

GENEREC IMPLEMENTATION OF THE
CORTICO-HIPPOCAMPAL MODEL OF GLUCK AND MYERS

IN HIPPOCAMPAL REGION ATROPHY

by

İlim Çağıran

B.S. in Chemical Engineering, Boğaziçi University, 2002

Submitted to the Institute of Biomedical Engineering

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Biomedical Engineering

Boğaziçi University

February, 2006

 ii

GENEREC IMPLEMENTATION OF THE
CORTICO-HIPPOCAMPAL MODEL OF GLUCK AND MYERS

IN HIPPOCAMPAL REGION ATROPHY

by

İlim Çağıran

APPROVED BY:

Assoc. Prof. Dr. Halil Özcan Gülçür

(Thesis Supervisor)

………………………………….

Assoc. Prof. Dr. Hale Saybaşılı

(Thesis Co-Supervisor)

………………………………….

Assoc. Prof. Dr. Yasemin P. Kahya ………………………………….

Prof. Dr. Tamer Demiralp ………………………………….

Asst. Prof. Dr. Burak Güçlü ………………………………….

DATE OF APPROVAL: June 8, 2006

 iii

ACKNOWLEDGMENTS

I am indebted to many people who helped complete this work.

In particular, I am most grateful to my thesis supervisor Assoc. Prof. Dr. H. Özcan

Gülçür for his great effort to support my progression on this work in my hard times, his

help on every detail of this thesis and his invaluable encouragement.

Special thanks to my thesis co-supervisor Assoc. Prof. Dr. Hale Saybaşılı with

her support and tolerance in all phases of this work. This work could not be realized

without her advices, encouragements and her classes that provided the foundations of

this work.

I am grateful to Assoc. Prof. Dr. Randall C. O'Reilly, University of Colorado

Boulder, Institute of Cognitive Science Center for Neuroscience, for the counseling he

provided via internet during the implementation of the model. I would also like to thank

to Asst. Prof. Dr. Catherine E. Myers, Rutgers University-Newark, for her help on

providing selected papers which would not be available otherwise. I wish to thank Asst.

Prof. Dr. Burak Güçlü for his helpful suggestions on my thesis.

I would like to acknowledge my sincere thanks to my family for their support, not

just throughout this study but also at each stage of my life. I would wish my father was

still alive and could proud of this work, since he is the reason of being the one I am

now.

Last but not least, thanks to all of my close friends for their tolerance and

encouragement.

 iv

GENEREC IMPLEMENTATION OF THE
CORTICO-HIPPOCAMPAL MODEL OF GLUCK AND MYERS

IN HIPPOCAMPAL REGION ATROPHY

ABSTRACT

Hippocampal region dysfunction is suggested to have an important effect for the

cognitive impairments observed in Alzheimer’s disease. In some patients, hippocampus and

nearby structures show atrophy while other brain structures appear intact. Hence, study of

neural network models which can mimic biological and psychological findings is hoped to

contribute to our understanding of the underlying reasons and possible consequences of

hippocampal dysfunction. Therefore the main objective of this thesis work was to develop

an artificial neural network model that in many ways behaved like the hippocampal region.

For this purpose we have used the cortico-hippocampal model of Gluck and Myers as the

basic model. The learning rule Gluck and Myers used in their original work was

backpropagation. Hoping to get a more biologically plausible model, the learning rule was

changed to generalized recirculation (GeneRec). Furthermore, instead of using negative

weights, the network was externally inhibited by two alternate methods: the kWTA

inhibition and via additional inhibitory interneurons. Also, a weight bounding function was

applied to the weight update rules.

Addition of external inhibition and weight bounding functions to the network reduced

the convergence characteristics of the network. Particularly cortico-cerebellar side of the

network could not converge with external inhibition. Therefore external inhibition was

abandoned for the cortico-cerebellar side. Although the hippocampal network could

converge with kWTA, inhibition and weight bounding, rapid changes of activations of

hippocampal network hidden layer neurons during training caused huge oscillations on the

cortico-cerebellar output. Hence, external inhibition was abandoned also for the

hippocampal network.

The results of several representational differentiation and compression cases were

found comparable to the Gluck and Myers original work.

Keywords: Hippocampus, model, hippocampal atrophy, neural network, generalized

recirculation

 v

 HİPOKAMPÜS BÖLGESİ ATROFİSİ İÇİN GLUCK VE
MYERS’İN KORTEKS-HİPOKAMPÜS MODELİNİN GENEREC

UYARLAMASI

ÖZET

Hipokampüs bölgesindeki işlev bozuklukları Alzheimer hastalığında gözlenen bilişsel

bozukluklarda önemli bir etken olarak görülmektedir. Bazı hastalarda salt hipokampüs ve

yakınındaki yapılarda atrofi gözlemlenirken diğer beyin yapıları bozulmadan

kalabilmektedir. Biyolojik ve fizyolojik bulguların sonuçlarını taklit eden sinir ağı modelleri

ile yapılan çalışmaların, hipokampüs işlev bozukluğunun altında yatan nedenleri ve olası

sonuçlarını anlamaya katkı yapacağı umulmaktadır. Bu nedenle bu tez çalışmasının ana

hedefi, birçok yönden hipokampüs bölgesi gibi davranan yapay bir sinir ağı modeli

geliştirmektir. Bu amaçla Gluck ve Myers’ın korteks-hipokampüs sinir ağı modeli temel

model olarak seçilmiştir. Gluck ve Myers çalışmalarında öğrenme kuralı olarak geri-yayılım

kuralını kullanmışlardır. Biyolojik kabul edilebilirliği daha yüksek bir model elde etmek

ümidiyle öğrenme kuralı Genelleştirilmiş Yeniden Dolaşım (GeneRec) kuralı ile

değiştirilmiştir. Ayrıca, eksi ağırlıklar kullanmak yerine sinir ağı kWTA engellemesi ve

engelleyici ara-nöronlar olarak seçenek iki yöntem ile dışarıdan engelleme yapılmıştır.

Ağırlık yenileme kuralına bir de ağırlık sınırlama işlevi uygulanmıştır.

Ağa dış engelleme ve ağırlık sınırlama işlevlerinin eklenmesi ağın yakınsama

özelliğini azaltmıştır. Özellikle ağın korteks-serebrum kısmı dış engelleme ile

yakınsanamamıştır. Bu yüzden korteks-serebrum kısmında dış engelleme kullanımı terk

edilmiştir. Hipokampüs bölgesine karşılık gelen ağ kWTA engellemesi ve ağırlık

sınırlaması ile yakınsanabilse de hipokampüs ağının eğitim sırasında gizli katmanlarındaki

sinir hücrelerinin etkinlikleri hızla değiştiği için korteks-serebrum çıktısında çok büyük

salınımlara neden olmuştur. Bu nedenle hipokampüs ağında da dış engelleme kullanımı terk

edilmiştir.

Çeşitli betimlemede farklılaşma ve sıkıştırma durumlarının sonuçları Gluck ve

Myers’ın özgün çalışmalarıyla kıyaslanabilir sonuçlar vermiştir.

Anahtar Sözcükler: Hipokampüs, model, hipokampüs atrofisi, sinir ağı, genelleştirilmiş

yeniden dolaşım kuralı

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ...iii

ABSTRACT... iv

ÖZET .. v

TABLE OF CONTENTS... vi

LIST OF FIGURES ...viii

LIST OF TABLES... xi

LIST OF ABBREVIATIONS...xii

LIST OF SYMBOLS ...xiii

1. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Objectives .. 1

1.3 Organization of the Thesis... 2

2. THEORY .. 3

2.1 Introduction ... 3

2.2 Cortico-Hippocampal Interaction in Associative Learning..................................... 4

2.3 Cortico-Hippocampal Interaction and Contextual Processing 5

2.4 Cholinergic Modulation of Hippocampal-Region Function.................................... 6

2.5 Generalized Recirculation Algorithm.. 6

2.6 Soft Weight Bounding... 8

2.7 Contrastive Hebbian Learning (CHL) ... 9

2.8 Inhibitory Interactions ... 10

2.8.1 The k-Winners-Take-All (kWTA) Inhibitory Functions 12

2.9 The Cortico-Hippocampal Model of Gluck and Myers .. 13

3. SIMULATIONS AND RESULTS ... 16

3.1 Implementation of the Model .. 16

3.1.1 Hippocampal Network .. 16

3.1.2 Cortical Network... 16

3.1.3 Stimuli and Training Schedule.. 17

3.2 Progress of Code Implementation ... 18

3.3 Representational Differentiation ... 22

 vii

3.3.1 Acquisition .. 24

3.3.2 Discrimination and Reversal ... 26

3.4 Representational Compression .. 28

3.4.1 Sensory Preconditioning ... 28

3.4.2 Learned Irrelevance... 28

4. DISCUSSION... 32

4.1 Introduction ... 32

4.2 Training Data... 32

4.3 The GeneRec Algorithm.. 33

4.3.1 kWTA.. 34

4.4 The Cortico-Cerebellar Network... 35

4.4.1 Inhibition ... 35

4.5 Cortico-Cerebellar and Hippocampal Networks ... 36

4.6 Representational Compression .. 37

4.7 Representational Differentiation ... 38

5. CONCLUSIONS .. 40

5.1 General .. 40

5.2 Recommendations for Future Work .. 41

APPENDIX A: TRAINING DATA GENERATOR CODE .. 42

APPENDIX B: CORTICO-HIPPOCAMPAL INTACT MODEL CODE..................... 45

APPENDIX C: CORTICO-HIPPOCAMPAL LESION MODEL CODE 62

REFERENCES ... 73

 viii

LIST OF FIGURES

 Page

Figure 2.1 Illustration of the GeneRec algorithm, with bidirectional symmetric
connectivity as shown. a) In the minus phase, external input is
provided to the input units, and the network settles, with some record
of the resulting minus phase activation states kept. b) In the plus
phase, external input (target) is also applied to the output units in
addition to the input units, and the network again settles.

7

Figure 2.2 Weight updates computed for the GeneRec algorithm.

8

Figure 2.3 Two basic types of inhibitory connectivity (excitation is shown with
the open triangular connections, and inhibition with the filled
circular ones). a) Shows feedforward inhibition driven by the input
layer activity, which anticipates and compensates for excitation
coming into the layer. b) Shows feedback inhibition driven by the
same layer that is being inhibited, which reacts to excitation within
the layer. Inhibitory interneurons typically inhibit themselves as
well.

11

Figure 2.4 Inhibition network with bidirectional excitatory connectivity

12

Figure 2.5 Possible distributions of level of excitation across units in a layer,
plotted on the Y axis, and rank order index on the X axis. The basic
kWTA function places the layer-wide inhibition value gi between
the k and k+1th most active units, as shown by the dotted lines. a)
Shows a standard kind of distribution, where the most active units
are reasonably above the inhibition. b) Has many strongly activated
units below the threshold, resulting in a small excitatory-inhibitory
differential for the most activated units. c) Has few strongly active
units, resulting in a very large differential for the most activated
units.

13

Figure 2.6 The cortico-hippocampal model (Gluck and Myers [1]). (a) In the
intact model, the hippocampal region provides representational
information to long-term memory sites, such as the cerebellum
(illustrated here) and cortex; these representations are incorporated
into ongoing learning to map from stimuli to responses. (CR,
conditioned response; US, unconditioned stimulus) (b) After damage
to the hippocampal region, the representational information is
eliminated, although simple learning to map stimuli to responses is
still possible.

15

 ix

Figure 3.1 Mean squared error performance of Gluck and Myers intact cortico-
hippocampal model

18

Figure 3.2 Mean squared error performance of GeneRec implementation of
Gluck and Myers hippocampal network. No soft weight bounding.
No inhibition

19

Figure 3.3 Mean squared error performance of GeneRec implementation of
Gluck and Myers hippocampal network with -1, 1 soft weight
bounding (SWB). No inhibition.

20

Figure 3.4 Mean squared error performance of GeneRec implementation of
Gluck and Myers hippocampal network with -1, 1 soft weight
bounding (SWB) and with kWTA inhibition. Number of neurons in
the hidden layer is 40.

20

Figure 3.5 Mean squared error performance of GeneRec implementation of
Gluck and Myers hippocampal network with -1, 1 soft weight
bounding (SWB) and with kWTA inhibition. Number of neurons in
the hidden layer is 20.

21

Figure 3.6 Mean squared error performance of GeneRec implementation of
Gluck and Myers cortico-cerebellar network with -1, 1 soft weight
bounding (SWB) and with kWTA inhibition. Number of neurons in
the hidden layer is 60.

22

Figure 3.7 Mean squared error performance of GeneRec implementation of
Gluck and Myers intact cortico-hippocampal model with both sub-
networks having inhibition and soft weight bounding.

23

Figure 3.8 Mean squared error performance of GeneRec implementation of
Gluck and Myers intact cortico-hippocampal model with cortico-
cerebellar network having no inhibition and no soft weight
bounding.

23

Figure 3.9 Mean squared error performance of GeneRec implementation of
Gluck and Myers intact cortico-hippocampal model with cortico-
cerebellar network having no inhibition and no soft weight
bounding.

24

Figure 3.10 Discrimination reversal

25

Figure 3.11 Sensory Preconditioning. A: Rabbit data. B: Gluck & Myers model
simulations. C: GeneRec model simulations.

26

 x

Figure 3.12 Learned irrelevance and HR-lesion. A: Rabbit data. B: Gluck &
Myers model simulations. C: GeneRec model simulations.

27

Figure 3.13 Sensory Preconditioning. A: Rabbit data. B: Gluck & Myers model
simulations. C: GeneRec model simulations.

29

Figure 3.14 Learned irrelevance and HR-lesion. A: Rabbit data. B: Gluck &
Myers model simulations. C: GeneRec model simulations.

31

 xi

LIST OF TABLES

 Page

Table 3.1. The Learned Irrelevance Paradigm 30

 xii

LIST OF ABBREVIATIONS

Abbreviation Definition

CCN Cortico/Cerebellar Network

HPN Hippocampal Network

HR Hippocampal Region

kWTA k-Winners-Take-All

LTD Long-Term Depretiation

LTM Long-Term Memory

LTP Long-Term Potentiation

SWB Soft Weight Bounding

 xiii

LIST OF SYMBOLS

Symbol Name/Definition

ε learning rate parameter

∆ik weight change computed by the error driven algorithm

∆w small change applied to w

∆β small change applied to β

βj bias applied to neuron j

J plus phase activations of hidden layer of cortical network neurons

xi sending unit activation of neuron i

yj receiving unit activation of neuron j

x
-
, y

-
 unit activation of neuron in the minus phase

x
+
, y

+
 unit activation of neuron in the plus phase

wij synaptic weight of synapse i belonging to neuron j

[x]- operator returns x if x<0 and 0 otherwise

[x]+ operator returns x if x>0 and 0 otherwise

 1

1. INTRODUCTION

1.1 Motivation

Neuroscience covers a broad range of topics such as molecular and cellular

studies and also human psychology and psychophysics. Computational modeling and

theoretical analysis are essential tools to characterize nervous system, to determine how

it functions and to understand how it operates under certain conditions. Descriptive,

mechanistic, and interpretive models are needed to answer the questions: what, how,

and why for the nervous system; to summarize vast amounts of experimental data

compactly yet accurately and thus characterize behavior of neurons by themselves and

as a system. These models may be founded loosely upon biophysical, anatomical, and

physiological findings; however their main purpose is to describe phenomena, not to

explain them. Mechanistic models concentrate on how the nervous systems operate on

the basis of known anatomy, physiology and circuitry and therefore they can be used to

form the bridge between descriptive models at various levels. Computational and

information-theoretic principles are used to explore the behavioral and cognitive

significance of a wide range of aspects of nervous system function by interpretive

models to answer the question of why nervous systems operate as they do [1-9].

