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ABSTRACT 

INVESTIGATION OF THE EFFECT OF CRYSTAL THICKNESS ON 

THE SPATIAL RESOLUTION AND LINEARITY OF A PEM 

DETECTOR USING AN ARTIFICIAL NEURAL NETWORK BASED 

POSITIONING ALGORITHM   

The objective of this thesis is to improve the resolution and linearity of a continuous 

detector for positron emission mammography (PEM) imaging, by using an algorithm based 

on artificial neural networks. Another aim of this work is to investigate the effect of crystal 

thickness on the resolution and bias of the detector. A continuous scintillation detector is 

chosen, in order to overcome the difficulties observed in light collection and manufacturing 

of pixellated crystals and to reduce the cost.  

In this study, the detector is composed of 49 mm x 49 mm continuous LSO crystal 

where its thickness changes from 3 mm to 24 mm with increments of 3 mm. The 

photosensor chosen is Hamamatsu H8500 flat panel multi-anode photomultiplier consisting 

of 8 x 8 anodes.  The interactions of narrow beams of 511 keV photons impacting the 

detector surface and the photosensor output are simulated using DETECT2000 simulation 

platform. The 64 outputs of the PMT is reduced to 4 and these outputs are used as the input 

vectors of the multilayer perceptron network for each interaction. Two sets of simulations 

are performed for each thickness of the scintillation crystal. One set to generate the training 

set and another set to create the test set. By fixing the parameters of the network and the 

number of iterations, the effect of crystal thickness and energy threshold on the intrinsic 

spatial resolution and bias are investigated. Our simulations confirmed the bias problem of 

the Anger algorithm and the necessity of using a biasfree positioning algorithm for 

scintillation coordinate estimation.  

Using artificial network based positioning algorithm better results are observed 

when compared to Anger algorithm. Results obtained show an intrinsic resolution of 0.329 

mm and 0.690 mm for a crystal thickness of 3 mm and 24 mm in the center of the crystal, 
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respectively. The systematic errors calculated are better than those obtained with Anger 

algorithm. 

Keywords: Positron emission mammography (PEM), continuous scintillation crystal, 

positioning algorithm, artificial neural networks, Anger algorithm. 
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ÖZET 

KRİSTAL KALINLIĞININ PEM DETEKTÖRÜNÜN UZAMSAL 

ÇÖZÜNÜRLÜĞÜNE VE DOĞRUSALLIĞA ETKİSİNİN YAPAY 

SİNİR AĞLARI TEMELLİ BİR POZİSYONLAMA ALGORİTMASI 

KULLANILARAK ARAŞTIRILMASI 

Bu tezin amacı, sürekli bir PEM detektörünün çözünülürlüğünün ve doğrusallığının 

yapay sinir ağları temelli bir pozisyonlama algoritması kullanılarak araştırılmasıdır. Bu 

çalışmanın diğer bir amacı da kristal kalınlığının, çözünürlük ve detektörün sistematik 

hatasına olan etkisinin incelenmesidir. Bu çalışmada pikselleştirilmiş kristallerin ışık 

toplamadaki sorunlarının ve işçiliklerindeki zorlukların üstesinden gelmek ve maliyeti 

azaltmak amacıyla sürekli bir kristal seçilmiştir.  

Bu çalışmada kullanılan sürekli LSO kristali, 49 mm x 49 mm boyutlarında olup, 

kalınlığı 3 mm’den başlanılarak her simülasyon grubu için 3’er mm’lik artırımlarla 24 

mm’ye kadar çıkarılmıştır. Seçilen ışık algılayıcı, düz panelli ve 8 x 8 anotlu Hamamatsu 

H8500’dür. 511 keV enerjili fotonlar dar aşınlar halinde detektörün yüzeyine gönderilmiştir 

ve kistalin içinde gerçekleşen etkileşimler ve ışık algılayıcının çıkışları simüle edilmiştir. 

