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ABSTRACT

SMT: SPLIT/MERGE FIBER TRACTOGRAPHY FOR

MR-DTI

Magnetic Resonance Diffusion Tensor Imaging is a recent imaging modality

which has shown promise as a non-invasive tool for estimating the orientation and

quantity of white matter tracts in vivo. It has been shown that the estimated diffusion

tensor’s principal diffusion direction coincides with the fiber orientations, given that the

tensor in question is anisotropic. MR-DTI fiber tractography aims at following these

principal diffusion directions to reconstruct fiber paths. The conventional approach is

to use integration techniques, i.e. to follow the principal diffusion directions.

The goal of this project is to introduce a new technique for estimation and vi-

sualization of fiber tracts. The proposed Split/Merge Tractography (SMT) tries to

overcome the disadvantages of existing techniques. SMT’s approach is to generate

short (thus more reliable) fiber tracts by conventional techniques (Splitting step) and

then group these short tracks according to an estimated distribution (Merging step).

SMT allows branching and does not mask the inherent resolution limitation of the data.

The aforementioned distribution is estimated via the Metropolis-Hastings Method.



ÖZET

BÖL/BİRLEŞTİR YÖNTEMİ İLE SİNİR AĞLARININ

BULUNMASI

Manyetik rezonans difüzyon tensör görüntüleme yeni gelişen ve müdahale gerek-

tirmeden beyindeki beyaz maddenin yapısını göstermek için kullanılan bir tekniktir.

Tensor’ün anizotropik olduğu durumlarda tensorden hesaplanan ana difüzyon yönü

ile sinir ağlarının yönünün birbirleriyle çakıştığı gösterilmiştir. Manyetik rezonans

difüzyon tensor görüntülemenin amacı hesaplanan bu ana difüzyon yönlerini takip ed-

erek sinir ağlarının oluşturulmasıdır. Genelde kullanılan yöntem integral alma metod-

larıdır.

Bu projenin amacı sinir ağlarının hesaplanması ve görüntülenmesi için yeni bir

teknik ortaya koymaktır. Önerilen Böl/Birleştir Sinir Ağları Takip yöntemi mev-

cut olan yöntemlerin dezavantajlarını aşmayı amaçlamaktadır. Böl/Birleştir Sinir

Ağları Takip yönteminin yaklaşımı önce kısa sinir ağı parçalarını bilinen yöntemlerle

oluşturmak ve daha sonra bu kısa parçaları hesaplanan dağılıma göre gruplandırmaktır.

Bu yöntem dallanmaya ve datanın çözünürlüğünü olduğu gibi kullanmaya izin vermek-

tedir. Altta yatan dağılım Metropolis-Hastings yöntemi ile hesaplanmaktadır.
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1. INTRODUCTION

1.1. Background

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), also known as Diffu-

sion Tensor Imaging (DTI), has shown promise as a non-invasive tool for estimating

the orientation and quantity of White Matter (WM) tracts in vivo. The process of

using DTI data to estimate white matter structures is commonly known as tractog-

raphy. DTI tractography is a unique imaging modality that is a clinically applicable

mean of non-invasively imaging the myelinated axonal structure of the human brain.

The DT-MRI technique has raised hopes in the neuro-science community for a bet-

ter understanding of the fiber tract anatomy of the human brain. Various methods

have been proposed to use DT-MRI data to track nerve fibers and derive connectivity

between different parts of the brain.

The ability of DTI to quantitatively describe white matter connectivity in the

human brain has a variety of clinical applications. The correlation between white

matter structural asymmetries and schizophrenia is currently being investigated in

group studies. Similar group studies are being conducted to gain an understanding of

the progression of white matter tract damage in neuro-degenerative diseases such as

Alzheimer’s disease. Changes in the diffusion directional dependence, known as diffu-

sion anisotropy, have been illustrated to have promise in detecting and characterizing

brain tumors. DTI has been used to characterize reductions in diffusion anisotropy in

regions of severe brain trauma that are theorized to result from tissue swelling. It is

hoped that DTI will provide insights into the progression of tissue damage in cases of

severe injury, and that these insights could provide strategies to limit the spread of

tissue damage [3].

The goal of this project is to introduce a new technique for estimation and vi-

sualization of fiber tracts. The proposed Split/Merge Tractography (SMT) tries to

overcome the disadvantages of existing techniques. SMT’s approach is to generate
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short fiber tracts by conventional techniques (Splitting step) and then group these

short tracks according to an estimated distribution (Merging step). The generated

short fibers are more reliable since no large error accumulation is allowed. These short

fibers help to visualize the local tensor orientation. Advantage SMT is that it al-

lows branching and does not mask the inherent resolution limitation of the data. The

distribution is estimated via the Metropolis-Hastings Method.

1.2. Organization of the Thesis

The rest of the thesis is organized as follows: In Chapter 2, a brief introduction

on Magnetic Resonance Diffusion Tensor Imaging and its basics is given. A literature

survey is presented about the existing techniques and limitations about DTI fiber

tractography is given. In Chapter 3, the new approach Split/Merge Fiber Tractography

we proposed in this thesis, is explained. In Chapter 4, the proposed technique is tested

and compared with existing techniques. Chapter 6 includes information about the

software development environment used in this project. Conclusions drawn from the

study and suggestions offered for future research are discussed in Chapter 7. Detailed

information about the Log-Euclidean framework and Metropolis-Hastings algorithm

used for tensor interpolation and distribution estimation are given in Appendix A and

Appendix B, respectively.
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2. BACKGROUND

2.1. Magnetic Resonance Diffusion Tensor Imaging (MR-DTI)

Magnetic Resonance Diffusion Tensor Imaging is a recent imaging modality which

has shown promise as a non-invasive tool for estimating the orientation and quantity

of white matter tracts in vivo. It consists of estimating a diffusion tensor D within

a voxel and then displaying quantities derived from it. It has been shown that phe-

nomenon of an isotropic diffusion of water in anisotropic tissues can be calculated by a

series of nuclear magnetic resonance (NMR) pulsed-gradient, spin-echo measurements

in different directions. A tissue’s three orthotropic axes can be determined from these

measurements and those axes coincide with the eigenvectors of the calculated diffusion

tensor where the effective diffusivities correspond to the eigenvalues of the tensor D

[5].

2.1.1. Diffusion

Diffusion is a microscopic phenomenon arising from thermal motion in which

molecules migrate randomly. Molecular diffusion motion is also referred to as Brown-

ian motion. Einstein’s relation develops a time distance relationship for a particle

undergoing Brownian motion in free space [2].

