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GENEREC IMPLEMENTATION OF THE  
CORTICO-HIPPOCAMPAL MODEL OF GLUCK AND MYERS  

IN HIPPOCAMPAL REGION ATROPHY 
 

ABSTRACT 

Hippocampal region dysfunction is suggested to have an important effect for the 

cognitive impairments observed in Alzheimer’s disease. In some patients, hippocampus and 

nearby structures show atrophy while other brain structures appear intact. Hence, study of 

neural network models which can mimic biological and psychological findings is hoped to 

contribute to our understanding of the underlying reasons and possible consequences of 

hippocampal dysfunction. Therefore the main objective of this thesis work was to develop 

an artificial neural network model that in many ways behaved like the hippocampal region. 

For this purpose we have used the cortico-hippocampal model of Gluck and Myers as the 

basic model. The learning rule Gluck and Myers used in their original work was 

backpropagation. Hoping to get a more biologically plausible model, the learning rule was 

changed to generalized recirculation (GeneRec). Furthermore, instead of using negative 

weights, the network was externally inhibited by two alternate methods: the kWTA 

inhibition and via additional inhibitory interneurons. Also, a weight bounding function was 

applied to the weight update rules.  

Addition of external inhibition and weight bounding functions to the network reduced 

the convergence characteristics of the network. Particularly cortico-cerebellar side of the 

network could not converge with external inhibition. Therefore external inhibition was 

abandoned for the cortico-cerebellar side. Although the hippocampal network could 

converge with kWTA, inhibition and weight bounding, rapid changes of activations of 

hippocampal network hidden layer neurons during training caused huge oscillations on the 

cortico-cerebellar output. Hence, external inhibition was abandoned also for the 

hippocampal network. 

The results of several representational differentiation and compression cases were 

found comparable to the Gluck and Myers original work. 

Keywords: Hippocampus, model, hippocampal atrophy, neural network, generalized 

recirculation 
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  HİPOKAMPÜS BÖLGESİ ATROFİSİ İÇİN GLUCK VE 
MYERS’İN KORTEKS-HİPOKAMPÜS MODELİNİN GENEREC 

UYARLAMASI  
 

ÖZET 

Hipokampüs bölgesindeki işlev bozuklukları Alzheimer hastalığında gözlenen bilişsel 

bozukluklarda önemli bir etken olarak görülmektedir. Bazı hastalarda salt hipokampüs ve 

yakınındaki yapılarda atrofi gözlemlenirken diğer beyin yapıları bozulmadan 

kalabilmektedir. Biyolojik ve fizyolojik bulguların sonuçlarını taklit eden sinir ağı modelleri 

ile yapılan çalışmaların, hipokampüs işlev bozukluğunun altında yatan nedenleri ve olası 

sonuçlarını anlamaya katkı yapacağı umulmaktadır. Bu nedenle bu tez çalışmasının ana 

hedefi, birçok yönden  hipokampüs bölgesi gibi davranan yapay bir sinir ağı modeli 

geliştirmektir. Bu amaçla Gluck ve Myers’ın korteks-hipokampüs sinir ağı modeli temel 

model olarak seçilmiştir. Gluck ve Myers çalışmalarında öğrenme kuralı olarak geri-yayılım 

kuralını kullanmışlardır. Biyolojik kabul edilebilirliği daha yüksek bir model elde etmek 

ümidiyle öğrenme kuralı Genelleştirilmiş Yeniden Dolaşım (GeneRec) kuralı ile 

değiştirilmiştir. Ayrıca, eksi ağırlıklar kullanmak yerine sinir ağı kWTA engellemesi ve 

engelleyici ara-nöronlar olarak seçenek iki yöntem ile dışarıdan engelleme yapılmıştır. 

Ağırlık yenileme kuralına bir de ağırlık sınırlama işlevi uygulanmıştır. 

Ağa dış engelleme ve ağırlık sınırlama işlevlerinin eklenmesi ağın yakınsama 

özelliğini azaltmıştır. Özellikle ağın korteks-serebrum kısmı dış engelleme ile 

yakınsanamamıştır. Bu yüzden korteks-serebrum kısmında dış engelleme kullanımı terk 

edilmiştir. Hipokampüs bölgesine karşılık gelen ağ kWTA engellemesi ve ağırlık 

sınırlaması ile yakınsanabilse de hipokampüs ağının eğitim sırasında gizli katmanlarındaki 

sinir hücrelerinin etkinlikleri hızla değiştiği için korteks-serebrum çıktısında çok büyük 

salınımlara neden olmuştur. Bu nedenle hipokampüs ağında da dış engelleme kullanımı terk 

edilmiştir. 

Çeşitli betimlemede farklılaşma ve sıkıştırma durumlarının sonuçları Gluck ve 

Myers’ın özgün çalışmalarıyla kıyaslanabilir sonuçlar vermiştir. 

Anahtar Sözcükler: Hipokampüs, model, hipokampüs atrofisi, sinir ağı, genelleştirilmiş 

yeniden dolaşım kuralı 
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1.   INTRODUCTION 

1.1  Motivation 

Neuroscience covers a broad range of topics such as molecular and cellular 

studies and also human psychology and psychophysics. Computational modeling and 

theoretical analysis are essential tools to characterize nervous system, to determine how 

it functions and to understand how it operates under certain conditions. Descriptive, 

mechanistic, and interpretive models are needed to answer the questions: what, how, 

and why for the nervous system; to summarize vast amounts of experimental data 

compactly yet accurately and thus characterize behavior of neurons by themselves and 

as a system. These models may be founded loosely upon biophysical, anatomical, and 

physiological findings; however their main purpose is to describe phenomena, not to 

explain them. Mechanistic models concentrate on how the nervous systems operate on 

the basis of known anatomy, physiology and circuitry and therefore they can be used to 

form the bridge between descriptive models at various levels. Computational and 

information-theoretic principles are used to explore the behavioral and cognitive 

significance of a wide range of aspects of nervous system function by interpretive 

models to answer the question of why nervous systems operate as they do [1-9]. 

Most of the time, it is not easy to decide the appropriate level of modeling of a 

particular problem; a common misassumption is more detailed models are better. 

However, they must be detailed enough to make contact with the lower level yet simple 

enough to provide clear results at higher level. 

1.2  Objectives 

Hippocampal-region dysfunction has long been suggested to be an important 

contributor to the cognitive impairments observed in Alzheimer’s disease (AD). 

Currently, it is a leading cause of death among people over the age of 60. Recent 

research has produced findings that may allow early detection of which individuals are 

most at risk to develop AD in the future. In some elderly individuals, the hippocampus 

and the endorhinal cortex show signs of atrophy while other nearby brain structures 

appear intact [1]. Hence, study of biologically plausible learning models will probably 
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contribute to understand the underlying reasons and possible consequences of 

hippocampal dysfunction related to these models. Therefore, the main objective of this 

thesis work is to develop an artificial neural network model that in many ways behaves 

like the hippocampal region. For this purpose we have used the cortico-hippocampal 

model of Gluck and Myers as the basic model. However, we modified this model by the 

application of the GeneRec algorithm with soft weight bounding and with external 

inhibition. This model was analyzed through extensive numerical simulations to study 

phenomena that occur in the hippocampal region, as this region undergoes atrophy. 

1.3  Organization of the Thesis 

Chapter 1 introduces the subject.  A brief summary of the relevant background   

and a summary of the Cortico-Hippocampal Model of Gluck and Myers are presented in 

Chapter 2. Simulations and the results are given in Chapter 3.  A detailed discussion of 

the simulation results are given in Chapter 4.  Training Data Generator Codes, Cortico-

Hippocampal Intact Model Codes and the Cortico-Hippocampal Lesion Model Codes 

are given in Appendix A, Appendix B and Appendix C, respectively. 
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2.   THEORY 

2.1  Introduction 

A generally accepted phenomenon underlying learning and memory is activity 

dependent synaptic plasticity which plays a critical role in the development of neural 

circuits. For a complete understanding of functional and behavioral importance of 

synaptic plasticity, studies of how experience and training modify synapses, and how 

these modifications alters patterns of neuronal firing to affect behavior should be carried 

out. Continuing experimental studies may reveal ways in which neuronal activity can 

affect synaptic strength. Hence synaptic plasticity rules inspired from these studies have 

been applied to several tasks including auto- and heteroassociative memory, storage and 

recall of temporal sequences, pattern recognition, and function approximation. 

In 1949, Donald Hebb conjectured that if input from neuron A often contributes to 

the firing of neuron B, then synapse from A to B should be strengthened. Hebb 

suggested that such synaptic modification could produce neuronal assemblies that 

reflect the relationships experienced during training. The Hebb rule forms the basis of 

much of the research done on the role of the synaptic plasticity in learning and memory. 

Experimental work in a number of brain regions, including hippocampus, 

neocortex, and cerebellum, has revealed activity-dependent processes that can produce 

changes in the efficacies of synapses that persist for varying amounts of time. Changes 

in synaptic strength involve both transient and long-lasting effects. Changes that persist 

for more than one hour long require protein synthesis and called long-term potentiation 

(LTP). Another form of plasticity which is observed in cerebellum is long-term 

depression (LTD).  

Studies of plasticity and learning involve analyzing how synapses are affected by 

activity over the course of a training period. There are three major types of learning 

procedures in unsupervised (also called self supervised) learning. A network responds 

to a series of inputs during training solely on the basis of its basic intrinsic connections 

and dynamics. The network than self organizes in a manner that depends on the synaptic 
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plasticity rule being applied and on the nature of the inputs presented during training 

[10].  

In supervised learning, a desired set of input-output relationships is imposed on 

the network by a teacher during training. Networks that perform particular tasks can be 

constructed in this way by letting a modification rule adjust their synapses until the 

desired computation emerges as a consequence of the training process. This is an 

alternative to explicitly specifying the synaptic weights. In this case, finding a plausible 

teaching mechanism may not be concern if the question is being addressed is whether 

any weights can be found that allow a network to implement a particular function. In 

more biologically plausible examples of supervised learning, one network acts as the 

teacher for another network. 

In reinforcement learning, that is intermediate of these cases, the network output 

is not constrained by a teacher, but evaluative feedback about network performance is 

provided in the form of reward or punishment [11]. This can be used to control the 

synaptic modification process. 

Non-Hebbian forms of synaptic plasticity, such as those that modify synaptic 

strengths solely on the basis of pre- or postsynaptic firing, are likely to play important 

roles in the homeostatic, developmental, and learning processes. Activity can also 

modify the intrinsic excitability and response properties of neurons [12]. Models of such 

intrinsic plasticity show that neurons can be remarkably robust to external perturbations 

if they adjust their conductance to maintain specified functional characteristics. Intrinsic 

and synaptic plasticity can interact in interesting ways. For example, shifts in intrinsic 

excitability can compensate for changes in the level of input to a neuron caused by 

synaptic plasticity. It is likely that all of these forms of plasticity, and many others, are 

elements of both the stability and the adaptability of nervous system [3].  

2.2  Cortico-Hippocampal Interaction in Associative Learning 

Computational models of learning need to incorporate stimulus representations to 

allow appropriate generalization of learning between stimuli. The appropriate degree of 

generalization will depend on the particular problem, implying that representations 



 5 

should be adaptable to suit current task demands. However, the computational resources 

required to create appropriate new stimulus representations on the fly are considerable; 

neural-network researchers have addressed this problem by developing the error back 

propagation algorithm. 

However, it is not clear that the sophisticated neural machinery needed to create 

the necessary new stimulus representations exists throughout the brain. One possible 

evolutionary alternative would be to localize some of the mechanisms for 

representational change in a central location (such as cerebral cortex and hippocampus) 

so that other brain regions (such as cerebral cortex and cerebellum) could make use of 

these mechanisms as needed for particular tasks [13]. This idea forms the basis for two 

major models of hippocampal function. 

In both of these models, one network module representing the hippocampal region 

interacts with other network modules representing other brain regions, as in Marr’s 

model. Hippocampal-region damage in these network models is simulated by disabling 

the hippocampal-region module and observing the behavior of the remaining modules. 

These models can implement many aspects of associative learning, particularly classical 

conditioning, and they are useful for understanding how the hippocampal region may 

interact with the rest of the brain to facilitate certain kinds of learning [1]. 

2.3  Cortico-Hippocampal Interaction and Contextual Processing 

Most of the computational models of Cortico-Hippocampal interaction in classical 

conditioning consider how conditioned stimuli were associated with responses and what 

role the hippocampal region might play in this association. But any conditioning 

experiment, indeed any form of learning, takes place against a background, or context, 

including the sights, sounds, and smells of the environment. There are also internal 

contextual cues such as motivation and drives. Typically, researchers try to minimize 

contextual cues or control for them by making sure that all subjects experience similar 

context. Nevertheless, it has long been recognized that context can and do affect what is 

learned. 
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From the early days of hippocampal research, it has been apparent that the 

hippocampal region plays an important role in contextual processing. Indeed, two early 

influential theories of hippocampal region function suggested that the region’s chief 

function is contextual processing in general or processing spatial contexts in specific 

locations. 

2.4  Cholinergic Modulation of Hippocampal-Region Function 

Hippocampal-region processing is modulated by also other brain structures which 

provide neuromodulators, neurotransmitters and chemical messengers that affect how 

hippocampal-region neurons behave. Medial septum, a small group of cells that project 

to the hippocampus, is an important contributor to this neoromodulatory mechanism. 

Some of these cells produce the neurotransmitter acetylcholine (ACh), which are the 

cholinergic ones. 

