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ABSTRACT

CORRELATION BETWEEN fMRI and SOURCE
RECONSTRUCTED EEG of STEADY STATE VISUAL

EVOKED POTENTIALS

Electroencephalography (EEG) is a common technique for studying and un-

derstanding the functioning of the brain. In addition, functional Magnetic Resonance

Imaging (fMRI), in the recent years has been a very conventional method for neu-

roimaging. The most important property of the EEG, which makes it superior to other

neuroimaging modalities is its very high temporal resolution. EEG re�ects functional

activities in the range of milliseconds. However, due to limited number of electrode

measurements and some modeling failures, it can provide limited spatial resolution.

fMRI provides satisfactory spatial resolution for imaging of these processes but it lacks

good temporal resolution. In this thesis, the steady state human visual evoked po-

tentials and their corresponding fMRI scans are processed using EEG source recon-

struction and fMRI statistical parametric mapping methods. The visual stimulations

are ranging from 2 to 10 Hz. The fMRI voxels which proved signi�cantly active were

correlated with their associated EEG neuroelectric power which was determined on the

same geometric head with Low Resolution Electromagnetic Tomography (LORETA).

Spatially averaged positive BOLD, post-stimulus undershoot and LORETA amplitudes

are determined across the frequencies as well as the spatial correlations between the

positive BOLD and LORETA amplitudes over an activation mask. Finally, the cor-

relation between the standardized regression parameter due to the steady state visual

e�ect and the LORETA amplitudes were also computed over the frequencies. The most

consistent observation for all these analyses is the signi�cant activation increase at 8

Hz together with a strong correlation between the two imaging modalities.

Keywords: fMRI, EEG, Source Localization, Statistical Parametric Mapping, Gen-

eral Linear Model, Statistical Inference, T Test, Forward Problem, Inverse Problem,

LORETA.
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ÖZET

DURA�AN HAL GÖRSEL UYARILMI�
POTANS�YELLERDE iMRG ve EEG KAYNAK

YAPILANDIRMA ARASINDAK� �L�NT�

Elektroensefelogra� (EEG), beyin i³levlerini anlamada yayg�n olarak kullan�lan

bir yöntemdir. Öte yandan, son y�llarda da i³levsel manyetik rezonans görüntüleme

(iMRG) de bu i³lev için yayg�n bir araç olarak kabul görmektedir. EEG'yi di§er

görüntüleme tekniklerinden ay�ran en önemli özelli§i yüksek zamansal çözünürlü§üdür.

Ne var ki, s�n�rl� say�da elektrot ölçümü ve modellemeden kaynaklanan yetersizlikler

sonucu dü³ük nitelikli bir uzaysal çözümleme sa§lamaktad�r. iMRG bu süreçleri görün-

tülmek konusunda tatmin edici bir uzaysal çözünürlük sunarken zamansal çözünürlük

aç�s�ndan zay�f kalmaktad�r. Bu çal�³mada, EEG kaynak yap�land�rma ve iMRG is-

tatistiksel parametrik haritalama yöntemleri kullan�larak dura§an hal görsel uyar�lm�³

potansiyeller ve bunlara kar³�l�k gelen iMRG taramalar� i³lenmektedir. Görsel uyar�lar

2 Hz'den 10 Hz'e kadar de§i³mektedir. Etkinle³ti§i anlaml� bir ³ekilde belirlenmi³ olan

iMRG vokselleri kendilerine kar³�l�k gelen ve ayn� geometrik kafa üzerinde LORETA

kullan�larak hesaplanan EEG nöroelektriksel güç ile ilintilenmi³tir. De§i³ik frekans

de§erleri için uzaysal olarak ortalamas� al�nm�³ pozitif BOLD, uyar� sonras� dü³ü³ ve

LORETA genlikleri tespit edilmektedir. Bunun yan� s�ra, etkinle³me maskesi üzerinde

pozitif BOLD ve LORETA genlikleri aras�ndaki uzaysal ilintiler de hesaplanmaktad�r.

Son olarak, tüm uyar� frekanslar� için görsel uyarana dayanan ba§lan�m parametresi

ile LORETA genlikleri aras�ndaki ilinti ortaya ç�kar�lmaktad�r. Bütün bu analizlerimiz

içinde en belirgin gözlem 8 Hz'deki etkinle³me ³iddetindeki anlaml� art�³ ve yine bu

frekanstaki iki farkli yöntem aras�ndaki yüksek ilinti olmu³tur.

Anahtar Sözcükler: iMRG, EEG, Kaynak Yerelle³tirimi, Ístatistiksel Parametrik

E³lemleme, Genel Do�grusal Model, Ístatistiksel Ç�kar�m, T Testi, Íleri Yön Problemi,

Geri Yön Problemi, LORETA.
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1. INTRODUCTION

1.1 Motivation

Localization of the cognitive activity in the brain is one of the major problems

in neuroscience. Two powerful imaging modalities that are used to solve this problem

are EEG and fMRI. Both methods provide valuable and reliable information about the

functional activity in the brain. However, they both lack some important characteristics

about the process. EEG serves very high temporal resolution when compared to other

modalities like fMRI and PET. Normally, cognitive information processing consists

of multiple individual stages lasting about 50-300 ms. Only EEG can re�ect such

instantaneous changes in detail within the range of miliseconds. However, fMRI is based

on the blood �ow that is caused by the neural activity. Therefore, it is limited by the

indirect and temporally-delayed relation between metabolism and synaptic currents.

Consequently, it's hard to visualize instantaneous activities via fMRI. On the other

hand, fMRI sets the standards for spatial resolution. Since the process is performed

for each individual voxel, it is much more convenient to visualize the functional activity

by fMRI in this sense. Besides, a model is constructed for an fMRI analysis and for

each voxel model �tting can be observed. The advantage for these techniques is that

they are both non-invasive.

Development in both of the imaging modalities in the recent years raised the

question �why not using both�. As they have their own advantages and drawbacks,

we can eliminate the weakness in both methods by using them together. In other

words, one method may prove to be more e�cient than the other and this will also

be discussed in the results section. fMRI-constrained EEG source localization can

also provide promising information in neuroscience research. Although in most cases,

some discrepancy between the bioelectrical activity (EEG) and the metabolic activation

(fMRI) are found, these methods usually constitute a signi�cant common highlighted

region on the cortex. Simultaneously acquired functional magnetic resonance imaging
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(fMRI) and electroencephalography (EEG) data hold great promise for localizing the

spatial source of neural events detected in the EEG. Despite the fact that a number of

studies use this method, there has been no independent and systematic validation of

the approach. Another important question is 'how similar are the results produced by

these methods?'. In addition, the usage of steady state visual stimuli is important, in

order to better understand the physiological changes during a stimulation. By applying

a steady state stimulus we practically modulate the temporal resulotion of EEG and

make it closer to that of fMRI, so that a better comparison basis is constructed.

There are a number of studies performed on the stimulus rate depending re-

sponse changes. Fox et al. [1] investigated the cerebral blood �ow in human striate

cortex by PET where they used varying stimulus frequency. The results indicated that

rCBF response had a maximum at 7.8 Hz. In another study, again rCBF response to

the stimuli with di�erent frequencies was observed and this time 7 Hz was the value

that the response peaked [2]. An fMRI study, which also conforms with these results re-

vealed that the largest MR signal was obtained at 8 Hz stimulus frequency [3]. Thomas

et al. found 8 Hz as the peak response frequency in another fMRI study [4]. Ozus et

al. found out that BOLD response increases up tp 6 Hz and for the higher values of

frequency, it stays constant [5]. Recently, Mirzajani et al. found that BOLD response

is sensitive to stimulus frequency changes and they also determined the peak response

at 8 Hz [6].