D =
1

6τ
r2 (2.1)

where D is a scalar known as the diffusion coefficient, τ is the period of time during

which a particle undergoes Brownian motion, and r is net displacement. The dif-

fusion coefficient D relates time to the displacement square, and is therefore not a

diffusion velocity [10]. In the case of a restrictively bounded environment, particles un-

dergoing Brownian motion are displaced with greater magnitudes in directions parallel

to boundaries, and smaller magnitudes in directions across boundaries. Thus, direc-

tionally dependent Brownian motion reflects the underlying structure of a bounded
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environment. Diffusion is said to be anisotropic when displacement due to Brownian

motion is directionally dependent. In cases of anisotropic diffusion, Einstein’s relation

must be generalized to allow for directional dependence [1],

D =
1

6τ
< r̂r̂t > (2.2)

where D is a second order tensor, and r̂ is a displacement vector indicating both the

magnitude and direction of Brownian motion. The tensor D in the generalized form

of Einstein’s relation is known as the diffusion tensor. The notation <> represents an

average over many repeated and uncorrelated measurements. So, Brownian motion is

not characterized by the average displacement over sometime, instead by the average

displacement squared. In general, the diffusion tensor D depends on particle mass,

the structure of the medium and temperature [10]. In DTI, the particle mass of water

molecules and the temperature at which measurements are conducted is assumed to

be constant. This assumption allows for the spatial fluctuation of the diffusion tensor

in DTI to be interpreted solely in terms of local anatomical structure. The process of

diffusion may also be viewed at a macroscopic level in terms of a group of moving parti-

cles. Fick’s first equation describes the effect of diffusion on the motion of nonuniform

distributions of particles, as

Ĵ = −D∇C(r) (2.3)

where Ĵ is a vector representing the magnitude and direction of particle flux, D is the

coefficient of diffusion in the Ĵ direction, and C(r) is a scalar valued function that

describes the concentration of particles at a given position r. Fick’s first equation

states that the flux of particles in a system is proportional to the gradient of the

particle concentration. Therefore, Equation 2.3 predicts an equilibrium of zero particle

flux for systems with an even spatial distribution of particles where C(r) is constant.

The negative constant of proportionality next to the gradient of C(r) on the right hand

side of Equation 2.3 is the basis for the understanding of diffusion as the tendency of

particles in a system to move from areas of greater concentration to areas of lesser

concentration [2].
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2.1.2. Diffusion Tensor

When diffusion is anisotropic, a scalar diffusion measure is insufficient for de-

scribing the diffusion properties. It has been shown that the diffusion in this case can

be described by a second-order diagonally symmetric tensor, called the diffusion tensor

D,

D =











Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz











(2.4)

The diffusion tensor defines a principal frame of directions (x́, ý, and ź) for each voxel

by its eigenvectors (Figure 2.1). The diffusion displacement profile may be represented

as an ellipsoid with the length of principal axes described by the tensor eigenvalues

(principal diffusivities λ1, λ2 and λ3) and the directions given by the tensor eigenvectors

(~e1, ~e2, and ~e3). The diffusion eigenvectors are generally not aligned with the laboratory

frame. The eigenvector with the highest eigenvalue represents the principal diffusion

direction (PDD) at the corresponding position. In the principal component frame, the

displacements along x́, ý, and ź appear uncorrelated and the diagonal elements of the

tensor are equal to tensor the eigenvalues [11].

Figure 2.1. Diffusion tensor’s eigenvalues are the radii of the ellipsoid, while the

eigenvectors determine the orientations of the axes. [3]

a)Linear anisotropic diffusion b)Planar anisotropic diffusion c)Isotropic diffusion

In cases of purely isotropic diffusion, the diffusion ellipsoid takes on a spherical

shape, as λ1 = λ2 = λ3. There are two extreme cases of physically realizable anisotropic
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diffusion in which the ellipsoidal description of Figure 2.1 degenerates. For purely linear

anisotropic diffusion, λ1 = c and λ2 = λ3 = 0, the diffusion ellipsoid degenerates into

a line pointing in the ~e1 direction. In the case of purely planar anisotropic diffusion,

the diffusion ellipsoid becomes plate like shaped, meaning that λ1, λ2 ¿ 0, λ3 = 0

The degree of anisotropy in the diffusion tensor is commonly represented by

Fractional Anisotropy (FA). FA is defined as

FA =

√

3((λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2)
√

2(λ2
1 + λ2

2 + λ2
3)

(2.5)

For physically realizable diffusion tensors with non-negative eigenvalues, the FA

of a diffusion tensor is normalized between zero and one. In an extreme case, a FA

value of one denotes a diffusion tensor in which λ1 = c and λ2 = λ3 = 0 and diffusion is

completely anisotropic in the direction of ~e1. The fractional anisotropy metric evaluates

to zero in the opposite extreme of a completely isotropic diffusion tensor. In general,

higher values of FA occur for diffusion tensors in which local diffusion has a higher

degree of anisotropy [3].

2.1.3. Calculation of Tensors

The MR signal is usually corrupted by the diffusion of water molecules leading to

a small decrease in the measured signal. In diffusion imaging, this effect is magnified

by making use of the strongest possible magnetic field gradient applied in one direction

d. For each slice, at least seven images are collected with different diffusion weightings

and gradient directions. Each gradient is typically applied for a duration of several

tenths of a millisecond, during which the average water molecule in brain tissue may

migrate 10 or more micrometers in a random direction. The irregularity of the motion

entails a signal loss due to the magnetic spin phase differences and can be used to

quantify the diffusion constant. If S0 represents the signal intensity in the absence

of a diffusion-sensitizing field gradient and S the signal intensity in the presence of a

gradient g = (gx, gy, gz)
T , the equation for the loss in signal intensity due to diffusion
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Figure 2.2. Schematic representation of the random walk of a molecule in (a)

unrestricted, and in (b) restricted diffusion. The molecular path is perturbed by

collisions with other molecules or with medium boundaries such as membranes. [11]

. Note the isotropy in the case of unrestricted motion as opposed to the restricted

motion.

is given by the Stejskal-Tanner formula

ln(S) = ln(S0) − bgTDg (2.6)

b = γ2δ2(∆ − δ/3) (2.7)

where γ is the gyromagnetic ratio of hydrogen 1H, δ is the duration of the diffusion

sensitizing gradient pulses and ∆ is the time between the centers of the two gradient

pulses. The seven images provide seven equations for S in each voxel, i.e. the smallest

sampled part of a 3-D image. The equations are solved in a least-squared sense for the

6+1 unknowns, which corresponds to the six independent components of the symmetric

diffusion tensor, D, and S0 [9].
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2.2. Fiber Tractography in MR-DTI

Neurons are the physical structures in the nervous system that transmit infor-

mation in the form of nerve impulses from one part of the body to another. Neurons

are composed of three basic parts: the cell body, the axon, and the dendrites. The

dendrites are attached to the neuron cell body, and receive impulses from other neu-

rons at synapses. Axons are long cable-like structures that transmit impulses away

from the dendrites and the cell body. Axons are wrapped by a thin layer of connective

tissue known as the endoneurium. Groups of wrapped axons are bundled together into

tracts, or fascicles, by a thin boundary known as the perineurium [3].

Figure 2.3. Illustration of myelinated fiber tract [3]

The portion of the fascicles in the human brain that contain white fatty myeli-

nated Schwann cells form the white matter of the brain. The mobility of water to

diffuse across tracts with myelinated boundaries is restricted, causing water to dif-

fuse anisotropically in greater amounts in directions parallel to fiber tracts and lesser

amounts of diffusion in directions across the boundaries. This physical situation of in-

creased water diffusion in directions parallel to myelinated fascicles is what is measured

by diffusion weighted imaging to construct diffusion tensors [3]. The principal eigen-
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vector of the estimated diffusion tensor, i.e. the principal diffusion direction coincides

with the fiber orientation. Fiber tractography refers to constructing the fiber paths

based on the information in diffusion tensors. Figure 2.4 shows a tensor field and the

corresponding diffusion tensors.

Figure 2.4. Visualization of tensor field [34].

