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ABSTRACT 

WAVELET TRANSFORM BASED ELECTROCARDIOGRAM 
COMPRESSION AND COMPARISON WITH DCT/DST METHODS 

 

In this thesis we investigate wavelet transform based ECG compression 

techniques and compare them with conventional approaches. A major issue addressed is 

how to guarantee a user-specified error limit measured by the percent root mean square 

difference ( PRD ) for the reconstructed ECG signal to be controlled at every segment 

while keeping the compression ratio (CR ) as large as possible with reasonable 

implementation complexity. 

Two wavelet transform based compression methods, one based on discrete 

orthonormal wavelet transform ( DOWT ) and the other based on wavelet packet 

transforms are studied in detail.  Decomposition, uniform quantization, and entropy 

coding are applied successively to compress the digital ECG signal while entropy 

decoding, and inverse transformation are applied to reconstruct the original signal. 

Different types of wavelet families are used to analyze the effect on CR  and PRD . 

More conventional discrete sine / cosine transform based methods are also studied for 

comparison purposes. 

Two numerical metrics PRD  and CR  are used as the major performance 

evaluation parameters to quantitatively compare one method to another. The CR  is a  

measure of compression efficiency; the PRD  gives information about the performance 

of the compression scheme and the distortion measured. Using the techniques 

developed, two different types of ECG signals (normal and an arrhythmic) are 

compressed analyzed and the results are reported. In each technique, while the PRD  

increases, the CR  also increases. In general, the highest CR  values are obtained with 

the wavelet transform; the lowest PRD  values are obtained with the wavelet packet 

transform.  

Keywords: Biomedical Signal Compression, Electrocardiogram, Wavelet Transform, 

Discrete Sine Transform, Discrete Cosine Transform, Arrhythmia. 
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ÖZET 

ELECTROKARDİOGRAM İŞARETLERİNİN DALGACIK 
DÖNÜŞÜMÜ YÖNTEMİ İLE SIKIŞTIRILMASI VE DCT/DST 

METODLARIYLA KARŞILAŞTIRILMASI 
 

 

Bu tez çalışmasında, elektrokardiogram işaretinin dalgacık dönüşümü temelli 

sıkıştırılması incelenmiş ve bu yöntem geleneksel sıkıştırma yaklaşımları ile 

karşılaştırılmıştır. Tez çalışmasında ele alınan en önemli konu, yeniden elde edilen her 

bir EKG parçasında, denetlenen yanılgıların karelerinin toplamlarının karekökü (PRD) 

ile, kullanıcı tarafından tanımlanan yanılgı düzeyini güvence altına almak ve sıkıştırma 

oranını (CR) benimsenilen uygulama karmaşıklığı ile birlikte, olabildiğince yüksek 

düzeyde tutmaktır. 

Birisi ayrık birimdik dalgacık donüşümü ve diğeri ise dalgacık paket dönüşümü 

temelli iki sıkıştırma yöntemi üzerinde detaylı olarak çalışılmıştır. Sayısal 

elektrokardiogram işaretini sıkıştırmak için sırasıyla ayrıştırma, düzgün kuantalama ve 

entropi kodlama uygulanmaktayken, özgün işareti yeniden elde etmek için de, entropi 

kodçözme ve ters dönüşüm uygulanmaktadır. CR ve PRD parametreleri üzerindeki 

etkileri çözümleyebilmek için farklı tipte dalgacık aileleri kullanılmıştır. Aynı zamanda, 

daha geleneksel ayrık sinüs / kosinüs dönüşüm temelli yöntemler üzerinde de 

karşılaştırma amaçlı olarak çalışılmıştır. 

PRD ve CR metrikleri, bir yöntemi diğeri ile sayısal olarak karşılaştırmak 

amacıyla en önemli başarım değerlendirme ölçütleri olarak kullanılırlar. CR bir 

sıkıştırma verimliliğinin ölçütüdür; PRD ise  sıkıştırma başarımı ve ölçülen işaret 

bozunumu ile ilgili bilgi verir. İki farklı elektrokardiogram işareti (olağan ve aritmik) 

geliştirilen yöntemler kullanılarak, sıkıştırılmış, çözümlenmiş ve sonuçlar 

raporlanmıştır. Her bir yöntemde PRD artarken CR de artmaktadır. Genel olarak, en 

yüksek CR değerleri dalgacık dönüşümü ile elde edilirken, en düşük PRD değerleri ise 

dalgacık paket dönüşümü ile elde edilmektedir.  

Anahtar Kelimeler: Biomedikal İşaret Sıkıştırma, Elektrokardiogram, Dalgacık 

Dönüşümü, Ayrık Sinüs Dönüşümü, Ayrık Kosinüs Dönüşümü, Aritmi. 
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1.   INTRODUCTION 

1.1  Background and Motivation 

The aim of electrocardiogram (ECG) data compression is to compress the amount 

of digitized ECG data as much as possible with reasonable implementation complexity 

while maintaining clinically acceptable signal quality. In order to achieve this goal an 

electrocardiogram (ECG) data compression method is presented which is based on 

orthonormal wavelet transform and a uniform quantization strategy with high 

compression ratio and low implementation complexity [1]. 

In recent years, many schemes for ECG compression have been proposed, which 

can be grouped into two categories: Direct methods and transform methods. 

In direct methods, the compression is done directly on the ECG samples. 

Examples include the AZTEC (amplitude zone time epoch coding), TP (turning point), 

CORTES (coordinate reduction time encoding system), and SAPA (scan-along 

polygonal approximation), peak-picking, cycle to cycle are the examples of the direct 

methods [1]. 

In the transform methods, the original samples are transformed to another domain 

in the hope of achieving better compression performance. Some examples include 

Fourier descriptors, Walsh Transform, Karhunen-Loeve Transform, Discrete Cosine 

Transform, and recently developed Wavelet Transform [2], [3]. 

In most cases, direct methods are superior to transform methods with respect to 

system complexity and error control mechanism. However, transform methods usually 

achieve higher compression ratios and are insensitive to the noise contained in original 

ECG signals.  

For ECG coding systems, the error control problem for a reproduced ECG signal 

is an important issue because ECG signals are usually non-stationary and if the quality 

of a reconstructed ECG signal is not guaranteed, the compression process itself will 

become less useful. 
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In the case of direct methods, the error limit for a reproduced ECG signal is easily 

controlled by adjusting a user-specified error threshold. In the case of transform 

methods, however, the error control is difficult because the distortion of each 

reconstructed segment of the ECG signal varies with the complex pattern of the 

segment. 

The major issue addressed in this thesis is how to guarantee a user-specified error 

limit measured by the percent root mean square difference ( PRD ) for the reconstructed 

ECG signal to be controlled at every segment while keeping the compression ratio as 

large as possible with reasonable implementation complexity. 

In this thesis, first a discrete orthonormal wavelet transform ( DOWT ) based ECG 

coding system by which a user-specified PRD  of the reproduced ECG segments are 

guaranteed with the acceptable signal quality is studied. Discrete Sine / Cosine 

Transforms are the second method studied in this thesis. The last method that is 

implemented is the wavelet packet transform method. In this method, different types of 

wavelet families are used to analyze the effect on CR  and PRD  [4].  

In the first part, decomposition, uniform quantization, and entropy coding are 

applied successively to compress the digital ECG signal. In the second part, namely, in 

the decoder part, entropy decoding, and inverse transformation are applied to 

reconstruct the original signal. 

The performance evaluation parameters, namely PRD  and CR  are used to 

compare one method to another. Two different ECG signals are analyzed, and the 

results are reported. In all of the four methods, compression of digital ECG signal is 

realized with the same programming language, MATLAB. 

In the early years, direct methods have been used to compress the ECG signals. 

Due to the higher compression ratios, transform methods are becoming more popular 

and new transform methods are being investigated for high CR  and low PRD . 



 3

1.2  Objectives 

The objective of this thesis is to investigate wavelet transform based 

electrocardiogram (ECG) data compression methods that compress digitized ECG data 

as much as possible with reasonable implementation complexity while maintaining 

clinically acceptable signal quality and to compare them with conventional approaches. 

Different wavelet transform based compression methods, based on both discrete 

orthonormal wavelet transform ( DOWT ) and on wavelet packet transforms will be 

studied in detail. The issue of how to guarantee a user-specified error limit measured by 

the percent root mean square difference ( PRD ) for the reconstructed ECG signal to be 

controlled at every segment while keeping the compression ratio (CR) as large as 

possible with reasonable implementation complexity will be studied in detail.  

1.3  Outline of the Thesis 

This chapter introduces the thesis. In Chapter 2, the anatomy and the physiology 

of the heart, heart’s electrical activity and ECG signal components are discussed. The 

wavelet and the wavelet packet methods are presented in Chapter 3. Basic wavelet 

functions, continuous and discrete wavelet transforms, one and multi level 

decomposition and reconstruction issues are presented in the same chapter.  

Chapter 4 is related with the other transform methods, namely, Discrete Sine and 

Cosine Transforms [5]. 

The digital signal compression issue is handled in the chapter of 5. Compression 

performance, error criterion, quantization, and LZW coding concepts are defined in the 

same section. 

The 6th chapter is the application and implementation chapter. All the results 

related with compression methods (WT , WPT , DST , DCT ) are determined and 

displayed. 

The last section is the result and the conclusion section. The implementation 

results are submitted in the tables, for every signal, for each wavelet family, and for 
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different decomposition level. A detailed report is available in the last chapter of this 

thesis. Suggestion for the future work is also added at the end.    
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2.   THE HEART AND THE ECG SIGNAL 

2.1  The Heart 

2.1.1  Anatomy and physiology of the heart  

The heart whose sole purpose is to circulate blood through the circulatory system 

consists of four hollow chambers. The anatomy of the heart is displayed in Figure 2.1. 

The upper two chambers, the right and left atria, are thin-walled; the lower two, the 

right and left ventricles are thick-walled and muscular. The walls of the ventricles are 

composed of three layers of tissue: the innermost thin layer is called the endocardium; 

the middle thick, muscular layer, the myocardium; and the outermost thin layer, the 

epicardium. The walls of the left ventricle are more muscular and about three times 

thicker than those of the right ventricle [6]. 

 

Figure 2.1 Anatomy of the heart. 
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The atrial walls are also composed of three layers of tissue like those of the 

ventricles, but the middle muscular layer is much thinner. The two atria form the base of 

the heart; the ventricles form the apex of the heart. 

The interatrial septum (a thin membranous wall) separates the two atria, and a 

thicker, more muscular wall, the interventricular septum, separates the two ventricles. 

The two septa, in effect, divide the heart into two pumping systems, the right heart and 

the left heart, each one consisting of an atrium and a ventricle. 

The right heart pumps blood into the pulmonary circulation (the blood vessels 

within the lungs and those carrying blood to and from the lungs). The left heart pumps 

blood into the systemic circulation (the blood vessels in the rest of the body and those 

carrying blood to and from the body). 

The right atrium receives unoxygenated blood from the body via two of the 

body’s largest veins (the superior vena cava and inferior vena cava) and from the heart 

itself by way of the coronary sinus. The blood is delivered to the right ventricle through 

the tricuspid valve. The right ventricle then pumps the unoxygenated blood through the 

pulmonic valve and into the lungs via the pulmonary artery. In the lungs, the blood 

picks up oxygen and releases excess carbon dioxide. 

The left atrium receives the newly oxygenated blood from the lungs via the 

pulmonary veins and delivers it to the left ventricle through the mitral valve. The left 

ventricle then pumps the oxygenated blood out through the aortic valve and into the 

aorta, the largest artery in the body. From the aorta, the blood is distributed throughout 

the body where the blood releases oxygen to the cells and collects carbon dioxide from 

them. 

The heart performs its pumping action over and over in a rhythmic sequence. 

First, the atria relax (atrial diastole), allowing the blood to pour in from the body and 

lungs. As the atria fill with blood, the atrial pressure rises above that in the ventricles, 

forcing the tricuspid and mitral valves to open and allowing the blood to empty rapidly 

into the relaxed ventricles. Then the atria contract (atrial systole), filling the ventricles 

to capacity. 
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Following the contraction of the atria, the pressures in the atria and ventricles 

equalize, and the tricuspid and mitral valves begin to close. Then, the ventricles contract 

vigorously, causing the ventricular pressure to rise sharply. The tricuspid and mitral 

valves close completely, and the aortic and pulmonic valves snap open, allowing the 

blood to be ejected forcefully into the pulmonary and systemic circulations. 