1.2 Objectives

In this study, we investigate the correlation between the fMRI and source re-

constructed EEG to make a comparative analysis using the steady state visual evoked

responses elicited by the human brain. The steady state visual evoked potential data

used for the analyses are acquired with the same paradigm. EEG raw data are pro-

cessed by LORETA[7] inverse solution routines, developed in our research group, which

determine the location and the moment of the dipoles. After this stage, topographic

maps and localizations are depicted by various visualization tools. Di�erent from EEG,
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fMRI raw data are a series of anatomical MRI scans. During the whole fMRI analysis,

SPM5 by Wellcome Department of Imaging Neuroscience was used [8]. fMRI scans,

which are acquired with the same paradigm as for EEG, are subject to some spatial

pre-processing. After this, the newly created pre-processed images are subject to Gen-

eral Linear Model (GLM) analysis followed by a statistical inference. Then, resulting

statistical images are visualized using various tools. In addition, correlations between

two modalities are computed on the basis of spatial activation, BOLD characteris-

tics like positive peak and post-stimulus undershoot as well as the spatial features of

these characteristics over an activation mask. In overall, we aim to introduce a novel

procedural approach in quantifying the degree of spatial localization between fMRI

statistical map and EEG source localization.
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2. FUNCTIONAL MAGNETIC RESONANCE IMAGING

(fMRI)

2.1 Neuroimaging

The idea of localization of function within the brain has only been accepted

for the last century and a half. In the early 19th century Gall and Spurzheim, were

expelled by the scienti�c community for their so-called science of phrenology. They

suggested that there were twenty-seven separate organs in the brain, governing various

moral, sexual and intellectual traits. The importance of each to the individual was

determined by feeling the bumps on their skull. The science behind this may have

been wrong, but it �rst introduced the idea of functional localization within the brain

which was developed around the mid 1800's by clinicians such as Jackson and Broca.

Most of the information available on the human brain came from subjects who had

sustained major head wounds, or who su�ered from various mental disorders. By

determining the extent of brain damage, and the nature of the loss of function, it was

possible to infer which regions of the brain were responsible for which function.

Patients with severe neurological disorders were sometimes treated by removing

regions of their brain. For example, an e�ective treatment for a severe form of epilepsy

involved severing the corpus callosum, the bundle of nerve �bres which connect left and

right cerebral hemispheres. Following the surgery patients were tested, using stimuli

presented only to the left hemisphere or to the right hemisphere. If the object was

in the right visual �eld, therefore stimulating the left hemisphere, then the subject

was able to say what they saw. However, if the object was in the left visual �eld,

stimulating the right hemisphere, then the subject could not say what they saw but

they could select an appropriate object to associate with thant image. This suggested

that only the left hemisphere was capable of speech.

With the development of the imaging techniques of computerised tomography
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Table 2.1
Comparison of di�erent neuroimaging modalities

Techniques Resolution Advantages Disadvantages

SPECT 10 mm Low cost, available Invasive, limited resolution

PET 5 mm Sensitive, good resolution, receptor studies Invasive, very expensive

EEG poor Very low cost, high temporal resolution Not a direct imaging technique

MEG 5 mm High temporal resolution Very expensive, low resolution

fMRI 3 mm Excellent resolution, non-invasive Limited to activation studies

(CT) and magnetic resonance imaging it was possible to be more speci�c as to the

location of damage in brain injured patients. The measurement of the electrical signals

on the scalp, arising from the synchronous �ring of the neurons in response to a stim-

ulus, known as electroencephalography (EEG), opened up new possibilities in study-

ing brain function in normal subjects. However, it was the advent of the functional

imaging modalities of positron emission tomography (PET), single photon emission

computed tomography (SPECT), functional magnetic resonance imaging (fMRI), and

magnetoencephalography (MEG) that led to a new era in the study of brain function.

fMRI is one of the promising neuroimaging techniques. During an fMRI exper-

iment, the brain of the subject is scanned repeatedly, usually using the fast imaging

technique of echo planar imaging (EPI). The subject is required to carry out some

task consisting of periods of activity and periods of rest. During the activity, the MR

signal from the region of the brain involved in the task normally increases due to the

�ow of oxygenated blood into that region. Signal processing is then used to reveal

these regions. The main advantage of MRI over its closest counterpart, PET, is that it

requires no contrast agent to be administered, and so is considerably safer. In addition,

high quality anatomical images can be obtained in the same session as the functional

studies, giving greater con�dence as to the source of the activation. However, the func-

tion that is mapped is based on blood �ow, and it is not yet possible to directly map

neuroreceptors as PET can. The technique is relatively expensive, although compara-

ble with PET, however since many hospitals now have an MRI scanner the availability
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of the technique is more widespread [9].

2.2 Metabolism and Blood Flow in the Brain

The brain, like any other organ in the body requires a steady supply of oxygen

in order to metabolise glucose to provide energy. This oxygen is supplied by the

component of the blood called hemoglobin. It was demonstrated as long ago as 1935

that the magnetic properties of hemoglobin depended on the amount of oxygen it

carried. This dependency has given rise to a method for measuring activation using

MRI, commonly known as functional magnetic resonance imaging (fMRI).

The oxygen required by metabolism is supplied in the blood. Since oxygen

is not very soluble in water, the blood contains a protein that oxygen can bind to,

called hemoglobin. The Hemoglobin molecule is an assembly of four globular protein

subunits. Chemical structure of hemoglobin is as in Fig. 2.1. Each subunit is composed

of a protein chain tightly associated with a non-protein heme group. The important

part of the hemoglobin molecule is an iron atom, bound in an organic structure, and

it is this iron atom which gives blood it's colour. When an oxygen molecule binds to

hemoglobin, it is said to be oxyhemoglobin, and when no oxygen is bound it is called

deoxyhemoglobin.

Figure 2.1 Chemical structure of a heme group in hemoglobin
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To keep up with the high energy demand of the brain, oxygen delivery and blood

�ow to this organ is quite large. Although the brain's weight is only 2 percent of the

body's, its oxygen consumption rate is 20 percent of the body's, and blood �ow is 15

percent. The blood �ow to the grey matter, which is a synapse rich area, is about 10

times that to the white matter per unit volume. Regulation of the regional blood �ow

is poorly understood, but it is known that localised neural activity results in a rapid

selective increase in blood �ow to that area [9].

2.3 Blood Oxygenation Level Dependent Signal Metabolism

The presence of any substance in a magnetic �eld alters that �eld to some

extent. The degree of this e�ect is referred to as the "magnetic susceptibility". The

iron in blood hemoglobin is a superb inherent magnetic susceptibility-induced T2*-

shortening intravascular contrast agent found in every tissue. It is therefore used as

a local indicator of functional activation because oxygenated arterial blood contains

oxygenated hemoglobin, which is diamagnetic and has a small magnetic susceptibility

e�ect. It does not, therefore, signi�cantly alter the regional magnetic �eld and does not

greatly a�ect tissue T2*. Deoxygenation of hemoglobin produces deoxyhemoglobin, a

signi�cantly more paramagnetic species of iron due to the four unpaired electrons, and

this species disturbs the local magnetic �eld, B0, in a region of tissue leading to the large

observed magnetic susceptibility e�ect. The balance of spatial and temporal alterations

in local concentrations of deoxygenated to oxygenated iron a�ects the local observed T2*

by causing �uctuations in magnetic susceptibility. Arterially delivered blood consists

mostly of oxyhemoglobin, however, as HbO2 passes through the capillary bed, the

local concentration of deoxyhemoglobin (Hb) increases and often predominates. This

action is illustrated in Fig. 2.2. Therefore, a T2* gradient can exist across the vascular

tree from a diamagnetic HbO2-rich environment (with a longer relative T2*) to a more

"paramagnetic" Hb environment with a shorter T2* [10] [11].

