DESIGN OF AN EMBEDDED COMMUNICATION
FRAMEWORK FOR AN EMERGENCY
TELECARDIOLOGY SYSTEM

ONUR YILDIRIM

B.S., Electronics and Communication Engineering, Istanbul Technical University,

2003

Submitted to the Institute of Biomedical Engineering
in partial fulfillment of the requirements
for the degree of
Master of Science
in

Biomedical Engineering (or Biomedical Science)

Bogazigi University

June 2006

DESIGN OF AN EMBEDDED COMMUNICATION
FRAMEWORK FOR AN EMERGENCY
TELECARDIOLOGY SYSTEM

APPROVED BY:

Prof. Dr. Ahmet ADEMOGLU
(Thesis Advisor)

Assistant Prof. Dr. Murat GULSOY oovinin. ..

Prof. Dr. Tamer DEMIRALP

DATE OF APPROVAL: June 14, 2006

i

1

ACKNOWLEDGMENTS

First and foremost, I would like to thank my thesis advisor, Dr. Ahmet Ade-
moglu, for all the help and mentoring he has provided me to complete this thesis. And,
I would like thank him again for the patience he has shown in last few weeks as [was

struggling to complete the typesetting of the thesis.

I also would like to thank my colleagues at the EKGNET team, Mr. Tugrul
Anildi, Mr. Adnan Kurt and dear friend Baran Dilber. Without the hard work they
put in EKGNET this thesis would not even exist. I would like to thank Mr. Tugrul

Anildi especially for writing the hardware related firmware modules.

I would like to thank Dr. Ata Akin and Dr. Murat Giilsoy from the Biomedical
Engineering Institute for all the interest and help they have provided in the course of

the last two years.

I would like to thank Dr. Tamer Demiralp from Istanbul University, Physiology
Department for all his support during the project.

Finally, I would like to thank my family for all their support and encouragements

during the course of my life.

iv
ABSTRACT

DESIGN OF AN EMBEDDED COMMUNICATION
FRAMEWORK FOR AN EMERGENCY
TELECARDIOLOGY SYSTEM

Acute myocardial infarction (AMI or MI) occurs when a part of the heart
muscle dies because of sudden total interruption of blood flow to that area. It is a life-
threatening medical emergency which demands immediate activation of the emergency
medical services. This thesis proposes the development of an embedded communica-
tion framework designed to enable quick diagnosis of AMI and immediate activation
of emergency medical services targeted to it. The system consists of an embedded
communication software along with a TCP/IP based server software for a GSM based
ambulatory ECG device. Both, the software components running on the ECG device
and the communication server enable the device to be remotely interfaced by the call

center software and controlled by the cardiologists.

Keywords: Mobile ECG device, AMI, Pre-hospital thrombolysis, 12-lead ECG over
GSM

OZET

ACIL TELEKARDIYOLOJI SISTEMI ICIN GOMULU
ILETISIM CERCEVESI TASARIMI

Akut Miyokard Infarktiisii (AMI veya MI) kalp kasinin belli bir bélgesine gi-
den kan akiginin aniden kesilmesi sonucu bu bélgedeki kas dokusunun 6liimiinden kay-
naklanir. Yagami tehdit eden bu durum acil tip hizmeti 6rgiitlenmesinin hizla harekete
gecirilmesini gerektirir. Bu tez, erken AMI tanisi ve ilgili acil tip hizmetlerinin harekete
gecirilebilmesine olanak tanimak amaciyla geligtirilen gomiilii bir iletigim cercevesi on-
ermektedir. Sistem, GSM tabanh taginabilir ECG aygit1 igin TCP/IP temelli sunucu
yazilimiyla, aygit lizerinde ¢alisan gomiilii iletisim yazilimindan olugmaktadir. ECG
aygit1 iizerindeki yazilim bilegenleri ve iletigsim sunucusu cihazin ¢agri merkezinde kardiy-

ologlarca denetlenen yazilimla uzaktan arayiizlenmesini saglamaktadir.

Anahtar Sozciikler: taginabilir ECG aygiti, AMI, hastane 6ncesi tromboliz, GSM
iizerinden 12 kanal ECG iletimi

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii
ABSTRACT iv
OZET . . . 4
LIST OF FIGURES viii
LIST OF TABLES e ix
LIST OF ABBREVIATIONS 1
1. INTRODUCTION o . 2
1.1 Motivation oL 2
1.2 Goals. o e 3
1.3 Organization of the Thesis 4

2. BACKGROUND 5
2.1 Acute Myocardial Infarction 5
2.2 Pre-hospital Thrombolysis 6
2.3 Telecardiology 7
24 EKGNET 8
2.4.1 Patient Unit Lo 9

2.4.2 Communication Server 11

243 Call Center 11

3. PATIENT UNIT FIRMWARE, 13
3.1 Overview 13
3.2 Firmware Structureo 13
3.2.1 System Module 14

3.2.2 Event Control Module 15

3.2.3 Keyboard Interface Module 15

3.2.4 LED Interface Module 16

3.2.5 GSM Modem Interface Module 16

3.2.6 UART Interface Module 16

3.2.7 AT Commands Module 17

3.2.8 ADC Interface Module 17

vil

3.2.9 Data Acquisition Module 18

3.2.10 Memory Interface Module 18

3.2.11 File System Module 19

3.2.12 Packet Control Module 19

4. COMMUNICATION SERVER 20
4.1 Overview 20
4.2 Classes oo 21
421 Server Class 22

422 Client Class 22

4.2.3 ClientManager Class 23

4.2.4 SessionClient Class 23

4.2.5 Session Class 23

4.2.6 SessionManager Class 24

5. APPLICATION PROTOCOL 25
5.1 Overview 25
5.2 Packets 25
5.2.1 Ack Packet 26

5.2.2 Data and Control Packets 27

5.3 Packet Parsingo 27

6. DISCUSSIONS, CONCLUSIONS AND FUTURE WORK 29
6.1 Discussionso 29
6.2 Conclusions 31
6.3 Future Work 31
APPENDIX A. SAMPLE UNIT TEST: COMMUNICATION SERVER 33
APPENDIX B. COMMUNICATION SERVER CLASS DIAGRAMS 44
B.1 Server Class 44
B.2 Client Class 45
B.3 ClientManager Class 45
B.4 Session and SessionClient Classes 46
B.5 SessionManager Class L. 46

REFERENCES e 47

Figure 2.1
Figure 2.2
Figure 2.3
Figure 5.1
Figure 5.2
Figure B.1
Figure B.2
Figure B.3
Figure B.4
Figure B.5

LIST OF FIGURES

Telecardiology: modules and aspects
EKGNET Overview

EKGNET Patient Unit

Structure of a Packet

Structure of an Ack Packet

Server Class Diagram

Client Class Diagram

ClientManager Class Diagram

Session and SessionClient Clas Diagrams

SessionManager Class Diagram

viil

10
26
27
44
45
45
46
46

Table 3.1
Table 4.1

LIST OF TABLES

EKGNET Patient Unit firmware modules overview

EKGNET Communication Server classes

X

14
22

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AMI Acute Myocardial Infarction

ACLS Advanced Cardiac Life Support

CTS Clear To Send

DCD Data Carrier Detected

ECG Electrocardiogram

FAT File Allocation Table

FSM Finite State Machine

GSM Global System for Mobile communication
I/O Input/ Output

IP Internet Protocol

ISR Interrupt Service Routine

LED Light Emitting Diode

OOP Object-oriented programming

RS-232 Recommended Standard 232

SPI Serial Peripheral Interface

TCO Total Cost of Ownership

TCP Transmission Control Protocol

TDD Test-driven development

TUMAR Tiirkiye Akut Miyokard Infarktiisii Aragtirmas
USART Universal Synchronous/Asynchronous Receiver/Transmitter

WHO World Health Organization

1. INTRODUCTION

This thesis aims to develop a viable pre-hospital thrombolysis method for im-
mediate treatment of heart attacks. To achieve this goal, an infrastructure for correct
assessment of coronary disease patients has to be constructed. Two components of a
proposed infrastructure, an embedded communication software running on a ambula-
tory GSM based ECG device and a TCP/IP based communication server software, has

been developed within the scope of this thesis.