2.3. Current Fiber Tractography Approaches

2.3.1. Numerical Integration

It is proposed that a white matter fiber tract trajectory could be represented as

a 3D space curve, i.e., a vector parameterized by the arc length, s, of the trajectory

[7].

dr(s)

ds
= t(s) (2.8)

where t(s) is the unit tangent vector to r(s) at s. These vectors are depicted in

Figure 2.5. They also claimed that the normalized eigenvector, ε1, associated with

the largest eigenvalue of the diffusion tensor, D, λ1, lies parallel to the local fiber tract

direction in coherently organized white matter. The key idea in this tracking algorithm

is to equate the tangent vector, t(s), and the unit eigenvector, ε1, calculated at position
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r(s):

t(s) = ε1(r(s)) (2.9)

Combining the Equations 2.8 and 2.9, we obtain:

dr(s)

ds
= ε1(r(s)) (2.10)

This system of three implicit (vector) differential equations is solved for the fiber tract

trajectory subject to an initial condition:

r(0) = r0 (2.11)

which specifies a starting point on the fiber tract. We can use different numerical

methods to solve for r(s), such as Euler’s Method and the Runge-Kutta Method.

Figure 2.5. Representation of a white matter fiber tract as a 3D space curve [7]
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2.3.1.1. Euler’s Method. In Euler’s Method, a point is chosen on r(s), r(s0) and the

diffusion tensor there D(r(s0)) is calculated. Then the next point on the fiber tract is

approximated by using a Taylor series expansion of r(s) about r(s0) : r(s1) = r(s0) +

r′(s0)(s1 − s0) + ... . Since the slope of r(s0) at s0, r
′(s0), is assumed o be parallel to

ε1(r(s0)), for some small number α (with 0 < |α| < 1), r′(s0)(s1 − s0) ≈ αε1(r(s0)).

Once α is chosen, the following equation can be written:

r(s1) ≈ r(s0) + αε1(r(s0)) (2.12)

Thus r(s1) can be estimated from values of r(s0) and ε1(r(s0)). This routine can be

repeated to find all the points along the path of a singe fiber tract r(s) [12].

2.3.1.2. Runge-Kutta Method. Euler’s method is easy to explain and to implement

but on the other hand it is accurate only to the 1st order, and susceptible to large error

accumulation and numerical instabilities. Since the diffusion tensor D(x) can include

2nd and higher derivatives of ε1(x), it is better to use this information in a more robust

and accurate numerical method to integrate the fiber tract paths. Using Runge-Kutta

integration, a similar equation to Euler’s can be employed to calculate r(s0), the next

point on the fiber tract path [12] [7].

rn+1 ≈ rn + hVn+1 (2.13)

where

Vn+1 =
1

6
(k1 + 2k2 + 2k3 + k4) (2.14)

k1 =
Vn · ε1(rn)

|Vn · ε1(rn)|
ε1(rn) (2.15)
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k2 =
Vn · ε1(rn + h/2k1)

|Vn · ε1(rn + h/2k1)|
ε1(rn + h/2k1) (2.16)

k3 =
Vn · ε1(rn + h/2k2)

|Vn · ε1(rn + h/2k2)|
ε1(rn + h/2k2) (2.17)

k4 =
Vn · ε1(rn + hk3)

|Vn · ε1(rn + hk3)|
ε1(rn + hk3) (2.18)

A trajectory is terminated when it reaches the edge of the data defined. Unfortunately,

Figure 2.6. The principle of tractography [7]

the reliability of the tracking is compromised by the noise and degree of partial volume

effect in the image, meaning that trajectories tend to jump between adjacent structures.

This usually happens when a trajectory undergoes a sharp change in direction [12]. A

maximum allowable rate of change of direction is generally applied, accepting only

gentle curvature along the trajectory, in an attempt to constrain the path to one

structure only. Also when a trajectory reaches a region with low diffusion anisotropy

value such as FA¡0.15, it is immediately terminated.

2.3.2. Interface Propagation

Parker et al. applied level set theory using fast marching methods to generate

a 3D time of arrival maps from which connection paths between brain regions can be
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identified. This approach allows branching and determines how reasonable or likely

any path is in representing a ”true” pathway of connection. Maps showing the time of

arrival of a propagating front from a starting point, may be determined for the whole

brain. From this information, paths can be extracted [13]. The fast marching method

is governed by the Eikonal equation (2.19):

|∇T |F = 1 (2.19)

where T is the time of arrival, F is the propagation speed function.

The evaluation of front using fast marching method as seen in Figure 2.7 allows

a time of arrival, T, from the seed point to any point in the image volume, to be

determined. The rate F, at which the front propagates from the starting point is

linked to the PDD field. Each iteration involves the determination of F(r) where r

is the position of the voxels on the propagating front during the pth iteration. Two

different F definitions are implemented. The first one is regarded as a measure of voxel

similarity and is defined as

F1(r) =
1

1 −min((|ε1(r) · n(r)|), (|ε1(ŕ) · n(r)|), (|ε1(r) · ε1(ŕ)|))
(2.20)

where ŕ is the position of a voxel neighboring r that has already been passed by the

front. ŕ is chosen to be the neighbor for which (r-ŕ) is most closely aligned with the

direction of the normal to the front n(r). This assures that front propagation will occur

fastest if both ε1(r) and ε1(ŕ) are close to collinear with n(r) and close to collinear each

other, therefore pointing toward each other. Front evolution will be fastest along the

white matter tracts where strong coherence between ε1(r) in the neighboring voxels

is observed. The other version of F is based on the idea of embedded connectivity

information.

F2(r) = min(F2(ŕ), (|ε1(ŕ) · n(r)|)) (2.21)

In this definition, F2(ŕ) term provides a memory of previous iterations of the front
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position. This can be interpreted as embedding connectivity information already es-

tablished between the seed point and ŕ in the value of F2. After calculating the T map

Figure 2.7. Vectors used in the calculation of the speed function [13]

for a seed point, fiber paths are obtained by backtracking which is shown in figure 2.8.

Since each point in T may be connected to the seed point, a true anatomical connec-

tivity may be estimated by determining a connectivity metric and regarding only those

paths whose metric is above a specified threshold, as a true anatomical connectivity

[13]. In this approach, the problem of having regions with low anisotropy values due to

the presence of crossing fibers can be solved. While the fast marching method is able

to continue through such regions and find the true pathways of interest, the possibility

of false positives can not be ignored. This approach can be improved through new

definitions of speed function F since the implementations currently rely on ε1 values

only.