Normal hippocampal functioning critically depends on cholinergic input. If the 

septohippocampal cholinergic pathway is disrupted by either giving damage to the 

medial septum or by drugs that diminish ACh efficacy, hippocampal-region function is 

disrupted. Considering many studies, hippocampal-region disruption has qualitatively 

diverse effects on learning and memory behavior with respect to direct hippocampal 

region damage. Thus, effects of acetylcholine levels on learning memory should be 

considered [1]. 

2.5  Generalized Recirculation Algorithm 

An algorithm called recirculation provided two important ideas that enabled 

backpropagation to be implemented in a more biologically plausible manner. The 

recirculation algorithm was subsequently generalized from the somewhat restricted case 

it could handle, resulting in the generalized recirculation algorithm or GeneRec which 

serves as a task-based learning algorithm.  

GeneRec adopts the activation phases in the delta rule. In the minus phase, the 

outputs of the network represent the expectation or response of the network, as a 

function of the standard activation settling process in response to a given input pattern. 
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Then, in the plus phase, the environment is responsible for providing the outcome or 

target output activations. The + superscript is used to indicate plus-phase variables, and – 

to indicate minus-phase variables in the below equations and graphs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Illustration of the GeneRec algorithm, with bidirectional symmetric connectivity as shown. a) 
In the minus phase, external input is provided to the input units, and the network settles, with some record 
of the resulting minus phase activation states kept. b) In the plus phase, external input (target) is also 
applied to the output units in addition to the input units, and the network again settles [4]. 

It is important to emphasize that the full bidirectional propagation of information 

(bottom-up and top-down) occurs during the settling in each of these phases, with the 

only difference being whether the output units are updated from the network (in the 

minus phase) or are set to the external outcome/target values (in the plus phase). In 

particular, the hidden units need to receive the top-down activation from both the minus 

and plus phase output states to determine their contribution to the output error. 
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  ε( - )ij j j iw y y x
+ − −∆ =                    (2.1) 

for a receiving unit with activation 
j

y  and sending unit activation 
i

x  in the phases as 

indicated (Figure 2.2). As usual, the rule adjusting the bias weights is just the same as 

for the regular weights, but with the sending unit activation set to 1: 

   ε( - ) j j jy yβ + −∆ =                         (2.2) 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Weight updates computed for the GeneRec algorithm [4]. 

2.6  Soft Weight Bounding 

The unbounded nature of error driven weights is incompatible with both the facts 

of biology and the point-neuron activation function which requires a separation between 

excitation and inhibition. Therefore, the following mechanism for bounding the error 

driven weights is used (noting, this does not apply to the bias weights, which have no 

such sign constraints): 
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where 
ik

∆  is the weight change computed by the error driven algorithm, and the [ ]
+

x  

operator returns x if 0x >  and 0 otherwise, while [ ]
-

x  does the opposite, returning x 

if 0x < , and 0 otherwise. 

If equation (2.3) is used iteratively, the weights approach the bounds of 1 and 0 

exponentially slowly (softly). When there is a series of individual weight changes of 

equal magnitude but opposite sign, the weight will hover around 0.5, which corresponds 

well with the Hebbian interpretation of 0.5 as reflecting lack of positive or negative 

correlation. Similarly, as positive weight increases outweigh negative ones, the weight 

value increases proportionally, and likewise decreases proportionally for more negative 

changes than positive. 

Weight bounding is appealing from a biological perspective because it is clear that 

synaptic efficacy has limits. We know that synapses do not change their sign, so they 

must be bounded at the lower end by zero. The upper bound is probably determined by 

such things as the maximal amount of neurotransmitter that can be released and the 

maximal density and alignment of postsynaptic receptors. What the soft weight 

bounding mechanism does is to assume that these natural bounds are approached 

exponentially slowly – such exponential curves are often found in natural systems. 

However, it is not known of any specific empirical evidence regarding the nature of 

synaptic bounding function [4]. 

2.7  Contrastive Hebbian Learning (CHL) 

This algorithm is so named because it is the contrast (difference) between two 

Hebbian-like terms (the sender-receiver coproducts). The CHL algorithm traces its roots 

to the mean field or deterministic Boltzmann machine (DBM) learning algorithms, 

which also use locally available activation variables to perform error-driven learning in 

recurrently connected networks [3]. The DBM algorithm was derived originally for 

networks called Boltzmann machines that have noisy units whose activation states can 

be described by a probability distribution known as the Boltzmann distribution. In this 

probabilistic framework, learning amounts to reducing the distance between the two 
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probability distributions that arise in the minus and plus phases of settling in the 

network. 

2.8  Inhibitory Interactions 

Leak current and inhibition are two counterweights of neuronal activity. However, 

leak current is almost constant therefore, an important limitation. As a consequence it 

cannot respond to dynamic changes easily. Nevertheless, inhibition can play the role of 

a dynamic counterweight to excitatory input, as a function of the inhibitory input 

provided by the inhibitory interneurons known to exist in the cortex. General 

mechanism of these interneurons looks like sampling the general level of activation in 

the network. 

The function of inhibitory interneurons could be compared to that of thermostat 

controlled air conditioner that prevents the network from getting too “hot” (active). 

Thermostat tries to maintain a roughly constant indoor temperature by their set point 

property even with varying levels of heat flux. The set point is provided with a negative 

feedback mechanism. 

Two forms of connectivity involving the inhibitory interneurons and their connections 

with the principal excitatory neurons are present in the cortex which provides 

feedforward and feedback inhibition. A schematic representation of this is shown in 

Figure 2.3. Both type of connectivity are necessary and complement each other. 

Moreover, the inhibitory interneurons inhibit themselves by a negative feedback loop to 

control their own activity levels. 

Feedforward inhibition occurs when the inhibitory interneurons in a hidden layer 

are driven directly by the inputs to that layer, and then send inhibition to the principal 

(excitatory) hidden layer neurons. This form of inhibition anticipates and 

counterbalances the excitation coming into a given layer from other layers. 

Feedback inhibition occurs when the same layer that is being inhibited excites the 

inhibitory interneurons, producing a negative feedback loop. Thus, feedback inhibition 

reacts to the level of excitation from exploding (spreading uncontrollably to all units). 
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Figure 2.3 Two basic types of inhibitory connectivity (excitation is shown with the open triangular 
connections, and inhibition with the filled circular ones). a) Shows feedforward inhibition driven by the 
input layer activity, which anticipates and compensates for excitation coming into the layer. b) Shows 
feedback inhibition driven by the same layer that is being inhibited, which reacts to excitation within the 
layer. Inhibitory interneurons typically inhibit themselves as well [4]. 

 

To speed up and simplify simulations, the effects of inhibitory interneurons can be 

summarized by computing an inhibition function directly as a function of the amount of 

excitation in a layer, without the need to explicitly simulate the inhibitory interneurons 

themselves, as shown schematically in Figure 2.4. The simplest and most effective 

inhibition functions are two forms of a k-winners-take-all (kWTA) function. These 

functions impose a thermostat-like set point type of inhibition by ensuring that only k 

(or less) out of n total units in layer are allowed to be strongly active [4].  

For a network that has unidirectional excitatory connectivity, that has no top-

down connections for activity, feedforward inhibition is simple. Considering the 

bidirectional connectivity, feedforward inhibition should be understood better. The role 

of feedforward inhibition is to anticipate and counterbalance the level of excitatory 

input coming into a layer. Therefore, for a network that has a bidirectional excitatory 

connectivity, the inhibitory interneurons in the corresponding layer should also receive 

the top-down activity besides bottom-up activity. 

 

Hidden 

Input 

Inhib. 

Feed- 
Forward 

a) 

Hidden 

Input 

Inhib. 

 Feedback b) 
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Figure 2.4  Inhibition network with bidirectional excitatory connectivity [4]. 

 

2.8.1  The k-Winners-Take-All (kWTA) Inhibitory Functions 

The way kWTA functions operate to inhibit a layer of neurons is by not letting 

more than k active units out of n total in a layer. kWTA functions are also attractive 

from the biological perspective since it captures the set point property of the inhibitory 

interneurons by maintaining the activity level at a roughly constant level through 

negative feedback. On the other hand, in some particular applications this set point 

characteristic may become a weakness, if the model actually needs a more dynamic 

inhibition level for various inputs to the network. Nevertheless, a kWTA function 

enforces development of sparse distributed representations which can be beneficial from 

a functional perspective. Possible distributions of level of excitation across units in a 

layer, plotted on the Y axis, and rank order index on the X axis are shown in Figure 2.5. 

The basic kWTA function places the layer-wide inhibition value gi between the k and 

k+1th most active units, as shown by the dotted lines. 
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Figure 2.5  Possible distributions of level of excitation across units in a layer, plotted on the Y axis, and 
rank order index on the X axis. The basic kWTA function places the layer-wide inhibition value gi 
between the k and k+1th most active units, as shown by the dotted lines. a) Shows a standard kind of 
distribution, where the most active units are reasonably above the inhibition. b) Has many strongly 
activated units below the threshold, resulting in a small excitatory-inhibitory differential for the most 
activated units. c) Has few strongly active units, resulting in a very large differential for the most 
activated units [4]. 

 

It is better to emphasize that the k units active in a kWTA function are the ones 

that are most active in their outputs. Thus, the first step in computing the kWTA 

functions is to sort the units according to their activations. Then a layer-wide level of 

inhibition is computed such that the top k units will have activity, while the rest will 

remain inactive. This inhibition value is then used by each unit in the layer when 

updating their activations. 

2.9  The Cortico-Hippocampal Model of Gluck and Myers 

Gluck and Myers approached hippocampal functioning top-down by beginning 

with a broad and abstract description of the computations that depend on the 

hippocampal region in classical conditioning. In their initial model, the hippocampal 

region was treated as an information-processing system that transformed stimulus 

representations according to specified rules within a series of linked connectionist 

networks. In particular, the model argued that the hippocampal region compresses (or 

makes more similar) the representations of inputs that co-occur or are otherwise 

redundant, and differentiates (or makes less similar) the representations of inputs that 

predict different future events. As a simple analogy, if thunder and lighting always co-

occur, they should be treated as analogous and part of the same broader event. On the 

other hand, if two mushrooms look roughly alike but one is edible and one is poisonous, 
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then their representations should be made more distinct, exaggerating the subtle 

differences between them. The compressed and differentiated representations formed in 

the hippocampal region develop over multiple training trials through exposure to a 

range of stimuli and contextual regularities. These representations are then provided to 

other modules representing long-term storage in cerebral and cerebellar areas, which 

incorporate these new stimulus representations into their ongoing stimulus–response 

learning. 

This information-processing theory is incorporated in the connectionist network 

model shown in Figure 2.6. Processing in the hippocampal region is implemented via a 

predictive autoencoder, which learns to transform stimulus inputs, through a narrow 

internal node layer, to outputs that reconstruct those inputs and also predict future 

reinforcement (or other salient events). Because the internal layer in this network 

contains fewer nodes than the input and output layers, the network is forced to compress 

redundant information while at the same time preserving and differentiating information 

that predicts reinforcement. 

This hippocampal-region network then sends the new representations to a long-

term memory (LTM) network, which models storage sites in the neocortex and 

cerebellum. A random recoding of the hippocampal-region network’s internal-layer 

activations becomes the ‘desired output’ for the internal layer of the LTM network, and 

the error is the difference between this and the internal layer’s actual output. The LTM 

network then uses an error-correcting rule to adapt its lower layer weights, just as it did 

to adapt its upper layer weights. Over time, the internal-layer nodes of the LTM 

network develop representations that are linear recombinations of those developed by 

the hippocampal-region network. 

Within this model framework, broad hippocampal region damage is simulated by 

disabling the hippocampal region network (Figure 2.6). In this lesioned model, no new 

hippocampal-dependent representations are formed, and the training signal to the LTM 

network is silenced. The LTM network can adopt no new representations, although it 

can still learn to map from its existing representations to new behavioral responses [5]. 
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Figure 2.6 The cortico-hippocampal model (Gluck and Myers [1]). (a) In the intact model, the 
hippocampal region provides representational information to long-term memory sites, such as the 
cerebellum (illustrated here) and cortex; these representations are incorporated into ongoing learning to 
map from stimuli to responses. (CR, conditioned response; US, unconditioned stimulus) (b) After damage 
to the hippocampal region, the representational information is eliminated, although simple learning to 
map stimuli to responses is still possible [5]. 
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3.   SIMULATIONS AND RESULTS 

3.1  Implementation of the Model 

3.1.1  Hippocampal Network 

The hippocampal network is a three-layer network with full connectivity between 

18 input nodes and 40 internal nodes and 19 output nodes. The input consists of an 18-

bit pattern I = (I1, I2,..., I18) representing the current values of five phasic cues and 13 

tonic contextual cues. The desired output T = (T1, T2,..., T19) is the same 18-bit input 

pattern, as well as a 1-bit prediction of reinforcement. The network is trained by the 

GeneRec algorithm with kWTA inhibition. Node activations y are calculated as in the 

minus phase; an external input is provided to the input units, and the network settles. In 

the plus phase, external input (target) is also provided to the output units in addition to 

the input units, and the network again settles. 

The weights are initialized according to a uniform distribution U(-0.1 to 0.1). 

They are then updated using 

  ε( - )ij j j iw y y x
+ − −∆ =               (3.1) 

The learning rate ε 0.25=  if T19 = 1 and ε 0.025=  if T19 = 0. 

