Déniiglimii, Ayrik Siniis Dontistimii, Ayrik Kosiniis Doniistimii, Aritmi.
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1. INTRODUCTION

1.1 Background and Motivation

The aim of electrocardiogram (ECG) data compression is to compress the amount
of digitized ECG data as much as possible with reasonable implementation complexity
while maintaining clinically acceptable signal quality. In order to achieve this goal an
electrocardiogram (ECG) data compression method is presented which is based on
orthonormal wavelet transform and a uniform quantization strategy with high

compression ratio and low implementation complexity [1].

In recent years, many schemes for ECG compression have been proposed, which

can be grouped into two categories: Direct methods and transform methods.

In direct methods, the compression is done directly on the ECG samples.
Examples include the AZTEC (amplitude zone time epoch coding), TP (turning point),
CORTES (coordinate reduction time encoding system), and SAPA (scan-along
polygonal approximation), peak-picking, cycle to cycle are the examples of the direct

methods [1].

In the transform methods, the original samples are transformed to another domain
in the hope of achieving better compression performance. Some examples include
Fourier descriptors, Walsh Transform, Karhunen-Loeve Transform, Discrete Cosine

Transform, and recently developed Wavelet Transform [2], [3].

In most cases, direct methods are superior to transform methods with respect to
system complexity and error control mechanism. However, transform methods usually
achieve higher compression ratios and are insensitive to the noise contained in original

ECG signals.

For ECG coding systems, the error control problem for a reproduced ECG signal
is an important issue because ECG signals are usually non-stationary and if the quality
of a reconstructed ECG signal is not guaranteed, the compression process itself will

become less useful.



In the case of direct methods, the error limit for a reproduced ECG signal is easily
controlled by adjusting a user-specified error threshold. In the case of transform
methods, however, the error control is difficult because the distortion of each
reconstructed segment of the ECG signal varies with the complex pattern of the

segment.

The major issue addressed in this thesis is how to guarantee a user-specified error
limit measured by the percent root mean square difference ( PRD ) for the reconstructed
ECG signal to be controlled at every segment while keeping the compression ratio as

large as possible with reasonable implementation complexity.

In this thesis, first a discrete orthonormal wavelet transform (DOWT ) based ECG
coding system by which a user-specified PRD of the reproduced ECG segments are
guaranteed with the acceptable signal quality is studied. Discrete Sine / Cosine
Transforms are the second method studied in this thesis. The last method that is
implemented is the wavelet packet transform method. In this method, different types of

wavelet families are used to analyze the effect on CR and PRD [4].

In the first part, decomposition, uniform quantization, and entropy coding are
applied successively to compress the digital ECG signal. In the second part, namely, in
the decoder part, entropy decoding, and inverse transformation are applied to

reconstruct the original signal.

The performance evaluation parameters, namely PRD and CR are used to
compare one method to another. Two different ECG signals are analyzed, and the
results are reported. In all of the four methods, compression of digital ECG signal is

realized with the same programming language, MATLAB.

In the early years, direct methods have been used to compress the ECG signals.
Due to the higher compression ratios, transform methods are becoming more popular

and new transform methods are being investigated for high CR and low PRD .



1.2 Objectives

The objective of this thesis is to investigate wavelet transform based
electrocardiogram (ECG) data compression methods that compress digitized ECG data
as much as possible with reasonable implementation complexity while maintaining
clinically acceptable signal quality and to compare them with conventional approaches.
Different wavelet transform based compression methods, based on both discrete
orthonormal wavelet transform (DOWT ) and on wavelet packet transforms will be
studied in detail. The issue of how to guarantee a user-specified error limit measured by
the percent root mean square difference (PRD ) for the reconstructed ECG signal to be
controlled at every segment while keeping the compression ratio (CR) as large as

possible with reasonable implementation complexity will be studied in detail.

1.3 Outline of the Thesis

This chapter introduces the thesis. In Chapter 2, the anatomy and the physiology
of the heart, heart’s electrical activity and ECG signal components are discussed. The
wavelet and the wavelet packet methods are presented in Chapter 3. Basic wavelet
functions, continuous and discrete wavelet transforms, one and multi level

decomposition and reconstruction issues are presented in the same chapter.

Chapter 4 is related with the other transform methods, namely, Discrete Sine and

Cosine Transforms [5].

The digital signal compression issue is handled in the chapter of 5. Compression
performance, error criterion, quantization, and LZW coding concepts are defined in the

same section.

The 6th chapter is the application and implementation chapter. All the results
related with compression methods (WT , WPT, DST, DCT) are determined and
displayed.

The last section is the result and the conclusion section. The implementation

results are submitted in the tables, for every signal, for each wavelet family, and for



different decomposition level. A detailed report is available in the last chapter of this

thesis. Suggestion for the future work is also added at the end.



2. THE HEART AND THE ECG SIGNAL

2.1 The Heart

2.1.1 Anatomy and physiology of the heart

The heart whose sole purpose is to circulate blood through the circulatory system
consists of four hollow chambers. The anatomy of the heart is displayed in Figure 2.1.
The upper two chambers, the right and left atria, are thin-walled; the lower two, the
right and left ventricles are thick-walled and muscular. The walls of the ventricles are
composed of three layers of tissue: the innermost thin layer is called the endocardium;
the middle thick, muscular layer, the myocardium; and the outermost thin layer, the
epicardium. The walls of the left ventricle are more muscular and about three times

thicker than those of the right ventricle [6].
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Figure 2.1 Anatomy of the heart.




The atrial walls are also composed of three layers of tissue like those of the
ventricles, but the middle muscular layer is much thinner. The two atria form the base of

the heart; the ventricles form the apex of the heart.

The interatrial septum (a thin membranous wall) separates the two atria, and a
thicker, more muscular wall, the interventricular septum, separates the two ventricles.
The two septa, in effect, divide the heart into two pumping systems, the right heart and

the left heart, each one consisting of an atrium and a ventricle.

The right heart pumps blood into the pulmonary circulation (the blood vessels
within the lungs and those carrying blood to and from the lungs). The left heart pumps
blood into the systemic circulation (the blood vessels in the rest of the body and those

carrying blood to and from the body).

The right atrium receives unoxygenated blood from the body via two of the
body’s largest veins (the superior vena cava and inferior vena cava) and from the heart
itself by way of the coronary sinus. The blood is delivered to the right ventricle through
the tricuspid valve. The right ventricle then pumps the unoxygenated blood through the
pulmonic valve and into the lungs via the pulmonary artery. In the lungs, the blood

picks up oxygen and releases excess carbon dioxide.

The left atrium receives the newly oxygenated blood from the lungs via the
pulmonary veins and delivers it to the left ventricle through the mitral valve. The left
ventricle then pumps the oxygenated blood out through the aortic valve and into the
aorta, the largest artery in the body. From the aorta, the blood is distributed throughout
the body where the blood releases oxygen to the cells and collects carbon dioxide from

them.

The heart performs its pumping action over and over in a rhythmic sequence.
First, the atria relax (atrial diastole), allowing the blood to pour in from the body and
lungs. As the atria fill with blood, the atrial pressure rises above that in the ventricles,
forcing the tricuspid and mitral valves to open and allowing the blood to empty rapidly
into the relaxed ventricles. Then the atria contract (atrial systole), filling the ventricles

to capacity.



Following the contraction of the atria, the pressures in the atria and ventricles
equalize, and the tricuspid and mitral valves begin to close. Then, the ventricles contract
vigorously, causing the ventricular pressure to rise sharply. The tricuspid and mitral
valves close completely, and the aortic and pulmonic valves snap open, allowing the

blood to be ejected forcefully into the pulmonary and systemic circulations.

Meanwhile, the atria are again relaxing and filling with blood. As soon as the
ventricles empty of blood and begin to relax, the ventricular pressure falls, the aortic
and pulmonic valves shut tightly, the tricuspid and mitral valves open, and the rhythmic

cardiac sequence begins anew.

The period from the opening of the aortic and pulmonic valves to their closing,
during which the ventricles contract and empty of blood, is called ventricular systole.
The following period from the closure of the aortic and pulmonic valves to their
reopening, during which the ventricles relax and fill with blood, is called ventricular
diastole. The sequence of one ventricular systole followed by a ventricular diastole is
called the cardiac cycle, commonly defined as the period from the beginning of one

heart beat to the beginning of the next.
2.1.2 Electrical conduction system of the heart

The electrical conduction system of the heart which is displayed on Figure 2.2, is
composed of the following structures: Sinoatrial (SA) node, Internodal atrial conduction
tracts and the interatrial conduction tract (Bachmann’s bundle), Atrioventricular (AV)
junction consisting of the atrioventricular (AV) node and bundle of His, Right bundle

branch, left bundle branch, and left anterior and posterior fascicles, Purkinje network.

The prime function of the electrical conduction system of the heart is to transmit
minute electrical impulses from the SA node (where they are normally generated) to the

atria and ventricles, causing them to contract.
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Figure 2.2 Electrical conduction system.

The SA node lies in the wall of the right atrium near the inlet of the superior vena
cava. It consists of pacemaker cells that generate electrical impulses automatically and

regularly.

The three internodal atrial conduction tracts, running through the walls of the right
atrium between the SA node and the AV node, conduct the electrical impulses rapidly
from the SA node to the AV node in about 0.03 second. The interatrial conduction tract
(Bachmann’s bundle), a branch of one of the internodal atrial conduction tracts, extends

across the atria, conducting the electrical impulses from the SA node to the left atrium.

The AV node lies partly in the right side of the interatrial septum in front of the
opening of the coronary sinus and partly in the upper part of the interventricular septum
above the base of the tricuspid valve. The primary function of the AV node is to relay
the electrical impulses from the atria into the ventricles in an orderly and timely way. A
ring of fibrous tissue insulates the reminder of the atria from the ventricles, preventing

electrical impulses from entering the ventricles except through the AV node.

The electrical impulses slow as they travel through the AV node, taking about
0.06 to 0.12 second to reach the bundle of His. The delay is such that the atria can

contract and empty, and the ventricles fill before they are stimulated to contract.



The bundle of his lies in the upper part of the interventricular septum connects the
AV node with the two bundle branches. Once the electrical impulses enter the bundle of
His, they travel more rapidly on their way to the bundle branches, taking 0.03 to 0.05

second.

The right bundle branch and the left common bundle branch arise from the bundle
of His, straddle the interventricular septum, and continue down both sides of the
septum. The left common bundle branch further divides into two major divisions: the
left anterior fascicle and the left posterior fascicle. The bundle branches and their
fascicles subdivide into smaller and smaller branches, the smallest ones connecting with
the Purkinje network, an intricate web of tiny Purkinje fibers spread widely throughout
the ventricles beneath the endocardium. The ends of the Purkinje fibers finally terminate
at the myocardial cells. The bundle of His, the right and left bundle branches, and the

Purkinje network are also known as the His-Purkinje system of the ventricles.

The electrical impulses travel very rapidly to the Purkinje network through the
bundle branches in less than 0.01 second. All in all, it normally takes the electrical
impulses less than 0.2 second to travel from the SA node to the Purkinje network in the

ventricles.
2.1.3 Electrophysiology of the heart

Cardiac cells are capable of generating and conducting electrical impulses that are
responsible for the contraction and relaxation of myocardial cells. These electrical
impulses are the result of brief but rapid flow of positively charged ions (primarily
sodium and potassium ions and, to a lesser extent, calcium ions) back and forth across
the cardiac cell membrane. The difference in the concentration of such ions across the
cell membrane at any given instant is called the electrical potential and is measured in

millivolts (mV) [6].