Foton çoğaltıcı tüpün 64 adet çıkışı 4 çıkışa düşürülmüştür ve bu çıkışlar, her etkileşim için 

çok katmanlı algılayıcının giriş vektörleri olarak kullanılmıştır. Her kristal kalınlığı için biri 

eğitim, diğeri test setini oluşturmak üzere için iki grup simülasyon gerçekleştirilmiştir. 

Ağın parametreleri ve ağı eğitmekte kullanılan döngü sayısı her kalınlık için sabit tutularak, 

kristal kalınlığının ve enerji eşiğinin, detektörün iç çözünürlüğüne ve sistematik hatasına 

etkisi araştırılmıştır. Yapılan simülasyonlar, Anger algoritmasının sistematik hatasını 

kanıtlamış ve sintilasyon koordinatı hesaplaması için yanlılık hatası olmayan başka bir 

pozisyonlama algoritmasının kullanılmasının gerekliliğini kanıtlamıştır. 

Yapay sinir ağları temelli bir pozisyonlama algoritması kullanılması Anger 

algoritmasına kıyasla daha iyi sonuçlar vermiştir. 3 mm kalınlığındaki LSO kristali için 

merkezdeki çözünürlük 0.329 mm olarak bulunmuştur, kristal kalınlığı 24 mm’ye 
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çıkarıldığında ise çözünürlük 0.690 mm’ye yükselmiştir. Yanlılık hata değerleri ise Anger 

algoritması  ile hesaplananlardan daha iyidir. 

Anahtar Sözcükler: Pozitron emisyon mamografisi (PEM), sürekli sintilasyon kristali, 

pozisyonlama algoritması, yapay sinir ağları, Anger algoritması. 
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1. INTRODUCTION 

Breast cancer is the leading cancer and the second leading cause of mortality in 

women, although the mortality rate from breast cancer has declined through 

mammographic screening of large segments of the population. Despite these advances, the 

considerably mortality and morbidity associated with breast cancer necessitates a 

formidable challenge in this area. 

According to the population-based studies, the screening sensitivity of X-ray 

mammography did not exceed 80% in any segment of the population studied and results in 

a considerable number of missed cancers, especially in women with dense breasts. The 

study of Mendelson et al. revealed sensitivities for breast cancer detection of 80%, 59%, 

and 30% in women with predominantly fatty breast tissue, those with heterogeneously 

dense, and those with extremely dense breasts. It is concluded that breast density is one of 

the strongest predictors of the failure of mammographic screening to detect cancer. 

Moreover, Boyd et al. found that women with dense breasts are at a 4 to 6 times higher risk 

of developing breast cancer than those with predominantly fatty breasts. Other reasons for 

missed breast cancers included misinterpretation of the mammograms, overlooked cancers, 

and suboptimal technique. 

A second important limitation of mammography is its low specificity. That is, the 

majority (60% to 80%) of breast biopsies reveal benign pathology. Thus, even after 

applying stringent mammographic criteria for malignancy, a large number of breast 

biopsies are unnecessary. 

Because of these shortcomings, other imaging modalities such as ultrasound, 

Doppler flow velocity measurements, and magnetic resonance imaging (MRI) have been 

proposed as additional diagnostic tools for improving breast cancer detection. These 

techniques might increase the sensitivity but will likely further reduce the specificity for 

breast cancer detection [1].  
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Metabolic imaging techniques detect physiologic rather than structural changes 

associated with malignant tumors. These techniques such as positron emission tomography 

(PET) and single photon emission computed tomography (SPECT) have found widespread 

oncologic use because of their high sensitivity and specificity. Enhanced glucose 

metabolism of untreated malignant tumors was first reported by Warburg et al. in 1930. 

Whole-body PET with radiolabeled fluorodeoxyglucose (FDG), in particular, has been 

used to successfully detect a wide variety of cancer, including breast cancer [2]. However, 

existing commercial PET instruments are not optimal for imaging small breast cancers. 

PET instruments customized for breast applications have been shown to exhibit superior 

technical characteristics for imaging small lesions in breast phantoms [3]. 