Another approach, geometric flows, is introduced by Campbell for the segmenta-

tion of fibertracts [14]. These flows are designed to evolve closed surfaces in 3D so as

to increase the flux of a fixed vector field (the PDD field) through them at the fastest

possible rate with respect to a Euclidean length or area metric. A two dimensional

representation is shown in Figure 2.9. The total inward flux of the vector field through
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Figure 2.8. Paths from arbitrary point to seed point using gradient descent through

T map [13]

the curve is given by contour integral

Flux(t) =

∫ 1

0

〈V,N〉 ‖Cp‖ dp =

∫ L(t)

0

〈V,N〉 ds (2.22)

where N is the unit inward normal of closed curve C parametrized by p and s is the arc

length parametrization of the curve in the vector field V = (V1(x, y, z), V2(x, y, z)), and

L(t) is the Euclidean length of the curve. Parker et al. proposed that the gradient flow

that maximizes the rate of increase of the total inward flux with respect to the Euclid-

ean arc length is obtained by moving each point of the curve in the direction of the

inward normal by an amount proportional to the divergence of the vector field. Rather

than explicitly calculating the divergence of the extended vector field, the numerical

computation can be made much more robust by resorting it to an integral form. Let

∆V be a volume, dV a volume element, dR its bounding surface, N the outward normal

at each point on the surface and dS a surface area element [14]. Via the divergence
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Figure 2.9. Left: A closed planar curve is placed in a 2D vector field. Right: The

curve evolves so as to increase the inward flux through its boundary as fast as

possible [14].

theorem,

∫

∆V

div(V )dV =

∫

dR

〈V,N〉 dS (2.23)

In other words, the integral of the divergence of a vector field over a volume is given

by its outward flux through that region’s bounding surface. The key benefit of this

method is that it has the ability to reconstruct multiple fibers in parallel, instead of

taking an iterative approach where the complexity of the algorithms increases as the

number of tracts to be reconstructed increases. It deals well with arbitrary numbers of

branches and merge points. It may be preferable to use all of the information in the

diffusion tensor instead of only the principle eigenvector [14].

2.3.3. Diffusion Simulation

Hagmann used the idea that the brownian movement of water molecules in the

brain can be described by a random walk model. It means that the particle trajectory

is made of a succession of jumps that are the realization of a random variable. In an

infinite homogeneous medium the distribution of the random variable is an isotropic

three dimensional Gaussian function whose variance is proportional to the diffusion

coefficient (Einstein, 1956). But the living tissue is highly structured and highly com-

partmented for water particles. Under those circumstances, the diffusion function
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deviates from an isotropic Gaussian and becomes a complicated function of position

and diffusion time [15]. The developed statistical fiber tracking algorithm is based on

two hypotheses:

• Considering a voxel, the probability of a fiber to propagate in a given direction

is proportional to the corresponding diffusion coefficient.

• Trajectories of axonal bundles follow regular curves.

Based on these two hypothesis, a random walk model and diffusion tensor field

Dα of a particle diffusing in a non homogeneous medium is constructed with a curve

regularizing constraint emphasizing collinearity with ri, a random vector uniformly

distributed over a unit sphere.

qi+1 = qi + hΩi (2.24)

Ωi =
hdi + Ωi−1

‖hdi + Ωi−1‖
(2.25)

di = Dα
i ri (2.26)

The curve that the particle propagation generates grows along a unit vector Ωi, that

is a random direction vector modeling the statistical nature of the diffusion process

and the curve regularizing constraint. Equation 2.24 explains this procedure where

qi+1 is the next point and qi is the current point on the path. The next point on

the path is in the Ωi direction with a step size defined by h. This is the standard

numerical integration method to follow the underlying vectors. The methods differ in

the calculation of step direction, namely Ωi, here.

The random vector di is defined on the unit sphere and distributed according to

the local diffusive properties which is obtained from Equation 2.26. α is an anisotropy

enhancing exponent. It is a power to the diffusion matrix D [15]. If α is put to 1
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the algorithm gives a lot of weight to possible fiber trajectories deviating from the

main direction and provides random jumps by increasing the weight of ri, which is

uniformly distributed over a unit sphere. Whereas, if α is large, the distribution is

tightened around the main eigenvector in which case the propagation rule comes close

to a classic PDD fiber tracking.

The step direction Ωi is a weighted sum of the random vector di, and the previous

displacement vector Ωi−1, which enhances collinearity.

This approach has the following advantages to the classical ones; the nature of the

data is better taken into account, the sensitivity to noise is decreased and the possibility

of fiber crossing and diverging is introduced. However, an uncertainty concerning

the trajectory of individual fibers appears. Each curve should not be interpreted as

a precise mapping of a real axonal trajectory. Selected fibers should be considered

together and areas of high fiber density as very likely trajectories whereas projections

of few fibers may not correspond to an anatomical entity. In that sense, the statistical

density mapping seems a complementary tool to the trajectory maps in the context of

statistical fiber tracking, in order to evaluate the validity of the fibers passing through

a given region [15].

Another simulation approach, proposed by Yörük, is based on energy minimiza-

tion task. Yörük associates the diffusion tensor field to a physical system composed

of nodes and springs, with their constants defined as a function of local structure [16].

A model based on a physical setup of massless nodes (voxels) and springs is proposed

where springs, which link adjacent nodes (voxels) of the domain, act as local ”connec-

tion” units as shown in Figure 2.10. Their stiffness varies in correlation with DT-MRI

data, i.e. with the amount of ”connectedness” of the underlying tensors, which is

measured in terms of the so called ”mutual diffusion coefficient”, a novel metric that

approximates the ellipsoidal volume overlap of a given tensor pair. A second set of

springs with a spatially constant stiffness, is introduced to oppose the effect of the

previous ones by linking each node to a virtual ground and acting as ”inertia” units. It

is showed that the connectivity map associated to this physical system can be achieved



19

by minimizing its total potential energy, with the seed node being lifted to a temporally

constant height and others initially kept at the ground, where node height is defined as

an indicator of connectivity [16]. Connectivity of two given tensors located at r1 and

r2 is defined as

K12 =

[

(vTD1v)(v
TD2v)

]γ

δ2
(2.27)

Where v = (r1 − r2)/δ and δ = ‖r1 − r2‖2. Thus, K reflects the mutual influence

of tensor pairs by giving the distance scaled product of their diffusion coefficients

evaluated in the unit direction of their Euclidean link and raised to the power γ which

is used as an enhancement parameter. With this model, total potential energy stored

Figure 2.10. Illustration of proposed spring system for a 1D curve (solid line), dots

represent the nodes, spring constants are given for the specific node up. [16]

at 7 springs considering the 6 voxel neighborhood is given as:

Vsprings =
1

2
κu2 +

6
∑

n=1

Vn (2.28)

V1 =
1

2
K1 [u(x, y, z) − u(x− δ, y, z)]2 (2.29)
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and where V2, V3, V4, V5, V6 are defined similarly.

V (u, ux, uy, uz) =
1

2
(κu2 + d2

11u
2
x + d2

22u
2
y + d2

33u
2
z) (2.30)

Equation 2.30 is obtained by inserting Kn’s common denominator δ2 into the squared

elongation terms and taking the limit. djj are the diagonal elements of diffusion tensor

D. When the current problem can be put into a variational one [16], the connectivity

map u with respect to the seed at (x0, y0, z0) can be found by minimizing the following

discretized energy functional:

J(u) =
∑

p

{

κu2
p +

1

2

N
∑

n=1

Kpn(up − upn)2

}

(2.31)

where p is the voxel index and N is the number of neighbors. upn and Kpn stand for

the nth neighbor of the pth node and its associated spring constant, respectively. One

advantage of this method is that it is computationally inexpensive. Also it provides

a tuning parameter, γ to weight the usage of principal direction versus the whole

diffusion tensor data usage. The converged results of the calculated connectivity maps

with different γ values are shown in Figure 2.11.

2.4. Limitations of Conventional Fiber Tractography

Current hardware limitations in MRI scanners limit the spatial resolution in DTI

data to the order of one millimeter. So, DTI tractography is a macroscopic model of

a microscopic structure. Therefore, DTI tractography estimates are macroscopically

sampled descriptions of underlying microscopic structures. The under-sampling of the

underlying white matter structure in DTI data gives rise to Intra-Voxel Orientational

Heterogeneity (IVOH) [1], a condition in which white matter structures of multiple

different orientations are averaged into a single DTI voxel sample, causing a loss of

validity in the diffusion tensor model. This is called partial volume effect. The effect

is important, especially, where fiber crossing, kissing or branching is seen in a voxel.