The local T2* in fMRI contrast is thus determined by the balance of deoxy-

genated to oxygenated hemoglobin in blood within a voxel, which in turn is a function
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Figure 2.2 After activation, oxygen is consumed by the cells, which increases the level of deoxyhe-
moglobin in the blood. This is compensated for by an increase in blood �ow around the active cells,
leading to a net increase in oxyhemoglobin.

of local arterial autoregulation or vasodilation. By increasing the �ow of oxygenated

blood or reducing oxygen extraction to a region in the brain an increase in local, in-

travoxel T2* occurs which in turn leads to an increase in image intensity. An increase

in oxygenated arterially delivered blood in response to local activation will result in

more oxygenated iron in the capillary and venous vascular beds, thereby creating a rel-

atively longer regional T2* and an image intensity increase. It also re�ects a decrease

in deoxyhemoglobin content, i.e. an increase in venous blood oxygenation and a longer

e�ective T2*.

The image intensity for a given voxel in the brain can therefore signi�cantly

increase if more oxygenated blood enters this region and �lls the venous bed. This

assumes, however, that cortical activation causes local vasodilation which is not ac-

companied by a signi�cant increase in oxidative metabolism. It should be remembered

that local image intensity increases will also be dependent on di�erences in hemody-

namic (blood volume, �ow and oxygenation) and vessel architecture (radii, orientation,

vascular openness).

As an example, visual cortex stimulation can be considered. During photic

stimulation a simple presentation of �ashing lights is given during an image acquisi-

tion series. The MR-observable T2* is a�ected by the balance of HbO2 to the more

paramagnetic Hb existing in the capillary and venous beds. This balance produces a

gradient in the local magnetic �eld and a potent tissue contrast mechanism because the
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large surface area of the capillary bed ampli�es the long range e�ects on the magnetic

�eld. The photic stimulation produces rapid neuronal activation, which in turn in-

creases cerebral blood �ow (CBF), cerebral blood volume (CBV), and oxygen delivery.

As CBF increases more than CBV, oxygen delivery quickly exceeds slight increases in

local oxygen needs owing to the activation. Increases in local CBF in the arterioles and

small arteries that occur rapidly are said to be uncoupled to local metabolism. The net

e�ect is a surplus in the amount of oxygentated hemoglobin delivered to any activated

voxel. As the delivered oxygen exceeds local demands, the capillary and venous beds �ll

with a larger ratio of oxygenated to deoxygenated hemoglobin compared to when the

cortex was at rest. This larger amount of diamagnetic oxyhemoglobin will mean less

e�ect from the �eld-altering deoxyhemoglobin, a longer T2*, and to an increased signal

on the T2*-weighted images. The actual volume of hemoglobin in the brain is quite

small (a few percent), however, the T2* e�ects extends for microns beyond the vascular

bed, because magnetic susceptibility is a long-range e�ect. This leads to approximately

a 1%-10% T2*-induced image intensity increase for a typical cortical activation task.

This can be observed from intensities measured from T2*-weighted MR images or from

a simple subtraction of images acquired at rest from those acquired during task [9].

Figure 2.3 Physiological basis of a fMRI BOLD signal

2.4 Blood Oxygen Level Dependent Contrast in MR images

Since regional blood �ow is closely related to neural activity, measurement of

the rCBF is useful in studying brain function. It is possible to measure blood perfusion

with MRI, using various techniques. However there is a sensitive contrast mechanism

which depends on the blood oxygenation level, known as blood oxygen level depen-

dent (BOLD) contrast. The mechanisms behind the BOLD contrast are still to be
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determined, however there are hypotheses to explain the observed signal changes.

Deoxyhemoglobin is a paramagnetic molecule whereas oxyhemoglobin is dia-

magnetic. The presence of deoxyhemoglobin in a blood vessel causes a susceptibility

di�erence between the vessel and its surrounding tissue. Such susceptibility di�er-

ences cause dephasing of the MR proton signal, leading to a reduction in the value of

T2*. In a T2* weighted imaging experiment, the presence of deoxyhemoglobin in the

blood vessels causes a darkening of the image in those voxels containing vessels. Since

oxyhemoglobin is diamagnetic and does not produce the same dephasing, changes in

oxygenation of the blood can be observed as the signal changes in T2* weighted images.

It would be expected that upon neural activity, since oxygen consumption is

increased, the level of deoxyhemoglobin in the blood would also increase, and the MR

signal would decrease. However, what is observed is an increase in signal, implying a

decrease in deoxyhemoglobin. This is because upon neural activity, as well as the slight

increase in oxygen extraction from the blood, there is a much larger increase in cerebral

blood �ow, bringing with it more oxyhemoglobin. Thus the bulk e�ect upon neural

activity is a regional decrease in paramagnetic deoxyhemoglobin, and an increase in

signal. This bulk e�ect is shown in Fig. 2.3.

The time course for the BOLD signal changes is delayed from the onset of the

neural activity by a few seconds, and is smooth, representing the changes in blood

�ow that the technique detects. This is termed the 'hemodynamic response' to the

stimulus. There have also been observations of an initial small 'dip' in signal before

and after the larger increase in signal, possibly re�ecting a transient imbalance between

the metabolic activity and blood �ow [9].

2.5 Functional Mapping using the BOLD E�ect

To study brain function using fMRI it is necessary to repeatedly image the brain,

while the subject is presented with a stimulus or required to carry out some task. The
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success of the experiment is dependent on three aspects; the scanning sequence used,

the design of the stimulus paradigm, and the way the data is analysed.

The magnitude of the static �eld used is critical to the percentage signal change

obtained on activation. This is because susceptibility di�erences have a greater signal

dephasing e�ect at higher �elds. The earliest fMRI studies were carried out at 1.5

Tesla, but now the 3 to 4 Tesla scanners are more common. As �eld strength increases

the magnitude of the BOLD contrast increases more rapidly than system noise, so

it seems that higher �eld strengths are desirable, however the image quality will be

reduced at higher �eld.

The most important aspect of the imaging sequence is that it must produce T2*

weighted images. This means that a gradient echo is most commonly used, however spin

echo sequences still show BOLD contrast because of di�usion e�ects. Most research is

carried out using EPI since its fast acquisition rate allows the activation response to

short stimuli to be detected. EPI also has the bene�t of reduced artefact from subject

motion.

The contrast to noise ratio of the BOLD signal also depends on voxel size and

slice thickness. Smaller voxels have less proton signal due to the reduced number of

spins, however larger voxels may reduce the contrast to noise ratio by partial volume

e�ects. This occurs if the signal changes on activation come from only a small region

within the voxel, and so makes less of an impact on the total signal change in that

voxel.

During the scanning there are a number of physiological e�ects that can a�ect

results. These include cardiac pulsation, respiration and general subject movement.

All these problems can be dealt with in two ways, either at the time of scanning or

in image post processing. Cardiac or respiratory gating, that is triggering the scanner

at one part of the cardiac cycle can be used, although this introduces artefact due to

changes in the spin saturation. Postprocessing strategies have been proposed and are

probably the best way to deal with this problem. Subject movement can also reduce
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contrast to noise in fMRI images, and introduce artefact in the activation maps if the

movement is stimulus correlated. This problem is often solved both by restraining the

head of the subject and by using a postprocessing registration algorithm [9].

2.6 Paradigm Design

Designing the stimulus paradigm is as important as choosing the imaging pa-

rameters for a good experiment. A lot of experience has come from EEG and PET,

but since fMRI has a temporal resolution somewhere between these two techniques new

approaches can be taken.

The earliest fMRI experiments were much in the form of PET studies, that is to

say a set of resting images were acquired and then a set of activation images, and one

set subtracted from the other. However, since the BOLD contrast is relatively rapid in

its onset and decay (of the order of a few seconds) it is possible to follow time courses

for much shorter events occurring more frequently.