Based on these facts, we tried to optimize a detector configuration for positron 

emission mammography (PEM) using a positioning algorithm based on neural networks 

and investigate the effect of crystal thickness on the spatial resolution and linearity of PET 

detectors.  

1.1 Thesis Outline 

 The first chapter introduces the thesis and in the second chapter provides 

information about physical principles of PET imaging, PET instrumentation and 

positioning algorithms. The third chapter is an overview of current PEM designs. Monte 

Carlo simulations and neural networks are explained in forth and fifth chapters. The sixth 

chapter describes the methodology and the simulations done during the work. Our results 

are summarized in seventh chapter and finally in the eighth chapter our results are 

discussed and concluded, future work related to this thesis is also proposed. 

 

 

 



 3 

2. THEORY 

2.1 Historical Background of PET Imaging 

 Positron emission from radioactive nuclei was discovered in 1933 by Thibaud and 

Joliot. Then it was shown that, in general, two photons were emitted simultaneously after 

positron emission at almost 180º to each other. As soon after this as 1946 the potential 

importance in medicine of positron-emitting radionuclides produced in a cyclotron was 

suggested. This potential was based on the following properties of positron emitters [4]: 

(i)   the radioactive species which decay by positron emission include 11C, 13N, 15O 

and 18F, all biologically important nuclides amenable to chemical substitution 

into organic molecules such as [11C]-glucose, [13N]-H2O, [15O]-CO2 and 

pharmaceuticals; 

(ii)  the technique lent itself to electronic collimation by dual photon coincidence 

counting. This offered a great sensitivity advantage over single photon 

counting techniques, which required physical (lead or tungsten) collimation; 

(iii) the short half-lives of many positron emitters helped to minimize radiation 

dose to the subject and allowed repeated measurements over a short duration. 

By contrast, most single photon emitters half-lives of hours to days.  

The first clinical positron imaging device was used in 1952. The photograph of this 

scanner can be seen in Figure 2.1. Looking back to 1985, many PET scanners had been 

developed by that time, especially for studies of the brain [4]: 

(i) Scanditronix/University of Stockholm (PC 384-B): using 384 Bismuth 

germinate Bi4Ge3O12 (BGO) crystals; 

(ii) The Cyclotron Company/MGH (TCC 4600): BGO and 480 crystals, which 

was also available in whole-body configurations; 
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(iii) EG&G Ortec (NeuroECAT): using 264 BGO crystals; 

(iv) NIH (NeuroPet): 912 BGO crystals; 

(v) Nucletronix/Washington University (PETT IV): a time-of-flight PET system 

with 288 CsF crystals; 

(vi) AEL/Montreal (Therascan 3128): comprising 128 BGO crystals; 

(vii) Shimadzu/Akita (Headtome III): using 480 BGO crystals; 

(viii) LETI Grenoble/Orsay: a time-of-flight PET system with 384 CsF crystals, 

also available as a whole body scanner. 

Whole body scanners were also being developed such as [4]: 

(i) Scanditronix, which used a combination of BGO and gadolinium 

oxyorthosilicate Gd2SiO5 (GSO) to improve spatial resolution; 

(ii) Nucleonix/Washington University (SuperPETT): a time-of-flight CsF-based 

system; 

(iii) EG&G Ortec (ECAT III): BGO-based scanner;  

(iv) Berkeley Donner Lab: a high-resolution, single-ring device with 280 BGO 

crystals. 
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Figure 2.1 First positron imaging device [5].  

 

 Between the years of 1986 and 1991, new radiolabeled ligands and tracers are 

introduced and measurements of regional cerebral blood flow for activation studies are 

carried on. Due to the sensitivity restrictions, thought were given early on to operating the 

new block detector PET scanners in the “open” large-area camera mode. This involved 

removing the septa and recording all possible coincidences, thereby increasing the 

sensitivity. Due to the large radius of the detector rings and the use of deep shielding, much 

of the radioactivity from out of the field of view would be shielded from the detectors when 

the septa were removed. Full volumetric (3D) reconstruction came to the question [4]. 