In many cases, partial volume effects become less apparent with increased spatial res-
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Figure 2.11. a) Axial slice of FA map with the seed indicated, b) Converged

connectivity map ( γ= 1), c-e) Converged maps for γ= 2, 4, 10, f) computed tracts

for γ= 10. [16]

olution. Limited angular resolution and partial volume effects make it difficult for

fiber tracking algorithms to extract the correct fiber orientations in some voxels and

thereby making it difficult to track fiber paths in a correct way. While there are strong

indications that DT-MRI reveals information of the fiber pathways in the brain, it is

important to stress the fact that the explicit quantity measured is water diffusion and

not the fibers.

An alternative approach to increase the spatial resolution is to increase the num-

ber of directions in which the diffusion is measured and then fit this data to a different,

higher order model than the second order tensor. This high angular resolution dif-

fusion imaging holds the promise to be able to determine the directions of multiple
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fibers within a single voxel, but also leads to increased acquisition times. Currently,

the most common acquisition scheme for acquiring diffusion tensor data is that of

echo-planar imaging (EPI) [4]. While this technique is fast, acquiring an entire image

in approximately 200ms, it is also susceptible to degradation due to non-uniformities

in the magnetic field strength. Since the magnetic field is altered by the presence of

structures within the human subject, they cannot be eliminated. However, work is

underway to reduce the imaging artifacts using different data acquisition schemes and

post processing of the data.

Artifacts can be also introduced while smoothing noisy DTI data. Generating a

continuous approximation to the tensor field can introduce phantom connections be-

tween tracts which do not exist anatomically. Unconsidered noise in the DWI scan also

has adverse effects on tractography. It can cause one to sort eigenvectors incorrectly.

This can result in a sudden 90 degree deviation in the computed trajectory which can

cause the trajectory to jump to other tracts.

Another drawback of this low resolution image volume is faced during the inter-

polation process to obtain an increased resolution of the DTI data. Since DTI data is

not a scalar value and it is represented as a second order symmetric tensor, an interpo-

lation problem arises. The simplest method is componentwise trilinear interpolation.

In this scheme the value of a tensor at any point inside the voxel is a linear combi-

nation of the values at its corners and is completely determined by them. Since the

coefficients of this linear combination are independent of the tensor indexes, the linear

combination of the tensors can be done component-wise. However, more sophisticated

interpolation methods would better preserve the eigenvalues along an interpolation

path. Component-wise interpolation of eigenvectors and eigenvalues themselves would

not lead to correct results, since a linear interpolation between two unit vectors is not

a unit vector anymore - the interpolated eigenvector value would leave the manifold of

unit vectors. In addition, there can be a correspondence problem in the order of the

eigenvalues.
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3. SPLIT/MERGE FIBER TRACTOGRAPHY

3.1. Aproach

The new Split/Merge fiber tractography (SMT) approach presented in this thesis

overcomes some disadvantages of conventional tractography explained in Chapter 2.3.

This new approach relies on the calculated short fiber tracts (strings) which are highly

reliable. These short fiber tracts are calculated for seed points with high fractional

anisotropy values. Figure 3.2 shows the calculated strings in the whole brain.

3.2. Method

In the calculation of fiber strings, 4th order Runge-Kutta integration is used.

Starting from a seed point only very short paths are tracked even if the terminated

point of the string has high FA value or the tract continues in a smooth path both in

backward and forward directions. This is illustrated in Figure 3.1. Keeping the tracts

short prevents the accumulation of error in each string. In the implementation, we

choose all the voxels with FA larger than 0.50 as seeds for short tracts, and terminate

tracking if the angle between two consecutive steps exceed 20 degrees or FA values

drops to 0.25 or maximum step count of 3 is reached. The backward and forward

tracks for a seed point are combined to obtain the resulting strings of 6 steps long.

A step size of 0.89 mm which is smaller than half of the voxel’s smallest dimension

is used. To ensure that tracking remains within the brain and skull, a threshold is

applied to the anatomical base image. The voxels that are part of a composed string,

are excluded from the potential seed set.

The string computation, as described above, requires interpolation of the ten-

sor data. Since DTI data is not a scalar value and it is represented as a 2nd order

symmetric tensor, the interpolation is not trivial. The simplest method is component

wise trilinear interpolation. However component-wise interpolation of eigenvectors and

eigenvalues themselves would not lead to correct results, since a linear interpolation
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Figure 3.1. Tracking of short fiber strings starting from center of the seed voxel.

between two unit vectors is not a unit vector anymore - the interpolated eigenvector

value would leave the manifold of unit vectors. In addition, there can be a correspon-

dence problem in the order of the eigenvalues. In the string computation, we used

Log-Euclidean framework for the interpolation of the tensors on the paths [22]. The

Log-Euclidean framework prevents the loss of anisotropy during interpolation of ten-

sors. More information about Log-Euclidean framework can be found in Appendix A.

Other techniques such as interpolating principle eigenvectors causes loss of information

through out the track.

The key idea of SMT is the creation of the co-occurrence matrix M. This matrix

is a symmetric NxN sparse matrix where N is the number of calculated strings in

the whole volume. Mjk refers to the probability that jth and kth strings are grouped

together (i.e. are on the same fiber bundle). Since the matrix is symmetric Mjk=Mkj.
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Figure 3.2. Left: Whole fiber strings. Right: Calculated fiber strings in detail

Another way to interpret Mjk is

Mjk ≈ b× Prob(Sj|Sk) (3.1)

where b is a constant scaling factor, and Sj, Sk refer to the jth and kth strings, respec-

tively.

During the visualization, user choses one or more strings of interest,the seed

strings. The SMT software selects only the strings that has a non zero value in the

co-occurrence matrix for the selected seed strings and displays them. Also, the user

can apply a threshold to the co-occurrence matrix and visualize only the strings that

are highly probable of being in the same group as shown in Figure 3.3.

Two methods are used in the construction of the co-occurrence matrix: Direct

Computation and Metropolis-Hastings Approach.

3.2.1. Method 1: Direct Computation

In the direct computation of the co-occurrence Matrix, a seed string is selected

and then the path is grouped starting from this seed string. In each step, the next

string is selected according to the probability of diffusing from the end point of current
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Figure 3.3. Left: String groups are visualized seeding from the stem of Pyramidal

Tracks. Right:A threshold value is applied to visualize more probable string groups.

string to the head of the next string. A set of strings are tested in a spherical region

at the end point of the current string, within a radius of 3 voxels. The probability

of moving from the current point to the target string is calculated with Equation 3.2

which is the fundamental solution of the diffusion Equation 2.3.

c(r) =

(

1

4πD

)3/2

exp

[

− |r|2

4πD

]

(3.2)

D = vtDv (3.3)

where v is the vector in the direction of moving from current location to the candidate

string location. The most probable string head is accepted as the next string on the

path and the same procedure is repeated. When the probability of jumping to a new

string is below a threshold or there are no candidate strings in the search region,

the merging is terminated. The merging is performed both in forward and backward

directions from the seed string. After merging, for each combination of string pairs the

corresponding elements of the co-occurrence matrix are increased by one. The same

process is repeated for each string in the volume, considering it as the seed string.
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The pseudo code for the Direct Computation Method is as follows:

1. Select a seed string, label it as current string and add its index to the group list

2. Set the direction forward

3. Take a spherical volume in the current direction of current string

4. For each candidate string in the selected volume calculate the probability of

moving from current string location to the candidate location

5. If there is no string to be accepted

• Terminate progress in the current direction and go to step 8

6. Else

• Accept the string with highest probability and add its index to the group

list

• Make the accepted string the current string and goto 3

7. End if

8. If the current direction is forward

• Set the current direction as backwards, set the seed string as current string,

and go to step 3

9. Else

• Terminate grouping

10. End if

3.2.2. Method 2: Metropolis-Hastings

The Metropolis-Hastings algorithm is used to generate a sequence of samples from

an unknown probability distribution of one or more variables. The purpose of such a

sequence is to approximate the distribution (as with a histogram), or to compute an

integral (such as an expected value). This algorithm is an example of a Markov Chain

Monte Carlo algorithm [23].

