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ABSTRACT

BAYESIAN EEG SOURCE RECONSTRUCTION USING
MARKOV CHAIN MONTE CARLO METHODS

Electroencephalography (EEG), a non-invasive neuroimaging method measur-
ing neural activity without any metabolic bias, has millisecond scale temporal resolu-
tion, the best among available functional imaging techniques with magnetoencephalog-
raphy(MEG). However, its spatial resolution is severely limited by electrode number
used in measurements and head volume conduction effect. Dipole source analysis, EEG
forward and inverse problem, aims to compensate for the head volume conduction effect
and enhance the spatial resolution of the EEG. Given the known electrical field and
head volume conductor properties, the EEG inverse problem estimates the location
and magnitude of the brain electrical sources. In this study, EEG inverse problem is
formulated using Bayesian inference on a realistic head model. The posterior prob-
ability distribution of dipole parameters including the number of active dipoles are
sampled by Markov chain Monte Carlo (MCMC) methods. Sampling algorithm is de-
signed by combining Reversible Jump (RJ) which permits trans-dimensional iterations
and Parallel Tempering (PT), a heuristic to escape from local optima. Two different
approaches to EEG inverse problem, equivalent current dipole (ECD) and distributed
imaging are combined in terms of probability. EEG inverse problem is solved with
this probabilistic approach using simulated and empirical data. Localization errors are
computed. Comparing to multiple signal classification algorithm (MUSIC) and low-
resolution electromagnetic tomography (LORETA) methods, this study shows that
using MCMC methods with a Bayesian approach is useful for solving the ill-posed
EEG inverse problem.

Keywords: EEG, Dipole source localization, Inverse problems, Bayesian inference,

MCMC methods.



OZET

Beynin elektriksel etkinligini, diger metabolik olaylara baglamaksizin deri iiz-
erinden olgebilen elektroensefalografi (EEG), manyetoensefalografi (MEG) ile beraber
mevcut iglevsel norogoriintiileme yontemleri i¢inde en iyi zamansal ¢oziintirliige sahip-
tir. Uzamsal ¢oziiniirliigii ise Ol¢limlerde kullanilan elektrot sayis1 ve kafa hacminin
elektriksel iletimi ile kisitlidir. EEG potansiyellerini iireten dipol kaynaklarinin anal-
izini iceren ileri ve ters yondeki problem ¢oziimleri, bu kisitlamalarin EEG’nin uzamsal
¢oziintirliigii iizerindeki etkilerini kaldirmay1 amaclar. Bu ¢aligmada, EEG igaretlerini
iireten kaynaklarin beyin dokusu i¢indeki yerlerini ve genliklerini kestiren ters yonlii
problem Bayesci cikasama uygulanarak modellendi. Uc¢ boyutlu gercekci kafa mod-
elininde belirlenmis aday dipol kaynaklarinin sonsal olasilik dagilimlar1 Markov Zin-
ciri Monte Carlo (MZMC) yéntemleri ile drneklendi. Ornekleme algoritmasi, farkl
boyuttaki ¢oziim uzaylar: arasi gecig saglayan tersinir dallanma (TD) ve yerel en iy-
ilere yakinsamay1 azaltan paralel tavlama (PT) yontemleri kullanilarak olugturuldu.
Ters yonlii probleme iki ayr1 yaklagim olan egdeger akim dipolii ve dagitik goriin-
tiileme olasiliksal baglamda birlegtirildi. Ters yonlii problem bu yaklagimla, farkli dipol
yapilaniglariyla olusturulan benzetilmis anlik EEG verileri ve olaya iligskin potansiyel
verisi lizerinde ¢oziildii. Yerellestirme hatalar1 saptandi. Elde edilen sonuglar, liter-
atiirde siklikla kullanilan ¢oklu isaret ayrigtirma yontemi (MUSIC) ve diisiik ¢oziiniir-
likli elektromanyetik tomografi (LORETA) yontemleriyle kargilagtirldiginda, EEG
ters yonlii problem ¢oziimiinde MZMC yontemlerinin Bayesci bir yaklagimla kullanil-

masinin oldukca gercekci oldugu kanisini giiclendirmigtir.

Anahtar Sozciikler: EEG, Dipol kaynak yerellestirme, Ters yonlii problem, Bayesci
kestirim, MZMC yontemleri.
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1. INTRODUCTION

1.1 Motivation

The electroencephalogram, EEG is a record of the oscillations of brain elec-
trical potential recorded from electrodes on the scalp. The scalp EEG, consisting of
measurements of a set of electric potentials differences between pairs of scalp provides
very large scale and strong measures of neocortical activities. Although electrical ac-
tivity recorded from the exposed cerebral cortex of a monkey was reported in 1875 by
Caton, it was not until 1929 that Hans Berger, a psychiatrist in Jena, Germany first
recorded rhythmic electrical activity from the human head. Since then, EEG has be-
come one of the most prominent methods for noninvasive examination of brain activity
|1]. Besides spontaneous EEG recording, some associated measurements have also been
widely practiced. For example the event-related potentials (ERPs) measure the brain
responses that are time-locked to an external stimulus or an internal cognitive event,
whereas its subclass, the evoked potentials (EPs), are usually elicited in response to

sensory stimuli.

Brain electrical activation is a spatiotemporal process, which means that the
activity is three-dimensionally distributed in the brain tissue and evolves with time.
Localizing the different modules of the functional network implicated in a given mental
task is the main purpose of functional neuroimaging studies. During the last 20 years,
research using functional imaging techniques, first with single photon positron emis-
sion tomography (SPECT) and positron emission tomography (PET), and then with
functional magnetic resonance imaging (fMRI) are widely done. Neural activation can
be detected indirectly with both fMRI and PET through imaging of localized contrast
changes that result from the hemodynamic effects of this activation. PET and fMRI
provide millimeter scaled spatial resolution but their temporal resolutions are severely
limited by relatively slow responses of brain metabolism [2|. To investigate temporal

properties of brain circuits, methods that directly measure neuronal activity in real



time are needed. EEG with its millisecond-scale temporal resolution offers this possi-
bility. Its temporal resolution is only limited by the time scale of the biological process.
On the other hand, the conventional EEG suffers from its limited spatial resolution.

This limitation is mainly due to two factors:

(i) One factor is the limited spatial sampling. The standard 10/20 EEG record-
ing montage results in the interelectrode distance of about 6cm. A remarkable progress
in the past decade is that high-resolution EEG systems with 64 to 256 electrodes have
been commercially available. For example, with up to 124 electrodes the average inter-
electrode distance can be reduced to about 2.5 cm. However, EEG data become highly
correlated when the interelectrode distance is reduced about 1 cm. It is reported
that the resolution increases linearly with increasing number of electrodes, reaching a

plateau at around 100 electrodes |3] .

(ii) The second factor is the head volume conduction effect. A single electrode
provides estimates of synaptic action averaged over tissue masses containing between
approximately 100 million and 1 billion neurons. The space averaging of brain poten-
tials resulting from extracranial recording is a random data reduction process forced by
current spreading in the head volume conductor. The electrical potentials generated
from neural sources are attenuated, distorted and blurred as they pass through the
neural tissue, cerebrospinal fluid, meninges, and the low-conductivity skull, and scalp.
Especially the contribution of the low-conducting skull is significant. This physical
separation of the electrode and brain current sources limits the spatial resolution of

EEG.

Advanced EEG imaging techniques are required to compensate for the head
volume conduction effect and enhance the spatial resolution of the EEG. The most
commonly applied spatial enhancement technique is the FEG source reconstruction.
Given a set of scalp measurements, EEG source reconstruction process involves esti-
mation of the properties of the current sources within the brain that produced that
signals. This localization process needs the solutions of two separate but closely related

problems, EEG forward problem and EEG inverse problem (Figure 1.1) which is the



Forw ard Solution

Inverse Solution

Figure 1.1 EEG source localization is done by solving forward and inverse problems. Given a head
model and neural source configuration, forward solution determines produced scalp potentials. Given
scalp potentials and a head model, inverse solution determines neural sources.

main topic of this thesis.

The ultimate goal of electrophysiological neuroimaging is to image brain electri-
cal activity with a high resolution in both time and space domains based on noninvasive
EEG recordings. Such noninvasive and high resolution brain imaging techniques would
bring significant advancement in the fields of clinical neurosurgery, neural pathophys-
iology, cognitive neuroscience, and neurophysiology. For example, in planning tumor
and epilepsy surgery, precise localization of the areas causing symptoms has substantial

importance.

EEG source imaging can facilitate presurgical planning, delineate the epileptic
zone in seizure patients, characterize the brain dsyfunction in patients with psychiatric
disorders and Alzheimer, localize and image brain regions contributing to cognitive

tasks, and help understand how the “Mind” works.



1.2 Objectives

By assuming that neural sources are dipoles aligned in large groups which gen-
erate an electric current corresponding temporally and spatially to brain activity, EEG
dipole source localization can be realized by solving the forward and the inverse prob-

lem using numerical methods.

Given the information on the brain electric source distribution and the head vol-
ume conduction properties, the EEG forward problem determines the source-generated
electric field. The EEG forward solution can be electric potentials, such as the cortical
potentials or scalp potentials, or other measures, like the current density distribution
Figure 1.1. The EEG forward problem is well-defined and has a unique solution gov-
erned by the quasi-static limit of Maxwell’s equations |4]. Different scalp topographies
must have been generated by different source configurations. By solving the forward
problem, the EEG measurements and the underlying brain electrical sources can be re-
lated by the lead field matrix, which is only dependent on the head model and electrode

placements.

In terms of geometry, the head model conductor can be represented by simple
spherical models, or by realistically shaped head models. Spherical models involve an
analytical formulation for the computation of the forward problem. Realistic models are
usually implemented by the numerical methods such as the boundary element method
(BEM), the finite element method, the finite volume method, the finite difference
method, and so on [5]. The accuracy of the head model and its forward solution has
substantial effects on the accuracy of the source localization process. Spherical models
are generally insufficient for the localization of an arbitrary dipole in the brain. For
superficial dipoles locating in brain regions where the spherical model fits well locally,
source localization results in few millimeter errors. Whereas, for deep sources and other
brain regions the localization errors are up to several centimeters. Localization error
decreases with the use of realistic models where anatomical information is obtained

from high resolution magnetic resonance imaging (MRI) [2].



In this thesis, realistic head model and forward solution that had been developed

in previous studies [6, 7] and provided accurate solutions |6, 7, 8, 9] is used.

Given the known electrical field and head volume conductor properties, the
EEG inverse problem estimates the location and strength of the brain electrical sources
(Figure 1.1). Unlike the forward problem, the EEG inverse problem is ill-posed in that
there are an infinite number of source configurations that could explain a given data
set of scalp potential measurement. The ill-posedness, high computational cost, and
other complications of the electromagnetic inverse problem pose significant technical

challenges.

Many methods have been developed for the solution of the EEG inverse prob-
lem with the majority of which restate it as a least-squares minimization problem.
The inverse problem is formulated with either a parametric approach, where sources
are presented by a few equivalent current dipoles or with a imaging approach which as-
sumes distributed currents in the brain. Methods based on Bayesian approach are first
introduced in 1997 by Sylvian Baillet [10] and James W. Philips [11] and applied on
magnetoencephalogram (MEG) with spherical head models. During the past 10 years,
Bayesian formulation of the electromagnetic inverse problem has drawn substantial in-
terest in the neuroimaging research community. The fast development of computing
power has enabled the use of Markov Chain Monte Carlo (MCMC) methods and fur-
ther boosted probabilistic formulations to electromagnetic inverse problem [12], [13].