The most common stimulus presentation pattern is that of regular epochs of

stimulus and rest, usually labelled 'on' and 'o�'. The duration of these epochs needs

to be long enough to accommodate the hemodynamic response, and so a value of at

least 8 seconds, or more commonly 16 seconds is chosen. These epochs are repeated

for as long as is necessary to gain enough contrast to noise to detect the activation

response. The total experimental duration however must be a balance between how

long the subject can comfortably lie still without moving, and the number of data

points required to obtain enough contrast to noise. There are often some technical

limitations to the experimental duration, and there is the possibility of the subject

habituating to the stimulus causing the BOLD contrast to reduce with time.

Instead of epochs of stimuli, it is possible to use single events as a stimulus, much

in the same way that EEG or MEG does. Again due to the hemodynamic response,

these must be separated by a much longer period of time than would be required for
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EEG, but since this type of stimulus presentation has the major advantage of being

able to separate out the relative timings of activations in di�erent areas of the brain.

One of the major disadvantages of single event paradigms is that the experiments need

to be much longer than their epoch based counterparts, in order to gain the necessary

contrast to noise.

An important aspect in the design and analysis of event-related functional mag-

netic resonance imaging (fMRI) experiments is to optimize statistical e�ciency, i.e.,

the accuracy with which the event-related hemodynamic response to di�erent stimuli

can be estimated for a given amount of imaging time. Several studies have suggested

that using a �xed inter-stimulus-interval (ISI) of at least 15 sec results in optimal sta-

tistical e�ciency or power and that using shorter ISIs results in a severe loss of power.

In contrast, recent studies have demonstrated the feasibility of using ISIs as short as

500 ms while still maintaining considerable e�ciency or power [12].

The choice of stimulus is very critical. For example, to activate the primary

visual cortex is straightforward, but to determine the regions responsible for colour

discrimination is more di�cult. Ideally, it is necessary to design the 'on' and 'o�'

epoch such that there is only one well de�ned di�erence between them, which will only

activate those brain regions responsible for the single task. This is not always possible

and so a hierarchy of experiments often need to be performed. For example, to identify

the regions responsible for task A, an experiment can be performed which involves task

A and task B, and then one which only involves task B. The regions responsible for

task A would presumably be those activated in the �rst experiment but not the second.

This assumes that the system is a linear one, which may not be the case, or there could

be some unaccounted for di�erences in the two paradigms, which could a�ect the result

[9].
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2.7 Analysis of fMRI Data

The analysis of fMRI data falls into two parts. Firstly the raw data must be

analysed to produce an image showing the regions of activation and secondly, some

level of signi�cance must be calculated so that the probability of any of producing such

a result purely by chance is suitably low.

The most straightforward way to analyse the data is to subtract the mean 'o�'

image from the mean 'on' image. This has the disadvantage that any small movement

of the head can drastically change the pixel intensity at the boundaries of the image.

This can give rise to a ring of apparent activation near the brain boundaries. To reduce

this e�ect, and to give a statistic of known distribution, a Student's t-test can be used.

This biases the result against pixels in either 'on' or 'o�' set with very large variability,

and so can reduce movement artefact. An image where each pixel is assigned a value

based on the output of a statistical test is commonly called a statistical parametric

map.

Another commonly used technique is that of correlation coe�cient mapping.

Here the time response of the activation to the stimulus is predicted, usually with some

knowledge of the hemodynamic response, and the correlation coe�cient between each

pixel time course and this reference function is calculated. Other methods that have

been used include Fourier transformation, which identi�es pixels with a high Fourier

component at the frequency of stimulus presentation, principal component analysis,

which locates regions in the brain which show synchronous activity using eigenfunc-

tions, clustering techniques, which again look for synchrony using iterative methods,

and various non-parametric tests which do not require the assumption of normality in

the signal distribution. All these have their various strengths and weaknesses, and no

doubt new methods or variants will be developed in due course. The main criteria for

any technique however is simplicity, speed, statistical validity, and sensitivity [9] [13].

Having obtained a statistical map it is necessary to display the regions of activa-

tion, together with some estimate as to the reliability of the result. If the distribution
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of the statistic, under the null hypothesis of no activation present, is known, then

statistical tables can be used to threshold the image, showing only those pixels which

show strong stimulus correlation. When displaying the results as an image usually of

several thousand pixels, it is necessary to account for multiple comparisons, since the

probability of any one pixel in the image being falsely labelled as active is much greater

than the probability of a lone pixel being falsely labelled. There are several ways to ac-

count for this, for example the Bonferoni correction or the theory of Gaussian random

�elds [14].

2.7.1 Spatial Preprocessing

The analysis of neuroimaging data generally starts with a series of spatial trans-

formations. These transformations aim to reduce unwanted variance components in the

voxel time-series that are induced by movement or shape di�erences among a series of

scans. Voxel-based analyses assume that the data from a particular voxel all derive

from the same part of the brain. Violations of this assumption will introduce artifac-

tual changes in the voxel values that may obscure changes, or di�erences, of interest.

The �rst step is to realign the data to 'undo' the e�ects of subject movement during

the scanning session. After realignment the data are then transformed using linear

or nonlinear warps into a standard anatomical space. Finally, the data are usually

spatially smoothed before entering the proper analysis.

2.7.1.1 Realignment. Changes in signal intensity over time, from any one voxel,

can arise from head motion and this represents a serious confound, particularly in

fMRI studies. Despite restraints on head movement, co-operative subjects still show

displacements of up several millimeters. Realignment involves (i) estimating the 6

parameters of an a�ne 'rigid-body' transformation that minimizes the sum of squared

di�erences between each successive scan and a reference scan (usually the �rst or the

average of all scans in the time series) and (ii) applying the transformation by re-

sampling the data using tri-linear, sinc or spline interpolation. Estimation of the
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a�ne transformation is usually e�ected with a �rst order approximation of the Taylor

expansion of the e�ect of movement on signal intensity using the spatial derivatives

of the images. However, in fMRI, even after perfect realignment, movement-related

signals can still persist. This calls for a further step in which the data are adjusted for

residual movement-related e�ects [14].

Temporal realignment also needs to be performed in preprocessing steps. A

high temporal resolution is always desired. Recent developments in rapid echo-planar

functional resonance imaging (fMRI) and event-related analyses combine a spatial res-

olution of millimetres with a temporal resolution of seconds. A fundamental trade-o�

remains however: large brain coverage at high spatial resolution requires many, thin

image planes (slices), resulting in a longer interscan interval (TR) and poorer temporal

resolution. Although regular stimulus times with respect to scan times allow a higher

e�ective sampling rate, existing volume-based analysis techniques such as SPM assume

simultaneous sampling of all slices. Interpolation of data in time is a solution to solve

the slice timing problem [15] [16].

2.7.1.2 Adjusting for Movement Related E�ects in fMRI. In extreme cases

as much as 90% of the variance, in fMRI time-series, can be accounted for by the e�ects

of movement after realignment. Causes of these movement-related components are due

to movement e�ects that cannot be modeled using a linear a�ne model. These non-

linear e�ects include; (i) subject movement between slice acquisition, (ii) interpolation

artifacts, (iii) nonlinear distortion due to magnetic �eld inhomogeneities and (iv) spin-

excitation history e�ect. The estimated movement-related signal is simply subtracted

from the original data. This adjustment can be carried out as a pre-processing step or

embodied in model estimation during the proper analysis [14].