Meanwhile, the atria are again relaxing and filling with blood. As soon as the 

ventricles empty of blood and begin to relax, the ventricular pressure falls, the aortic 

and pulmonic valves shut tightly, the tricuspid and mitral valves open, and the rhythmic 

cardiac sequence begins anew. 

The period from the opening of the aortic and pulmonic valves to their closing, 

during which the ventricles contract and empty of blood, is called ventricular systole. 

The following period from the closure of the aortic and pulmonic valves to their 

reopening, during which the ventricles relax and fill with blood, is called ventricular 

diastole. The sequence of one ventricular systole followed by a ventricular diastole is 

called the cardiac cycle, commonly defined as the period from the beginning of one 

heart beat to the beginning of the next. 

2.1.2  Electrical conduction system of the heart 

The electrical conduction system of the heart which is displayed on Figure 2.2, is 

composed of the following structures: Sinoatrial (SA) node, Internodal atrial conduction 

tracts and the interatrial conduction tract (Bachmann’s bundle), Atrioventricular (AV) 

junction consisting of the atrioventricular (AV) node and bundle of His, Right bundle 

branch, left bundle branch, and left anterior and posterior fascicles, Purkinje network. 

The prime function of the electrical conduction system of the heart is to transmit 

minute electrical impulses from the SA node (where they are normally generated) to the 

atria and ventricles, causing them to contract.  
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Figure 2.2 Electrical conduction system. 

The SA node lies in the wall of the right atrium near the inlet of the superior vena 

cava. It consists of pacemaker cells that generate electrical impulses automatically and 

regularly. 

The three internodal atrial conduction tracts, running through the walls of the right 

atrium between the SA node and the AV node, conduct the electrical impulses rapidly 

from the SA node to the AV node in about 0.03 second. The interatrial conduction tract 

(Bachmann’s bundle), a branch of one of the internodal atrial conduction tracts, extends 

across the atria, conducting the electrical impulses from the SA node to the left atrium. 

The AV node lies partly in the right side of the interatrial septum in front of the 

opening of the coronary sinus and partly in the upper part of the interventricular septum 

above the base of the tricuspid valve. The primary function of the AV node is to relay 

the electrical impulses from the atria into the ventricles in an orderly and timely way. A 

ring of fibrous tissue insulates the reminder of the atria from the ventricles, preventing 

electrical impulses from entering the ventricles except through the AV node. 

The electrical impulses slow as they travel through the AV node, taking about 

0.06 to 0.12 second to reach the bundle of His. The delay is such that the atria can 

contract and empty, and the ventricles fill before they are stimulated to contract. 

 

sinoatrial (SA) node

interatrial conduction tract
(Bavhmann’s bundle)

internodal atrial conduction tracts

atrioventricular (AV) node

bundle of His

left bundle branch

left posterior fascicle

left anterior fascicle
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The bundle of his lies in the upper part of the interventricular septum connects the 

AV node with the two bundle branches. Once the electrical impulses enter the bundle of 

His, they travel more rapidly on their way to the bundle branches, taking 0.03 to 0.05 

second. 

The right bundle branch and the left common bundle branch arise from the bundle 

of His, straddle the interventricular septum, and continue down both sides of the 

septum. The left common bundle branch further divides into two major divisions: the 

left anterior fascicle and the left posterior fascicle. The bundle branches and their 

fascicles subdivide into smaller and smaller branches, the smallest ones connecting with 

the Purkinje network, an intricate web of tiny Purkinje fibers spread widely throughout 

the ventricles beneath the endocardium. The ends of the Purkinje fibers finally terminate 

at the myocardial cells. The bundle of His, the right and left bundle branches, and the 

Purkinje network are also known as the His-Purkinje system of the ventricles. 

The electrical impulses travel very rapidly to the Purkinje network through the 

bundle branches in less than 0.01 second. All in all, it normally takes the electrical 

impulses less than 0.2 second to travel from the SA node to the Purkinje network in the 

ventricles. 

2.1.3  Electrophysiology of the heart 

Cardiac cells are capable of generating and conducting electrical impulses that are 

responsible for the contraction and relaxation of myocardial cells. These electrical 

impulses are the result of brief but rapid flow of positively charged ions (primarily 

sodium and potassium ions and, to a lesser extent, calcium ions) back and forth across 

the cardiac cell membrane. The difference in the concentration of such ions across the 

cell membrane at any given instant is called the electrical potential and is measured in 

millivolts (mV) [6]. 

When a myocardial cell, for example, is in the resting state, a high concentration 

of positively charged sodium ions (Na+) (cations) is present outside the cell. At the 

same time, a high concentration of negatively charged ions (especially organic 

phosphate ions, organic sulfate ions, and protein ions) (anions) mixed in with a smaller 
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concentration of positively charged potassium ions (K+) is present inside the cell, 

making the interior of the cell electrically negative with reference to its positive 

exterior. Under these conditions, a negative electrical potential exists across the cell 

membrane. This is made possible by the cell membrane being impermeable to (1) 

positively charged sodium ions during the resting state and (2) negatively charged 

phosphate, sulfate, and protein ions at all times. When a cell membrane is impermeable 

to an ion, it does not permit the free flow of that ion across it. 

The resting cardiac cell can be depicted as having a layer of positive ions 

surrounding the cell membrane and an equal number of negative ions lining the inside 

of the cell membrane directly opposite each positive ion. When the ions are so aligned, 

the resting cell is called polarized. 

The electrical potential across the membrane of a resting cardiac cell is called the 

resting membrane potential. The resting membrane potential in atrial and ventricular 

myocardial cells and the specialized cells of the electrical conduction system (except 

those of the SA and AV nodes) is normally –90 mV. It is somewhat less in the SA and 

AV nodal cells, –70 mV. 

Upon stimulation by an electrical impulse, the membrane of a polarized 

myocardial cell, for example, becomes permeable to positively charged sodium ions, 

allowing sodium to flow into the cell. This causes the interior of the cell to become less 

negative. When the membrane potential drops to about –60 mV from its resting 

potential of –90 mV, large pore in the membrane (the fast sodium channels) 

momentarily opens. These channels facilitate the rapid, free flow of sodium across the 

cell membrane, resulting in a sudden large influx of positively charged sodium ions into 

the cell. This causes the exterior of the cell to become rapidly negative with respect to 

the now positive interior. At the moment when the interior of the cell becomes 

maximally positive and the exterior maximally negative, the cell is depolarized. The 

process by which the cell’s resting, polarized state is reversed is called depolarization. 

The fast sodium channels are typically found in the myocardial cells and the 

specialized cells of the electrical conduction system other than those of the SA and AV 

nodes. The cells of the SA and AV nodes have, instead of fast sodium channels slow 
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calcium-sodium channels the open when the membrane potential drops to about –50 

mV. They permit the entry of positively charged calcium and sodium ions into the cells 

during depolarization at a slow and gradual rate. The result is a slower rate of 

depolarization as compared to the depolarization of cardiac cells with fast sodium 

channels.  

As soon as a cardiac cell depolarizes, positively charged potassium ions flow out 

of the cell, initiating a process by which the cell returns to its resting, polarized state. 

This process, called repolarization, involves a complex exchange of sodium, calcium, 

and potassium ions across the cell membrane. 

Depolarization of one cardiac cell acts as an electrical impulse (or stimulus) to 

adjacent cells and causes them to depolarize. The propagation of the electrical impulse 

from cell to cell produces a wave of depolarization which can be measured as an electric 

current flowing in the direction of depolarization. As the cells repolarize, another 

electric current is produced, similar to, but opposite in direction to, the first one. The 

direction of flow and magnitude of the electric currents generated by the depolarization 

and repolarization of the myocardial cells of the atria and ventricles can be detected by 

surface electrodes and recorded as the electrocardiogram (ECG). Depolarization of the 

myocardial cells produces the P wave and QRS complex, and repolarization of the cells 

results in the T wave in the electrocardiogram. At below, depolarization and 

repolarization of a muscle fiber is depicted on Figure 2.3 [6]. 
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Figure 2.3 Depolarization and repolarization of a muscle fiber. 

2.2  The Electrocardiogram 

2.2.1  Electrical basis of the electrocardiogram 

The electrocardiogram (ECG) is a graphic record of the changes in magnitude and 

direction of the electrical activity, or, more specifically, the electric current, that is 

generated by the depolarization and repolarization of the atria and ventricles. The 

electrical basis of the ECG is displayed on Figure 2.4. This electrical activity is readily 

detected by electrodes attached to the skin. But neither the electrical activity that results 

from the generation and transmission of electrical impulses which are too feeble to be 

detected by skin electrodes nor the mechanical contractions and relaxations of the atria 

and ventricles (which do not generate electrical activity) appear in the 

electrocardiogram. 
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Figure 2.4 Electrical basis of the ECG.  

2.2.2  Components of the electrocardiogram 

After the electric current generated by depolarization and repolarization of the 

atria and ventricles is detected by electrodes, it is amplified, displayed on an 

oscilloscope, recorded on ECG paper, or stored in memory. The electric current 

generated by atrial depolarization is recorded as the P wave, and that generated by 

ventricular depolarization is recorded as the Q, R and S waves: the QRS complex. Atrial 

repolarization is recorded as the atrial T wave (Ta), and ventricular repolarization, as the 

ventricular T wave, or simply, the T wave. Because atrial repolarization normally 

occurs during ventricular depolarization, the atrial T wave is buried or hidden in the 

QRS complex. [6]. 

In a normal cardiac cycle, the P wave occurs first, followed by the QRS complex 

and the T wave, shown in Figure 2.5. 
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Figure 2.5 Components of the ECG. 

The sections of the ECG between the waves and complexes are called segments 

and intervals: the PR segment, the ST segment, the TP segment, the PR interval, the QT 

interval, and the R-R interval. Intervals include waves and complexes, whereas 

segments do not [6]. 

When electrical activity of the heart is not being detected, the ECG is a straight, 

flat line the isoelectric line or baseline. 

2.2.3  ECG leads 

An ECG lead is a record (spatial sampling) of the electrical activity generated by 

the heart that is sensed by either one of two ways: (1) two discrete electrodes of 

opposite polarity or (2) one discrete positive electrode and an indifferent, zero reference 

point. A lead composed of two discrete electrodes of opposite polarity is called a bipolar 

lead; a lead composed of a single discrete positive electrode and a zero reference point 

is a unipolar lead. 

Depending on the ECG lead being recorded, the positive electrode may be 

attached to the right or left arm, the left leg, or one of several locations on the anterior 

chest wall. The negative electrode is usually attached to an opposite arm or leg or to a 

reference point made by connecting the limb electrodes together. 
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For a detailed analysis of the heart’s electrical activity, usually in the hospital 

setting, an ECG recorded from 12 separate leads (the 12-lead ECG) is used. The 12-lead 

ECG is also used in the pre hospital phase of emergency care in certain advanced life 

support services to diagnose acute myocardial infraction and to help in the identification 

of certain arrhythmias. A 12-lead ECG consists of three standard (bipolar) limb leads 

(leads I, II, and III), three augmented (unipolar) leads (leads aVR, aVL, and aVF) and 

six precordial (unipolar) leads (V1, V2, V3, V4, V5, and V6). 

When monitoring the heart solely for arrhythmias, a single ECG lead, such as the 

standard limb lead II, is commonly used, especially in the prehospital phase of 

emergency care. The combinations of the leads are displayed on the Figures 2.6, 2.7, 

and 2.8 succesively [6]. 

 

 

 

Figure 2.6 The standard (bipolar) limb leads I, II, and III.  
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Figure 2.7 The augmented (unipolar) leads aVR, aVL, and aVF. 
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Figure 2.8 Precordial (unipolar) leads. 



 17

2.3  MIT-BIH Database 

The database used in this work is a collection of files from the MIT-BIH Database 

CD-ROM. This database is accessible via the internet portal: http://ecg.mit.edu. Here, 

the digital data is stored in three formats: Header (.hea) file, attribute (.atr) file, and the 

data (.dat) file. 

The ECG recordings in the MIT-BIH database are taken as a reference data by the 

researchers who are studying on compression, storing, classification of digital ECG 

signals. At this work, standard digital ECG signal (.dat file) is taken as a reference and 

used in the implementation phase [7]. 
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3.   WAVELETS AND WAVELET PACKETS 

3.1  Introduction 

This section presents some background information on wavelets and wavelet 

transforms, including their implementation using filters. This theory is necessary for 

understanding the material that follows in the literature review and certain other 

sections of the thesis. 