3.1.2  Cortical Network 

The cortical network is a three-layer network with full connectivity between 18 

input nodes and 60 internal nodes and a single output node. The input is the same as in 

the hippocampal network, whereas the desired output is the single bit T19 predicting 

reinforcement. Activation of nodes is computed as in the hippocampal network. The 

upper layer of weights, from hidden nodes j to output nodes k, is trained as in the 

hippocampal network, with learning rate ε 0.5= if T19 = 1 and ε 0.05=  if T19 = 0. The 

weights and biases are initialized according to a uniform distribution U(-0.3 to 0.3). 

Although the network algorithm is similar to hippocampal network; for the 

cortical network there are no external inhibitions. 
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The lower layer of cortical network weights is trained as  

hj hJ v x=∑                              (3.2) 

where the J is the plus phase activation, 
hj

v  is the connection strength from each hidden 

node h in the hippocampal network to hidden node j in the cortical network, 
h

x   is unit 

activation of hidden nodes of the hippocampal network. These 
hj

v  are nonadaptive and 

initialized according to a uniform distribution U(-1.0 to 1.0). This initialization and 

large number of internal layer nodes allows the lesioned model (cortical network only) 

to be able to solve random discriminations. 

3.1.3  Stimuli and Training Schedule 

Stimulus patterns are constructed by setting the first five bits to 0 or 1, depending 

on the presence or absence of five phasic cues. The next three bits code for a unique 

context: 101 for context X and 010 for context Y. The final 10 bits are a random string 

of 0s and 1s; constant across all stimulus patterns. They evolve slowly with time, so that 

on any trial there is some probability, P = 0.01, that one of the 10 bits will be inverted. 

This inversion is permanent unless randomly inverted back. 

One block of training consists of a number of training trials, containing one 

presentation of each stimulus pattern being trained. These are intermixed with context-

only presentations in a ratio of 1:20. For example, in the contextual conditional task 

(AX+, X-, AY-, and Y-), one block of training might consist of 10 presentations of 

context X, one presentation of phasic stimulus A in context X, 10 more presentations of 

X, 10 of context Y, one of A in Y, and 10 more presentations of Y. This ratio of 

context-only to training trials is about the minimum needed to ensure that background 

response to context alone remains low throughout training. 

At the start of a simulation run, the network is initialized by training with 500 

trials in which the input vector and output are both set to 0. This initialization ensures 

that the network has a low baseline output rate in the absence of input. 
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3.2  Progress of Code Implementation 

Before implementing Gluck and Myers Cortico-Hippocampal model with 

GeneRec, their code was re-written for test purposes. We tried to use the training data 

based upon their original work so that we could compare the results of their original 

implementation with backpropagation with our implementation based on the GeneRec 

algorithm. Therefore, we first developed a code for generating the training data. The 

following simulations used the output of this code as the training data. The data set 

mostly used for testing the performance of the networks individually and as system was 

the stimulus pattern: [X-, AX+, X-, Y-, AY-, Y-] with [10, 1, 10, 10, 1, 10] number of 

presentations, respectively. Here, X or Y represent static context, A represents one of 

the five phasic cues and – and + signs represent unconditioned stimulus, which is the 

training output value for the cortico-cerebellar network. 

The hippocampal network and cortico-cerebellar network codes were written 

individually at first and then combined together to get the cortico-hippocampal network.  

The performance of the model is shown in Figure 3.1. 
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Figure 3.1  Mean squared error performance of Gluck and Myers intact cortico-hippocampal model. 
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The next step was to write the code with GeneRec for the hippocampal network. 

Note that in this case, there are no weight bounding and no inhibition. The performance 

of the model is presented in Figure 3.2. 

0 100 200 300 400 500 600 700 800
10

-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, NO SWB

EPOCHS

M
S

E
, 

b
lu

e
:h

p
n
, 

g
re

e
n
:c

c
n
, 

s
o
lid

:t
h
re

s
h
o
ld

e
d
, 

d
a
s
h
e
d
:r

a
w

 

Figure 3.2 Mean squared error performance of GeneRec implementation of Gluck and Myers 
hippocampal network. No soft weight bounding. No inhibition. 

 

To add soft weight bounding (SWB) to the code, it was first tested with -1, 1 

boundaries. The performance of the system was poor as compared to the system with no 

SWB, as shown in Figure 3.3.  

kWTA inhibition was added next to the hippocampal network with SWB. The k 

values for the output layer and the hidden layer were calculated dynamically for every 

input. The mean squared error performance of GeneRec implementation of the 

hippocampal network with -1, 1 soft weight bounding (SWB) and with kWTA 

inhibition is shown in Figure 3.4. The number of neurons in the hidden layer was 40. 
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Figure 3.3 Mean squared error performance of GeneRec implementation of Gluck and Myers 
hippocampal network with -1, 1 soft weight bounding (SWB). No inhibition. 
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Figure 3.4 Mean squared error performance of GeneRec implementation of Gluck and Myers 
hippocampal network with -1, 1 soft weight bounding (SWB) and with kWTA inhibition. Number of 
neurons in the hidden layer is 40. 
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Next, different numbers of hidden layer neurons were tested, such as 10, 20, and 

30. Figure 3.5 shows the mean squared error performance of GeneRec implementation 

of Gluck and Myers hippocampal network with -1, 1 soft weight bounding (SWB) and 

with kWTA inhibition; the number of neurons in the hidden layer was 20. 
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Figure 3.5 Mean squared error performance of GeneRec implementation of Gluck and Myers 
hippocampal network with -1, 1 soft weight bounding (SWB) and with kWTA inhibition. Number of 
neurons in the hidden layer is 20. 

After having satisfactory results with the hippocampal network, code was written 

for the cortico-cerebellar network. Individual performance of the cortico-cerebellar 

network was satisfactory with no inhibition. kWTA inhibition was not suitable for this 

network, since it has only one output layer neuron. Therefore, inhibitory interneurons 

were added to the cortico-cerebellar network. However, performance of the network 

was dramatically unsatisfactory. 

When these two networks combined as a system, the performance was totally 

unsatisfactory (Figure 3.6). 

As the results suggested, to have a working model the only way was to abandon 

inhibition and weight bounding for the cortico-cerebellar network. Figure 3.7 shows our 
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simulation results for an example with no inhibition and with no soft weight bounding 

for the cortico-cerebellar network. 

The results were far from convergence with even with no inhibition and no weight 

bounding for the cortico-cerebellar network. Indeed there were signs of convergence on 

the performance plots, if we do not consider the huge oscillations.  

Perhaps the best thing to do is to abandon soft weight bounding and inhibition for 

both networks. For the following simulations there are no SWB and no inhibition 

(Figure 3.8 and 3.9). 
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Figure 3.6  Mean squared error performance of GeneRec implementation of Gluck and Myers cortico-
cerebellar network with -1, 1 soft weight bounding (SWB) and with kWTA inhibition. Number of 
neurons in the hidden layer is 60. 

3.3  Representational Differentiation 

Hippocampal-region network forms representations and these representations are 

subject to two biases. One of them is to compress the representations of stimuli that are 

redundant and the other is to differentiate the representations of stimuli that predict 

different outcomes.  Each of these biases can be used to explain data in intact and HR- 
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Figure 3.7 Mean squared error performance of GeneRec implementation of Gluck and Myers intact 
cortico-hippocampal model with both sub-networks having inhibition and soft weight bounding. 
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Figure 3.8 Mean squared error performance of GeneRec implementation of Gluck and Myers intact 
cortico-hippocampal model with cortico-cerebellar network having no inhibition and no soft weight 
bounding. 
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Figure 3.9 Mean squared error performance of GeneRec implementation of Gluck and Myers intact 
cortico-hippocampal model with cortico-cerebellar network having no inhibition and no soft weight 
bounding. 

 

lesioned animals. Below are several examples of learning behaviors that appear to 

involve representational differentiation. 

 

3.3.1  Acquisition 

The most rudimentary eyeblink conditioning task is acquisition: learning to 

respond to a cue that has been paired with the US. The Rescorla-Wagner model captures 

this behavior, suggesting that the cerebellum alone should be sufficient to mediate 

conditioned acquisition and hence learning should not be disrupted by HR lesion. 

Indeed, acquisition of a conditioned eyeblink response is not disrupted by HR lesion in 

humans, rabbits, or rats. 

Conditioned acquisition is simulated in the intact cortico-hippocampal model by 

presenting a series of training trials. First, the model is given trials consisting of just the 

experimental context – call it X – a series of inputs  meant to present the background 
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sights, smells, and sounds of the experimental setup; the model learns not to give a 

conditioned response to the context alone. These trials correspond to the time spent 

acclimating an animal to the experimental chamber, before any explicit training begins, 

a standard procedure in experimental studies of animal conditioning. 

Next comes the actual acquisition training. Because the training takes place in 

context X, learning to respond to a light CS can be redefined as learning to respond to 

light-in-X but not to the context alone X-. With enough training, the model learns to 

respond when the light is present but not to the context alone. With training, internal-

layer representation in the cortico-cerebellar network changes by copying the 

representations in the hippocampal-region network.  

However, this new differentiated representation is probably not necessary to 

acquire a conditioned response to a single light CS. The task is so simple that just about 

any random recoding in the lower layer of cortico-cerebellar network weights is 

probably sufficient. As long as there is at least one node in the internal layer that gives a 

different response to light-in-X and X alone, that node can be used to drive the presence 

or absence of a CR. 
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Figure 3.10  Conditioned acquisition, learning that a tone CS predicts an airpuff US, is not disrupted by 
hippocampal-region damage. 
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3.3.2  Discrimination and Reversal 

Simple discrimination involves learning that one CS(light+) predicts the US while 

a second CS(tone-) does not. This means that conditioned responses should follow 

light+ but not tone-. In general, discrimination learning in the eyeblink-conditioning 

paradigm is not disrupted by hippocampal-region damage. Similarly, hippocampal-

region damage generally does not impair a range of discrimination tasks in animals, 

including discrimination of odors, objects, textures and sounds. 

In the intact cortico-hippocampal model, the hippocampal-region network 

constructs new representations that differentiate light+ and tone-, facilitating the 

mapping of light+ to one response and tone- to another. However, the discrimination 

task is so simple that such representational changes are probably not necessary; any 

random initial representations in the cortico-cerebellar network are probably different 

enough to allow mapping to different responses. Thus, the HR-lesioned model should 

be able to learn a conditioned discrimination. 
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Figure 3.11 Conditioned discrimination: learning to respond to one CS light+, which is paired with the 
US, but not to CS tone-, which is not paired with the US. 

Empirical data have often been interpreted as arguing that conditioned 

discrimination is hippocampal-independent. Gluck and Myers offer a different 



 27 

interpretation: The hippocampal-region may not be strictly necessary for some kinds of 

learning; but when it is present, it normally contributes to all learning. Even in a simple 

task such as discrimination (or acquisition), where a priori representations probably 

suffice to allow learning, the hippocampal region is constantly forming new stimulus 

representations that compress redundant information while differentiating predictive 

information, whether these new representations are needed or not [1]. 

However, the usefulness of this hippocampal participation becomes apparent if 

task demands change. For example, suppose the discrimination is reversed so that after 

learning to respond to light+ but not tone-, the contingencies are reversed, so tone+ now 

begins to predict the US and light- does not. In the intact model, the hippocampal region 

network has already done the work of differentiating the representations of light and 

tone; once the contingencies are reversed, all that needs to be done is to map those 

representations to new responses. In the lesioned model, the situation is quite different: 

the representations of light and tone are fixed, and so they are not differentiated during 

the original discrimination. Thus, the reversal requires first unlearning the original 

discrimination and then learning the reversed discrimination. This process may be quite 

lengthy in comparison to reversal in the intact model. In rabbit eyeblink conditioning, 

several studies show that hippocampal-region damage disrupts discrimination reversal. 
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Figure 3.12 Discrimination reversal. 
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3.4  Representational Compression 

Just as the hippocampal region is assumed to differentiate the representations of 

stimuli that should be mapped to different responses, the hippocampal region is 

assumed to compress the representations of stimuli that co-occur and should be mapped 

to similar responses. Behaviors that reflect representational compression should be 

disrupted after hippocampal-region damage. 

3.4.1  Sensory Preconditioning 

Sensory preconditioning involves unreinforced exposure to a compound of two 

stimuli (tone&light- exposure), followed by light-US pairings (light+ training). The 

associations learned to the light should partially transfer to tone, as a result of the paired 

exposure. Hippocampal-region damage (specifically fimbrial lesion) abolishes sensory 

preconditioning in the rabbit eyeblink preparation. In the intact model, tone&light- 

exposure results in compression of the representations of tone and light, since both 

stimuli co-occur and neither predicts the US or any other salient event. Subsequent 

associations to light partially activate the representation of tone, and learning transfers. 

In the lesioned model, there are no representational changes during the exposure phase, 

and as long as light and tone are distinct stimuli that activate different (fixed) 

representations, there is little chance that associations made to light will transfer to tone. 

3.4.2  Learned Irrelevance 

Another behavior involving representational compression is learned irrelevance. 

The paradigm is schematized in Table 3.1. In phase 1, subjects in the exposed group are 

given presentations of a CS (e.g., light) and a US, uncorrelated with each other. Subjects 

in the non-exposed group are given equivalent time in the experimental context but 

receive no presentations of light or the US. In phase 2, all subjects receive light-US 

pairings. Subjects in the exposed group are much slower to learn the light-US 

association. 

In the intact cortico-hippocampal model, phase 1 exposure to a CS (e.g., light) and 

a US causes representational changes. The representation of the light becomes 

compressed, together with the  representations of the  background contextual cues, since 
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Figure 3.13  Sensory Preconditioning. A: Rabbit data. B: Gluck & Myers model simulations. C: GeneRec 
model simulations. 
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Table 3.1 
The Learned Irrelevance Paradigm. 