The Metropolis-Hastings algorithm can draw samples from an unknown distrib-

ution p(x), requiring only that a candidate generating density is known. This means

that we only need to know how to generate a new sample from a given sample. The
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algorithm generates a set of states xt which is a Markov chain because each state xt

depends only on the previous state xt−1. The algorithm depends on the creation of a

proposal density q(x
′

;xt), which depends on the current state xt and which can gen-

erate a new proposed sample x
′

[23]. Details about the Metropolis-Hastings algorithm

can be found in Appendix B.

In SMT, instead of moving to the most probable string from the seed string (as

in done in Direct Computation Method) we applied Metropolis-Hastings algorithm to

allow random jumps with different probabilities. Comparing to the Direct Computation

method, this approach allowed us not to tract only the expected path of the probability

distribution of paths that is seeding from a selected string , but it also considers the

paths which have lower probabilities of passing through the seed string.

In the implementation of this approach, we start from a seed string and find a

group of strings using the direct computation method as shown in Figure 3.4. This

group of strings refers to the group that is composed of strings (sk) and jumps (bk,k+1)

connecting those strings.

Figure 3.4. The group of strings where s denotes strings and b denotes the bridges

connecting those strings

Each jump has a fitness value Fk, equal to the FA value at the starting point of

the jump. Thus, jumps that are made over low FA regions are less reliable. A group

fitness is set as the minimum jump fitness in that group and is denoted by f(x).
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Metropolis-Hastings algorithm requires sample generation for a given pdf. In

SMT, a single group of strings and jumps is a sample. Generating a new sample is

achieved by selecting a jump to break the formed group and reestablishing a new jump

at that location. The jump to break the group is selected at a random location with

a probability inversely proportional to the fitness value at that location. That is, if a

jump is made from a low FA location then it is more likely that the group is going to

be cut from this location. The half of the group that has the seed string, as shown in

Figure 3.5, is preserved.

Figure 3.5. The grouped strings is cut at b34 selected randomly with a probability

inversely proportional to its fitness value. H is the set of possible strings to make a

new jump from the cut location

To obtain a new sample, a random jump is made at the broken jump location.

This random jump is selected according to the probability of each possible jump that is

calculated by Equation 3.2. After the new jump is found, we performed a new grouping

as in Method 1 which is seen in Figure 3.6. Thus, the candidate generating density is

q(x, y) =

(

1
Fk

∑

w∈W
1

Fw

)

(

c(l)
∑

h∈H c(h)

)

(3.4)
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where k is the selected jump to cut, W is all the possible jumps to cut, l is the newly

selected jump and H is all the possible jumps that can be made at the location of the

kthjump.

Figure 3.6. A random jump is made and a new grouping is done with this new jump.

This new group’s fitness is set as the minimum jump fitness in this group and

denoted by f(y). The new group is accepted with a probability α(x, y) as calculated

in Equation 3.5 and if it is rejected the old group is counted once more.

For each combination of string pairs in the new accepted sample the corresponding

elements of the co-occurrence matrix is increased by one. The same procedure is

repeated for a seed string 300 times. This is done for the each string taken as a seed

in the whole volume separately.

α(x, y) = min

(

1,
f(y)q(x, y)

f(x)q(y, x)

)

(3.5)

The q(y, x) in the denominator in Equation 3.5 can be seen as having the candidate

sample as current sample and calculating the probability of moving to the starting

sample as shown in Figures 3.7 and 3.8. The probabilities q(x, y) and q(y, x) will
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not be equal since the candidate selection region is different while constructing the

candidate sample from initial one and the initial one from the candidate sample.

Figure 3.7. Candidate sample is cut from the newly constructed bridge.

Figure 3.8. The starting sample is constructed from the cut candidate sample
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4. EXPERIMENTS

4.1. Data

Whole brain DTI scanning was conducted on a 1.5T unit with 50mT/m maximum

gradient strength using single-shot EPI scans. The scanning parameters were as follows:

• Field Of View(FOV)=24cm

• Matrix dimension = 128x128

• slice thickness/gap = 3.8mm/0mm

• Encoding directions = 12

• b = 850s/mm2

• gradient duration δ = 20ms

• Frequency encoding = L/R

The total scanning time was around 3-4 minutes.

4.2. Direct Computation

The direct computation method for the creation of the co-occurrence matrix took

around 25 seconds on an Intel Pentium IV machine with 2.4 GHz CPU speed and 1.5

GB ram. Total number of strings was 13540 in the whole volume. Calculated matrix

is saved to hard disk to be utilized in visualization process. The resulting matrix had

only 0.0014 percent non-zero elements. All the data used during fibertracking of short

tracts and creation of co-occurrence matrix, is calculated and interpolated on the fly

from the DTI tensor data. (i.e. extraction of eigenvectors, eigenvalues and FA values).

The visualization of fiber tracts passing through a selected region is shown on Figure

4.1. The figure shows the Pyramidal Tracks.
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Figure 4.1. Visualization of strings that pass from a selected region at pyramidal

tracts using Direct Computation Method viewing from different angles. The right

most figure shows the anatomical image.

4.3. Metropolis-Hastings

The Metropolis-Hastings method took around 170 minutes to create the co-

occurrence matrix. Again the total number of strings was 13540 in the whole volume.

After 150 iterations the co-occurrence matrix has 0.0037 percent non-zero elements and

after 300 iterations 0.0663 elements was non-zero. Figure 4.2 shows the visualization

of fibertracts which passes through the same selected point as shown in Figure 4.1

Figure 4.2. Visualization of strings that pass from a selected region at pyramidal

tracts using Metropolis Hastings Method viewing from different angles. The right

most figure shows the anatomical image.
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5. DISCUSSION

The most important disadvantage of MR-DTI is that there is no gold standards

defined in this area of study.Hence the results are compared with the anatomical results

that are obtained from previous works.

One of the advantages of proposed SMT method is the multipath consideration

of fibertracts.

Also SMT with Metropolis-Hastings method takes account the stochastic nature

of the underlying data. Since diffusion is a random process with a probability dis-

tribution the results obtained from this data should have a corresponding probability

values. Metropolis-Hastings method labels fibertract distributions according to their

uncertainty.

Another advantage of SMT that it allows branching of fiber paths. Thus each

seed location is allowed to end up more than one location. This is an important issue

especially at locations where a lot of fiber paths come closer and seem to merge. At

these locations only one fiber path is obtained when tracking is started at the merged

location with conventional fiber tracking methods.