3.2  Fourier Transform 

This part develops the need and motivation for studying the wavelet transform. 

Historically Fourier Transform (FT) has been the most widely used tool for signal 

processing. As signal processing began spreading Fourier Transform was found to be 

unable to satisfy the growing need for processing a bulk of signals. Hence, this section 

begins with a review of Fourier Methods. The shortcoming of Fourier methods is 

determined. Next, wavelet transform is concerned and expounded how the drawbacks of 

FT are eliminated [1]. 

For a continuous time signal )(tx  the Fourier Transform equations are as follows. 

∫
+∞

∞−

−= dtetxfX ftj π2).()(          (3.1) 

∫
+∞

∞−

= dfefXtx ftj π2).()(                     (3.2) 

Equation 3.1 is the analysis equation and Equation 3.2 is the synthesis equation. 

The sinusoid with different frequencies is displayed on Figure 3.1. 
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Figure 3.1 Constituent sinusoids of different frequencies. 

The synthesis equation suggests that the FT expresses the signal in terms of linear 

combination of complex exponential signal. For a real signal, it can be shown that the 

FT synthesis equation expresses the signal in terms of linear combination of sine and 

cosine terms [8]. A diagrammatic representation of this is depicted on Figure 3.2: 

 

 

 

 

Figure 3.2 Frequency domain transition. 

The analysis equation represents the given signal in a different form; as a function 

of frequency. The original signal is a function of time, whereas the after the 

transformation, the same signal is represented as a function of frequency. It gives the 

frequency components in the signal.  

Thus the FT is a very useful tool as it gives the frequency content of the input 

signal it however suffers from a serious drawback. It shows that the FT is unable to 

distinguish between two different signals. The two signals have same frequency 

components, but at different times. Thus, the FT is incapable of giving time information 

of signals. In general, FT is not suitable for the analysis of a class of signals called non-

stationary signals [1]. 
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This led to the search of new tools for analysis of signals. One such tool that was 

proposed was the Short Time Fourier Transform (STFT). STFT has a drawback and was 

supplanted by Wavelet Transform. 

3.3  The Continuous Wavelet Transform 

Consider a real or complex-valued continuous-time function )(tψ  with the 

following properties. 

The function integrates to zero 

∫
+∞

∞−

= 0)( dttψ                   (3.3) 

It is square integrable or, equivalently, has finite energy: 

∫
+∞

∞−

∞<dtt 2)(ψ             (3.4) 

A function is called mother wavelet if it satisfies these two properties. The 

simplest of them is the Haar wavelet. Some other wavelets are Mexican hat, Morlet. 

Apart from this, there are various families of wavelets. Some of the families are 

daubechies family, symlet family, coiflet family etc. In this thesis, the main stress is 

given on the Daubechies family, which has db1 to db10 wavelets [8]. They are shown in 

the following figures, namely Figures 3.3 and 3.4. 
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Figure 3.3 Db2 wavelet. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Samples of wavelet functions. 

As has already been pointed out, wavelet is a waveform of effectively limited 

duration that has an average value of zero. Compare wavelets with sine waves, which 

are the basis of Fourier analysis. Sinusoids do not have limited duration, they extend 
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from minus to plus infinity and where sinusoids are smooth and predictable, wavelets 

tend to be irregular and asymmetric [8]. 

Fourier analysis consists of breaking up a signal into sine waves of various 

Frequencies. Similarly, wavelet analysis is the breaking up of a signal into shifted and 

scaled versions of the original (or mother) wavelet shown in Figure 3.5.  

 

 

  

 

Figure 3.5 Signal decomposition into wavelets. 

The above diagram suggests the existence of a synthesis equation to represent the 

original signal as a linear combination of wavelets which are the basis function for 

wavelet analysis (recollect that in Fourier analysis, the basis functions are sines and 

cosines). This is indeed the case. The wavelets in the synthesis equation are multiplied 

by scalars. To obtain these scalars, an analysis equation is required, just as in the 

Fourier case. 

There are two equations, the analysis and the synthesis equation. They are stated 

as follows [8]: 

Analysis equation or CWT equation: 

 ∫
+∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ −

= dt
a

bt
a

tfbaC *1)(),( ψ              (3.5) 

Synthesis equation or ICWT: 

∫ ∫
+∞

−∞=

+∞

−∞= ⎭
⎬
⎫

⎩
⎨
⎧ −

=
a b

bdad
a

bt
a

baC
aK

tf )()(1),(11)( 2 ψ      (3.6) 
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K  is a constant; it depends on the wavelet 

The basis functions in both Fourier and wavelet analysis are localized in 

frequency making mathematical tools such as power spectra (power in a frequency 

interval) useful at picking out frequencies and calculating power distributions. 

The most important difference between these two kinds of transforms is that 

individual wavelet functions are localized in space. In contrast Fourier sine and cosine 

functions are non-local and are active for all time t.  

This localization feature, along with wavelets localization of frequency, makes 

many functions and operators using wavelets sparse, when transformed into the wavelet 

domain. This sparseness, in turn results in a number of useful applications such as data 

compression, detecting features in images and denoising signals. 

The quantities a  and b  appearing in the above equations represent the scale and 

shift of mother wavelet, respectively.  

The wavelet transform of a signal )(tf  is the family ),( baC  given by the analysis 

equation. It depends on two indices a  and b . From an intuitive point of view, the 

wavelet decomposition consists of calculating a "resemblance index" between the signal 

and the wavelet located at position b  and of scale a . If the index is large, the 

resemblance is strong, otherwise it is slight. The indexes ),( baC  are called coefficients. 

The dependence of these coefficients on both a  and b  is responsible for the wavelet 

transform K is a constant; it depends on the wavelet preserving time and frequency 

information. These quantities are explained in the following sections [8]. 

3.3.1  Scaling 

Simply put scaling a wavelet means stretching (or compressing) it. To go beyond 

colloquial descriptions such as stretching, the scale factor often denoted by the letter a . 

If sinusoids are thought, for example, the effect of the scale factor is very easy to see: 
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⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
=
=

=
1/4a   ),4sin(
1/2a   ),2sin(
1a     ),sin(

)(
t
t

t
tf           (3.7)  

The scale factor works exactly the same with wavelets. The smaller the scale 

factor, the more compressed the wavelet and vice versa. 

It is clear from the diagrams that, for a sinusoid, )(wtSin  the scale factor is related 

(inversely) to the radian frequency w . Similarly, with wavelet analysis, the scale is 

related to the frequency of the signal. Thus the higher scales correspond to the most 

stretched wavelets. The more stretched the wavelet, the longer the portion of the signal 

with which it is being compared, and thus the coarser the signal features being measured 

by the wavelet coefficients [8]. The effect of scaling factor is displayed on Figure 3.6. 

 

 

 

Figure 3.6 The effect of scaling factor. 

Thus, there is a correspondence between wavelet scales and frequency as revealed 

by wavelet analysis: 

(w)frequncy high changingrapidly  waveletcompressed(a) scale low →→→  

(w)frequency  lowchangingslowly  waveletstretched(a) scalehigh →→→  

3.3.2  Shifting 

Shifting a wavelet simply means delaying its onset. Mathematically, delaying a 

function  )(tf  by b is represented by )( btf −  and shown in Figure 3.7. 
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Figure 3.7 Wavelet shifting. 
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Most important feature of the wavelet transform is the orthogonality. If the 

wavelet transform of )(tψ  is orthogonal to its scaled and shifted versions, this 

orthogonal wavelet is known as mother wavelet [9]. The required features of the 

orthogonal wavelets are defined in the following lines [8]. 

∫
+∞

∞−

−=−− )()()( mndtmtnt δφφ              (3.8) 

)(tφ  is the scaling function  )( mn −δ  delta function 

∫
+∞

∞−

=−− 0)()( dtntmt ψφ           (3.9) 

 Scaling function is orthogonal to its wavelet 

∫
+∞

∞−

−−= )()()()( KkJjdttt JKjk δδψψ                   (3.10) 

 Reproduced wavelets (child wavelet) are orthogonal to one another. 

Orthogonality equation is defined as ∑
−

=

=−
12

0
)()()(

N

n
kkncnc δ , 12,...,2,1,0 −= Nk  [8]. 

3.4  Discrete Wavelet Transform 

3.4.1  Wavelet decomposition  

The Discrete Wavelet Transform ( DWT ) involves choosing scales and positions 

based on powers of two the so called dyadic scales and positions. The mother wavelet is 

rescaled or dilated by powers of two and translated by integers. Specifically, a function 

)()( 2 RLtf ∈  can be represented as 

∑ ∑ ∑
=

+∞

−∞=

+∞

−∞=

−− −+−=
L

j k k

Lj ktkLaktkjdtf
1

)2(),()2(),()( φψ      (3.11) 

The function )(tψ  is known as the mother wavelet, while )(tφ  is known as the 

scaling function. The set of functions 
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{ }ZLKjLjktkt jjLL ∈≤−− −−−− ,,;);2(2),2(2 ψφ , where Z  is the set of 

integers. It is an orthonormal basis for )(2 RL  [8]. 

The numbers ),( kLa  are known as the approximation coefficients at scale L, 

while ),( kjd  are known as the detail coefficients at scale j  [8]. These approximation 

and detail coefficients can be expressed as 

 ∫
+∞

∞−

− −= dtkttfkLa L

L
)2()(

2
1),( φ         (3.12) 

 ∫
+∞

∞−

− −= dtkttfkjd j

j
)2()(

2
1),( ψ         (3.13) 

The above 2 equations give a mathematical relationship to compute the 

approximation and detail coefficients. 

This procedure is seldom adopted. A more practical approach is to use Mallat’s 

Fast Wavelet Transform algorithm. The Mallat algorithm for discrete wavelet transform 

( DWT ) is, in fact, a classical scheme in the signal processing community, known as a 

two channel sub band coder using conjugate quadrature filters or quadrature mirror 

filters (QMF). It is developed in the following sections. 

For many signals, the low-frequency content is the most important the signal its 

identity. The high frequency content imparts nuance. Consider the human voice. If you 

remove the high-voice sounds different, but you can still tell what's being enough of the 

low-frequency components, you hear gibberish. 

In wavelet analysis, approximations and details are so important. The 

approximations are the high-scale, low-frequency components of the signal. The details 

are the low-scale, high-frequency components [8]. 

The filtering process, at its most basic level, looks like this: The original signal, S, 

passes through two complementary filters and emerges as two signals. 
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Unfortunately, if this operation is performed on a real digital signal, it is obtained 

with twice as much data as it is started with. Suppose, for instance, that the original 

signal S consists of 1000 samples of data. Then the resulting signals will each have 

1000 samples, for a total of 2000. At below, one stage filtering is depicted on Figure 

3.8. 

 

 

 

 

 

 

Figure 3.8 One-stage filtering. 

These signals A and D are interesting, but 2000 values it is obtained instead of the 

1000. There exists a more subtle way to perform the decomposition using wavelets. By 

looking carefully at the computation, it is required to keep only one point out of two in 

each of the two 2000-length samples to get the complete information. This is the notion 

of down sampling. Two sequences are produced called CA  and CD , displayed on 

Figure 3.9.  

 

 

 

 

 

 Figure 3.9 Approximation and detail coefficients generation at one-stage. 
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The process on the right, which includes down sampling, produces DWT  

coefficients. It may be observed that the actual lengths of the detail and approximation 

coefficient vectors are slightly more than half the length of the original signal. This has 

to do with the filtering process, which is implemented by convolving the signal with a 

filter. The convolution "smears" the signal, introducing several extra samples into the 

result. 

In this section, it is considered only one-stage decomposition of the signal into  

CA  and CD  coefficient. This process can be repeated to get multiple-level 

decomposition, discussed next. 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree and shown in Figure 3.10 

[8]. 

 

 

 

 

 

 

Figure 3.10 Multiple-level decomposition. 

Since the analysis process is iterative, in theory it can be continued indefinitely. In 

reality, the decomposition can proceed only until the individual details consist of a 

single sample or pixel. In practice, you'll select a suitable number of levels based on the 

nature of the signal, or on a suitable criterion such as entropy. Thus the fast wavelet 

transform algorithm can be stated as: 
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Given a signal s of length N, the DWT  consists of  N2log  stages at most. 