From 1992 on, the block detector design was advanced by making both the block 

and the elements smaller. The former resulted in a reduction in scanner dead time through 

more parallel processing, and the latter in improved spatial resolution [4]. A comparison of 

several commercially available clinical PET systems is given in Table 2.1.  
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Table 2.1 
Comparison of several clinical PET systems [6]. 

 

 

2.2 Physical Principles of PET Imaging 

 The nucleus of an atom is composed of nucleons, namely neutrons and protons. 

These nucleons have similar masses, but they differ in their charges, where proton has 

positive charge and neutron is uncharged. The nucleus is surrounded by electrons (e-), 

which are negatively charged particles.  

The nucleus is held together with strong force, which is an attractive force between 

nucleons and the Coulomb force, which is the repulsive force between positively charged 

protons. If a nucleus is unstable because of excess number of neutrons or protons, it is 

prone to radioactive decay, in order to achieve a more stable configuration. These types of 

nuclei are called radionuclides. 

 Radionuclides having an excess number of protons decay through positron (β+) 

emission. The positron is the antiparticle of the electron, having the same mass but the 

opposite charge with the electron. During positron decay, a proton is converted into a 

neutron, a positron and a neutrino. An example of positron decay is shown in the Eq. 2.1. 
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11C → 11B + e+ + νe                                                    (2.1) 

In a positron decay, positrons are released with energies ranging between 0 and 

maximum energy Emax, where Emax is determined by the difference in atomic masses of the 

parent and the daughter atom. The emitted positrons have a mean kinetic energy of 

approximately 0.33 x Emax. Decay by positron emission is the basis for PET imaging. 

 Radioactive nuclei decay in an exponential fashion, where half-life is the time 

required for the half number of atoms to decay (Eq. 2.2). Radionuclides relevant for PET 

imaging and their half-lives are listed below, in Table 2.2. 

                                       )/2lnexp()0()( 2/1TtxAtA −=                                       (2.2)  

where A(0) is the activity of the sample at time 0. Activity is measured in Becquerel (2.3) 

or in Curie (Ci) (2.4).      

                          1 Bq = 1 disintegration per second                                      (2.3)  

   1 mCi = 37 x 106 Bq                                                     (2.4)             

 
Table 2.2 

Radionuclides for PET imaging [6]. 
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 The energy of emissions is given in units of electron volts (eV) and its conversion to 

Joule (J) is given below. 

 

                                            1 eV = 1.6 x 10-19 J                                                   (2.5)  

2.2.1 Annihilation Phenomenon 

 When the positron is ejected following the positron decay, its energy is dissipated 

within 10-1 to 10-2 cm, depending on its energy, in inelastic interactions with atomic 

electrons in the tissue. When it is almost at rest, it combines with an electron and they form 

a state called “positronium”, which lasts only about 10-10 seconds before “annihilation” 

occurs. The mass energies of the positron and the electron are converted into 

electromagnetic energy, when positron is assumed to be at rest. The energy released by this 

phenomenon can be computed from Einstein’s mass-energy formula (Eq. 2.6). 

222
cmcmmcE pe +==                                             (2.6) 

 

where me is the mass of the electron (9.11 x 10-31 kg), mp is the mass of the positron (9.11 x 

10-31 kg) and c is the speed of light (3 x 108 m/s). 

 

 The energy is released in the form of high-energy photons, each one having energy 

of 511 keV, ensuring that energy and momentum is conserved. Assuming that the positron 

and the electron are at rest, when they annihilate, the two photons are emitted 

simultaneously in opposite directions (180º apart) (Figure 2.2). 
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Figure 2.2 Annihilation phenomenon of an positron and an atomic electron [7]. 
 

 If an annihilation occurs closer to detector 1, the photon directed towards detector 1 

will reach the detector in a shorter time than the second photon directed towards the second 

detector. The relationship between this time difference and the location d, which is the hal-

way between the two detectors, is given below (Eq. 2.7).  

2

ct
d

×∆
=                                                               (2.7) 

 This method is known as “time-of-flight”, where it is very important to achieve a 

very good timing resolution, in order to be able to detect the coincidences by two opposite 

detectors. 