When a myocardial cell, for example, is in the resting state, a high concentration
of positively charged sodium ions (Na+) (cations) is present outside the cell. At the
same time, a high concentration of negatively charged ions (especially organic

phosphate ions, organic sulfate ions, and protein ions) (anions) mixed in with a smaller



10

concentration of positively charged potassium ions (K+) is present inside the cell,
making the interior of the cell electrically negative with reference to its positive
exterior. Under these conditions, a negative electrical potential exists across the cell
membrane. This is made possible by the cell membrane being impermeable to (1)
positively charged sodium ions during the resting state and (2) negatively charged
phosphate, sulfate, and protein ions at all times. When a cell membrane is impermeable

to an ion, it does not permit the free flow of that ion across it.

The resting cardiac cell can be depicted as having a layer of positive ions
surrounding the cell membrane and an equal number of negative ions lining the inside
of the cell membrane directly opposite each positive ion. When the ions are so aligned,

the resting cell is called polarized.

The electrical potential across the membrane of a resting cardiac cell is called the
resting membrane potential. The resting membrane potential in atrial and ventricular
myocardial cells and the specialized cells of the electrical conduction system (except
those of the SA and AV nodes) is normally 90 mV. It is somewhat less in the SA and
AV nodal cells, —70 mV.

Upon stimulation by an electrical impulse, the membrane of a polarized
myocardial cell, for example, becomes permeable to positively charged sodium ions,
allowing sodium to flow into the cell. This causes the interior of the cell to become less
negative. When the membrane potential drops to about —60 mV from its resting
potential of —90 mV, large pore in the membrane (the fast sodium channels)
momentarily opens. These channels facilitate the rapid, free flow of sodium across the
cell membrane, resulting in a sudden large influx of positively charged sodium ions into
the cell. This causes the exterior of the cell to become rapidly negative with respect to
the now positive interior. At the moment when the interior of the cell becomes
maximally positive and the exterior maximally negative, the cell is depolarized. The

process by which the cell’s resting, polarized state is reversed is called depolarization.

The fast sodium channels are typically found in the myocardial cells and the
specialized cells of the electrical conduction system other than those of the SA and AV

nodes. The cells of the SA and AV nodes have, instead of fast sodium channels slow
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calcium-sodium channels the open when the membrane potential drops to about —50
mV. They permit the entry of positively charged calcium and sodium ions into the cells
during depolarization at a slow and gradual rate. The result is a slower rate of
depolarization as compared to the depolarization of cardiac cells with fast sodium

channels.

As soon as a cardiac cell depolarizes, positively charged potassium ions flow out
of the cell, initiating a process by which the cell returns to its resting, polarized state.
This process, called repolarization, involves a complex exchange of sodium, calcium,

and potassium ions across the cell membrane.

Depolarization of one cardiac cell acts as an electrical impulse (or stimulus) to
adjacent cells and causes them to depolarize. The propagation of the electrical impulse
from cell to cell produces a wave of depolarization which can be measured as an electric
current flowing in the direction of depolarization. As the cells repolarize, another
electric current is produced, similar to, but opposite in direction to, the first one. The
direction of flow and magnitude of the electric currents generated by the depolarization
and repolarization of the myocardial cells of the atria and ventricles can be detected by
surface electrodes and recorded as the electrocardiogram (ECG). Depolarization of the
myocardial cells produces the P wave and QRS complex, and repolarization of the cells
results in the T wave in the electrocardiogram. At below, depolarization and

repolarization of a muscle fiber is depicted on Figure 2.3 [6].
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Figure 2.3 Depolarization and repolarization of a muscle fiber.

2.2 The Electrocardiogram

2.2.1 Electrical basis of the electrocardiogram

The electrocardiogram (ECQG) is a graphic record of the changes in magnitude and
direction of the electrical activity, or, more specifically, the electric current, that is
generated by the depolarization and repolarization of the atria and ventricles. The
electrical basis of the ECG is displayed on Figure 2.4. This electrical activity is readily
detected by electrodes attached to the skin. But neither the electrical activity that results
from the generation and transmission of electrical impulses which are too feeble to be
detected by skin electrodes nor the mechanical contractions and relaxations of the atria
and ventricles (which do not generate -electrical activity) appear in the

electrocardiogram.
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Figure 2.4 Electrical basis of the ECG.
2.2.2 Components of the electrocardiogram

After the electric current generated by depolarization and repolarization of the
atria and ventricles is detected by electrodes, it is amplified, displayed on an
oscilloscope, recorded on ECG paper, or stored in memory. The electric current
generated by atrial depolarization is recorded as the P wave, and that generated by
ventricular depolarization is recorded as the Q, R and S waves: the QRS complex. Atrial
repolarization is recorded as the atrial T wave (Ta), and ventricular repolarization, as the
ventricular T wave, or simply, the T wave. Because atrial repolarization normally
occurs during ventricular depolarization, the atrial T wave is buried or hidden in the

QRS complex. [6].

In a normal cardiac cycle, the P wave occurs first, followed by the QRS complex

and the T wave, shown in Figure 2.5.
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Figure 2.5 Components of the ECG.

The sections of the ECG between the waves and complexes are called segments
and intervals: the PR segment, the ST segment, the TP segment, the PR interval, the QT
interval, and the R-R interval. Intervals include waves and complexes, whereas

segments do not [6].

When electrical activity of the heart is not being detected, the ECG is a straight,

flat line the isoelectric line or baseline.
2.2.3 ECG leads

An ECG lead is a record (spatial sampling) of the electrical activity generated by
the heart that is sensed by either one of two ways: (1) two discrete electrodes of
opposite polarity or (2) one discrete positive electrode and an indifferent, zero reference
point. A lead composed of two discrete electrodes of opposite polarity is called a bipolar
lead; a lead composed of a single discrete positive electrode and a zero reference point

is a unipolar lead.

Depending on the ECG lead being recorded, the positive electrode may be
attached to the right or left arm, the left leg, or one of several locations on the anterior
chest wall. The negative electrode is usually attached to an opposite arm or leg or to a

reference point made by connecting the limb electrodes together.
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For a detailed analysis of the heart’s electrical activity, usually in the hospital
setting, an ECG recorded from 12 separate leads (the 12-lead ECG) is used. The 12-lead
ECG is also used in the pre hospital phase of emergency care in certain advanced life
support services to diagnose acute myocardial infraction and to help in the identification
of certain arrhythmias. A 12-lead ECG consists of three standard (bipolar) limb leads
(leads I, II, and III), three augmented (unipolar) leads (leads aVR, aVL, and aVF) and
six precordial (unipolar) leads (V1, V2, V3, V4, V5, and V6).

When monitoring the heart solely for arrhythmias, a single ECG lead, such as the
standard limb lead II, is commonly used, especially in the prehospital phase of
emergency care. The combinations of the leads are displayed on the Figures 2.6, 2.7,

and 2.8 succesively [6].
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Figure 2.6 The standard (bipolar) limb leads I, II, and III.
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2.3 MIT-BIH Database

The database used in this work is a collection of files from the MIT-BIH Database
CD-ROM. This database is accessible via the internet portal: http://ecg.mit.edu. Here,

the digital data is stored in three formats: Header (.hea) file, attribute (.atr) file, and the
data (.dat) file.

The ECG recordings in the MIT-BIH database are taken as a reference data by the
researchers who are studying on compression, storing, classification of digital ECG
signals. At this work, standard digital ECG signal (.dat file) is taken as a reference and

used in the implementation phase [7].
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3. WAVELETS AND WAVELET PACKETS

3.1 Introduction

This section presents some background information on wavelets and wavelet
transforms, including their implementation using filters. This theory is necessary for
understanding the material that follows in the literature review and certain other

sections of the thesis.

3.2 Fourier Transform

This part develops the need and motivation for studying the wavelet transform.
Historically Fourier Transform (FT) has been the most widely used tool for signal
processing. As signal processing began spreading Fourier Transform was found to be
unable to satisfy the growing need for processing a bulk of signals. Hence, this section
begins with a review of Fourier Methods. The shortcoming of Fourier methods is
determined. Next, wavelet transform is concerned and expounded how the drawbacks of

FT are eliminated [1].

For a continuous time signal x(t) the Fourier Transform equations are as follows.
X(f)= [x®e*"dt (3.1)
X(t) = j X ().l df (3.2)

Equation 3.1 is the analysis equation and Equation 3.2 is the synthesis equation.

The sinusoid with different frequencies is displayed on Figure 3.1.
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Figure 3.1 Constituent sinusoids of different frequencies.

The synthesis equation suggests that the FT expresses the signal in terms of linear
combination of complex exponential signal. For a real signal, it can be shown that the
FT synthesis equation expresses the signal in terms of linear combination of sine and

cosine terms [8]. A diagrammatic representation of this is depicted on Figure 3.2:

%\W’w;nh'mm\\\Tﬁﬂ(w\ﬁWWi’ly o

Figure 3.2 Frequency domain transition.

The analysis equation represents the given signal in a different form; as a function
of frequency. The original signal is a function of time, whereas the after the
transformation, the same signal is represented as a function of frequency. It gives the

frequency components in the signal.

Thus the FT is a very useful tool as it gives the frequency content of the input
signal it however suffers from a serious drawback. It shows that the FT is unable to
distinguish between two different signals. The two signals have same frequency
components, but at different times. Thus, the FT is incapable of giving time information
of signals. In general, FT is not suitable for the analysis of a class of signals called non-

stationary signals [1].
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This led to the search of new tools for analysis of signals. One such tool that was
proposed was the Short Time Fourier Transform (STFT). STFT has a drawback and was
supplanted by Wavelet Transform.

3.3 The Continuous Wavelet Transform

Consider a real or complex-valued continuous-time function (t) with the

following properties.

The function integrates to zero

Tl//(t)dt =0 (3.3)
It is square integrable or, equivalently, has finite energy:

T|1//(t)|2 dt < oo (3.4)

A function is called mother wavelet if it satisfies these two properties. The
simplest of them is the Haar wavelet. Some other wavelets are Mexican hat, Morlet.
Apart from this, there are various families of wavelets. Some of the families are
daubechies family, symlet family, coiflet family etc. In this thesis, the main stress is
given on the Daubechies family, which has db1 to db10 wavelets [8]. They are shown in
the following figures, namely Figures 3.3 and 3.4.
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Figure 3.4 Samples of wavelet functions.

As has already been pointed out, wavelet is a waveform of effectively limited
duration that has an average value of zero. Compare wavelets with sine waves, which

are the basis of Fourier analysis. Sinusoids do not have limited duration, they extend
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from minus to plus infinity and where sinusoids are smooth and predictable, wavelets

tend to be irregular and asymmetric [8].

Fourier analysis consists of breaking up a signal into sine waves of various
Frequencies. Similarly, wavelet analysis is the breaking up of a signal into shifted and

scaled versions of the original (or mother) wavelet shown in Figure 3.5.

Wavelet ——\/\{L\-—
Transform “!"‘_
Signal Wawelet components at different resolution and position

Figure 3.5 Signal decomposition into wavelets.

The above diagram suggests the existence of a synthesis equation to represent the
original signal as a linear combination of wavelets which are the basis function for
wavelet analysis (recollect that in Fourier analysis, the basis functions are sines and
cosines). This is indeed the case. The wavelets in the synthesis equation are multiplied
by scalars. To obtain these scalars, an analysis equation is required, just as in the

Fourier case.