1.1 Motivation

Acute Myocardial Infarction (AMI) is a life-threatening medical emergency
which demands immediate activation of the emergency medical services. Immediate
transport by ambulance to a hospital where advanced cardiac life support (ACLS) and
modern AMI therapeutics are available is of crucial importance. The more time that
passes before medical attention is sought, the more severe the permanent heart damage

is likely to be, and the less likely survival will be [1].

Classical cases of myocardial infarction are often identified by ambulance staff or
emergency room doctors without further investigations. Nevertheless, for a complete
diagnosis, the medical history, combined with electrocardiogram results and blood tests,

is vital [1].

In 2004, the total cost of cardiovascular disease in the USA was estimated at
$368.4 billion. This figure includes both direct costs (physicians and other professionals,
hospital and nursing home services, medications, home health care and other medical
durables) and indirect costs (calculated from lost productivity resulting from morbidity

and mortality) [2].

AMI is the most important mortality cause in Turkey and coronary mortality
rate in Turkey is the highest among other European countries. This is mainly due to
the fact that in Turkey, %71 of the AMI cases arrive to hospitals in 6 hours, %13 of the
cases arrive between 6-12 hours and %16 arrive after 12 hours [3]. Considering the fact
that most of the emergency therapeutics of AMI are only effective within 2-3 hours
after the onset of AMI symptoms, developing an effective emergency medical service

to improve the effectiveness of modern AMI therapeutics proves to be very important.

1.2 Goals

This thesis proposes the development of embedded communication framework
for a GSM based 12-lead clinical ECG device and a Cardiology Call Center specifically
designed to enable quick diagnosis of AMI and immediate activation of AMI targeted
emergency medical services. The goal of this thesis is to develop a communication
server software and an embedded software as the firmware of the mobile ECG device.
These two components will communicate with each other by the rules of an application
protocol and together they establish the embedded communication framework for the

proposed infrastructure.

The embedded software accepts commands from the remote service headquar-
ters. These commands are transmitted over a TCP/IP based communication channel
between the device and the server, enabling the device to be remotely controlled by
cardiologists. The main function of the embedded software is to accomplish data
acquisition, data storage, data processing, data compression, data encoding and estab-
lishment of a communication channel between the device and the service headquarters
to receive commands and transmit ECG data. It also checks for device failures and
responds to user interface events. Server software is responsible for authenticating
devices and users, decoding ECG data sent by the device and provide a device inter-
face for the call center software allowing the device to be remotely controlled from the

headquarters or a cardiologist connected to the internet.

1.3 Organization of the Thesis

Chapter 2 presents the contextual background behind the accomplished work.
For that purpose, EKGNET project and two related components are thoroughly ex-
plained. Chapter 3 then presents an overview of the firmware running on EKGNET
Patient Unit. The firmware consists of modules and some details about these modules
are given. Chapter 4 focuses on the server software and its design criteria. Detailed
information about clients and related software classes are also provided. Chapter 5
describes the application protocol used for the transfer of the ECG data over TCP/IP
based communication channel. Finally, Chapter 6 discusses the results and concludes

the thesis toward a future outlook.

2. BACKGROUND

2.1 Acute Myocardial Infarction

Acute myocardial infarction (AMI or MI), commonly known as a heart attack,
is a serious, sudden heart condition usually characterized by varying degrees of chest
pain or discomfort, weakness, sweating, nausea, and vomiting, sometimes causing loss
of consciousness. It occurs when a part of the heart muscle dies because of sudden total
interruption of blood flow to that area [1]. Coronary heart disease, the main cause of
acute myocardial infarction, is today the single largest killer worldwide. It has become
a true pandemic and its incidence is still rising. According to the WHO, in 2002 7.2
million deaths worldwide resulted from coronary heart disease [4]. Electrocardiogram
(ECQ) findings suggestive of MI are elevations of the ST segment and changes in the
T wave. After a myocardial infarction, changes can often be seen on the ECG called

Q waves, representing scarred heart tissue [1].

Pre-hospital prediction of the final diagnosis is based only on a snapshot of the
clinical history and a single ECG recording, but can be reasonably accurate. With
clinical assessment alone, the diagnostic accuracy of experienced clinicians is about
75%. With the addition of the ECG, accuracy may be increased to 90-95% |[5]. The
presence of ST-segment elevation on ECG appears mostly within minutes after onset of
symptoms and is the most sensitive and specific marker for AMI. New ST-elevations are
found in 80-90% of AMI but only 30-40% of patients have ST-elevations on the hospital
admission. ST-elevations are more marked in men than in women. ST-depressions
indicate myocardial ischaemia but only 50% of these patients will eventually develop an
AMI. Symmetrical T-wave inversions are a non-specific sign which indicate ischaemia,
myocarditis and pulmonary embolism. About one third of the patient with this sign
and chest pain will develop an AMI. About one third of patients admitted with acute
chest pain to the emergency department have a normal ECG, yet 5-40% of them have
an evolving AMI. The early case fatality rate is highest among patients with ST-

elevation, intermediate among patients with ST-depression and lowest among patients

with T-wave inversion [6].

2.2 Pre-hospital Thrombolysis

Thrombolytic, or clot-busting drugs rapidly destroy unwanted blood clots. They
can be used in the early treatment of some heart attacks. Heart attacks are caused by
a blood clot blocking the supply of blood to an area of the heart muscle. As a result
the affected area of heart muscle is damaged or dies, and the patient may develop
longer term heart problems or may die [7]. Thrombolytic drugs work by dissolving the
fibrin mesh that binds the blood clot together. This can greatly improve the flow of
blood to the affected area of the heart and prevent ill health or death in some cases [7].
One reason why people should get to hospital as quickly as possible after a suspected
heart attack is because thrombolytic drugs can only be used in the first few hours after
a heart attack. The sooner they are used the more likely they are to work well [7].
According to the WHO, in both developed and developing countries, 40 to 75% of all
heart attack victims die before reaching the hospital [8]. According to the TUMAR

research conducted in Turkey, a median of 4 hours passes until a AMI patient is treated

3].

The objective of pre-hospital thrombolysis is to resuscitate the patient, if nec-
essary, and to reduce myocardial damage and complications following an AMI, prior
to arrival to hospital [9]. Pre-hospital thrombolysis aims to shorten time to treatment.
The average elapsed time from symptom onset to treatment has been three hours
ever since the GUSTO I trial in 1993 [10|. However, the ASSENT-3 PLUS trial of
pre-hospital tenecteplase has broken that barrier. In ASSENT-3 Plus, a 1639-patient
multinational study, elapsed time from symptom onset to treatment was shorter by
47 minutes compared with the ASSENT-3 in-hospital trial. This was achieved with a
30-day mortality rate that dipped as low as 6%, a remarkable achievement, consider-
ing that the patients in this trial were at higher risk than those enrolled in previous

ASSENT studies [11].

The safety of pre-hospital thrombolysis is strongly dependent on correct diag-
nosis, usually by means of a standard 12-lead ECG that can either be transmitted
via telephony for interpretation by a cardiologist or interpreted on-site by specifically
designed computer programs. However, once an appropriate infrastructure is in place,
the benefits of pre-hospital thrombolysis are unequivocal. It has been estimated that
each 30-minute delay in giving thrombolytic therapy reduces patients’ life expectancy

by an average of one year |12].

2.3 Telecardiology

The notion of using telecommunications in the healthcare industry goes back to
early 1900s. There had been experiments using radio telecardiology (from the 1910s),
telephone-mediated telestethoscopy (from the 1920s), and radiology image transfer and
videophone experiments (from the early 1950s) [13]. Einthoven’s initial works presented
in 1906 described the transmission of ECG information over telephone wires [14]. Al-
though at the time this was not labeled as a telemedicine system, or more specifically
telecardiology, the principles of remote ECG transmission were demonstrated. The un-
derlying fundamentals of the process have changed little in virtually a century. How-
ever, technological advancements have allowed the development of lightweight, portable
recording systems (in comparison with the string galvanometer), the application of mo-
bile phone technology as methods of transmission (in comparison with telephone wires)
and standard desktop personnel computers (PCs) as the display medium (in compari-

son with optical projection systems) [15].