Starting from S, the first step produces two sets of coefficients: approximation 

coefficient 1CA  and detail coefficient 1CD . These vectors are obtained by convolving s 

with the low-pass filter DLo _  for approximation, and with the high-pass filter DHi _  

for detail, followed by dyadic decimation [8]. 

The next step splits the approximation coefficients 1CA  in two parts using the 

same scheme, replacing s by 1CA  and producing  2CA  and 2CD  and so on. 

Now that it is seen the decomposition of a signal into wavelet (approximation and 

detail) coefficient s, it is natural to ask whether the reverse is possible, i.e., is it possible 

to generate the original signal back from the coefficients, and if yes, how to achieve 

this. Fortunately, there does exist a method to do it, and it is very similar to the one used 

for decomposition. The next few sections demonstrate this. 

The first level approximation and detail components of the original signal that is 

shown in Figure 3.11, is displayed in Figure 3.12. 

 

 

 

 

 

 

 

 

 

Figure 3.11 original signals [0-256]. 
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Figure 3.12 Approximation and detail signal components [0-256]. 

3.4.2  Wavelet reconstruction 

It has been investigated how the discrete wavelet transform can be used to 

analyze, or decompose, signals and images. This process is called decomposition or 

analysis. The other half of the story is how those components can be assembled back 

into the original signal without loss of information. This process is called 

reconstruction, or synthesis. The mathematical manipulation that affects synthesis is 

called the inverse discrete wavelet transform ( IDWT ). To synthesize a signal, it is 

reconstructed from the wavelet coefficients [8]. 

Where wavelet analysis involves filtering and down sampling, the wavelet 

reconstruction process consists of up sampling and filtering. Up sampling is the process 

of lengthening a signal component by inserting zeros between samples, is depicted on 

Figure 3.13 and Figure 3.14, as follows. 
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Figure 3.13 Reconstructing the original signal from the wavelet coefficients. 

 

 

 

 

 

Figure 3.14 Up sampling process. 

The filtering part of the reconstruction process also bears some discussion, 

because it is the choice of filters that is crucial in achieving perfect reconstruction of the 

original signal. The down sampling of the signal components performed during the 

decomposition phase introduces a distortion called aliasing. It turns out that by carefully 

choosing filters for the decomposition and reconstruction phases that are closely related 

(but not identical); it can be cancelled out the effects of aliasing. The low-and high pass 

decomposition filters (L and H), together with their associated reconstruction filters 

(L’and H’) form a system of what is called quadrature mirror filters. The decomposition 

and reconstruction process is shown in Figure 3.15  
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Figure 3.15 Decomposition and reconstruction process. 

As an example, let's consider how it would be reconstructed the first-level 

approximation 1A  from the coefficient vector 1CA . The coefficient vector 1CA  is passed 

through the same process that is used to reconstruct the original signal. However, 

instead of combining it with the level-one detail 1CD  a vector of zeros is provided in 

place of the detail coefficients vector is displayed on Figure 3.16: 

 

 

    

 

 

 

Figure 3.16 Reconstruction of approximation A1 

The process yields a reconstructed approximation 1A , which has the same length 

as the original signal S  and which is a real approximation of it. Similarly, it can be 

reconstructed the first-level detail 1D , using the analogous process, depicted on Figure 

3.17. 
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Figure 3.17 Reconstruction of detail D1. 

The reconstructed details and approximations are true constituents of the original 

signal. In fact, they can be combined as: 

SDA =+ 11         (3.14) 

Note that the coefficient vectors 1CA  and 1CD  because they were produced by 

down sampling and are only half the length of the original signal cannot directly be 

combined to reproduce the signal. It is necessary to reconstruct the approximations and 

details before combining them.  Extending this technique to the components of a 

multilevel analysis, it is found that similar relationships hold for all the reconstructed 

signal constituents. That is, there are several ways to reassemble the original signal. 

This process is displayed on Figure 3.18. 

 

 

 

 

    

Figure 3.18 Reassembling the original signal. 

11 DAS +=            (3.15) 
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122 DDAS ++=          (3.16) 

1233 DDDAS +++=           (3.17) 

A multistep analysis-synthesis process is represented in Figure 3.19. 

 

 

 

 

 

 

Figure 3.19 Multistep decomposition and reconstruction. 

This process involves two aspects: breaking up a signal to its high and the low 

frequency components, to obtain the wavelet coefficients, and assembling the signal 

from the coefficients to obtain the original one  

In the previous figures, it is shown that the approximations and detail components 

of the signal is obtained by decomposition at the first level. This process is displayed on 

Figure 3.20. Besides, the reconstructed signal is displayed on the following figure, 

namely Figure 3.21. 
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Figure 3.20 Reconstruction of the signal component at 1st level 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Reconstructed signal 
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3.5  Wavelet Packet Transform Method 

The wavelet packet method is a generalization of wavelet decomposition that 

offers a richer range and a detailed investigation of possibilities for signal analysis. In 

wavelet analysis, a signal is split into an approximation and a detail. The approximation 

is then itself split into a second-level approximation and detail, and the process is 

repeated. For n level decomposition, there are 1+n  possible ways to decompose or 

encode the signal. In wavelet packet analysis, the details as well as the approximations 

can be split. This yields more than 
122
−n

 different ways to encode the signal. This is the 

wavelet packet decomposition tree, is depicted on Figure 3.22 [8]. 

 

 

 

 

 

Figure 3.22 Wavelet packet decomposition tree 

For instance, wavelet packet analysis allows the signal S to be represented as 

2331 DDDADAADA +++ . This is an example of a representation that is not possible 

with ordinary wavelet analysis. 

3.5.1  Wavelet packet decomposition 

In the orthogonal wavelet decomposition procedure, the generic step splits the 

approximation coefficients into two parts. After splitting it is obtained a vector of 

approximation coefficients and a vector of detail coefficients, both at a coarser scale. 

The information lost between two successive approximations is captured in the detail 

coefficients. Then the next step consists of splitting the new approximation coefficient 

vector; successive details are never re-analyzed.  
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In the corresponding wavelet packet situation, each detail coefficient vector is also 

decomposed into two parts using the same approach as in approximation vector 

splitting. This offers the richest analysis: the complete binary tree is produced as shown 

in Figure 3.23 [8]. 

 

 

    

 

 

 

 

 

Figure 3.23 Wavelet packet decomposition diagram for three layers 

It is started with the two filters of length N2 , where )(nh  and )(ng , 

corresponding to the wavelet. Now by induction let us define the following sequence of 

functions ,...2,1,0),( =nxWn  by 

∑
−

=

−=
12

0
2 )2()(2)(

N

k
nn kxWkhxW       (3.18) 

∑
−

=
+ −=

12

0
12 )2()(2)(

N

k
nn kxWkgxW  where    (3.19) 

)()(0 xxW φ=  is the scaling function and )()(1 xxW ψ=  is the wavelet function. 

For example for the Haar wavelet:  
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2
1)1()0(,1 === hhN        (3.20) 

and 

2
1)1()0( =−= gg        (3.21) 

The equations become: 

)12()2()(2 −+= xWxWxW nnn       (3.22) 

)12()2()(12 −−=+ xWxWxW nnn       (3.23) 

)()(0 xxW φ=  is the Haar scaling function and )()(1 xxW ψ=  is the Haar wavelet, 

both supported in )()(0 xxW φ= , )()(1 xxW ψ= .  

For 7...0=n , the W  functions shown in Figure 3.24. 

 

 

 

 

 

 

 

 

Figure 3.24 Haar wavelet packets.  
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Figure 3.25 Wavelet packet tree. 

The set of functions )),(()( ,,, ZkxWxW knjnj ∈=  is the wavelet packet shown in the 

previous figure, namely Figure 3.25. For positive values of integers, j  and n  wavelet 

packets are organized in trees. The tree in Figure 3.25 is created to give a maximum 

level decomposition equal to 3.  

The notation )(, xW nj , where j  denotes scale parameter and n  is the frequency 

parameter defines the position depth in wavelet packet tree. 

This last property gives a precise interpretation of splitting in the wavelet packet 

organization tree, because all the developed nodes are of the form shown in the figure 

below, Figure 3.26. 

)),(( ,,, ZkxWW knjnj ∈=  

 

 

 

    

Figure 3.26 Wavelet packet organization. 
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3.5.2  Wavelet packet reconstruction 

The process of the wavelet packet reconstruction is achieved by up sampling and 

the appropriate filtering. In Figure 3.27, diagram is shown for the reproduced signal 

using the way mentioned.  

 

 

 

 

 

 

 

Figure 3.27 Wavelet packet reconstruction diagram for three layers. 

As it is available on the discrete wavelet transform )(~ nh  and )(nh  low pass 

filters, )(~ ng  and )(ng  are the high pass filters.  

Wavelet packet transform is defined by the function of )2( ktW v
n − , Zkv ∈,  

Nn∈  and provided by the linear combination of wavelets 

)()(0 ttW φ=         (3.24) 

)()(1 ttW ψ=         (3.25) 

∑ −=
k

nkn ktWhtW )2()(2       (3.26) 

∑ −=+
k

nkn ktWgtW )2()(12       (3.27) 
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)(tφ  and )(tψ  are the functions generated by )(ng  and )(nh  filters [8]. The 

wavelet packet analysis and the synthesis procedure are realized with the filters shown 

in Figure 3.28.  

 

 

 

 

 

Figure 3.28 Wavelet packet decomposition and reconstruction. 
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4.   DISCRETE COSINE AND DISCRETE SINE TRANSFORM 

4.1  Discrete Cosine Transform 

A discrete cosine transform (DCT) is defined to compute it using the fast Fourier 

transform. It is shown that discrete Cosine transform can be used in the area of digital 

signal processing. Its performance is compared with that of a class of orthogonal 

transforms and is found to compare closely to that of the Karhunen-Loeve transform, 

which is known to be optimal. The performances of Karhunen-Loeve and discrete 

Cosine transforms are also found to compare closely with respect to the rate-distortion 

criteria. 

In recent years, there has been an increasing interest with respect to using a class 

of orthogonal transforms in the general area of the digital signal processing [3].   

The DCT  of a data sequence of )(mx , )1(,...,3,2,1,0 −= Mm , is defined as in 

Equations 4.1 and 4.2. 

∑
−

=

=
1

0
)(2)0(

M

m
x mx

M
G ,           (4.1) 

)1(,...,3,2,1,
2

)12(cos.)(2)(
1

0
−=

+
= ∑

−

=

Mk
M

kmmx
M

kG
M

m
x

π     (4.2) 

The last equation shows that, the basis vectors are sampled cosines which have 

phase shifts that are not given by an alternating 0 and pattern as in (the sines and 

cosines) DFT. The DCT  basis vectors are displayed as follows [3]. 

1,...,1,0,
2

)12(cos)(2

1,...,1,0

−=
⎭
⎬
⎫

⎩
⎨
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=
−=

Nkfor
N

knk
N

b
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k
πα     (4.3) 

0,1)(,
2

1)0( ≠== kkαα  
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Where )(kGx  is the thk  DCT  coefficient. The set of basis vectors is given in 

Equation 4.3 which is a class of discrete Chebyshev polynomials. This can be seen by 

recalling that Chebyshev polynomials can be defined as in following Equations from 4.4 

to 4.8, inclusive [3]. 

2
1)(0̂ =pT ε          (4.4) 

MpkkT ppk ,...,3,2,1,),coscos()(ˆ 1 == − εε            (4.5) 

In (4.5) )(ˆ
pkT ε  represents the thk  Chebyshev polynomial. pε  is chosen to be the thp  

zero of )(ˆ
pMT ε  which is given by 

Mp
M

p
p ,...,3,2,1,

2
)12(cos =

−
=

πε        (4.6) 

Substituting pε  in, )(ˆ
pkT ε  Equation 4.5, the set of Chebyshev polynomials can be 

obtained as follows [3]. 

2
1)(0̂ =pT , Mpk

M
kppTk ,...,3,2,1,,

2
)12(cos)(ˆ =

−
=

π    (4.7) 

)1(,...,2,1,0),1(,...,2,1,
2

)12(cos)(,
2

1)(0 −=−=
+

== MmMk
M

kmmTmT k
π    (4.8) 

To sum up,  
M

km
2

)12(cos π+  is the thk  Chebyshev polynomial. 

Inverse Discrete Cosine Transform ( IDCT ), is defined by )(mx  and calculated in 

Equation 4.9. 