There are two equations, the analysis and the synthesis equation. They are stated

as follows [8]:

Analysis equation or CWT equation:

Cab)= | f(t)ﬁyf{%}dt (3.5)

Synthesis equation or [CWT:

fo=— | j C(ab) ﬂ v Plaeno (.6

a=—w b——oo
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K is a constant; it depends on the wavelet

The basis functions in both Fourier and wavelet analysis are localized in
frequency making mathematical tools such as power spectra (power in a frequency

interval) useful at picking out frequencies and calculating power distributions.

The most important difference between these two kinds of transforms is that
individual wavelet functions are localized in space. In contrast Fourier sine and cosine

functions are non-local and are active for all time t.

This localization feature, along with wavelets localization of frequency, makes
many functions and operators using wavelets sparse, when transformed into the wavelet
domain. This sparseness, in turn results in a number of useful applications such as data

compression, detecting features in images and denoising signals.

The quantities a and b appearing in the above equations represent the scale and

shift of mother wavelet, respectively.

The wavelet transform of a signal f (t) is the family C(a,b) given by the analysis
equation. It depends on two indices @ and b. From an intuitive point of view, the
wavelet decomposition consists of calculating a "resemblance index" between the signal
and the wavelet located at position b and of scale a. If the index is large, the
resemblance is strong, otherwise it is slight. The indexes C(a,b) are called coefficients.
The dependence of these coefficients on both a and b is responsible for the wavelet
transform K is a constant; it depends on the wavelet preserving time and frequency

information. These quantities are explained in the following sections [8].
3.3.1 Scaling

Simply put scaling a wavelet means stretching (or compressing) it. To go beyond
colloquial descriptions such as stretching, the scale factor often denoted by the letter a.

If sinusoids are thought, for example, the effect of the scale factor is very easy to see:
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sin(t), a=1
f(t) =<sin(2t), a=1/2 (3.7)
sin(4t), a=1/4

The scale factor works exactly the same with wavelets. The smaller the scale

factor, the more compressed the wavelet and vice versa.

It is clear from the diagrams that, for a sinusoid, Sin(wt) the scale factor is related

(inversely) to the radian frequencyw. Similarly, with wavelet analysis, the scale is
related to the frequency of the signal. Thus the higher scales correspond to the most
stretched wavelets. The more stretched the wavelet, the longer the portion of the signal
with which it is being compared, and thus the coarser the signal features being measured

by the wavelet coefficients [8]. The effect of scaling factor is displayed on Figure 3.6.

Low zcale High scale

Figure 3.6 The effect of scaling factor.

Thus, there is a correspondence between wavelet scales and frequency as revealed

by wavelet analysis:
low scale (a) — compressed wavelet — rapidly changing — high frequncy (w)
high scale (a) — stretched wavelet — slowly changing — low frequency (w)

3.3.2 Shifting

Shifting a wavelet simply means delaying its onset. Mathematically, delaying a

function f(t) by b is represented by f(t—Db) and shown in Figure 3.7.
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Most important feature of the wavelet transform is the orthogonality. If the

wavelet transform of w/(t) is orthogonal to its scaled and shifted versions, this

orthogonal wavelet is known as mother wavelet [9]. The required features of the

orthogonal wavelets are defined in the following lines [8].

ngﬁ(t —N)@(t —m)dt = 5(n—m) (3.8)

@(t) is the scaling function 6(n—m) delta function

[pt—myp t-nydt=0 (3.9)
Scaling function is orthogonal to its wavelet
[v 4 O Odt = 5(j - )5 (k- K) (3.10)

Reproduced wavelets (child wavelet) are orthogonal to one another.

2N-1
Orthogonality equation is defined as Zc(n)c(n -k)=0(k), k=0,1,2,....2N -1 [8].

n=0

3.4 Discrete Wavelet Transform

3.4.1 Wavelet decomposition

The Discrete Wavelet Transform (DWT ) involves choosing scales and positions
based on powers of two the so called dyadic scales and positions. The mother wavelet is

rescaled or dilated by powers of two and translated by integers. Specifically, a function

f (t) e L*(R) can be represented as

f(t) =Z i d(j, kw2 t-k)+ ia(L,k)¢(2‘Lt—k) (3.11)

The function w(t) is known as the mother wavelet, while ¢(t) is known as the

scaling function. The set of functions
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{\/2"‘¢(2"'t—k),\/2’jw(2’jt—k);jSL;j,K,LeZ}, where Z is the set of

integers. It is an orthonormal basis for L*(R) [8].

The numbers a(L,k) are known as the approximation coefficients at scale L,
while d(j,k) are known as the detail coefficients at scale j [8]. These approximation

and detail coefficients can be expressed as

a(L,k):ﬁTf(t)gé(th—k)dt (3.12)
d(j,k):%Tf(t)w(zit—k)dt (3.13)

The above 2 equations give a mathematical relationship to compute the

approximation and detail coefficients.

This procedure is seldom adopted. A more practical approach is to use Mallat’s
Fast Wavelet Transform algorithm. The Mallat algorithm for discrete wavelet transform
(DWT ) is, in fact, a classical scheme in the signal processing community, known as a
two channel sub band coder using conjugate quadrature filters or quadrature mirror

filters (QMF). It is developed in the following sections.

For many signals, the low-frequency content is the most important the signal its
identity. The high frequency content imparts nuance. Consider the human voice. If you
remove the high-voice sounds different, but you can still tell what's being enough of the

low-frequency components, you hear gibberish.

In wavelet analysis, approximations and details are so important. The
approximations are the high-scale, low-frequency components of the signal. The details

are the low-scale, high-frequency components [8].

The filtering process, at its most basic level, looks like this: The original signal, S,

passes through two complementary filters and emerges as two signals.
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Unfortunately, if this operation is performed on a real digital signal, it is obtained
with twice as much data as it is started with. Suppose, for instance, that the original
signal S consists of 1000 samples of data. Then the resulting signals will each have
1000 samples, for a total of 2000. At below, one stage filtering is depicted on Figure
3.8.

Low High

Pass Pass
Filter Filter

Figure 3.8 One-stage filtering.

These signals A and D are interesting, but 2000 values it is obtained instead of the
1000. There exists a more subtle way to perform the decomposition using wavelets. By
looking carefully at the computation, it is required to keep only one point out of two in
each of the two 2000-length samples to get the complete information. This is the notion

of down sampling. Two sequences are produced called CA and CD, displayed on

Figure 3.9.
H H
" D 1000 " ( ) oD 500
satples satples
z 1o0a z 1000
satnples satples
G G
1000 ( j 500
- > iy > CA
satuples satuples

Figure 3.9 Approximation and detail coefficients generation at one-stage.
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The process on the right, which includes down sampling, produces DWT
coefficients. It may be observed that the actual lengths of the detail and approximation
coefficient vectors are slightly more than half the length of the original signal. This has
to do with the filtering process, which is implemented by convolving the signal with a
filter. The convolution "smears" the signal, introducing several extra samples into the

result.

In this section, it is considered only one-stage decomposition of the signal into
CA and CD coefficient. This process can be repeated to get multiple-level

decomposition, discussed next.

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution

components. This is called the wavelet decomposition tree and shown in Figure 3.10

[8].

CAl CD1

CAZ CDhz

CAZ CD3z

Figure 3.10 Multiple-level decomposition.

Since the analysis process is iterative, in theory it can be continued indefinitely. In
reality, the decomposition can proceed only until the individual details consist of a
single sample or pixel. In practice, you'll select a suitable number of levels based on the
nature of the signal, or on a suitable criterion such as entropy. Thus the fast wavelet

transform algorithm can be stated as:
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Given a signal s of length N, the DWT consists of log, N stages at most.

Starting from S, the first step produces two sets of coefficients: approximation

coefficient CA, and detail coefficientCD,. These vectors are obtained by convolving s
with the low-pass filter Lo D for approximation, and with the high-pass filter Hi D

for detail, followed by dyadic decimation [8].

The next step splits the approximation coefficients CA in two parts using the

same scheme, replacing s by CA, and producing CA, and CD, and so on.

Now that it is seen the decomposition of a signal into wavelet (approximation and
detail) coefficient s, it is natural to ask whether the reverse is possible, i.e., is it possible
to generate the original signal back from the coefficients, and if yes, how to achieve
this. Fortunately, there does exist a method to do it, and it is very similar to the one used

for decomposition. The next few sections demonstrate this.

The first level approximation and detail components of the original signal that is

shown in Figure 3.11, is displayed in Figure 3.12.

Orniginal signal
25 T T T T T

_L
o
T
1

Amplitude

05r -

05 I I I 1 I
0 a0 100 120 200 230 300

Coeffoient #

Figure 3.11 original signals [0-256].
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Figure 3.12 Approximation and detail signal components [0-256].

3.4.2 Wavelet reconstruction

It has been investigated how the discrete wavelet transform can be used to
analyze, or decompose, signals and images. This process is called decomposition or
analysis. The other half of the story is how those components can be assembled back
into the original signal without loss of information. This process is called
reconstruction, or synthesis. The mathematical manipulation that affects synthesis is
called the inverse discrete wavelet transform (IDWT ). To synthesize a signal, it is

reconstructed from the wavelet coefficients [8].

Where wavelet analysis involves filtering and down sampling, the wavelet
reconstruction process consists of up sampling and filtering. Up sampling is the process
of lengthening a signal component by inserting zeros between samples, is depicted on

Figure 3.13 and Figure 3.14, as follows.
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Figure 3.13 Reconstructing the original signal from the wavelet coefficients.
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Figure 3.14 Up sampling process.

The filtering part of the reconstruction process also bears some discussion,
because it is the choice of filters that is crucial in achieving perfect reconstruction of the
original signal. The down sampling of the signal components performed during the
decomposition phase introduces a distortion called aliasing. It turns out that by carefully
choosing filters for the decomposition and reconstruction phases that are closely related
(but not identical); it can be cancelled out the effects of aliasing. The low-and high pass
decomposition filters (L and H), together with their associated reconstruction filters
(L’and H’) form a system of what is called quadrature mirror filters. The decomposition

and reconstruction process is shown in Figure 3.15
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Figure 3.15 Decomposition and reconstruction process.

As an example, let's consider how it would be reconstructed the first-level
approximation Al from the coefficient vector CA, . The coefficient vector CA is passed

through the same process that is used to reconstruct the original signal. However,

instead of combining it with the level-one detail CD, a vector of zeros is provided in

place of the detail coefficients vector is displayed on Figure 3.16:

a@—-Lc—J'

oy ]

Figure 3.16 Reconstruction of approximation A1l

The process yields a reconstructed approximation A , which has the same length
as the original signal S and which is a real approximation of it. Similarly, it can be
reconstructed the first-level detail D,, using the analogous process, depicted on Figure

3.17.
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CD1 I LC

2

Figure 3.17 Reconstruction of detail D1.

The reconstructed details and approximations are true constituents of the original

signal. In fact, they can be combined as:
A+D =3 (3.14)

Note that the coefficient vectors CA and CD, because they were produced by

down sampling and are only half the length of the original signal cannot directly be
combined to reproduce the signal. It is necessary to reconstruct the approximations and
details before combining them. Extending this technique to the components of a
multilevel analysis, it is found that similar relationships hold for all the reconstructed
signal constituents. That is, there are several ways to reassemble the original signal.

This process is displayed on Figure 3.18.

A1 D1

A2 D2

A3 D3

Figure 3.18 Reassembling the original signal.