Most of the time, it is not easy to decide the appropriate level of modeling of a

particular problem; a common misassumption is more detailed models are better.

However, they must be detailed enough to make contact with the lower level yet simple

enough to provide clear results at higher level.

1.2 Objectives

Hippocampal-region dysfunction has long been suggested to be an important

contributor to the cognitive impairments observed in Alzheimer’s disease (AD).

Currently, it is a leading cause of death among people over the age of 60. Recent

research has produced findings that may allow early detection of which individuals are

most at risk to develop AD in the future. In some elderly individuals, the hippocampus

and the endorhinal cortex show signs of atrophy while other nearby brain structures

appear intact [1]. Hence, study of biologically plausible learning models will probably

 2

contribute to understand the underlying reasons and possible consequences of

hippocampal dysfunction related to these models. Therefore, the main objective of this

thesis work is to develop an artificial neural network model that in many ways behaves

like the hippocampal region. For this purpose we have used the cortico-hippocampal

model of Gluck and Myers as the basic model. However, we modified this model by the

application of the GeneRec algorithm with soft weight bounding and with external

inhibition. This model was analyzed through extensive numerical simulations to study

phenomena that occur in the hippocampal region, as this region undergoes atrophy.

1.3 Organization of the Thesis

Chapter 1 introduces the subject. A brief summary of the relevant background

and a summary of the Cortico-Hippocampal Model of Gluck and Myers are presented in

Chapter 2. Simulations and the results are given in Chapter 3. A detailed discussion of

the simulation results are given in Chapter 4. Training Data Generator Codes, Cortico-

Hippocampal Intact Model Codes and the Cortico-Hippocampal Lesion Model Codes

are given in Appendix A, Appendix B and Appendix C, respectively.

 3

2. THEORY

2.1 Introduction

A generally accepted phenomenon underlying learning and memory is activity

dependent synaptic plasticity which plays a critical role in the development of neural

circuits. For a complete understanding of functional and behavioral importance of

synaptic plasticity, studies of how experience and training modify synapses, and how

these modifications alters patterns of neuronal firing to affect behavior should be carried

out. Continuing experimental studies may reveal ways in which neuronal activity can

affect synaptic strength. Hence synaptic plasticity rules inspired from these studies have

been applied to several tasks including auto- and heteroassociative memory, storage and

recall of temporal sequences, pattern recognition, and function approximation.

In 1949, Donald Hebb conjectured that if input from neuron A often contributes to

the firing of neuron B, then synapse from A to B should be strengthened. Hebb

suggested that such synaptic modification could produce neuronal assemblies that

reflect the relationships experienced during training. The Hebb rule forms the basis of

much of the research done on the role of the synaptic plasticity in learning and memory.

Experimental work in a number of brain regions, including hippocampus,

neocortex, and cerebellum, has revealed activity-dependent processes that can produce

changes in the efficacies of synapses that persist for varying amounts of time. Changes

in synaptic strength involve both transient and long-lasting effects. Changes that persist

for more than one hour long require protein synthesis and called long-term potentiation

(LTP). Another form of plasticity which is observed in cerebellum is long-term

depression (LTD).

Studies of plasticity and learning involve analyzing how synapses are affected by

activity over the course of a training period. There are three major types of learning

procedures in unsupervised (also called self supervised) learning. A network responds

to a series of inputs during training solely on the basis of its basic intrinsic connections

and dynamics. The network than self organizes in a manner that depends on the synaptic

 4

plasticity rule being applied and on the nature of the inputs presented during training

[10].

In supervised learning, a desired set of input-output relationships is imposed on

the network by a teacher during training. Networks that perform particular tasks can be

constructed in this way by letting a modification rule adjust their synapses until the

desired computation emerges as a consequence of the training process. This is an

alternative to explicitly specifying the synaptic weights. In this case, finding a plausible

teaching mechanism may not be concern if the question is being addressed is whether

any weights can be found that allow a network to implement a particular function. In

more biologically plausible examples of supervised learning, one network acts as the

teacher for another network.

In reinforcement learning, that is intermediate of these cases, the network output

is not constrained by a teacher, but evaluative feedback about network performance is

provided in the form of reward or punishment [11]. This can be used to control the

synaptic modification process.

Non-Hebbian forms of synaptic plasticity, such as those that modify synaptic

strengths solely on the basis of pre- or postsynaptic firing, are likely to play important

roles in the homeostatic, developmental, and learning processes. Activity can also

modify the intrinsic excitability and response properties of neurons [12]. Models of such

intrinsic plasticity show that neurons can be remarkably robust to external perturbations

if they adjust their conductance to maintain specified functional characteristics. Intrinsic

and synaptic plasticity can interact in interesting ways. For example, shifts in intrinsic

excitability can compensate for changes in the level of input to a neuron caused by

synaptic plasticity. It is likely that all of these forms of plasticity, and many others, are

elements of both the stability and the adaptability of nervous system [3].

2.2 Cortico-Hippocampal Interaction in Associative Learning

Computational models of learning need to incorporate stimulus representations to

allow appropriate generalization of learning between stimuli. The appropriate degree of

generalization will depend on the particular problem, implying that representations

 5

should be adaptable to suit current task demands. However, the computational resources

required to create appropriate new stimulus representations on the fly are considerable;

neural-network researchers have addressed this problem by developing the error back

propagation algorithm.

However, it is not clear that the sophisticated neural machinery needed to create

the necessary new stimulus representations exists throughout the brain. One possible

evolutionary alternative would be to localize some of the mechanisms for

representational change in a central location (such as cerebral cortex and hippocampus)

so that other brain regions (such as cerebral cortex and cerebellum) could make use of

these mechanisms as needed for particular tasks [13]. This idea forms the basis for two

major models of hippocampal function.

In both of these models, one network module representing the hippocampal region

interacts with other network modules representing other brain regions, as in Marr’s

model. Hippocampal-region damage in these network models is simulated by disabling

the hippocampal-region module and observing the behavior of the remaining modules.

These models can implement many aspects of associative learning, particularly classical

conditioning, and they are useful for understanding how the hippocampal region may

interact with the rest of the brain to facilitate certain kinds of learning [1].

2.3 Cortico-Hippocampal Interaction and Contextual Processing

Most of the computational models of Cortico-Hippocampal interaction in classical

conditioning consider how conditioned stimuli were associated with responses and what

role the hippocampal region might play in this association. But any conditioning

experiment, indeed any form of learning, takes place against a background, or context,

including the sights, sounds, and smells of the environment. There are also internal

contextual cues such as motivation and drives. Typically, researchers try to minimize

contextual cues or control for them by making sure that all subjects experience similar

context. Nevertheless, it has long been recognized that context can and do affect what is

learned.

 6

From the early days of hippocampal research, it has been apparent that the

hippocampal region plays an important role in contextual processing. Indeed, two early

influential theories of hippocampal region function suggested that the region’s chief

function is contextual processing in general or processing spatial contexts in specific

locations.

2.4 Cholinergic Modulation of Hippocampal-Region Function

Hippocampal-region processing is modulated by also other brain structures which

provide neuromodulators, neurotransmitters and chemical messengers that affect how

hippocampal-region neurons behave. Medial septum, a small group of cells that project

to the hippocampus, is an important contributor to this neoromodulatory mechanism.

Some of these cells produce the neurotransmitter acetylcholine (ACh), which are the

cholinergic ones.

Normal hippocampal functioning critically depends on cholinergic input. If the

septohippocampal cholinergic pathway is disrupted by either giving damage to the

medial septum or by drugs that diminish ACh efficacy, hippocampal-region function is

disrupted. Considering many studies, hippocampal-region disruption has qualitatively

diverse effects on learning and memory behavior with respect to direct hippocampal

region damage. Thus, effects of acetylcholine levels on learning memory should be

considered [1].

2.5 Generalized Recirculation Algorithm

An algorithm called recirculation provided two important ideas that enabled

backpropagation to be implemented in a more biologically plausible manner. The

recirculation algorithm was subsequently generalized from the somewhat restricted case

it could handle, resulting in the generalized recirculation algorithm or GeneRec which

serves as a task-based learning algorithm.

GeneRec adopts the activation phases in the delta rule. In the minus phase, the

outputs of the network represent the expectation or response of the network, as a

function of the standard activation settling process in response to a given input pattern.

 7

Then, in the plus phase, the environment is responsible for providing the outcome or

target output activations. The + superscript is used to indicate plus-phase variables, and –

to indicate minus-phase variables in the below equations and graphs.

Figure 2.1 Illustration of the GeneRec algorithm, with bidirectional symmetric connectivity as shown. a)
In the minus phase, external input is provided to the input units, and the network settles, with some record
of the resulting minus phase activation states kept. b) In the plus phase, external input (target) is also
applied to the output units in addition to the input units, and the network again settles [4].

It is important to emphasize that the full bidirectional propagation of information

(bottom-up and top-down) occurs during the settling in each of these phases, with the

only difference being whether the output units are updated from the network (in the

minus phase) or are set to the external outcome/target values (in the plus phase). In

particular, the hidden units need to receive the top-down activation from both the minus

and plus phase output states to determine their contribution to the output error.

Conveniently, the learning rule is the same for all units in the network, and

essentially just the delta rule:

is
−

j
h

−

ko

ij
w

External Input

jk
w

kj
w

is
−

j
h

−

ko

ij
w

External Input

jk
w

kj
w

Actual Output

a) Minus Phase b) Plus Phase

Actual Output

 8

 ε(-)ij j j iw y y x
+ − −∆ = (2.1)

for a receiving unit with activation
j

y and sending unit activation
i

x in the phases as

indicated (Figure 2.2). As usual, the rule adjusting the bias weights is just the same as

for the regular weights, but with the sending unit activation set to 1:

 ε(-) j j jy yβ + −∆ = (2.2)

Figure 2.2 Weight updates computed for the GeneRec algorithm [4].

2.6 Soft Weight Bounding

The unbounded nature of error driven weights is incompatible with both the facts

of biology and the point-neuron activation function which requires a separation between

excitation and inhibition. Therefore, the following mechanism for bounding the error

driven weights is used (noting, this does not apply to the bias weights, which have no

such sign constraints):

[] []
+ -

 (1-)ik ik ik ik ikw w w∆ = ∆ + ∆ (2.3)

i
s

−

j
h

k
o

()
jk k k j

w t o h
−∆ = −

()
ij j j i

w h h s+ − −∆ = −

External Input

 9

where
ik

∆ is the weight change computed by the error driven algorithm, and the []
+

x

operator returns x if 0x > and 0 otherwise, while []
-

x does the opposite, returning x

if 0x < , and 0 otherwise.

If equation (2.3) is used iteratively, the weights approach the bounds of 1 and 0

exponentially slowly (softly). When there is a series of individual weight changes of

equal magnitude but opposite sign, the weight will hover around 0.5, which corresponds

well with the Hebbian interpretation of 0.5 as reflecting lack of positive or negative

correlation. Similarly, as positive weight increases outweigh negative ones, the weight

value increases proportionally, and likewise decreases proportionally for more negative

changes than positive.

Weight bounding is appealing from a biological perspective because it is clear that

synaptic efficacy has limits. We know that synapses do not change their sign, so they

must be bounded at the lower end by zero. The upper bound is probably determined by

such things as the maximal amount of neurotransmitter that can be released and the

maximal density and alignment of postsynaptic receptors. What the soft weight

bounding mechanism does is to assume that these natural bounds are approached

exponentially slowly – such exponential curves are often found in natural systems.

However, it is not known of any specific empirical evidence regarding the nature of

synaptic bounding function [4].

2.7 Contrastive Hebbian Learning (CHL)

This algorithm is so named because it is the contrast (difference) between two

Hebbian-like terms (the sender-receiver coproducts). The CHL algorithm traces its roots

to the mean field or deterministic Boltzmann machine (DBM) learning algorithms,

which also use locally available activation variables to perform error-driven learning in

recurrently connected networks [3]. The DBM algorithm was derived originally for

networks called Boltzmann machines that have noisy units whose activation states can

be described by a probability distribution known as the Boltzmann distribution. In this

probabilistic framework, learning amounts to reducing the distance between the two

 10

probability distributions that arise in the minus and plus phases of settling in the

network.

2.8 Inhibitory Interactions

Leak current and inhibition are two counterweights of neuronal activity. However,

leak current is almost constant therefore, an important limitation. As a consequence it

cannot respond to dynamic changes easily. Nevertheless, inhibition can play the role of

a dynamic counterweight to excitatory input, as a function of the inhibitory input

provided by the inhibitory interneurons known to exist in the cortex. General

mechanism of these interneurons looks like sampling the general level of activation in

the network.

The function of inhibitory interneurons could be compared to that of thermostat

controlled air conditioner that prevents the network from getting too “hot” (active).

Thermostat tries to maintain a roughly constant indoor temperature by their set point

property even with varying levels of heat flux. The set point is provided with a negative

feedback mechanism.

Two forms of connectivity involving the inhibitory interneurons and their connections

with the principal excitatory neurons are present in the cortex which provides

feedforward and feedback inhibition. A schematic representation of this is shown in

Figure 2.3. Both type of connectivity are necessary and complement each other.

Moreover, the inhibitory interneurons inhibit themselves by a negative feedback loop to

control their own activity levels.

Feedforward inhibition occurs when the inhibitory interneurons in a hidden layer

are driven directly by the inputs to that layer, and then send inhibition to the principal

(excitatory) hidden layer neurons. This form of inhibition anticipates and

counterbalances the excitation coming into a given layer from other layers.

Feedback inhibition occurs when the same layer that is being inhibited excites the

inhibitory interneurons, producing a negative feedback loop. Thus, feedback inhibition

reacts to the level of excitation from exploding (spreading uncontrollably to all units).

 11

Figure 2.3 Two basic types of inhibitory connectivity (excitation is shown with the open triangular
connections, and inhibition with the filled circular ones). a) Shows feedforward inhibition driven by the
input layer activity, which anticipates and compensates for excitation coming into the layer. b) Shows
feedback inhibition driven by the same layer that is being inhibited, which reacts to excitation within the
layer. Inhibitory interneurons typically inhibit themselves as well [4].

To speed up and simplify simulations, the effects of inhibitory interneurons can be

summarized by computing an inhibition function directly as a function of the amount of

excitation in a layer, without the need to explicitly simulate the inhibitory interneurons

themselves, as shown schematically in Figure 2.4. The simplest and most effective

inhibition functions are two forms of a k-winners-take-all (kWTA) function. These

functions impose a thermostat-like set point type of inhibition by ensuring that only k

(or less) out of n total units in layer are allowed to be strongly active [4].