However, no gold standard exists for the reconstruction of the scalp EEG generators.

Our objective in this study is to combine the Bayesian methodology and MCMC
methods to provide source reconstruction that will address the ill-posed character of
the EEG inverse problem. For this purpose an effective MCMC algorithm with pa-
rameters tuned to this specific problem is designed. To produce a sampling of many
likely solutions from posterior dipole parameter distributions without getting trapped
in to local optima, heuristic methods are coupled to the MCMC sampler. The feasi-
bility of the MCMC method is investigated with simulated data obtained by different

dipole configurations. Application to realistic data is also performed. Regarding to lo-



calization errors and comparisons with other widely used inverse solutions, this study
shows that Bayesian MCMC methods are well suited to the solution of the EEG inverse
problem and gives highly promising results for the accurate reconstruction of the EEG

sources.

1.3 Outline of the Thesis

The outline of the thesis is as follows: In Chapter 2, the physiological basis and
methods in the EEG inverse problem are presented. Chapter 3 includes the Bayesian
formulation of the problem. In Chapter 4 details of MCMC and heuristic methods
used to sample the posterior distributions are presented. The proposed inverse method
has been evaluated with simulated EEG and empirical ERP data in Chapter 5 and
Chapter 6, respectively. Finally, the discussions and the conclusions are presented in

Chapter 7.



2. THE INVERSE PROBLEM IN EEG SOURCE ANALYSIS

2.1 Generators of the EEG

The electrodes used in scalp EEG are large and remote so that they only measure
extracellular current flow due to the summated activity of a large number of neurons
which are synchronously active. To understand the nature of voltages that can be
recorded at the scalp, it is necessary to understand the current distributions generated

inside the brain.

There are two main types of electrical activity associated with neurons, action
potentials (AP) and postsynaptic potentials (PSP). APs are discrete voltage spikes
that travel from the beginning of a axon at the cell body to the axon terminals. APs
can be large in amplitude (70-110 mV) but they have a small interval of time (0.3 ms).
A synchronous firing of APs of neighboring neurons is unlikely. When an AP reaches a
synapse and generates a PSP, the ion flow causes an electrical field and current along
the interior of the postsynaptic neuron. PSP amplitudes are smaller (0.1-10 mV) but
their relatively large interval of time (10-20 ms) enables the neighboring neurons to
generate a summated activity. The ionic current flowing within the elongated process
of the neuron is called the primary current. The charge conservation law states that the
primary current is compensated by passive ohmic currents, called the volume currents
or secondary currents, in the surrounding tissue as shown in Figure 2.1 [14]. EEG
would not be possible without volume currents, which can reach the scalp surface and

cause voltage differences that can be picked up by EEG electrodes.

So, the current density J at location 7 inside the head volume, can be split
into primary currents J? and volume currents J¢ which are generated by the effect of

electrical field on extracellular charges at location 7

J () = JP(F) + JO(F) = JP(F) + o(F) E(7) (2.1)



Head Volume

Figure 2.1 Primary and secondary currents generated by PSPs.

where o is the conductivity and E is the electrical field. In EEG inverse problem we

try to locate primary currents that can be approximated with a current dipole.

Besides having more or less synchronous activity, the neurons need to be regu-
larly arranged to have a measurable scalp EEG signal. The spatial properties of the
neurons must be so that they amplify each other’s extracellular potential fields. If
the dendrites supporting PSPs are randomly oriented on a small cortical surface, no
net electromagnetic field can be detected. For example, cortical stellate cells occupy
roughly spherical volumes such that the associated synaptic sources provide a “closed

field” structure: They are electrically invisible to scalp electrodes [15].

In the cortical gray matter the cells are arranged in six layers, as illustrated in
Figure 2.2 [16]. The thickness of the cortical gray matter varies between 1 mm and 4
mm. Two large pyramidal cells consisting of apical and basal dendrites are visualized
in Figure 2.2. The apical dendrites are located in the outermost layers 1 and 2 of the
cortical gray matter. The basal dendrites are located in layers 3-5 of the cortical gray

matter. Pyramidal cells contain dendiritic spines and are the only output neurons in



Figure 2.2 The layered cortex. The white cells correspond with pyramidal cells.

the cortex |16].

The neighboring pyramidal cells are organized so that the axes of their dendrite
tree are parallel with each other and orthogonal to the cortical surface. Hence, these
cells are suggested to be the generators of the EEG |1, 2, 17, 16|. Having revealed
substantial vertical, but little local horizontal variation in potential, subdural and
intracortical recordings of field potentials at varying distances from an activated cortical
locus are consistent with this suggestion [18, 19, 20|. Calculations shown in [21] suggest
that each synapse along a dendrite may contribute as a 20 fA-m current source and
cortex macrocellular current density is in the order of 100nA/mm?. If we assume the
cortex is about 4 mm thick, then a small patch 5mm x 5mm would yield a net current

of 10 nAm, consistent with empirical observations and invasive studies [2|.

Although the scalp EEG predominantly reflects the activity of cortical neurons
close to the electrode sites, scalp observations of electrical activity from deeper cortical
areas, such as the hippocampus |22, 23|, cerebellum |24], thalamus |25], brainstem |26|
and amygdala [27] are reported. Contributions from deep structures to scalp EEG, not

necessarily direct, may be taken into account during source localization processes.
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2.2 General Concerns in EEG inverse problem

The inverse problem of reconstructing the neural electrical current that produced
a given measurement is ill-posed and many different source configurations can yield the
same EEG potentials. Moreover, the inverse solution suffers from instability, which
means that small variations in the measurements can lead to large changes in the
solution. The fundamental problem of EEG source reconstruction is this ambiguity of

the electromagnetic inverse problem.

To obtain a unique inverse solution additional constraints have to be imposed,
such as anatomical, physiological, spatiotemporal, and/or functional constraints pro-
vided by other imaging modalities. These “a priori” assumptions are crucial as they
directly determine the solution space. Based on some constraints, an inverse solu-
tion can explain a given data set but it may not necessarily give neurophysiological
information about where the signals were generated exactly. Moreover, even if it is
mathematically possible to reformulate the EEG inverse problem in a well-posed form,
some “malign” type of ill-posedness, like the situation when two neighboring sources
cancel each other, will remain. Since all information about neuronal signal genera-
tion has yet to be revealed, there has been intensive research to develop a universally

accurate method for the source localization problem.

Recent studies use specific anatomical and physiological constraints in a Bayesian
framework that is especially well-suited to the probabilistic nature of the available “a
priori” information. Some of them keep trying to find a single best solution [28, 29,
10, 11| that does not take into account the ambiguity of the problem. On the other
hand, with the introduction of MCMC methods in source imaging research, proba-
bilistic solutions permit monitoring many likely sources to address the ill-posedness

12].

To illustrate the lack of uniqueness of the EEG inverse problem, we produced
an instantaneous EEG data with 10 dB signal to noise ratio (SNR) and solved the

inverse problem with different methods and with different assumptions for the same
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Yoltage {uv)

Figure 2.3 Lack of uniqueness in the inverse problem: Each panel shows three views of source
configurations that can produce the same EEG data and scalp topography shown at the top. Markers
with different colors correspond to different dipole sources.

method. Figure 2.3 shows six source configurations, with different moment and location

parameters, that can produce the same EEG voltage distribution and scalp topography.

2.3 Methods in the EEG inverse problem

In terms of dimensionality of the solution space, the EEG inverse solution can

be classified to equivalent current dipole (ECD) model (also called parametric model-
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ing) and the distributed source model [2]. Another classification can be made upon the
dimension of the EEG data set. One approach is the single time-slice, instantaneous
source localization, in which the dipole parameters are fitted at an instance in time,
based on the single time “snapshots” of the measured scalp EEG. Another approach is
the multiple-time slice source localization, also termed spatiotemporal source localiza-
tion, by incorporating both the spatial and temporal components of the EEG in model

fitting.

In this study, our analysis covers both ECD and distributed approaches but

limited to instantaneous source localization.

2.3.1 ECD modeling of inverse problem: MUSIC

ECD model assumes that the scalp EEG is generated by one or a few focal
sources. Each of the focal sources can be modeled by an equivalent current dipole with
six parameters: three location parameters and three directional parameters. When this

six parameters are free to change independently, it is called a moving dipole.

In the ECD approach the scalp potentials at the single time-slice are collected
into a column vector F , each row of which is the potential data recorded from one elec-
trode. The problem is then to find a column vector V, the collection of the potentials at
the same electrode but generated by assumed dipole sources inside the brain. In prac-
tice, an initial starting point (seed) is estimated, then using an iterative procedure, the
assumed dipole sources are moved around inside the brain in attempt to produce the
best match between V and F. This involves solving the forward problem repetitively
and calculating the difference between measured and estimated potentials vectors in
each step. The most commonly used measure is the squared distance between the two

vectors, which is given by
E=|F-V| (2.2)

where E is the objective function to be minimized. Dipole sources are coupled to the
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scalp potentials V by the lead field matrix K using the forward formulation. If we
have N, different measurement sites in the conductor model, the forward problem can
be formulated by the electrical potential V' (§) at electrode location § due to a dipole

at 7 with strength m as in Eq. 2.3

N

V(3) =Y K(3m)m(i) +£. (2:3)

i=1

Here, V' (§) is N, x 1 electrical field vector, N is the number of dipoles which are
synchronously active, m is a 3 x 1 strength vector for a single current dipole source
located at 7 and K (8, 7) is a N, x 3 dimensional transfer function which depends on the
dipole location 7, the measurement sites s, and the geometrical and physical properties

of the media. £is N, x 1 additive measurement noise.

Multiple Signal Classification algorithm (MUSIC) on EEG inverse problem is
an example for ECD approach. In the following chapters we use MUSIC to compare

its results with those of Bayesian MCMC source localization.

MUSIC algorithm scans the 3D brain tissue for the moving dipoles by spatial

spectral estimation.

In MUSIC, the eigendecomposition of the EEG data is used to estimate the
number of active dipoles that produce measured potentials. Assuming that there are
P independent dipole sources, the eigendecomposition of V, which is a N, by T time-
slices EEG data matrix will generate P eigenvalues arising from the signal sources and
N, — P eigenvalues arising from the noise, and their corresponding eigenvectors span
the signal subspace and noise subspace, respectively. Because the lead field vector at
each source location should be orthogonal to the noise subspace, the locations of dipoles
can be estimated by evaluating a spectral measure at each possible spatial location.
This scan metric measures the orthogonality between the lead field vector and the
noise subspace, and the locations that produce a peak in the scan metric are chosen
as probable source locations. A recursive approximation method (RAP-MUSIC) has

also been proposed in order to overcome the “multiple-peak picking” problem of the
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original MUSIC scan [30].

If V is an instantaneous EEG data, the rank is always equal to one and MUSIC
finds a single dipole whose location and moment parameters match the measured po-
tentials. This ad-hoc assumption on the number of sources may cause MUSIC to fail

when multiple sources are synchronously active.

MUSIC has been demonstrated to be useful in locating the focal sources such
as those in some epilepsy cases, especially when it is combined with time-frequency
methods for preprocessing [31]. On the other hand, its major limitation is that its

simplified source model can not adequately describe sources of significant spatial extent.

2.3.2 Distributed modeling of inverse problem: LORETA

As ECD approaches have difficulties describing widespread neural activity as
in the case of cognitive processes and certain pathologies, distributed source imaging,
also called imaging approach has been studied in the past decade, particularly when

studying higher-order brain functions.