S=A+D (3.15)
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S=A+D,+D, (3.16)
S=A+D;+D,+D, (3.17)

A multistep analysis-synthesis process is represented in Figure 3.19.
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Figure 3.19 Multistep decomposition and reconstruction.

This process involves two aspects: breaking up a signal to its high and the low
frequency components, to obtain the wavelet coefficients, and assembling the signal

from the coefficients to obtain the original one

In the previous figures, it is shown that the approximations and detail components
of the signal is obtained by decomposition at the first level. This process is displayed on
Figure 3.20. Besides, the reconstructed signal is displayed on the following figure,

namely Figure 3.21.
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Figure 3.20 Reconstruction of the signal component at 1st level
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Figure 3.21 Reconstructed signal
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3.5 Wavelet Packet Transform Method

The wavelet packet method is a generalization of wavelet decomposition that
offers a richer range and a detailed investigation of possibilities for signal analysis. In
wavelet analysis, a signal is split into an approximation and a detail. The approximation
is then itself split into a second-level approximation and detail, and the process is
repeated. For n level decomposition, there are n+1 possible ways to decompose or

encode the signal. In wavelet packet analysis, the details as well as the approximations

can be split. This yields more than 2*" different ways to encode the signal. This is the

wavelet packet decomposition tree, is depicted on Figure 3.22 [8].

e e
ey el el e

AAs; | [DAs; | |aDA;| | DDA, AsD;| |DAD;| |ADD;] |DOD,

Figure 3.22 Wavelet packet decomposition tree

For instance, wavelet packet analysis allows the signal S to be represented as
Al+ AAD3 + DAD3+DD2. This is an example of a representation that is not possible

with ordinary wavelet analysis.
3.5.1 Wavelet packet decomposition

In the orthogonal wavelet decomposition procedure, the generic step splits the
approximation coefficients into two parts. After splitting it is obtained a vector of
approximation coefficients and a vector of detail coefficients, both at a coarser scale.
The information lost between two successive approximations is captured in the detail
coefficients. Then the next step consists of splitting the new approximation coefficient

vector; successive details are never re-analyzed.
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In the corresponding wavelet packet situation, each detail coefficient vector is also
decomposed into two parts using the same approach as in approximation vector
splitting. This offers the richest analysis: the complete binary tree is produced as shown

in Figure 3.23 [8].

@3)
i (n) (3.6)
z(n) (3.5)

2.2)
(0.0)—
g(n) (33)
@1
_ h(n) (3.2)
Nl f2(n)

Figure 3.23 Wavelet packet decomposition diagram for three layers

It is started with the two filters of length2N, where h(n) andg(n),
corresponding to the wavelet. Now by induction let us define the following sequence of

functions W, (x),n =0,1,2,... by

2N-1

W, (X) =2 > h(k)W, (2x—k) (3.18)
W, (X)= \/Ezilg(k)wn (2x—k) where (3.19)

W, (X) = @(X) is the scaling function and W,(X) =y /(X) is the wavelet function.

For example for the Haar wavelet:
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1

N =1h(0) =h() = (3.20)
and

0(0)=-9()= - G21)
The equations become:

W, (X) =W, (2X) +W, (2x—1) (3.22)

W, (X) =W, (2X)-W, (2x—1) (3.23)

W, (X) = @#(x) is the Haar scaling function and W,(X) =y (X) is the Haar wavelet,

both supported in W, (X) =d(X), W,(X) =y (X).

For n=0...7, the W functions shown in Figure 3.24.
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Figure 3.24 Haar wavelet packets.
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Figure 3.25 Wavelet packet tree.

The set of functions W; ,(X) = (W, (X),k € Z) is the wavelet packet shown in the

previous figure, namely Figure 3.25. For positive values of integers, j and n wavelet

packets are organized in trees. The tree in Figure 3.25 is created to give a maximum

level decomposition equal to 3.

The notationW,  (X), where j denotes scale parameter and n is the frequency

parameter defines the position depth in wavelet packet tree.

This last property gives a precise interpretation of splitting in the wavelet packet
organization tree, because all the developed nodes are of the form shown in the figure

below, Figure 3.26.

Wj,n = (Wj,n,k (X): k € Z)

W,

N

.J'.
Wist2n Wii1.2nn

Figure 3.26 Wavelet packet organization.
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3.5.2 Wavelet packet reconstruction

The process of the wavelet packet reconstruction is achieved by up sampling and
the appropriate filtering. In Figure 3.27, diagram is shown for the reproduced signal

using the way mentioned.

5--(0,0)

Figure 3.27 Wavelet packet reconstruction diagram for three layers.

As it is available on the discrete wavelet transform ﬁ(n) and h(n) low pass

filters, g(n) and g(n) are the high pass filters.

Wavelet packet transform is defined by the function ofW, (2't-k), v,keZ

ne N and provided by the linear combination of wavelets

W, (1) = ¢(1) (3.24)
W, () =w (1) (3.25)
W, () =D hW, (2t —k) (3.26)

W, (D) =D g W, (2t —k) (3.27)
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#(t) and w(t) are the functions generated by g(n) and h(n) filters [8]. The

wavelet packet analysis and the synthesis procedure are realized with the filters shown
in Figure 3.28.

COnginal
x(2) signal o by () U,
- ¢ 2 T 2 Fo Eeproduced
signal
(4 i ()
Jo PR t, e x
analysis synthesis

Figure 3.28 Wavelet packet decomposition and reconstruction.
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4. DISCRETE COSINE AND DISCRETE SINE TRANSFORM

4.1 Discrete Cosine Transform

A discrete cosine transform (DCT) is defined to compute it using the fast Fourier
transform. It is shown that discrete Cosine transform can be used in the area of digital
signal processing. Its performance is compared with that of a class of orthogonal
transforms and is found to compare closely to that of the Karhunen-Loeve transform,
which is known to be optimal. The performances of Karhunen-Loeve and discrete
Cosine transforms are also found to compare closely with respect to the rate-distortion

criteria.

In recent years, there has been an increasing interest with respect to using a class

of orthogonal transforms in the general area of the digital signal processing [3].

The DCT of a data sequence of x(m), m=0,1,2,3,....(M —1), is defined as in
Equations 4.1 and 4.2.

\/EM—I

G, (0)= v ZX(m), (4.1)
_2 ¥ @m+hkz | _
Gx(k)—Mmzzox(m).cos Y k=1,23,....(M =1) 4.2)

The last equation shows that, the basis vectors are sampled cosines which have
phase shifts that are not given by an alternating 0 and pattern as in (the sines and

cosines) DFT. The DCT basis vectors are displayed as follows [3].

bk — \/za(k)COSM for, k= 0,1,..,N-1 (43)
N 2N n=0,1,..,N-1

,,,,,,

(0) = —— (k) = Lk #0

V2
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Where G, (k) is the k™ DCT coefficient. The set of basis vectors is given in

Equation 4.3 which is a class of discrete Chebyshev polynomials. This can be seen by
recalling that Chebyshev polynomials can be defined as in following Equations from 4.4

to 4.8, inclusive [3].

. 1
TO(gp) :ﬁ (44)
Ti(e,)=cos(kcos™ ,),k, p=1,2.3,...M (4.5)

In (4.5) 'fk (&,) represents the k™ Chebyshev polynomial. &, 1s chosen to be the p"

zero of 'I:,\,I (&,) which is given by
¢ —cos PPV 103w (4.6)
2M

Substituting &, in, 'I:k (&,) Equation 4.5, the set of Chebyshev polynomials can be

obtained as follows [3].

. - (2p-1Dkz
T =—, T cos————— k,p=12,3,....M 4.7
o(P) > «(P) = M p (4.7)
T,(m) = L,Tk(m) = M k=12,..,(M-1),m=0,12....(M -1) (4.8)
2 2M
To sum up, cos% is the k™ Chebyshev polynomial.

Inverse Discrete Cosine Transform ( IDCT ), is defined by X(m) and calculated in

Equation 4.9.

(2m+1)k7r

x(m) = \/_G (0)+ZG (K)co ,m=01,2,....(M -1) (4.9)

The DCT is an orthonormal transform, defined in Equations 4.10 and 4.11
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#=CX,X=C"0 (4.10)
- M/2,k=1=0
ST, (MT (M) ={M/2,k=1%0 (4.11)
m=0 0.k =1

The attractiveness of the DCT is two-fold: The first one, it is nearly optimal with
high positive values of adjacent sample correlation and the second one it can be

computed via the DFT using an FFT algorithm.

The fast computation procedure mentioned in second one, above, consists of
extending the input block of N samples to a 2N block with even symmetry, taking a
2N point DFT, and saving N terms in it. The DFT of a real and symmetric sequence

contains only real coefficients corresponding to the cosine terms of the series.

4.2 Discrete Sine Transform

In mathematics, the discrete sine transform ( DST ) is a Fourier related transform
similar to the Discrete Fourier Transform (DFT), but using only real numbers. It is
equivalent to the imaginary parts of a DFT of roughly twice the length, operating on
real data with odd symmetry (since the Fourier transform of a real and odd function is
imaginary and odd), where in some variants the input and/or output data are shifted by

half a sample [7].

A related transform is the discrete cosine transform (DCT) mentioned above,

which is equivalent to a DFT of real and even functions.

DST s are widely employed in solving partial differential equations by spectral
methods, where the different variants of the DST correspond to slightly different

odd/even boundary conditions at the two ends of the array.

Formally, the discrete sine transform is a linear, invertible function F :RN — RN
(where R defines the set of real numbers), or equivalently an NXN square matrix. There

are several variants of the DST with slightly modified definitions. The N real numbers
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X5 X;5.-.» Xy, are transformed into the N real numbers X, X,..., X,,_, according to the

formula given in Equation 4.12 [10].

(n+D(k+1)] (4.12)
pry +1
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5. DIGITAL SIGNAL COMPRESSION

5.1 Introduction

A typical computerized medical signal processing system acquires a large amount
of data that is difficult to store and transmit. It is very desirable to find a method of

reducing the quantity of data without loss of important information.

All data compression algorithms seek to minimize data storage by eliminating
redundancy where possible. The compression ratio is defined as the ratio of the number
of bits of the original signal to the number stored in the compressed signal. A high
compression ratio is wanted, typically, but using this alone to compare data
compression algorithms is not acceptable. Generally, precision of the original and the

reproduced data much affect the compression ratio [7].

A data compression algorithm must also represent the data with acceptable signal
quality. In biomedical data compression, the clinical acceptability of the reconstructed
signal has to be determined through visual inspection. The reconstructed signal and the
original signal compatibility may also be measured by a numerical measure. The

compression ratio value is calculated by the Equation of 5.1 [7].

bOI'
CR=—"% (.1

comp

5.2 Signal Compression and Distortion Measures

The criterion for testing performance of compression algorithms includes three
components: compression measure, reconstruction error and computational complexity.
The compression measure and the reconstruction error are usually dependent on each
other and are used to create the rate-distortion function of the algorithm. The
computational complexity component is part of the practical implementation

consideration but it is not part of any theoretical measure.
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5.3 Error Criterion

One of the most difficult problems in ECG compression applications and
reconstruction is defining the error criterion. The purpose of the compression system is
to remove redundancy, the irrelevant information (which does not contain diagnostic
information). Consequently the error criterion has to be defined such that it will
measure the ability of the reconstructed signal to preserve the relevant information.
Such a criterion has been defined as diagnostability. A similar problem exists in

synthesized speech signals, in which the criterion intelligibility is defined.