2.2.2 Photon Interactions in Matter 

 Among a large number of possible interaction mechanisms for gamma rays in 

matter, there are three major types which play an important role in radiation measurements: 

photoelectric absorption, Compton scattering and pair production. In all these processes, 

the gamma-ray photon loses its energy partially or completely. It disappears completely or 

it is scattered through a significant angle. 
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2.2.2.1   Photoelectric absorption.      In photoelectric interaction process, a gamma 

photon undergoes an interaction with an absorber atom where it completely disappears. The 

photon loses its energy completely and an energetic photoelectron is ejected from one of 

the atomic shells of the absorber atom. For gamma-rays having enough energy, the most 

probable origin of the photoelectron is the K-shell of the atom. The energy of the ejected 

photoelectron is given below (Eq. 2.8). 

be EhE −= ν                                                             (2.8) 

where Eb represents the binding energy of the photoelectron in its original shell and hν is 

the energy of the incoming gamma photon (Figure 2.3).  

 The vacancy left by the photoelectron can be filled with electrons from higher 

atomic shells of the atom. The binding energy between the two shells can be emitted as 

characteristic X-rays or the emission of an Auger electron may substitute for the 

characteristic X-ray. 

 The photoelectric absorption is the predominant interaction for gamma-rays of 

relatively low energy. The probability of photoelectric absorption also increases when the 

atomic number of the absorber increases. The probability is given by the Eq. 2.9. 

5.3)( γ

σ
E

Z
n

ricphotoelect ≅                                                   (2.9) 

where n varies between 4 and 5 over the gamma-ray energy region of interest.  
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Figure 2.3 Representation of the photoelectric effect [4]. 

 

2.2.2.2   Compton scattering.      This type of interaction occurs between the incident 

gamma-ray and an electron of the absorber material. Compton scattering is the predominant 

interaction for gamma-ray energies of radioisotopes. In this type of interaction, the gamma-

ray photon is deflected by angle θ with respect to its original direction. The photon 

transfers only a portion of its energy to an electron, called recoil electron. Because the 

photon can be scattered with different angles, the energy of the recoil electron can range 

between zero and a large fraction of the gamma-ray energy (Figure 2.4). The expression 

which relates the energy transfer and the scattering angle is given below. 

( )θcos11
'

2
−+

=

cm

hv

hv
hv

e

                                            (2.10) 

where mec
2 is the rest mass of electron (511 keV), and c is the speed of light. 

 The probability of Compton scattering is linearly proportional to the atomic number 

of the absorbing atom.  
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 The angular distribution of scattered gamma-rays is predicted by Klein-Nishina 

formula: 
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where α ≡ hν / mec
2 and re is the classical electron radius (2.82 x 10-15 m). 

 

 

Figure 2.4 Representation of the Compton scattering [4]. 

2.2.2.3   Pair production.      Pair production is possible, when the energy of the photon is 

larger than twice the mass energy of an electron (1.02 MeV). In this type of interaction, the 

gamma photon disappears and an electron-positron pair is created, where charge and 

momentum is conserved (Figure 2.5). The difference of the energy of the photon and 1.02 

MeV is required for the kinetic energy of electron-positron pair. The magnitude of the 

probability of pair production varies about the square of the atomic number of the absorber 

atom.    
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Figure 2.5 Representation of the pair production [4]. 

2.2.2.4  Attenuation.      For a well-collimated source of photons, attenuation takes the 

form of a mono-exponential function: 

x

x eII
µ−= 0                                                              (2.12) 

where Ix is the intensity measured through a material of thickness x, I0 is the initial intensity 

and µ is the linear attenuation coefficient (units: cm-1). Attenuation is dependent on the 

photon energy and the electron density of the attenuator. Each of the interaction processes 

removes the gamma-ray photon from the beam by absorption or by scattering and can be 

characterized by a probability of occurance per unit path length in the absorber. The linear 

attenuation coefficient is the sum of these probabilities (Eq. 2.13). 