Telecardiology is the practice of cardiology over telemedicine systems enabling
cardiologists and patients to reside in remote locations. Currently most of the telecar-
diology applications focus on remote monitoring of cardiac patients via mobile holter
devices. Holter monitoring is an important tool since the 1970s and it has become a
very useful tool for analyzing intermittent arrhythmias [16]. However, a certain prob-
ability remains that arrhythmias can symptomatically occur outside of the monitoring

period. In these cases, transtelephonic monitoring has proven to be useful in therapy:

If an arrhythmia occurs, the patient may initiate ECG recording and transmission [17].
As of today, some of the holter devices are capable of recording and transmitting low
resolution ECG recordings to cardiology centers where arythmias and other disorders
are tracked. A one channel 3 leads transtelephonic ECG signal acquisition system
along with a temperature sensor was developed by Yiiksel Yazici on his work for his

Master’s thesis [18]. This device is very suitable to be used as a holter device.

\ecardioj,
ge\e™ " Mog
s O lenteng

an fo.
60“ « enhancad)
patient safety

— due to reduced
diagnostic manitoring cycles therapeutic
benefits ~* +extended %' hanefits

«improved sensing sum':ortlf?ar the = AUtomatic pacemaker
+ disgnostic evidence. physician = early therapeutic
of the signals f - \ - countemMeasure

improved " recent
implant telemetry . talacommunication

*range technologies

- handling
» transmission rates (7) +ISDN +SMS gpg
*GSM et

Figure 2.1 Telecardiology: modules and aspects

Another important field of application for telecardiology proves to be the record-
ing and transmission of 12-lead clinical ECG data for interpretation. In this field, some
specific applications are designed to be utilized in emergency situations. Most widely
used emergency services targeted system is the MobiMed system produced by Ortivus
AB [19]. But due to high total cost of ownership of these systems, most emergency

healthcare services cannot record, interpret, or transmit 12-lead ECG.

2.4 EKGNET

The main purpose of EKGNET project is to create an infrastructure for treating
AMI patients in pre-hospital settings. EKGNET aims the transfer of 12-lead, clinical
quality ECG signals recorded in emergency situations to a cardiac consultation center

to enable quick diagnosis and pre-hospital treatment of cardiac patients. In addition

to that the TCO of overall system is designed to be significantly lower than currently
existing solutions like MobiMed. The components of EKGNET is shown in Fig. 2.2

GSM
OPERATOR [
BACKBONE]
EKGNET PATIENT UNITS EKGNET SERVERS EKGNET CALL CENTER

Figure 2.2 EKGNET Overview

The first component, the EKGNET Patient Unit as shown is a mobile 12-lead
clinical ECG device capable of recording high quality ECG data and transmit this data
through GSM. Further information about Patient Unit is provided in section 2.4.1. The
second component, the EKGNET Communication Server routes calls from devices to

Call Center cardiologists. More information about this component is given in section

2.4.2.
The third component, the EKGNET Call Center is an emergency cardiac call

center with resident cardiologists responding to the AMI cases 7 days 24 hours. Details

about the Call Center are provided in section 2.4.3.

2.4.1 Patient Unit

EKGNET Patient Unit is a mobile and battery powered, 12-lead clinical ECG

device. The unit is capable of recording high quality 12-lead ECG data and transmit-

10

Figure 2.3 EKGNET Patient Unit

ting it via GSM network. It is designed to record and transmit high quality ECG data in
ambulatory environments. Patient Unit is show in Fig. 2.3. Operation of Patient Unit
is very easy. It has a single button on its panel which turns on the device and initiates
connection to Call Center. Operating cardiologist at the Call Center intercepts this
connection request and takes control of the device remotely. After this point, Patient
Unit is operated directly from the Call Center by the cardiologist. Thus, the person

handling the device has to focus only on the correct placement of ECG electrodes.

Technical details of Patient Unit are as follows:

e 12-lead clinical ambulatory ECG device,
e simple and failsafe operation,

e simultenaous recording of all channels,
e store-and-forward operation,

e separate 24bit sigma-delta ADC for each channel,

11

e 500 Hz sampling rate,

e 0.2 uV effective resolution,

e DC-250Hz signal bandwidth,

e low power operation, very long sleep span,

e embedded 900/1800 MHz GSM modem with TCP/IP stack,
e remotely controlled from EKGNET Call Center,

e powered by two standard AA batteries.

2.4.2 Communication Server

EKGNET Communication Server manages the communication channel between
the Patient Unit and Call Center application. GSM operators adhere to strict security
measures to protect their customers privacy. Because of these measures, creating a
connection within to the operator backbone is prohibited. Communication Server works
as a proxy server between the Patient Units and Call Center. When the Patient Unit
is activated, a GRPS call is initiated to the GSM operators backbone. GSM Operator
transfers this call to Communication Server and any data transferred from the device
is forwarded to Communication Server. After a communication channel is securely

created, data transmission to the Patient Unit is also possible.

2.4.3 Call Center

EKGNET Call Center is an emergency cardiac call center with resident cardi-
ologists responding to the AMI cases. The ECG recording taken from the patient in
ambulance will be transferred to this Call Center. This recording will be interpreted
by the cardiologist and proper feedback about the case and if needed, authorization to
carry out specific procedures -such as thrombolytic treatment- will be given to the am-

bulance crew. For this purpose, a special software is developed. This software gives the

12

operating cardiologist full control over the patient unit. ECG recordings and transmis-
sions are initiated by the operating cardiologist at the call center. This enables to call
center cardiologists to quickly inspect ECG data and give feedback to the ambulance

crew.

This software was developed by Baran Dilber and detailed information can be

found in his treatise about the subject [20].

13

3. PATIENT UNIT FIRMWARE

3.1 Overview

This chapter details the embedded software running on the EKGNET Patient
Unit. More specifically, in what follows, we discuss the software modules developed for
the Patient Unit Firmware. First an overview of the software structure is given. Then
each module is detailed within following subsections. The firmware of the Patient
Unit is composed of several modules. All of these modules are developed in ANSI
C language with the sole exception of very tightly time constrained ADC Hardware
Interface Module which is developed in Assembly language.

3.2 Firmware Structure

The firmware of Patient Unit consists of several modules exposing public func-
tions to be called from other modules. The Main module runs on top of other modules
and manifests the operation of the Patient Unit. main module contains a for(;;){}
loop which begins to run after the device is started and initialized. This loop creates a
single thread processing tasks stored in an event queue. In each iteration of the loop the
task with highest priority is retrieved from the event queue and processed. Remaining
modules are satellite modules called by the main module. These modules are either
hardware interface modules or application control modules. Hardware interface mod-
ules abstract the hardware layer from the rest of the firmware by exposing hardware
independent functions to be called from other modules. Application control modules
provide functions to accomplish tasks like reading data from AD converters or send-
ing commands to the GSM modem. By this design application control modules can
be used with different hardware settings only by modifying the hardware abstraction
layer. When the device is turned on, all hardware is initialized to their default states

and checks for failures are carried out. Then for(;;){} loop in main module starts to

14

run. By default, Patient Unit connects to Communication Server automatically after
start up. Steps of this default action is controlled by the main module. Main module
governs the operation logic of the Patient Unit. Every event is handled within main

module. After connection the main module begins to process commands received from

EKGNET Call Center.

Table 3.1
EKGNET Patient Unit firmware modules overview
Module Name Function Related Section
System initializes and controls core hardware components 3.2.1
Event Control manages tasks and events 3.2.2
Keyboard Interface manages user input 3.2.3
LED Interface supplies feedback about status of device 3.24
GSM Modem Interface | configures and initializes GSM modem 3.2.5
UART Interface communicates with the GSM modem 3.2.6
AT Commands send commands to GSM modem 3.2.7
ADC Interface reads a sample from ADCs 3.2.8
Data Acquisition controls reading of many samples 3.29
Memory Interface provides access to persistent storage medium 3.2.10
File System manages a FAT on persistent memory 3.2.11
Packet Control decodes incoming packets, creates outgoing packets 3.2.12

Detailed information about firmware modules are provided in related sections

as shown in Table 3.1.

3.2.1 System Module

System Module initializes and controls main hardware components of Patient
Unit such as power supplies, timers, reset circuitry. All power management, start-up
and shutdown operations are controlled through this software module. System Mod-
ule executes the logical steps to gracefully start and stop the system. Any hardware
failures such as unexpected resets due battery level disturbances are monitored and

logged by this module. System Module also includes the Interrupt Service Routines

15

(ISR) for timer interrupts. Two timers of the microcontroller are configured to gener-
ate different interrupts at specific intervals. Interrupts generated by these timers are
handled through multiple ISRs providing a flexible timing framework for the rest of

the firmware modules.