As yet, there is no such mathematical structure to this criterion, and all accepted
error measures are still variations of the Mean Square Error, which are easy to compute

mathematically [7].

In most ECG compression algorithms, the Percent Root Mean Square Difference

(PRD) measure is employed where X(n) is the original signal, X(n) is the

reconstructed signal, and N is the length of the window over which the PRD is

calculated. In some of the articles a fixed version of PRD definition is used in Equation

5.2 [4].

N

D (x(n)—x(n))°
PRD = | x100 (5.2)

2. X ()

In the literature, there are some other error measures for comparing original and
reconstructed ECG signals, such as the Root Mean Square Error (RMSE) defined in
Equation 5.3 [4].

> (x(n)=X(n))?

RMS = /= 5.3
N (5.3)

Another distortion measure is the Signal to Noise Ratio, which is expressed as in

Equation 5.4 [4].
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D (x(n)—%)?
SNR =10log| - (5.4)

N

> (x(M)=X(n))’

n=1

In the above equation X is the average value of the original signal. The relation

between the SNR and the PRD is

SNR =—-20log PRD (5.5)

Digital coding is the process, or sequence of processes, that leads to digital
representations (sequences of binary digits) of the source signal. The benefits of digital
representation are well known, low sensitivity to transmission noise, effective storage,

ability to multiplex, error protection and more.

One of the main goals in digital coding of waveforms is reduction of the bit rate,
which is required to transmit a certain amount of information. The process of bit rate
reduction is performed by the removal of the signal’s redundancy, and sometimes
causes loss of information. A basic problem in waveform coding is to achieve the
minimum possible distortion for a given encoding rate or, equivalently, to achieve a

given acceptable level of distortion with the least possible encoding rate.

The first stage of the analog signal coding process is sampling and quantization.
The sampling is performed mostly according to the Nyquist criterion after low pass
filtering the signal with an anti aliasing filter. After sampling, the signal is time-discrete
and amplitude-continuous. In order to represent the sampled signal digitally, one has to
perform quantization, mapping the sampled signal’s amplitudes from the continuous
plane to the discrete plane. The quantization in this stage is usually fine quantization
(many quantization levels) so one can treat the sampled signal as almost amplitude-

continuous.

At the second stage of the coding process, the redundancy of the signal is
removed using appropriate coding techniques, such as, orthogonal transforms, entropy

encoding, ADPCM , etc.
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5.4 Sampling and Uniform Quantization

The PCM is the earliest, the simplest, and the most popular coder in digital coding
systems of signals. A PCM coder is nothing more than a waveform sampler followed by

an amplitude quantizer.

Let X(t) denote a sample function emitted by a source and let X, denote the

samples taken at a sampling rate f,>2w, where w is the highest frequency in the

spectrum of X(t). In PCM, each sample of the signal is quantized to one of 2"

amplitude levels, where R is the number of binary digits used to represent each sample.

Thus the rate from the source is Rf, bits [11].

The quantization process may be modeled mathematically as in the Equation (5.6)
% =X+, (5.6)

Where X, represents the quantized value of X, and g, represents the quantization

error, which it is treated as an additive noise. Assuming that a uniform quantizer is used,
having the input-output characteristic illustrated in Figure 5.1, the quantization noise is
well characterized statistically by the uniform pdf that is defined in Equation 5.7 [11],
[12].

L

P (d) =1 A
0, otherwise

<A/2
q<a/ C—A/2<q<A/2 (5.7)

The mean square value of the quantization error is

), N

o, =— 5.8
x T (5.8
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Figure 5.1 Input - Output characteristic for a uniform quantizer.

Many signals such as speech waveforms have the characteristic that small signal
amplitudes occur more frequently than large one. However, a uniform quantizer
provides the same spacing between successive levels throughout the entire dynamic
range of the signal. The block diagram of the sampling, quantization and binary coding

in PCM is shown in Figure 5.2 [11], [12].

x,(2) %, ()

X L i
—™ 1i » gquantization » Bm?ry » sz ——
input sampling coding coding Digital
sigrial cotnpressed
sigrial
X F=2w

Figure 5.2 Transmitter block diagram in PCM.

5.4.1 Quantization error

Let X be a zero-mean random variable at the quantizer input, with variance o,

and pdf p,(q)-
Y =Q(X)=Y, (5.9)

The quantization error Q = X =Y is also a random variable with pdf p,(q) [13].
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oy = E[Q2]=Tq2pq(q)dq (5.10)

Alternatively as Q = X —Q(X) is a function of X

ol =E[Q*]= T[X -Q(J p,(x)dx (5.11)

Quantization error variance is the most important quantity for comparing the
performances of quantizers, and Equation 5.11 is often used to calculate this variance.

Its calculation via Equation 5.10 is possible only if the pdf p,(q) is known which is
typically not the case. However p,(q) may be approximated by a constant over a finite

range in the case of uniform quantization

Consider the example of an input X with amplitudes in the range

Xe (=X ), in this case, quantization step size is defined in the Equation 5.12

max’Xmax
[13].
A=2x_ /2R (5.12)

max

Quantization errors will have values in the range

A A
_Z<g<= 5.13
S <0< (5.13)
Equation 5.11 goes to the result as in the following line
02=A—2 0.7 = L2 (5.14)
q 12 b q 3 max .
1 a2
p.(&)=<A" 2~ 2 (5.15)
0, otherwise

The changes of p(e) is displayed in Figure 5.3
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<e’ >=Ele’] (5.16)
a/2 A2
<e’>= |e’p(e)de=— 5.17
j p(e)de = (5.17)
4 pie)
1/ A
E"-
_a 0 a ’
D 2

Figure 5.3 PDF of a quantization error.

n-bits quantizer A, amplitude is applied to the signal with the amplitude of A,
in that case the ratio of signal to noise is (S/N) calculated in Equation 5.18 and 5.19

[13].

S, <X(M)> A12

(W)_<e2(n)>_ 2 A (>-18)

S. A 12 3., A,

VoA 2t R >
Zn

Besides, in the form of dB (%) can be calculated, shown in the Equations 5.20

and 5.21.

S S
(e = 1010810 () (5.20)

(%)dB — 1,76+ 6,020+ 20log,, () (5.21)

ax
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5.5 LZW Coding

5.5.1 LZW encoder

LZW source coding algorithm belongs to the class of universal source coding
algorithms. It is a variable to fixed length algorithm, where the encoding is performed

as described below.

In LZW algorithm, the sequence of the output of the discrete source is parsed into
variable length blocks, which are called phrases. A new phrase is introduced every time
a block of letters from the source differs from some previous phrase in the last letter.
The phrases are listed in a dictionary, which stores the location of the existing phrases.
In encoding a new phrase, it is simply specified the location of the existing phrase in the

dictionary and append the new letter [12].

In block coding, first the partition process of the data vector into blocks of equal
length is done. In Lempel-Ziv coding, it is first started by partitioning the data vector

into variable-length blocks instead. The procedure via which this partitioning takes

place is called Lempel-Ziv parsing. The st variable-length block arising from the

Lempel-Ziv parsing of the data vector X =(X,, X,,..., X,)) is the single sample X,. The
second block in the parsing is the shortest prefix of (X,,..., X)) which is not equal to
X,. Suppose this second block is (X,,..., X;). Then, the third block in Lempel-Ziv

parsing will be the shortest prefix of (X X,) which is not equal to either X, or

190
(X,5s X ;). In general, suppose the Lempel-Ziv parsing procedure has produced the
first k variable-length blocks (B,,B,....,B,) in the parsing, and X is that part left of
X after (B,,B,,...,B,) have been removed. Then the next block B,,, in the parsing is

the shortest prefix of X which is not equal to any of the preceding blocks
(B,,B,,...,B,) . (If there is no such block, then B, ,, = X* and the Lempel-Ziv parsing

procedure terminates.) [12].
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By construction, the sequence of variable-length blocks B,,B,....,B, produced by
the Lempel-Ziv parsing of X are distinct, except that the last block B, could be equal

to one of the preceding ones.

Consider the example of an input X and Lempel-Ziv parsing of
X =(,10,110,0,0,1,1,0,1) is B1=1,B2=10,B3=11,B4=0,B5=00,B6=110,B7=1.
This is shown in Figure 5.4. Binary representation of the groups is in the table of 5.1

[12].

X 2 1 10 11 0 00 110 1

Figure 5.4 X data sequence.

LZW parsing process is displayed on the Table 5.1. Binary representation of
groups is displayed on Table 5.2

Table 5.1
Lempel-Ziv parsing for X data sequence.
Bi index group
Bl 1 1 (0,1)
B2 10 2 (1,0)
B3 11 3 (1.1)
B4 0 4 (0,0)
B5 00 5 (4,0)
B6 110 6 (3,0)
B7 1 7 (0,1)




Table 5.2
Binary representation of groups.
group integer form Ii
0,1 0.2")+1.2%) 1
(1,0) 1.2 +0.2") 2
(1,1) 1.2H) +1.2° 3
(0,0) 0.2H)+0.22% 0
(4,0) 4.(2"+0.2%) 8
(3,0) 3.2)+0.2%) 6
(0,1) 0.2")+1.(2%) 1
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LZW encoder output is the binary conversion of the Ii. log,(K.j) provides the

information of bit representation status, shown in Table 5.3 [14].

Table 5.3
LZW encoder output (Zi).
zZ I, log,(K.}) X bit representation
1 1 log,(2.1) 1 bit representation
10 2 log,(2.2) 2 bit representation
011 3 log,(2.3) 3 bit representation
000 0 log,(2.4) 3 bit representation
1000 8 log, (2.5) 4 bit representation
0110 6 log,(2.6) 4 bit representation
0001 1 log,(2.7) 4 bit representation




is the binary data sequence arranged in order.
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As it is shown in the following table, namely Table 5.4, the output of the encoder

Table 5.4
Zi arranged in order.
LZW encoder output (Z1)
1 10 011 000 1000 0110 0001
Z1 7> 73 Z4 Zs Zs 77

The input of LZW encoder block, is the binary data, shown in Figure 5.5

xiE ]

_Lr sampling quantization L2 Lnary » LZW —
input coding coding Diigital
sigrial commpressed

sigrial

Figure 5.5 LZW encoder block diagram.

5.5.2 LZW decoder

LZW decoding process takes the reference of the data sequence which is the
output of encoder. Codebit table is again used for the decoding issue, displayed on
Table 5.5

Bit representation is calculated, then partitioning up the encoder output according
to the allocations in the above table. Converting these to integer form Ii is obtained, in
Table 5.6. Dividing each of these integers by two, the quotient and remainder in each

case, the pairs are formed
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Table 5.5
LZW codebit table.
Codebit table
parsing block number # of codebits
1 log, (k.])) (k=2,j=1) 1 bit representation
2 log,(k.])) (k=2,j=2) 2 bit representation
3 log,(k.])) (k=2,j=3) 3 bit representation
4 log,(k.])) (k=2,j=4) 3 bit representation
5 log,(k.])) (k=2,j=5) 4 bit representation
6 log,(K.J) (k=2,j=6) 4 bit representation
7 log,(K.J) (k=2,j=7) 4 bit representation
Table 5.6
LZW decoder output.
LZW decoder output
1 10 011 000 1000 0110 0001
Ii 1 2 3 0 8 6 1
groups (0,1) (1,0) (1,1 (0,0) (4,0) (3,0) (0,1)

In Table 5.7, the binary data arrangement process is displayed for decoding

process.
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Table 5.7
Binary data assignment.
Bi binary form index group
Bl 1 1 (0,1)
B2 10 2 (1,0)
B3 11 3 (1,1
B4 0 4 (0,0)
B5 00 5 (4,0)
B6 110 6 (3,0)
B7 1 7 0,1)

As it is depicted on Table 5.8, below, the original data sequence is recovered

again.
Table 5.8
X data sequence.
X 1 10 11 0 00 11 1
B1 B2 B3 B4 B5 B6 B7
Decoding process is displayed on Figure 5.6, below.
W inverse - dLZ;H Digital
onrtpt gigrial - ecoding igi
reconstructed transform compressed
sighal signal

Figure 5.6 LZW decoding block diagram.
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6. IMPLEMENTATION METHODS

6.1 Wavelet Transform

The aim of electrocardiogram (ECG) data compression is to reduce the amount of
digitized ECG data as much as possible with reasonable implementation complexity

while maintaining clinically acceptable signal quality.