For a network that has unidirectional excitatory connectivity, that has no top-

down connections for activity, feedforward inhibition is simple. Considering the

bidirectional connectivity, feedforward inhibition should be understood better. The role

of feedforward inhibition is to anticipate and counterbalance the level of excitatory

input coming into a layer. Therefore, for a network that has a bidirectional excitatory

connectivity, the inhibitory interneurons in the corresponding layer should also receive

the top-down activity besides bottom-up activity.

Hidden

Input

Inhib.

Feed-
Forward

a)

Hidden

Input

Inhib.

 Feedback b)

 12

Figure 2.4 Inhibition network with bidirectional excitatory connectivity [4].

2.8.1 The k-Winners-Take-All (kWTA) Inhibitory Functions

The way kWTA functions operate to inhibit a layer of neurons is by not letting

more than k active units out of n total in a layer. kWTA functions are also attractive

from the biological perspective since it captures the set point property of the inhibitory

interneurons by maintaining the activity level at a roughly constant level through

negative feedback. On the other hand, in some particular applications this set point

characteristic may become a weakness, if the model actually needs a more dynamic

inhibition level for various inputs to the network. Nevertheless, a kWTA function

enforces development of sparse distributed representations which can be beneficial from

a functional perspective. Possible distributions of level of excitation across units in a

layer, plotted on the Y axis, and rank order index on the X axis are shown in Figure 2.5.

The basic kWTA function places the layer-wide inhibition value gi between the k and

k+1th most active units, as shown by the dotted lines.

 13

Figure 2.5 Possible distributions of level of excitation across units in a layer, plotted on the Y axis, and
rank order index on the X axis. The basic kWTA function places the layer-wide inhibition value gi
between the k and k+1th most active units, as shown by the dotted lines. a) Shows a standard kind of
distribution, where the most active units are reasonably above the inhibition. b) Has many strongly
activated units below the threshold, resulting in a small excitatory-inhibitory differential for the most
activated units. c) Has few strongly active units, resulting in a very large differential for the most
activated units [4].

It is better to emphasize that the k units active in a kWTA function are the ones

that are most active in their outputs. Thus, the first step in computing the kWTA

functions is to sort the units according to their activations. Then a layer-wide level of

inhibition is computed such that the top k units will have activity, while the rest will

remain inactive. This inhibition value is then used by each unit in the layer when

updating their activations.

2.9 The Cortico-Hippocampal Model of Gluck and Myers

Gluck and Myers approached hippocampal functioning top-down by beginning

with a broad and abstract description of the computations that depend on the

hippocampal region in classical conditioning. In their initial model, the hippocampal

region was treated as an information-processing system that transformed stimulus

representations according to specified rules within a series of linked connectionist

networks. In particular, the model argued that the hippocampal region compresses (or

makes more similar) the representations of inputs that co-occur or are otherwise

redundant, and differentiates (or makes less similar) the representations of inputs that

predict different future events. As a simple analogy, if thunder and lighting always co-

occur, they should be treated as analogous and part of the same broader event. On the

other hand, if two mushrooms look roughly alike but one is edible and one is poisonous,

 14

then their representations should be made more distinct, exaggerating the subtle

differences between them. The compressed and differentiated representations formed in

the hippocampal region develop over multiple training trials through exposure to a

range of stimuli and contextual regularities. These representations are then provided to

other modules representing long-term storage in cerebral and cerebellar areas, which

incorporate these new stimulus representations into their ongoing stimulus–response

learning.

This information-processing theory is incorporated in the connectionist network

model shown in Figure 2.6. Processing in the hippocampal region is implemented via a

predictive autoencoder, which learns to transform stimulus inputs, through a narrow

internal node layer, to outputs that reconstruct those inputs and also predict future

reinforcement (or other salient events). Because the internal layer in this network

contains fewer nodes than the input and output layers, the network is forced to compress

redundant information while at the same time preserving and differentiating information

that predicts reinforcement.

This hippocampal-region network then sends the new representations to a long-

term memory (LTM) network, which models storage sites in the neocortex and

cerebellum. A random recoding of the hippocampal-region network’s internal-layer

activations becomes the ‘desired output’ for the internal layer of the LTM network, and

the error is the difference between this and the internal layer’s actual output. The LTM

network then uses an error-correcting rule to adapt its lower layer weights, just as it did

to adapt its upper layer weights. Over time, the internal-layer nodes of the LTM

network develop representations that are linear recombinations of those developed by

the hippocampal-region network.

Within this model framework, broad hippocampal region damage is simulated by

disabling the hippocampal region network (Figure 2.6). In this lesioned model, no new

hippocampal-dependent representations are formed, and the training signal to the LTM

network is silenced. The LTM network can adopt no new representations, although it

can still learn to map from its existing representations to new behavioral responses [5].

 15

Figure 2.6 The cortico-hippocampal model (Gluck and Myers [1]). (a) In the intact model, the
hippocampal region provides representational information to long-term memory sites, such as the
cerebellum (illustrated here) and cortex; these representations are incorporated into ongoing learning to
map from stimuli to responses. (CR, conditioned response; US, unconditioned stimulus) (b) After damage
to the hippocampal region, the representational information is eliminated, although simple learning to
map stimuli to responses is still possible [5].

 16

3. SIMULATIONS AND RESULTS

3.1 Implementation of the Model

3.1.1 Hippocampal Network

The hippocampal network is a three-layer network with full connectivity between

18 input nodes and 40 internal nodes and 19 output nodes. The input consists of an 18-

bit pattern I = (I1, I2,..., I18) representing the current values of five phasic cues and 13

tonic contextual cues. The desired output T = (T1, T2,..., T19) is the same 18-bit input

pattern, as well as a 1-bit prediction of reinforcement. The network is trained by the

GeneRec algorithm with kWTA inhibition. Node activations y are calculated as in the

minus phase; an external input is provided to the input units, and the network settles. In

the plus phase, external input (target) is also provided to the output units in addition to

the input units, and the network again settles.

The weights are initialized according to a uniform distribution U(-0.1 to 0.1).

They are then updated using

 ε(-)ij j j iw y y x
+ − −∆ = (3.1)

The learning rate ε 0.25= if T19 = 1 and ε 0.025= if T19 = 0.

3.1.2 Cortical Network

The cortical network is a three-layer network with full connectivity between 18

input nodes and 60 internal nodes and a single output node. The input is the same as in

the hippocampal network, whereas the desired output is the single bit T19 predicting

reinforcement. Activation of nodes is computed as in the hippocampal network. The

upper layer of weights, from hidden nodes j to output nodes k, is trained as in the

hippocampal network, with learning rate ε 0.5= if T19 = 1 and ε 0.05= if T19 = 0. The

weights and biases are initialized according to a uniform distribution U(-0.3 to 0.3).

Although the network algorithm is similar to hippocampal network; for the

cortical network there are no external inhibitions.

 17

The lower layer of cortical network weights is trained as

hj hJ v x=∑ (3.2)

where the J is the plus phase activation,
hj

v is the connection strength from each hidden

node h in the hippocampal network to hidden node j in the cortical network,
h

x is unit

activation of hidden nodes of the hippocampal network. These
hj

v are nonadaptive and

initialized according to a uniform distribution U(-1.0 to 1.0). This initialization and

large number of internal layer nodes allows the lesioned model (cortical network only)

to be able to solve random discriminations.

3.1.3 Stimuli and Training Schedule

Stimulus patterns are constructed by setting the first five bits to 0 or 1, depending

on the presence or absence of five phasic cues. The next three bits code for a unique

context: 101 for context X and 010 for context Y. The final 10 bits are a random string

of 0s and 1s; constant across all stimulus patterns. They evolve slowly with time, so that

on any trial there is some probability, P = 0.01, that one of the 10 bits will be inverted.

This inversion is permanent unless randomly inverted back.

One block of training consists of a number of training trials, containing one

presentation of each stimulus pattern being trained. These are intermixed with context-

only presentations in a ratio of 1:20. For example, in the contextual conditional task

(AX+, X-, AY-, and Y-), one block of training might consist of 10 presentations of

context X, one presentation of phasic stimulus A in context X, 10 more presentations of

X, 10 of context Y, one of A in Y, and 10 more presentations of Y. This ratio of

context-only to training trials is about the minimum needed to ensure that background

response to context alone remains low throughout training.

At the start of a simulation run, the network is initialized by training with 500

trials in which the input vector and output are both set to 0. This initialization ensures

that the network has a low baseline output rate in the absence of input.

 18

3.2 Progress of Code Implementation

Before implementing Gluck and Myers Cortico-Hippocampal model with

GeneRec, their code was re-written for test purposes. We tried to use the training data

based upon their original work so that we could compare the results of their original

implementation with backpropagation with our implementation based on the GeneRec

algorithm. Therefore, we first developed a code for generating the training data. The

following simulations used the output of this code as the training data. The data set

mostly used for testing the performance of the networks individually and as system was

the stimulus pattern: [X-, AX+, X-, Y-, AY-, Y-] with [10, 1, 10, 10, 1, 10] number of

presentations, respectively. Here, X or Y represent static context, A represents one of

the five phasic cues and – and + signs represent unconditioned stimulus, which is the

training output value for the cortico-cerebellar network.

The hippocampal network and cortico-cerebellar network codes were written

individually at first and then combined together to get the cortico-hippocampal network.

The performance of the model is shown in Figure 3.1.

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

PERFORMANCE OF NETWORK

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.1 Mean squared error performance of Gluck and Myers intact cortico-hippocampal model.

 19

The next step was to write the code with GeneRec for the hippocampal network.

Note that in this case, there are no weight bounding and no inhibition. The performance

of the model is presented in Figure 3.2.

0 100 200 300 400 500 600 700 800
10

-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, NO SWB

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.2 Mean squared error performance of GeneRec implementation of Gluck and Myers
hippocampal network. No soft weight bounding. No inhibition.

To add soft weight bounding (SWB) to the code, it was first tested with -1, 1

boundaries. The performance of the system was poor as compared to the system with no

SWB, as shown in Figure 3.3.

kWTA inhibition was added next to the hippocampal network with SWB. The k

values for the output layer and the hidden layer were calculated dynamically for every

input. The mean squared error performance of GeneRec implementation of the

hippocampal network with -1, 1 soft weight bounding (SWB) and with kWTA

inhibition is shown in Figure 3.4. The number of neurons in the hidden layer was 40.

 20

0 100 200 300 400 500 600 700 800
10

-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, SWB(-1,1)

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.3 Mean squared error performance of GeneRec implementation of Gluck and Myers
hippocampal network with -1, 1 soft weight bounding (SWB). No inhibition.

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, SWB(0,1), DYNAMIC KWTA(k2, k3)

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.4 Mean squared error performance of GeneRec implementation of Gluck and Myers
hippocampal network with -1, 1 soft weight bounding (SWB) and with kWTA inhibition. Number of
neurons in the hidden layer is 40.

 21

Next, different numbers of hidden layer neurons were tested, such as 10, 20, and

30. Figure 3.5 shows the mean squared error performance of GeneRec implementation

of Gluck and Myers hippocampal network with -1, 1 soft weight bounding (SWB) and

with kWTA inhibition; the number of neurons in the hidden layer was 20.

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, SWB(0,1), DYNAMIC KWTA(k2, k3)

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.5 Mean squared error performance of GeneRec implementation of Gluck and Myers
hippocampal network with -1, 1 soft weight bounding (SWB) and with kWTA inhibition. Number of
neurons in the hidden layer is 20.

After having satisfactory results with the hippocampal network, code was written

for the cortico-cerebellar network. Individual performance of the cortico-cerebellar

network was satisfactory with no inhibition. kWTA inhibition was not suitable for this

network, since it has only one output layer neuron. Therefore, inhibitory interneurons

were added to the cortico-cerebellar network. However, performance of the network

was dramatically unsatisfactory.

When these two networks combined as a system, the performance was totally

unsatisfactory (Figure 3.6).

As the results suggested, to have a working model the only way was to abandon

inhibition and weight bounding for the cortico-cerebellar network. Figure 3.7 shows our

 22

simulation results for an example with no inhibition and with no soft weight bounding

for the cortico-cerebellar network.

The results were far from convergence with even with no inhibition and no weight

bounding for the cortico-cerebellar network. Indeed there were signs of convergence on

the performance plots, if we do not consider the huge oscillations.

Perhaps the best thing to do is to abandon soft weight bounding and inhibition for

both networks. For the following simulations there are no SWB and no inhibition

(Figure 3.8 and 3.9).

0 20 40 60 80 100 120 140 160 180 200
10

-2

10
-1

10
0

CCN PERFORMANCE PLOT, GENEREC, SWB, INHIBITORY INTERNEURONS

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.6 Mean squared error performance of GeneRec implementation of Gluck and Myers cortico-
cerebellar network with -1, 1 soft weight bounding (SWB) and with kWTA inhibition. Number of
neurons in the hidden layer is 60.

3.3 Representational Differentiation

Hippocampal-region network forms representations and these representations are

subject to two biases. One of them is to compress the representations of stimuli that are

redundant and the other is to differentiate the representations of stimuli that predict

different outcomes. Each of these biases can be used to explain data in intact and HR-

 23

0 50 100 150 200 250 300 350
10

-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, SWB

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.7 Mean squared error performance of GeneRec implementation of Gluck and Myers intact
cortico-hippocampal model with both sub-networks having inhibition and soft weight bounding.

0 50 100 150 200 250 300
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, SWB, NO INHIBITION FOR CCN

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.8 Mean squared error performance of GeneRec implementation of Gluck and Myers intact
cortico-hippocampal model with cortico-cerebellar network having no inhibition and no soft weight
bounding.

 24

0 20 40 60 80 100 120 140 160 180 200
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

PERFORMANCE PLOT, GENEREC, SWB, NO INHIBITION FOR CCN

EPOCHS

M
S

E
,

b
lu

e
:h

p
n
,

g
re

e
n
:c

c
n
,

s
o
lid

:t
h
re

s
h
o
ld

e
d
,

d
a
s
h
e
d
:r

a
w

Figure 3.9 Mean squared error performance of GeneRec implementation of Gluck and Myers intact
cortico-hippocampal model with cortico-cerebellar network having no inhibition and no soft weight
bounding.

lesioned animals. Below are several examples of learning behaviors that appear to

involve representational differentiation.

3.3.1 Acquisition

The most rudimentary eyeblink conditioning task is acquisition: learning to

respond to a cue that has been paired with the US. The Rescorla-Wagner model captures

this behavior, suggesting that the cerebellum alone should be sufficient to mediate

conditioned acquisition and hence learning should not be disrupted by HR lesion.

Indeed, acquisition of a conditioned eyeblink response is not disrupted by HR lesion in

humans, rabbits, or rats.

Conditioned acquisition is simulated in the intact cortico-hippocampal model by

presenting a series of training trials. First, the model is given trials consisting of just the

experimental context – call it X – a series of inputs meant to present the background

 25

sights, smells, and sounds of the experimental setup; the model learns not to give a

conditioned response to the context alone. These trials correspond to the time spent

acclimating an animal to the experimental chamber, before any explicit training begins,

a standard procedure in experimental studies of animal conditioning.