 
Group Phase 1 Phase 2 

CS/US exposure Light and airpuff (uncorrelated) Light → airpuff 
                     ….SLOW! 

Sit exposure Animal sits in experimental chamber Light → airpuff 
                     ….normal speed 

 

neither predicts the US well. In effect, the light is treated as a sometimes-occurring 

aspect of the context, one that is of no use in predicting US arrival. This representational 

compression of light and context will hinder phase 2 learning to respond to the light but 

not the context alone. Thus, there is a learned irrelevance effect in the intact cortico-

hippocampal model. Since learned irrelevance is interpreted in terms of representational 

compression, it is not shown in the HR-lesion model. 
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Figure 3.14  Learned irrelevance and HR-lesion. A: Rabbit data. B: Gluck & Myers model simulations. 
C: GeneRec model simulations. 
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4.   DISCUSSION 

4.1  Introduction 

In this thesis all the training data, network model and several other data or 

principles are based on Gluck and Myers’ cortico-hippocampal model. Where possible 

all the data and variables were used with their original values. Gluck and Myers 

published many articles on their model and also a book: “Gateway to Memory: An 

Introduction to Neural Network Modeling of the Hippocampus and Learning” [1]. The 

book was somewhat a review and a broad collection of their up to date work on their 

cortico-hippocampal model. Therefore, data and simulations performed are based on 

this book. 

The GeneRec algorithm was chosen as a learning mechanism for this work for 

several reasons. First of all, the objective of this work was to come up with a network 

model of the hippocampus and related regions that is similar to biological networks and 

functioning similar to biological networks in its learning mechanism. The GeneRec 

algorithm in many ways seems more biologically plausible rather than the 

backpropagation algorithm that was used by Gluck and Myers originally. Moreover, it 

has a solid theoretical background and there are many publications using this algorithm 

as their learning rule. 

4.2  Training Data 

As a first step in this work a computer code was written to generate the training 

data, based on Gluck and Myers cortico-hippocampal model’s training data principles. 

Training data set for any case included 18-bits of input vector, 19-bits of target output 

vector for hippocampal network and 1-bit of target output for cortico-cerebellar 

network. All the data were formed of 0s and 1s. The input vector includes stimulus 

patterns, tonic cues, phasic cues and random formed constant contextual bits which 

evolve slowly by time. Further details are in the “Stimuli and Training Schedule” part 

above in the simulation details. 
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As the second step, Gluck and Myers’ model was realized using Matlab. First the 

hippocampal network was written and tested, and then cortico-cerebellar network was 

written and tested. Finally both networks were combined. With several trials, 

performance and results of the network were as in their original work. This reproduction 

work of the model was very valuable. The hippocampal network was a typical three 

layer network with an important difference which is, trying to reproduce input vector at 

the output and also trying to guess unconditioned stimulus. The cortico-cerebellar 

network was again a three layer network with 18 input nodes but only one output node 

to guess the unconditioned stimulus. While the hippocampal network used 

backpropagation for learning, the cortico-cerebellar network did not. For the intact 

model both networks work together. Hidden layer outputs of the hippocampal network 

are used to obtain the target output values of the hidden layer nodes of the cortico-

cerebellar network. For the lesioned model there are no teaching signals for the hidden 

layer nodes of the cortico-cerebellar network. 

4.3  The GeneRec Algorithm 

When it came to write the code with GeneRec, it was the same strategy as before; 

divide the network into two as hippocampal network and cortico-cerebellar network. 

The hippocampal network was performing well with GeneRec. However, our concern 

here was to write a code that is as much as similar to the biological constraints. That is, 

weights should not take negative values and they should be limited in their values. The 

method used at this stage was SWB (Soft Weight Bounding). The SWB function 

modifies weight changes during weight update. For any given lower and upper limits, 

weight change exponentially slows through the limits. Weight bounding is appealing 

from a biological perspective because it is clear that synaptic efficacy has limits. 

However, we do not know of any specific empirical evidence regarding the nature of 

synaptic bounding function. 

There were two alternatives for applying SWB.  The first was to apply it with a 

negative lower value. Therefore, the boundaries would be such as (-1, 1). The second 

was to apply it with 0 lower boundary. However, in such a case there should be an 

inhibitory mechanism to prevent over-excitation, which in turn prevents convergence. 
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First, SWB with (-1, 1) boundaries is applied. Addition of SWB increased required 

number of epochs for the network’s learning criterion but did not have a significant 

effect on convergence. To apply SWB with 0 lower boundary kWTA inhibition is 

planned to be added to the network. 

4.3.1  kWTA 

As mentioned above in Section .2.8, a kWTA function ensures that no more than 

k units out of n total in a layer are active at any given time. Actually this function 

produces similar results to inhibitory interneuron activity. Also it is computationally 

less resource intensive considering inhibitory neurons. Moreover, it is easier to apply 

since it does not require addition of extra network layers and is more manageable with 

less parameter. However, it has some drawbacks; for example, the activity level for the 

applied network layer is roughly constant. Since it has different types as basic or 

average based kWTA, deciding on any type may require experience or lots of trials. 

Another challenge with kWTA is to decide, in any layer, how many nodes will be 

active at any time. For the output layer of the hippocampal network the case was tricky. 

Since the hippocampal network is thought as an auto-encoder, the number of active 

nodes in the output layer would be roughly the same as in the input nodes. However, for 

the hidden layer of the hippocampal network, finding the working k value was not easy. 

Furthermore, any fixed k value would not be biologically meaningful. After excessive 

trials the best way appeared to be calculating the k value related to the overall activity 

distribution of nodes. Considering a normal statistical probability distribution, the k 

value is calculated from the number of most active units which their z value is bigger 

than 0.9. 

The next step with the kWTA was to investigate the performance of the system 

with different number of hidden layer nodes. In the original Gluck and Myers cortico-

hippocampal model, the number of internal layers for the hippocampal network is 10. 

For the first trials, the number of hidden layer nodes was 40 for our model with kWTA 

inhibition. Less hidden layer nodes were tried with different z values; however the 

performance of the system decreased significantly with fewer nodes. Therefore, in the 
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following simulations the number of hidden layer nodes for hippocampal network was 

taken as 40. 

At the last step, SWB is applied with (0, 1) boundaries and with kWTA inhibition 

for the hippocampal network. Although convergence could be achieved with this 

modification, mean squared errors increased. This was not surprising because the 

network was limited in its weights from 0 to 1. Also, even it performs well it was not 

easy to get 0s or 1s as outputs. Reaching to weight boundaries is exponentially hard 

with SWB. Therefore, mse (mean squared error) values were also calculated with a 

threshold (0.5). For the thresholded mse values; if the output of any neuron is bigger 

than 0.5 it is calculated as 1 and if it is less than 0.5 then it is calculated as 0. 

4.4  The Cortico-Cerebellar Network 

Having satisfactory results with the GeneRec for the hippocampal network, it was 

time to apply GeneRec to the cortico-cerebellar network. As it is mentioned above the 

cortico-cerebellar network was different in its learning mechanism. The teaching signal 

for the hidden layer nodes were not through the output layer activity of the cortico-

cerebellar network but a function of the hidden layer activity of the hippocampal 

network. 

For the jth neuron in the hidden layer of the cortico-cerebellar network target plus 

phase value is calculated as, 

J = ∑ vhj xh     (4.1) 

where the vhj are connection strengths from each hidden node h in the hippocampal 

network to hidden node j in the cortical network. Further details are above in the 

simulations part. 

4.4.1  Inhibition 

During the development of the cortico-cerebellar network code we faced various 

problems. As  mentioned before, when using kWTA inhibition, how to compute the k 

values for each layer must be decided. For the hidden layer of the cortico-cerebellar 
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network any k value may be used, leading to a great number of active hidden layer 

nodes. Another approach is to use a similar value to the one used in the hippocampal 

network. However, the real challenge is to decide the k value of the output layer, since 

there is only one node. The k value is an integer; for the output layer there are only two 

choices will it be 0 or 1. If it is 1, the network always computes 1. If it is 0, the network 

always computes 0 which is also wrong. There is no way of predicting the k value. Even 

if there is, actually it is the function of network to guess the output will be 0 or 1. As a 

consequence it was apparent that another method of inhibition should have been used. 

The second method of inhibition choice for the cortico-cerebellar network was the 

use of inhibitory interneurons as it is been in a biological network. These inhibitory 

interneurons were added as two additional layers interacting with all three layers of the 

cortico-cerebellar network. They had feedforward, feedback and self inhibitory 

connections. Addition of these neurons and thereby new layers required addition of 

many parameters such as relative strengths of feedforward, feedback and self inhibitory 

connections for even each layer level. However, nonlinearity of the system with its 

highly dynamic character and sophisticated structure dramatically decreased its 

manageability. After excessive trials, the performance of the network was not found 

satisfactory; even not better than the kWTA inhibition application for the cortico-

cerebellar network. Consequently, the only choice was to abandon inhibition for the 

cortico-cerebellar network. 

4.5  Cortico-Cerebellar and Hippocampal Networks 

Finally two networks, that are cortico-cerebellar and hippocampal networks were 

combined as a system. However, it was hard to state whether the cortico-cerebellar 

output converged. Although, the minimum values of the mean squared error trend was 

looked like it is converging, actually it was oscillating but not converging. The reason 

of these huge oscillations was rapid representational changes in the hidden layer of the 

hippocampal network. To prevent these rapid representational changes, kWTA 

inhibition and therefore SWB was abandoned. Consequently, the network as system, 

started to give meaningful results.  
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4.6  Representational Compression 

For the acquisition case which is learning to respond to a cue that has been paired 

with the US, the comparison is made on percentage conditioned responses after a fixed 

number of epochs. The comparison data was obtained from the Gluck and Myers’ 

articles and consisted of data gathered from humans and rabbits. Both subjects 

responded at nearly same percentage for their lesioned and intact ones. Human subjects 

responded around 40% for both with lesioned and intact hippocampus. Rabbits 

responded around 70%. Model simulations of Gluck and Myers resulted in 78% for the 

control group (intact) and 82% for the amnesic group (lesion). GeneRec implementation 

of Gluck and Myers model gave 86% for the control group (intact) and 93% for the 

amnesic group (lesion). Standard deviation for our implementation was 4.1 for the 

control group and 6.6 for the amnesic group. 

The next example was another representational differentiation case: 

discrimination and discrimination reversal. For this case, comparison is made on mean 

trials to criterion. For this case we only had rabbit data which is again from Gluck and 

Myers articles. The first comparison is made on discrimination. Rabbits responded 

around 80% for both the control group and the amnesic group. Model simulations of 

Gluck and Myers resulted in 82% for the control group (intact) and 85% for the amnesic 

group (lesion). The GeneRec implementation of Gluck and Myers model gave 77% for 

the control group (intact) and 71% for the amnesic group (lesion). The standard 

deviation for our implementation was 21 for the control group and 5.9 for the amnesic 

group.  

The next comparison is made on discrimination reversal. Control group rabbits 

reached the criterion around after 2000 trials where amnesic group of rabbits reached 

the criterion around after 8300 trials. Model simulations of Gluck and Myers resulted in 

300 epochs to reach the criterion for the control group and 600 epochs for the amnesic 

group. The GeneRec implementation of Gluck and Myers model gave 35 epochs for the 

control group (intact) and 113 epochs for the amnesic group (lesion). The standard 

deviation for our implementation was 1.5 for the control group and 111 for the amnesic 

group. The huge standard deviation of the amnesic group considering the mean value 

was significant. This was due to the wide range of results for this case. Actually half of 
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the simulations reached the criterion after many epochs yet some simulations reached 

the criterion as fast as the control group. This was possibly due to initial representations 

formed after discrimination before reversal simulations ran. These initial 

representations, by chance allowed the cortico-cerebellar network to form new and 

correct representations just by changing its output layer weights. 

4.7  Representational Differentiation 

We had two representational differentiation cases. One is sensory preconditioning 

and the other is learned irrelevance. For the sensory preconditioning case, comparisons 

are based upon response rates. Experimental data was from rabbits. Sensory 

preconditioning involves unreinforced exposure to a compound of two stimuli (tone and 

light- exposure), followed by light-US pairings (light+ training). Rabbits gave very low 

response rates to separate exposure for both control and amnesic group. On the other 

hand, the control group rabbits gave significantly higher, even more than 10 times, 

response rates to compound exposure when both stimuli were given simultaneously. 

The Gluck and Myers model simulations gave similar results. Response rates for 

separate exposure and compound exposure for amnesic group were around 15, where 

compound exposure to control group gave response rates around 25. The GeneRec 

implementation of Gluck and Myers model was similar considering the results of the 

original implementation. Separate exposure to stimuli yielded a response rate of 14 for 

both the control and the amnesic group. Compound exposure yielded a response rate of 

18 for the amnesic group and 30 for the control group. Standard deviations for our 

implementation were calculated below 1 for all of the cases. 

Again for the learned irrelevance case comparisons were made with rabbit data 

while comparing mean trials to criterion. Once more, there were two phases; in phase 1, 

some of the subjects are exposed to presentations of uncorrelated data but the others not. 

In phase 2 they are given presentations of the same stimuli but correlated this time. 

Rabbits reached the criterion after around 200 for control sit exposure group and 

amnesic CS/US represented group. However, the control group which is exposed to 

uncorrelated CS/US pairings reached to the criterion after around 270 trials in the mean. 