In order to achieve our goal a new electrocardiogram (ECG) data compression
method is presented which is based on orthonormal wavelet transform and a uniform
quantization strategy by which a predetermined percent root mean square difference
(PRD) can be guaranteed with high compression ratio and low implementation

complexity.

6.2 A Generalized DOWT Based Coding System

Since detailed mathematical aspects of wavelet theory can be found elsewhere,

here, it is described merely the structure of a DOWT -based coding system shown in

Figure 6.1
—p| DOWT P I Tk i e—— TOWT
lal T l d,
¥
Cuantizer and Entropy Encoder
¥
Decoder and Inverse Cuantizer
l 2, l e l d,
+— DOWE “ DOWE. T DOWE.
“g a4 @ a;

Figure 6.1 A generalized DOWT based coding system.
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The input discrete signal of a, is successively decomposed into a set of subsignals
{aJ ,(d j)},1 < j<J of by the DOWT units, where @, is a smoothed version of a, and
d;, 1< j<J are the differential subsignals between the original signal and its smoothed

versions at different resolutions. The decomposed subsignals are then quantized and
entropy-encoded in order to be transmitted to a receiver [16]. If the transmission is error

free, the quantized subsignals of a', and d';, 1< j<J are used to progressively

reconstruct the original signal by the discrete orthonormal wavelet reconstruction

transform (DOWR). When the decomposed subsignals of {aJ ,(d j)}, 1<j<J are
quantized, the reconstruction error between the original signal a, and the reconstructed
signal a', occurs [7]. Let g? and ¢, denote the mean square error (MSE) occured in the
quantization of d; and a;, respectively, then the reconstruction MSE (RMSE) 7,

between the original signal a, and its reconstructed signal a'; is given by
: d
7=$J+Zgj (6.1)
j=1

Above equation indicates an important feature of the DOWT -based coding

system that the RMSE () between the original signal and its reproduced version can

be exactly calculated from the quantization MSE of the decomposed subsignals (a, and

d)[7].
8? : mean square error (MSE) occured in the quantization of d;
&, : mean square error (MSE) occured in the quantization of a,,

7,: reconstruction MSE (RMSE) between the original signal a, and its

reconstructed signal a';.
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6.2.1 Definition of coding

A widely used quantitative distortion measure for ECG coding is the PRD
defined by Equation 6.2 where y is the RMSE between the original signal and the

reconstructed signal, o is the power of the original signal, calculated in Equation 6.5.
For a user-specifed PRD of p,, the corresponding RMSE can be calculated from
Equation 6.2 [7].

PRD=.|L (6.2)
o
2 1 S 2
7o :po-rzlui (6.3)
i

L
Yo =& +Z‘9? =%
j=1
PRD — p,
PRD = p, =, /ﬁ taking the squares of both sides in the equation
o

y
Po =" = P00
O

RMSE = y = pio (6.4)

In Equation 6.3, where g are the samples of the original signal and L is the

length of an ECG segment being evaluated. Thus the problem of guaranteeing a user

specified PRD of p, is equivalent to guaranteeing the corresponding RMSE of y,

determined by Equation 6.4 [7].

o=y (6.5)
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The optimal solution corresponds to the theoretical bound of the rate distortion
performance which is only achieved by an ideal quantizer and an ideal entropy encoder.
It is difficult to get an exact expression of the quantization MSE for a general

information source. However when the quantization step size is small enough, the

expected quantization MSE’s of g;’ and &, can be approximated as in the Equation 6.6

[7].

1 a 1

gJ=2_370a5j 2;70 (6.6)

Therefore as long as the quantization MSE’s are achieved, the desired RMSE  y,

or the equivalent PRD of p, is obtained.

6.2.2 Uniform quantization

Db2 wavelet model is used providing one stage decomposition CAl and CDI.
This process is repeated to get the successive approximation and detail coefficients.
Based on the decomposition level, J =5, CAS in the 5" level and CDi, (i=1:4) are
produced. Uniform quantization is applied for the approximation and detail coefficients.
So, the quantization step size, A, is different from one another. Due to the coefficients
decomposed in different decomposition levels, each sample is represented by 8 bits,
namely digital signal is sampled with 8 bits resolution. The quantization bin size is

defined as in the following Equation, 6.7.
A=(2%A, 02" (6.7)

n=8 bits.,, A, 1is changing for every coefficients at different layers. A  is

ax

valued as max(abs(CA5)), max(abs(CD1)), max(abs(CD2), max(abs(CD3)),
max(abs(CD4)), max(abs(CD5)) successively.

6.3 Implementation

Based on the above analysis, it will be possible to implement the proposed ECG

compression system with the following procedures where p,,L,J,x,,n denote, a user
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specified PRD , the segment length, the number of layers of the wavelet decomposition,

the input ECG samples, and the precision of quantization, respectively.
Implementation consists of 2 parts, namely encoder and decoder.
Encoder part:
Initialization, segmenting and buffering L input samples.
Wavelet decomposition.

Uniform quantization [for each (d; and a;, j=123,4,...,J)].

Entropy coding (LZW encoder is used).
Decoder part:

Entropy decoding (LZW decoder used).

Wavelet reconstruction.

In order to make the results quantitatively comparable to other ECG compression
methods, here, it will be adapted the most widely-used numerical indexes of PRD,
compression ratio (CR) [7]. The compression ratio is used to measure the compression
efficiency, which is defined by the ratio of the bits of the original data to those of the

compressed data [7].

original data bit size
compressed data bir size

CR=

(6.8)

PRD is taken as a reference about the performance of the compression schema
used, and formulized in the Equation 6.8. Besides, it also gives the information of the
distortion rate of the reconstructed signal waveform and how the reproduced signal is

compatible with the original one.
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\/Z(Xorg (I)_ Xrec(i))2
PRD == *100 (6.9)

\/ 2 Ko ()’
i=1
Xorg (1) : samples of the original signals

X . (1) : samples of the reproduced signal

6.3.1 Segmenting the original signal

The original ECG signal includes 7680 samples, taken from the MIT-BIH

Database. The reference signal mentioned above is divided into 8 segments. Except the

last one (8" ) each ECG segment has 1024 samples itself.
7680 samples = (1024 samples * 7 segments) + 512 samples.
first 7 segments > each includes 1024 samples itself.
the last ECG segment (8") = contains 512 samples.

The proposed algorithm was implemented on the PC which has Pentium 4, CPU
24 GHz, 256 MB RAM configuration. DDb2 family is used in the wavelet

decomposition method and the layer was setto J =5.

In the following figures, from Figure 6.2 to 6.9 totally 7 segments (1 to 7) which

has 1024 samples, and the last one (8" segment ) with 512 samples are displayed.
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Figure 6.2 1st ECG segment with 1024 samples.
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Figure 6.3 2nd ECG segment with 1024 samples.
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ECG signal segment,
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Figure 6.4 3rd ECG segment with 1024 samples.
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Figure 6.5 4th ECG segment with 1024 samples.
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ECG signal segment,
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Figure 6.6 5th ECG segment with 1024 samples.
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Figure 6.7 6th ECG segment with 1024 samples.
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ECG signal segment.
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Figure 6.8 7th ECG segment with 1024 samples.
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Figure 6.9 8th ECG segment with 512 samples.



6.3.2 Wavelet decomposition

For many signals, the low-frequency content is the most important part. It is what
gives the signal its identity. The high-frequency content, on the other hand, imparts
flavor or nuance. For instance, consider the human voice. If the high-frequency
components are removed, the voice sounds different, but it is still told what's being said.

However if the low-frequency components is removed, gibberish is heard.

In wavelet analysis, it is often spoken of approximations and details. The
approximations are the high-scale, low-frequency components of the signal. The details

are the low-scale, high-frequency components.

The filtering process, at its most basic level, looks like in Figure 6.10. The same

procedure includes down sampling and up sampling is seen in the next, in Figure 6.11,

in detailed form.

LTF

L

signal

gy

Figure 6.10 The filtering process.

Figure 6.11 Filtering and down sampling.
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The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution

components. This is called the wavelet decomposition tree, shown in the Figure 6.12

[8].

Figure 6.12 Wavelet decomposition tree.

In the implementation process the decomposition tree goes to the level of 5. For
example, in the 1% level of analysis, approximation Al and detail D1 can be obtained
with the use of CAl & CDI coefficients. If the original signal is taken into
consideration as a whole segment with 7680 samples, the 1% level signals can be

displayed in Figure 6.13, below.

w10 Approzimation A1
&) T T T T T T T
L
B l
£ 1r -
<
0K i
_1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 s000 000 8000
Coeffrient #
, W 1DT Detail D1
L
E 0.5+ -
g o -
<
o5H -
_1 | | | | | | |
0 1000 2000 3000 4000 5000 &000 7000 8000

Coefficient #

Figure 6.13 1st level decomposition of the original signal
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If only the first 256 points of original ECG signal [0...256] is considered, the

analyzed coefficients are formed as in Figure 6.14.

Approzimation A1 signal at 1st lewvel

10
3 T T T T T
sl i
=
[ind
D B -
_1 1 | | 1 1
0 a0 100 150 200 230 300
Coetlicient #
w1 Detail D1 signal at 1st level
10 T T T T T
<
EEL .
=
:
0 et J —
_5 1 | | 1
0 50 100 150 200 250 300
Coetlicient #

Figure 6.14 1st level decomposition for the interval of 0 to 256.

6.3.3 Wavelet synthesis

In the previous section it was mentioned that, discrete wavelet transform is used to

analyze, or decompose the original signal. The other half of the story is how those

components can be assembled back into the original signal without loss of information.

This process is called reconstruction or synthesis shown in Figure 6.15. The original

signal is trying to be reproduced to the original one.
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Figure 6.15 Filtering and up sampling.

Where wavelet analysis involves filtering and down sampling, the wavelet

reconstruction process consists of up sampling and filtering [8].

A multi-step analysis-synthesis process is shown in Figure 6.16
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{D—-LLT

F :

—0
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NS
’ bl —oh

&3
Analysis & & Synthesis
(Decomposition) (Reconstruction)
DWT IDWT

Wavelet
Coefficients

Figure 6.16 Multi-step analysis and reconstruction.