Next comes the actual acquisition training. Because the training takes place in

context X, learning to respond to a light CS can be redefined as learning to respond to

light-in-X but not to the context alone X-. With enough training, the model learns to

respond when the light is present but not to the context alone. With training, internal-

layer representation in the cortico-cerebellar network changes by copying the

representations in the hippocampal-region network.

However, this new differentiated representation is probably not necessary to

acquire a conditioned response to a single light CS. The task is so simple that just about

any random recoding in the lower layer of cortico-cerebellar network weights is

probably sufficient. As long as there is at least one node in the internal layer that gives a

different response to light-in-X and X alone, that node can be used to drive the presence

or absence of a CR.

0

10

20

30

40

50

60

70

80

90

100

Human Data Rabbit Data G & M Model

Simulations

GeneRec

Model

Simulations

P
er

ce
nt

ag
e

C
R

s

Intact

Lesion

Figure 3.10 Conditioned acquisition, learning that a tone CS predicts an airpuff US, is not disrupted by
hippocampal-region damage.

 26

3.3.2 Discrimination and Reversal

Simple discrimination involves learning that one CS(light+) predicts the US while

a second CS(tone-) does not. This means that conditioned responses should follow

light+ but not tone-. In general, discrimination learning in the eyeblink-conditioning

paradigm is not disrupted by hippocampal-region damage. Similarly, hippocampal-

region damage generally does not impair a range of discrimination tasks in animals,

including discrimination of odors, objects, textures and sounds.

In the intact cortico-hippocampal model, the hippocampal-region network

constructs new representations that differentiate light+ and tone-, facilitating the

mapping of light+ to one response and tone- to another. However, the discrimination

task is so simple that such representational changes are probably not necessary; any

random initial representations in the cortico-cerebellar network are probably different

enough to allow mapping to different responses. Thus, the HR-lesioned model should

be able to learn a conditioned discrimination.

0

20

40

60

80

100

120

Rabbit Data /10 G & M Model
Simulations

GeneRec Model
Simulations

M
ea

n
T

ri
al

s
to

 C
ri

te
ri

on

Intact

Lesion

Figure 3.11 Conditioned discrimination: learning to respond to one CS light+, which is paired with the
US, but not to CS tone-, which is not paired with the US.

Empirical data have often been interpreted as arguing that conditioned

discrimination is hippocampal-independent. Gluck and Myers offer a different

 27

interpretation: The hippocampal-region may not be strictly necessary for some kinds of

learning; but when it is present, it normally contributes to all learning. Even in a simple

task such as discrimination (or acquisition), where a priori representations probably

suffice to allow learning, the hippocampal region is constantly forming new stimulus

representations that compress redundant information while differentiating predictive

information, whether these new representations are needed or not [1].

However, the usefulness of this hippocampal participation becomes apparent if

task demands change. For example, suppose the discrimination is reversed so that after

learning to respond to light+ but not tone-, the contingencies are reversed, so tone+ now

begins to predict the US and light- does not. In the intact model, the hippocampal region

network has already done the work of differentiating the representations of light and

tone; once the contingencies are reversed, all that needs to be done is to map those

representations to new responses. In the lesioned model, the situation is quite different:

the representations of light and tone are fixed, and so they are not differentiated during

the original discrimination. Thus, the reversal requires first unlearning the original

discrimination and then learning the reversed discrimination. This process may be quite

lengthy in comparison to reversal in the intact model. In rabbit eyeblink conditioning,

several studies show that hippocampal-region damage disrupts discrimination reversal.

0

100

200

300

400

500

600

700

800

900

Rabbit Data /10 G & M Model
Simulations

GeneRec Model
Simulations

M
ea

n
T

ri
al

s
to

 C
ri

te
ri

on

Intact

Lesion

Figure 3.12 Discrimination reversal.

 28

3.4 Representational Compression

Just as the hippocampal region is assumed to differentiate the representations of

stimuli that should be mapped to different responses, the hippocampal region is

assumed to compress the representations of stimuli that co-occur and should be mapped

to similar responses. Behaviors that reflect representational compression should be

disrupted after hippocampal-region damage.

3.4.1 Sensory Preconditioning

Sensory preconditioning involves unreinforced exposure to a compound of two

stimuli (tone&light- exposure), followed by light-US pairings (light+ training). The

associations learned to the light should partially transfer to tone, as a result of the paired

exposure. Hippocampal-region damage (specifically fimbrial lesion) abolishes sensory

preconditioning in the rabbit eyeblink preparation. In the intact model, tone&light-

exposure results in compression of the representations of tone and light, since both

stimuli co-occur and neither predicts the US or any other salient event. Subsequent

associations to light partially activate the representation of tone, and learning transfers.

In the lesioned model, there are no representational changes during the exposure phase,

and as long as light and tone are distinct stimuli that activate different (fixed)

representations, there is little chance that associations made to light will transfer to tone.

3.4.2 Learned Irrelevance

Another behavior involving representational compression is learned irrelevance.

The paradigm is schematized in Table 3.1. In phase 1, subjects in the exposed group are

given presentations of a CS (e.g., light) and a US, uncorrelated with each other. Subjects

in the non-exposed group are given equivalent time in the experimental context but

receive no presentations of light or the US. In phase 2, all subjects receive light-US

pairings. Subjects in the exposed group are much slower to learn the light-US

association.

In the intact cortico-hippocampal model, phase 1 exposure to a CS (e.g., light) and

a US causes representational changes. The representation of the light becomes

compressed, together with the representations of the background contextual cues, since

 29

0

2

4

6

8

10

12

Intact Seperate
Exposure (tone-,

light-)

Intact Compound
Exposure

(tone&light)

Lesion Seperate
Exposure (tone-,

light-)

Lesion Compound
Exposure

(tone&light)

R
es

po
ns

e
R

at
e

0

5

10

15

20

25

30

Intact Seperate
Exposure (tone-,

light-)

Intact Compound
Exposure

(tone&light)

Lesion Seperate
Exposure (tone-,

light-)

Lesion
Compound
Exposure

(tone&light)

R
es

po
ns

e
R

at
e

0

5

10

15

20

25

30

35

Intact Seperate
Exposure (tone-,

light-)

Intact Compound
Exposure

(tone&light)

Lesion Seperate
Exposure (tone-,

light-)

Lesion
Compound
Exposure

(tone&light)

R
es

po
ns

e
R

at
e

Figure 3.13 Sensory Preconditioning. A: Rabbit data. B: Gluck & Myers model simulations. C: GeneRec
model simulations.

A)

B)

C)

 30

Table 3.1
The Learned Irrelevance Paradigm.

Group Phase 1 Phase 2

CS/US exposure Light and airpuff (uncorrelated) Light → airpuff
 ….SLOW!

Sit exposure Animal sits in experimental chamber Light → airpuff
 ….normal speed

neither predicts the US well. In effect, the light is treated as a sometimes-occurring

aspect of the context, one that is of no use in predicting US arrival. This representational

compression of light and context will hinder phase 2 learning to respond to the light but

not the context alone. Thus, there is a learned irrelevance effect in the intact cortico-

hippocampal model. Since learned irrelevance is interpreted in terms of representational

compression, it is not shown in the HR-lesion model.

 31

0

50

100

150

200

250

300

Intact Sit Exposure Intact CS/US
Exposure

Lesion Sit
Exposure

Lesion CS/US
Exposure

T
ri

al
s

to
 C

ri
te

ri
on

0

20

40

60

80

100

120

140

160

Intact Sit
Exposure

Intact CS/US
Exposure

Lesion Sit
Exposure

Lesion CS/US
Exposure

T
ri

al
s

to
 C

ri
te

ri
on

0

50

100

150

200

250

300

350

Intact Sit Exposure Intact CS/US
Exposure

Lesion Sit
Exposure

Lesion CS/US
Exposure

T
ri

al
s

to
 C

ri
te

ri
on

Figure 3.14 Learned irrelevance and HR-lesion. A: Rabbit data. B: Gluck & Myers model simulations.
C: GeneRec model simulations.

A)

B)

C)

 32

4. DISCUSSION

4.1 Introduction

In this thesis all the training data, network model and several other data or

principles are based on Gluck and Myers’ cortico-hippocampal model. Where possible

all the data and variables were used with their original values. Gluck and Myers

published many articles on their model and also a book: “Gateway to Memory: An

Introduction to Neural Network Modeling of the Hippocampus and Learning” [1]. The

book was somewhat a review and a broad collection of their up to date work on their

cortico-hippocampal model. Therefore, data and simulations performed are based on

this book.

The GeneRec algorithm was chosen as a learning mechanism for this work for

several reasons. First of all, the objective of this work was to come up with a network

model of the hippocampus and related regions that is similar to biological networks and

functioning similar to biological networks in its learning mechanism. The GeneRec

algorithm in many ways seems more biologically plausible rather than the

backpropagation algorithm that was used by Gluck and Myers originally. Moreover, it

has a solid theoretical background and there are many publications using this algorithm

as their learning rule.

4.2 Training Data

As a first step in this work a computer code was written to generate the training

data, based on Gluck and Myers cortico-hippocampal model’s training data principles.

Training data set for any case included 18-bits of input vector, 19-bits of target output

vector for hippocampal network and 1-bit of target output for cortico-cerebellar

network. All the data were formed of 0s and 1s. The input vector includes stimulus

patterns, tonic cues, phasic cues and random formed constant contextual bits which

evolve slowly by time. Further details are in the “Stimuli and Training Schedule” part

above in the simulation details.

 33

As the second step, Gluck and Myers’ model was realized using Matlab. First the

hippocampal network was written and tested, and then cortico-cerebellar network was

written and tested. Finally both networks were combined. With several trials,

performance and results of the network were as in their original work. This reproduction

work of the model was very valuable. The hippocampal network was a typical three

layer network with an important difference which is, trying to reproduce input vector at

the output and also trying to guess unconditioned stimulus. The cortico-cerebellar

network was again a three layer network with 18 input nodes but only one output node

to guess the unconditioned stimulus. While the hippocampal network used

backpropagation for learning, the cortico-cerebellar network did not. For the intact

model both networks work together. Hidden layer outputs of the hippocampal network

are used to obtain the target output values of the hidden layer nodes of the cortico-

cerebellar network. For the lesioned model there are no teaching signals for the hidden

layer nodes of the cortico-cerebellar network.

4.3 The GeneRec Algorithm

When it came to write the code with GeneRec, it was the same strategy as before;

divide the network into two as hippocampal network and cortico-cerebellar network.

The hippocampal network was performing well with GeneRec. However, our concern

here was to write a code that is as much as similar to the biological constraints. That is,

weights should not take negative values and they should be limited in their values. The

method used at this stage was SWB (Soft Weight Bounding). The SWB function

modifies weight changes during weight update. For any given lower and upper limits,

weight change exponentially slows through the limits. Weight bounding is appealing

from a biological perspective because it is clear that synaptic efficacy has limits.

However, we do not know of any specific empirical evidence regarding the nature of

synaptic bounding function.

There were two alternatives for applying SWB. The first was to apply it with a

negative lower value. Therefore, the boundaries would be such as (-1, 1). The second

was to apply it with 0 lower boundary. However, in such a case there should be an

inhibitory mechanism to prevent over-excitation, which in turn prevents convergence.

 34

First, SWB with (-1, 1) boundaries is applied. Addition of SWB increased required

number of epochs for the network’s learning criterion but did not have a significant

effect on convergence. To apply SWB with 0 lower boundary kWTA inhibition is

planned to be added to the network.

4.3.1 kWTA

As mentioned above in Section .2.8, a kWTA function ensures that no more than

k units out of n total in a layer are active at any given time. Actually this function

produces similar results to inhibitory interneuron activity. Also it is computationally

less resource intensive considering inhibitory neurons. Moreover, it is easier to apply

since it does not require addition of extra network layers and is more manageable with

less parameter. However, it has some drawbacks; for example, the activity level for the

applied network layer is roughly constant. Since it has different types as basic or

average based kWTA, deciding on any type may require experience or lots of trials.

Another challenge with kWTA is to decide, in any layer, how many nodes will be

active at any time. For the output layer of the hippocampal network the case was tricky.

Since the hippocampal network is thought as an auto-encoder, the number of active

nodes in the output layer would be roughly the same as in the input nodes. However, for

the hidden layer of the hippocampal network, finding the working k value was not easy.

Furthermore, any fixed k value would not be biologically meaningful. After excessive

trials the best way appeared to be calculating the k value related to the overall activity

distribution of nodes. Considering a normal statistical probability distribution, the k

value is calculated from the number of most active units which their z value is bigger

than 0.9.

The next step with the kWTA was to investigate the performance of the system

with different number of hidden layer nodes. In the original Gluck and Myers cortico-

hippocampal model, the number of internal layers for the hippocampal network is 10.

For the first trials, the number of hidden layer nodes was 40 for our model with kWTA

inhibition. Less hidden layer nodes were tried with different z values; however the

performance of the system decreased significantly with fewer nodes. Therefore, in the

 35

following simulations the number of hidden layer nodes for hippocampal network was

taken as 40.

At the last step, SWB is applied with (0, 1) boundaries and with kWTA inhibition

for the hippocampal network. Although convergence could be achieved with this

modification, mean squared errors increased. This was not surprising because the

network was limited in its weights from 0 to 1. Also, even it performs well it was not

easy to get 0s or 1s as outputs. Reaching to weight boundaries is exponentially hard

with SWB. Therefore, mse (mean squared error) values were also calculated with a

threshold (0.5). For the thresholded mse values; if the output of any neuron is bigger

than 0.5 it is calculated as 1 and if it is less than 0.5 then it is calculated as 0.

4.4 The Cortico-Cerebellar Network

Having satisfactory results with the GeneRec for the hippocampal network, it was

time to apply GeneRec to the cortico-cerebellar network. As it is mentioned above the

cortico-cerebellar network was different in its learning mechanism. The teaching signal

for the hidden layer nodes were not through the output layer activity of the cortico-

cerebellar network but a function of the hidden layer activity of the hippocampal

network.

For the jth neuron in the hidden layer of the cortico-cerebellar network target plus

phase value is calculated as,

J = ∑ vhj xh (4.1)

where the vhj are connection strengths from each hidden node h in the hippocampal

network to hidden node j in the cortical network. Further details are above in the

simulations part.

4.4.1 Inhibition

During the development of the cortico-cerebellar network code we faced various

problems. As mentioned before, when using kWTA inhibition, how to compute the k

values for each layer must be decided. For the hidden layer of the cortico-cerebellar

 36

network any k value may be used, leading to a great number of active hidden layer

nodes. Another approach is to use a similar value to the one used in the hippocampal

network. However, the real challenge is to decide the k value of the output layer, since

there is only one node. The k value is an integer; for the output layer there are only two

choices will it be 0 or 1. If it is 1, the network always computes 1. If it is 0, the network

always computes 0 which is also wrong. There is no way of predicting the k value. Even

if there is, actually it is the function of network to guess the output will be 0 or 1. As a

consequence it was apparent that another method of inhibition should have been used.