The Gluck and Myers model simulations needed around 80 epochs for control sit 
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exposure group, around 90 for amnesic sit exposure group, around 80 for amnesic 

CS/US group. It took around 150 epochs for the control CS/US group. The GeneRec 

implementation of Gluck and Myers model reached at 212 epochs in mean for control 

sit exposure group, 79 epochs in mean for amnesic sit exposure group, 47 epochs in 

mean for amnesic CS/US exposure group and 294 epochs in mean for control CS/US 

exposure group. The standard deviations were 33, 3, 46 and 142 respectively. The 

reason for the standard deviation of 142 was due to the occasionally fast reach of model 

simulations to the criterion, probably caused by formed representations in the hidden 

layer of cortico-cerebellar network in phase 1. 

As a consequence, all of the results obtained were closely correlated with the 

referred previous findings. However, further representational differentiation and 

compression cases could be tested on the implemented model to understand its possible 

uses or even its shortcomings. 
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5.   CONCLUSIONS 

5.1  General 

Hippocampal-region dysfunction has long been suggested to be an important 

contributor to the cognitive impairments observed Alzheimer’s disease (AD) which is a 

leading cause of death among people over the age of 60. Recent research has produced 

findings that may allow early detection of which individuals are most at risk to develop 

AD in the future. In some elderly individuals, the hippocampus and the endorhinal 

cortex show signs of atrophy while other nearby brain structures appear intact [1]. It is 

hoped that study of biologically plausible learning models will probably contribute to 

our understanding concerning the underlying reasons and possible consequences of 

hippocampal dysfunction. Therefore the main objective of this thesis work was to 

develop an artificial neural network model that in many ways behaved like the 

hippocampal region. For this purpose we have used the cortico-hippocampal model of 

Gluck and Myers as the basic model. However, we modified this model by the 

application of the GeneRec algorithm with soft weight bounding and with external 

inhibition. This model was analyzed through extensive numerical simulations to study 

phenomena that occur in the hippocampal region, as this region undergoes atrophy. 

The results obtained by this work were closely correlated to the results of the 

original implementation of Gluck and Myers. Most of the time, the GeneRec 

implementations of the cortico-cerebellar and hippocampal networks learned faster  

with respect to the original implementations.  

As we mentioned before, at a functional level, several neural network models are 

available for the hippocampal region and its relationship with other brain areas. 

Although these models may give satisfactory results, considering animal studies, in 

general their learning algorithms do not care biological plausibility at first. In this work 

we tried to take into account biological considerations in terms of bounded weights and 

external inhibition and by using locally available activation variables as opposed to 

error or other variables. Therefore, we tried to integrate neural network principles with 

the biological mechanisms to have a better understanding of hippocampal region 
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dysfunction. Moreover, we have analyzed and compared the results of using the 

GeneRec algorithm in a different kind of network architecture. 

5.2  Recommendations for Future Work 

At the beginning of this study our research was concentrated on neural network 

models of the hippocampal region at a functional level along with learning algorithms 

that are similar to biological mechanisms. However, we encountered several problems 

during the GeneRec implementation particularly due to external inhibition. The kWTA 

inhibition demonstrated its shortcomings such as difficulties to manipulate inhibition 

under highly dynamic conditions. External inhibition with inhibitory interneurons could 

not provide the required convergence either. The problem of convergence may have 

been related to the structure of inhibitory network with its own connections or may be 

related to the interaction with cortico-hippocampal network. Clearly, the choise of 

external inhibition method and its application strongly affects the results. Application of 

alternative inhibition methods or structures may improve convergence with external 

inhibition and contribute to model’s similarity to biological neural networks. 

GeneRec was one of the learning algorithm alternatives for this study. Another 

algorithm may suit better for the purpose of biological plausibility. 

Cortico-hippocampal model of Gluck and Myers concentrates on representational 

differentiation and compression function of hippocampus and its interaction with 

cortical brain areas. In this study we only studied a few representational differentiation 

and compression cases hence, study of further cases can improve our understanding of 

the model and its implementation. 
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APPENDIX A  

TRAINING DATA GENERATOR CODE 
 
% cortical/cerebellar & hippocampal network training data set 
 
% - number of network inputs is 18 
% - 5 phasic(light, tone, etc.) 13 tonic contextual cues. 5+13=18 
% - stimulus patterns are constructed by setting first five bits to 0 or 1, 
% depending on the presence or absence of five phasic cues 
% - next three bits code for a unique context: 101 context X, 010 context Y 
% - the final 10 bits are random string of 0s and 1s, constant across all 
% stimulus patterns, but evolve slowly with time, so that on any trial 
% there is some probability, P=.01, that one of the 10 bits will be 
% inverted; this inversion is permanent unless randomly inverted back. 
 
%------------------------------------------------ 
trn_block=[' X-';'AX+';' X-';' Y-';'AY-';' Y-']  
% is indeed ['AX+';' X-';'AY-';' Y-'] 
% No of Presentation of each Stimulus Pattern Matrix being trained 
n_pspm=[10,1,10,10,1,10]     
trn_set='01a'                % no of TRaiNing SET 
%------------------------------------------------ 
reply = input('is everything ok up to now? y/n [y]: ','s'); 
if isempty(reply) 
    reply = 'y'; 
end 
if reply~='y' 
    clear, return 
end 
%------------------------------------------------ 
cntx_s=round(rand(10,1)); %generates Static CoNTeXt 
 
nib=size(trn_block,1); % No of Items in Block. no of columns 
inpt=[]; 
hpn_out=[];, ccn_out=[]; 
for n_b=1:nib 
    k=trn_block(n_b,:); %read one row at once 
    iminpt=inpt; %to add each produced input set to the preceding one 
    imhpn_out=hpn_out;, imccn_out=ccn_out; 
    if length(k)==3 
        if k(1)==' ', indx_p=0; %INDeX of Phasic input. '0':no phasic input 
        %index of phasic input 1,2,3,4,5 for A,B,C,D,E respectively. 
        elseif k(1)=='A', indx_p=1; 
        elseif k(1)=='B', indx_p=2; 
        elseif k(1)=='C', indx_p=3; 
        elseif k(1)=='D', indx_p=4; 
        elseif k(1)=='E', indx_p=5; 
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        else disp('improper input case'), return 
        end 
        if k(2)=='X', cntx_u=[1;0;1]; % Unique CoNTeXt X=[1;0;1] 
        elseif k(2)=='Y', cntx_u=[0;1;0]; % Unique CoNTeXt Y=[0;1;0] 
        else disp('improper input case'), return 
        end 
        CRout=k(3); %CRout: Conditioned Response OUTput 
        if CRout=='-', CRout=0; 
        elseif CRout=='+', CRout=1; 
        else disp('improper input case'), return 
        end 
 else disp('improper input case'), return 
 end 
 %------------------------------------------------ 
 phsc=zeros(5,1);,  
 if indx_p~=0 
            phsc(indx_p)=1; % PHaSiC input 
 end 
  
    n_psp=n_pspm(n_b); 
    inpt=[]; % required, otherwise for the case: 
    % '# of training data set(i)'<'no of items in training block(nib)' ; 
    % inpt(:,i) writes on the previous inpt value 
    hpn_out=[];, ccn_out=[]; 
    for i=1:n_psp % Number of training data sets. 
    % Since static context should slowly change. 
        % Training Input Data. Same for both of the networks 
        pinv=100; 
        % beta probability distribution function.  
        % Flat pdf(probability distrb. func.) with coefficients (1,1) 
        rnd=random('beta',1,1)*pinv; 
        % with probability of 1/pinv, take inverse of one of the values of  
        % static context. 
        if round(rnd)==1 
            disp('inverse') 
            %----- 
 sans1=0; % generates integers between 1-10 to choose  
            % which one of the static context values will be changed 
            while sans1<1 | sans1>10 
                sans1=round(random('beta',1,1)*11); 
 end 
            %----- 
            if cntx_s(sans1)==0 %take inverse 
            cntx_s(sans1)=1; 
            else 
            cntx_s(sans1)=0; 
            end 
        else 
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        end 
        %input for phasic, unique context X, static context 
        inpt(:,i)=[phsc; cntx_u; cntx_s]; 
        % Training Output Data. 
        % Hippocampal Network OUTput. CRout: Conditioned Response OUTput 
        hpn_out(:,i)=[inpt(:,i); CRout]; 
        % Cortical/Cerebellar Network OUTput. 
        ccn_out(:,i)=[CRout]; 
    end 
    inpt=[iminpt,inpt]; 
    hpn_out=[imhpn_out,hpn_out]; 
    ccn_out=[imccn_out,ccn_out]; 
end 
inpt_cntx=inpt(:,1); hpn_out_cntx=hpn_out(:,1); ccn_out_cntx=ccn_out(:,1); 
% Training Data 
% inpt, hpn_out, ccn_out 
% inpt_cntx, hpn_out_cntx, ccn_out_cntx 
% Save training data 
fln=['trn_data',trn_set]; 
save(fln,'trn_block','n_pspm','inpt','hpn_out','ccn_out', ... 
    'inpt_cntx','hpn_out_cntx','ccn_out_cntx') 
clear 
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APPENDIX B 

CORTICO-HIPPOCAMPAL INTACT MODEL CODE 
 
% Cort.-Cereb. and Hippocampal Networks (Intact Model). Acquisition Case. 
%  
% This code simulates intact model for acquisition case. 
%  
% After network initialization two phases exist in this code: 
% 1) Adapt network to context 
% 2) Adapt network for acquisition 
%  
% Algorithm 
%  
% - Initialize Network (# of layers, neurons, weights, biases) 
%  
% - Adapt Network 
%  
%  Minus Phase: 
%  1) Clamp only external input to the input units 
%  2) Settle the network with the settling routine  
%  
%  Plus Phase: 
%  3) Clamp one training vector (external input and target) to the visible  
%       units of the network 
%  4) Settle the network with the settling routine  
%     (only changes activations of units, not the weights), therefore get  
%       the activations 
%  
%  Weight Change: 
%  5) Calculate and apply appropriate weight changes 
%     perform "Soft Weight Bounding" 
%     calculate individual mean square errors 
%  6) Repeat steps 1 through 5 for all training vectors (1 epoch) 
%     calculate overall mean square errors for one epoch 
%  7) Repeat steps 1 through 6 until the mean square error is below a  
%       threshold 
%  
%   Settling Routine(synchronous updating): 
%   1) Force the outputs of all visible units to the specified input vector 
%   2) Assign "0" output value to all unknown units 
%   3) For all units: compute raw_netin = sum sending_act * weight  
%      (Add both top-down input dot products and bottom-up input dot products) 
%   4) For all units compute: 
%  
%  netin = netin + dt * (raw_netin - netin) 
%  act = sigmoid(netin) 
%  
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%   5) Repeat steps 3 to 4 for several processing cycles, until activation  
%       changes go below a threshold 
 
% Ilim Cagiran, 2006 
% Revision: 17_c 
 
clear 
tic 
 
load trn_data02.mat 
 
nmax_loop_settle= 100;  % Max Number of Loops for hpn Settling 
z_ninL2_hpn= 0.9; 
%----------------------- 
 
% CREATE NETWORK DATA 
%------------------------------------------------ 
Si= 18; % Size of Input vector 
S1_hpn= 10; % Size of Hidden Layer of HPN 
S2_hpn= 19; % Size of Output Layer of HPN 
S1_ccn= 60; % Size of Hidden Layer of CCN 
S2_ccn= 1; % Size of Output Layer of CCN 
 
% ---------------------- 
% Due to "soft weight bounding" weight range is (0,1). 
% Therefore weight values are centered on the middle value of 0.5 instead of 0 
 
% Intialize HPN 
U_hpn= 0.1; 
% All weights of the net initialized according to random distribution U 
% WEIGHTS: The indices in "W_J_K" designates the weight matrix from  
% the J'th layer to the K'th layer in this code. 
% Input layer is the 1st layer. Hidden layer is the 2nd layer. 
% Output layer is the 3rd layer. 
% rands: returns an S-by-R weight matrix of random values between -1 and 1 
W_hpn_1_2= U_hpn*rands(S1_hpn,Si)+0.5; 
W_hpn_2_1= W_hpn_1_2'; % take transpose of weight matrix. 
% Derivation of the algorithm requires symmetric weights. 
W_hpn_2_3= U_hpn*rands(S2_hpn,S1_hpn)+0.5; 
W_hpn_3_2= W_hpn_2_3'; 
% Biases 
b_hpn_2= zeros(S1_hpn,1); % Leabra default 0 with 0 variance 
b_hpn_3= zeros(S2_hpn,1); 
 
% Intialize CCN 
U_ccn_lo= 0.3; %U LOwer. Due to SWB, max value of U can only be 0.5  
U_ccn_up= 0.1; %U UPper. 
% "W_ccn_2e_3i" designates the weight matrix from the 2nd Excitatory layer  
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% to the 3th Inhibitory layer in this code. 
% W_ccn_1e_2e= U_ccn_lo*rands(S1_ccn,Si)+0.5; 
% W_ccn_1e_2i= U_ccn_lo*rands(S1_ccn_i,Si)+0.5; 
W_ccn_2e_3e= U_ccn_up*rands(S2_ccn,S1_ccn)+0.5; 
W_ccn_3e_2e= W_ccn_2e_3e'; 
 
% Biases 
b_ccn_2= zeros(S1_ccn,1); 
b_ccn_3= zeros(S2_ccn,1); 
 