The result of the decomposition process of the original signal with 7680 samples
is shown in the Figure 6.18. Besides, the sizes of the signal segments in each level for

the multistep decomposition can also be presented in Figure 6.17.
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Figure 6.17 Size of the coefficients at different levels.
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Figure 6.18 5 level decomposition of ECG signal.
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6.3.4 Uniform Quantization

For each a; andd;,l < j<J, uniform quantization is realized. Quantization bin
size of A, is different for each a, and d; components can be calculated in the

Equations 6.10 and 6.11.
a, = A =(2max(abs(CA5)))/(2") (6.10)
d; > A =(2max(abs(CDi)))/(2") (6.11)

Quantized signal components are shown in the following figures from 6.20 to

6.25. For the equations seen above, i =1:5,n=8, A, are calculated. MSE is generated

in the quantization of approximation and detail coefficients. Mean square error and

quantization step size values for each segment (A) are shown in the Table 6.1. MSE

corresponds to the 5? and ¢, parameters. In Figure 6.19, the original ECG signal is

shown for the limited interval.
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Figure 6.19 Original ECG signal [0-242].
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Figure 6.20 Quantized CA5 [0-242].
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Figure 6.21 Quantized CD1 [0-242].
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Figure 6.22 Quantized CD2 [0-128].
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Figure 6.23 Quantized CD3 [0-128].



78

Chiantized CDd

15+

=
n
T

 Amplitude
i o

140

05+
-1k
15} -
_2 1 1 1 1
a 20 40 &0 80 100 120 140
Coetticient #
Figure 6.24 Quantized CD4 [0-128]
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Figure 6.25 Quantized CDS5 [0-128].
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Table 6.1
Quantization step size and MSE for different DWT coefficients.
DWT coefficients | Quantization step size A[mV ] Quantization MSE [107v?]
CAS 169,65 2,39
CD1 79,245 0,52
CD2 212,83 3,77
CD3 228,88 4,36
CD4 176,13 2,58
CD5 170,13 2,41

In the table above, quantization step size and the quantization mean square errors
for each DWT coefficients are shown [7]. The quantization errors have values in the

optimum range
6.3.5 LZW encoder

The input of the LZW block is the binary data sequence. The quantization levels
created by the quantization of the approximation and the detail coefficients are
converted into the binary data structure in order to use for the input of LZW encoding

[16].
Prior of the LZW encoding, binary conversion is done.
CAS5 _quantised — CA5 quan _coded
i=1:5
CDi _quantised — CDi_quan coded

On Figure 6.26 LZW encoder block diagram is displayed.
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Figure 6.26 LZW encoder.

On Figure 6.27 LZW decoder block diagram is displayed.

TS zZiv_ dee CD5_ ziv

1 LZW decoder &=

Figure 6.27 LZW decoder.

In the diagram shown above, CDS5 is given for an example. In addition to that,
quantized and binary coded data sequence of CD4, CD3, CD2, CD1, and CAS are

available at the input of the encoder and the decoder blocks.

The compression performance, namely the CR value is obtained as 12,91 by

means of LZW coding algorithm [7]. This result is provided with the Equation of 6.8.

CD5 _quan_coded is the input of LZW encoder, and CD5 ziv_dec is the
output of the LZW decoder. The result that is implemented by MATLAB programming

shows that, LZW method is a lossless compression algorithm. Both

CD5 quan_coded and CD5 ziv_dec displayed on Figure 6.28 are same with one

another.
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K=>> CDS5 ziv dec

CD5_ziv_dec=

Columns 1 through 18
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Figure 6.28 LZW encoder input and LZW decoder output.

6.3.6 Wavelet reconstruction

.

When the recostruction process is realized that is mentioned in the previous

sections, the reproduced signals for each level may be obtained shown in Figure 6.29.
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Figure 6.29 5 level wavelet synthesis.
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In Figure 6.30, the same signal is analyzed for the limited coefficients, and the

reconstructed waveform for 5 step decomposition is displayed as it is in the previous

one.
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Figure 6.30 5 level wavelet synthesis for 0 to 1000.
The reconstructed signal provided after the synthesis process is shown in Figure
6.31.

The error trace diagram that is realized in the method of wavelet transform is

displayed in Figure 6.32.
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Figure 6.31 The Original signal and reconstructed signal.
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Figure 6.32 Error occurs between original and reconstructed signals in WT model.
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6.3.7 Reconstruction mean square error

To make the results quantitatively comparable to other ECG compression
methods, here it is used most widely-known numerical indexes of PRD (percent root
mean square difference) and CR (compression ratio). In the following lines, the

changes of these parameters are shown.
When the subsignals are quantized, for 1< j<J, {aJ ,(d j)} the RMSE

(Reconstruction Mean Square Error) between the original signal a, and the

reconstructed a', occurs.

RMSE between the original signal and its reproduced version can be exactly

calculated from the quantization MSE’s of the decomposed subsignals (a, and d;). So,

for the first 7 segments that has 1024 samples, and the last segment that has 512
samples, RMSE is occurred [12], [13].

J
_ d
V=& +Z‘91
j=1

YV =&€cas T €cp1 + E€cpai€eps T €cpa T Ecps (6.12)

Calculated as y =16,03.107°v*

A widely used quantitative distortion measure for ECG coding is the PRD.
PRD is calculated the result of 7,3%

6.4 Discrete Cosine Transform & Discrete Sine Transform

Orthogonal transforms provide alternate signal representations that can be useful
for ECG data compression. The goal is to select as small a subset of the transform
coefficients as possible which contain the most information about the signal, without

introducing objectionable error after reconstruction.
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Based on the research, more than 99% of the power in DCT and DST is
contained within the first 20% of the coefficients. The coefficients after the first 20%,

are approximated as zero [3].

A wide variety of techniques are available for ECG data compression [1]. With
the emergence of fast DSP processors, and fast algorithms for the computation of many
orthogonal transforms, transform compression can be effectively used in real-time

applications [15].

Using orthogonal transform in data compression, a subset of the coefficients is
selected in the transform of the input signal with which can be reconstructed the signal
without introducing significant error. To obtain an optimal transform, an error criterion
is necessary the mean square error is often used in ECG applications. The optimum
orthogonal transform in the mean square criterion is the Karhunen-Loeve Transform

(KLT).

Original ECG signal is divided into blocks (subsignals). Each block is quantized
with the help of thresholding factor. Threshold factor is obtained empirically. By using
the threshold, the coefficients which have values below the threshold level are discarded
and only the remaining coefficients are taken into consideration. At the end, in order to
evaluate the performance of the compression, realized, the same parameters namely,

PRD and CR are used [7].

ECG signal compression via DCT & DST algorithms is displayed in the block

diagram, namely Figure 6.33, below.
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Figure 6.33 DCT & DST block diagram.

The first block includes the decomposition process in the diagram, comprise the
transformation procedure of DCT or DST [10]. After the implementation of
thresholding, the required coefficients are uniformly quantized. The output of the
quantization will be the input of LZW coding. Now, the digital data is compressed at the
end of entropy coding. This situation is somehow is the representation of the digital
signal with decreased size. Thus, entropy coding is so important in signal compression.
LZW coding method is used for the purpose of entropy encoding [16]. The remaining

issue is the inverse of the forward diagram.
6.4.1 Decomposition with DST & DCT

ECG signal taken from MIT-BIH database is used for this purpose. DST or
DCT transformation is the process of creating subsignals each has L input samples: In

other words, this is the procedure of DCT & DST block generation.

7680 =(1024x7)+512
7segments[l...7] > L =1024
8.segment > L =512

Below the first and the last DST block is given as an example displayed on
Figures 6.34 and 6.35.
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As it is mentioned above, there are 7 DST or DCT block available, with 1024
samples, and only one DST or DCT block with 512 samples, each has different from

one another.

W, is the DST or DCT form of the input ECG signal segment (segment,,
(i=1..,8)). Each W, has the same size withsegment,. That is to say, when,

(segment; ), ,;gp4 » then (W,), ;.4 - Blocking diagram is shown in Figure 6.36

(SEEERL )y YR
—» DET —
i=1..8 i=1...8
Figure 6.36 Blocking.

6.4.2 Threshold factor

Thresholding process is used in DCT and DST method. Thresholding provides
the increase of the number of quantized samples to zero, and let the LZW coding as

efficient as possible. Same threshold value is applied for each segment [5].

2 different parameters are used in the thresholding. For i=1,...,8, counterbidct is
the number of indexes different from zero in W, , before thresholding. On the other
hand, counteraidct is the number of indexes different from zero in Y,, after

thresholding. This process is seen in the Figure 6.37, below.

B Thresholding

\m

Figure 6.37 Thresholding.
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In order to keep the value of PRD and CR in acceptable level, threshold factor is
calculated as 0,2v in DCT and 15v in DST [5].

If threshold is set to 0, means that if threshold factor is not applied, it is observed
that Compression Ratio (CR) decreases, PRD and RMSE increases, actual

quantization MSE for each segment increases.

The effect of thresholding is displayed in Table 6.2.

Table 6.2
Thresholding effect.

i (segment #) counterbidct counteraidct | # of samples
quantized to 0
(DCT/DST) (DCT/DST) (counterhidt

counteraidct

(DCT/DST)
1 1024 /1024 697 /471 327 /533
2 1024 /1024 700 /468 324 /556
3 1024 /1024 727 /483 297 /541
4 1024 /1024 827 /530 197 / 494
5 1024 /1024 748 / 509 276 /515
6 1024 /1024 761 /517 263 /507
7 1024 /1024 729 /511 295/513
8 512 /512 384 /230 128 /282
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6.4.3 Uniform quantization

A 1is the quantization step size, and each sample is represented with 8§ bits (n=8).
A=(2*A,)/(2") can be defined. A, is different for each ECG segment. Thus

quantization step size is different for every ECG segment

Also, the MSE values in each segment is different from one another

N

e:ﬁg(xi _yi)2

While X, is defined for quantized segment,, and Y, is the DCT /DST taken and

threshold applied data sequence. In Table 6.3, quantization step size and real

quantization mean square error for only DCT is displayed.

Table 6.3
Quantization step size and real MSE values for each segments.
Quantized signal Quantization step size A[v] Real MSE ¢[10°v?]
segment, 0,275 4,3054
segment, 0,329 5,4926
segment, 0,201 2,2382
segment, 0,314 6,273
segment; 0,335 6,7621
segment, 0,331 6,5035
segment, 0,242 3,2778
segment, 0,169 1,7407
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6.4.4 LZW encoding

The quantized and binary coded levels are also the inputs of LZW encoder. This
conversion is shown in Figure 6.38. For every quantized and binary coded ECG

segments, LZW coding is applied displayed in Figure 6.39.

Segmenti_ quantised
E _< segmanti  quantised ooded

i=1.8 Binary i=1.8
—_ . e—-
COIVErsiorn

Figure 6.38 Binary conversion.

segmenti  quantised coded LW segmenti _ziv
N _
i=1..8 coding i=1..8
Figure 6.39 LZW encoder.

At the end of the LZW encoder, the compressed digital binary data sequence is
available. By using DCT and DST algorithms, the CR values are 11,08 in DCT , and

11,708 in DST calculated

6.4.5 LZW decoding

segmenti _ ziv—dec,i =1...8, is the decimal converted form of the binary data

sequence, shown in Figure 6.40.

segmenti ziv_dec segmenii ziv
LZW decoding
— |
i=1.8 i=1.8

Figure 6.40 LZW decoder.



92

6.4.6 Inverse DST/DCT

It would be possible to reconstruct the ECG signal with the help of inverse
discrete cosine/sine transform that has L input samples in each subsignal. In Figure

6.41, IDST block diagram is displayed.

arepi Inverse DST | Segmenti ziv_dec
- | e
i=1.8 i=1.8

Figure 6.41 IDST block diagram.

arepi,i=1...8, is the reconstructed ECG segments generated by IDCT algorithm.
In Figure 6.42 and 6.43, it may be possible to see the reconstructed arep, that is belong

to segment, and last reproduced segment arep, , related with segment; .