)1(,...,2,1,0,
2

)12(cos)()0(
2

1)(
1

1
−=

+
+= ∑

−

=

Mm
M

kmkGGmx
M

k
xx

π     (4.9) 

The DCT  is an orthonormal transform, defined in Equations 4.10 and 4.11 
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θθ 1, −== CXCX        (4.10) 
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⎪
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⎫

⎪
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⎪
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≠
≠=
==

=
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0 ,0
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)()(
M

m
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lkM
lkM

mTmT       (4.11) 

The attractiveness of the DCT  is two-fold: The first one, it is nearly optimal with 

high positive values of adjacent sample correlation and the second one it can be 

computed via the DFT using an FFT algorithm. 

The fast computation procedure mentioned in second one, above, consists of 

extending the input block of N  samples to a N2  block with even symmetry, taking a 

N2  point DFT, and saving N  terms in it. The DFT of a real and symmetric sequence 

contains only real coefficients corresponding to the cosine terms of the series.  

4.2  Discrete Sine Transform 

In mathematics, the discrete sine transform ( DST ) is a Fourier related transform 

similar to the Discrete Fourier Transform (DFT), but using only real numbers. It is 

equivalent to the imaginary parts of a DFT of roughly twice the length, operating on 

real data with odd symmetry (since the Fourier transform of a real and odd function is 

imaginary and odd), where in some variants the input and/or output data are shifted by 

half a sample [7]. 

A related transform is the discrete cosine transform (DCT) mentioned above, 

which is equivalent to a DFT of real and even functions. 

DST s are widely employed in solving partial differential equations by spectral 

methods, where the different variants of the DST  correspond to slightly different 

odd/even boundary conditions at the two ends of the array. 

Formally, the discrete sine transform is a linear, invertible function RNRNF →:  

(where R defines the set of real numbers), or equivalently an NxN  square matrix. There 

are several variants of the DST  with slightly modified definitions. The N  real numbers 
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110 ,...,, −Nxxx  are transformed into the N  real numbers 110 ,...,, −NXXX  according to the 

formula given in Equation 4.12 [10]. 

∑
−

=

++
+

=
1

0
)]1)(1(

1
sin[

N

n
nk kn

N
xX π       (4.12) 
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5.   DIGITAL SIGNAL COMPRESSION 

5.1  Introduction 

A typical computerized medical signal processing system acquires a large amount 

of data that is difficult to store and transmit. It is very desirable to find a method of 

reducing the quantity of data without loss of important information. 

All data compression algorithms seek to minimize data storage by eliminating 

redundancy where possible. The compression ratio is defined as the ratio of the number 

of bits of the original signal to the number stored in the compressed signal. A high 

compression ratio is wanted, typically, but using this alone to compare data 

compression algorithms is not acceptable. Generally, precision of the original and the 

reproduced data much affect the compression ratio [7].  

A data compression algorithm must also represent the data with acceptable signal 

quality. In biomedical data compression, the clinical acceptability of the reconstructed 

signal has to be determined through visual inspection. The reconstructed signal and the 

original signal compatibility may also be measured by a numerical measure. The 

compression ratio value is calculated by the Equation of 5.1 [7]. 

comp

org

b
b

CR =         (5.1) 

5.2  Signal Compression and Distortion Measures 

The criterion for testing performance of compression algorithms includes three 

components: compression measure, reconstruction error and computational complexity. 

The compression measure and the reconstruction error are usually dependent on each 

other and are used to create the rate-distortion function of the algorithm. The 

computational complexity component is part of the practical implementation 

consideration but it is not part of any theoretical measure. 



 48

5.3  Error Criterion 

One of the most difficult problems in ECG compression applications and 

reconstruction is defining the error criterion. The purpose of the compression system is 

to remove redundancy, the irrelevant information (which does not contain diagnostic 

information). Consequently the error criterion has to be defined such that it will 

measure the ability of the reconstructed signal to preserve the relevant information. 

Such a criterion has been defined as diagnostability. A similar problem exists in 

synthesized speech signals, in which the criterion intelligibility is defined.  

As yet, there is no such mathematical structure to this criterion, and all accepted 

error measures are still variations of the Mean Square Error, which are easy to compute 

mathematically [7]. 

In most ECG compression algorithms, the Percent Root Mean Square Difference 

( PRD ) measure is employed where )(nx  is the original signal, )(~ nx  is the 

reconstructed signal, and N  is the length of the window over which the PRD  is 

calculated. In some of the articles a fixed version of PRD  definition is used in Equation 

5.2 [4]. 

100
)(

))(~)((

1

2

1

2

x
nx

nxnx
PRD N

n

N

n

∑

∑

=

=

−
=      (5.2) 

In the literature, there are some other error measures for comparing original and 

reconstructed ECG signals, such as the Root Mean Square Error ( RMSE ) defined in 

Equation 5.3 [4]. 

N

nxnx
RMS

N

n
∑
=

−
= 1

2))(~)((
      (5.3) 

Another distortion measure is the Signal to Noise Ratio, which is expressed as in 

Equation 5.4 [4]. 
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In the above equation x  is the average value of the original signal. The relation 

between the SNR and the PRD  is  

PRDSNR log20−=        (5.5) 

Digital coding is the process, or sequence of processes, that leads to digital 

representations (sequences of binary digits) of the source signal. The benefits of digital 

representation are well known, low sensitivity to transmission noise, effective storage, 

ability to multiplex, error protection and more. 

One of the main goals in digital coding of waveforms is reduction of the bit rate, 

which is required to transmit a certain amount of information. The process of bit rate 

reduction is performed by the removal of the signal’s redundancy, and sometimes 

causes loss of information. A basic problem in waveform coding is to achieve the 

minimum possible distortion for a given encoding rate or, equivalently, to achieve a 

given acceptable level of distortion with the least possible encoding rate. 

The first stage of the analog signal coding process is sampling and quantization. 

The sampling is performed mostly according to the Nyquist criterion after low pass 

filtering the signal with an anti aliasing filter. After sampling, the signal is time-discrete 

and amplitude-continuous. In order to represent the sampled signal digitally, one has to 

perform quantization, mapping the sampled signal’s amplitudes from the continuous 

plane to the discrete plane. The quantization in this stage is usually fine quantization 

(many quantization levels) so one can treat the sampled signal as almost amplitude-

continuous. 

At the second stage of the coding process, the redundancy of the signal is 

removed using appropriate coding techniques, such as, orthogonal transforms, entropy 

encoding, ADPCM , etc.     
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5.4  Sampling and Uniform Quantization 

The PCM is the earliest, the simplest, and the most popular coder in digital coding 

systems of signals. A PCM coder is nothing more than a waveform sampler followed by 

an amplitude quantizer. 

Let )(tx  denote a sample function emitted by a source and let nx  denote the 

samples taken at a sampling rate wfs 2≥ , where w  is the highest frequency in the 

spectrum of )(tx . In PCM, each sample of the signal is quantized to one of 2R  

amplitude levels, where R  is the number of binary digits used to represent each sample. 

Thus the rate from the source is sRf  bits [11]. 

The quantization process may be modeled mathematically as in the Equation (5.6) 

nnn qxx +=~        (5.6) 

Where nx~  represents the quantized value of nx  and nq  represents the quantization 

error, which it is treated as an additive noise. Assuming that a uniform quantizer is used, 

having the input-output characteristic illustrated in Figure 5.1, the quantization noise is 

well characterized statistically by the uniform pdf that is defined in Equation 5.7 [11], 

[12]. 

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧ ∆≤
∆=

otherwise
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qpq
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)( , 2/2/ ∆≤≤∆− q      (5.7) 

 

The mean square value of the quantization error is  

12

2
2 ∆
=xσ         (5.8) 
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Figure 5.1 Input - Output characteristic for a uniform quantizer. 

Many signals such as speech waveforms have the characteristic that small signal 

amplitudes occur more frequently than large one. However, a uniform quantizer 

provides the same spacing between successive levels throughout the entire dynamic 

range of the signal. The block diagram of the sampling, quantization and binary coding 

in PCM is shown in Figure 5.2 [11], [12]. 

 

   

 

 

  Figure 5.2 Transmitter block diagram in PCM. 

 

5.4.1  Quantization error 

Let X  be a zero-mean random  variable at the quantizer input, with variance 2
xσ  

and pdf  )(qpq . 

kyXQY == )(          (5.9) 

The quantization error YXQ −=  is also a random variable with pdf )(qpq  [13]. 
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[ ] dqqpqQE qx )(222 ∫
+∞

∞−

==σ       (5.10) 

Alternatively as )(XQXQ −=  is a function of  X  

[ ] [ ] dxxpxQxQE xq )()( 222 ∫
+∞

∞−

−==σ       (5.11) 

Quantization error variance is the most important quantity for comparing the 

performances of quantizers, and Equation 5.11 is often used to calculate this variance. 

Its calculation via Equation 5.10 is possible only if the pdf )(qpq  is known which is 

typically not the case. However )(qpq  may be approximated by a constant over a finite 

range in the case of uniform quantization 

Consider the example of an input x  with amplitudes in the range 

),( maxmax xxx −∈ , in this case,  quantization step size is defined in the Equation 5.12 

[13]. 

Rx 2/2 max=∆         (5.12) 

Quantization errors will have values in the range 

22
∆

≤≤
∆

− q         (5.13) 

Equation 5.11 goes to the result as in the following line. 

R
qq x 2

max
22

2
2 2

3
1,

12
−=

∆
= σσ       (5.14) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∆

≤≤
∆

−
∆=

otherwise

e
epe

,0
22

,1
)(                   (5.15) 

The changes of )(ep  is displayed in Figure 5.3 
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[ ]22 eEe >=<         (5.16) 
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Figure 5.3 PDF of a quantization error. 

n-bits quantizer maxA  amplitude is applied to the signal with the amplitude of A , 

in that case the ratio of signal to noise is )/( NS  calculated in Equation 5.18 and 5.19 

[13]. 
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Besides, in the form of dB )(
N
S  can be calculated, shown in the Equations 5.20 

and 5.21. 

)(log10)( 10 N
S

N
S

dB =        (5.20) 

)(log2002,676,1)(
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10 A
An

N
S

dB ++=      (5.21)  
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5.5  LZW Coding 

5.5.1  LZW encoder 

LZW source coding algorithm belongs to the class of universal source coding 

algorithms. It is a variable to fixed length algorithm, where the encoding is performed 

as described below. 

In LZW algorithm, the sequence of the output of the discrete source is parsed into 

variable length blocks, which are called phrases. A new phrase is introduced every time 

a block of letters from the source differs from some previous phrase in the last letter. 

The phrases are listed in a dictionary, which stores the location of the existing phrases. 

In encoding a new phrase, it is simply specified the location of the existing phrase in the 

dictionary and append the new letter [12]. 

In block coding, first the partition process of the data vector into blocks of equal 

length is done. In Lempel-Ziv coding, it is first started by partitioning the data vector 

into variable-length blocks instead. The procedure via which this partitioning takes 

place is called Lempel-Ziv parsing. The st1  variable-length block arising from the 

Lempel-Ziv parsing of the data vector ),...,,( 21 nXXXX =  is the single sample 1X . The 

second block in the parsing is the shortest prefix of ),...,( 2 nXX  which is not equal to 

1X . Suppose this second block is ),...,( 2 jXX . Then, the third block in Lempel-Ziv 

parsing will be the shortest prefix of ),...,( 1 nj XX +  which is not equal to either 1X  or 

),...,( 2 jXX . In general, suppose the Lempel-Ziv parsing procedure has produced the 

first k  variable-length blocks ),...,,( 21 kBBB  in the parsing, and  )(kX  is that part left of 

X  after ),...,,( 21 kBBB  have been removed. Then the next block 1+kB  in the parsing is 

the shortest prefix of )(kX  which is not equal to any of the preceding blocks 

),...,,( 21 kBBB . (If there is no such block, then )(
1

k
k XB =+  and the Lempel-Ziv parsing 

procedure terminates.) [12]. 
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By construction, the sequence of variable-length blocks tBBB ,...,, 21  produced by 

the Lempel-Ziv parsing of X  are distinct, except that the last block tB  could be equal 

to one of the preceding ones. 

Consider the example of an input X  and Lempel-Ziv parsing of 

)1,0,1,1,0,0,0,1,1,0,1,1(=X  is 17,1106,005,04,113,102,11 ======= BBBBBBB . 

This is shown in Figure 5.4. Binary representation of the groups is in the table of 5.1 

[12].  

 

X     1 10 1 1 0 0 0 1 1 0 1 

Figure 5.4 X data sequence. 