( ) ( ) ( )pairComptonricphotoelect κστµ ++=                               (2.13) 

 

   

 



 14 

2.3 PET Instrumentation 

 A PET scanner consists of two or more detectors. Scintillation detectors are widely-

used gamma-ray detectors for almost all PET scanners used today. These detectors are 

comprised of a dense crystalline scintillator material as an interacting medium for gamma-

rays, which emits visible light. Then visible light is detected by a light photon detector and 

converted into an electrical current. The choice of scintillation crystals and visible light 

detectors is very important for getting a good performance indicated by the performance 

parameters for PET imaging.   

2.3.1 Performance Parameters of PET 

2.3.1.1  Spatial resolution.      The spatial resolution of a system represents its ability to 

distinguish between two points after image reconstruction. The measurement is performed 

by imaging point sources in air and then reconstructing images with no smoothing or 

apodization. The purpose of this measurement is to characterize the widths of the 

reconstructed image point spread functions (PSF) of compact radioactive sources. The 

width of the spread function is measured by its full width at half-maximum (FWHM) and 

full width at tenth-maximum (FWTM). The spatial resolution (FWHM and FWTM) of the 

point source response function in all three directions (radial, tangential, axial) is determined 

by forming one-dimensional response functions, along profiles through the image volume 

in three orthogonal directions, through the peak of the distribution [8]. 

 

Figure 2.6 A typical response function with FWHM and FWTM determined graphically by interpolation [8]. 
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2.3.1.2  Sensitivity.      Sensitivity of a positron emission tomography is expressed as the 

rate in counts per second that true coincidence events are detected for a given source 

strength. For the sensitivity measurement, a phantom filled with a certain amount of 

radioactivity and water is suspended in the center of the transaxial field of view, aligned 

with the axis of the tomography. This activity, Acal in MBq, and the time of the assay Tcal 

are recorded. Data are collected for a period of time to ensure at least 10,000 true 

coincidences per slice are collected and then sensitivity is calculated. The sensitivity is 

calculated as indicated below. 

cal

CORR

tot
A

R
S

0,
=                                                        (2.14) 

where RCORR,0 represents the count rate with no attenuation [8].  

2.3.1.3  Energy resolution.      The detectors should be able to indicate the energy of the 

incoming annihilation photon such that those that have scattered in the body can be 

rejected. The ability of the detector to determine the energy of the photon is known as the 

energy resolution [1]. The energy resolution is conventionally defined as the FWHM 

divided by the location of the peak of the energy distribution (pulse height spectrum) [9]. 

 

 
Figure 2.7 Pulse height spectrum [10]. 
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2.3.1.4  Timing resolution.      It is defined as the ability of a pair of detectors to determine 

the time difference in arrival of annihilation photons and is typically on the order of 2 to 6 

ns. A typical timing window that is used in PET scanners so as not accidentally reject 

annihilation photon pairs is typically 2 or 3 times the timing resolution, leading to values in 

the range of 4 to 18 ns [1]. The FWHM of the time distribution is used as the measure of 

the overall timing uncertainty in the measurement system [9]. 

2.3.1.5  Scatter fraction, count losses and random measurements.      The scattering of 

gamma-rays emitted by the annihilation of positrons results in falsely located coincidence 

events. Variations in design and implementation cause positron emission tomographs to 

have different sensitivities to scattered radiation. The measurements of count losses and 

random rates express the ability of a positron emission tomography to measure highly 

radioactive sources with accuracy [8].  

2.3.1.6  Accuracy.     To achieve quantitative measurements of source activity 

distributionsunder widely varying conditions, positron emission tomographs usually have a 

capability to compensate for dead time losses and random events. The accuracy of these 

corrections, particularly at the highest count rates encountered in clinical imaging, is 

reflected by the bias with which the tomography reports counts [8].  