3.2.2 Event Control Module

Event Control Module manages tasks for the single thread of firmware and
provides a simple and failsafe tasking environment for other modules. To keep the
tasking system as simple and as failsafe as possible a single threaded event handling
mechanism was designed. Tasks of the system are stored in a static event queue event
queue to be processed in the main loop. Multiple tasks can be posted on the queue
with different priorities. Main loop chooses the most important event in each iteration
and processes the event. Processed events are removed from the event queue. Every
event in the queue has 2 bytes of data associated with that event. These 2 bytes can
contain any data related with the event. If a larger data block has to be associated
with the event, these 2 bytes is used as a pointer to a specific memory location. Also,
these 2 bytes can be used to store a function pointer. The pointed function is called

by the main loop while processing the event.

3.2.3 Keyboard Interface Module

This module handles the user input from the keyboard of the device. Device
has a single button which is used to turn on the Patient Unit. This button needs to
be continuously pressed for four seconds. After four seconds a device reset is initiated.
If the button is pressed again for four seconds then turn off sequence is initiated and
all resources are gracefully released by the system. This means all timed events are

removed from the queue, GSM modem is removed from the network if registered.

16

3.2.4 LED Interface Module

LED Interface Module controls the light emitting diodes of the Patient Unit.
LEDs provide proper feedback about the status of the device and its operation. This
software module exposes functions to turn on/off the LEDs, program a blinking pattern

to be repeated over a certain period of time.

3.2.5 GSM Modem Interface Module

This hardware interface module configures and initializes GSM modem and re-
lated hardware modules like the USART module of the microcontroller used to com-
municate with the GSM modem or the power supply unit supplying power to the GSM
modem. It also exposes functions to manage and monitor the operation of the GSM
module. It contains all ISRs to handle events caused by the GSM module. There are
several hardware signals issued by the GSM modem to indicate the status of operation.
For instance, the Voltage Interrupt indicates the status of the power GSM modem is
receiving. During startup, this line signals the microcontroller that there is no problem
at the power. Another important interrupt is the CTS interrupt. This is a standard
RS232 interrupt. During normal operation while sending data to modem from the
microcontroller this line stays low to indicate that the GSM modem can receive data
from microcontroller. If internal communication buffers are full, this line goes to a
logic high to indicate the microcontroller should stop sending data. Also at startup,
this line indicates the firmware of GSM modem started correctly. Another important
interrupt is the DCD Interrupt. This interrupt is issued upon connection to a remote

host. If this line goes high, the connection to the remote host is lost.

3.2.6 UART Interface Module

This module is a hardware interface module which abstracts RS-232 based serial

communication from the rest of the firmware. The other firmware module need to call

17

one simple function to transmit data to the GSM modem. Also, received characters are
put into a receive buffer for further processing. The module contains functions to com-
municate with the GSM modem over RS-232 protocol. It exposes functions to initialize
the communication channel between the microcontroller and GSM modem. The inter-
facing USART module of the microcontroller works with two interrupts. One of them
is the transmit interrupt, occurring whenever transmission of one byte is completed.
Other interrupt is the receive interrupt, occurring whenever a new byte is received from
the GSM modem. The transmit ISR copies a new byte to outgoing byte register after
transmission of previous byte is complete. The receive ISR copies newly received byte

from incoming byte register after a new byte is received from GSM modem.

3.2.7 AT Commands Module

This module exposes functions to send AT commands to the GSM modem.
GSM modem is operated with AT commands. All characters sent to the GSM modem
through USART module is interpreted as AT commands until the modem connects
to the Communication Server. After connection data sent to GSM modem is relayed
directly to the Communication Server. Also, data sent from Communication Server is

received by the GSM modem.

3.2.8 ADC Interface Module

This is the only module written in assembly language. This module interfaces
ADC hardware and carries out reading of a single sample to a memory location. ADC
hardware is interfaced by 1/O ports of the microcontroller. Through emulation of SPI
protocol by rapidly tweaking these I/O ports, module exposes a function which reads
a single sample from ADC hardware. Each call to this function retrieves one sample

and writes it to given memory location.

18

3.2.9 Data Acquisition Module

ADC Interface Module allows reading out of a single sample. Data Acquisition
module is used to read as many samples as needed. In background it uses ADC
Interface Module to read sequential samples with specified timing requirements. It
takes parameters like sampling frequency, sampling duration and channels to convert
from and carries out analog-to-digital conversion as requested. It also calibrates the
ADC hardware as needed and constantly monitors any conversion faults. This module
also implements an ISR for monitoring the power supply of ADC hardware for any

power failures.

3.2.10 Memory Interface Module

Patient Unit has embedded serial flash memory with 16Mbits of capacity which
is used as persistent storage medium for the Patient Unit. Microcontroller of the
Patient Unit interfaces flash memory through one of its USART modules configured
in SPI mode. SPI is a general-purpose synchronous serial interface and flash memory
accepts commands via SPI. This software module abstracts the flash memory hardware
from the firmware by providing general purpose data management functions. These
functions are designed to be compatible with most of persistent memory operation
needs. Thus, if the need to use another flash module arises, only this portion of
the firmware needs to be rewritten. Memory Interface Module exposes functions for
initializing, reading data, writing data and checking the status of the flash memory.
Flash memory is segmented in 4096 pages. Writing and reading data is conducted per
page basis. Each page is 5612 + 16 = 528 bytes long. 512 bytes of space is used for
data storage and remaining 16 bytes is used to store related CRC checksum. Total size

of flash memory is 17 301 504 bits.

19

3.2.11 File System Module

This module controls the file structure on the flash memory. Flash memory
of the Patient Unit is divided in fixed-size partitions. A File Allocation Table (FAT)
maintains the begin and end segments of files. This module also includes functions to
check the validity of FAT. Any change in file structure is persisted by updating the
FAT as needed. If errors occur in reading and writing of file allocation data a new FAT

structure is created.

3.2.12 Packet Control Module

This module parses and decodes packets received from the Call Center and
creates response packets to be sent back to the Call Center. Incoming packets are for-
warded to main module for further processing. Main module inspects the contents of
the packets and takes appropriate action against the commands from the Call Center.
This module also creates response packets to be sent back to the Call Center Applica-
tion. Once communication between device and server is initiated periodic receive task
is posted to the event queue. Any data received afterward is considered as part of a
valid packet. Only one packet can be actively transmitted or received. This design
simplifies packet processing logic and eases debugging. On the reception of a valid
packet an Ack Packet is sent back to the server. Details of Ack Packet are given in
section 5.2.1. Invalid packets are not processed therefore no Ack Packet is sent back.
This enables the Call Center Application to detect transmission failures and retransmit

same packet if needed.

20

4. COMMUNICATION SERVER

4.1 Overview

In this chapter details of EKGNET Communication Server will be presented.
This server provides a communication channel between the Patient Units and Call Cen-
ter. In section 4.1, an overview of the software structure will be given. Communication
Server software is written in C# which is an object oriented language, therefore section
4.2 will present details about classes used as the building blocks of the Communication

Server.

Because of the security measures taken by GSM operators, creating a connection
to the operator backbone from outside of their network is prohibited. Instead, Patient
Units have to create connections from inside to outside. These connections between
the GSM operator and EKGNET Communication Servers are carried through a VPN

tunnel for maximum security.

Communication Server works as a proxy server between the Patient Units and
Call Center. When the Patient Unit is activated, a GRPS call is initiated over the
GSM network. GSM Operator transfers this call to EKGNET Communication Server
via TCP/IP and any data transferred from the device is forwarded to Communication
Server. After a Patient Unit connects to the Communication Server, the Call Center
application is notified by this incoming call and an alert is generated. Upon this alert an
operating cardiologist intercepts this call by connecting to the Communication Server
and requesting the call to be switched to his/her console. EKGNET Communication
Server evaluates this request by authorizing supplied user information on the authorized
users database. If authorization succeeds any data received from the Patient Unit is
forwarded to the console of the call center operator. Also, any data sent from the
operator console is relayed to the Patient Unit by the Communication Server. Software

for the Communication Server was developed with Test-Driven Development technique.

21

Test-Driven Development (TDD) is a computer programming technique that involves
repeatedly first writing a test case and then implementing only the code necessary to

pass the test [21]. A sample test suite code for Communication Server is given in A.