2.7.1.3 Spatial Normalization. After realigning the data, a mean image of the

series, or some other co-registered (e.g. a T1-weighted) image, is used to estimate

some warping parameters that map it onto a template that already conforms to some
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standard anatomical space (e.g. Talairach and Tournoux 1988). This estimation can

use a variety of models for the mapping, including: (i) a 12-parameter a�ne trans-

formation, where the parameters constitute a spatial transformation matrix, (ii) low

frequency basis spatial functions (usually a discrete cosine set or polynomials), where

the parameters are the coe�cients of the basis functions employed and (iii) a vector

�eld specifying the mapping for each control point (e.g. voxel). In the latter case, the

parameters are vast in number and constitute a vector �eld that is bigger than the im-

age itself. Estimation of the parameters of all these models can be accommodated in a

simple Bayesian framework, in which one is trying to �nd the deformation parameters

that have the maximum posterior probability given the data y, where. Put simply, one

wants to �nd the deformation that is most likely given the data. This deformation

can be found by maximizing the probability of getting the data, assuming the current

estimate of the deformation is true, times the probability of that estimate being true.

In practice, the deformation is updated iteratively using a Gauss-Newton scheme to

maximize. The likelihood potential is generally taken to be the sum of squared di�er-

ences between the template and deformed image and re�ects the probability of actually

getting that image if the transformation was correct [14] [17].

2.7.1.4 Co-registration of functional and anatomical data. It is sometimes

useful to co-register functional and anatomical images. However, with echo-planar

imaging, geometric distortions of T2* images, relative to anatomical T1-weighted data,

are a particularly serious problem because of the very low frequency per point in the

phase encoding direction. Typically for echo-planar fMRI magnetic �eld inhomogeneity,

which is su�cient to cause dephasing of 2π through the slice, corresponds to an in-

plane distortion of a voxel. 'Unwarping' schemes have been proposed to correct for the

distortion e�ects (Jezzard and Balaban 1995). However, this distortion is not an issue

if one spatially normalizes the functional data [14].

2.7.1.5 Spatial smoothing. The motivations for smoothing the data are as fol-

lows: (i) By the matched �lter theorem, the optimum smoothing kernel corresponds to
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the size of the e�ect that one anticipates. The spatial scale of hemodynamic responses

is, according to high-resolution optical imaging experiments, about 2 to 5mm. Despite

the potentially high resolution a�orded by fMRI an equivalent smoothing is suggested

for most applications. (ii) By the central limit theorem, smoothing the data will ren-

der the errors more normal in their distribution and ensure the validity of inferences

based on parametric tests. (iii) When making inferences about regional e�ects using

Gaussian random �eld theory the assumption is that the error terms are a reasonable

lattice representation of an underlying and smooth Gaussian �eld. This necessitates

smoothness to be substantially greater than voxel size. If the voxels are large, then

they can be reduced by sub-sampling the data and smoothing (with the original point

spread function) with little loss of intrinsic resolution. (iv) In the context of inter-

subject averaging it is often necessary to smooth more (e.g. 8 mm in fMRI or 16mm in

PET) to project the data onto a spatial scale where homologies in functional anatomy

are expressed among subjects [14].

2.7.2 Statistical Parametric Mapping and Statistical Analysis

Functional mapping studies are usually analyzed with some form of statistical

parametric mapping. Statistical parametric mapping requires some statistical processes

to test hypotheses about regionally speci�c e�ects. Statistical parametric mapping

usually refer to the conjoint use of the general linear model (GLM) and Gaussian

random �eld (GRF) theory to analyze and make classical inferences about spatially

extended data through statistical parametric maps (SPMs). The GLM is used to

estimate some parameters that could explain the input raw data for each voxel. GRF

theory is used to resolve the multiple comparison problem when making inferences over

a volume of the brain. GRF theory provides a method for correcting p values for the

search volume of a SPM and plays the same role for continuous data as the Bonferoni

correction for the number of discontinuous or discrete statistical tests [14]. An overview

of Statistical Parametric Mapping is visualized as in Fig. 2.4.

Statistical parametric mapping (SPM) is a mass univariate approach to modeling
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Figure 2.4 An overview of Statistical Parametric Mapping. Courtesy of Wellcome Department of
Imaging Neuroscience.

spatiotemporal neuroimaging data. SPM was originally developed to propose solutions

to metabolic or hemodynamic imaging time series such as PET, SPECT, and fMRI

data. However, similar spatiotemporal models have also been derived for EEG data.

Several studies have been performed to illustrate the e�ciency of SPM techniques

through applications of SPM to EEG data. For example, Bosch-Bayard et al. [18] have

described an SPM approach to source reconstructed Fourier transformed EEG data.

Park et al. [19] have implemented a procedure that produces statistical parametric

maps with source reconstructed EEG data. Barnes and Hillebrand [20] have applied

SPM to source reconstructed MEG data. These studies prove SPM as a powerful tool

for di�erent types of modalities [21].

2.7.2.1 General Linear Model. Statistical analysis of imaging data involves

modeling the data to partition observed responses into components of interest, con-

founds and error and making inferences about the interesting e�ects in relation to the

error variance. This classical inference can be regarded as a direct comparison of the

variance due to an interesting experimental manipulation with the error variance. Al-

ternatively, one can view the statistic as an estimate of the response, or di�erence of
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interest, divided by an estimate of its standard deviation. This is a useful way to think

about the T statistic.

The general linear model is an equation that expresses the observed response

variable Y in terms of a linear combination of explanatory variables X plus a well

behaved error term. The general linear model is variously known as 'analysis of co-

variance' or 'multiple regression analysis'. The matrix X that contains the explanatory

variables (e.g. designed e�ects or confounds) is called the design matrix. Each column

of the design matrix corresponds to some e�ect one has built into the experiment or that

may confound the results. These are referred to as explanatory variables, covariates or

regressors.

The equations related to GLM can be used to implement a range of statistical

analyses. The issue is therefore not so much the mathematics but the formulation

of a design matrix X appropriate to the study design and inferences. The design

matrix can contain both covariates and indicator variables. Each column of X has

an associated unknown parameter. Some of these parameters will be of interest (e.g.

the e�ect of particular sensorimotor or cognitive condition or the regression coe�cient

of hemodynamic responses on reaction time). The remaining parameters will be of

no interest and belongs to confounding e�ects (e.g. the e�ect of being a particular

subject or the regression slope of voxel activity on global activity). Inferences about

the parameter estimates are made using their estimated variance. This allows one to

test the null hypothesis that all the estimates are zero using the F statistic or that

some particular linear combination (e.g. a subtraction) of the estimates is zero using

T statistic. The T statistic obtains by dividing a contrast or compound (speci�ed by

contrast weights) of the ensuing parameter estimates by the standard error of that

compound. The latter is estimated using the variance of the residuals about the least-

squares �t. An example of a contrast weight vector would be [-1 1 0 0..... ] to

compare the di�erence in responses evoked by two conditions, modeled by the �rst two

condition-speci�c regressors in the design matrix [22][14].

The aim of the general linear model is to explain the variation of the time course
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y1...yi...yn, in terms of a linear combination of explanatory variables and an error term.

For a simple model with only one explanatory variable x1...xi...xn, the general linear

model can be written as

yi = xiβ + εi (2.1)

where β is the scaling, or slope parameter, and ei is the error term. If the model

includes more variables it is convenient to write the general linear model in matrix

form as

Y = Xβ + ε (2.2)

where Y is the vector of observed pixel values, β is the vector of parameters and e is

the vector of error terms. The matrix X is known as design matrix. Its number of

rows is equal to the number of scans in the experiment and its column number is equal

to the number of explanatory variables. β can be determined by solving the 'normal

equations':

XT Y = (XT X)β′ (2.3)

where β′ is the best linear estimate of beta. Provided that (XT X) is invertable then

β′ is given by

β′ = (XT X)−1XT Y (2.4)

Such parameter estimates are normally distributed, and since the error term can be

determined, statistical inference can be made as to whether the β parameter corre-

sponding to the model of an activation response is signi�cantly di�erent from the null

hypothesis. The general linear model provides a framework for modeling of the data,

and can eliminate e�ects that may deteriorate the analysis, such as drift or respiration,

provided that they can be modeled and placed properly in the design matrix [23][14].