Imaging approaches consist of estimating the magnitude of a predefined dense
set of dipoles, typically distributed all over the 2D cortical sheet or 3D volume of the
brain. Source locations are fixed, N is much larger than N,, so that Eq. 2.3 becomes

underdetermined but linear :
V=KJ+¢ (2.4)

where J is a vector representing the current dipoles at all the N locations, and K is the

lead field matrix and £ is the additive measurement noise. The source orientation is
- — — — T —

left free so that J = |:j1,j2 . .jnd] , where 7; = [Ju., Jus» j=]" encodes both orientation

and amplitude of the 7*h current dipole. The aim of the imaging approach is to design
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an inverse filter B which can project the measured data into the solution space:

J =BV (2.5)
When the rank of K is less than the number of its rows, KK?' is singular and its
inverse does not exist. In such a case, the general inverse can be sought by the method
of singular value decomposition (SVD). For an N, x N matrix K, the pseudo-inverse

KT of is given by
"1
KT:\_/’EAU)T: ~ Uj Z'T 26
2 20

where U = [y, ug, ..., unN.], V = [v1, V2, ..., uN],2 = diag(A1, Ao, -5 Ap), AL > Ay >
... > X, and p = min(Ne, N). The vectors u; and v; are orthonormal eigenvectors of
KKT and KTK respectively and the ); are the singular values of K. (-)1 denotes the

inverse of a matrix.

This general inverse solution is often impractical for real applications because
of the ill-posed nature of the EEG inverse problem. Small measurement errors will be
amplified by the small or near-zero singular values, leading to large perturbations in

the inverse solution as given in Eq. 2.6.

A common approach to overcome this numerical instability is the Tikhonov
regularization (TIK), in which the inverse filter is designed to minimize an alternative
objective function that is uniquely solvable and robust in the sense that small errors

in the data do not corrupt excessively this approximate solution:
Jrix = |V = KJ|* + X*|GJ||* (2.7)

where A is the regularization parameter, G' can be the identity, gradient, or Laplacian
matrix, corresponding to 0", 1% and 2"? order TIK respectively. When A = 0 Eq. 2.7

corresponds to minimum norm least-squares inverse solution.

Low Resolution Electromagnetic Tomography (LORETA) [32]| corresponds to
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the 2" order TIK where G = L, the Laplacian operator which has the form of Eq. 2.8
1

where Iy is the identity matrix with the dimension of number of voxels (N) in the
solution space and NN, is the number of neighbor voxels of each voxel in the solution
space. For some voxels, it is not possible to find all the six predefined neighbors, so
the number of orthogonal neighbors N for each voxel in the solution space has to be

computed. LORETA inverse filter has the form:
Brogura = (K"K + L"L)"'K" (2.9)

where A variable should be written as a product term rather than addition in order to
optimize the process. Therefore, singular value decomposition of KL~! is defined as

KL =USV?T. Using the K = USVTL relation, Eq. 2.9 can be written as:
Brorpra = (LYVSUTUSVTL + N LYL)~' L'V SU” (2.10)
Eq. 2.10 is identical with Eq. 2.11.
Brorera = [L*V(S?+ X DVTL L LTV SUT (2.11)
By using De Morgan’s law, Eq. 2.11 can be rewritten as in Eq. 2.12.
Brorpra = L7V (S? + X2 D)~vE (L tLtvisut (2.12)
Finally, Eq. 2.12 can be shown as in Eq. 2.13.

, Sii
Brorera = L71Vdmg(sn n )\Z)UT (2.13)

where diag(-) is a diagonalizing operator.

The regularization parameter \ is obtained using Akaike Bayesian Information

Criterion (ABIC) [33]:

ABIC (o, 0./A) = (=2)logLi (0, 0/ N) (2.14)
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By maximizing Eq. 2.14, o, and A can be found for a given EEG data.

N L
logLir(oe, \) = Zlog(“T)Ne(l + log2mo?) (2.15)
i=1

where the estimate of the observation noise variance o? is given by Eq. 2.16

1 Nc )\2
062 =N Z 5’.2.7-1-)\2}/[2 (2.16)
€ =1 "

where Y; = UTVEEg.

LORETA method selects the solution with a smooth spatial distribution by
minimizing the Laplacian of weighted sources. The physiological reasoning underly-
ing this constraint is that activity in neighboring neurons is correlated. However, it
is known that functionally very distinct areas can be anatomically very close. As
conventional LORETA implementations do not take such anatomical distinctions into
account, smoothness constraint of the LORETA approach can cause “ghost sources”
to appear in the solution. Ghost sources are defined as additional sources in the solu-
tion that do not make much physiological sense and obscure the interpretation of the

results.
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3. BAYESIAN MODELING OF THE EEG INVERSE
PROBLEM

At the core of Bayesian way of thinking is the Bayes theorem, which maintains, in
its simple interpretation, that’s one belief about the world should be updated according

to the product of what one believed in before and what evidence has come to light since.

Bayesian approach differs from classical methods by that the unknown param-
eters of interest are no longer assumed to be deterministic but random. Deterministic
inverse techniques lead to point estimates of unknowns without rigorously considering
the statistical nature of system uncertainties and without incorporating prior knowl-
edge. Bayesian approach provides not only point estimates but also the probability

distribution of the unknown quantities conditional on available data.

3.1 Fundamentals of Bayesian Inference

Bayesian inference is the process of fitting a probability model to a set of data
and expressing the result by a probability distribution on the parameters of the model
and on unobserved quantities such as predictions for new observations [34]. The key
idea underlying Bayesian philosophy is that all forms of uncertainty are expressed in
terms of probability. A Bayesian approach to a problem can be summarized by three

steps.

(i) First step is to set up a probability model namely a joint probability dis-
tribution for all observable and unobservable quantities in a problem. Given observed
data y and unknown parameter # the joint probability mass or density function p(, y)

can be written as a product of two densities that are often referred to as the prior
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distribution p(f) and the likelihood function p(y|f) respectively:

p(0,y) = p(0)p(y|0) (3.1)

Conditioning on the known value of the data y, using the basic property of conditional

probability known as Bayes’ rule, we have the posterior density:

p(Oly) =

p(0,y) _ p(@)p(y|d)
) )

ply)  ply (3.2)

Since p(y) is independent of 6, it can be considered a normalizing constant and can be

omitted from the wunnormalized posterior density:

p(Oly) o< p(O)p(yl0) (3.3)

where p(6) is prior probability, which is get before receiving any data. p(6|y) is called
posterior probability, which is obtained after those data coming. Hence, to set up
a probability model for the EEG inverse problem based on Bayesian inference, we
should first find the likelihood function that describes the interrelation between the
scalp potentials and the unknown brain activity, and which is based on all the prior

information of the unknown, find a prior probability density.

(ii) The second step in the Bayesian approach is to develop methods to explore
the posterior probability density. The Chapter 4 deals completely with this step where
MCMC methods are used.

(iii) Evaluating the fit of the model and implications of the resulting posterior
distribution is the final step of Bayesian approach. In the EEG inverse problem, this is
equivalent to investigating the feasibility of the resulting source reconstruction method

with simulated and realistic EEG data.
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3.2 Bayesian Inference Applied to the EEG Inverse Problem

The spatial EEG dipole analysis based on Bayesian inference is formulated in
the following way: assuming a localized effective dipole nature of neural sources that
could explain the instantaneous EEG data, we construct a current model that assumes
a variable number of current dipoles composed of different locations within a realistic

head model and dipole moments. Unknown neural activity parameters are:

e N: a priort unknown number of active dipoles,
e 7 location(s) of dipole source(s),

e 17i: magnitude(s) of dipole moments.

The analysis is limited to a single instant of time so that dipole parameters are not

time-dependent.

Given EEG measurements at a single point in time acquired on N, electrodes,

the Bayesian formulation is as follows:
(N, 7| V) oc p(V N, 7 ii)p(FIN)p(iil N)p(N). (3.4)

where V is the set of measurements at N, electrodes, NV is the prior: unknown number
of dipole sources which are active in the same instant, 7" = (r1,...,7ry) is the location
vector of N dipole sources, with each 7; being equal to a triplet {r,,, 7y, 7.} repre-
senting the position of the ith active dipole in the head model. 7 = (my,...,my) is
the dipole moment magnitude, with each ni; being equal to a triplet {mg,, my,, m,,}
representing moment parameter which also codes dipole orientation. Here, generators
of the EEG are not restricted to the cortex, namely to pyramidal cells as mentioned
in Chapter 2. It is assumed that non-cortical areas can contribute to scalp potentials;

radial orientation is no longer a restriction so that dipole orientation is left free.
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3.2.1 Construction of the Likelihood Function

The likelihood function p(V|N, 7, ) contains the forward EEG model and in-
formation about the noise. The additive measurement noise ¢ defined in Eq. 2.3 is
assumed to be N,—variate Gaussian with zero mean and covariance matrix . The
mutual independence of £ and dipole parameters assures that the probability density
of £ remains unaltered when conditioned on unknowns. Hence, the likelihood function

is expressed as:

PTIN. ) = (¥ = DK@ s = 3K Gpl) (65)

1=1 =1

(NN

where K (7;) is the transfer function by N, x 3 for the i'* active dipole locating at

{rg;,ry;, 72} and 17; is 3 x 1 moment vector.

3.2.2 Prior Models

The second term p(7|N) at the left-hand side of Eq. 3.4 represents a priori
knowledge about the location of dipole sources without considering any given EEG
measurements. In this study, dipole locations are constrained on anatomical surfaces,
deduced from average T1 weighted human brain MRI data provided by Montreal Neu-
rology Institute (MNI). The main motivation is to prevent solutions from being found

in unrealistic locations (i.e., in the white matter for instance).

Dipole locations are restricted to the gray matter. A voxel of the MR image is
labeled as a gray matter if it satisfies three conditions: Its probability of being gray
matter is higher than that of being white matter, its probability of being gray matter is
higher than that of being white matter and cerebrospinal fluid. And the final constraint
is taken as probability of being gray matter is higher than 0.66.

Having N, voxels locating in the gray matter volume of the brain, the dipole

location prior distribution is chosen to be uniform over N,:
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(NLU)N {re:, 1y, 72} € Head(N,)Vi,

p(FIN) =
0 otherwise.

where Head(N,) is a realistic head model with N, voxels.

p(m|N) represents a prior probability distribution of dipole moments strength.

Prior for dipole moments are chosen to be uniform between 1m,,;, and ...

The last term, p(N) corresponds to the model probability for the number of
active dipoles. We assumed a uniform law, for N between predefined minimum and

maximum number of dipoles,

= 3.7
Nmaa: - Nmm + 1 ( )

Finally, the Bayesian formulation for the instantaneous EEG source reconstruc-

tion problem is:

-1

p(N, 7 V) o< | (27) ¥ 215 (Nonaw = Nowin + 1) (N (i — 1 — 1)) |

X exp (_g V-, K(Fi)rfii]T e Bl K(ﬁ)@])
(3.8)
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4. SOLUTION OF THE BAYESIAN MODEL BY MARKOV
CHAIN MONTE CARLO (MCMC) METHODS

Having expressed the EEG inverse problem in a probabilistic way, we explored
MCMC methods to sample the posterior probability p(:r|\7) with z being the set of

parameters:

e N: a priori unknown number of active dipoles
e i location(s) of dipole source(s)

e 17i: magnitude(s) of dipole moments

4.1 Why Using MCMC Methods in EEG Inverse Problem?

The interpretation of the posterior distribution as the solution of an inverse
problem is a subtle issue. The statistical solution of an inverse problem can be used to
produce single estimates as in the classical inversion methods. In the probabilistic EEG
inverse solution literature one of the most used statistical estimate is the mazimum a
posteriori estimate (MAP). Given the posterior probability density P(z|V), the MAP

estimate satisfies
Zyap = argmax P(z|V), (4.1)

provided that such maximizer exist. Single point MAP estimation leads to an opti-
mization problem and is in fact equivalent to derive a Bayesian linear inverse operator

|13] B which can be formulated as:
B=(V's™V+ R WIS (4.2)

where R is the covariance matrix of a prior current distribution, ¥ is the covariance ma-

trix of additive noise and V is the measured EEG potentials. Solving EEG inverse with
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single point Bayesian MAP estimation is an imaging approach as we saw in Chapter 2

and produce only a single “best” solution.