The second method of inhibition choice for the cortico-cerebellar network was the

use of inhibitory interneurons as it is been in a biological network. These inhibitory

interneurons were added as two additional layers interacting with all three layers of the

cortico-cerebellar network. They had feedforward, feedback and self inhibitory

connections. Addition of these neurons and thereby new layers required addition of

many parameters such as relative strengths of feedforward, feedback and self inhibitory

connections for even each layer level. However, nonlinearity of the system with its

highly dynamic character and sophisticated structure dramatically decreased its

manageability. After excessive trials, the performance of the network was not found

satisfactory; even not better than the kWTA inhibition application for the cortico-

cerebellar network. Consequently, the only choice was to abandon inhibition for the

cortico-cerebellar network.

4.5 Cortico-Cerebellar and Hippocampal Networks

Finally two networks, that are cortico-cerebellar and hippocampal networks were

combined as a system. However, it was hard to state whether the cortico-cerebellar

output converged. Although, the minimum values of the mean squared error trend was

looked like it is converging, actually it was oscillating but not converging. The reason

of these huge oscillations was rapid representational changes in the hidden layer of the

hippocampal network. To prevent these rapid representational changes, kWTA

inhibition and therefore SWB was abandoned. Consequently, the network as system,

started to give meaningful results.

 37

4.6 Representational Compression

For the acquisition case which is learning to respond to a cue that has been paired

with the US, the comparison is made on percentage conditioned responses after a fixed

number of epochs. The comparison data was obtained from the Gluck and Myers’

articles and consisted of data gathered from humans and rabbits. Both subjects

responded at nearly same percentage for their lesioned and intact ones. Human subjects

responded around 40% for both with lesioned and intact hippocampus. Rabbits

responded around 70%. Model simulations of Gluck and Myers resulted in 78% for the

control group (intact) and 82% for the amnesic group (lesion). GeneRec implementation

of Gluck and Myers model gave 86% for the control group (intact) and 93% for the

amnesic group (lesion). Standard deviation for our implementation was 4.1 for the

control group and 6.6 for the amnesic group.

The next example was another representational differentiation case:

discrimination and discrimination reversal. For this case, comparison is made on mean

trials to criterion. For this case we only had rabbit data which is again from Gluck and

Myers articles. The first comparison is made on discrimination. Rabbits responded

around 80% for both the control group and the amnesic group. Model simulations of

Gluck and Myers resulted in 82% for the control group (intact) and 85% for the amnesic

group (lesion). The GeneRec implementation of Gluck and Myers model gave 77% for

the control group (intact) and 71% for the amnesic group (lesion). The standard

deviation for our implementation was 21 for the control group and 5.9 for the amnesic

group.

The next comparison is made on discrimination reversal. Control group rabbits

reached the criterion around after 2000 trials where amnesic group of rabbits reached

the criterion around after 8300 trials. Model simulations of Gluck and Myers resulted in

300 epochs to reach the criterion for the control group and 600 epochs for the amnesic

group. The GeneRec implementation of Gluck and Myers model gave 35 epochs for the

control group (intact) and 113 epochs for the amnesic group (lesion). The standard

deviation for our implementation was 1.5 for the control group and 111 for the amnesic

group. The huge standard deviation of the amnesic group considering the mean value

was significant. This was due to the wide range of results for this case. Actually half of

 38

the simulations reached the criterion after many epochs yet some simulations reached

the criterion as fast as the control group. This was possibly due to initial representations

formed after discrimination before reversal simulations ran. These initial

representations, by chance allowed the cortico-cerebellar network to form new and

correct representations just by changing its output layer weights.

4.7 Representational Differentiation

We had two representational differentiation cases. One is sensory preconditioning

and the other is learned irrelevance. For the sensory preconditioning case, comparisons

are based upon response rates. Experimental data was from rabbits. Sensory

preconditioning involves unreinforced exposure to a compound of two stimuli (tone and

light- exposure), followed by light-US pairings (light+ training). Rabbits gave very low

response rates to separate exposure for both control and amnesic group. On the other

hand, the control group rabbits gave significantly higher, even more than 10 times,

response rates to compound exposure when both stimuli were given simultaneously.

The Gluck and Myers model simulations gave similar results. Response rates for

separate exposure and compound exposure for amnesic group were around 15, where

compound exposure to control group gave response rates around 25. The GeneRec

implementation of Gluck and Myers model was similar considering the results of the

original implementation. Separate exposure to stimuli yielded a response rate of 14 for

both the control and the amnesic group. Compound exposure yielded a response rate of

18 for the amnesic group and 30 for the control group. Standard deviations for our

implementation were calculated below 1 for all of the cases.

Again for the learned irrelevance case comparisons were made with rabbit data

while comparing mean trials to criterion. Once more, there were two phases; in phase 1,

some of the subjects are exposed to presentations of uncorrelated data but the others not.

In phase 2 they are given presentations of the same stimuli but correlated this time.

Rabbits reached the criterion after around 200 for control sit exposure group and

amnesic CS/US represented group. However, the control group which is exposed to

uncorrelated CS/US pairings reached to the criterion after around 270 trials in the mean.

The Gluck and Myers model simulations needed around 80 epochs for control sit

 39

exposure group, around 90 for amnesic sit exposure group, around 80 for amnesic

CS/US group. It took around 150 epochs for the control CS/US group. The GeneRec

implementation of Gluck and Myers model reached at 212 epochs in mean for control

sit exposure group, 79 epochs in mean for amnesic sit exposure group, 47 epochs in

mean for amnesic CS/US exposure group and 294 epochs in mean for control CS/US

exposure group. The standard deviations were 33, 3, 46 and 142 respectively. The

reason for the standard deviation of 142 was due to the occasionally fast reach of model

simulations to the criterion, probably caused by formed representations in the hidden

layer of cortico-cerebellar network in phase 1.

As a consequence, all of the results obtained were closely correlated with the

referred previous findings. However, further representational differentiation and

compression cases could be tested on the implemented model to understand its possible

uses or even its shortcomings.

 40

5. CONCLUSIONS

5.1 General

Hippocampal-region dysfunction has long been suggested to be an important

contributor to the cognitive impairments observed Alzheimer’s disease (AD) which is a

leading cause of death among people over the age of 60. Recent research has produced

findings that may allow early detection of which individuals are most at risk to develop

AD in the future. In some elderly individuals, the hippocampus and the endorhinal

cortex show signs of atrophy while other nearby brain structures appear intact [1]. It is

hoped that study of biologically plausible learning models will probably contribute to

our understanding concerning the underlying reasons and possible consequences of

hippocampal dysfunction. Therefore the main objective of this thesis work was to

develop an artificial neural network model that in many ways behaved like the

hippocampal region. For this purpose we have used the cortico-hippocampal model of

Gluck and Myers as the basic model. However, we modified this model by the

application of the GeneRec algorithm with soft weight bounding and with external

inhibition. This model was analyzed through extensive numerical simulations to study

phenomena that occur in the hippocampal region, as this region undergoes atrophy.

The results obtained by this work were closely correlated to the results of the

original implementation of Gluck and Myers. Most of the time, the GeneRec

implementations of the cortico-cerebellar and hippocampal networks learned faster

with respect to the original implementations.

As we mentioned before, at a functional level, several neural network models are

available for the hippocampal region and its relationship with other brain areas.

Although these models may give satisfactory results, considering animal studies, in

general their learning algorithms do not care biological plausibility at first. In this work

we tried to take into account biological considerations in terms of bounded weights and

external inhibition and by using locally available activation variables as opposed to

error or other variables. Therefore, we tried to integrate neural network principles with

the biological mechanisms to have a better understanding of hippocampal region

 41

dysfunction. Moreover, we have analyzed and compared the results of using the

GeneRec algorithm in a different kind of network architecture.

5.2 Recommendations for Future Work

At the beginning of this study our research was concentrated on neural network

models of the hippocampal region at a functional level along with learning algorithms

that are similar to biological mechanisms. However, we encountered several problems

during the GeneRec implementation particularly due to external inhibition. The kWTA

inhibition demonstrated its shortcomings such as difficulties to manipulate inhibition

under highly dynamic conditions. External inhibition with inhibitory interneurons could

not provide the required convergence either. The problem of convergence may have

been related to the structure of inhibitory network with its own connections or may be

related to the interaction with cortico-hippocampal network. Clearly, the choise of

external inhibition method and its application strongly affects the results. Application of

alternative inhibition methods or structures may improve convergence with external

inhibition and contribute to model’s similarity to biological neural networks.

GeneRec was one of the learning algorithm alternatives for this study. Another

algorithm may suit better for the purpose of biological plausibility.

Cortico-hippocampal model of Gluck and Myers concentrates on representational

differentiation and compression function of hippocampus and its interaction with

cortical brain areas. In this study we only studied a few representational differentiation

and compression cases hence, study of further cases can improve our understanding of

the model and its implementation.

 42

APPENDIX A

TRAINING DATA GENERATOR CODE

% cortical/cerebellar & hippocampal network training data set

% - number of network inputs is 18
% - 5 phasic(light, tone, etc.) 13 tonic contextual cues. 5+13=18
% - stimulus patterns are constructed by setting first five bits to 0 or 1,
% depending on the presence or absence of five phasic cues
% - next three bits code for a unique context: 101 context X, 010 context Y
% - the final 10 bits are random string of 0s and 1s, constant across all
% stimulus patterns, but evolve slowly with time, so that on any trial
% there is some probability, P=.01, that one of the 10 bits will be
% inverted; this inversion is permanent unless randomly inverted back.

%--
trn_block=[' X-';'AX+';' X-';' Y-';'AY-';' Y-']
% is indeed ['AX+';' X-';'AY-';' Y-']
% No of Presentation of each Stimulus Pattern Matrix being trained
n_pspm=[10,1,10,10,1,10]
trn_set='01a' % no of TRaiNing SET
%--
reply = input('is everything ok up to now? y/n [y]: ','s');
if isempty(reply)
 reply = 'y';
end
if reply~='y'
 clear, return
end
%--
cntx_s=round(rand(10,1)); %generates Static CoNTeXt

nib=size(trn_block,1); % No of Items in Block. no of columns
inpt=[];
hpn_out=[];, ccn_out=[];
for n_b=1:nib
 k=trn_block(n_b,:); %read one row at once
 iminpt=inpt; %to add each produced input set to the preceding one
 imhpn_out=hpn_out;, imccn_out=ccn_out;
 if length(k)==3
 if k(1)==' ', indx_p=0; %INDeX of Phasic input. '0':no phasic input
 %index of phasic input 1,2,3,4,5 for A,B,C,D,E respectively.
 elseif k(1)=='A', indx_p=1;
 elseif k(1)=='B', indx_p=2;
 elseif k(1)=='C', indx_p=3;
 elseif k(1)=='D', indx_p=4;
 elseif k(1)=='E', indx_p=5;

 43

 else disp('improper input case'), return
 end
 if k(2)=='X', cntx_u=[1;0;1]; % Unique CoNTeXt X=[1;0;1]
 elseif k(2)=='Y', cntx_u=[0;1;0]; % Unique CoNTeXt Y=[0;1;0]
 else disp('improper input case'), return
 end
 CRout=k(3); %CRout: Conditioned Response OUTput
 if CRout=='-', CRout=0;
 elseif CRout=='+', CRout=1;
 else disp('improper input case'), return
 end
 else disp('improper input case'), return
 end
 %--
 phsc=zeros(5,1);,
 if indx_p~=0
 phsc(indx_p)=1; % PHaSiC input
 end

 n_psp=n_pspm(n_b);
 inpt=[]; % required, otherwise for the case:
 % '# of training data set(i)'<'no of items in training block(nib)' ;
 % inpt(:,i) writes on the previous inpt value
 hpn_out=[];, ccn_out=[];
 for i=1:n_psp % Number of training data sets.
 % Since static context should slowly change.
 % Training Input Data. Same for both of the networks
 pinv=100;
 % beta probability distribution function.
 % Flat pdf(probability distrb. func.) with coefficients (1,1)
 rnd=random('beta',1,1)*pinv;
 % with probability of 1/pinv, take inverse of one of the values of
 % static context.
 if round(rnd)==1
 disp('inverse')
 %-----
 sans1=0; % generates integers between 1-10 to choose
 % which one of the static context values will be changed
 while sans1<1 | sans1>10
 sans1=round(random('beta',1,1)*11);
 end
 %-----
 if cntx_s(sans1)==0 %take inverse
 cntx_s(sans1)=1;
 else
 cntx_s(sans1)=0;
 end
 else

 44

 end
 %input for phasic, unique context X, static context
 inpt(:,i)=[phsc; cntx_u; cntx_s];
 % Training Output Data.
 % Hippocampal Network OUTput. CRout: Conditioned Response OUTput
 hpn_out(:,i)=[inpt(:,i); CRout];
 % Cortical/Cerebellar Network OUTput.
 ccn_out(:,i)=[CRout];
 end
 inpt=[iminpt,inpt];
 hpn_out=[imhpn_out,hpn_out];
 ccn_out=[imccn_out,ccn_out];
end
inpt_cntx=inpt(:,1); hpn_out_cntx=hpn_out(:,1); ccn_out_cntx=ccn_out(:,1);
% Training Data
% inpt, hpn_out, ccn_out
% inpt_cntx, hpn_out_cntx, ccn_out_cntx
% Save training data
fln=['trn_data',trn_set];
save(fln,'trn_block','n_pspm','inpt','hpn_out','ccn_out', ...
 'inpt_cntx','hpn_out_cntx','ccn_out_cntx')
clear

 45

APPENDIX B

CORTICO-HIPPOCAMPAL INTACT MODEL CODE

% Cort.-Cereb. and Hippocampal Networks (Intact Model). Acquisition Case.
%
% This code simulates intact model for acquisition case.
%
% After network initialization two phases exist in this code:
% 1) Adapt network to context
% 2) Adapt network for acquisition
%
% Algorithm
%
% - Initialize Network (# of layers, neurons, weights, biases)
%
% - Adapt Network
%
% Minus Phase:
% 1) Clamp only external input to the input units
% 2) Settle the network with the settling routine
%
% Plus Phase:
% 3) Clamp one training vector (external input and target) to the visible
% units of the network
% 4) Settle the network with the settling routine
% (only changes activations of units, not the weights), therefore get
% the activations
%
% Weight Change:
% 5) Calculate and apply appropriate weight changes
% perform "Soft Weight Bounding"
% calculate individual mean square errors
% 6) Repeat steps 1 through 5 for all training vectors (1 epoch)
% calculate overall mean square errors for one epoch
% 7) Repeat steps 1 through 6 until the mean square error is below a
% threshold
%
% Settling Routine(synchronous updating):
% 1) Force the outputs of all visible units to the specified input vector
% 2) Assign "0" output value to all unknown units
% 3) For all units: compute raw_netin = sum sending_act * weight
% (Add both top-down input dot products and bottom-up input dot products)
% 4) For all units compute:
%
% netin = netin + dt * (raw_netin - netin)
% act = sigmoid(netin)
%

 46

% 5) Repeat steps 3 to 4 for several processing cycles, until activation
% changes go below a threshold

% Ilim Cagiran, 2006
% Revision: 17_c

clear
tic

load trn_data02.mat

nmax_loop_settle= 100; % Max Number of Loops for hpn Settling
z_ninL2_hpn= 0.9;
%-----------------------