% dt. temporal integration constant for Excitatory neurons. Step Constant 
sc_e= 0.3; 
% dt. temporal integration constant for Inhibitory neurons 
sc_i= 0.4; 
% overall weight scale for FeedForward inhibition. multiplied with weights 
% for different layer level excitatory to inhibitory connections. 
scale_ff= 1 ; 
% overall weight scale for FeedBack inhibition. multiplied with weights 
% for same layer level excitatory to inhibitory connections. 
scale_fb= 1 ; 
scale_ff_up= 1 ; 
scale_fb_up= 1 ; 
w_mult_3i_3e= 1 ; % weight multiplier for 3i to 3e connection. 
w_mult_2e_3e= 1 ; 
w_mult_2e_3i= 1 ; 
% w_mult_1e_2e= 1/8 ; 
% w_mult_1e_2i= 1/8 ; 
w_mult_2e_2i= 1 ; 
lr_mult_ccn= 1; % Learning Rate Multiplier ccn 
% ---------------------- 
 
% Intialize HPN CCN connection 
Uvhc= 1; 
Vhc= Uvhc*rands(S1_ccn, S1_hpn)+0.0; % hpn-ccn connection weights. 
w_mult_h2e_c2e= 1 ; 
% ---------------------- 
 
% ADAPT NETWORK TO CONTEXT 
%------------------------------------------------ 
n_ep= 300; 
mse_log=zeros(n_ep,5); % to improve program performance 
disp('Please wait') 
q= 0.25; % 0 < q < 1 where q = 0.25 may be default 
% weight change threshold. default is 0.1 in GeneRec 
dwt_thresh_ccn= 1.e-3; dwt_thresh_hpn= 1.e-2; 
[r,c]=size(inpt_cntx); 
ki2=50; % after how many epochs results will be showed 
ki2=ceil(n_ep/(ki2*30))*ki2; 
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for ko2=1:n_ep 
    mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0; 
    % mean values are required for bar graphs 
    m_o_aL3_ccn_m = 0;  m_o_aL2_ccn_m = 0; 
    for cnt2=1:c 
        aL1_hpn= inpt_cntx(:,cnt2); y_hpn= hpn_out_cntx(:,cnt2); 
        aL1_ccn= inpt_cntx(:,cnt2); y_ccn= ccn_out_cntx(:,cnt2); 
        if y_hpn(end)==1    % conditional response target is 1 
            lr_hpn= 0.25; % Learning Rate for hpn 
            lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer 
            lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer 
        elseif y_hpn(end)==0 
            lr_hpn= 0.025; 
            lr_ccn_lo= lr_mult_ccn*0.01; 
            lr_ccn_up= lr_mult_ccn*0.05; 
        else 
            error('Conditional Response Target should be either 0 or 1') 
        end 
         
        % MINUS PHASE 
        %----------------------- 
         
        % HPN OUTPUT CALCULATION / STARTS - MINUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_hpn= zeros(S1_hpn,1); 
        aL3_hpn= zeros(S2_hpn,1);  
         
        ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values 
        ninL3_hpn= zeros(S2_hpn,1); 
        sc= 0.1; % Step Constant, dt 
         
        warning off MATLAB:divideByZero 
        delta_aL2_hpn=1; delta_aL3_hpn=1; 
        n_loop_hpn_m= 0; % Number of Loops for hpn settling in Minus phase 
        for cnt5=1:nmax_loop_settle 
            % _pr means Previous. used to calculate change 
            aL2_hpn_pr= aL2_hpn; 
            aL3_hpn_pr= aL3_hpn; 
             
            % Add both bottom-up & top-down input dot products 
            % Layer2 
            nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2; 
            % Layer3. output units are not self connected. No top-down input 
            nL3_hpn= W_hpn_2_3*aL2_hpn + b_hpn_3; 
            
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn); 
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            ninL3_hpn= ninL3_hpn + sc*(nL3_hpn - ninL3_hpn); 
             
            % act = sigmoid(netin+inhibition) 
            aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid 
            aL3_hpn= 1 ./ (1 + exp(-ninL3_hpn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr)); 
            delta_aL3_hpn= mean(abs((aL3_hpn-aL3_hpn_pr)./aL3_hpn_pr)); 
             
            if (delta_aL2_hpn < dwt_thresh_hpn) & ... 
                    (delta_aL3_hpn < dwt_thresh_hpn), break, end 
        end 
        aL2_hpn_m= aL2_hpn; % _m, Minus 
        aL3_hpn_m= aL3_hpn; 
 
        % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= zeros(S2_ccn,1); 
         
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
        ninL3_ccn= zeros(S2_ccn,1); 
         
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1; delta_aL3_ccn=1;  
        while (delta_aL2_ccn > dwt_thresh_ccn) | ... 
                (delta_aL3_ccn > dwt_thresh_ccn) 
            % _pr means Previous. used to calculate change. 
            aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn; 
             
            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_m)    ... 
                + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
            % Layer3e. output units are not self connected. No top-down input 
            nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3; 
 
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
            ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
            aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
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            delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr)); 
             
        end 
        aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus 
        if y_hpn(end)==1    % conditional response target is 1 
            cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn 
        end 
           
        % PLUS PHASE 
        %----------------------- 
         
        % HPN OUTPUT CALCULATION / STARTS - PLUS PHASE 
        %--------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_hpn= zeros(S1_hpn,1); 
        aL3_hpn= y_hpn; 
         
        ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values 
        sc= 0.1; % Step Constant, dt 
         
        warning off MATLAB:divideByZero 
        delta_aL2_hpn=1; 
        n_loop_hpn_p= 0; % Number of Loops for hpn settling in Minus phase 
        for cnt5=1:nmax_loop_settle 
            % _pr means Previous. used to calculate change 
            aL2_hpn_pr= aL2_hpn; 
                         
            % Add both bottom-up & top-down input dot products 
            % Layer2 
            nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2; 
               
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn); 
 
            % act = sigmoid(netin+inhibition) 
            aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid 
                         
            % average of activations change ratio 
            delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr)); 
             
            if (delta_aL2_hpn < dwt_thresh_hpn), break, end 
        end 
        aL2_hpn_p= aL2_hpn; aL3_hpn_p= y_hpn; % _p, Plus 
         
        % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
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        aL3_ccn= y_ccn; 
         
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
        
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1;  
        while delta_aL2_ccn > dwt_thresh_ccn 
            % _pr means Previous. used to calculate change 
            aL2_ccn_pr= aL2_ccn; 
             
            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_p)    ... 
                + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
    
            % netin = netin + dt * (raw_netin - netin) 
            % act = sigmoid(netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
             
        end 
        aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus 
         
         
        % CALCULATE WEIGHT CHANGES 
        %------------------------- 
        % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus) 
        % sending unit with activation x_J 
        % receiving unit with activation y_K 
                 
        % in "minus phase" aL1 is clamped 
        % in "plus phase" aL1 and aL3 are both clamped 
         
        % HPN WEIGHT UPDATE 
        %---------------------------------------- 
        W_ch_hpn_1_2=zeros(S1_hpn,Si); 
        for cnt3=1:Si 
            W_ch_hpn_1_2(:,cnt3)= lr_hpn* ( aL1_hpn(cnt3)*aL2_hpn_p ... 
                - aL1_hpn(cnt3)*aL2_hpn_m ); 
        end 
        % weight update with SWB W change 
        W_hpn_1_2= W_hpn_1_2 + W_ch_hpn_1_2; 
        % -------------- 
        W_ch_hpn_2_1=zeros(Si,S1_hpn); 
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        for cnt3=1:S1_hpn 
            W_ch_hpn_2_1(:,cnt3)= lr_hpn* ( aL2_hpn_p(cnt3)*aL1_hpn ... 
                - aL2_hpn_m(cnt3)*aL1_hpn ); 
        end 
        % weight update with SWB W change 
        W_hpn_2_1= W_hpn_2_1 + W_ch_hpn_2_1; 
        % -------------- 
        W_ch_hpn_2_3=zeros(S2_hpn,S1_hpn); 
        for cnt3=1:S1_hpn 
            W_ch_hpn_2_3(:,cnt3)= lr_hpn* ( aL2_hpn_p(cnt3)*aL3_hpn_p ... 
                - aL2_hpn_m(cnt3)*aL3_hpn_m ); 
        end 
        % weight update with SWB W change 
        W_hpn_2_3= W_hpn_2_3 + W_ch_hpn_2_3; 
        % -------------- 
        W_ch_hpn_3_2=zeros(S1_hpn,S2_hpn); 
        for cnt3=1:S2_hpn 
            W_ch_hpn_3_2(:,cnt3)= lr_hpn* ( aL3_hpn_p(cnt3)*aL2_hpn_p ... 
                - aL3_hpn_m(cnt3)*aL2_hpn_m ); 
        end 
        % weight update with SWB W change 
        W_hpn_3_2= W_hpn_3_2 + W_ch_hpn_3_2; 
        % -------------- 
        % HPN BIAS UPDATE 
        b_hpn_2= b_hpn_2 + lr_hpn*(aL2_hpn_p-aL2_hpn_m); 
        b_hpn_3= b_hpn_3 + lr_hpn*(aL3_hpn_p-aL3_hpn_m); 
                 
        % CCN WEIGHT UPDATE 
        %---------------------------------------- 
        W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn); 
        for cnt3=1:S1_ccn 
            W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*( aL2_ccn_p(cnt3)*aL3_ccn_p ... 
                - aL2_ccn_m(cnt3)*aL3_ccn_m ); 
        end 
        W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e; 
        % -------------- 
        W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn); 
        for cnt3=1:S2_ccn 
            W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*( aL3_ccn_p(cnt3)*aL2_ccn_p ... 
                - aL3_ccn_m(cnt3)*aL2_ccn_m ); 
        end 
        W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e; 
        % -------------- 
        % CCN BIAS UPDATE 
        b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m); 
        b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m); 
         
         



 53 

        % CALCULATE MS ERRORS & DATA REQUIRED 
        %---------------------------------------- 
        % HPN ERRORS 
        % mean square error individual 
        mse_i_hpn= sum( ( y_hpn - aL3_hpn_m ).^2 )/S2_hpn; 
        % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5 
        mse_thr_i_hpn= sum( ( y_hpn - round(aL3_hpn_m) ).^2 )/S2_hpn; 
        %----------------------- 
        mse_o_hpn = mse_o_hpn + mse_i_hpn; % mse overall for one epoch 
        % mse_thr overall for one epoch 
        mse_thr_o_hpn = mse_thr_o_hpn + mse_thr_i_hpn; 
         
        % CCN ERRORS 
        % mean square error individual 
        mse_i_ccn= sum( ( y_ccn - aL3_ccn_m ).^2 )/S2_ccn; 
        % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5 
        mse_thr_i_ccn= sum( ( y_ccn - round(aL3_ccn_m) ).^2 )/S2_ccn; 
        %----------------------- 
        mse_o_ccn = mse_o_ccn + mse_i_ccn; % mse overall for one epoch 
        % mse_thr overall for one epoch 
        mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn; 
        %----------------------- 
        % mean values are required for bar graphs 
        m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m; 
        m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m; 
                
    end 
     
    % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn,  
    % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn 
    mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c; 
    mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c; 
    mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn; 
    mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn; 
    % mean values are required for bar graphs 
    m_o_aL3_ccn_m = m_o_aL3_ccn_m/c;  m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;  
     
    if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep 
         
        dtxt3=num2str(mse_o_hpn); 
        dtxt3b=num2str(mse_thr_o_hpn); 
        dtxt4=num2str(ko2); 
        %--------------- 
        dtxt5=num2str(mse_o_ccn); 
        dtxt5b=num2str(mse_thr_o_ccn); 
        dtxtg7=['mse_ccn=', dtxt5,'  &  mse_thr_ccn=', dtxt5b,... 
                '  at epoch ', dtxt4]; 
        disp(dtxtg7) 
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    end 
 
    subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ... 
        TITLE('Output Layer Activity ') 
    subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ... 
        TITLE('Hidden Layer Activity ') 
     
    M(ko2) = getframe(gcf); 
end 
toc 
 
% Plot Performance of Network 
figure 
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',... 
         mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-') 
TITLE('PERFORMANCE PLOT, GENEREC, SWB') 
XLABEL('EPOCHS') 
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw') 
 
% ========================================================= 
figure 
 
% ADAPT NETWORK 
%------------------------------------------------ 
n_ep= 500; 
mse_log=zeros(n_ep,5); % to improve program performance 
disp('Please wait') 
q= 0.25; % 0 < q < 1 where q = 0.25 may be default 
% weight change threshold. default is 0.1 in GeneRec 
dwt_thresh_ccn= 1.e-3; dwt_thresh_hpn= 1.e-2; 
[r,c]=size(inpt); 
ki2=50; % after how many epochs results will be showed 
ki2=ceil(n_ep/(ki2*30))*ki2; 
for ko2=1:n_ep 
    mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0; 
    % mean values are required for bar graphs 
    m_o_aL3_ccn_m = 0;  m_o_aL2_ccn_m = 0; 
    for cnt2=1:c 
        aL1_hpn= inpt(:,cnt2); y_hpn= hpn_out(:,cnt2); 
        aL1_ccn= inpt(:,cnt2); y_ccn= ccn_out(:,cnt2); 
        if y_hpn(end)==1    % conditional response target is 1 
            lr_hpn= 0.25;   % Learning Rate for hpn 
            lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer 
            lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer 
        elseif y_hpn(end)==0 
            lr_hpn= 0.025; 
            lr_ccn_lo= lr_mult_ccn*0.01; 
            lr_ccn_up= lr_mult_ccn*0.05; 
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        else 
            error('Conditional Response Target should be either 0 or 1') 
        end 
         