10 recanstruct e seom ent1 signal with idst process
25 T T T T T
2F —
15 .
1]
=
=
z 1T 7]
&
0.3 .
oH -
-I:I 5 L L 1 1 1
’ 200 400 B00 a00 1000 1200
# of samples

Figure 6.42 Reconstructed signal, arepl, L=1024.
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Figure 6.43 Reconstructed signal, arep8, L=512.
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The reconstructed signal waveform is shown in Figure 6.44. In that case,

reconstruction error in DCT is e=1014.10"v’ and in DST e=1,54.10"°v* is

calculated.

amplituce

amplituce

w10 original signal wasefonn
3 T T T T T
2 L 4
1 L 4
or i
_1 1 1 1 | |
a 200 400 &00 800 1000 1200
index - n
w10 reconstructed signal wasefomm
&) T T T T T
oL -
1 L 4
D - 4
-1 1 1 1 | |
a 200 400 &00 aoo 1000 1200
incex -n

Figure 6.44 Original and reconstructed signal waveform.
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The error trace diagrams for the discrete cosine & sine transform methods are

displayed in Figures 6.45 and 6.46, respectively.

Distortion evaluation parameter PRD is calculated as PRD =2,2357% in DCT
and PRD =2,75% in DST .

x 10°

amplitude

_3 I I | | | | I | | |
0 100 200 300 400 500 600 700 800 900 1000
coefficient #

Figure 6.45 Error between original and reconstructed signal in DCT model.
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Figure 6.46 Error occurs between original and reconstructed signal in DST model.

6.5 Wavelet Packet Transform

Wavelet packet transform offers a richer range and a detailed investigation of the
signal analysis. In wavelet packet analysis, the details as well as the approximations can

be split [4], [9].

The # decomposition level that is used in wavelet transform is still be used in
wavelet packet transform. L=35 will be used for the implementation. For W, ,
j=0,..5, n=0,..,31, wavelet packet coefficients are generated. Then, with the help of

the algorithms of uniform quantization and coding, the original signal is compressed.

LZW decoder and wavelet packet synthesis blocks, allows to reconstruct the

original signal again.

In the wavelet packet transform method, the effect of different wavelet family in
use is investigated on CR performance. Besides the changes, when the # of

decomposition level is decreased, is analyzed and submitted as a report. For the
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different wavelet family, the CR and the PRD values are evaluated for each transform

methods.

The error trace diagram that is realized in the method of Wavelet Packet

Transform is displayed in Figure 6.47.

X 106

amplitude
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coefficient #

Figure 6.47 Error between original and reconstructed signal in WPT model.

6.6 Direct Compression Result

If the compression is done directly on the ECG samples, the compression ratio
that is obtained is lower then the results achieved in transform methods, examples
include wavelet transform, wavelet packet transform, discrete cosine transform, and

discrete sine transform. The obtained CR wvalue is 1,135. Decomposition,

transformation, quantization and thresholding are not used. The original ECG samples

are applied directly to entropy coding.
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6.7 Analysis with Arrhythmia ECG signal

Digital signal with 4170 samples is used for arrhythmia case. Based on the

applications, CR and PRD values are calculated as 16,28 and 34,269% successively.

The error trace diagram for the arrhythmia ECG signal that is realized in the method of

Wavelet Transform is displayed in Figure 6.48.
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amplitude
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1 |
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0 200 400 600 800 1000 1200
coefficient #

-0.4

Figure 6.48 Error between original and reconstructed signal in WT model for arrhythmia.

The results of the evaluation show that the reproduced ECG waveform at
specified PRD of 34,269% is defined as notably degenerated, some lost in diagnostic
information, and clinically not acceptable. The original and reproduced forms for

arrhythmia ECG signal are shown in the same plot in Figure 6.49.
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Figure 6.49 Original and reconstructed waveform for WT model of arrthythmia ECG signal.

The error trace analysis is also investigated in discrete cosine transform for the
same arrhythmia ECG signal with 4170 samples. The distortion mentioned above is
also occurred in DCT model with the PRD value of 18,95% . The CR value is 7,32.

The error trace diagram for the arrhythmia ECG signal that is realized in the method of

DCT is displayed in Figure 6.50.

The original and reproduced forms for arrhythmia ECG signal are shown in the

same plot in Figure 6.51 for the DCT model.
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Figure 6.50 Error occurs between original and reconstructed signal in DCT model for arrhythmia.
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Figure 6.51 Original and reconstructed waveform for DCT model of arrhythmia ECG signal.
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7. RESULTS

7.1 Application Details & Conclusion

Digital ECG signal compression is successfully realized with the four different
methods of wavelet transform, wavelet packet transform, discrete cosine transform, and

discrete sine transform. A Pentium 4, 2,4GHz CPU, 256 MB RAM PC is used to test

all of the algorithms developed.

10 different wavelet families are applied to two different types of ECG signals
(normal and arrhythmic). The efficiency of the methods are compared with each other
using two quantitative parameters, namely the Compression Ratio (CR) and the

Percent Root Mean Square Difference (PRD ),

The CR values obtained by the WPT method is smaller then the CR wvalues
generated by the WT . It is clear that, the compressed data bits size (B) in WPT
method is larger then ( A) the WT method shown in Equation 7.1 and 7.2.

ODB

WT — CR,; = — (7.1)
WPT — CRp; = —OEB (7.2)

When, B> A

B is compressed data size in WPT , A is compressed data size in WP .

Then, CR,; >CR,p; can be concluded.

On the other hand, CR values generated by the WT method is larger then the
DCT and DST methods. Thus, the CR performance evaluation can be arranged as

follows, only available for the same decomposition level

CRyr > CRpsr > CRper > CRypr
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The second parameter that allows us evaluate the compression performance is the
PRD . The distortion that results after a WT based compression is larger than those

that results after WPT based compressions and some other transform methods, i.e.,

PRD,»; < PRD,

The effect of decomposition level is analyzed only for the WPT method. If the
value of L is increased, the CR decreases and in general the distortion in the

reconstructed signal is also decreased. The effect of level is displayed in Table 7.5.

The threshold factor is also studied for the Discrete Sine Transform and Discrete
Cosine Transform based methods and the effect of this factor on the CR and on the
PRD values . If the threshold factor is not applied, the CR decreases, PRD increases,
RMSE increases, and actual quantization MSE for each segment increases. Threshold
effect on actual quantization error both for DST and DCT are displayed in Tables 7.3
and 7.4.

To sum up, in all the techniques implemented, if the the CR increases the
distortion, i.e., the PRD also increases. The expected and the optimal result is high
compression ratio and low PRD value. This situation is directly related with the signal.
For example, the most appropriate result for Table 7.1 is wavelet transform; on the other
hand, the DCT method presents the best results in Table 7.2. In general, the highest
compression ratio is realized with the wavelet transform based technique and the lowest

PRD is obtained with the wavelet packet transform based method.



Table 7.1
CR and PRD values for the signal with 7680 coefficients.
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Signal (7680 Transform (DecomI;)osition Wav;let CR (Compression (percen}‘:}r{g)t mean
coefficients) method level) family Ratio) square difference)

ECG WT 5 dbl 13,52 9,55

db2 12,91 7,30

db3 12,79 4,55

bior2.2 14,10 5,18

bior3.1 13,02 8,43

bior4.4 12,99 0,51

coifl 12,84 4,04

coif2 13,14 3,65

sym2 12,91 7,30

symS5 13,19 2,46

WPT 5 dbl 7,98 0,17

db2 7,76 0,94

db3 7,69 3,70

bior2.2 7,81 1,10

bior3.1 7,68 0,54

bior4.4 7,65 1,74

coifl 7,76 23

coif2 7,64 0,90

sym2 7,76 0,93

sym5 7,68 0,77

DCT thr=0 10,94 5,80

thr=0,2 11,08 2,23

DST thr=0 9,53 5,76

thr=15 11,708 2,75




Table 7.2
CR and PRD values for the signal with 5001 coefficients.

103

Signal (5001 | Transform L Wavelet |CR (Compression PRD
coefficients) method (Decomposition family Ratio) (Percent root mean
level) square difference)

ECG Wavelet 5

transform dbl 12,6 5,58

db2 13,44 3,04

db3 13,89 4,41

bior2.2 13,74 5,41

bior3.1 14,49 5,42

bior4.4 13,98 6,54

coifl 13,66 6,21

coif2 14,11 9,54

sym2 13,44 3,04

symS 13,79 8,18

WPT 5 dbl 7,5 4,16

db2 7,9 3,44

db3 8,22 5,13

bior2.2 8,05 0,75

bior3.1 8,15 9,83

bior4.4 8,73 3,19

coifl 791 0,72

coif2 9,4 1,92

sym2 7,89 3,44

symS 8,53 3,95

DCT thr=0 13,66 0,45

thr=0,2 13,68 0,44




Table 7.3

DST threshold effect on actual MSE.

thr=10 thr =15
Actual Quantization | Actual Quantization
segment # Error Error

segment] 207 053
seqgment? 2,22 104
seqgmentd 28 05s
seqgmentd 407 205
seqgments 3 h7 185
seqgments 3597 2
seqgmenty 34 175
seqmentd 0,53 046

Table 7.4

DCT threshold effect on actual MSE.
thr=10 thr =02

Actual Quantization

Actual Quantization

segment # Error exp(-3) Error {exp-3)
segment] G281 473
segment2 g .45 549
segment3 3,22 223
segmentd a,11 B 27
segments 953 6,76
segmentd 9,01 G5
segment? a4 77 327
segmentd 2,24 1,74

104
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Table 7.5
Decompositon level effect on WPT.
Signal (7680 Transform (Deconi)osi tion Wav;let CR (Compression (Percent rol(n)lt{gean square
coefficients) method Jevel) family Ratio) difference)
ECG WPT L=5 dbl 7,98 0,17
db2 7,76 0,94
db3 7,69 3,70
bior2.2 7,81 1,10
bior3.1 7,68 0,54
bior4.4 7,65 1,74
coifl 7,76 2,30
coif2 7,64 0,90
sym2 7,76 0,93
symS 7,68 0,77
L=4 dbl 9,31 2,45
db2 9,18 2,36
db3 8,91 3,01
bior2.2 922 3,94
bior3.1 9,26 2,67
bior4.4 9,01 0,57
coifl 9,22 0,26
coif2 8,93 0,27
sym2 9,18 236
symS 8,91 2,89
L=3 dbl 10,33 2,54
db2 10,72 4,93
db3 10,60 1,67
bior2.2 10,94 3,82
bior3.1 11,11 315
bior4.4 10,84 2,82
coifl 10,90 3,14
coif2 10,90 2,69
sym2 10,72 493
symS5 10,61 3,24
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7.2 Suggestions for Future Study

For further study, a new compression method may be studied and compared with
the wavelet transform in terms of the compression ratio and the distortion measure
(PRD). Another way of using these transform techniques may be provided by
combining the strongest features to compress the digital ECG data as much as possible
while maintaining clinically acceptable signal quality. The same threshold factor may
be used for all of the segments and analyzed. This threshold factor is able to be
determined based on the signal, and let the application to use the optimum threshold

level after decomposition for every segment.

The most appropriate wavelet family for the analyzed signal can be studied. In
this study, DDb2 is used as a primary wavelet due to the similarity with the ECG signal.
Such an intelligence may be provided to select the appropriate wavelet based on the

signal, its amplitude and the number of coefficients, etc.
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