LZW parsing process is displayed on the Table 5.1. Binary representation of 

groups is displayed on Table 5.2  

 

Table 5.1                                                                                                         
Lempel-Ziv parsing for X data sequence. 

 

Bi index group 

B1 1 1 (0,1) 

B2 1 0 2 (1,0) 

B3 1 1 3 (1,1) 

B4 0 4 (0,0) 

B5 0 0 5 (4,0) 

B6 1 1 0 6 (3,0) 

B7 1 7 (0,1) 
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Table 5.2  
Binary representation of groups. 

 

group integer form Ii 

(0,1) )2.(1)2.(0 01 +  1 

(1,0) )2.(0)2.(1 01 +  2 

(1,1) )2.(1)2.(1 01 +  3 

(0,0) )2.(0)2.(0 01 +  0 

(4,0) )2.(0)2.(4 01 +  8 

(3,0) )2.(0)2.(3 01 +  6 

(0,1) )2.(1)2.(0 01 +  1 

 

LZW encoder output is the binary conversion of the Ii. ).(log2 jk  provides the 

information of bit representation status, shown in Table 5.3 [14]. 

Table 5.3  
LZW encoder output (Zi). 

 

iZ  iI  ).(log2 jk tionrepresentabit  x  

1 1 )1.2(log2 tionrepresentabit  1  

10  2  )2.2(log2 tionrepresentabit  2  

011  3  )3.2(log2 tionrepresentabit  3  

000  0  )4.2(log2 tionrepresentabit  3  

1000  8  )5.2(log2 tionrepresentabit  4  

0110  6  )6.2(log2 tionrepresentabit  4  

0001  1 )7.2(log2 tionrepresentabit  4  
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As it is shown in the following table, namely Table 5.4, the output of the encoder 

is the binary data sequence arranged in order.  

Table 5.4  
Zi arranged in order.  

 

LZW encoder output (Zi) 

1 10 011 000 1000 0110 0001 

Z1 Z2 Z3 Z4 Z5 Z6 Z7 

 

The input of LZW encoder block, is the binary data, shown in Figure 5.5 

 

 

 

Figure 5.5 LZW encoder block diagram. 

 

5.5.2  LZW decoder 

LZW decoding process takes the reference of the data sequence which is the 

output of encoder. Codebit table is again used for the decoding issue, displayed on 

Table 5.5 

Bit representation is calculated, then partitioning up the encoder output according 

to the allocations in the above table. Converting these to integer form Ii is obtained, in 

Table 5.6. Dividing each of these integers by two, the quotient and remainder in each 

case, the pairs are formed  
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Table 5.5  
LZW codebit table.  

 

Codebit table 

parsing block number # of codebits 

1 ).(log2 jk )1,2( == jk  tionrepresentabit  1  

2 ).(log2 jk )2,2( == jk  tionrepresentabit  2

3 ).(log2 jk )3,2( == jk  tionrepresentabit  3

4 ).(log2 jk )4,2( == jk  tionrepresentabit  3

5 ).(log2 jk )5,2( == jk  tionrepresentabit  4

6 ).(log2 jk )6,2( == jk  tionrepresentabit  4

7 ).(log2 jk )7,2( == jk  tionrepresentabit  4
 
 
 

Table 5.6  
LZW decoder output.  

 

LZW decoder output 

 1 10 011 000 1000 0110 0001

Ii 1 2 3 0 8 6 1 

groups (0,1) (1,0) (1,1) (0,0) (4,0) (3,0) (0,1) 

 

In Table 5.7, the binary data arrangement process is displayed for decoding 

process. 
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Table 5.7  
Binary data assignment. 

 

Bi binary form index group 

B1 1 1 (0,1) 

B2 1 0 2 (1,0) 

B3 1 1 3 (1,1) 

B4 0 4 (0,0) 

B5 0 0 5 (4,0) 

B6 1 1 0 6 (3,0) 

B7 1 7 (0,1) 

 

As it is depicted on Table 5.8, below, the original data sequence is recovered 

again. 

Table 5.8  
X data sequence.  

 

X 1 1 0 1 1 0 0 0 1 1 1 

 B1 B2 B3 B4 B5 B6 B7 

Decoding process is displayed on Figure 5.6, below. 

 

 

 

 

Figure 5.6 LZW decoding block diagram.  
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6.   IMPLEMENTATION METHODS 

6.1  Wavelet Transform 

The aim of electrocardiogram (ECG) data compression is to reduce the amount of 

digitized ECG data as much as possible with reasonable implementation complexity 

while maintaining clinically acceptable signal quality. 

In order to achieve our goal a new electrocardiogram (ECG) data compression 

method is presented which is based on orthonormal wavelet transform and a uniform 

quantization strategy by which a predetermined percent root mean square difference 

( PRD ) can be guaranteed with high compression ratio and low implementation 

complexity. 

6.2  A Generalized DOWT Based Coding System 

Since detailed mathematical aspects of wavelet theory can be found elsewhere, 

here, it is described merely the structure of a DOWT -based coding system shown in 

Figure 6.1 

 

 

 

 

 

 

 

 

Figure 6.1 A generalized DOWT based coding system. 
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The input discrete signal of 0a  is successively decomposed into a set of subsignals 

{ } Jjda jJ ≤≤1,)(,  of by the DOWT  units, where Ja  is a smoothed version of 0a  and 

Jjd j ≤≤1,  are the differential subsignals between the original signal and its smoothed 

versions at different resolutions. The decomposed subsignals are then quantized and 

entropy-encoded in order to be transmitted to a receiver [16]. If the transmission is error 

free, the quantized subsignals of Ja'  and jd ' , Jj ≤≤1  are used to progressively 

reconstruct the original signal by the discrete orthonormal wavelet reconstruction 

transform (DOWR). When the decomposed subsignals of{ })(, jJ da , Jj ≤≤1  are 

quantized, the reconstruction error between the original signal 0a  and the reconstructed 

signal 0'a  occurs [7]. Let d
jε  and Jε  denote the mean square error (MSE) occured in the 

quantization of jd  and Ja , respectively, then the reconstruction MSE ( RMSE ) 
0

γ  

between the original signal 0a  and its reconstructed signal 0'a  is given by 

∑
=

+=
J

j

d
jJ

1

εεγ         (6.1) 

Above equation indicates an important feature of the DOWT  -based coding 

system that the RMSE  (
0

γ ) between the original signal and its reproduced version can 

be exactly calculated from the quantization MSE of the decomposed subsignals ( Ja  and 

jd ) [7].   

d
jε : mean square error (MSE) occured in the quantization of jd   

Jε : mean square error (MSE) occured in the quantization of Ja ,  

0
γ : reconstruction MSE ( RMSE ) between the original signal 0a  and its 

reconstructed signal 0'a . 
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6.2.1  Definition of coding 

A widely used quantitative distortion measure for ECG coding is the PRD  

defined by Equation 6.2 where γ  is the RMSE  between the original signal and the 

reconstructed signal, σ  is the power of the original signal, calculated in Equation 6.5. 

For a user-specifed PRD  of 0ρ , the  corresponding RMSE  can be calculated from 

Equation 6.2 [7]. 

σ
γ

=PRD           (6.2) 

∑
=

=
L

i
iL 1

22
00

1. µργ           (6.3) 

0
1

0 γεεγ =+= ∑
=

L

j

d
jJ      

0ρ→PRD  

σ
γρ 0

0 ==PRD  taking the squares of both sides in the equation 

σργ
σ
γ

ρ .2
00

02
0 =⇒=

 

σργ 2
0=⇒RMSE          (6.4) 

In Equation 6.3, where iµ  are the samples of the original signal and L  is the 

length of an ECG segment being evaluated. Thus the problem of guaranteeing a user 

specified PRD  of 0ρ  is equivalent to guaranteeing the corresponding RMSE  of 0γ  

determined by Equation 6.4 [7].       

∑
=

=
L

i
iL 1

21 µσ           (6.5) 
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The optimal solution corresponds to the theoretical bound of the rate distortion 

performance which is only achieved by an ideal quantizer and an ideal entropy encoder. 

It is difficult to get an exact expression of the quantization MSE for a general 

information source. However when the quantization step size is small enough, the 

expected quantization MSE’s of  d
jε  and Jε  can be approximated as in the Equation 6.6 

[7]. 

         00 2
1,

2
1 γεγε j

d
jJJ ==              (6.6) 

Therefore as long as the quantization MSE’s are achieved, the desired RMSE   0γ  

or the equivalent PRD  of 0ρ  is obtained. 

6.2.2  Uniform quantization  

2Db  wavelet model is used providing one stage decomposition 1CA  and 1CD . 

This process is repeated to get the successive approximation and detail coefficients. 

Based on the decomposition level, 5=J , 5CA  in the th5  level and sCDi  )4:1( =i  are 

produced. Uniform quantization is applied for the approximation and detail coefficients. 

So, the quantization step size, ∆ , is different from one another. Due to the coefficients 

decomposed in different decomposition levels, each sample is represented by 8 bits, 

namely digital signal is sampled with 8 bits resolution. The quantization bin size is 

defined as in the following Equation, 6.7.  

)2/()*2( max
nA=∆             (6.7) 

8=n  bits., maxA  is changing for every coefficients at different layers. maxA is 

valued as ))5(max( CAabs , ))1(max( CDabs , )2(max( CDabs , ))3(max( CDabs , 

))4(max( CDabs , ))5(max( CDabs  successively. 

6.3  Implementation  

Based on the above analysis, it will be possible to implement the proposed ECG 

compression system with the following procedures where ηµρ ,,,,0 iJL  denote, a user 
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specified PRD , the segment length, the number of layers of the wavelet decomposition, 

the input ECG samples, and the precision of quantization, respectively. 

Implementation consists of 2 parts, namely encoder and decoder. 

 Encoder part: 

Initialization, segmenting and buffering L input samples.   

Wavelet decomposition. 

Uniform quantization [for each ( jd  and Ja , Jj ,...,4,3,2,1= )]. 

Entropy coding (LZW encoder is used). 

 Decoder part: 

Entropy decoding (LZW decoder used). 

Wavelet reconstruction. 

In order to make the results quantitatively comparable to other ECG compression 

methods, here, it will be adapted the most widely-used numerical indexes of PRD , 

compression ratio (CR ) [7]. The compression ratio is used to measure the compression 

efficiency, which is defined by the ratio of the bits of the original data to those of the 

compressed data [7].  

sizebir  data compressed
sizebit  data originalCR =            (6.8) 

PRD  is taken as a reference about the performance of the compression schema 

used, and formulized in the Equation 6.8. Besides, it also gives the information of the 

distortion rate of the reconstructed signal waveform and how the reproduced signal is  

compatible with the original one.  
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100*
)(
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∑
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=
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i
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n

i
recorg

iX

iXiX
PRD       (6.9) 

 )(iX org : samples of the original signals 

 )(iX rec : samples of the reproduced signal 

6.3.1  Segmenting the original signal 

The original ECG signal includes 7680 samples, taken from the MIT-BIH 

Database. The reference signal mentioned above is divided into 8 segments. Except the 

last one ( th8 ) each ECG segment has 1024 samples itself.  

7680 samples = (1024 samples * 7 segments) + 512 samples. 

first 7 segments      each includes 1024 samples itself.  

the last ECG segment ( th8 )      contains 512 samples.  

The proposed algorithm was implemented on the PC which has Pentium 4, CPU 

2.4 GHz , 256 MB RAM configuration. 2Db  family is used in the wavelet 

decomposition method and the layer was set to 5=J . 

In the following figures, from Figure 6.2 to 6.9 totally 7 segments (1 to 7) which 

has 1024 samples, and the last one ( segmentth8 ) with 512 samples are displayed. 
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Figure 6.2 1st ECG segment with 1024 samples. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 2nd ECG segment with 1024 samples. 
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Figure 6.4 3rd ECG segment with 1024 samples. 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 4th ECG segment with 1024 samples. 
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Figure 6.6 5th ECG segment with 1024 samples. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 6th ECG segment with 1024 samples. 
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Figure 6.8 7th ECG segment with 1024 samples. 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 8th ECG segment with 512 samples. 
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6.3.2  Wavelet decomposition  

For many signals, the low-frequency content is the most important part. It is what 

gives the signal its identity. The high-frequency content, on the other hand, imparts 

flavor or nuance. For instance, consider the human voice. If the high-frequency 

components are removed, the voice sounds different, but it is still told what's being said. 

However if the low-frequency components is removed, gibberish is heard.  