To compute posterior quantities, the ideal method is surely the exact numerical
evaluation. By direct numerical evaluation, we mean integration over the space R"

where the posterior density is defined:
tr= | F@)p(elV)de (4.3)
R

of some function f(x) with respect to the posterior distribution. For example, if f(x) =
z, Eq. 4.1 becomes the formula for the conditional mean (xcy) estimation. We could
also consider the Bayesian credibility set which is an interval estimation to answer the
question like: “In what interval are the values of 2 with 90 % probability, given V and

prior p(z)? 7. It still requires integration over R".

Our source localization problem can be categorized into a high dimensional prob-
lem. For example, if N =5 dipoles, we have 5 X 3 locations and moments parameters
to estimate, including the number of dipoles, the number of total unknown parameters,
namely the dimension of the problem is 31. In this study we work only with instanta-
neous EEG data. In case of spatiotemporal source localization, temporal parameters
will be included into the probabilistic model and the dimension will increase dramati-
cally. An m—point quadrature rule working on a n—dimensional posterior distribution
requires m”" integration points. For example the integration of the equation Eq. at
10 points requires 3110 operations. It is clear that this will exceed the computational

capacity of computers.

An alternative way to look at the problem is the following. Instead of evaluat-
ing the probability density at given points, let the density determine a set of points,
a sample, that supports well the distribution. These sample points can then be used
for approximate integration. The most commonly used sampling technique for proba-
bility distributions is MCMC method. MCMC is essentially a Monte Carlo integration

procedure in which the random samples are produced by evolving a Markov chain.



25

4.1.1 Monte Carlo Integration

Suppose that we want to compute a complex integral

/ h(a)da (4.4)

If we can decompose h(z) into the production of a function f(z) and a probability

density function p(z|V) as in our case, then note that
/ h)de = [ fo)p(a|V)dr = Eyw[f(2)] (4.5)
n R”’L

V).
V),

so that the integral can be expressed as an expectation of f(xz) over the density p(x
Thus, if we draw a large number z1, .. ., x,, of random variables from the density p(z

then

n

Bywlf@)] % = 3 5 (146)

=1

This is referred to as Monte Carlo integration. By the strong law of large numbers,

lim =37 @) = [ fa@ptal?)de. (a.7)

In general, drawing independent samples from p(z|V) (direct sampling) is not
feasible, since the density p(x|‘7) can be quite non-standard. In this case, it is possible
to sample iteratively in such a way that at each step of the process we except to draw
from a distribution that become closer and closer to p(x|‘7) One way of doing this is

through a Markov chain having p(z|V') as its stationary distribution.

4.1.2 Markov Chains

Markov chain is a sequence of random variables(r.v.), {z¢, x1, Z, ...}, in which
the r.v., x4, of the next state is sampled from a distribution p(x;,1|x;) which depends

only on the current state of the chain x;. That is, given z;, the next state z;,; does
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not depend further on the history of the chain {zg, x1,..., 241}

A particular chain is defined most critically by its transition kernel, P(i,j) =
P(i — j), which is the probability that a process at state space s; moves to state s; in

a single step

P(i,7) = P(i = j) = Pr(xu = sj| o = si). (4.8)

Subject to regularity conditions, the chain will forget its initial state and will
converge to a unique stationary distribution, ¢(.), after a sufficiently long burn-in period
of m iterations. Thus as ¢ increases, the sampled points {z,} will look increasingly like
dependent samples from ¢(.). The output of the chain can be used as in Eq. 4.9 to
estimate E|[f(x)] where x has distribution ¢(.)

Blfe) = —— 3 f(). (19

n—m
t=m+1

The problem is to construct a Markov chain such that its stationary distribution ¢(.)

is precisely, our distribution of interest p(z|V).
4.2 MCMC methods
4.2.1 The Metropolis-Hastings Algorithm
A Markov chain with a stationary distribution p(z|V) can be constructed by
using Metropolis-Hastings algorithm [35] which is a generalization of the method first

proposed by Metropolis et al. |36].

For the Metropolis-Hastings algorithm, at each iteration ¢, the next state x4

is chosen by first sampling a candidate point z* from a proposal distribution ¢(.|x;).
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The candidate point z* is then accepted with probability «(z;, z*) where

). (4.10)

a(xy, %) = min(1,

If the candidate is accepted, the next state becomes x;.; = z*. If the candidate is
rejected, the chain does not move, x;11 = ;. With any reversible proposal distribution
the stationary distribution of the chain will be p(z|V). The transition kernel for the
Metropolis-Hastings algorithm is

P(xii1|my) = (w1 o) a(wy, mpp) + I(wpp = a)[1 — /q(:r*|:rt)a(:rt, z*)dz*] (4.11)

where I(.) denotes the indicator function that takes the value 1 when the argument
is true, and 0 otherwise. The first term in Eq. 4.11 arises from the acceptance of

candidate and the second term from rejection. Using the fact that

p(@|V)q(@es|w) (e, wei1) = plaea |[V)a(@l) oz, 20) (4.12)

which follows from Eq. 4.10, the detailed balance equation, a sufficient condition for a

unique stationary distribution is obtained:

p(ae|V)P(we1]w0) = plee|[V) P 2011) (4.13)

Integrating both sides of Eq. 4.13 with respect to x; gives:

/p($t|‘7)P($t+1|$t)d$t =p($t+1|‘7) (4.14)

In Metropolis-Hastings algorithm it is assumed that the unknown parameter
vector x is a fixed-length vector. However, in this EEG inverse formulation, /N, the
number of active dipoles is assumed to be unknown so that the dimension of z is
variable, namely EEG inverse formulation also includes a model selection problem. This
considerably extends the scope of Metropolis-Hastings algorithm. In order to sample
without prior determination of the number of dipoles, a trans-dimensional sampling

strategy is needed.
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4.2.2 The Independence Sampler

The most straightforward MCMC approach that can allow moves between spaces
of different dimensions is the independence sampler (IS). For the IS, the proposal
distribution does not depend on the current values: ¢(x41|z) = ¢(x441). So, subsequent
iterations can generate independent candidates of varying dimensions. The acceptance
probability in Eq. 4.10 is

—

a(xy, ") = min(1, Zw) (4.15)

p(x[V)q(z*)

It is known that the IS works best if the proposal ¢ is a reasonable approximation

to the target posterior distribution which is clearly difficult to achieve.

In our experience, a straightforward implementation of the MCMC technique
was likely to fail in EEG source reconstruction problem. This was determined by gen-
erating multiple independence sampler runs with different starting points and random
seeds. The results of the IS when proposal distributions for dipole parameters at each
iteration are independent and uniform are shown in Chapter 5, Table 5.2. IS requires
tremendous time to explore the whole range of parameter space and suffers from slow

convergence problem.

4.2.3 Reversible Jump MCMC

The independence sampler is unlikely to represent the best strategy. Therefore,
it seems sensible to allow the proposal distributions to depend on the current values.
Peter J.Green developed reversible jump MCMC (RJMCMC) for model determina-
tion problems in 1995 |37]. RJIMCMC is a framework for the construction of reversible
Markov chain samplers that can jump between parameter subspaces of differing dimen-
sionality in a flexible way, while retaining detailed balance which ensures the correct

limiting distribution.
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If location and moment parameters, 7~ and m are combined in a parameter set 6,
each state x; of our reversible chain will be composed of two components, x; = (V;, ;)
where N;,the number of dipoles, is the model indicator and 6; is the dipole parameters.
In RIMCMC paradigm, the move from (N, 0;) to (Nyy1,0;11) is proposed by drawing a
random parameter set U; and setting 6,11 = fn, -, (05, Us). fn,—n;,, is a deterministic
function that defines the mapping between the parameter spaces. When considering a
move from the state (N;, 6;) to (NV;11,0;41) and the reverse move from (N;y1,0;41) to
(N;, 6;), the vectors of the Markov chain states and proposal random variables (6;, U;)

and (0;41, U;+1) must be of equal dimension. That is the dimension matching condition

dim(6;) + dim(U;) = dim(0;11) + dim(U;11). (4.16)

In our design, a move from (V;,6;) to (N;i1,6;41) is proposed in two steps.
First step is to generate a new model indicator N;,; from the proposal distribution
q™ where ¢™?(N;,1|N;) is the probability of the jump from the model N; to Ni,;.
Given a model indicator, N;,1, the second step is to generate dipole parameters of the
dimension N;y; from the proposal distribution ¢?*". Subscripts ind and par are labels
for model indicator and dipole parameters respectively. In our sampling procedure, a

candidate sample (V;11,0;,1) is chosen with three categorized moves:

e Perturbation move: if N;;; = N;

Location and magnitude parameters are updated by proposal distribution ¢”*".

par

i a
Ti+1’

The location parameter 7, is sampled from the proposal distribution ¢
Gaussian density centered on 7; (the location parameter of the previous state)
with standard deviation oj,. = 8mm. For the magnitude parameters, g/ :1 is a
Gaussian density centered on m; with standard deviation o, = 10nAm. Since

this jump is between two models of equal dimension, this move is a straightfor-

ward implementation of simultaneous Metropolis-Hastings algorithm.
e Trans-dimensional moves: if N;,; # N;

— Birth move: (N;y; — V;) new dipole(s) and its parameters are randomly



30

proposed, 6;11 = (0;,U) where dim(U) = (N;+1 — N;). The proposal distri-
bution for U is uniform over the location and magnitude spaces and does

not depend on the previous values as in the independence sampler.

— Death Move: (N; — N;;1) randomly chosen dipole(s) is proposed to be re-

moved.

The acceptance probability for the RJMCMC algorithm is stated as:

. p(NHl; 0; | ‘7) qmd(Ni|Ni+1)qpar(9i|9i+1) afNﬁNiH(gia Uz’)
ary =min 1, =N
P(N;, 0;|V) g (Nig1 | Ni) gPo (0541 16;) 0(6:, Us)

} 417

The Jacobian appears due to the use of deterministic transformation in proposal mech-
anisms and not an inherent component of MCMC induced dimension changed. In ran-
dom birth and death moves, fy,_n,,, is set to identity: ;11 = (;,U;), the Jacobian

of the transformation is equal to 1.

4.3 Strategies for Improving Reversible Jump MCMC

The posterior distribution p(x|V) has numerous valleys and peaks over the so-
lution space, namely high probability areas are separated by regions of very low proba-
bility. For such multimodal distributions, MCMC can be prone to entrapment in local
optima; a Markov chain currently exploring a peak of high probability may experience
difficulty crossing valleys to explore other peaks. A properly constructed Markov Chain
will eventually cross even very deep valleys in the posterior probability distributions of
dipole parameters. However, it may take a prohibitive amount of time to adequately
explore a rough volume of dipole parameters. As a result, a large number of parameters

may go unexplored in a standard MCMC analysis.
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4.3.1 Simulated Annealing

One approach to escape local optima is based on an additional parameter called
temperature that changes the probability of moving from one point of the search space
to another. Simulated annealing (SA) is a well-known heuristic technique that mathe-
matically mirrors the cooling of a set of atoms to a state of minimum energy [38|. The
idea is that when we initially start sampling the space, we will accept a reasonable
probability of a move from a higher probability state to a lower probability state in
order to explore the entire solution space. As the SA proceeds, the probability of such

“down-hill moves” is decreased.