        % MINUS PHASE 
        %----------------------- 
         
        % HPN OUTPUT CALCULATION / STARTS - MINUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_hpn= zeros(S1_hpn,1); 
        aL3_hpn= zeros(S2_hpn,1);  
         
        ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values 
        ninL3_hpn= zeros(S2_hpn,1); 
        sc= 0.1; % Step Constant, dt 
         
        warning off MATLAB:divideByZero 
        delta_aL2_hpn=1; delta_aL3_hpn=1; 
        n_loop_hpn_m= 0; % Number of Loops for hpn settling in Minus phase 
        for cnt5=1:nmax_loop_settle 
            % _pr means Previous. used to calculate change 
            aL2_hpn_pr= aL2_hpn; 
            aL3_hpn_pr= aL3_hpn; 
             
            % Add both bottom-up & top-down input dot products 
            % Layer2 
            nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2; 
            % Layer3. output units are not self connected. No top-down input 
            nL3_hpn= W_hpn_2_3*aL2_hpn + b_hpn_3; 
            
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn); 
            ninL3_hpn= ninL3_hpn + sc*(nL3_hpn - ninL3_hpn); 
             
            % act = sigmoid(netin+inhibition) 
            aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid 
            aL3_hpn= 1 ./ (1 + exp(-ninL3_hpn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr)); 
            delta_aL3_hpn= mean(abs((aL3_hpn-aL3_hpn_pr)./aL3_hpn_pr)); 
             
            if (delta_aL2_hpn < dwt_thresh_hpn) & ... 
                    (delta_aL3_hpn < dwt_thresh_hpn), break, end 
        end 
        aL2_hpn_m= aL2_hpn; % _m, Minus 
        aL3_hpn_m= aL3_hpn; 
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        % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= zeros(S2_ccn,1); 
         
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
        ninL3_ccn= zeros(S2_ccn,1); 
         
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1; delta_aL3_ccn=1;  
        while (delta_aL2_ccn > dwt_thresh_ccn) | ... 
                (delta_aL3_ccn > dwt_thresh_ccn) 
            % _pr means Previous. used to calculate change. 
            aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn; 
             
            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_m)    ... 
                + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
            % Layer3e. output units are not self connected. No top-down input 
            nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3; 
 
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
            ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
            aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
            delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr)); 
             
        end 
        aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus 
        if y_hpn(end)==1    % conditional response target is 1 
            cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn 
        end 
           
        % PLUS PHASE 
        %----------------------- 
         
        % HPN OUTPUT CALCULATION / STARTS - PLUS PHASE 
        %--------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_hpn= zeros(S1_hpn,1); 
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        aL3_hpn= y_hpn; 
         
        ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values 
        sc= 0.1; % Step Constant, dt 
         
        warning off MATLAB:divideByZero 
        delta_aL2_hpn=1; 
        n_loop_hpn_p= 0; % Number of Loops for hpn settling in Minus phase 
        for cnt5=1:nmax_loop_settle 
            % _pr means Previous. used to calculate change 
            aL2_hpn_pr= aL2_hpn; 
             
            % Add both bottom-up & top-down input dot products 
            % Layer2 
            nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2; 
               
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn); 
 
            % act = sigmoid(netin+inhibition) 
            aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr)); 
             
            if (delta_aL2_hpn < dwt_thresh_hpn), break, end 
        end 
        aL2_hpn_p= aL2_hpn; aL3_hpn_p= y_hpn; % _p, Plus 
         
        % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= y_ccn; 
         
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
        
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1;  
        while delta_aL2_ccn > dwt_thresh_ccn 
            % _pr means Previous. used to calculate change 
            aL2_ccn_pr= aL2_ccn; 
             
            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_p)    ... 
                + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
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            % netin = netin + dt * (raw_netin - netin) 
            % act = sigmoid(netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
             
        end 
        aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus 
         
         
        % CALCULATE WEIGHT CHANGES 
        %------------------------- 
        % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus) 
        % sending unit with activation x_J 
        % receiving unit with activation y_K 
                 
        % in "minus phase" aL1 is clamped 
        % in "plus phase" aL1 and aL3 are both clamped 
         
        % HPN WEIGHT UPDATE 
        %---------------------------------------- 
        W_ch_hpn_1_2=zeros(S1_hpn,Si); 
        for cnt3=1:Si 
            W_ch_hpn_1_2(:,cnt3)= lr_hpn* ( aL1_hpn(cnt3)*aL2_hpn_p ... 
                - aL1_hpn(cnt3)*aL2_hpn_m ); 
        end 
        % weight update with SWB W change 
        W_hpn_1_2= W_hpn_1_2 + W_ch_hpn_1_2; 
        % -------------- 
        W_ch_hpn_2_1=zeros(Si,S1_hpn); 
        for cnt3=1:S1_hpn 
            W_ch_hpn_2_1(:,cnt3)= lr_hpn* ( aL2_hpn_p(cnt3)*aL1_hpn ... 
                - aL2_hpn_m(cnt3)*aL1_hpn ); 
        end 
        % weight update with SWB W change 
        W_hpn_2_1= W_hpn_2_1 + W_ch_hpn_2_1; 
        % -------------- 
        W_ch_hpn_2_3=zeros(S2_hpn,S1_hpn); 
        for cnt3=1:S1_hpn 
            W_ch_hpn_2_3(:,cnt3)= lr_hpn* ( aL2_hpn_p(cnt3)*aL3_hpn_p ... 
                - aL2_hpn_m(cnt3)*aL3_hpn_m ); 
        end 
        % weight update with SWB W change 
        W_hpn_2_3= W_hpn_2_3 + W_ch_hpn_2_3; 
        % -------------- 



 59 

        W_ch_hpn_3_2=zeros(S1_hpn,S2_hpn); 
        for cnt3=1:S2_hpn 
            W_ch_hpn_3_2(:,cnt3)= lr_hpn* ( aL3_hpn_p(cnt3)*aL2_hpn_p ... 
                - aL3_hpn_m(cnt3)*aL2_hpn_m ); 
        end 
        % weight update with SWB W change 
        W_hpn_3_2= W_hpn_3_2 + W_ch_hpn_3_2; 
        % -------------- 
        % HPN BIAS UPDATE 
        b_hpn_2= b_hpn_2 + lr_hpn*(aL2_hpn_p-aL2_hpn_m); 
        b_hpn_3= b_hpn_3 + lr_hpn*(aL3_hpn_p-aL3_hpn_m); 
                 
        % CCN WEIGHT UPDATE 
        %---------------------------------------- 
        W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn); 
        for cnt3=1:S1_ccn 
            W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*( aL2_ccn_p(cnt3)*aL3_ccn_p ... 
                - aL2_ccn_m(cnt3)*aL3_ccn_m ); 
        end 
        W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e ; 
        % -------------- 
        W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn); 
        for cnt3=1:S2_ccn 
            W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*( aL3_ccn_p(cnt3)*aL2_ccn_p ... 
                - aL3_ccn_m(cnt3)*aL2_ccn_m ); 
        end 
        W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e ; 
        % -------------- 
        % CCN BIAS UPDATE 
        b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m); 
        b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m); 
         
         
        % CALCULATE MS ERRORS & DATA REQUIRED 
        %---------------------------------------- 
        % HPN ERRORS 
        % mean square error individual 
        mse_i_hpn= sum( ( y_hpn - aL3_hpn_m ).^2 )/S2_hpn; 
        % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5 
        mse_thr_i_hpn= sum( ( y_hpn - round(aL3_hpn_m) ).^2 )/S2_hpn; 
        %----------------------- 
        mse_o_hpn = mse_o_hpn + mse_i_hpn; % mse overall for one epoch 
        % mse_thr overall for one epoch 
        mse_thr_o_hpn = mse_thr_o_hpn + mse_thr_i_hpn; 
         
        % CCN ERRORS 
        % mean square error individual 
        mse_i_ccn= sum( ( y_ccn - aL3_ccn_m ).^2 )/S2_ccn; 
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        % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5 
        mse_thr_i_ccn= sum( ( y_ccn - round(aL3_ccn_m) ).^2 )/S2_ccn; 
        %----------------------- 
        mse_o_ccn = mse_o_ccn + mse_i_ccn; % mse overall for one epoch 
        % mse_thr overall for one epoch 
        mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn; 
         
        %----------------------- 
        % mean values are required for bar graphs 
        m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m; 
        m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m; 
                
    end 
     
    % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn,  
    % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn 
    mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c;  
    mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c; 
    mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn; 
    mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn; 
    % mean values are required for bar graphs 
    m_o_aL3_ccn_m = m_o_aL3_ccn_m/c;  m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;  
    % mean ccn output log: 1st column is # of epoch, 2nd is cr_ccn,  
    % 3rd is m_o_aL3_ccn_m, 
    % 4th is difference(should be positive): cr_ccn - m_o_ccn_out 
    m_o_ccn_out(ko2,1)=ko2; m_o_ccn_out(ko2,2)=cr_ccn(ko2); 
    m_o_ccn_out(ko2,3)=m_o_aL3_ccn_m;  
    m_o_ccn_out(ko2,4)=cr_ccn(ko2)-m_o_aL3_ccn_m; 
      
    if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep 
         
        dtxt3=num2str(mse_o_hpn); 
        dtxt3b=num2str(mse_thr_o_hpn); 
        dtxt4=num2str(ko2); 
        %--------------- 
        dtxt5=num2str(mse_o_ccn); 
        dtxt5b=num2str(mse_thr_o_ccn); 
        dtxtg7=['mse_ccn=', dtxt5,'  &  mse_thr_ccn=', dtxt5b,... 
                '  at epoch ', dtxt4]; 
        disp(dtxtg7) 
    end 
    subplot(2,3,1), bar(cr_ccn(ko2)), axis([0,2,0,1]), ... 
        TITLE('CR CCN Activity ') 
    subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ... 
        TITLE('Output Layer Activity ') 
    subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ... 
        TITLE('Hidden Layer Activity ') 
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    M(ko2) = getframe(gcf); 
end 
toc 
 
% Plot Performance of Network 
figure 
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',... 
         mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-') 
TITLE('PERFORMANCE PLOT, GENEREC, SWB') 
XLABEL('EPOCHS') 
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw') 
 
disp('mse_log & ccn_out log will be saved as gr_ccnhpn_????.mat ') 
reply = input('Enter the last part of the file name (eg. trial2):  ','s'); 
fln=['gr_ccnhpn_', reply]; 
save(fln, 'mse_log', 'm_o_ccn_out') 
disp('Ready') 
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APPENDIX C 

CORTICO-HIPPOCAMPAL LESION MODEL CODE 
 
% Cortico-Cerebellar Network (Lesion Model). Acquisition Case.  
%  
% This code simulates lesion model for acquisition case. 
%  
% After network initialization two phases exist in this code: 
% 1) Adapt network to context 
% 2) Adapt network for acquisition 
%  
% Algorithm 
%  
% - Initialize Network (# of layers, neurons, weights, biases) 
%  
% - Adapt Network 
%  
%  Minus Phase: 
%  1) Clamp only external input to the input units 
%  2) Settle the network with the settling routine  
%  
%  Plus Phase: 
%  3) Clamp one training vector (external input and target) to the visible  
%       units of the network 
%  4) Settle the network with the settling routine  
%     (only changes activations of units, not the weights), therefore get  
%       the activations 
%  
%  Weight Change: 
%  5) Calculate and apply appropriate weight changes 
%     perform "Soft Weight Bounding" 
%     calculate individual mean square errors 
%  6) Repeat steps 1 through 5 for all training vectors (1 epoch) 
%     calculate overall mean square errors for one epoch 
%  7) Repeat steps 1 through 6 until the mean square error is below a  
%       threshold 
%  
%   Settling Routine(synchronous updating): 
%   1) Force the outputs of all visible units to the specified input vector 
%   2) Assign "0" output value to all unknown units 
%   3) For all units: compute raw_netin = sum sending_act * weight  
%      (Add both top-down input dot products and bottom-up input dot products) 
%   4) For all units compute: 
%  
%  netin = netin + dt * (raw_netin - netin) 
%  act = sigmoid(netin) 
%  
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%   5) Repeat steps 3 to 4 for several processing cycles, until activation  
%       changes go below a threshold 
 
% Ilim Cagiran, 2006 
% Revision: 08_i 
 
clear 
tic 
 
load trn_data02.mat 
% CREATE NETWORK DATA 
%------------------------------------------------ 
Si= 18; % Size of Input vector 
% S1_hpn= 10; % Size of Hidden Layer of HPN 
% S2_hpn= 19; % Size of Output Layer of HPN 
S1_ccn= 60; % Size of Hidden Layer of CCN 
S2_ccn= 1; % Size of Output Layer of CCN 
 
% ---------------------- 
% Due to "soft weight bounding" weight range is (0,1). Therefore weight 
% values are centered on the middle value of 0.5 instead of 0. 
 