Communication Server is written in C# which is an object-oriented program-
ming language developed by Microsoft as part of .NET initiative. C# was later ap-
proved as a standard by ECMA and ISO. C# has a procedural, object oriented syntax
based on C+-+ that includes aspects of several other programming languages (most
notably Delphi, Visual Basic, and Java) with a particular emphasis on simplification
(fewer symbolic requirements than C++, fewer decorative requirements than Java)

22].

4.2 Classes

In object oriented programming, classes the unit of definition of data and be-
havior (functionality) for some kind-of-thing. For example, the ’class of Dogs’ might
be a set which includes the various breeds of dogs. A class is the basis of modularity
and structure in an object-oriented computer program. A class should typically be
recognizable to a non-programmer familiar with the problem domain, and the code for
a class should be (relatively) self-contained and independent (as should the code for
any good pre-OOP function). With such modularity, the structure of a program will
correspond to the aspects of the problem that the program is intended to solve. This

simplifies the mapping to and from the problem and program [23].

EKGNET Communication Server consists of several Classes shown in table 4.1.
These classes are hierarchically and functionally bound together. The details about

each class is given in following sections. Detailed class diagrams are given in Appendix

B.

22

Table 4.1
EKGNET Communication Server classes

Class Name Function Related Section
Server listens for new clients, manages operation 4.2.1
Client contains the socket to communicate with client 4.2.2
ClientManager | maintains autorization of clients 4.2.3
SessionClient contains identity information and client socket 4.24
Session contains two SessionClients 4.2.5
SessionManager | processes data transfer for active Sessions 4.2.6

4.2.1 Server Class

This is the main class governing the operation of the Communication Server.
Upon instantiation, this class creates three threads. First thread listens for connection
requests on a specific port. Second thread handles connected yet unidentified clients.
Third thread transmits data between connected and authorized Patient Units and Call
Center Consoles. Server Class manages overall timing by sequentially handling each
thread and calling related methods of other classes to do processing if needed. Main
processing logic of these tasks are encapsulated in following classes. Class diagram for

Server class is given in Appendix B.1.

4.2.2 Client Class

When a host (Patient Unit or Call Center Console) connects to the Commu-
nication Server an Listener thread creates an instance of this class containing newly
created socket connection. This socket is used to communicate with the connected

host. Class diagram for Client class is given in Appendix B.2.

23

4.2.3 ClientManager Class

After a connection request is handled by Communication Server a new Client
is created and passed to ClientManager class. ClientManager maintains two lists for
active Clients. One list contains all anonymous clients and new clients are put in this
list. Clients of this list have to send their identity information to ClientManager until
their anonymous connection times out. When Server demands the ClientManager to
process connected clients, every client in this list is checked for incoming data. If any of
the clients has sent correct identification information it is removed from the anonymous
clients list and is added to the authenticated clients list. Call Center Application is
notified of any new addition to the authenticated clients list. This means a new Patient
Unit has connected to the server and needs to be intercepted. Available Call Center
cardiologist request the control of the Patient Unit by connecting to the Communication
Server and requesting a new session. If authentication information from Call Center
Console is accepted, requested Patient Unit client is removed from authenticated clients

list and a new session is created. Class diagram for ClientManager class is given in

Appendix B.3.

4.2.4 SessionClient Class

After a session is successfully started sockets contained in Client classes are
transferred in SessionClient classes. SessionClient contains additional information
about the type and identity of the connected client. This kind of information is only
available when a Session is successfully started. Class diagram for SessionClient class

is given in Appendix B.4.

4.2.5 Session Class

Session class contains two SessionClient instances. These are two ends of the

ongoing communication session between a specific Patient Unit and Call Center Con-

24

sole. This class is created upon successful retrieval of an incoming Patient Unit call by
a Call Center Console. Until disconnection all data transfer between the two specific
clients are considered to be conducted in current session. Class diagram for Session

class is given in Appendix B.4.

4.2.6 SessionManager Class

SessionManager Class maintains a list of ongoing Sessions. When called by
the Server, this class processes each Session in its Sessions list. Processing a session
is forwarding any received data from one host to the other one. Class diagram for

SessionManager class is given in Appendix B.5.

25

5. APPLICATION PROTOCOL

5.1 Overview

EKGNET Application Protocol governs the communication between the Patient
Unit and Call Center Application. All request and response transmissions between two
clients adhere to the rules set by this protocol. EKGNET Application Protocol is a
request /response protocol between Patient Units and Call Center Application. Call
Center Application sends task requests as predefined commands encoded in control
packets. EKGNET Communication Server does not interfere with the communication
between the Patient Unit and Call Center Application, in other words the Application
Protocol is transparent to the Communication Server. Only logic related with this
protocol residing in Communication Server is used to parse Control Packets that are
initially sent upon connection to the Communication Server because these packets from
both Patient Unit and Call Center Application contain authentication information used

by the Communication Server to authorize the association of two clients.

Upon connection of the Patient Unit and Call Center Application through Com-
munication Server, Patient Unit responds to commands from Call Center Application
after accomplishing requested task. The response is sent back to the Call Center Ap-
plication as a Data Packet if the request was to sample ECG data. All other responses
are sent back as Control Packets from the Patient Unit containing the result of the

requested task.

5.2 Packets

Binary data transmission between Patient Unit and Call Center Application is
encoded as Packets. Rules of forming of packets and parsing them is set by Application

Protocol. General structure of a Packet shown in Fig. 5.1.

26

- Type (4 bits) Sk Size {12 bits) ﬁ i(Sequence # (8 bits)ﬂ

DODDDO0C|ODoOoCOooO@aooaoon
2 y

Packet Header {24 bits — 3 bytes)

LA 0 T I
LA T T 0
i(- < Max 4096 Bytes of Packet Data > —)i
DN OOOO0O0OIOO00OO00O0O0|O0Oooo oo
L0 0 o End OF Packet (EOP)

FLast Byte of Packet Data% ﬂ‘ﬂ EIEI D ‘D‘D‘D

Figure 5.1 Structure of a Packet

First four bits of every packet contain a packet type indicator. This allows
16 different types of packets. Following 12 bits indicate the length of total packet.
Following byte contains the sequence number of the packet. Sequence number is used
to keep track of binary data streams. During the transfer of a large amount of binary
data, every packet sent has an incremented sequence number. Thus receiving end

expects to receive packets in suggested order by checking the sequence number.

5.2.1 Ack Packet

Acknowledgment of correct reception of packets are signalled to other host by
Ack Packets. These packets contain information about the received packet like the
type of received packet and the sequence number of received packet. An Ack Packet
consists of three bytes. First four bits of these bytes designate the packet as an Ack
Packet. These four bits are [1111] (0xF in hexadecimal notation). The next four bits
contain the type information for successfully received packet. The next byte contains
the sequence number of received packet. Last byte contains the End of Packet code.

Structure of an Ack Packet shown in Fig. 5.2.

After sending a packet sending hosts expect to receive related Ack Packet in
a certain amount of time. If no Ack Packet is received in that period, a connection

failure is assumed. This enables to keep track of connections established by TCP.

27

Ack Header v Packet Type Packet Sequence # o iz End Of Packet (EQOP) N

N |

1K 1 1
10 o) '])] T] e e e
L J

~

Ack Packet (24 bits - 3 bytes)

Figure 5.2 Structure of an Ack Packet

5.2.2 Data and Control Packets

Data packets are used to transfer bulk data between the Patient Unit and Call
Center Application. In most cases, data flows from Patient Unit to Call Center Ap-
plication. In rare cases, like remote updating of Patient Unit firmware, data flow is
reversed. The type nibble denoting a Data Packet is [0000] (0x0 in hexadecimal
notation). Control packets are used to exchange requests and responses between the
Patient Unit and Call Center Application. Four type bits denoting a Control Packet

are [0001] (0x1 in hexadecimal notation).

5.3 Packet Parsing

Creating and sending packets is a straightforward encoding process. But correct
decoding of packets from incoming byte stream is more complicated. Because data
transmission between two hosts introduces delays and transmission failures, parsing
of received byte stream requires a carefully constructed and well tested finite state
machine (FSM). Initially Packet Parser is in idle state. Upon reception of data, Packet
Parser begins to parse incoming data. Incoming byte stream can contain a single
complete packet, more than one packet and/or a fragment of a packet. If incoming
data contains a single packet, Packet Parser switches to idle state after the packet is
successfully reconstructed at the receiving end. If incoming data contains a fragment of
a packet, Packet Parser stays in parsing state until new data arrives and any received
data in that state is considered to be part of the previous packet. If incoming data
contains more than one packet, Packet Parser parses all of the packets contained in

received data. After all packets are parsed, Packet Parser moves to either idle state or

stays in parsing state if parsing of last packet is not complete.