SA is very closely related to Metropolis sampling, differing only in that the
probability o in Eq. 4.10, such that

_1

p(x*@q(m*)) A
- p(a|V)g(a*|2)

asa(zy, %) = min (1 (4.18)

where the function 7'(¢) is called the cooling schedule.

SA coupled RIMCMC algorithm designed for EEG source reconstruction pro-
cess is shown in Figure 4.1. In our algorithm the cooling schedule is exponential cooling

which is generally accepted as the best schedule [39]:

T(t) = %(%‘)i (4.19)

where T = 100 is the initial temperature, Ty = 1 is the final temperature, and n is the

total iteration number. Setting 1" = 1 recovers RJMCMC algorithm.

4.3.2 Parallel Tempering

In parallel tempering coupled RIMCMC method (PT-RJMCMC), instead of

constructing a single Markov chain, & Markov chains C; = (xgl), ey xz(n)), i=1,...,k,

are simultaneously run on the dipole parameter space. Each chain is associated with a



SA-RIMCMC Algorithm
Begin
i=0
Initialize a random dipole number, N; from U(N,,;, Nipax)
Initialize a random dipole configuration, 6;
Evaluate p(N;,0,|V)
T=T
while (T'> T,,i)
for i=1tok
Pick a dipole number N;,, from ¢"(N;., | Ny)
if Ni.;/=N;2 Perturbation Move
Simultaneous Metropolis Hastings
0= ¢ (0, rand(U)) where dim (U,.; -, ;) = Nisj= N;
elseif N ;<N;-> Death Move
Pick (¥;- N;+;) random dipole parameter from 6; and destroy
Update 6;
0= ¢" (0, rand(U)) where dim (U;.; _ ;)=( Ni- Nix1)
elseif N ;>N; > Birth Move
Indepence Sampler for ( N..;- N;) dipole parameter
Single Component Metropolis Hastings for (V;) dipole parameter
0= ¢ (0;, rand(U)) where dim (U i+ 5 ;)=( Ni+;- Ny)
end
Evaluate p(N;,6,|V)
Accept (N;,6;) with probability dsa_rimcemce

. . /T
PN V) G NN, )a P 00, |0a T, 6,.U)]
Osa-RIMCMC = Min < 7, nd par

PINLOIVIG ™ (N, N, )g ™ 0,,06,) | 96,0 |
Update 7=43T
end while

End

Figure 4.1 SA coupled RIMCMC algorithm for EEG source reconstruction.
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temperature parameter 7; such that 7; = 1 and 1; < T;1;. The stationary distribution
of C; is

o =pi(N79|V)%i- (4-20)

In this way, hot chains are associated with probability distributions that come closer
and closer to the limiting case of 1" = oo, in which case the associated density is
constant. As temperature increases, deep valleys and local modes are smoothed out,

and the corresponding distribution become easier to sample.

After each iteration an attempt is made to swap the dipole parameters of two
randomly chosen contiguous chain C; and C;,;. The probability of accepting the pro-

posed swap is

z’NiH gitl ¥ ; Nt pi ¥
N (1 PN 0 V)i (N, |v>>_ (4.21)

pi(NE 0 [V)piaa (N1, 041 V)

The idea behind this PT move is that the hot chains will make a fast but
unspecific exploration of the dipole parameter space without getting trapped in local
modes. The PT move allows them to feed in high probability values to the colder
chains, going ultimately down to the principal chain C that samples the posterior. At

the end of the run, output from the modified chains with 7" > 1 are discarded.

For the current EEG source reconstruction problem, PT method affords signif-

icant improvement over SA as shown in Chapter 5.

4.4 Convergence Diagnostics

Before the samples obtained from the MCMC sampling are from the equilibrium
distribution they cannot be used in source reconstruction. To estimate how much
the inference based on MCMC simulations differs from the desired target distribution

p(N,0|V), a convergence diagnostic called potential scale reduction factor (PSRF),
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(also called Gelman-Rubin) test is used [34].

The general approach for monitoring convergence is to run multiple parallel
simulations with overdispersed starting points and to check if the iteration number
was large enough for the Markov Chain to “forget” where it started. The usual method
is to plot chains’ outputs and compare to them qualitatively. However, the number of
iterations needed to reach the equilibrium can be approximated using the output of

the simulation by using PSREF test.

PSRF test implemented in this study, estimates when two or more sample chains
started from different points are from the same distributions by comparing the between-
chain variation and within-chain variation. Assume that estimated values for each
dipole parameter at each iteration are obtained after the run m Markov chain simula-
tions of length n. Let us label a single dipole parameter as ¢ and v;; as the output of

the j® chain’s i*" iteration. Between-chain variance 0% is

2 n - =
= ;= 4.22
o= —— ;(wl. 0., (422)
where
— 1 — I~
j=1 i=1
and within-chain variance o, is
ory = L i sz, (4.24)
m "

where

2= 1S gy - ). (4.25)

n—1F4%
J=1

From these two variance components, o2, the variance of the dipole parameter ¢ can

be estimated as

2
o¢ = ow + —ow 4.26
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which is an unbiased estimate of the true variance o?

, if the starting points of the
sequences were drawn from the target distribution. The PSRF R is given by the

comparison of o2 and within-chain variance,

R )
R=2_. (4.27)
Ow

If R is not near 1 for all elements of the dipole parameter set, the results are
rejected. The simulation length is updated to the estimated effective number of itera-

tions, n¢// = nR.

4.5 Current Density Map Generation

The next step after sampling a posterior distributions of active dipole number,

location and moments, is to form the current density maps.

At each MCMC iteration dipole parameters were fitted to the data with an
ECD approach as the upper limit for the number of the active dipole (Nyu,,) is much
less than the number of predefined set of dipoles (N,). To pass from the isolated
source model to the imaging approach, firstly the active dipole number with maximum
a posterior probability (MAP) is found. From the chain history, dipole location and
moment parameters belonging to the dipole parameter set with N = N,;4p are chosen.
The ly-norm of the 1 x 3 moments vector m, gives the magnitude M of this dipole.

Finally, to generate the relative strength for each location, we use the formulation:
Ji ={p(r) M;| pi(M;) = max(p;(M)}. (4.28)

where J; is the magnitude of the relative strength of the i** candidate dipole source;
p(7;) shows the probability of existing an active source at its location, and M; is the

magnitude assigned to this dipole with MAP probability.
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5. EVALUATION OF THE BAYESIAN MCMC METHOD:
SIMULATED DATA

Theoretical approach presented in chapter 3 and 4 is firstly applied on simu-
lated EEG data. We used realistic instantaneous EEG simulation data corrupted with
Gaussian noise of zero mean and standard deviation ogz. Except where otherwise no-
ticed, o is chosen to obtain a signal-to-noise ratio (SNR) of 10dB. At each trial noise
covariance vector X is estimated by n = 150 random noise realizations with Eq. 5.1

s=1y (B~ E.) (B - Em)T (5.1)

n <
1

1=

where E; is the i*" noise vector; E,, is the mean of all realizations.

Localization error in each trial is computed as
LE = ||Fe - Fo“ (5'2)

where 77, is the estimated location and 7, is the original location coordinates.

5.1 Simulation and Solution Space

EEG simulations are produced by solving the forward problem using Boundary
Element Method (BEM) with center of gravity (COG) approximation on a realistic
head model. Realistic head model consists of brain, skull and scalp surfaces. Surfaces of

the brain, skull and scalp are tesselated with 2000, 1200 and 1200 triangles, respectively.

Instantaneous EEG inverse problem is solved on the model developed from
the T1 weighted average head image issued by the Montreal Neurological Institute
(MNI)[6]. 3-D segmentation of the brain, skull and scalp are made using Statistical
Parametric Mapping software 99 (SPM99) developed by Wellcome Institute [40]. 30
channel electrode locations (Fpl, Fp2, F7, F3, Fz, F4, F8 FT7, FC3, FCz, FC4, FT8,
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T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2) are
registered to the scalp surface by spline interpolation using the T'1 weighted MR data,
the inion-nasion and pre-auricular coordinates, and the 10-20 Electrode Placement

System.

The solution space contains 1360 voxel as candidate dipole locations, distributed
throughout the gray matter volume of the brain. The spatial resolution of the head

model is 8mm.

This way, the simulation and solution space have different discretization so that
the most common crime in inverse estimation, which is defined as using exactly the

same model for the simulation and the reconstruction [41], was avoided.

5.2 Comparison of MCMC Methods for EEG Source Recon-

struction

5.2.1 Reversible Jump MCMC versus Independence Sampler

Our first study was to compare the performance of the RJMCMC algorithm
with that of IS. The dipole source used to generate the measurements of this simulation
study is located at the Brodmann area (BA)17, with a dipole magnitude of 10nAm.
Source localization results of RIMCMC and IS are shown in Table 5.1 and Table 5.2,

respectively.

The RIMCMC sampler was distinctly superior to IS which suffers from slow
convergence problem. However, even though RJMCMC gives more accurate results
comparing to IS, without coupling it with an heuristic, it is prone to “getting stuck”

on local optima.
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Table 5.1
RIJMCMC source localization results. Original dipole location=[-16 -94 -34]. IN= Iteration Number,
EDN= Estimated Dipole Number, EDL= Estimated Dipole Location, LE=Localization Error.

IN EDN EDL LE

Simulation 1 1000 1 [-16 -94 -10] | 24mm
Simulation 2 || 1000 | 1 [8-94-26] | 24mm
Simulation 3 2000 [ -16 -94 -10] | 24mm
Simulation 4 || 2000 [8 -94 -26] | 24mm
Simulation 5 | 3000 | 1 [8-94-26] | 24mm
Simulation 6 5000 1 [8 -94 -26] | 24mm
Simulation 7 | 10000 1 [-16 -86 -34] | 8mm

—_ | =

Simulation 8 || 20000 | 1 [-8-94-34] | 8mm
Simulation 9 || 50000 | 1 | [-16-94-34] | Omm
Simulation 10 || 50000 | 1 | [-16 -94 -34] | Omm

Table 5.2
Independence sampler source localization results. Original dipole location=[-16 -94 -34].

IN EDN EDL LE

Simulation 1 10000 1 [16 -46 -66] | 66mm

Simulation 2 10000 1 [24 -62 -66] | 60.3mm
Simulation 3 10000 1 [-8 -86 -18 ] | 19.5mm
Simulation 4 10000 1 [-24 -62 -58] | 40.7mm
Simulation 5 || 20000 | 2 | [8-94-34] | 102mm
-32 -46 3]
Simulation 6 | 20000 | 1 | [8-94-26] | 24mm
Simulation 7 || 50000 [-16 -94 -34] | Omm
Simulation 8 || 50000 [0 -94 -34] 16mm
Simulation 9 || 100000 1 [-16 -94 -34] Omm
Simulation 10 || 100000 1 [8 -94 -26] 24mm
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Figure 5.1 Coronal view of the occipital cortex. The dipole located at the BA 17 is shown in red
and the dipole located at the BA 18 is shown in blue. The blue dipole acts like a local optimum so
that sampler risks to be trapped in that location when sampling dipole parameters for the EEG data
produced by the red dipole.