In wavelet analysis, it is often spoken of approximations and details. The 

approximations are the high-scale, low-frequency components of the signal. The details 

are the low-scale, high-frequency components. 

The filtering process, at its most basic level, looks like in Figure 6.10.  The same 

procedure includes down sampling and up sampling is seen in the next, in Figure 6.11, 

in detailed form. 

 

 

 

 

Figure 6.10 The filtering process. 

 

 

 

 

 

 

Figure 6.11 Filtering and down sampling. 
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The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree, shown in the Figure 6.12 

[8]. 

 

 

 

Figure 6.12 Wavelet decomposition tree. 

In the implementation process the decomposition tree goes to the level of 5. For 

example, in the st1  level of analysis, approximation 1A  and detail 1D  can be obtained 

with the use of 1CA  & 1CD  coefficients. If the original signal is taken into 

consideration as a whole segment with 7680  samples, the st1  level signals can be 

displayed in Figure 6.13, below. 

 

  

 

 

 

 

 

 

 

Figure 6.13 1st level decomposition of the original signal 
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If only the first 256  points of original ECG signal [0...256] is considered, the 

analyzed coefficients are formed as in Figure 6.14. 

 

 

 

 

 

 

 

 

 

Figure 6.14 1st level decomposition for the interval of 0 to 256. 

6.3.3  Wavelet synthesis 

In the previous section it was mentioned that, discrete wavelet transform is used to 

analyze, or decompose the original signal. The other half of the story is how those 

components can be assembled back into the original signal without loss of information. 

This process is called reconstruction or synthesis shown in Figure 6.15. The original 

signal is trying to be reproduced to the original one.  
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Figure 6.15 Filtering and up sampling. 

 

Where wavelet analysis involves filtering and down sampling, the wavelet 

reconstruction process consists of up sampling and filtering [8].  

A multi-step analysis-synthesis process is shown in Figure 6.16 

 

 

 

 

 

 

 

Figure 6.16 Multi-step analysis and reconstruction.  

 

The result of the decomposition process of the original signal with 7680  samples 

is shown in the Figure 6.18. Besides, the sizes of the signal segments in each level for 

the multistep decomposition can also be presented in Figure 6.17.  
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Figure 6.17 Size of the coefficients at different levels.  

 

 

 

 

 

 

 

 

 

 

Figure 6.18 5 level decomposition of ECG signal. 
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6.3.4  Uniform Quantization 

For each Ja  and Jjd j ≤≤1, , uniform quantization is realized. Quantization bin 

size of ∆ , is different for each Ja  and jd  components can be calculated in the 

Equations 6.10 and 6.11. 

)2/()))5(max(2( n
J CAabsa =∆→      (6.10) 

)2/()))(max(2( n
j CDiabsd =∆→      (6.11) 

Quantized signal components are shown in the following figures from 6.20 to 

6.25. For the equations seen above, 8,5:1 == ni , s∆  are calculated. MSE is generated 

in the quantization of approximation and detail coefficients. Mean square error and 

quantization step size values for each segment (∆ ) are shown in the Table 6.1. MSE 

corresponds to the d
jε  and Jε  parameters. In Figure 6.19, the original ECG signal is 

shown for the limited interval. 

 

 

 

 

 

 

 

 

 

Figure 6.19 Original ECG signal [0-242]. 
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Figure 6.20 Quantized CA5 [0-242]. 

 

 

 

 

 

 

 

 

 

 

Figure 6.21 Quantized CD1 [0-242]. 
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Figure 6.22 Quantized CD2 [0-128]. 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Quantized CD3 [0-128]. 
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Figure 6.24 Quantized CD4 [0-128]. 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Quantized CD5 [0-128]. 
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Table 6.1  
Quantization step size and MSE for different DWT coefficients. 

 

DWT coefficients Quantization step size ][mV∆  Quantization MSE ]v[10 2-3  

5CA  65,169 39,2

1CD  245,79 52,0

2CD  83,212 77,3

3CD  88,228 36,4

4CD  13,176 58,2

5CD  13,170 41,2

 

In the table above, quantization step size and the quantization mean square errors 

for each DWT  coefficients are shown [7]. The quantization errors have values in the 

optimum range 

6.3.5  LZW encoder 

The input of the LZW block is the binary data sequence. The quantization levels 

created by the quantization of the approximation and the detail coefficients are 

converted into the binary data structure in order to use for the input of LZW encoding 

[16].  

Prior of the LZW encoding, binary conversion is done. 

codedquanCAquantisedCA __5_5 →  

5:1=i  

codedquanCDiquantisedCDi ___ →  

On Figure 6.26 LZW encoder block diagram is displayed. 
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Figure 6.26 LZW encoder. 

On Figure 6.27 LZW decoder block diagram is displayed. 

 

 

 

Figure 6.27 LZW decoder. 

In the diagram shown above, 5CD  is given for an example. In addition to that, 

quantized and binary coded data sequence of 4CD , 3CD , 2CD , 1CD , and 5CA  are 

available at the input of the encoder and the decoder blocks.    

The compression performance, namely the CR  value is obtained as 91,12  by 

means of LZW coding algorithm [7]. This result is provided with the Equation of 6.8. 

codedquanCD __5  is the input of LZW encoder, and deczivCD __5  is the 

output of the LZW decoder. The result that is implemented by MATLAB programming 

shows that, LZW method is a lossless compression algorithm. Both  

codedquanCD __5  and deczivCD __5  displayed on Figure 6.28 are same with one 

another.  
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 Figure 6.28 LZW encoder input and LZW decoder output.  

6.3.6  Wavelet reconstruction 

When the recostruction process is realized that is mentioned in the previous 

sections, the reproduced signals for each level may be obtained shown in Figure 6.29. 

 

 

 

 

 

 

 

 

 

Figure 6.29 5 level wavelet synthesis. 
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In Figure 6.30, the same signal is analyzed for the limited coefficients, and the 

reconstructed waveform for 5 step decomposition is displayed as it is in the previous 

one.  

 

 

 

 

 

 

 

 

 

Figure 6.30 5 level wavelet synthesis for 0 to 1000. 

The reconstructed signal provided after the synthesis process is shown in Figure 

6.31. 

The error trace diagram that is realized in the method of wavelet transform is 

displayed in Figure 6.32.  
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Figure 6.31 The Original signal and reconstructed signal. 

 

Figure 6.32 Error occurs between original and reconstructed signals in WT model. 
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6.3.7  Reconstruction mean square error 

To make the results quantitatively comparable to other ECG compression 

methods, here it is used most widely-known numerical indexes of PRD  (percent root 

mean square difference) and CR  (compression ratio). In the following lines, the 

changes of these parameters are shown. 

When the subsignals are quantized, for Jj ≤≤1 , { })(, jJ da  the RMSE  

(Reconstruction Mean Square Error) between the original signal 0a  and the 

reconstructed 0'a  occurs.  

RMSE  between the original signal and its reproduced version can be exactly 

calculated from the quantization MSE’s of the decomposed subsignals ( Ja  and jd ). So, 

for the first 7 segments that has 1024 samples, and the last segment that has 512 

samples, RMSE  is occurred [12], [13].  

∑
=

+=
J

j

d
jJ

1

εεγ  

543215 CDCDCDCDCDCA εεεεεεγ ++++= +      (6.12) 

Calculated as 2310.03,16 v−=γ   

A widely used quantitative  distortion measure for ECG coding is the PRD . 

PRD  is calculated the result of  %3,7  

6.4  Discrete Cosine Transform & Discrete Sine Transform 

Orthogonal transforms provide alternate signal representations that can be useful 

for ECG data compression. The goal is to select as small a subset of the transform 

coefficients as possible which contain the most information about the signal, without 

introducing objectionable error after reconstruction. 
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Based on the research, more than 99% of the power in DCT  and DST  is 

contained within the first %20  of the coefficients. The coefficients after the first %20 , 

are approximated as zero [3]. 

A wide variety of techniques are available for ECG data compression [1]. With 

the emergence of fast DSP processors, and fast algorithms for the computation of many 

orthogonal transforms, transform compression can be effectively used in real-time 

applications [15]. 

Using orthogonal transform in data compression, a subset of the coefficients is 

selected in the transform of the input signal with which can be reconstructed the signal 

without introducing significant error. To obtain an optimal transform, an error criterion 

is necessary the mean square error is often used in ECG applications. The optimum 

orthogonal transform in the mean square criterion is the Karhunen-Loeve Transform 

(KLT).   

Original ECG signal is divided into blocks (subsignals). Each block is quantized 

with the help of thresholding factor.  Threshold factor is obtained empirically. By using 

the threshold, the coefficients which have values below the threshold level are discarded 

and only the remaining coefficients are taken into consideration. At the end, in order to 

evaluate the performance of the compression, realized, the same parameters namely, 

PRD  and CR  are used [7].    

ECG signal compression via DCT  & DST  algorithms is displayed in the block 

diagram, namely Figure 6.33, below. 
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Figure 6.33 DCT & DST block diagram. 

The first block includes the decomposition process in the diagram, comprise the 

transformation procedure of DCT  or DST  [10]. After the implementation of 

thresholding, the required coefficients are uniformly quantized. The output of the 

quantization will be the input of LZW coding. Now, the digital data is compressed at the 

end of entropy coding. This situation is somehow is the representation of the digital 

signal with decreased size. Thus, entropy coding is so important in signal compression. 

LZW coding method is used for the purpose of entropy encoding [16]. The remaining 

issue is the inverse of the forward diagram. 

6.4.1  Decomposition with DST & DCT 

ECG signal taken from MIT-BIH database is used for this purpose. DST  or 

DCT  transformation is the process of creating subsignals each has L input samples: In 

other words, this is the procedure of DCT  & DST  block generation.   

512)71024(7680 += x  

1024]7...1[7 =→ Lsegments  

512.8 =→ Lsegment  

Below the first and the last DST  block is given as an example displayed on 

Figures 6.34 and 6.35.  
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Figure 6.34 1st DST block, L=1024, segment1. 

 

 

 

 

 

 

 

 

 

 

Figure 6.35 8th DST block, L=512, segment8. 
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As it is mentioned above, there are 7 DST  or DCT  block available, with 1024 

samples, and only one DST  or DCT  block with 512 samples, each has different from 

one another. 

iW  is the DST or DCT  form of the input ECG signal segment ( isegment , 

)8,...,1( =i ). Each iW  has the same size with isegment . That is to say, when, 

10241)( xisegment , then 10241)( xiW . Blocking diagram is shown in Figure 6.36  

 

 

 

Figure 6.36 Blocking. 

 

6.4.2  Threshold factor 

Thresholding process is used in DCT  and DST  method. Thresholding provides 

the increase of the number of quantized samples to zero, and let the LZW coding as 

efficient as possible. Same threshold value is applied for each segment [5]. 

2 different parameters are used in the thresholding. For 8,...,1=i , ctcounterbid  is 

the number of indexes different from zero in iW  , before thresholding. On the other 

hand, ctcounteraid  is the number of indexes different from zero in iY , after 

thresholding. This process is seen in the Figure 6.37, below. 

 

 

 

Figure 6.37 Thresholding. 
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In order to keep the value of PRD  and CR  in acceptable level, threshold factor is 

calculated as v2,0  in DCT and v15  in DST   [5]. 

If threshold is set to 0, means that if threshold factor is not applied, it is observed 

that Compression Ratio (CR ) decreases, PRD  and RMSE  increases, actual 

quantization MSE  for each segment increases. 

The effect of thresholding is displayed in Table 6.2. 

Table 6.2 
Thresholding effect. 

 

i (segment #) ctcounterbid

(DCT/DST) 

ctcounteraid

(DCT/DST) 

# of samples 

quantized to 0 

( ctcounterbid -

ctcounteraid ) 

(DCT/DST) 

1 1024 / 1024 697 / 471 327 / 533

2 1024 / 1024 700 / 468 324 / 556

3 1024 / 1024 727 / 483 297 / 541

4 1024 / 1024 827 / 530 197 / 494

5 1024 / 1024 748 / 509 276 / 515

6 1024 / 1024 761 / 517 263 / 507

7 1024 / 1024 729 / 511 295 / 513

8 512 / 512 384 / 230 128 / 282
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6.4.3  Uniform quantization 

∆  is the quantization step size, and each sample is represented with 8 bits )8( =n . 