% CREATE NETWORK DATA
%--
Si= 18; % Size of Input vector
S1_hpn= 10; % Size of Hidden Layer of HPN
S2_hpn= 19; % Size of Output Layer of HPN
S1_ccn= 60; % Size of Hidden Layer of CCN
S2_ccn= 1; % Size of Output Layer of CCN

% ----------------------
% Due to "soft weight bounding" weight range is (0,1).
% Therefore weight values are centered on the middle value of 0.5 instead of 0

% Intialize HPN
U_hpn= 0.1;
% All weights of the net initialized according to random distribution U
% WEIGHTS: The indices in "W_J_K" designates the weight matrix from
% the J'th layer to the K'th layer in this code.
% Input layer is the 1st layer. Hidden layer is the 2nd layer.
% Output layer is the 3rd layer.
% rands: returns an S-by-R weight matrix of random values between -1 and 1
W_hpn_1_2= U_hpn*rands(S1_hpn,Si)+0.5;
W_hpn_2_1= W_hpn_1_2'; % take transpose of weight matrix.
% Derivation of the algorithm requires symmetric weights.
W_hpn_2_3= U_hpn*rands(S2_hpn,S1_hpn)+0.5;
W_hpn_3_2= W_hpn_2_3';
% Biases
b_hpn_2= zeros(S1_hpn,1); % Leabra default 0 with 0 variance
b_hpn_3= zeros(S2_hpn,1);

% Intialize CCN
U_ccn_lo= 0.3; %U LOwer. Due to SWB, max value of U can only be 0.5
U_ccn_up= 0.1; %U UPper.
% "W_ccn_2e_3i" designates the weight matrix from the 2nd Excitatory layer

 47

% to the 3th Inhibitory layer in this code.
% W_ccn_1e_2e= U_ccn_lo*rands(S1_ccn,Si)+0.5;
% W_ccn_1e_2i= U_ccn_lo*rands(S1_ccn_i,Si)+0.5;
W_ccn_2e_3e= U_ccn_up*rands(S2_ccn,S1_ccn)+0.5;
W_ccn_3e_2e= W_ccn_2e_3e';

% Biases
b_ccn_2= zeros(S1_ccn,1);
b_ccn_3= zeros(S2_ccn,1);

% dt. temporal integration constant for Excitatory neurons. Step Constant
sc_e= 0.3;
% dt. temporal integration constant for Inhibitory neurons
sc_i= 0.4;
% overall weight scale for FeedForward inhibition. multiplied with weights
% for different layer level excitatory to inhibitory connections.
scale_ff= 1 ;
% overall weight scale for FeedBack inhibition. multiplied with weights
% for same layer level excitatory to inhibitory connections.
scale_fb= 1 ;
scale_ff_up= 1 ;
scale_fb_up= 1 ;
w_mult_3i_3e= 1 ; % weight multiplier for 3i to 3e connection.
w_mult_2e_3e= 1 ;
w_mult_2e_3i= 1 ;
% w_mult_1e_2e= 1/8 ;
% w_mult_1e_2i= 1/8 ;
w_mult_2e_2i= 1 ;
lr_mult_ccn= 1; % Learning Rate Multiplier ccn
% ----------------------

% Intialize HPN CCN connection
Uvhc= 1;
Vhc= Uvhc*rands(S1_ccn, S1_hpn)+0.0; % hpn-ccn connection weights.
w_mult_h2e_c2e= 1 ;
% ----------------------

% ADAPT NETWORK TO CONTEXT
%--
n_ep= 300;
mse_log=zeros(n_ep,5); % to improve program performance
disp('Please wait')
q= 0.25; % 0 < q < 1 where q = 0.25 may be default
% weight change threshold. default is 0.1 in GeneRec
dwt_thresh_ccn= 1.e-3; dwt_thresh_hpn= 1.e-2;
[r,c]=size(inpt_cntx);
ki2=50; % after how many epochs results will be showed
ki2=ceil(n_ep/(ki2*30))*ki2;

 48

for ko2=1:n_ep
 mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0;
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = 0; m_o_aL2_ccn_m = 0;
 for cnt2=1:c
 aL1_hpn= inpt_cntx(:,cnt2); y_hpn= hpn_out_cntx(:,cnt2);
 aL1_ccn= inpt_cntx(:,cnt2); y_ccn= ccn_out_cntx(:,cnt2);
 if y_hpn(end)==1 % conditional response target is 1
 lr_hpn= 0.25; % Learning Rate for hpn
 lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer
 lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer
 elseif y_hpn(end)==0
 lr_hpn= 0.025;
 lr_ccn_lo= lr_mult_ccn*0.01;
 lr_ccn_up= lr_mult_ccn*0.05;
 else
 error('Conditional Response Target should be either 0 or 1')
 end

 % MINUS PHASE
 %-----------------------

 % HPN OUTPUT CALCULATION / STARTS - MINUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_hpn= zeros(S1_hpn,1);
 aL3_hpn= zeros(S2_hpn,1);

 ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values
 ninL3_hpn= zeros(S2_hpn,1);
 sc= 0.1; % Step Constant, dt

 warning off MATLAB:divideByZero
 delta_aL2_hpn=1; delta_aL3_hpn=1;
 n_loop_hpn_m= 0; % Number of Loops for hpn settling in Minus phase
 for cnt5=1:nmax_loop_settle
 % _pr means Previous. used to calculate change
 aL2_hpn_pr= aL2_hpn;
 aL3_hpn_pr= aL3_hpn;

 % Add both bottom-up & top-down input dot products
 % Layer2
 nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2;
 % Layer3. output units are not self connected. No top-down input
 nL3_hpn= W_hpn_2_3*aL2_hpn + b_hpn_3;

 % netin = netin + dt * (raw_netin - netin)
 ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn);

 49

 ninL3_hpn= ninL3_hpn + sc*(nL3_hpn - ninL3_hpn);

 % act = sigmoid(netin+inhibition)
 aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid
 aL3_hpn= 1 ./ (1 + exp(-ninL3_hpn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr));
 delta_aL3_hpn= mean(abs((aL3_hpn-aL3_hpn_pr)./aL3_hpn_pr));

 if (delta_aL2_hpn < dwt_thresh_hpn) & ...
 (delta_aL3_hpn < dwt_thresh_hpn), break, end
 end
 aL2_hpn_m= aL2_hpn; % _m, Minus
 aL3_hpn_m= aL3_hpn;

 % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= zeros(S2_ccn,1);

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values
 ninL3_ccn= zeros(S2_ccn,1);

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1; delta_aL3_ccn=1;
 while (delta_aL2_ccn > dwt_thresh_ccn) | ...
 (delta_aL3_ccn > dwt_thresh_ccn)
 % _pr means Previous. used to calculate change.
 aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn;

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_m) ...
 + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e
 % Layer3e. output units are not self connected. No top-down input
 nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3;

 % netin = netin + dt * (raw_netin - netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);
 ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid
 aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));

 50

 delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr));

 end
 aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus
 if y_hpn(end)==1 % conditional response target is 1
 cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn
 end

 % PLUS PHASE
 %-----------------------

 % HPN OUTPUT CALCULATION / STARTS - PLUS PHASE
 %---
 % Assign "0" output value to all unknown units
 aL2_hpn= zeros(S1_hpn,1);
 aL3_hpn= y_hpn;

 ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values
 sc= 0.1; % Step Constant, dt

 warning off MATLAB:divideByZero
 delta_aL2_hpn=1;
 n_loop_hpn_p= 0; % Number of Loops for hpn settling in Minus phase
 for cnt5=1:nmax_loop_settle
 % _pr means Previous. used to calculate change
 aL2_hpn_pr= aL2_hpn;

 % Add both bottom-up & top-down input dot products
 % Layer2
 nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2;

 % netin = netin + dt * (raw_netin - netin)
 ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn);

 % act = sigmoid(netin+inhibition)
 aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr));

 if (delta_aL2_hpn < dwt_thresh_hpn), break, end
 end
 aL2_hpn_p= aL2_hpn; aL3_hpn_p= y_hpn; % _p, Plus

 % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);

 51

 aL3_ccn= y_ccn;

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1;
 while delta_aL2_ccn > dwt_thresh_ccn
 % _pr means Previous. used to calculate change
 aL2_ccn_pr= aL2_ccn;

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_p) ...
 + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e

 % netin = netin + dt * (raw_netin - netin)
 % act = sigmoid(netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));

 end
 aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus

 % CALCULATE WEIGHT CHANGES
 %-------------------------
 % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus)
 % sending unit with activation x_J
 % receiving unit with activation y_K

 % in "minus phase" aL1 is clamped
 % in "plus phase" aL1 and aL3 are both clamped

 % HPN WEIGHT UPDATE
 %--
 W_ch_hpn_1_2=zeros(S1_hpn,Si);
 for cnt3=1:Si
 W_ch_hpn_1_2(:,cnt3)= lr_hpn* (aL1_hpn(cnt3)*aL2_hpn_p ...
 - aL1_hpn(cnt3)*aL2_hpn_m);
 end
 % weight update with SWB W change
 W_hpn_1_2= W_hpn_1_2 + W_ch_hpn_1_2;
 % --------------
 W_ch_hpn_2_1=zeros(Si,S1_hpn);

 52

 for cnt3=1:S1_hpn
 W_ch_hpn_2_1(:,cnt3)= lr_hpn* (aL2_hpn_p(cnt3)*aL1_hpn ...
 - aL2_hpn_m(cnt3)*aL1_hpn);
 end
 % weight update with SWB W change
 W_hpn_2_1= W_hpn_2_1 + W_ch_hpn_2_1;
 % --------------
 W_ch_hpn_2_3=zeros(S2_hpn,S1_hpn);
 for cnt3=1:S1_hpn
 W_ch_hpn_2_3(:,cnt3)= lr_hpn* (aL2_hpn_p(cnt3)*aL3_hpn_p ...
 - aL2_hpn_m(cnt3)*aL3_hpn_m);
 end
 % weight update with SWB W change
 W_hpn_2_3= W_hpn_2_3 + W_ch_hpn_2_3;
 % --------------
 W_ch_hpn_3_2=zeros(S1_hpn,S2_hpn);
 for cnt3=1:S2_hpn
 W_ch_hpn_3_2(:,cnt3)= lr_hpn* (aL3_hpn_p(cnt3)*aL2_hpn_p ...
 - aL3_hpn_m(cnt3)*aL2_hpn_m);
 end
 % weight update with SWB W change
 W_hpn_3_2= W_hpn_3_2 + W_ch_hpn_3_2;
 % --------------
 % HPN BIAS UPDATE
 b_hpn_2= b_hpn_2 + lr_hpn*(aL2_hpn_p-aL2_hpn_m);
 b_hpn_3= b_hpn_3 + lr_hpn*(aL3_hpn_p-aL3_hpn_m);

 % CCN WEIGHT UPDATE
 %--
 W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn);
 for cnt3=1:S1_ccn
 W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*(aL2_ccn_p(cnt3)*aL3_ccn_p ...
 - aL2_ccn_m(cnt3)*aL3_ccn_m);
 end
 W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e;
 % --------------
 W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn);
 for cnt3=1:S2_ccn
 W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*(aL3_ccn_p(cnt3)*aL2_ccn_p ...
 - aL3_ccn_m(cnt3)*aL2_ccn_m);
 end
 W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e;
 % --------------
 % CCN BIAS UPDATE
 b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m);
 b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m);

 53

 % CALCULATE MS ERRORS & DATA REQUIRED
 %--
 % HPN ERRORS
 % mean square error individual
 mse_i_hpn= sum((y_hpn - aL3_hpn_m).^2)/S2_hpn;
 % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5
 mse_thr_i_hpn= sum((y_hpn - round(aL3_hpn_m)).^2)/S2_hpn;
 %-----------------------
 mse_o_hpn = mse_o_hpn + mse_i_hpn; % mse overall for one epoch
 % mse_thr overall for one epoch
 mse_thr_o_hpn = mse_thr_o_hpn + mse_thr_i_hpn;

 % CCN ERRORS
 % mean square error individual
 mse_i_ccn= sum((y_ccn - aL3_ccn_m).^2)/S2_ccn;
 % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5
 mse_thr_i_ccn= sum((y_ccn - round(aL3_ccn_m)).^2)/S2_ccn;
 %-----------------------
 mse_o_ccn = mse_o_ccn + mse_i_ccn; % mse overall for one epoch
 % mse_thr overall for one epoch
 mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn;
 %-----------------------
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m;
 m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m;

 end

 % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn,
 % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn
 mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c;
 mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c;
 mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn;
 mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn;
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m/c; m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;

 if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep

 dtxt3=num2str(mse_o_hpn);
 dtxt3b=num2str(mse_thr_o_hpn);
 dtxt4=num2str(ko2);
 %---------------
 dtxt5=num2str(mse_o_ccn);
 dtxt5b=num2str(mse_thr_o_ccn);
 dtxtg7=['mse_ccn=', dtxt5,' & mse_thr_ccn=', dtxt5b,...
 ' at epoch ', dtxt4];
 disp(dtxtg7)

 54

 end

 subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ...
 TITLE('Output Layer Activity ')
 subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ...
 TITLE('Hidden Layer Activity ')

 M(ko2) = getframe(gcf);
end
toc

% Plot Performance of Network
figure
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',...
 mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-')
TITLE('PERFORMANCE PLOT, GENEREC, SWB')
XLABEL('EPOCHS')
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw')

% ===
figure

% ADAPT NETWORK
%--
n_ep= 500;
mse_log=zeros(n_ep,5); % to improve program performance
disp('Please wait')
q= 0.25; % 0 < q < 1 where q = 0.25 may be default
% weight change threshold. default is 0.1 in GeneRec
dwt_thresh_ccn= 1.e-3; dwt_thresh_hpn= 1.e-2;
[r,c]=size(inpt);
ki2=50; % after how many epochs results will be showed
ki2=ceil(n_ep/(ki2*30))*ki2;
for ko2=1:n_ep
 mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0;
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = 0; m_o_aL2_ccn_m = 0;
 for cnt2=1:c
 aL1_hpn= inpt(:,cnt2); y_hpn= hpn_out(:,cnt2);
 aL1_ccn= inpt(:,cnt2); y_ccn= ccn_out(:,cnt2);
 if y_hpn(end)==1 % conditional response target is 1
 lr_hpn= 0.25; % Learning Rate for hpn
 lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer
 lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer
 elseif y_hpn(end)==0
 lr_hpn= 0.025;
 lr_ccn_lo= lr_mult_ccn*0.01;
 lr_ccn_up= lr_mult_ccn*0.05;

 55

 else
 error('Conditional Response Target should be either 0 or 1')
 end

 % MINUS PHASE
 %-----------------------

 % HPN OUTPUT CALCULATION / STARTS - MINUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_hpn= zeros(S1_hpn,1);
 aL3_hpn= zeros(S2_hpn,1);

 ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values
 ninL3_hpn= zeros(S2_hpn,1);
 sc= 0.1; % Step Constant, dt

 warning off MATLAB:divideByZero
 delta_aL2_hpn=1; delta_aL3_hpn=1;
 n_loop_hpn_m= 0; % Number of Loops for hpn settling in Minus phase
 for cnt5=1:nmax_loop_settle
 % _pr means Previous. used to calculate change
 aL2_hpn_pr= aL2_hpn;
 aL3_hpn_pr= aL3_hpn;