5.2.2 SA versus Parallel Tempering

While sampling dipole parameters from the posterior distribution given the EEG
data produced by the activation of a dipole source located at the BA 17, a dipole at
the BA 18 (coordinates: [8 -94 -26]) acts like a local optimum. Without the help of
heuristics RIMCMC sampler has a tendency to getting stuck in that location. These

dipoles are shown in Figure 5.1.

The implementation of SA and PT heuristics affords significant improvement in
the source localization results as shown in Table 5.3. PT coupled RIMCMC is capable
of escaping the local optima and can find the accurate location within 10000 iterations.

The results of a PT-RJMCMC run are shown in Figure 5.2.

5.3 Evaluation of the Bayesian PT-RJMCMC

Intensive simulation studies are done in order to further investigate the feasibility
of the PT-RJMCMC sampling method. We tested our approach with four different
dipole configuration scenarios. Our hybrid PT-RJMCMC algorithm were run with

five chains, for 10000 iterations. For each data, we conducted five runs with different
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(d) Current density map projected on the MR, volume.

Figure 5.2 PT-RJMCMC source reconstruction results. EEG data is produced by the activation of a
single dipole locating at the BA 17. The dipole magnitude is 10 nAm. (a) shows posterior probability
of the dipole number, (b) posterior probability for dipole magnitude, (¢) current density map and (d)
source localization results in the realistic head model.
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Table 5.3
A total of 75 MCMC runs were tested to compare SA and PT methods. Using PT results in a
significant reduction of local optima errors. LO= Local Optima, LE=Localization Error.

Method Number of Number of RJMCMC runs  Mean
Iterations Chains stuck in a LO LE
RIMCMC 25000 1 10 4.8mm
SA-RJMCMC 25000 1 7 3.36mm
PT-RJMCMC 10000 5 0 Omm

random seeds to check the consistency of results. To monitor the convergence, we
used the PSRF test and for R values greater than 1.1, simulation results were rejected.
First 25% of iterations were discarded for each chain as the burn-in period. The active
dipole number was assumed to be unknown and we did not used any specific a prior
distribution for location and magnitude parameters. Prior distributions for dipole

parameter set x were:

e N: Uniform between N,,;, = 1 and N0 = 9,
e 7 : Uniform over 1360 predefined voxels,

e 1 : Uniform between m,,;, = —200nAm and m,,., = 200nAm. The negative

sign means that the dipole orientation is reversed.

In Chapter 2, it is stated that a patch of 5mm X Smm X 4mm in the cortex
produce a net current of 10nAm. In the current model, a voxel has a volume of
8mm x 8mm x 8mm and can produce approximately a net current of 50nAm. Hence,
these limitations permit stronger and weaker neural activity; even the deepest dipole

with lowest values at the transfer function K can produce potentials up to 120uV .
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(a) Scalp topography. (b) Source location.

Figure 5.3 Exemplar dipole localization result of the EEG data produced by a single superficial
source.

5.3.1 Simulation A: Single Superficial Source

We simulated realistic EEG data produced by single sources located at the
cortex surface. The inverse problem is solved for 43 different EEG data sets produced
by dipoles at different locations with low or high magnitude. Inverse method has

correctly detected sources and no localization error has been found.

Figure 5.3 shows localization result and scalp topography for EEG produced by
the exemplar dipole located at |-32 -22 54] MNI coordinates.

During our analysis, we detected two dipoles at different locations and mag-
nitudes but producing exactly the same EEG data. This EEG data are localized by
PT-RIMCMC method and multiple signal decomposition algorithm (MUSIC). MUSIC
has only detected one of these dipoles. However, PT-RJMCMC resulted in a proba-
bility function peaking at these two dipoles and showed the ambiguity of the problem.
Figure 5.4 shows the localized dipoles and MCMC results.
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Figure 5.4 Dipole 570 at [-8 -62 54] and dipole 671 at [0 -62 54] generate the same EEG potentials.
This figure represents (a) dipole locations, (b) PT-RJMCMC dipole analysis results.

5.3.2 Simulation B: Single Deep Source

One of the problems in dipole source localization is depth biasing: The underes-
timation of deep sources in favor of more superficial ones, leading to solutions that tend
to explain the data with the generators near the sensors [42]. The method was tested
on 345 sources, away from surface and electrodes, to test its ability of locating the deep
sources. The simulation results in 0.46mm mean localization error. Localized dipole

sources are shown in Figure 5.5.

Figure 5.5 Localized deep dipole sources.
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5.3.3 Simulation C: Two Uncorrelated Sources

We considered in this section the case of two simultaneously active sources set
of equal or different strength. 50 dipole pairs from different hemispheres, producing
spatially uncorrelated EEG potentials were selected. Figure 5.6 shows EEG potentials
and scalp topography produced by the activation of two distant sources and Figure 5.7

shows PT-RJMCMC localization results.

80 . . : : v
—_— V313 wWED
sol v763| g

Voltage(uV)

L L L L I
5 10 15 20 25 30
Electrode

(a) EEG Potentials. (b) Scalp topography.

Figure 5.6 Potentials produced by two dipoles, total V= ‘7313 + 17763.

Table 5.4
Sample results from simulation C. 77, is the original location, M, is the original magnitude,r; is the
estimated location and M, is the estimated magnitude of sources.

To M,(nAm) Te M (nA-m)

-32 2 54| 21 -32 -6 54| 20

[8 -62 54] 19 [8 -62 54] 17.5
[-32 -22 6] 20 [-32 -22 6] 20.7
[32 18 30] 10 [16 18 30] 12
[-64 -46 -10] 10 [-64 -46 -10] 10

[56 18 14] 2
[-64 -46 -10] 30 [-64 -46 -10] 31

[56 18 14] 30 [56 18 14] 29

Dipole’s relative power in measurement space (i.e electrodes) influence the re-
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(b) MCMC source localization result.

Figure 5.7 EEG data produced by two uncorrelated dipole activity is localized by PT-RJMCMC
method. Active dipole number (a) and dipole locations (b) are accurately estimated.
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construction accuracy. As the dipole magnitudes and relative power were equal, the
number of active dipoles was estimated correctly. In the case of high-low magnitude
dipole pairs, the method finds the probability of single dipole higher as shown in Table
5.4.

5.3.4 Simulation D: Multiple Sources

The performance of the method was tested for conditions where multiple sources
in the same region were active simultaneously. Sample dipole localization results are

shown in Table 5.5 and Figure 5.8.

Table 5.5
Sample results from simulation D.

To M,(nAm) Te M. (nAm)
I8 18 54| 11 I8 18 54] 12
[16 18 54] 11 [16 18 54] 10
-8 18 54| 11 [-8 18 54| 10
32 10 46] 2 [24 18 46] 1.8
32 18 30] 2 32 18 30] 2.1
32 18 38 2 32 18 3] 1.9
[32 18 46] 2 [32 18 46] 2
[-40 -30 -26] 12 [-56 -30 22] 19.5
[-40 -30 46] 10.5
[48 -6 38 5 [48 -6 38] 45
[48 -14 38 5 48 -14 38] 5.5

5.3.5 Localization Errors

Table 5.6 contains the localization errors of the Bayesian PT-RJMCMC method

for the four different simulations.
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(a) Original source locations. (b) Estimated source locations.
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(c) Estimated source locations.

Figure 5.8 Simulated EEG data produced by three dipole sources locating at superior frontal gyrus
with MNI coordinates [8 18 54], [16 18 54] and [-8 18 54] are localized. (a) shows original source
locations. Dipole moments are radial to the cortex surface and magnitudes are equal (11 nAm)(b)
shows source reconstruction results in the head volume and (c) on the cortex surface. Dipole locations
are exactly found and magnitudes with an error of 1 nAm.
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Table 5.6
Localization errors in simulation studies. SNR—10dB.
Number of | Correct Location within

Simulation Type Trials Omm-8mm-10mm Mean LE
Simulation A 43 100 % 100 % 100 % Omm
Simulation B 345 9%5 % 98 % 100 % | 0.46mm
Simulation C 50 2% 68% 8 % | 9.76mm
Simulation D 150 20% 0%  90% 7.47mm

As shown in Table 5.7 signal-to-noise ratio (SNR) is as effective as the numbers,

locations and relative strength of dipoles on the performance of the method.

Table 5.7
Localization errors in mm for different SNRs.

SNR 25dB | SNR 15dB | SNR 10dB | SNR 5dB | SNR 2dB
Simulation A 0 0 0 0.93 1.86
Simulation B 0 0 0.46 1.02 2.45
Simulation C 3.10 4.12 9.76 12.16 24.01
Simulation D 2.85 3.76 7.47 11.05 28.1

5.4 Comparison with MUSIC

As we saw in Chapter 2, MUSIC is widely accepted as an effective method in
locating EEG potentials produced by focal sources. When only one dipole source is
active, both MUSIC and Bayesian method give almost always the exact location even if
the SNR is significantly low. However, MUSIC is a technique that searches for sources
that are independent of each other in time. The results of the MUSIC procedure
are misleading if several synchronously active sources are responsible for the recorded
signals. When two source are synchronously active as shown in Figure 5.9, MUSIC

points the “center of mass” of brain activity as the source generator whereas Bayesian



(a) Scalp map.

(b) MCMC result.

(¢) MUSIC result.
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Figure 5.9 Simulated EEG data is generated by the activity of two dipoles, locating at left parietal
and right temporal lobe. (a)2D scalp topography, (b)MCMC method (¢) MUSIC method source
localization results projected to the head volume are represented.

method can accurately locate two sources. Sample results reflecting the effectiveness

of two methods for focal type of dipole configuration are represented in Table 5.8.

Table 5.8
Source localization accuracy of Bayesian PT-RJMCMC method is compared with MUSIC for focal
source activity.

Source Configuration

True Location

MCMC Result

MUSIC result

Single Superficial [-24 10 54] [-24 10 54] [-24 10 54]
Single Deep |-24 10 -42] |-2410 -42] | [-24 10 -34]
Two [-32 2 54] [-32 2 54] [-8 -22 62|
Uncorrelated [8 -62 54] [8 -62 54]
Two [8 10 54] [8 10 54] [8 18 54]
Correlated [8 26 54] [8 26 54]

5.5 Comparison with LORETA

LORETA method solves the EEG inverse problem based on a physiological

assumption: Neighboring neuronal populations are simultaneously and synchronously

activated. It is being used in clinical and cognitive studies successfully.
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5.5.1 Extended Neural Activity

To compare Bayesian and LORETA inverse solutions, we produced a patch-
type dipole activation locating at primary visual cortex. Dipole configuration consists
of two main generators and eight neighbor dipoles with relatively low magnitude. Scalp
topography produced by these ten sources is shown in Figure 5.10. Instantaneous neural
activity is localized by Bayesian PT-RJMCMC and LORETA method. Localization

results are shown in Figure 5.11.

Figure 5.10 Scalp topography produced by the activation of ten dipole sources in primary visual
cortex.

A threshold, 40 % of the maximum magnitude is applied on current density
found by LORETA. Current distributions found by these two methods are both concen-
trated on primary visual cortex. Even though Bayesian MCMC source reconstruction
can be classified as an ECD approach, comparing to an imaging approach, LORETA,

it was equally effective to localize widespread neural activity.

5.5.2 Subcortical Neural Activity

To compare the performance of Bayesian PT-RJMCMC method with LORETA
regarding the problem with depth biasing, an illustrative example of source configura-
tion is used. EEG data is produced by the activation of two thalamic sources shown

in Figure 5.12(a) .