2.7.2.2 Hemodynamic Impulse Response and Temporal Basis Functions.

An early observation regarding blood oxygen level dependent (BOLD), functional mag-
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netic resonance imaging (fMRI) data is that a sudden change in neural activity produces

a signal change that takes several seconds to develop and decay [24]. The slow nature

of the BOLD fMRI signal is a consequence of its hemodynamic origins. Changes in

neural activity cause changes in the local vasculature and the local deoxyhemoglobin

concentration, to which BOLD is sensitive. Therefore, BOLD fMRI provides a measure

of the local, temporal pattern of neural activity, but only after that pattern has passed

through a hemodynamic �lter that smoothes and delays the signal. Since the majority

of BOLD fMRI experiments test hypotheses regarding neural activity, as opposed to

vascular physiology, methods have been developed to account for the temporal blurring

imposed by the natural hemodynamic �lter.

The particular time-course of fMRI signal change that follows a brief period of

neural activity can be termed the hemodynamic response. Previously, it was proposed

that an estimated hemodynamic response (treated as the impulse response function

of a linear system) can be used to obtain a predicted fMRI signal response for any

arbitrary pattern of neural activity [25]. These predicted signal responses can be used

to test hypotheses regarding the e�ect of experimental treatments upon neural activity.

Since this approach more accurately predicts the shape of the fMRI signal, it provides

greater statistical sensitivity and validity [26].

To make statistical inferences about activations in fMRI with the GLM, we

need some core functions to explain the local activity. An impulse response function

is the response to a single impulse, measured at a series of times after the input. It

characterizes the input-output behavior of the system (i.e. voxel) and places impor-

tant constraints on the sorts of inputs that will excite a response. The hemodynamic

response functions (HRFs) were estimated [25] and those HRFs resembled a Poisson

or Gamma function, peaking at about 5 seconds. Our understanding of the biophys-

ical and physiological mechanisms that lie under the HRF has grown considerably in

the past few years [27]. A typical hemodynamic impulse response function looks like

something in Fig. 2.5.

Knowing the forms that the HRF can take is important, because it allows for
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Figure 2.5 Hemodynamic Basis Functions

better statistical models of the data. Besides, HRF may vary from voxel to voxel and

this has to be accommodated in the GLM. To allow for di�erent HRFs in di�erent brain

regions the notion of temporal basis functions, to model evoked responses in fMRI, was

introduced [23] and later applied to event-related responses [28]. The basic idea behind

temporal basis functions is that the hemodynamic response induced by any given trial

type can be expressed as the linear combination of several basis functions of peristimu-

lus time. The convolution model for fMRI responses takes a stimulus function encoding

the supposed neuronal responses and convolves it with an HRF to give a regressor that

enters into the design matrix. When using basis functions, the stimulus function is

convolved with all the basis functions to give a series of regressors. The associated

parameter estimates are the coe�cients or weights that determine the mixture of basis

functions that best models the HRF for the trial type and voxel of concern. We �nd

the most useful basis set to be a canonical HRF and its derivatives with respect to the

key parameters that determine its form (e.g. latency and dispersion). The nice thing

about this approach is that it can partition di�erences among evoked responses into
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di�erences in magnitude, latency or dispersion, that can be tested for using speci�c

contrasts [29].

2.7.2.3 Hypothesis Testing. After the parameter estimates and related resid-

ual errors are calculated, the null hypothesis needs to be tested. Null hypothesis is

equivalent to saying that 'there is no relationship between the initial voxel value (VV)

and the explanatory variable (EV)'. There are several ways to test it, but t test is

simple and convenient. The reason for determining the slopes (beta coe�cients) of the

EVs is because we think that VVs increase linearly with increasing EV. We can assess

whether this is the case, because, if so, there will be a positive slope linking EV with

the VVs. We test this against the null hypothesis. The null hypothesis is that there is

no relationship between EV and the voxel data. On the null hypothesis, β, the slope

of the line, will not be signi�cantly di�erent from zero. We can test this by making a

t statistic, where the t statistic is [14]:

β/SE (2.5)

and where SE is the standard error of the slope.

This t statistic will be large and positive if the slope is signi�cantly greater than

0, and large and negative if the slope is signi�cantly less than 0. When the design

matrix has many columns, it is useful to express our hypothesis with a more general

mechanism, called a "contrast". This mechanism is used to express hypotheses about

the e�ects de�ned in the design matrix. In fact, the question roughly becomes; given

the error in our observations, could this estimate that we have of the slope (beta) has

arisen by chance, even if the null hypothesis is true? On the other hand, is beta too

large for this to be satisfactory? So, the t statistic is our least squares estimate of the

slope, divided by a measure of the error of the slope, and is therefore an index of how

far the slope di�ers from zero, given the error. We already know the distribution of
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the t statistic. Therefore, for instance, we can say that, by chance, with 10 degrees

of freedom, a t statistic of 8.5 or greater occurs 0.01 percent of the time, if the null

hypothesis is true (the p value is 0.0001). After completing the null hypothesis testing,

what we have is a brain image of t values, which indicates the regions on the cortex

with highest probability that the activation occurred. One slice of a t-statistic image

is illustrated in Fig. 2.6.

Figure 2.6 One slice of a statistical t image obtained from a fMRI retinotopy study

2.7.2.4 Statistical Inference and Random Field Theory. With an anatom-

ically open hypothesis (i.e. a null hypothesis that there is no e�ect anywhere in a

speci�ed volume of the brain) a correction for multiple dependent comparisons is nec-

essary. The theory of random �elds provides a way of adjusting the p-value that takes

into account the fact that neighboring voxels are not independent by virtue of continu-

ity in the original data. Provided the data are su�ciently smooth the GRF correction

is more sensitive than a Bonferroni correction for the number of voxels. GRF theory

deals with the multiple comparisons problem in the context of continuous, spatially

extended statistical �elds, in a way that is analogous to the Bonferroni procedure for

families of discrete statistical tests. When declaring a connected volume or region of

statistical parametric map (SPM) to be signi�cant, we refer collectively to all the voxels

that comprise that volume. The false positive rate is expressed in terms of connected
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sets of voxels above some threshold, under the null hypothesis of no activation. This

is not the expected number of false positive voxels. One false positive region may

contain hundreds of voxels, if the SPM is very smooth. A Bonferroni correction would

control the expected number of false positive voxels, whereas GRF theory controls the

expected number of false positive regions. Because a false positive region can contain

many voxels the corrected threshold under a GRF correction is much lower, rendering

it much more sensitive. In fact the number of voxels in a region is somewhat irrelevant

because it is a function of smoothness. The GRF correction discounts voxel size by

expressing the search volume in terms of smoothness or resolution elements (resels)

[30] [31].

Normally, some degree of spatial correlation exists in functional imaging data.

In general, data from any one voxel in the functional image tend to be similar to data

from nearby voxels. Therefore, the errors from the statistical model will tend to be

correlated for nearby voxels. Typically, we realign images for a subject to correct for

motion during the scanning session, and we usually spatially normalize a subject's brain

to a template to compare data between subjects. These transformations require the

creation of new resampled images, which have voxel centres that are very unlikely to

be the same as those in the original images. The resampling requires that we estimate

the signal for these new voxel locations from the values in the original image, and

typical resampling methods require some degree of averaging of neighbouring voxels to

produce new voxel value.

Smoothing is a very common method in preprocessing the functional images

before statistical analysis. A proportion of the noise in functional images is indepen-

dent from voxel to voxel, whereas the signal of interest usually extends over several

voxels. This is because of the possibly distributed nature of neuronal sources and the

spatially extended nature of the hemodynamic response. According to the matched

�lter theorem smoothing improves the signal to noise ratio. Besides, smoothing in-

volves averaging over voxels, which will by de�nition increase spatial correlation [32].