 % Add both bottom-up & top-down input dot products
 % Layer2
 nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2;
 % Layer3. output units are not self connected. No top-down input
 nL3_hpn= W_hpn_2_3*aL2_hpn + b_hpn_3;

 % netin = netin + dt * (raw_netin - netin)
 ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn);
 ninL3_hpn= ninL3_hpn + sc*(nL3_hpn - ninL3_hpn);

 % act = sigmoid(netin+inhibition)
 aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid
 aL3_hpn= 1 ./ (1 + exp(-ninL3_hpn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr));
 delta_aL3_hpn= mean(abs((aL3_hpn-aL3_hpn_pr)./aL3_hpn_pr));

 if (delta_aL2_hpn < dwt_thresh_hpn) & ...
 (delta_aL3_hpn < dwt_thresh_hpn), break, end
 end
 aL2_hpn_m= aL2_hpn; % _m, Minus
 aL3_hpn_m= aL3_hpn;

 56

 % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= zeros(S2_ccn,1);

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values
 ninL3_ccn= zeros(S2_ccn,1);

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1; delta_aL3_ccn=1;
 while (delta_aL2_ccn > dwt_thresh_ccn) | ...
 (delta_aL3_ccn > dwt_thresh_ccn)
 % _pr means Previous. used to calculate change.
 aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn;

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_m) ...
 + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e
 % Layer3e. output units are not self connected. No top-down input
 nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3;

 % netin = netin + dt * (raw_netin - netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);
 ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid
 aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));
 delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr));

 end
 aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus
 if y_hpn(end)==1 % conditional response target is 1
 cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn
 end

 % PLUS PHASE
 %-----------------------

 % HPN OUTPUT CALCULATION / STARTS - PLUS PHASE
 %---
 % Assign "0" output value to all unknown units
 aL2_hpn= zeros(S1_hpn,1);

 57

 aL3_hpn= y_hpn;

 ninL2_hpn= zeros(S1_hpn,1); % NetIN, initial values
 sc= 0.1; % Step Constant, dt

 warning off MATLAB:divideByZero
 delta_aL2_hpn=1;
 n_loop_hpn_p= 0; % Number of Loops for hpn settling in Minus phase
 for cnt5=1:nmax_loop_settle
 % _pr means Previous. used to calculate change
 aL2_hpn_pr= aL2_hpn;

 % Add both bottom-up & top-down input dot products
 % Layer2
 nL2_hpn= W_hpn_1_2*aL1_hpn + W_hpn_3_2*aL3_hpn + b_hpn_2;

 % netin = netin + dt * (raw_netin - netin)
 ninL2_hpn= ninL2_hpn + sc*(nL2_hpn - ninL2_hpn);

 % act = sigmoid(netin+inhibition)
 aL2_hpn= 1 ./ (1 + exp(-ninL2_hpn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_hpn= mean(abs((aL2_hpn-aL2_hpn_pr)./aL2_hpn_pr));

 if (delta_aL2_hpn < dwt_thresh_hpn), break, end
 end
 aL2_hpn_p= aL2_hpn; aL3_hpn_p= y_hpn; % _p, Plus

 % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= y_ccn;

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1;
 while delta_aL2_ccn > dwt_thresh_ccn
 % _pr means Previous. used to calculate change
 aL2_ccn_pr= aL2_ccn;

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_h2e_c2e*(Vhc*aL2_hpn_p) ...
 + W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e

 58

 % netin = netin + dt * (raw_netin - netin)
 % act = sigmoid(netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));

 end
 aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus

 % CALCULATE WEIGHT CHANGES
 %-------------------------
 % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus)
 % sending unit with activation x_J
 % receiving unit with activation y_K

 % in "minus phase" aL1 is clamped
 % in "plus phase" aL1 and aL3 are both clamped

 % HPN WEIGHT UPDATE
 %--
 W_ch_hpn_1_2=zeros(S1_hpn,Si);
 for cnt3=1:Si
 W_ch_hpn_1_2(:,cnt3)= lr_hpn* (aL1_hpn(cnt3)*aL2_hpn_p ...
 - aL1_hpn(cnt3)*aL2_hpn_m);
 end
 % weight update with SWB W change
 W_hpn_1_2= W_hpn_1_2 + W_ch_hpn_1_2;
 % --------------
 W_ch_hpn_2_1=zeros(Si,S1_hpn);
 for cnt3=1:S1_hpn
 W_ch_hpn_2_1(:,cnt3)= lr_hpn* (aL2_hpn_p(cnt3)*aL1_hpn ...
 - aL2_hpn_m(cnt3)*aL1_hpn);
 end
 % weight update with SWB W change
 W_hpn_2_1= W_hpn_2_1 + W_ch_hpn_2_1;
 % --------------
 W_ch_hpn_2_3=zeros(S2_hpn,S1_hpn);
 for cnt3=1:S1_hpn
 W_ch_hpn_2_3(:,cnt3)= lr_hpn* (aL2_hpn_p(cnt3)*aL3_hpn_p ...
 - aL2_hpn_m(cnt3)*aL3_hpn_m);
 end
 % weight update with SWB W change
 W_hpn_2_3= W_hpn_2_3 + W_ch_hpn_2_3;
 % --------------

 59

 W_ch_hpn_3_2=zeros(S1_hpn,S2_hpn);
 for cnt3=1:S2_hpn
 W_ch_hpn_3_2(:,cnt3)= lr_hpn* (aL3_hpn_p(cnt3)*aL2_hpn_p ...
 - aL3_hpn_m(cnt3)*aL2_hpn_m);
 end
 % weight update with SWB W change
 W_hpn_3_2= W_hpn_3_2 + W_ch_hpn_3_2;
 % --------------
 % HPN BIAS UPDATE
 b_hpn_2= b_hpn_2 + lr_hpn*(aL2_hpn_p-aL2_hpn_m);
 b_hpn_3= b_hpn_3 + lr_hpn*(aL3_hpn_p-aL3_hpn_m);

 % CCN WEIGHT UPDATE
 %--
 W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn);
 for cnt3=1:S1_ccn
 W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*(aL2_ccn_p(cnt3)*aL3_ccn_p ...
 - aL2_ccn_m(cnt3)*aL3_ccn_m);
 end
 W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e ;
 % --------------
 W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn);
 for cnt3=1:S2_ccn
 W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*(aL3_ccn_p(cnt3)*aL2_ccn_p ...
 - aL3_ccn_m(cnt3)*aL2_ccn_m);
 end
 W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e ;
 % --------------
 % CCN BIAS UPDATE
 b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m);
 b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m);

 % CALCULATE MS ERRORS & DATA REQUIRED
 %--
 % HPN ERRORS
 % mean square error individual
 mse_i_hpn= sum((y_hpn - aL3_hpn_m).^2)/S2_hpn;
 % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5
 mse_thr_i_hpn= sum((y_hpn - round(aL3_hpn_m)).^2)/S2_hpn;
 %-----------------------
 mse_o_hpn = mse_o_hpn + mse_i_hpn; % mse overall for one epoch
 % mse_thr overall for one epoch
 mse_thr_o_hpn = mse_thr_o_hpn + mse_thr_i_hpn;

 % CCN ERRORS
 % mean square error individual
 mse_i_ccn= sum((y_ccn - aL3_ccn_m).^2)/S2_ccn;

 60

 % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5
 mse_thr_i_ccn= sum((y_ccn - round(aL3_ccn_m)).^2)/S2_ccn;
 %-----------------------
 mse_o_ccn = mse_o_ccn + mse_i_ccn; % mse overall for one epoch
 % mse_thr overall for one epoch
 mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn;

 %-----------------------
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m;
 m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m;

 end

 % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn,
 % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn
 mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c;
 mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c;
 mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn;
 mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn;
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m/c; m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;
 % mean ccn output log: 1st column is # of epoch, 2nd is cr_ccn,
 % 3rd is m_o_aL3_ccn_m,
 % 4th is difference(should be positive): cr_ccn - m_o_ccn_out
 m_o_ccn_out(ko2,1)=ko2; m_o_ccn_out(ko2,2)=cr_ccn(ko2);
 m_o_ccn_out(ko2,3)=m_o_aL3_ccn_m;
 m_o_ccn_out(ko2,4)=cr_ccn(ko2)-m_o_aL3_ccn_m;

 if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep

 dtxt3=num2str(mse_o_hpn);
 dtxt3b=num2str(mse_thr_o_hpn);
 dtxt4=num2str(ko2);
 %---------------
 dtxt5=num2str(mse_o_ccn);
 dtxt5b=num2str(mse_thr_o_ccn);
 dtxtg7=['mse_ccn=', dtxt5,' & mse_thr_ccn=', dtxt5b,...
 ' at epoch ', dtxt4];
 disp(dtxtg7)
 end
 subplot(2,3,1), bar(cr_ccn(ko2)), axis([0,2,0,1]), ...
 TITLE('CR CCN Activity ')
 subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ...
 TITLE('Output Layer Activity ')
 subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ...
 TITLE('Hidden Layer Activity ')

 61

 M(ko2) = getframe(gcf);
end
toc

% Plot Performance of Network
figure
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',...
 mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-')
TITLE('PERFORMANCE PLOT, GENEREC, SWB')
XLABEL('EPOCHS')
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw')

disp('mse_log & ccn_out log will be saved as gr_ccnhpn_????.mat ')
reply = input('Enter the last part of the file name (eg. trial2): ','s');
fln=['gr_ccnhpn_', reply];
save(fln, 'mse_log', 'm_o_ccn_out')
disp('Ready')

 62

APPENDIX C

CORTICO-HIPPOCAMPAL LESION MODEL CODE

% Cortico-Cerebellar Network (Lesion Model). Acquisition Case.
%
% This code simulates lesion model for acquisition case.
%
% After network initialization two phases exist in this code:
% 1) Adapt network to context
% 2) Adapt network for acquisition
%
% Algorithm
%
% - Initialize Network (# of layers, neurons, weights, biases)
%
% - Adapt Network
%
% Minus Phase:
% 1) Clamp only external input to the input units
% 2) Settle the network with the settling routine
%
% Plus Phase:
% 3) Clamp one training vector (external input and target) to the visible
% units of the network
% 4) Settle the network with the settling routine
% (only changes activations of units, not the weights), therefore get
% the activations
%
% Weight Change:
% 5) Calculate and apply appropriate weight changes
% perform "Soft Weight Bounding"
% calculate individual mean square errors
% 6) Repeat steps 1 through 5 for all training vectors (1 epoch)
% calculate overall mean square errors for one epoch
% 7) Repeat steps 1 through 6 until the mean square error is below a
% threshold
%
% Settling Routine(synchronous updating):
% 1) Force the outputs of all visible units to the specified input vector
% 2) Assign "0" output value to all unknown units
% 3) For all units: compute raw_netin = sum sending_act * weight
% (Add both top-down input dot products and bottom-up input dot products)
% 4) For all units compute:
%
% netin = netin + dt * (raw_netin - netin)
% act = sigmoid(netin)
%

 63

% 5) Repeat steps 3 to 4 for several processing cycles, until activation
% changes go below a threshold

% Ilim Cagiran, 2006
% Revision: 08_i

clear
tic

load trn_data02.mat
% CREATE NETWORK DATA
%--
Si= 18; % Size of Input vector
% S1_hpn= 10; % Size of Hidden Layer of HPN
% S2_hpn= 19; % Size of Output Layer of HPN
S1_ccn= 60; % Size of Hidden Layer of CCN
S2_ccn= 1; % Size of Output Layer of CCN

% ----------------------
% Due to "soft weight bounding" weight range is (0,1). Therefore weight
% values are centered on the middle value of 0.5 instead of 0.

% Intialize CCN
U_ccn_lo= 0.3; %U LOwer. Due to SWB, max value of U can only be 0.5
U_ccn_up= 0.1; %U UPper.
% WEIGHTS: The indices in "W_J_K" designates the weight matrix from the J'th
% layer to the K'th layer in this code.
% Input layer is the 1st layer. Hidden layer is the 2nd layer.
% Output layer is the 3rd layer.
% "W_ccn_2e_3i" designates the weight matrix from the 2nd Excitatory layer to
% the 3th Inhibitory layer in this code.
W_ccn_1e_2e= U_ccn_lo*rands(S1_ccn,Si)+0.5; % rands: returns an S-by-R weight
% matrix of random values between -1 and 1

W_ccn_2e_3e= U_ccn_up*rands(S2_ccn,S1_ccn)+0.5;
W_ccn_3e_2e= W_ccn_2e_3e';

% Biases
b_ccn_2= zeros(S1_ccn,1);
b_ccn_3= zeros(S2_ccn,1);

sc_e= 0.3; % dt. temporal integration constant for Excitatory neurons.
sc_i= 0.4; % dt. temporal integration constant for Inhibitory neurons
scale_ff= 1 ; % overall weight scale for FeedForward inhibition. multiplied
% with weights for different layer level excitatory to inhibitory connections
scale_fb= 1 ; % overall weight scale for FeedBack inhibition. multiplied
% with weights for same layer level excitatory to inhibitory connections.
scale_ff_up= 1 ;

 64

scale_fb_up= 1 ;
w_mult_2e_3e= 1 ;
w_mult_1e_2e= 1 ;

lr_mult_ccn= 1;
% ----------------------
scrsz = get(0,'ScreenSize');
figure('Position',[scrsz(3)/10 scrsz(4)/10 scrsz(3)/1.33 scrsz(4)/1.33])

% ADAPT NETWORK TO CONTEXT
%--
n_ep= 300;
mse_log=zeros(n_ep,5); % to improve program performance
disp('Please wait')
%
dwt_thresh_ccn= 1.e-3; % weight change threshold. default is 0.1
[r,c]=size(inpt_cntx);
ki2=50; % after how many epochs results will be showed
ki2=ceil(n_ep/(ki2*30))*ki2;
for ko2=1:n_ep
 mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0;
 m_o_aL3_ccn_m = 0; m_o_aL2_ccn_m = 0;
 for cnt2=1:c
 aL1_hpn= inpt_cntx(:,cnt2); y_hpn= hpn_out_cntx(:,cnt2);
 aL1_ccn= inpt_cntx(:,cnt2); y_ccn= ccn_out_cntx(:,cnt2);
 if y_hpn(end)==1 % conditional response target is 1
 lr_hpn= 0.25; % Learning Rate hpn
 lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer
 lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer
 elseif y_hpn(end)==0
 lr_hpn= 0.025;
 lr_ccn_lo= lr_mult_ccn*0.01;
 lr_ccn_up= lr_mult_ccn*0.05;
 else
 error('Conditional Response Target should be either 0 or 1')
 end

 % MINUS PHASE
 %-----------------------

 % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= zeros(S2_ccn,1);

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values
 ninL3_ccn= zeros(S2_ccn,1);

 65

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1; delta_aL3_ccn=1;
 while (delta_aL2_ccn > dwt_thresh_ccn) | ...
 (delta_aL3_ccn > dwt_thresh_ccn)
 aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn; % _pr means Previous.
 % used to calculate change.