LORETA was unable to recover deep sources in the thalamus (Figure 5.12(b)).
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(a) Bayesian PT-RIMCMOC results.

Slice 145 Slice 153 Slice 161 Slice 169 Slice 177

(b) LORETA results.

Figure 5.11 EEG produced by the activation of ten dipole sources in primary visual cortex are
localized by (a) Bayesian PT-RJMCMC (b) LORETA method.

Again in this example as already shown in Simulation B, the MCMC approach gives

accurate estimates (Figure 5.12(c)).
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(a) Source Location. (b) LORETA result.

(¢) MCMC result.

Figure 5.12 Simulated EEG data is generated by the activity of two dipoles, locating at thalamus.
(a)Original source locations, (b)LORETA (¢) MCMC source localization results.
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6. APPLICATION TO EVENT RELATED POTENTIALS
(ERPs)

To further investigate the feasibility of our proposed Bayesian MCMC source
localization method, we tested it with ERP data, obtained from SPM web site [43].
This dataset contains EEG, fMRI and structural MRI data on the same subject within
the same paradigm, which allows a basic comparison of faces versus scrambled faces.
It has been used once by Henson et al. in [44] to study spatial and temporal aspects of
face processing in the human brain. Although we used EEG data to localize N170 wave
essentially by MCMC method, source localization is also done by LORETA and MUSIC
methods and fMRI data are analyzed by SPM5 software to evaluate and compare

different results.

6.1 Overview of Experiment

6.1.1 Paradigm

In this experiment, 86 faces and 86 scrambled faces are randomly presented to
the subject whose task was to rate the left/right symmetry. Faces were presented for
600 ms, every 3600 ms. The subject was instructed not to blink while the fixation
cross was present on the screen. The scrambled faces shown in Figure 6.1 were created
by 2D Fourier transformation, random phase permutation, inverse transformation and
outline-masking of each face. Half the faces were famous, but this factor is collapsed

in our analysis. Two event types that were compared in this analysis are:

e event-type 1= familiar and unfamiliar faces (F)

e cvent-type 2= scrambled faces (S)
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Figure 6.1 Face paradigm. One trial in the experimental paradigm involves either a Face (F) or

Scrambled face (S).
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6.1.2 ERP Component N170

Responses to faces and non-face stimuli are compared by Jeffreys in 1989 [45],
and he found a difference between 150 and 200 ms at central midline sites that he
named vertexr positive potential. Jeffreys noted that this effect inverted in polarity
at more lateral sites, but he did not have any recordings from electrode sites over
inferotemporal cortex. More recent studies [46] have found that faces elicit a more
negative potential than non face stimuli at lateral occipital electrode sites, especially
over the right hemisphere, with a peak at approximately 170 ms. Although, the ERP
component N170 is firstly defined as “the first posterior negative deflection following
the visual presentation of a picture of a face, peaking at occipito-temporal sites at
around 170 ms” [46], face specificity of N170 is a topic of considerable debate as some

studies show that N170 can also occur for other highly familiar stimuli, such as words

147, [48).

A few studies have investigated neural sources underlying N170 with source
localization methods. A recent study of Itier and Taylor used LAURA method with no
a priori assumption on the number of the sources and their locations, and N170 sources
have been localized to the superior temporal sulci [49]. Schweinberger et al. used Brain
Electrical Source Analysis software based on minimum norm estimation and located
N170 generators at the lateral occipitotemporal cortex [50]. Other studies based on
ECD approach found entirely different generators such as fusiform gyri (FG) [51], or
the FG and additional structures such as the lingual gyri [52]. The heterogeneity of
results can be caused not only by the use of different paradigms and record techniques
in experiments but also by the ill-posed nature of the EEG inverse problem: Different

assumptions and source reconstruction methods lead to different solutions.

In Hansen’s study, which we use the same data set, no N170 source reconstruc-
tion is done but differences between F and S in scalp topographies were tested by
analysis of variances (ANOVAs) of amplitude differences and scalp potential and cur-
rent source density (CSD) maps were created by spline interpolation [44]. Based on

these results, Hansen et al. claimed that N170 is most likely generated in the superior



26

20 T T T T T T T

3 el ’ 7
> (

I ‘
Ty / "
N M',Mww” W W s i

-200 -100 100 200 300 400 500 600
Peristimulus time (ms)

o

Figure 6.2 Event-Type I (F) spatiotemporal ERP data. 30 channels are overlapped.

temporal region and dipole source results would confirm the activated regions which

were determined by SPM analysis of the fMRI data.

6.1.3 Multimodal Dataset

The EEG data were acquired on a 128-channel ActiveTwo system, sampled
at 2048 Hz, plus electrodes on left earlobe, right earlobe, and two each to measure
HEOG and VEOG. The original continuous data were converted from BDF format to
SPMEEG format referencing to the average of the left and right earlobe electrodes (for
consistency with [44]), and epoched from -200ms to +600ms. The epochs were then
averaged according to the two trial types (F, S). As described in the previous chapter,
our head model is designed for 30 channel electrodes; to reduce channel number and
choose appropriate electrode locations we used SPM5 software. Noise covariance is
estimated using prestimulus data. The resulting event-type I ERP data are visualized

in Figure 6.2.

The fMRI data were acquired using a Trajectory-Based Reconstruction (TBR)

gradient-echo EPI sequence on a 1.5T Sonata. There were 32, 3mm slices of 3 x 3mm?
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pixels, acquired in a sequential descending order with a TR of 2.88s. fMRI data are
preprocessed with realignment, slice timing, spatial normalization, co-registration and
smoothing steps of SPM5 software. These transformations aim to reduce unwanted
variance components in the voxel time series that are induced by movement or shape

differences among a series of scans.

6.2 Statistical Analysis of f/MRI Data

After the preprocessing steps, fMRI images are ready to be analyzed. SPM
makes the statistical analysis of fMRI data into two steps: fMRI model specification

and estimation.

The general linear model embedded in the SPM software provides a framework
for modeling of the data. The aim of the general linear model is to explain the variation
of the time course y;...y;...yn, in terms of a linear combination of explanatory variables

and an error term. The general linear model in matrix form can be written as

Y =X[f+¢ (6.1)
where Y is the vector of observed pixel values, 5 is the vector of parameters and € is
the vector of error terms. The matrix X is known as design matrix. Its number of
rows is equal to the number of scans in the experiment and its column number is equal

to the number of explanatory variables.

In our case we have two conditions, F and S, which constitute the first two
columns of the design matrix, and six regressor parameters derived by the realign-
ment step of preprocessing. These parameters are used to cancel some of the residual
movement-related effects. The final column is the baseline of brain activity. We derived
the design matrix by a first level analysis, using 215 preprocessed images. Canonical
Hemodynamic Response Function (HRF)without time derivatives was chosen to model

the hemodynamic response. The design matrix is visualized in Figure 6.3.
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Faces vs. Scrambled Faces

contrast (s)

2 4 6 8
Design matrix

Figure 6.3 SPM{F'} for faces versus scrambled faces.

In the fMRI model estimation step, model parameters are estimated using Re-
stricted Maximum Likelihood (ReML) estimation. GLM characterizes relationships
between the experimental manipulations and the observed data - multiple effects all
within the same design matrix. So to focus on a particular characteristic, condition,
or regressor we use contrasts. t-tests tell us whether there is a significant increase or
decrease in the contrast specified; F-tests tell us whether there is a significant difference
between the conditions in the contrast [53]. To see the regions that respond differen-
tially between faces and scrambled faces, an F-contrast ([I — 1]) was defined. This
contrast identified regions in which the parameter estimate for the canonical HRF
differs reliably between faces and scrambled faces. This could include regions that
show both a greater relative response for faces, and regions that show a greater rela-
tive response for scrambled faces. If the resulting SPM{F'} is thresholded at p < .05
family-wise error (FWE) corrected, the resulting maximum intensity projection (MIP)

should be like that in Figure 6.3.

Only two regions survive correction: right fusiform and orbitofrontal cortex

(Figure 6.4). They are a subset of the regions identified by the same contrast in a



(a) Right fusiform (b) Orbitofrontal cortex.

Figure 6.4 fMRI activation map. Two regions (a) right fusiform, (b) orbitofrontal cortex respond
differently to faces and scrambled faces.

group of 18 subjects in [44]. At a lower threshold (e.g, p<.01), additional activation

can be seen in left fusiform, as well as other regions.

6.3 ERP Source Reconstruction

For the EEG data, the difference between faces and scrambled faces is maxi-
mal around 170ms, appearing as an enhancement of a negative component (N170) at
occipito-temporal channels, or enhancement of a positive peak (vertex positive poten-
tial) at Cz. These effects are shown as time series in Figure 6.5 and as a differential

scalp topography in Figure 6.6 .

To realize instantaneous source reconstruction process, F and S potentials recorded

with 30 channels at 170ms, are extracted from the whole spatiotemporal data.
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(a) EEG time series recorded at P8.

(b) EEG time series recorded at Cz.
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Figure 6.5 Sensor time courses for face data at occipito-temporal electrode P8 (a) and vertex Cz

(b) for faces (blue) and scrambled faces (red).

Figure 6.6 Differential EEG scalp topography for faces minus scrambled faces at t = 170ms post-

stimulus.
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6.3.1 MCMC method results

Source reconstruction is done separately for F and S potentials namely, we first
localized faces potentials, then scrambled faces potentials and like in SPM approach

we applied a contrast between two source localization results:
JF,5:|JF—J5| (62)

fF represents dipole currents distribution that generates F potentials, fg represents
dipole currents distribution that generates S potentials and fF_S vector will show

dipole sources that have a greater magnitude for faces of scrambled faces stimulus.

Our hybrid PT-RJMCMC algorithm were run with five chains, for 30000 iter-
ations. For each data, we conducted five runs to check the consistency of results. To
monitor the convergence, we used the PSRF test and R values for each dipole param-
eters were less than 1.1. First 25% of iterations were discarded for each chain as the

burn-in period. Prior distributions for dipole parameter set x were:

e N: Uniform between N,,;, =1 and N,,. = 5,
e 7 : Uniform over 1360 predefined voxels,

e m : Uniform between m,,;, = —100nAm and m,,,,; = 100nAm, with a step size

of 0.01lnAm.

Sampled a posteriori dipole parameter distributions p(zp|Vg) and p(z|Vs) are
used to generate current distribution vectors J; + and J. s, and the above defined contrast
is applied. The resulting Jyr_g is shown in Figure 6.7 . This differential current mag-
nitude distribution is concentrated at two clusters: (i)superior parietal lobule, (ii)right
middle-superior temporal gyrus. The absolute value of the reconstructed activity was
thresholded at 50 % of its maximum, leaving the set of suprathreshold clusters of ac-
tive sources. Activation at these clusters, including right fusiform gyrus is seen at the

current density maps in Figure 6.8. The images show differences in absolute current
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Figure 6.7 Differential dipole current magnitude distribution Jr_s for faces minus scrambled faces
at t = 170ms poststimulus found by MCMC.

at each voxel. The maximum difference is plotted in yellow and 25 % of the maximum

difference in red.

We also localized directly the potential difference at 170ms between F and S,
Vp,s, and found exactly same clusters with the previous contrast study, |jp — fg|
This equality can not be mathematically proved as the current inverse operation is
not linear. As shown in Eq. 3.5, to calculate the likelihood function, p(V|N, 7,1m), at
each iteration we are not using the complete lead field matrix K like in linear inverse
methods, but only those columns respective to current location parameters. With this
direct localization approach, active dipole number histogram shows that Jz_g current
distribution vector can be confidently modeled with two dipoles (Figure 6.9). The first
of the voxel pair with MAP probability locates at superior parietal and the second at

right occipito-temporal region.