An example of a smoothed image is seen below in Fig. 2.7.
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When we smooth an image with a smoothing kernel such as a Gaussian, each

value in the image is replaced with a weighted average of itself and its neighbours.

2.7 shows a smoothed image with a Gaussian kernel of Full Width at Half Maximum

(FWHM) of 10 pixels. An FWHM of 10 pixels means that, at �ve pixels from the

centre, the value of the kernel is half its peak value. Smoothing has the e�ect of

blurring the image, and reduces the number of independent observations.The smoothed

image contains spatial correlation, which is typical of the output from the analysis of

functional imaging data. However, since there is no simple way of calculating the

number of independent observations in the smoothed data, we need to use random

�eld theory for this [32]. In RFT implementation, we �rst estimate the smoothness

(spatial correlation) of our statistical map. Then we use the smoothness values in the

RFT equation, to give the expected Euler Characteristic at di�erent thresholds.

Figure 2.7 A smoothed 100x100 image with a Kernel of FWHM of 10 pixels

The smoothness of a stationary GRF is de�ned as |Λ|−1/2, where Λ is the covari-

ance matrix of the partial derivatives of the GRF at any voxel position. Usually we do

not know the smoothness of our statistical map. Even if the image is smoothed this is

true, because we usually do not know the extent of spatial correlation in the underlying

data before smoothing. If we do not know the smoothness, it can be calculated using

the observed spatial correlation in the images [33] [34].
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To test for the signi�cance for an activation intensity in a SPM, it is necessary

to evaluate the probability that the maximum value in the map is greater than a given

threshold t under null hypothesis. To apprpximate this probability, Euler characteristic

(EC) of a binarised map thresholded at t was proposed [35]. Euler characteristic

is a geometrical measure that counts the number of connected components minus the

number of holes in the image volume. However, in the high thresholds, EC corresponds

to the number of regions above the threshold value [36] [37]. The expected Euler

Characteristic is de�ned as follows:

E[xt] = λ(V ) |Λ|1/2 (2π)−(D+1)/2HeD(t)
e−t2/2 (2.6)

where λ(V ) is the volume that is analyzed. HeD(t)
is the Hernite polynomial of

degree D in t. Here threshold t is not speci�ed by the user. The value of t is simply the

local maxima or any value that is tested, as opposed to the threshold used for spatial

extent tests. |Λ| is the covariance matrix of the partial derivative of the process in the

D directions of space and it is crucial for the assessment of E[xt] and the calculation

of the p values.
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3. IMPLEMENTATION and RESULTS

3.1 Experiment Paradigm and Data Speci�cations

The dataset was obtained from the experiments that were performed in the

EEG lab of the Physiology department and the MRI room of the radiology department

at the medical faculty of Istanbul University. This dataset includes both EEG and

fMRI data obtained with the same paradigm. The experiments were performed on

a single subject. In these sessions, single shot T2* weighted gradient EPI sequence

was used. 89 functional EPI images with 20 slices were acquired for each temporal

frequency value of the stimuli. Various frequencies were used during the experiment.

These values range from 1 Hz to 100 Hz. Repetition time for the stimuli is 2 seconds

and the photic stimulation was applied by a LED on goggles. EEG data was recorded

from 30 channel with BrainAmp MR+ ampli�er.

3.2 Evaluation and Results for fMRI

The results are analyzed using SPM5 software of Wellcome Department of Imag-

ing Neuroscience [8]. Firstly, the fMRI scans are directed to a preprocessing before

GLM analysis. Spatial and temporal alignments are performed in order to undo the

e�ects that appeared during data acquisition. These steps are followed by a coregis-

tration of functional and anatomical images. Here we use a 2 mm template to register

the mean image and all functional scans together with this template image. Spatial

normalization is performed in order to �t the subject's brain image into our standard

template, which we use also to depict the EEG inverse solution results. In this way,

we can construct a comparison base for the results from both modalities. As the last

step of spatial preprocessing, for the enhancement of the signal to noise ratio, spatial

smoothing with a 8 mm Kernel is performed. After this step, images are ready to

undergo a GLM analysis, where the regressors are categorized according to a single
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variable, which is the 'visual e�ect'. In addition, a column for a baseline is also added.

Design matrix was formed and parameters were estimated according to this matrix.

Finally, statistical inference is performed using appropriate values for height and spa-

tial extent. This procedure was repeated for the stimulus frequency values 2,4,7,8 and

10 Hz. The Fig. 3.1 below shows the activation responses for the stimulus frequencies

of 2,4,7,8 and 10 Hz.

3.3 Evaluation and Results for EEG

EEG has been recorded from 30 channel with BrainAmp MR+ ampli�er in the

EEG lab of the Physiology department of Istanbul University Medical Faculty. The

signals are analog �ltered between 0.1-250 Hz and digitized at 1000 samples/sec. The

data channels used are Oz, O1, O2, Pz, P3, P4, P7, P8, Cz, C3, C4, T7, T8, Fz, F3, F4,

FCz, FC3, FC4, CPz, CP3, CP4, FT7, FT8, F7, F8, TP7, TP8, FP1, FP2. EEG source

reconstruction is performed using LORETA inverse solution developed by our group.

The basic motivation for using the LORETA algorithm as an inverse problem solver

is to obtain a distributed electric source con�guration throughout the brain volume.

This enables us to make a correlative comparison between the EEG and fMRI source

distributions over a well de�ned activation mask. The head model used in this study is

developed using the average T1 weighted human brain MRI data provided by Montreal

Neurology Institute (MNI). SPM5 [8] is used for 3D segmentation of the brain, skull

and scalp. After segmentation, the surfaces are triangulated in order to generate the

realistic head model that we need to solve the forward problem. The routine is applied

to the instantaneous multichannel data of the fundamental frequency for each stimulus

frequency. Figure 3.2 shows the multi-channel raw EEG data for di�erent frequencies.

Figures 3.3-3.7 depict the LORETA inverse solution results for the frequencies varying

from 2 to 10 Hz. Besides, potential distributions can be seen in Fig. 3.8.
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3.4 fMRI and EEG Responses at Di�erent Frequencies

Results derived also in terms of the BOLD-fMRI and EEG signal responses

are shown in Fig. 3.10 and 3.11. For each stimulus frequency, raw fMRI scans are

analyzed and the voxel values within the region of interest, i.e., V1 for this experiment,

are averaged. Spatially averaged BOLD response for one stimulus temporal frequency

can be seen in Fig. 3.9. For this process, at the same time instance, BOLD signals

at each supra-threshold voxels are averaged and this is repeated for the whole time

series. Also for each frequency, maximum response from a single supra-threshold voxel

is recorded and the average of all these voxels is computed. By doing this, we can

show the spatially averaged BOLD response with respect to frequency values as seen

in Fig. 3.10(a). Similarly, we also performed the same thing for the minimum BOLD

response and the spatially averaged post-stimulus undershoot behavior can be observed

in Fig. 3.10(b). From the same region, LORETA potentials are evaluated and their

absolute values are averaged for EEG response which is visualized in Fig. 3.10(c).

Spatial correlation of the positive maximum BOLD response and the EEG is also

studied. Peak of the BOLD response is computed for the supra-threshold voxels and

the correlation coe�cients for this set of data and the corresponding EEG LORETA

magnitudes. These correlation coe�cients can be seen for di�erent frequencies in Fig.

3.11.