When considering the visualization of fiber tracts, SMT provides a true visual-

ization of results. It does not hide any possible tracts. Users can interactively hide less

probable tracts with the provided interaction tools.

5.1. Comparison of fibertracking results at Corpus Callosum

On figure 5.1 the left image shows the anatomical structure of the corpus callosum

which is the structure deep in the brain that connects the right and left hemispheres of

the cerebrum, coordinating the functions of the two halves. We applied both continues

fiber tracking and split and merge methods from a selected are in this region. The
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middle image shows both the continues tract and the probability distribution obtained

from Metropolis-Hastings method. In right image we applied a threshold value to

visualize the more probable tracts. It is seen that the expected tract of the distribution

is similar to the continues tract.

Figure 5.1. Comparison of fibertracting result at corpus callosum Left: Anatomic

image[36] Middle:Metropolis-Hastings Method Right: A threshold is applied to

Metropolis-Hastings method

5.2. Comparison of fibertracking results at Pyramidal Tracts

On figure 5.2 pyramidal tracts are shown in the left anatomical image. These

tracts controls the distal limbs such as the fingers, hands, toes which can require

fine motor control. The middle image again shows the results obtained from both

continues 4th order Runge-Kutta and Metropolis-Hastings method. Less probable paths

are filtered by setting a threshold value to the co-occurrence matrix on the right image.

Both result obtained by different techniques are similar to each other.

More comparison figures of Direct Computation and Metropolis-Hastings Method

can be seen in Appendix C.

Of course these visualized tracts always should be taken as probability distribu-

tions and can be filtered by the GUI interactively to see the most co-occurred string

pairs.

It is shown that due to the limitations of fibertractography approaches and DTI
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Figure 5.2. Comparison of methods at pyramidal tracts . Left: Anatomic image[36]

Middle:Metropolis-Hastings Method Right: A threshold is applied to

Metropolis-Hastings method

data, it is is not possible to obtain one true fiber path for a seed point in the brain.

This is mainly due to the low resolution of DTI data which does not have the enough

resolution to solve the partial volume effects. The data has only the averaged values

of microscopic scaled anatomical structures in a macroscopic scale.

5.3. Comparison of experiment results

In the experiments we compared two different quantities derived from Direct

Computation and Metropolis-Hastings method. One of the quantities is the number of

different connections that is made by a seed string. The result is shown on figure 5.3.

The figure 5.3 is colored by the number of different string connections with the

string that is seeded from the pixel. The number of connections is increased by the

iteration number compared to Direct Computation and low iteration values. While

the direct computation method results in an average of 30 different connections from a

seed string, this number highly increases in Metropolis-Hastings Method. This should

be interpreted such that as the number of iterations is increased the obtained tract

paths are the possible samples from the underlying tract probability distribution.

An other quantity derived from the experiments is the length of the maximum

path obtained by both methods. Each pixel color represents the maximum length of the
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Figure 5.3. The color represents the number of different connections with other

strings from the pixel a)Direct computation result. b)Result after 150 iterations

c)Result after 300 iterations d)Difference between direct computation and 300

iteration metropolis-hastings method

grouped strings. Again it is obvious in figure 5.4 that maximum length of the possible

tracts are increased for most of the seed strings as compared to the maximum distance

obtained from Direct Computation method and low iteration values of Metropolis-

Hastings algorithm.

In general there are some parametric issues in general about the Metropolis-

Hastings algorithms which is a Monte Carlo Markov Chain method. These problems

can be stated as;

• The number of iterations

• Using an efficient transition function to generate new candidates

• Number of iterations to be omitted for preventing the starting bias introduced

by starting sample
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Figure 5.4. The color represents the maximum distance of a connection from that

pixel in millimeters a)Direct computation result. b)Result after 150 iterations

c)Result after 300 iterations d)Difference between direct computation and 300

iteration metropolis-hastings method

Other than the issues regarding the Metropolis-Hastings algorithm there are also

problems about the parameters of the visualization system. One of them is the selection

of the correct value for the threshold of the co-occurrence matrix. Since there are

no gold standards about the Diffusion Tensor Imaging these parameters are highly

dependent to the experience of the users.
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6. IMPLEMENTATION

6.1. Graphical User Interface

Fast Light Toolkit (FLTK), which is a cross-platform, free software, GUI library

is used for graphical user interface (GUI) implementation. It is written in C++ and

is functional on Windows, GNU/Linux, Mac OS X, Solaris, OS/2, and other Unix and

Unix-like operating systems.

FLTK provides GUI functionality without bloat and supports 3D graphics via

OpenGL and its built-in GLUT emulation. FLTK is designed to be small and modular

enough to be statically linked. FLTK can also be used as a shared library, which is

now being included on some Linux distributions [31].

Figure 6.1. Screenshot of user interface.
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6.2. Visualization

Visualization Toolkit (VTK) which is an open source, freely available software

system for 3D computer graphics, image processing, and visualization is used for the

visualization tasks. VTK consists of a C++ class library, and several interpreted in-

terface layers including Tcl/Tk, Java, and Python. VTK supports a wide variety of

visualization algorithms including scalar, vector, tensor, texture, and volumetric meth-

ods; and advanced modeling techniques such as implicit modeling, polygon reduction,

mesh smoothing, cutting, contouring, and Delaunay triangulation. In addition, dozens

of imaging algorithms have been directly integrated to allow the user to mix 2D imaging

/ 3D graphics algorithms and data. VTK is a powerful platform independent graphics

engine with parallel rendering support [30].

6.3. Image Processing

All the image processing and algorithms is developed in C++. VXL (the Vision-

something-Libraries) which is a collection of C++ libraries designed for computer vision

research and implementation is also used for matrix operations. VXL is written in

ANSI/ISO C++ and is designed to be portable over many platforms. VXL provides

easy implementation of algorithms with high performance arithmetic operations and

matrix algorithms [29].
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7. CONCLUSION

This thesis introduced a new technique for the visualization of fiber tracts. The

proposed Split/Merge Method tries to overcome the disadvantages of existing visual-

ization techniques. It considers that voxels are likely to consist of contributions from

multiple tissues and there may not be a single predominant direction of water diffusion,

also related to the macroscopic character of DTI the mixing of axonal tracts with differ-

ent orientations within a voxel is taken into account. To overcome those problems this

technique allows branching of fibertracts and local data structure in the volume can

be easily estimated by the visualized orientation of strings at that point. This allows

users to have an idea of the local coherency in the fiber tracts and can interactively

select regions they are interested in to study in detail.

Split/Merge method does not assumes any fiber paths for 100 percent sure, in-

stead it visualizes a distribution of paths with different probabilities which can be

filtered interactively to see the possible paths. Since diffusion can be regarded as a prob-

ability distribution of particles in a defined volume , the diffusion in the brain should

result also in a probability distribution of different paths. The Metropolis-Hastings

method suggested in this thesis tries to converge to the underlying probability of the

fiber tracts in the brain and to overcome the current limitations of fiber tractography.

Also the usage of Log-Euclidean Framework for the interpolation of tensors pro-

vides the conservation of anisotropy in interpolated tensors.