6.3.2 LORETA and MUSIC Inverse Solution

LORETA method’s validity in ERP-type source reconstruction has been demon-
strated in several studies of independent research groups [32]. Hence, LORETA is
widely accepted as a reliable inverse method in ERP source localization and its results

can be used to qualify the effectiveness of MCMC method in this N170 study.
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(a) The maximum difference is located at the right occipito-temporal region.

Slice 145 Slice 153 Slice 161 Slice 169 Slice 177

Slice 225 Slice 233

(b) Slice view of current density map.

Figure 6.8 Current density maps derived from the source reconstruction of ERPs in response to
faces and scrambled faces, with PT-RJMCMC method. The plots show absolute differences between
faces and scrambled faces at t=170ms post-stimulus.
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Figure 6.9 Probability of the number of dipoles, estimated from all PT-RJMCMC runs by counting
the number of iterations of the Markov chains that contained one, two, three, four or five dipoles. A
60 % probability is found for the two dipoles.

Y Slice 57

X Slice 145

Z Slice 177

Figure 6.10 F and S potentials are localized with LORETA method. This figure represents the
differential source localization result, Jp — Jg.

Figure 6.10 shows current density values of the voxels forming the LORETA
inverse solution space. The maximum is found at superior temporal gyrus. Comparing
with MCMC results, the density is concentrated at the same two clusters and the
distance between two maxima is only 8mm: MCMC source reconstruction result are

consistent with LORETA’s solution.

Source analysis of MUSIC algorithm has found one active dipole, for this in-
stantaneous ERP data, locating at the lingual gyrus. As shown in Figure 6.9 a 30 %
probability was found for the one dipole by MCMC. Figure 6.11 shows that MUSIC
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(a) MCMC result for N=1 active dipole.
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(b) MUSIC result.

Figure 6.11 Source localization of F-S by MCMC for one dipole (a) and MUSIC. Both points the
same region: lingual gyrus.

result and MCMC result for one dipole, point the same region and the distance between
two maxima is one voxel size. This result is not surprising as dipole source localization
analysis in previous studies of Mnatsakanian et al. and Shibata et al. indicated that
generators for the N170 elicited by faces were located at the lingual gyrus at the late
phase of the N170 [52], [54].
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7. DISCUSSION AND CONCLUSIONS

This study demonstrates the use of a Bayesian method for analyzing EEG data
that directly addresses the ill-posed character of the inverse problem by allowing proba-
bilistic inferences to be drawn about dipole parameters from a large number of possible

that both fit the data and prior assumptions.

The approach presented here differs from previous studies [11], [10] in which re-
strictive assumptions about the neural activity are introduced as the prior information
and posterior distributions are explored by point estimations. Contrary to conventional
Bayesian inverse methods that give only a single best solution, sampling posterior dipole
parameter distributions with MCMC methods provides multiple source reconstruction
results. The multiplicity of the solutions is not a drawback of the method, but a direct
consequence of the ill-posed EEG inverse problem. All solutions obtained by MCMC

were plausible solutions and finding only one of them only partially solves the problem.

The power of MCMC methods lies principally in its simplicity and wide applica-
bility of the basic algorithm. However, the original Metropolis-Hastings algorithm was
not adequate for the current inverse model as the dimension of the parameters were
assumed to be unknown. In the literature, MCMC algorithms were applied to MEG
inverse problem on spherical head models. To our knowledge, there is no study that
indicates which specific MCMC algorithm and tuning parameters should be chosen to

solve EEG inverse problem, among the dozen or more that exist.

Gibbs sampler requires full conditional distributions for all dipole parameters.
Moreover when the dimension of the solution space is not fixed at each iteration,
to sample some dipole parameters conditional on the remainder hardly makes sense.
Therefore, Hastings class of MCMC algorithms was adapted to the source reconstruc-

tion problem.
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An RJMCMUC algorithm coupled with parallel tempering that uses the Metropolis-
Hastings kernel for computing the acceptance probability of a new dipole configuration
is utilized as the underlying sampling technique. The sampler uses reversible moves,
such as birth and death, and a symmetrical perturbation for sampling a candidate
state given the current state, such that a jump between spaces of different dimensions
is made possible. Since the major drawback of MCMC methods is their difficulty in
escaping from local optima, heuristics such as simulated annealing and parallel tem-
pering are used to make the sampling of the posterior distributions easier. We should
note that the local optima problem in source reconstruction is not specific to MCMC
samplers and other dipole analysis methods have also encountered this problem [55].
The convergence of the algorithm was diagnosed with PSRF, a test based on the anal-
ysis of variance. Experimental results demonstrating the effectiveness of the proposed

algorithm has been provided for several EEG data sets.

Current density maps obtained from MCMC results and projected to the 3D
brain volume or cortical surface, provide a link between ECD and imaging approaches.
During MCMC iterations dipole topography were fitted to the data with an ECD
approach as the upper limit for the number of the active dipole (N4, = 5) was much
less than the number of predefined set of dipoles (N, = 1360). Location probability
weighted MAP magnitude projection offers not only a distributed solution which covers
the whole brain volume but also a double check for the consistency of the results

comparing to location-only or magnitude-only mapping.

Experiment on both simulated and empirical data have shown the value and
the capability of Bayesian MCMC method. Experiments with simulated data show
that MCMC method can accurately localize widespread EEG generators whereas well-
known deterministic ECD approach MUSIC is only reliable for focal activity. Further-
more, MCMC approach does not have depth biasing which is an intrinsic problem for

LORETA.

In the ERP source localization study, we investigated what neural regions shows

differential activation patterns when the subject is shown faces compared to scrambled
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faces. Numerous imaging studies have confirmed engagement of the fusiform gyrus
during a range of face perception tasks. Bayesian MCMC inverse results are consis-
tent with fMRI, and LORETA and MUSIC source localization analysis of faces minus
scrambled faces in that face processing is lateralized to the right hemisphere and in

particular to fusiform gyrus.

It should be noted that in our study, the PT-RJMCMC or SA-RJMCMC algo-
rithm failed to give all the different solutions for a given EEG data and “zero localization
error” for all type of dipole configurations. Methodological research is still needed to
improve reconstruction results. “Zero localization error” may be achieved by intro-
ducing physiological, functional priors and spatially informed basis functions into the

Bayesian formulation preferably without restricting the solution space.

Our results show that adequately chosen MCMC algorithms are able to solve the
instantaneous EEG inverse problem even under difficult conditions like an unknown
number of sources, or a high noise level. However, a number of issues have still to
be solved for practical application of MCMC methods. The most important one is
undoubtedly their extension to spatiotemporal analysis, a point that is already covered
by Schmidt et al. in MEG inverse problem [12]. Prospective studies about MCMC
methods can cover full spatiotemporal analysis and information acquired from other

neuroimaging modalities especially from fMRI can be introduced in the Bayesian model.
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APPENDIX A. FORWARD MODEL

In this study, the forward problem is solved by the Boundary Element Method
(BEM) which is a numerical approximation technique which partitions the surface of
a volume conductor into closed triangular meshes. This technique has been used in
dipole source localization of brain electromagnetic activity since the end of 80’s. The
human head is modeled as three homogeneous conductor layers; the outermost surface
being the boundary for the scalp, and the intermediate and the innermost being the

one for the skull and the brain, respectively.

In order to apply the BEM, a realistic head model has to be formed and its
surfaces must be tesselated into triangles. The electrical potential v(s) at any surface

point s can be represented by an integral equation:

R . 1 f4or !
T 0 ) =V — — Z%f dS'n(r').LT,FU(S) (A1)
- Sj

2 T |ls —r

n is the unit normal vector to the surface and Vi, is the potential in an infinite extent
conductor with unit conductivity due to a primary source at r’ with strength p:

g, = Lps=r) (A.2)

© 47 |S—T’|3

The conductivities outside and inside the surface S; are a;-’ and o respectively.
The conductor surfaces S; are approximated by small triangles. Surfaces of the
brain, skull and scalp are tesselated with 2000, 1200 and 1200 triangles respectively.

These tesselated surfaces are shown in Figure A.1.

For the BEM, the center of gravity method is used which is based on the as-
sumption that the potential at the center of gravity is the same as the potential at
everywhere on the triangle. The surface integral in Eq. A.1 reduces to a sum and is

evaluated over each triangle as a secondary source contribution to the potential. There
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(a) Brain. (b) Skull.

(¢) Scalp.

Figure A.1 Tesellated a) brain, b) skull and c) scalp surfaces.

are several methods for approximating the potential on the triangles like constant, lin-
ear or quadratic polynomial interpolation. By these approximations, Eq. A.1 becomes

a linear system of equations to be solved for the potentials on the triangles.
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APPENDIX B. CODE DESCRIPTIONS

In this appendix, the names of the files found in Appendix C (CD-ROM) are

outlined.

B.1 MCMC Samplers

B.1.1 PTRJMCMC.m

Performs Bayesian PT-RJMCMC algorithm for the inverse solution of the dipole

parameters.

Inputs: K, n, xn, x 3 lead field matrix, V measured instantaneous EEG poten-
tials, itnum, iteration number, teknum number of runs, NewVolumeGray, matrix
containing gray matter coordinates of the head model, P matrix containing transitions

probabilities between model parameters R head model spatial resolution.

Outputs: p log-probability for at each iteration, S matrix containing the history
of the Markov Chains, J1, location probability weigthed current density map, DN, pos-
terior probability distribution for dipole number, L, posterior probability distribution

for dipole location, M, posterior probability distribution for dipole magnitudes.

Called by: Command line.

B.1.2 SARJMCMC.m

Performs Bayesian SA-RJMCMC algorithm for the inverse solution of the dipole

parameters.
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Inputs: K, n, x n, x 3 lead field matrix, V measured instantaneous EEG poten-
tials, itnum, iteration number, teknum number of runs, NewVolumeGray, matrix
containing gray matter coordinates of the head model, P matrix containing transitions
probabilities between model parameters R head model spatial resolution, T, maximum

temperature.

Outputs: p log-probability for at each iteration, S matrix containing the history
of the Markov Chains, J1, location probability weigthed current density map, DIN,
probability distribution for dipole number, L, posterior probability distribution for

dipole location, M posterior probability distribution for dipole magnitudes.

Called by: Command line.

B.1.3 IS.m

Performs Bayesian IS algorithm for the inverse solution of the dipole parameters.

Inputs: K, n, x n, x 3 lead field matrix, V measured instantaneous EEG po-

tentials, itnum, iteration number, teknum number of runs.

Outputs: p log-probability for at each iteration, S matrix containing the history
of the Markov Chains, J1, location probability weigthed current density map, DIN,
probability distribution for dipole number, L, posterior probability distribution for

dipole location, M posterior probability distribution for dipole magnitudes.

Called by: Command line.
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B.2 CONVERGENCE MONITORING

B.2.1 psrf.m

Implements psrf convergence test.

Inputs: X, is a N x D x M matrix which contains M MCMC simulations of

length N, each with dimension D.

(NI

Outputs: R, PSRF (R = ) in row vector of length D, neff, estimated

v
w

NXV

effective number of samples 4 =, V, estimated mixture-of-sequences variances, W,

estimated within sequence variances, B, estimated between sequence variances.

Called by: Command line.
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APPENDIX C. CD-ROM

The scripts mentioned in Appendix B are found in CD-ROM which is enclosed
inside the back cover. Minimum system requirements: Matlab V6 (Release 12), a

pentium based PC with at least 128 MB RAM.
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