% Intialize CCN 
U_ccn_lo= 0.3; %U LOwer. Due to SWB, max value of U can only be 0.5  
U_ccn_up= 0.1; %U UPper. 
% WEIGHTS: The indices in "W_J_K" designates the weight matrix from the J'th  
% layer to the K'th layer in this code. 
% Input layer is the 1st layer. Hidden layer is the 2nd layer.  
% Output layer is the 3rd layer. 
% "W_ccn_2e_3i" designates the weight matrix from the 2nd Excitatory layer to 
% the 3th Inhibitory layer in this code. 
W_ccn_1e_2e= U_ccn_lo*rands(S1_ccn,Si)+0.5; % rands: returns an S-by-R weight 
% matrix of random values between -1 and 1 
 
W_ccn_2e_3e= U_ccn_up*rands(S2_ccn,S1_ccn)+0.5; 
W_ccn_3e_2e= W_ccn_2e_3e'; 
 
% Biases 
b_ccn_2= zeros(S1_ccn,1); 
b_ccn_3= zeros(S2_ccn,1); 
 
sc_e= 0.3; % dt. temporal integration constant for Excitatory neurons. 
sc_i= 0.4;  % dt. temporal integration constant for Inhibitory neurons 
scale_ff= 1 ; % overall weight scale for FeedForward inhibition. multiplied  
% with weights for different layer level excitatory to inhibitory connections 
scale_fb= 1   ; % overall weight scale for FeedBack inhibition. multiplied 
% with weights for same layer level excitatory to inhibitory connections. 
scale_ff_up= 1 ; 
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scale_fb_up= 1 ; 
w_mult_2e_3e= 1 ; 
w_mult_1e_2e= 1 ; 
 
lr_mult_ccn= 1; 
% ---------------------- 
scrsz = get(0,'ScreenSize'); 
figure('Position',[scrsz(3)/10 scrsz(4)/10 scrsz(3)/1.33 scrsz(4)/1.33]) 
 
% ADAPT NETWORK TO CONTEXT 
%------------------------------------------------ 
n_ep= 300; 
mse_log=zeros(n_ep,5); % to improve program performance 
disp('Please wait') 
% 
dwt_thresh_ccn= 1.e-3; % weight change threshold. default is 0.1 
[r,c]=size(inpt_cntx); 
ki2=50; % after how many epochs results will be showed 
ki2=ceil(n_ep/(ki2*30))*ki2; 
for ko2=1:n_ep 
    mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0; 
    m_o_aL3_ccn_m = 0;  m_o_aL2_ccn_m = 0;  
 for cnt2=1:c 
        aL1_hpn= inpt_cntx(:,cnt2); y_hpn= hpn_out_cntx(:,cnt2); 
        aL1_ccn= inpt_cntx(:,cnt2); y_ccn= ccn_out_cntx(:,cnt2); 
        if y_hpn(end)==1    % conditional response target is 1 
            lr_hpn= 0.25; % Learning Rate hpn 
            lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer 
            lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer 
        elseif y_hpn(end)==0 
            lr_hpn= 0.025; 
            lr_ccn_lo= lr_mult_ccn*0.01; 
            lr_ccn_up= lr_mult_ccn*0.05; 
        else 
            error('Conditional Response Target should be either 0 or 1') 
        end 
         
        % MINUS PHASE 
        %----------------------- 
         
        % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= zeros(S2_ccn,1); 
         
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
        ninL3_ccn= zeros(S2_ccn,1); 
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        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1; delta_aL3_ccn=1;  
        while (delta_aL2_ccn > dwt_thresh_ccn) | ... 
                (delta_aL3_ccn > dwt_thresh_ccn) 
            aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn; % _pr means Previous.  
            % used to calculate change. 
             
            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ... 
                W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
            nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3; % Layer3e 
            % output units are not self connected. No top-down input. 
             
            % netin = netin + dt * (raw_netin - netin) 
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
            ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
            aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
            delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr)); 
             
        end 
        aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus 
        if y_hpn(end)==1    % conditional response target is 1 
            cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn 
        end 
         
        % PLUS PHASE 
        %----------------- 
         
        % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= y_ccn; 
         
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
         
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1;  
        while delta_aL2_ccn > dwt_thresh_ccn 
            % _pr means Previous. used to calculate change. 
            aL2_ccn_pr= aL2_ccn; 
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            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ... 
                W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
             
            % netin = netin + dt * (raw_netin - netin) 
 % act = sigmoid(netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
             
        end 
        aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus 
         
         
        % CALCULATE WEIGHT CHANGES 
        %------------------------- 
        % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus) 
        % sending unit with activation x_J, receiving unit with activation y_K 
                         
        % in "minus phase" aL1 is clamped, in "plus phase" aL1 and aL3 are  
        % both clamped 
          
        W_ch_ccn_1e_2e=zeros(S1_ccn,Si); 
        for cnt3=1:Si 
            W_ch_ccn_1e_2e(:,cnt3)= lr_ccn_lo*( aL1_ccn(cnt3)*aL2_ccn_p ... 
                - aL1_ccn(cnt3)*aL2_ccn_m ); 
        end 
        W_ccn_1e_2e= W_ccn_1e_2e + W_ch_ccn_1e_2e; % weight update 
        % -------------- 
        W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn); 
        for cnt3=1:S1_ccn 
            W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*( aL2_ccn_p(cnt3)*aL3_ccn_p ... 
                - aL2_ccn_m(cnt3)*aL3_ccn_m ); 
        end 
        W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e; % weight update 
        % -------------- 
        W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn); 
        for cnt3=1:S2_ccn 
            W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*( aL3_ccn_p(cnt3)*aL2_ccn_p ... 
                - aL3_ccn_m(cnt3)*aL2_ccn_m ); 
        end 
        W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e; % weight update 
        % -------------- 
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        % CCN BIAS UPDATE 
        b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m); 
        b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m); 
         
        % mean square error individual 
        mse_i_ccn= sum( ( y_ccn - aL3_ccn_m ).^2 )/S2_ccn;  
        % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5 
        mse_thr_i_ccn= sum( ( y_ccn - round(aL3_ccn_m) ).^2 )/S2_ccn; 
        %----------------------- 
        mse_o_ccn = mse_o_ccn + mse_i_ccn; % mse overall for one epoch 
        % mse_thr overall for one epoch 
        mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn;  
        %----------------------- 
        % mean values are required for bar graphs 
        m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m;  
         
        m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m; 
         
    end 
     
    % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn, 
    % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn 
    mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c; 
    mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c; 
    mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn; 
    mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn; 
    % mean values are required for bar graphs 
    m_o_aL3_ccn_m = m_o_aL3_ccn_m/c;  m_o_aL2_ccn_m = m_o_aL2_ccn_m/c; 
     
    if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep 
         
        dtxt3=num2str(mse_o_hpn); 
        dtxt3b=num2str(mse_thr_o_hpn); 
        dtxt4=num2str(ko2); 
        %--------------- 
        dtxt5=num2str(mse_o_ccn); 
        dtxt5b=num2str(mse_thr_o_ccn); 
         
        dtxtg7=['mse_ccn=', dtxt5,'  &  mse_thr_ccn=', dtxt5b,... 
                '  at epoch ', dtxt4]; 
         
        disp(dtxtg7) 
    end 
    subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ... 
        TITLE('Output Layer Activity ') 
    subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ... 
        TITLE('Hidden Layer Activity ') 
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    M(ko2) = getframe(gcf); 
end 
toc 
 
% figure, movie(M) 
 
% Plot Performance of Network 
figure 
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',... 
         mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-') 
TITLE('PERFORMANCE PLOT, GENEREC, SWB') 
XLABEL('EPOCHS') 
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw') 
 
figure('Position',[scrsz(3)/10 scrsz(4)/10 scrsz(3)/1.33 scrsz(4)/1.33]) 
 
% ADAPT NETWORK 
%------------------------------------------------ 
n_ep= 300; 
mse_log=zeros(n_ep,5); % to improve program performance 
disp('Please wait') 
% 
dwt_thresh_ccn= 1.e-3; % weight change threshold. default is 0.1 
[r,c]=size(inpt); 
ki2=50; % after how many epochs results will be showed 
ki2=ceil(n_ep/(ki2*30))*ki2; 
for ko2=1:n_ep 
    mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0; 
    m_o_aL3_ccn_m = 0;  m_o_aL2_ccn_m = 0;  
 for cnt2=1:c 
        aL1_hpn= inpt(:,cnt2); y_hpn= hpn_out(:,cnt2); 
        aL1_ccn= inpt(:,cnt2); y_ccn= ccn_out(:,cnt2); 
        if y_hpn(end)==1    % conditional response target is 1 
            lr_hpn= 0.25;   % Learning Rate hpn 
            lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer 
            lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer 
        elseif y_hpn(end)==0 
            lr_hpn= 0.025; 
            lr_ccn_lo= lr_mult_ccn*0.01; 
            lr_ccn_up= lr_mult_ccn*0.05; 
        else 
            error('Conditional Response Target should be either 0 or 1') 
        end 
         
        % MINUS PHASE 
        %----------------------- 
         
        % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE 



 69 

        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= zeros(S2_ccn,1); 
        
        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
        ninL3_ccn= zeros(S2_ccn,1); 
                 
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1; delta_aL3_ccn=1;  
        while (delta_aL2_ccn > dwt_thresh_ccn) | ... 
                (delta_aL3_ccn > dwt_thresh_ccn) 
            aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn; % _pr means Previous. 
            % used to calculate change. 
             
            % Add both bottom-up & top-down input dot products.  
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ... 
                W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
            nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3; % Layer3e 
            % output units are not self connected. No top-down input. 
                     
            % netin = netin + dt * (raw_netin - netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
            ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
            aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
            delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr)); 
             
        end 
        aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus 
        if y_hpn(end)==1    % conditional response target is 1 
            cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn 
        end 
         
        % PLUS PHASE 
        %----------------- 
         
        % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE 
        %---------------------------------------------- 
        % Assign "0" output value to all unknown units 
        aL2_ccn= zeros(S1_ccn,1); 
        aL3_ccn= y_ccn; 
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        ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values 
                 
        warning off MATLAB:divideByZero 
        delta_aL2_ccn=1;  
        while delta_aL2_ccn > dwt_thresh_ccn 
            % _pr means Previous. used to calculate change. 
            aL2_ccn_pr= aL2_ccn; 
                        
            % Add both bottom-up & top-down input dot products. 
            % For inhibitory connections use "-". 
            nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ... 
                W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e 
                           
            % netin = netin + dt * (raw_netin - netin) 
            % act = sigmoid(netin) 
            ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn); 
             
            aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid 
             
            % average of activations change ratio 
            delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr)); 
             
        end 
        aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus 
         
         
        % CALCULATE WEIGHT CHANGES 
        %------------------------- 
        % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus) 
        % sending unit with activation x_J, receiving unit with activation y_K 
                         
        % in "minus phase" aL1 is clamped, in "plus phase" aL1 and aL3 
        % are both clamped 
          
        W_ch_ccn_1e_2e=zeros(S1_ccn,Si); 
        for cnt3=1:Si 
            W_ch_ccn_1e_2e(:,cnt3)= lr_ccn_lo*( aL1_ccn(cnt3)*aL2_ccn_p ... 
                - aL1_ccn(cnt3)*aL2_ccn_m ); 
        end 
        W_ccn_1e_2e= W_ccn_1e_2e + W_ch_ccn_1e_2e; % weight update 
        % -------------- 
         
        W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn); 
        for cnt3=1:S1_ccn 
            W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*( aL2_ccn_p(cnt3)*aL3_ccn_p ... 
                - aL2_ccn_m(cnt3)*aL3_ccn_m ); 
        end 
        W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e; % weight update 
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        % -------------- 
         
        W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn); 
        for cnt3=1:S2_ccn 
            W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*( aL3_ccn_p(cnt3)*aL2_ccn_p ... 
                - aL3_ccn_m(cnt3)*aL2_ccn_m ); 
        end 
        W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e; % weight update 
        % -------------- 
        b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m); 
        b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m); 
         
        % mean square error individual 
        mse_i_ccn= sum( ( y_ccn - aL3_ccn_m ).^2 )/S2_ccn; 
        % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5 
        mse_thr_i_ccn= sum( ( y_ccn - round(aL3_ccn_m) ).^2 )/S2_ccn; 
        %----------------------- 
        % mse overall for one epoch 
        mse_o_ccn = mse_o_ccn + mse_i_ccn; 
        % mse_thr overall for one epoch 
        mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn; 
        %----------------------- 
        % mean values are required for bar graphs 
        m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m; 
        m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m; 
         
    end 
     
    % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn, 
    % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn 
    mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c;  
    mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c; 
    mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn; 
    mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn; 
    % mean values are required for bar graphs 
    m_o_aL3_ccn_m = m_o_aL3_ccn_m/c;  m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;  
         
    if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep 
         
        dtxt3=num2str(mse_o_hpn); 
        dtxt3b=num2str(mse_thr_o_hpn); 
        dtxt4=num2str(ko2); 
        %--------------- 
        dtxt5=num2str(mse_o_ccn); 
        dtxt5b=num2str(mse_thr_o_ccn); 
        dtxtg7=['mse_ccn=', dtxt5,'  &  mse_thr_ccn=', dtxt5b, ... 
                '  at epoch ', dtxt4]; 
        disp(dtxtg7) 
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    end 
    subplot(2,3,1), bar(cr_ccn(ko2)), axis([0,2,0,1]), ... 
        TITLE('CR CCN Activity ') 
    subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ... 
        TITLE('Output Layer Activity ') 
    subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ... 
        TITLE('Hidden Layer Activity ') 
     
    M(ko2) = getframe(gcf); 
end 
toc 
 
% Plot Performance of Network 
figure 
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',... 
         mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-') 
TITLE('PERFORMANCE PLOT, GENEREC, SWB') 
XLABEL('EPOCHS') 
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw') 
 
disp('mse_log will be saved as gr_ccn_????.mat ') 
reply = input('Enter the last part of the file name (eg. trial2):  ','s'); 
fln=['gr_ccn_', reply]; 
save(fln, 'mse_log') 
disp('Ready') 
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