28

29

6. DISCUSSIONS, CONCLUSIONS AND FUTURE WORK

6.1 Discussions

There are some pitfalls to be avoided in the design of an ambulatory ECG device,
most important one being the prevention of movement artifacts during ECG recordings.
The patient in an ambulance generally has a very slim chance of persisting a motionless
state thus enabling high quality ECG recordings. EKGNET project primarily targets
patients in acute conditions and therefore conducting artifact free ECG recordings in
mobile conditions was our primary design criteria for EKGNET Patient Unit. For that
purpose a 24bit ADC hardware was chosen. By this design, ECG signal is allowed to
float without saturation within a very large dynamic signal range. The absence of signal
saturation risk allows us to drop the offset removing analog high-pass filter from the
input stage of our ECG device. This removes unwanted baseline drifts due to motion
artifacts. Our latest prototype performs extremely well in ambulatory situations and

high quality ECG recordings are possible even if the patient is mobile.

Our second important concern was to make the Patient Unit as simple as pos-
sible. In current setting, our ECG device has a very simple user interface and it is
extremely simple to operate. The Patient Unit is has only a single button which turns
on the device. Rest of the operation is remotely controlled by the cardiologist at
the EKGNET Call Center. General system structure and communication framework
gives the cardiologist total control over the ECG device after the device connects to
EKGNET Communication Server. This design enables the ambulance crew to concen-

trate on correct placement of ECG electrodes.

Remote controlled operation scheme simplifies device firmware as well. In em-
bedded programming, software components related to graphical user interface are very
hard to develop, especially for an ECG device. By relocating data visualization tasks

from embedded environment to PC environment, a very simple and effective implemen-

30

tation has been achieved. Also, overall cost of both hardware and software components
were reduced considerably. By our experiments with the current prototype we inves-
tigated that even with a constant latency overhead induced by the GSM network,
conducting and sending a 3 seconds length ECG recording takes 10-15 seconds. This
means even if the first recording attempt fails, relaying of consecutive ECG recordings
until a successful one will be completed in a time frame of 1 minutes. Our inquiries
with emergency medical service providers indicate that this worst case time frame is

more than acceptable within their operation standards.

Our TCP/IP based communication framework allows us to utilize next genera-
tion communication technologies very easily. By changing the GSM modem with a 3G
enabled modem, we can achieve greater bandwidth. In a few years, after 3G technology
becomes available, we will be able to exploit the advantages of this new technology very
quickly. Also, scalable and maintainable system design and implementation allows us

to answer capacity increase needs as they occur.

The hardware abstraction layer of the firmware provides great flexibility on
changing hardware components of the Patient Unit. If components of the hardware
are to be upgraded related hardware revision will have minimum impact on Patient

Unit firmware.

Test-driven development is cited as a best approach to create virtually bug free
and easily maintainable code. By employing this technique to create core components
of our software we greatly increased our efficiency in debugging and maintaining the

code. This was also a huge win in the development process.

Lastly, one of our primary concerns was to develop a system with low total cost
of ownership. This criteria clearly separates EKGNET project from similar solutions
like Ortivus’ MobiMed system [19], which is far too expensive to implement in countries
like Turkey. We currently estimate the TCO for EKGNET project will be significantly
lower than MobiMed system.

31

6.2 Conclusions

The EKGNET as a technology driven project has a strong motive for improv-
ing emergency health care quality in Turkey by enabling quick diagnosis of AMI and
immediate activation of targeted emergency medical services related to it. The use
of telecardiology systems permitting rapid interpretation 12-lead ECG recordings by
highly skilled cardiologists, promises to be a very effective for diagnosing cardiac dis-
orders. As mentioned in section 2.2, recent thrombolytic agents are very effective in
pre-hospital scenarios. Thus EKGNET system will create the opportunity to equip
most ambulances with an affordable solution for treating AMI patients with next gen-

eration thrombolytic agents and increase their chances of survival.

In order to provide cardiac consultancy services to a larger population, the
capacity of current servers should be increased. However, scalable design criteria of

EKGNET project will allow for accomplishing this task without great difficulty.

6.3 Future Work

After EKGNET Call Center becomes operational as a cardiac consultancy ser-
vice center, EKGNET project will provide the infrastructure necessary to help many
patients through the means of telecardiology services. Such an infrastructure can be

expanded upon in a number of interesting ways. Some possibilities include:

Scaling and expanding the system to help with non-acute conditions,

Providing a cardiac consultancy center for non-cardiologist MDs,

Modifying Patient Unit to decrease its cost and becoming accessible by the public,

Providing hotels, big corporations and schools etc. a means for correct diagnosis

of coronary diseases,

32

e Employing 3G technology to conduct more efficient and higher resolution ECG

transfer,

e Employing 3G technology to transfer various other diagnostically important sig-

nals along with the ECG data,

33

APPENDIX A. SAMPLE UNIT TEST: COMMUNICATION

SERVER

using System;
using System.Net;
using System.Net.Sockets;
using MbUnit.Framework;
using Teknofil.EkgNet.Server;
using System.Threading;
using Teknofil.EkgNet.Communication.Packets;
namespace Teknofil.EkgNet.Server.UnitTest
{
[TestFixture]
public class ServerTest
{
private Server server = new Server (IPAddress.Any, 23);
AutoResetEvent[] eventSignals;
private int eventlndex;
int[] devicelds;
int[] userlIds;
int[] connectedDevicelds;
int[] connectedUserlIds;
[TestFixtureSetUp]
public void FixtureSetUp()
{

server.ClientConnected+=new EventHandler(server_ClientConnected) ;
server .NewDevice+=new NewDeviceEventHandler (server_NewDevice);

server.NewSession+=new NewSessionEventHandler (server_NewSession);

34

// Test the server start method
[Test]
public void StartServer()
{
this.server.Start();

Assert.AreEqual (this.server.Up, true);

// Simulates a single client connection

[Test]

public void SingleClientConnection()

{
TcpClient[] clients = CreateClients(1);
AssertConnections(clients, "Connect single client failed.");

DisconnectClients(clients);

// Simulates multiple client connections

[Test]

public void MultipleClientConnection()

{
TcpClient[] clients = CreateClients(64);
AssertConnections(clients, "Connect multiple clients failed.");

DisconnectClients(clients);

// Simulates a single session
[Test]
public void SingleSession()
{
TcpClient[] devices = CreateClients(1);

AssertConnections(devices, "Device could not connect to server");

35

TcpClient[] users = CreateClients(1);
AssertConnections(users, "User could not connect to server'");
AssertSessions(devices, users);

DisconnectClients(devices);

DisconnectClients (users) ;

// Simulates multiple sessions

[Test]

public void MultipleSessions()

{
TcpClient[] devices = CreateClients(64);
AssertConnections(devices, '"Device could not connect to server");
TcpClient[] users = CreateClients(64);
AssertConnections(users, "User could not connect to server'");
AssertSessions(devices, users);
DisconnectClients(devices);

DisconnectClients (users) ;

// Simulates data transfer within a session

[Test]

public void SingleSessionDataTransfer ()

{
TcpClient[] devices = CreateClients(1);
AssertConnections(devices, "Device could not connect to server");
TcpClient[] users = CreateClients(1);
AssertConnections(users, "User could not connect to server");
AssertSessions(devices, users);
Random random = new Random() ;
byte[] data = new byte[1024];

random.NextBytes (data) ;

36

NetworkStream deviceStream = devices[0].GetStream();
NetworkStream userStream = users[0].GetStream();

DataPacket dataPacket = new DataPacket(0, data);

byte[] readData = new byte[dataPacket.Bytes.Length];
deviceStream.Write(dataPacket.Bytes, 0, dataPacket.Bytes.Length);
Thread.Sleep(100);

userStream.Read(readData, 0, dataPacket.Bytes.Length);