3.5 Correlation Between fMRI and EEG at Di�erent Frequen-

cies

Another important assessed criterion is the spatial correlation between fMRI

activation and EEG inverse solution results. This is performed to determine how similar

the activation points are in the two modalities. First of all, this process requires that

the results are expressed on a common spatial template. To achieve this, the functional

MR images are coregistered and normalized to a standard 2 mm template image. Also

for the source reconstruction in EEG, the same template is used. In this way, we can
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observe the correlation between the two modalities. Among the 43277 data points on

the statistical t image that was constructed after fMRI analysis, around 300−350 points

are chosen by appplying a height threshold. The regions that are corresponding to the

same location on the brain are determined by using the MNI coordinate system. Then

the values coming from both modalities are assessed based on correlation for di�erent

frequency values. The resulting correlation coe�cients can be observed in Fig. 3.12

for di�erent values of stimulus temporal frequency.
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frequency

Figure 3.2 Multi-channel raw EEG data for di�erent frequencies
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         LORETA Inverse Solution for 2Hz TF

Figure 3.3 LORETA inverse solution for 2 Hz temporal frequency

        LORETA Inverse Solution for 4Hz TF

Figure 3.4 LORETA inverse solution for 4 Hz temporal frequency
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        LORETA Inverse solution for 7Hz TF

Figure 3.5 LORETA inverse solution for 7 Hz temporal frequency

          LORETA Inverse Solution for 8 Hz TF

Figure 3.6 LORETA inverse solution for 8 Hz temporal frequency
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         LORETA Inverse Solution for 10Hz TF

Figure 3.7 LORETA inverse solution for 10 Hz temporal frequency
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Figure 3.8 EEG topographic maps
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Figure 3.9 At every time instance, the response is averaged over all the supra-threshold voxels and
this time-series is constructed. This �gure shows the �ltered response, i.e, the product of the design
matrix and the parameter array of betas. Positive BOLD magnitude and the post-stimulus undershoot
is depicted on the graph with red arrows as well as the parts that has physiological outcomes.
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Figure 3.10 Normalized BOLD-fMRI and EEG response changes vs. stimulus temporal frequen-
cies. fMRI-BOLD response was investigated both for positive maximum signal and the post-stimulus
undershoot. Correlation coe�cient betweeen the behavior of fMRI and EEG responses is found to be
0.65.
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Figure 3.11 Correlation between the positive BOLD response magnitude and the EEG response.
These values are taken for each supra-threshold voxel and the correlation coe�cient between them are
computed for each frequency.
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Figure 3.12 Spatial correlation between fMRI and EEG results. Supra-threshold voxels are taken
as the correlating sample and fMRI statistical values and LORETA magnitudes are compared.
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4. DISCUSSION and CONCLUSIONS

This study investigates the relative changes in the responses of fMRI and EEG

with respect to the stimulus frequency. The multi modal analyses performed here

revealed important �ndings about the frequency selective behavior of fMRI response.

The results were assessed on a basis of spatial and magnitude correlations.

It is well known that the BOLD signal in fMRI is derived from a combination

of stimulus-induced changes in the regional cerebral blood �ow (rCBF), local blood

volume, and local oxygen consumption rate [38]. The underlying assumption in fMRI

is that these changes are due to neuronal activity. There are a number of studies

regarding the correlation of the stimulus frequency with this neuronal activity [1]. In

these studies, it has been shown that cerebral blood �ow is sensitive to the frequency

of the stimulus [2].

In a previous study, stimulus rate dependence of regional cerebral blood �ow in

human striate cortex by positron emission tomography was investigated and the results

showed that the rCBF response peaked at 7.8 Hz and then declined [1]. In a di�erent

study, rCBF response to frequency variation of pattern-�ash visual stimulus was ob-

served and rCBF response in the striate cortex was found to peak at 7 Hz [2]. Also

an fMRI study investigated the stimulation frequency dependence of visual activation.

The �ndings agree with the previous positron emission tomography observations and

show that the largest MR signal response occurs at 8 Hz [3]. A similar result is found

in some research, where it was showed that the fMRI signal also peaks at a �icker fre-

quency of 8 Hz [4]. In another fMRI study, it was found that the BOLD signal change

increases up to a stimulus frequency of 6 Hz and then stays nearly constant [5]. Also a

recent study revealed that BOLD signal response is also sensitive to spatial frequency

variations as well as the temporal frequency changes. In the same study, 8 Hz was the

temporal frequency value where the BOLD signal peaked [6].
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Our �ndings support the results of the previous studies. Firstly, in fMRI analy-

sis, the activation was focused on the visual cortex as expected. Visual system responds

well to this pure visual stimulus. For some of the frequencies, we also observed mere

activation of frontal eye �elds and temporal cortex. As for the frequency analysis,

BOLD signal changes were observed on the basis of temporal frequency alterations. It

was seen that BOLD response increased to the maximum value at 8 Hz. After this,

it sharply decreased. This is also consistent with the previous �ndings. LORETA

based EEG source reconstruction results are compatible with fMRI results as well. In

addition to the visual cortex activation, EEG response also shows a clear peak at 8 Hz.

LORETA inverse solutions showed the visual cortex activation pretty well for all

frequencies and strongly for two and four Hz stimulus frequency. Also in terms of the

EEG potential distributions, highlights were observed on the occipital and the frontal

cortex. For the low frequencies the distribution is wider whereas as it gets higher, the

topography is found to be more focal.

The BOLD responses averaged over the supra-threshold regions are also inves-

tigated. The fMRI statistical map voxels which appeared to be active are correlated

to the associated EEG amplitudes, which were determined on the same geometric

head with LORETA. Spatially averaged positive BOLD, post-stimulus undershoot and

LORETA amplitudes are determined across di�erent frequencies. Results from both

modalities show us that all of the responses peaked at 8 Hz frequency. For the 2-10 Hz

range, the correlation coe�cient was found to be 0.65 between positive BOLD response

and EEG amplitude behavior. Also, except for the 4 and 7 Hz values, the charactestics

showed similar behavior. Spatial correlations are also observed between the positive

BOLD and LORETA amplitudes over an activation mask. In this analysis the high-

est correlation is found at 8 Hz making a sharp change at this point. Di�erent from

response e�ects, the correlation between the standardized regression parameter due to

the visual e�ect and the LORETA amplitudes were also computed over the frequencies.

For 2 and 8 Hz, we observed relatively high spatial correlation than the other temporal

frequencies. The fact that LORETA makes an assumption initially might have an e�ect

on the results and prevent us from having a higher spatial correlation. In overall, the
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most consistent observation for all these analyses is the signi�cant activation increase

at 8 Hz as well as the consistent responses taken at this frequency together with a

strong correlation between two imaging modalities i.e. the fMRI and EEG. Besides,

it is di�cult to determine the microvasculature precisely where the BOLD signal orig-

inates, because it spreads out into the arteries and these veins can be some distance

away from the original location. The fact that fMRI is more sensitive to the arteries

might e�ect our results in terms of the spatial correlations we evaluated.

On the results of this visual stimulation experimental study, we can infer that

there is signi�cant correlation between EEG and BOLD signals as a function of changes

in the stimulus frequency from 2-10 Hz range. Cortical EEG signals arise mainly in

the 50-250 ms range, whereas the BOLD signal arises in the 1-10 sec range. Therefore,

the observed �ndings are not as certain as with the argument that the BOLD signal is

linearly related to the time-integrated electrical activity of neurons. This might be due

to the fact that the measurements are not sensitive to transient changes in the time

series especially in fMRI.

Frequency e�ect analysis has been a very useful study and it is important in

terms of the results it revealed. This study can be broadened in terms of the exper-

imental design and the analysis method. A spatio-temporal analysis could produce

more e�cient results for analysis. For example, spatial frequency alterations of the

visual stimulus may have an important role in the EEG and BOLD responses. The

experiment design can be modi�ed in this way and results can be investigated for both

of the frequency type changes. Also for comparison purposes, a di�erent protocol for

EEG can be proposed. Statistical approach might produce satisfactory results in terms

of constructing a common base for EEG and fMRI. Another alternative is considered

to replace or modify General Linear Model for EEG. If EEG is provided with its own

basis functions, then the model can be improved and results could be presented on a

comparative basis.
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