For the future studies different methods can be implemented for the creation of co-

occurrence matrix which can increase the performance and can converge better to the

real probability distribution of the underlying data. Also different transition functions

can be implemented for a better performance of Metropolis-Hastings Method.
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APPENDIX A: Log-Euclidean Framework

Tensors, i.e. symmetric positive-definite matrices in medical imaging, appear in

many contexts: Diffusion Tensor MRI, modeling of anatomical variability, etc. They

are also a general tool in image analysis, especially for segmentation, motion and

texture analysis. In order to carry out general computations on these objects, one

needs a consistent operational framework. This is necessary to completely generalize

to tensors statistical tools and Partial Differential Equations (PDEs). The framework

of Riemannian metrics has recently emerged as particularly adapted to this task [24].

One can directly use a Euclidean structure on square matrices to define a met-

ric on the tensor space, for instance with the following distance: dist2(S1, S2) =

(Trace((S1 − S1)
2)). This is straightforward and leads a priori to simple computa-

tions. But this framework is practically and theoretically unsatisfactory for three main

reasons. First, symmetric matrices with null or negative eigenvalues appear during

Euclidean computations. And from a physical point of view, in DTI, a diffusion exactly

equal to zero is impossible: above 0 Kelvin, water molecules will move in all directions.

Even worse, a negative diffusion is meaningless. This occurs during iterated Euclidean

computations, for instance during the estimation of tensors from diffusion-weighted im-

ages, the regularization of tensors fields, etc. To avoid going out of the tensor space, it

has been proposed to regularize only features extracted from tensors, like first eigenvec-

tors [26] or orientations [25]. The regularization is propagated to tensors in a second

step. This is not completely satisfactory, since it would be preferable to regularize

tensors directly in order to take into account all the information they carry.

Second, a tensor corresponds typically to a covariance matrix. The value of its de-

terminant is a direct measure of the dispersion of the associated multivariate Gaussian.

The reason is that the volume of associated confidence regions are proportional to the

square root of the covariance determinant. But the Euclidean averaging of tensors

leads very often to a tensor swelling effect: the determinant (and thus the dispersion)

of the Euclidean mean can be larger than the original determinants! In DTI, diffusion
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tensors are assumed to be covariance matrices of the local Brownian motion of water

molecules. Introducing more dispersion in computations amounts to introducing more

diffusion, which is physically unacceptable.

Third, the Euclidean metric is unsatisfactory in terms of symmetry with respect

to matrix inversion. The Euclidean mean for tensors is an arithmetic mean which

does not yield the identity for a tensor and its matrix inverse. When tensors model

variability, one would rather have in many cases a geometric mean.

To fully circumvent these difficulties, affine-invariant Riemannian metrics have

been recently proposed for tensors in [27]. With them, negative and null eigenvalues

are at an infinite distance, the swelling effect disappears and the symmetry with respect

to inversion is respected. The price paid for this success is a high computational burden,

essentially due to the curvature induced on the tensor space. Practically, this yields

slow and hard to implement algorithms.

A new Riemannian framework to fully overcome these computational limitations

while preserving excellent theoretical properties is proposed by Log-Euclidean frame-

work. It is based on new metrics named Log-Euclidean, which are particularly simple

to use. They result in classical Euclidean computations in the domain of matrix loga-

rithms.

A.1. Existence and Uniqueness of the Logarithm

A tensor S has a unique symmetric matrix logarithm L = log(S). It verifies S

= exp(L) where exp is the matrix exponential. Conversely, each symmetric matrix

is associated to a tensor by the exponential. L is obtained from S by changing its

eigenvalues into their natural logarithms, which can be done easily in an orthonormal

basis in which S (and L) is diagonal.
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A.2. Euclidean Calculus in the Logarithmic Domain

The tensor vector space with a Log-Euclidean metric is in fact isomorphic (the

algebraic structure of vector space is conserved) and isometric (distances are conserved)

with the corresponding Euclidean space of symmetric matrices. As a consequence,

the Riemannian framework for statistics and analysis is extremely simplified [28]. In

particular, the Log-Euclidean mean of N tensors with arbitrary positive weights (wi)N
i=1

such that
∑N

i=1w
i = 1 is a direct generalization of the geometric mean of positive

numbers and is given explicitly by:

ELE(S1, ..., SN ) = exp(
N
∑

i=1

wilog(Si)) (A.1)

This is remarkable: in this framework, the processing of tensors is simply Euclidean

in the logarithmic domain. Final results obtained on logarithms are mapped back to

the tensor domain with the exponential. Hence, statistical tools or PDEs are readily

generalized to tensors in this framework.

Figure A.1. Bilinear interpolation of 4 tensors at the corners of a grid. Left:

Euclidean interpolation. Middle: affine-invariant interpolation. Right: Log-Euclidean

interpolation. Log-Euclidean means are slightly more anisotropic than their

affine-invariant counterparts. The coloring of ellipsoids is based on the direction of

dominant eigenvectors. [27]
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APPENDIX B: Metropolis-Hastings Algorithm

This powerful algorithm provides a general approach for producing a correlated

sequence of draws from the target density that may be difficult to sample by a classical

independence method. The goal is to simulate the d-dimensional distribution π∗(ψ),

psi ∈ Ψ ⊆ ℜd that has density π(ψ) with respect to some dominating measure. To

define the algorithm, let q(ψ, ψ′) denote a source density for a candidate draw ψ′ given

the current value ψ in the sampled sequence. The density q(ψ, ψ′) is referred to as the

proposal or candidate generating density. Then, the M-H algorithm is defined by two

steps: a first step in which a proposal value is drawn from the candidate generating

density and a second step in which the proposal value is accepted as the next iterate

in the Markov chain according to the probability α(ψ, ψ′) α(ψ, ψ′) , where

α(ψ, ψ′) = min

[

π(ψ′)q(ψ′, ψ)

π(ψ)q(ψ, ψ′)
, 1

]

if π(ψ)q(ψ, ψ′) > 0 (B.1)

α(ψ, ψ′) = 1 otherwise (B.2)

If the proposal value is rejected, then the next sampled value is taken to be the

current value.

Typically, a certain number of values at the start of this sequence are discarded

after which the chain is assumed to have converged to it invariant distribution and

the subsequent draws are taken as approximate variates from π. Because theoretical

calculation of the burn-in is not easy it is important that the proposal density is

chosen to ensure that the chain makes large moves through the support of the invariant

distribution without staying at one place for many iterations. Generally, the empirical

behavior of the M-H output is monitored by the autocorrelation time of each component

of ψ and by the acceptance rate, which is the proportion of times a move is made as

the sampling proceeds [35].
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One should observe that the target density appears as a ratio in the probabil-

ity α(ψ, ψ′) and therefore the algorithm can be implemented without knowledge of

the normalizing constant of π(·). Furthermore, if the candidate-generating density is

symmetric, i.e. q(ψ′, ψ) = q(ψ, ψ′) , the acceptance probability only contains the ra-

tio π(ψ′)/π(ψ) hence, if π(ψ′) > π(ψ) the chain moves to ψ′ otherwise it moves with

probability given by π(ψ′)/π(ψ)
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APPENDIX C: Comparison Figures of Direct Computation

Method and Metropolis-Hastings Results

Figure C.1. Snapshots from the results of grouping with different methods.

Up: Direct Computation Method Down: Metropolis-Hastings Method
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Figure C.2. Snapshots from the results of grouping with different methods.

Up: Direct Computation Method Down: Metropolis-Hastings Method
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Figure C.3. Snapshots from the results of grouping with different methods.

Up: Direct Computation Method Down: Metropolis-Hastings Method
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