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ...
 W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e
 nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3; % Layer3e
 % output units are not self connected. No top-down input.

 % netin = netin + dt * (raw_netin - netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);
 ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid
 aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));
 delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr));

 end
 aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus
 if y_hpn(end)==1 % conditional response target is 1
 cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn
 end

 % PLUS PHASE
 %-----------------

 % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= y_ccn;

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1;
 while delta_aL2_ccn > dwt_thresh_ccn
 % _pr means Previous. used to calculate change.
 aL2_ccn_pr= aL2_ccn;

 66

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ...
 W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e

 % netin = netin + dt * (raw_netin - netin)
 % act = sigmoid(netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));

 end
 aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus

 % CALCULATE WEIGHT CHANGES
 %-------------------------
 % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus)
 % sending unit with activation x_J, receiving unit with activation y_K

 % in "minus phase" aL1 is clamped, in "plus phase" aL1 and aL3 are
 % both clamped

 W_ch_ccn_1e_2e=zeros(S1_ccn,Si);
 for cnt3=1:Si
 W_ch_ccn_1e_2e(:,cnt3)= lr_ccn_lo*(aL1_ccn(cnt3)*aL2_ccn_p ...
 - aL1_ccn(cnt3)*aL2_ccn_m);
 end
 W_ccn_1e_2e= W_ccn_1e_2e + W_ch_ccn_1e_2e; % weight update
 % --------------
 W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn);
 for cnt3=1:S1_ccn
 W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*(aL2_ccn_p(cnt3)*aL3_ccn_p ...
 - aL2_ccn_m(cnt3)*aL3_ccn_m);
 end
 W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e; % weight update
 % --------------
 W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn);
 for cnt3=1:S2_ccn
 W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*(aL3_ccn_p(cnt3)*aL2_ccn_p ...
 - aL3_ccn_m(cnt3)*aL2_ccn_m);
 end
 W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e; % weight update
 % --------------

 67

 % CCN BIAS UPDATE
 b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m);
 b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m);

 % mean square error individual
 mse_i_ccn= sum((y_ccn - aL3_ccn_m).^2)/S2_ccn;
 % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5
 mse_thr_i_ccn= sum((y_ccn - round(aL3_ccn_m)).^2)/S2_ccn;
 %-----------------------
 mse_o_ccn = mse_o_ccn + mse_i_ccn; % mse overall for one epoch
 % mse_thr overall for one epoch
 mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn;
 %-----------------------
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m;

 m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m;

 end

 % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn,
 % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn
 mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c;
 mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c;
 mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn;
 mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn;
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m/c; m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;

 if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep

 dtxt3=num2str(mse_o_hpn);
 dtxt3b=num2str(mse_thr_o_hpn);
 dtxt4=num2str(ko2);
 %---------------
 dtxt5=num2str(mse_o_ccn);
 dtxt5b=num2str(mse_thr_o_ccn);

 dtxtg7=['mse_ccn=', dtxt5,' & mse_thr_ccn=', dtxt5b,...
 ' at epoch ', dtxt4];

 disp(dtxtg7)
 end
 subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ...
 TITLE('Output Layer Activity ')
 subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ...
 TITLE('Hidden Layer Activity ')

 68

 M(ko2) = getframe(gcf);
end
toc

% figure, movie(M)

% Plot Performance of Network
figure
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',...
 mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-')
TITLE('PERFORMANCE PLOT, GENEREC, SWB')
XLABEL('EPOCHS')
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw')

figure('Position',[scrsz(3)/10 scrsz(4)/10 scrsz(3)/1.33 scrsz(4)/1.33])

% ADAPT NETWORK
%--
n_ep= 300;
mse_log=zeros(n_ep,5); % to improve program performance
disp('Please wait')
%
dwt_thresh_ccn= 1.e-3; % weight change threshold. default is 0.1
[r,c]=size(inpt);
ki2=50; % after how many epochs results will be showed
ki2=ceil(n_ep/(ki2*30))*ki2;
for ko2=1:n_ep
 mse_o_hpn = 0; mse_o_ccn = 0; mse_thr_o_hpn = 0; mse_thr_o_ccn = 0;
 m_o_aL3_ccn_m = 0; m_o_aL2_ccn_m = 0;
 for cnt2=1:c
 aL1_hpn= inpt(:,cnt2); y_hpn= hpn_out(:,cnt2);
 aL1_ccn= inpt(:,cnt2); y_ccn= ccn_out(:,cnt2);
 if y_hpn(end)==1 % conditional response target is 1
 lr_hpn= 0.25; % Learning Rate hpn
 lr_ccn_lo= lr_mult_ccn*0.1; % Learning Rate LOwer layer
 lr_ccn_up= lr_mult_ccn*0.5; % Learning Rate UPper layer
 elseif y_hpn(end)==0
 lr_hpn= 0.025;
 lr_ccn_lo= lr_mult_ccn*0.01;
 lr_ccn_up= lr_mult_ccn*0.05;
 else
 error('Conditional Response Target should be either 0 or 1')
 end

 % MINUS PHASE
 %-----------------------

 % CCN OUTPUT CALCULATION / STARTS - MINUS PHASE

 69

 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= zeros(S2_ccn,1);

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values
 ninL3_ccn= zeros(S2_ccn,1);

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1; delta_aL3_ccn=1;
 while (delta_aL2_ccn > dwt_thresh_ccn) | ...
 (delta_aL3_ccn > dwt_thresh_ccn)
 aL2_ccn_pr= aL2_ccn; aL3_ccn_pr= aL3_ccn; % _pr means Previous.
 % used to calculate change.

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ...
 W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e
 nL3_ccn= w_mult_2e_3e*W_ccn_2e_3e*aL2_ccn + b_ccn_3; % Layer3e
 % output units are not self connected. No top-down input.

 % netin = netin + dt * (raw_netin - netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);
 ninL3_ccn= ninL3_ccn + sc_e*(nL3_ccn - ninL3_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid
 aL3_ccn= 1 ./ (1 + exp(-ninL3_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));
 delta_aL3_ccn= mean(abs((aL3_ccn-aL3_ccn_pr)./aL3_ccn_pr));

 end
 aL2_ccn_m= aL2_ccn; aL3_ccn_m= aL3_ccn; % _m, Minus
 if y_hpn(end)==1 % conditional response target is 1
 cr_ccn(ko2) = aL3_ccn_m; % Conditional Response ccn
 end

 % PLUS PHASE
 %-----------------

 % CCN OUTPUT CALCULATION / STARTS - PLUS PHASE
 %--
 % Assign "0" output value to all unknown units
 aL2_ccn= zeros(S1_ccn,1);
 aL3_ccn= y_ccn;

 70

 ninL2_ccn= zeros(S1_ccn,1); % NetIN, initial values

 warning off MATLAB:divideByZero
 delta_aL2_ccn=1;
 while delta_aL2_ccn > dwt_thresh_ccn
 % _pr means Previous. used to calculate change.
 aL2_ccn_pr= aL2_ccn;

 % Add both bottom-up & top-down input dot products.
 % For inhibitory connections use "-".
 nL2_ccn= w_mult_1e_2e*(W_ccn_1e_2e*aL1_ccn)+ ...
 W_ccn_3e_2e*aL3_ccn + b_ccn_2; % Layer 2e

 % netin = netin + dt * (raw_netin - netin)
 % act = sigmoid(netin)
 ninL2_ccn= ninL2_ccn + sc_e*(nL2_ccn - ninL2_ccn);

 aL2_ccn= 1 ./ (1 + exp(-ninL2_ccn)); % logsigmoid

 % average of activations change ratio
 delta_aL2_ccn= mean(abs((aL2_ccn-aL2_ccn_pr)./aL2_ccn_pr));

 end
 aL2_ccn_p= aL2_ccn; aL3_ccn_p= y_ccn; % _p, Plus

 % CALCULATE WEIGHT CHANGES
 %-------------------------
 % delta_W_J_K= learning rate*(x_J_plus*y_K_plus - x_J_minus*y_K_minus)
 % sending unit with activation x_J, receiving unit with activation y_K

 % in "minus phase" aL1 is clamped, in "plus phase" aL1 and aL3
 % are both clamped

 W_ch_ccn_1e_2e=zeros(S1_ccn,Si);
 for cnt3=1:Si
 W_ch_ccn_1e_2e(:,cnt3)= lr_ccn_lo*(aL1_ccn(cnt3)*aL2_ccn_p ...
 - aL1_ccn(cnt3)*aL2_ccn_m);
 end
 W_ccn_1e_2e= W_ccn_1e_2e + W_ch_ccn_1e_2e; % weight update
 % --------------

 W_ch_ccn_2e_3e=zeros(S2_ccn,S1_ccn);
 for cnt3=1:S1_ccn
 W_ch_ccn_2e_3e(:,cnt3)= lr_ccn_up*(aL2_ccn_p(cnt3)*aL3_ccn_p ...
 - aL2_ccn_m(cnt3)*aL3_ccn_m);
 end
 W_ccn_2e_3e= W_ccn_2e_3e + W_ch_ccn_2e_3e; % weight update

 71

 % --------------

 W_ch_ccn_3e_2e=zeros(S1_ccn,S2_ccn);
 for cnt3=1:S2_ccn
 W_ch_ccn_3e_2e(:,cnt3)= lr_ccn_up*(aL3_ccn_p(cnt3)*aL2_ccn_p ...
 - aL3_ccn_m(cnt3)*aL2_ccn_m);
 end
 W_ccn_3e_2e= W_ccn_3e_2e + W_ch_ccn_3e_2e; % weight update
 % --------------
 b_ccn_2= b_ccn_2 + lr_ccn_lo*(aL2_ccn_p-aL2_ccn_m);
 b_ccn_3= b_ccn_3 + lr_ccn_up*(aL3_ccn_p-aL3_ccn_m);

 % mean square error individual
 mse_i_ccn= sum((y_ccn - aL3_ccn_m).^2)/S2_ccn;
 % mean square error individual. thresholded, x=0 if x<.5 & x=1 if x>=.5
 mse_thr_i_ccn= sum((y_ccn - round(aL3_ccn_m)).^2)/S2_ccn;
 %-----------------------
 % mse overall for one epoch
 mse_o_ccn = mse_o_ccn + mse_i_ccn;
 % mse_thr overall for one epoch
 mse_thr_o_ccn = mse_thr_o_ccn + mse_thr_i_ccn;
 %-----------------------
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m + aL3_ccn_m;
 m_o_aL2_ccn_m = m_o_aL2_ccn_m + aL2_ccn_m;

 end

 % mse log data: 1st column is # of epoch, 2nd is mse_o_hpn,
 % 3rd is mse_o_ccn, 4th is mse_thr_o_hpn, 5th is mse_thr_o_ccn
 mse_o_hpn = mse_o_hpn/c; mse_o_ccn = mse_o_ccn/c;
 mse_thr_o_hpn= mse_thr_o_hpn/c; mse_thr_o_ccn= mse_thr_o_ccn/c;
 mse_log(ko2,1)=ko2; mse_log(ko2,2)=mse_o_hpn; mse_log(ko2,3)=mse_o_ccn;
 mse_log(ko2,4)=mse_thr_o_hpn; mse_log(ko2,5)=mse_thr_o_ccn;
 % mean values are required for bar graphs
 m_o_aL3_ccn_m = m_o_aL3_ccn_m/c; m_o_aL2_ccn_m = m_o_aL2_ccn_m/c;

 if rem(ko2,ki2)==0 | ko2==1 | ko2==n_ep

 dtxt3=num2str(mse_o_hpn);
 dtxt3b=num2str(mse_thr_o_hpn);
 dtxt4=num2str(ko2);
 %---------------
 dtxt5=num2str(mse_o_ccn);
 dtxt5b=num2str(mse_thr_o_ccn);
 dtxtg7=['mse_ccn=', dtxt5,' & mse_thr_ccn=', dtxt5b, ...
 ' at epoch ', dtxt4];
 disp(dtxtg7)

 72

 end
 subplot(2,3,1), bar(cr_ccn(ko2)), axis([0,2,0,1]), ...
 TITLE('CR CCN Activity ')
 subplot(2,3,2), bar(m_o_aL3_ccn_m), axis([0,2,0,1]), ...
 TITLE('Output Layer Activity ')
 subplot(2,3,5), bar(m_o_aL2_ccn_m), axis([0,61,0,1]), ...
 TITLE('Hidden Layer Activity ')

 M(ko2) = getframe(gcf);
end
toc

% Plot Performance of Network
figure
semilogy(mse_log(:,1), mse_log(:,2), 'b--',mse_log(:,1),mse_log(:,3),'g--',...
 mse_log(:,1), mse_log(:,4), 'b-', mse_log(:,1),mse_log(:,5),'g-')
TITLE('PERFORMANCE PLOT, GENEREC, SWB')
XLABEL('EPOCHS')
YLABEL('MSE, blue:hpn, green:ccn, solid:thresholded, dashed:raw')

disp('mse_log will be saved as gr_ccn_????.mat ')
reply = input('Enter the last part of the file name (eg. trial2): ','s');
fln=['gr_ccn_', reply];
save(fln, 'mse_log')
disp('Ready')

 73

REFERENCES

1. Gluck, M.A. and Myers, C.E., Gateway to Memory: An Introduction To Neural

Network Modeling of The Hippocampus And Learning, MIT Press, Massachusetts,

2001.

2. Dayan, P. and Abbot, L.F., Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems, MIT Press, Massachusetts, 2001.

3. Hinton, Ge., and Sejnowski, TJ., “Learning and relearning in Boltzmann machines”.

In D.E. Rumelhart, and J.L. McClelland, eds., Parallel Distributed Processing:

Explorations in the Microstructure of Cognition. Vol. 1, Foundations. Cambridge,

MA, MIT Press,282-317, 1986.

4. O’Reilly, R.C. and Munakata, Y., Computational Explorations in Cognitive

Neuroscience: Understanding the Mind by Simulating the Brain, Cambridge, MA,

MIT Press, 2000.

5. Gluck, M.A., Meeter, M., and Myers, C.E., “Computational models of the

hippocampal region: linking incremental learning and episodic memory”, Trends in

Cognitive Sciences, Vol.7, No.6, June 2003.

6. Gabriel, M., and Moore, J.W., Learning and Computational Neuroscience, MIT

Press, Massachusetts, 1990.

7. Johnston, D., Wu, S.M., Foundations of Cellular Neurophysiology, MIT Press,

Massachusetts, 1995.

8. Hertz, J., Krogh, A., and Palmer, R.G., Introduction to the Theory of Neural

Computation, Addison-Wesley, CA, 1991.

9. Hebb, D.O., The Organization of Behavior: A Neuropsychological Theory, Wiley,

New York, 1949.

10. Hinton, G.E., “Connectionist Learning Procedures,” Artificial Intelligence, 40:185-

234.

 74

11. Goodall, M.C., “Performance of a Stochastic Net”, Nature, 185:557-558, 1960.

12. Sejnowski, T.J., “Storing covariance with nonlinearly interacting neurons”, Journal

of Mathematical Biology, 4:303-321, 1977.

13. Oja, E., “A Simplified Neuron Model as a Principal Component Analyzer”, Journal

of Mathematical Biology, 16:267-273, 1982.