DataPacket receivedPacket = DataPacket.ParsePacket(ref readData);
Assert.AreEqual (dataPacket, receivedPacket);

readData = new byte[dataPacket.Bytes.Length];
userStream.Write(dataPacket.Bytes, 0, dataPacket.Bytes.Length);
Thread.Sleep(100);

deviceStream.Read(readData, O, dataPacket.Bytes.Length);
receivedPacket = DataPacket.ParsePacket(ref readData);
Assert.AreEqual (dataPacket, receivedPacket);
DisconnectClients(devices);

DisconnectClients(users);

// Simulates data transfer with multiple sessions

[Test]

public void MultipleSessionDataTransfer()

{

TcpClient[] devices = CreateClients(64);
AssertConnections(devices, "Device could not connect to server");
TcpClient[] users = CreateClients(64);

AssertConnections(users, "User could not connect to server");
AssertSessions(devices, users);

AssertDataTransfer (devices, users);

DisconnectClients(devices);

DisconnectClients (users);

37

// Helper function to check integrity of transferred data
private void AssertDataTransfer(TcpClient[] devices,

TcpClient[] users)

if (devices.Length !'= users.Length)
{
throw new Exception("Devices and Users are not same size.");
}
DataPacket[] dataPackets = new DataPacket[devices.Length];
Random random = new Random() ;
byte[] data = new byte[1024];
NetworkStream deviceStream;
for (int i = 0; i < devices.Length; i++)
{
deviceStream = devices[i].GetStream();
random.NextBytes (data) ;
dataPackets[i] = new DataPacket((byte) i, data);
deviceStream.Write(dataPackets[i] .Bytes,
0,
dataPackets[i] .Bytes.Length) ;
}
byte[] readData;
DataPacket[] receivedDataPackets=new DataPacket[devices.Length];
NetworkStream userStream;
for (int i = 0; i < devices.Length; i++)
{

readData = new byte[dataPackets[i] .Bytes.Length];

userStream = users[i].GetStream();
userStream.Read(readData, 0, readData.Length);

receivedDataPackets[i] = DataPacket.ParsePacket(ref readData);

// Helper function to check the integrity of simulated sessions

ArrayAssert.AreEqual (dataPackets, receivedDataPackets);

38

private void AssertSessions(TcpClient[] devices, TcpClient[] users)

{

if (devices.Length !'= users.Length)
{

throw new Exception("Devices and Users are not same size.");

}
devicelds = new int[devices.Length];
userIds = new int[users.Length];
connectedDevicelds = new int[devices.Length];
connectedUserIds = new int[users.Length];
this.eventSignals = new AutoResetEvent[devices.Length];
this.eventIndex = O;
for (int i = 0; i < devices.Length; i++)
{
this.eventSignals[i] = new AutoResetEvent(false);
}
NetworkStream deviceStream;
for (int i = 0; i < devices.Length; i++)
{
deviceStream = devices[i].GetStream();
byte seqNo = (byte) 1ij;
byte[] data = new byte[] {ClientTypes.Device,
(byte) 1,
(byte) i}

ControlPacket deviceIdPacket = new ControlPacket (seqNo,
data) ;
deviceStream.Write(deviceIdPacket.Bytes,
0,
deviceIdPacket.Bytes.Length) ;
this.deviceIds[i] = (int) ((ushort) (i << 8 | i));
}
bool index = WaitHandle.WaitAll(this.eventSignals, 1000, false);
Array.Sort(this.devicelds);
Array.Sort(this.connectedDevicelds);
ArrayAssert.AreEqual(this.deviceIds, this.connectedDevicelds);
this.eventSignals = new AutoResetEvent[devices.Length];
this.eventIndex = 0;
for (int i = 0; i < devices.Length; i++)
{
this.eventSignals[i] = new AutoResetEvent(false);
}
NetworkStream userStream;
for (int i = 0; i < users.Length; i++)
{
userStream = users[i].GetStream();
ControlPacket userIdPacket=new ControlPacket(
(byte) i,
new bytel[]
{ClientTypes.User,
(byte) (i + 1),
(byte) (i + 1),

(SN

(byte) i,
(byte) i});
userStream.Write (userIdPacket.Bytes,
0,

userIdPacket.Bytes.Length) ;

39

this.userIds[i] = (int) ((ushort) ((i + 1) << 8 | (1 + 1)));
}
index = WaitHandle.WaitAll(this.eventSignals, 1000, false);
Assert.AreEqual (index, true, "Session was not started.");
Array.Sort(this.userIds);
Array.Sort (this.connectedUserIds) ;

ArrayAssert.AreEqual(this.userIds, this.connectedUserIds);

// Helper function to check integrity of established connections

private void AssertConnections(TcpClient[] clients,

string errorMessage)

int previousClientCount = this.server.ClientCount;
ConnectClients(clients) ;

bool index = WaitHandle.WaitAll(this.eventSignals, 100, false);
Assert.AreEqual (index, true, errorMessage);

Assert.AreEqual (server.ClientCount,

previousClientCount + clients.Length);

// Helper functions which created clients

private TcpClient[] CreateClients(int count)

{

this.eventSignals = new AutoResetEvent[count];

TcpClient[] clients = new TcpClient[count];

for (int i = 0; i < count; i++)

{
this.eventSignals[i] = new AutoResetEvent(false);
clients[i] = new TcpClient();

clients[i] .LingerState.Enabled = false;

40

this.eventIndex = O;

return clients;

// Helper function which connect clients to server
private void ConnectClients(TcpClient[] clients)
{

for (int i = 0; i < clients.Length; i++)

{

clients[i] .Connect (IPAddress.Loopback, this.server.Port);

// Helper function which disconnects clients from server
private void DisconnectClients(TcpClient[] clients)
{

for (int i = 0; i < clients.Length; i++)

{

clients[i] .Close();

}
// Code running at the end of unit test
[TearDown]
public void TearDown()
{
// this.server.Stop(Q);

// this.server.Start();

// Code running at the ent of the test fixture
[TestFixtureTearDown]

public void FixtureTearDown()

41

42

this.server.Stop();

Assert.AreEqual (this.server.Up, false);
}
// Event handler code running when a client connects to server
private void server_ClientConnected(object sender, EventArgs e)
{

this.eventSignals[eventIndex++].Set();

// Event handler code running when a new device is authenticated
private void server_NewDevice(object sender, NewDeviceEventArgs e)
{
try
{
this.connectedDevicelds[eventIndex] = (int) e.Deviceld;

this.eventSignals[eventIndex++].Set();

+
catch (Exception ex)
{
string deneme = ex.Message;
+

// Event handler code running when a new session is started
private void server_NewSession(object sender, NewSessionEventArgs e)
{

this.connectedUserIds[eventIndex] = (int) e.UserId;

this.eventSignals[eventIndex++].Set();

43

APPENDIX B. COMMUNICATION SERVER CLASS
DIAGRAMS

B.1 Server Class

Q IDisposable
) ~ e ™
Server &) NewDeviceEventHandler ¥]
Class Delegate
=l Fields (NewDeviceEventArgs EI\
clientManager Class
4 ClientProcessThread b EventArgs
47 ip .
47 listener = [.
4# ListenerThread ¥ Deviceld
¢ port ¢ Ip
¢ serverState [=I Methods
¥ sessionManager @ NewDeviceEventArgs
SessionProcessThread - /
47 status) :
2 NewDevice event notlﬁgs of a _
= recently connected Device. This
I=I Properties event occurs when an existing client
“5 ClientCount is authenticated as a Device. The
j‘ DeviceCount delegate NewDeviceEventHandler is
P called and dgtails _about the Device
: such as Deviceld is passed to the
=T Port delegated function.
5 Status
T Up
= Methods (NewSessionEventHandler [¥]
4* clientManager_DeviceAcquired Delegate
4 clientManager_Deviceldentified > <
 Dispose NewSessionEventArgs 2]
g Listen Class
% OnClientConnected = EventArgs
“ OnNewDevice —
% OnNewSession 1= Fields
4"¥ ProcessClients # Deviceld
4* ProcessSessions @ Userld
B ResetClientManager =] Methods
4* ResetSessionManager % NewSessionEventArgs
W Restart _ Y,
W Server
W Start NewSession event notifies that a
2" Startlistening Device waiting to be handled is .
@ Stop acquired by a Call Center U_ser._ This
- means that a new communication
I=| Events Session between Device and Call
¢ ClientConnected Center has been started.
NewDevice
+ NewSession
- /

Figure B.1 Server Class Diagram

B.2 Client Class

O IDisposable

1
Client
Class

(2]

[= Fields
¥ authenticated
&# packetHandler
@# socket
=l Properties
5 Authenticated
ﬁ Socket
[= Methods
% Client
W Close
W Dispose
+¥ OnNewControlPacket
;."Ir‘ packetHandler_ControlPacketReceived
% ParseData
=] Events

>

~ NewControlPacket

p

NewControlPacketEventHandler
Delegate

12

sender
e

NewControlPacketEventArgs
Class
= EventArgs

|>>

[=] Fields
¥ Data
[=] Methods
% NewControlPacketEventArgs

NewControlPacket event notifies subscribers
of a new incoming Control Packet. Event data
is passed as a class. The delegate
NewControlPacketEventHandler is called with
the event arguments supplied as parameter.