)2/()*2( max
nA=∆  can be defined. maxA is different for each ECG segment. Thus 

quantization step size is different for every ECG segment 

Also, the MSE  values in each segment is different from one another 

∑
=

−=
N

i
ii yx

N
e

1

2)(1

 

While ix  is defined for quantized isegment , and iy  is the DCT / DST  taken and 

threshold applied data sequence. In Table 6.3, quantization step size and real 

quantization mean square error for only DCT  is displayed. 

Table 6.3 
Quantization step size and real MSE values for each segments. 

 

Quantized signal Quantization step size [v]∆ Real MSE ]ve[10 2-3  

1segment 275,0 3054,4

2segment 329,0 4926,5

3segment 201,0 2382,2

4segment 314,0 273,6

5segment 335,0 7621,6

6segment 331,0 5035,6

7segment 242,0 2778,3

8segment 169,0 7407,1
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6.4.4  LZW encoding 

The quantized and binary coded levels are also the inputs of LZW encoder. This 

conversion is shown in Figure 6.38. For every quantized and binary coded ECG 

segments, LZW coding is applied displayed in Figure 6.39. 

 

 

 

Figure 6.38 Binary conversion. 

 

 

 

 

Figure 6.39 LZW encoder. 

At the end of the LZW encoder, the compressed digital binary data sequence is 

available. By using DCT  and DST  algorithms, the CR  values are 08,11  in DCT , and 

708,11  in DST  calculated 

6.4.5  LZW decoding 

8...1,_ =− ideczivsegmenti , is the decimal converted form of the binary data 

sequence, shown in Figure 6.40. 

 

 

 

Figure 6.40 LZW decoder. 
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6.4.6  Inverse DST/DCT  

It would be possible to reconstruct the ECG signal with the help of inverse 

discrete cosine/sine transform that has L input samples in each subsignal. In Figure 

6.41, IDST block diagram is displayed.  

 

 

 

Figure 6.41 IDST block diagram. 

8...1, =iarepi , is the reconstructed ECG segments generated by IDCT  algorithm. 

In Figure 6.42 and 6.43, it may be possible to see the reconstructed 1arep  that is belong 

to 1segment  and last reproduced segment 8arep , related with 8segment . 

 

 

 

 

 

 

 

 

Figure 6.42 Reconstructed signal, arep1, L=1024. 
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Figure 6.43 Reconstructed signal, arep8, L=512. 

The reconstructed signal waveform is shown in Figure 6.44. In that case, 

reconstruction error in DCT  is 2310.014,1 ve −=  and in DST  2610.54,1 ve −=  is 

calculated. 

 

 

 

 

 

 

 

 

Figure 6.44 Original and reconstructed signal waveform. 
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The error trace diagrams for the discrete cosine & sine transform methods are 

displayed in Figures 6.45 and 6.46, respectively. 

Distortion evaluation parameter PRD  is calculated as %2357,2=PRD  in DCT  

and %75,2=PRD  in DST .  

 

Figure 6.45 Error between original and reconstructed signal in DCT model. 
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Figure 6.46 Error occurs between original and reconstructed signal in DST model. 

6.5  Wavelet Packet Transform 

Wavelet packet transform offers a richer range and a detailed investigation of the 

signal analysis. In wavelet packet analysis, the details as well as the approximations can 

be split [4], [9]. 

The # decomposition level that is used in wavelet transform is still be used in 

wavelet packet transform. 5=L  will be used for the implementation. For njW , , 

5,...,0=j , 31,...,0=n , wavelet packet coefficients are generated. Then, with the help of 

the algorithms of uniform quantization and coding, the original signal is compressed.  

LZW decoder and wavelet packet synthesis blocks, allows to reconstruct the 

original signal again. 

In the wavelet packet transform method, the effect of different wavelet family in 

use is investigated on CR  performance. Besides the changes, when the # of 

decomposition level is decreased, is analyzed and submitted as a report. For the 
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different wavelet family, the CR  and the PRD  values are evaluated for each transform 

methods. 

The error trace diagram that is realized in the method of Wavelet Packet 

Transform is displayed in Figure 6.47.  

 

Figure 6.47 Error  between original and reconstructed signal in WPT model. 
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6.7  Analysis with Arrhythmia ECG signal  

Digital signal with 4170  samples is used for arrhythmia case. Based on the 

applications, CR  and PRD  values are calculated as 28,16  and %269,34  successively. 

The error trace diagram for the arrhythmia ECG signal that is realized in the method of 

Wavelet Transform is displayed in Figure 6.48.  

 

Figure 6.48 Error  between original and reconstructed signal in WT model for arrhythmia. 

The results of the evaluation show that the reproduced ECG waveform at 
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Figure 6.49 Original and reconstructed waveform for WT model of arrhythmia ECG signal. 

The error trace analysis is also investigated in discrete cosine transform for the 

same arrhythmia ECG signal with 4170  samples. The distortion mentioned above is 

also occurred in DCT  model with the PRD  value of %95,18 . The CR  value is 32,7 . 

The error trace diagram for the arrhythmia ECG signal that is realized in the method of 

DCT  is displayed in Figure 6.50.  

 The original and reproduced forms for arrhythmia ECG signal are shown in the 

same plot in Figure 6.51 for the DCT  model. 
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Figure 6.50 Error occurs between original and reconstructed signal in DCT model for arrhythmia. 

 

Figure 6.51 Original and reconstructed waveform for DCT model of arrhythmia ECG signal. 
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7.   RESULTS 

7.1  Application Details & Conclusion 

Digital ECG signal compression is successfully realized with the four different 

methods of wavelet transform, wavelet packet transform, discrete cosine transform, and 

discrete sine transform. A Pentium 4, GHz4,2 CPU, 256  MB  RAM PC is used to test 

all of the algorithms developed. 

10 different wavelet families are applied to two different types of ECG signals 

(normal and arrhythmic). The efficiency of the methods are compared with each other 

using two quantitative parameters, namely the  Compression Ratio ( CR ) and the 

Percent Root Mean Square Difference ( PRD ),   

The CR  values obtained by the WPT  method is smaller then the CR  values 

generated by the WT . It is clear that, the compressed data bits size ( B ) in WPT  

method is larger then ( A ) the WT  method shown in Equation 7.1 and 7.2.  

A
ODBCRWT WT =→        (7.1) 

B
ODBCRWPT WPT =→             (7.2) 

When, AB >  

B  is compressed data size in WPT , A  is compressed data size in WP . 

Then, WPTWT CRCR >  can be concluded. 

On the other hand, CR  values generated by the WT  method is larger then the 

DCT  and DST  methods.  Thus, the CR  performance evaluation can be arranged as 

follows, only available for the same decomposition level 

WPTDCTDSTWT CRCRCRCR >>>  
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The second parameter that allows us evaluate the compression performance is the 

PRD . The distortion that results after a  WT  based compression is larger than those 

that results after  WPT  based compressions and some other transform methods, i.e.,  

WTWPT PRDPRD <  

The effect of decomposition level is analyzed only for the  WPT  method. If the 

value of L  is increased, the CR  decreases and in general the distortion in the 

reconstructed signal is also decreased. The effect of level is displayed in Table 7.5. 

The threshold factor is also studied for  the Discrete Sine Transform and Discrete 

Cosine Transform based methods and  the effect of this factor on the CR  and on the 

PRD  values . If the threshold factor is not applied, the CR  decreases, PRD  increases, 

RMSE  increases, and actual quantization MSE  for each segment increases. Threshold 

effect on actual quantization error both for DST  and DCT  are displayed in Tables 7.3 

and 7.4. 

To sum up, in all the techniques implemented, if the the CR  increases the 

distortion, i.e., the PRD  also increases. The expected and the optimal result is high 

compression ratio and low PRD  value. This situation is directly related with the signal. 

For example, the most appropriate result for Table 7.1 is wavelet transform; on the other 

hand, the DCT  method presents the best results in Table 7.2. In general, the highest 

compression ratio is realized with the wavelet transform based technique and the lowest 

PRD  is obtained with the wavelet packet transform based method.     
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Table 7.1  

CR and PRD values for the signal with 7680 coefficients. 
 

Signal (7680 
coefficients) 

Transform 
method 

L 
(Decomposition 

level) 

Wavelet 
family 

CR (Compression 
Ratio) 

PRD 
(percent root mean 
square difference) 

ECG WT 5 db1 13,52 9,55 

   db2 12,91 7,30 

   db3 12,79 4,55 

   bior2.2 14,10 5,18 

   bior3.1 13,02 8,43 

   bior4.4 12,99 0,51 

   coif1 12,84 4,04 

   coif2 13,14 3,65 

   sym2 12,91 7,30 

   sym5 13,19 2,46 

 WPT 5 db1 7,98 0,17 

   db2 7,76 0,94 

   db3 7,69 3,70 

   bior2.2 7,81 1,10 

   bior3.1 7,68 0,54 

   bior4.4 7,65 1,74 

   coif1 7,76 2,3 

   coif2 7,64 0,90 

   sym2 7,76 0,93 

   sym5 7,68 0,77 

 DCT  thr=0 10,94 5,80 

   thr=0,2 11,08 2,23 

 DST  thr=0 9,53 5,76 

   thr=15 11,708 2,75 
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Table 7.2  
CR and PRD values for the signal with 5001 coefficients. 

 
Signal (5001 
coefficients) 

Transform 
method 

L 
(Decomposition 

level) 

Wavelet 
family 

CR (Compression 
Ratio) 

PRD 
(Percent root mean 
square difference) 

ECG Wavelet 
transform 

5 
db1 12,6 5,58 

   db2 13,44 3,04 

   db3 13,89 4,41 

   bior2.2 13,74 5,41 

   bior3.1 14,49 5,42 

   bior4.4 13,98 6,54 

   coif1 13,66 6,21 

   coif2 14,11 9,54 

   sym2 13,44 3,04 

   sym5 13,79 8,18 

 WPT 5 db1 7,5 4,16 

   db2 7,9 3,44 

   db3 8,22 5,13 

   bior2.2 8,05 0,75 

   bior3.1 8,15 9,83 

   bior4.4 8,73 3,19 

   coif1 7,91 0,72 

   coif2 9,4 1,92 

   sym2 7,89 3,44 

   sym5 8,53 3,95 

 DCT  thr=0 13,66 0,45 

   thr=0,2 13,68 0,44 
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Table 7.3  
DST threshold effect on actual MSE. 

 

 

 

Table 7.4  
DCT threshold effect on actual MSE. 
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Table 7.5  
Decompositon level effect on WPT. 

 

Signal (7680 
coefficients) 

Transform 
method 

L 
(Decomposition 

level) 

Wavelet 
family 

CR (Compression 
Ratio) 

PRD 
(Percent root mean square 

difference) 

ECG WPT L=5 db1 7,98 0,17 

   db2 7,76 0,94 

   db3 7,69 3,70 

   bior2.2 7,81 1,10 

   bior3.1 7,68 0,54 

   bior4.4 7,65 1,74 

   coif1 7,76 2,30 

   coif2 7,64 0,90 

   sym2 7,76 0,93 

   sym5 7,68 0,77 

  L=4 db1 9,31 2,45 

   db2 9,18 2,36 

   db3 8,91 3,01 

   bior2.2 9,22 3,94 

   bior3.1 9,26 2,67 

   bior4.4 9,01 0,57 

   coif1 9,22 0,26 

   coif2 8,93 0,27 

   sym2 9,18 2,36 

   sym5 8,91 2,89 

  L=3 db1 10,33 2,54 

   db2 10,72 4,93 

   db3 10,60 1,67 

   bior2.2 10,94 3,82 

   bior3.1 11,11 3,15 

   bior4.4 10,84 2,82 

   coif1 10,90 3,14 

   coif2 10,90 2,69 

   sym2 10,72 4,93 

   sym5 10,61 3,24 
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7.2  Suggestions for Future Study 

For further study, a new compression method may be studied and compared with 

the wavelet transform in terms of the compression ratio and the distortion measure 

( PRD ). Another way of using these transform techniques may be provided by 

combining the strongest features to compress the digital ECG data as much as possible 

while maintaining clinically acceptable signal quality. The same threshold factor may 

be used for all of the segments and  analyzed. This threshold factor is able to be 

determined based on the signal, and let the application to use the optimum threshold 

level after decomposition for every segment.  

The most appropriate wavelet family for the analyzed signal can be studied. In 

this study, 2Db  is used as a primary wavelet due to the similarity with the ECG signal. 

Such an intelligence may be provided to select the appropriate wavelet based on the 

signal, its amplitude and the number of coefficients, etc. 
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