B.3 ClientManager

Figure B.2 Client Class Diagram

Class

O IDisposable

rCIientManager
Class

(=] Fields
authenticatedDevices
4# clients
=] Properties
5 ClientCount
%' DeviceCount
' syncRoot
Methods
AddClient
AuthenticateDevice
AuthenticateUser
ClassifySocket
client_NewControlPacket
ClientManager
Dispose
DisposeClients
DisposeDevices
OnDeviceAcquired
OnDeviceldentified
¥ ProcessClient
¥ ProcessClients

m
O O R g S g

Events

% DeviceAcquired
-+ Deviceldentified

[55)

DeviceAcquiredEventHandler
Delegate

¥

DeviceAcquiredEventArgs
Class
= EventArgs

=l Fields
Device
¥ Deviceld
@ User
¥ Userld
¥ Userlp
I# Methods

[»]

DeviceAcquiredEvent
event notifies of a that a
connected device is
acquired by a Call
Center User,

DeviceldentifiedEventHandler
Delegate

=
o7

DeviceldentifiedEventArgs
Class

= EventArgs

=l Fields
@ Deviceld
¥ Ip

[# Methods

[»

Deviceldentified event
notifies that
authorization of newly
connected host is
complete, The connected
host has been identified
as a Device with a
specific Deviceld

Figure B.3 ClientManager Class Diagram

45

B.4 Session and SessionClient Classes

(P IDisposable

. A " " .)
Session E3| SessionClient (=]
Class Class
= Fields “H Clientl | = Fields

¢ clientl “ Client2 o id

¢ client2 ¢ socket

¥ startTime &7 type
[=] Properties [zl Properties

" StartTime S
= Methods _“f Socket

@ Close 2 Type

L] Dispose =] Methods

¥ Process ‘% Dispose

W Session & SessionClient
- y, - J

Q IDisposable

Figure B.4 Session and SessionC

B.5 SessionManager Class

(P IDisposable

lient Clas Diagrams

p
SessionManager
Class

[= Fields

#¥ sessions
[=] Properties

== SyncRoot
[=I Methods

@ CreateSession

Dispose
DisposeSession
DisposeSessions
Process
ProcessSessions

LR

o0 o4

[

Figure B.5 SessionManager

Class Diagram

46

10.

11.

12.

13.

14.

47

REFERENCES

. Wikipedia, The Free Encyclopedia, Myocardial Infarction, en.wikipedia.org: Wikipedia,

2006. Available: http://en.wikipedia.org/wiki/Myocardial_infarction.

American Heart Association, Heart Disease and Stroke Statistics - 2004 Update, Dallas,
Tex.: American Heart Association, 2004. Available: http://www.americanheart.org/
downloadable/heart/1079736729696HDSStats2004UpdateREV3-19-04. pdf.

TUMAR Calisma Grubu, Tirkiye Akut Miyokard Infarktisi Arastirmase, Istanbul,
Turkey: MI Kuliibii, 1999. Available: http://miclub.org/home/kitap04.shtml.

. WHO, Cardiovascular Diseases, Washington, USA: World Health Organization,

2003. Available: http://www.who.int/cardiovascular_diseases/en/cvd_atlas_14_
deathHD.pdf.

A. Leizorovicz, J.P. Boissel, D. J. A. C., and M. Haugh., “Esc task force report,” Furopean
Health Journal, Vol. 19, pp. 1140-1164, 12 1998.

Boehringer Ingelheim, The electrocardiagram (EKG) for pre-hospital triage and treat-
ment, Boehringer Ingelheim International GmbH, Germany: Boehringer Ingelheim, 2005.
Available: http://www.metalyse.com/com/Main/myocardial_infarction/symptoms/
diagnosis/index. jsp.

Ingelheim, B., What is Thrombolysis?, Boehringer Ingelheim International GmbH, Ger-
many: Boehringer Ingelheim, 2005. Available: http://www.metalyse.com/com/index.

Jsp-
Pedley D. K., Bissett K., Connolly E. M., Goodman C. G., Golding L., Pringle T. H.,
McNeill G. P., Pringle S. D., Jones M. C., “Prospective observational cohort study of

time saved by prehospital thrombolysis for st elevation myocardial infarction delivered by
paramedics.,” BMJ, Vol. 327, pp. 22-26, Jul 5 2003. PMID: 12842951.

Boehringer Ingelheim, Basic pre-hospital treatment, Boehringer Ingelheim International
GmbH, Germany: Boehringer Ingelheim, 2005. Available: http://www.metalyse.com/
com/Main/myocardial_infarction/symptoms/diagnosis/index. jsp.

The GUSTO Investigators, “An international randomized trial comparing four throm-
bolytic strategies for acute myocardial infarction.,” N Engl J Med, Vol. 329, pp. 673-682,
Sep 2 1993. PMID: 8204123.

Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3
Investigators, “Efficacy and safety of tenecteplase in combination with enoxaparin, ab-
ciximab, or unfractionated heparin: the assent-3 randomised trial in acute myocardial
infarction.,” Lancet, Vol. 358, pp. 605-613, Aug 25 2001. PMID: 11530146.

Rawles JM, R. L., “Thrombolysis in peripheral general practices in scotland: another rule
of halves.,” Health Bull (Edinb)., Vol. 57, pp. 10-16, Jan 1999. PMID: 12811860.

California Telemedicine & eHealth Center, The History of Telemedicine, California
Telemedicine & eHealth Center, 1215 K Street, Suite 800, Sacramento, CA 95814: Cal-
ifornia Telemedicine & eHealth Center, 2006. Available: http://www.cttconline.org/
telemedicine_history.html.

Einthoven, W., “Le télécardiogramme,” Arch Int Physiol, Vol. 4, no. 132, 1906.

15.

16.

17.

18.

19.

20.

21.

22.

23.

48

Scanlon, W. G., “Using wireless technology to develop an effective personal telemedicine
service,” tech. rep., University of Ulster, Shore Road, Newtownabbey, Co. Antrim, N.
Ireland,, 2000.

Kennedy, H. L., and D. G. Caralis, “Ambulatory electrocardiography: A clinical prospec-
tive,” Ann. Intern. Med., Vol. 87, pp. 729-739, 1977.

M Schaldach, H. H., “Telecardiology - optimizing the diagnostic and therapeutic efficacy
of the next implant generation,” Progress in Biomedical Research, pp. 1-2, February 1998.

Yazici, Y., “Design of a transtelephonic ECG and thermometer device using the mobile
phone,” Master’s thesis, Bogazici University, Istanbul, Turkey, 2005.

Ortivus AB, MobiMed, Danderyd, Stockholm Sweden: Ortivus AB, 2005. Available:
http://www.ortivus.com/templates/Tmpl_Page 2217 .asp.

Dilber, C. B., “Design and implementation of an ecg based emergency telediagnostic
system,” Master’s thesis, Bogazici University, Istanbul, Turkey, 2006.

Wikipedia, The Free Encyclopedia, Test-driven development, en.wikipedia.org:
Wikipedia, 2006. Available: http://en.wikipedia.org/wiki/Test_driven_
development.

Microsoft Corporation, The C# Language, One Microsoft Way Redmond, WA 98052-
6399: Microsoft Corporation, 2006. Available: http://msdn.microsoft.com/vcsharp/
programming/language/.

Wikipedia, The Free Encyclopedia, Object-oriented programming, en.wikipedia.org:
Wikipedia, 2006. Available: http://en.wikipedia.org/wiki/Object_oriented_
programming.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