2.3.1.7  Image quality, accuracy of attenuation and scatter corrections.      The purpose 

of this measurement is to produce images simulating those obtained in a total body imaging 

study with both hot and cold lesions. Spheres of different diameters are imaged in a 

simulated body phantom with non-uniform attenuation; activity is also present outside the 

scanner. Image contrast and signal-to-noise ratios (SNR) for both and cold spheres are used 

as measures of image quality. In addition, the accuracy of the attenuation and scatter 

corrections is determined from these measurements [8].  
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2.3.2 Scintillators  

 The scintillation process is one of the most useful methods for the detection of high-

energy radiation. Scintillators have the property of emitting light in the visible region of the 

spectrum when high-energy photons deposit energy in them. The visible light is emitted 

isotropically and the amount of light emitted is proportional to the energy deposited. 

Scintillators can be organic or inorganic. For the purposes of PET imaging, dense, 

inorganic and solid scintillators are scintillators of choice. It is also clear that in the most 

dense scintillators, Compton interactions are more likely to occur than photoelectric 

interactions at 511 keV. Low-energy photons can be rejected by placing a lower threshold 

on the output. The surface treatment of the scintillator elements and the use of reflectors on 

the sides of the crystal are very critical. Stopping power and brightness of the scintillators 

are also important factors for scintillator choice, because integrated light signal from the 

scintillator is converted into electrons by the photodetectors and these signals are used for 

determining the location of the interaction. In both cases, the statistical fluctuations in the 

number of scintillation photons detected are a major source of noise in the measurements. 

These fluctuations have a characteristic of Poisson noise, where the standard deviation is 

√N when the number of the detected photons is N. The decay time is another important 

factor in PET imaging because coincident detection of the two annihilation photons is 

involved. Finally, the index of refraction of the scintillator is also important as it 

determines how efficiently optical photons are transmitted from the scintillator to the 

photodetector. Table 2.3 gives the properties of scintillator materials used for gamma-ray 

detection at 511 keV in PET imaging [6,9]. 

Table 2.3 
Properties of scintillators used in PET imaging [4]. 

 

 



 18 

2.3.3 Photosensors 

 High-energy annihilation photons are absorbed by the scintillator and the burst of 

low-energy optical photons that are emitted from the scintillator, are converted into an 

electrical current by the photodetectors. Each interaction produces a single electrical pulse. 

The pulse amplitude is determined by the number of visible light photons generated. 

2.3.3.1  Photomultiplier tubes.      The majority of commercial PET scanners use 

photomultiplier tubes (PMTs). Visible light is transmitted through the glass entrance 

window of the PMT and the reaches the photocathode. Each light photon from the 

scintillator has about a chance of 15% to 25% to liberate an electron from the 

photocathode. This property is called the quantum efficiency of the PMT. Electrones are 

accelerated by a high potential difference towards the positively charged dynode and on the 

order of 3 or 4 secondary electrons are released, which are directed to the other dynodes, 

ultimately creating an avalanche of photoelectrons. PMTs have different sizes, shapes and 

models, like multichannel or position sensitive. The advantage of PMTs is their high gain, 

their stability, ruggedness and fast response. The disadvantages are that they are bulky and 

expensive. 

 

 

Figure 2.8 Cross-section of a PMT [11]. 
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2.3.3.2  Solid state photodetectors.      Another photodetector used in PET imaging is the 

silicon photodiode (PD). A voltage of 102 or 103 V is applied across the silicon diode. 

When a scintillation light photon interacts in the silicon, it often has sufficient energy to 

liberate an electron from the lattice of the silicon. The vacancy it leaves behind is named as 

a hole and has a net positive charge. Under the applied electric field, the electron drifts 

toward the anode and the hole is drifted towards the cathode and an electrical signal can be 

measured. The quantum efficiency of photodiodes is around 60% to 80%, providing a 

much efficient conversion of photons to electrons compared to PMTs. But because they do 

not have an internal gain, the total signal measured is 106 times weaker than a PMT signal. 

This fact degrades the SNR and the ability to determine the energy deposited in the 

scintillator. 

 

 There is another type of photodiodes called avalanche photodiodes (APDs). Here, 

the voltage applied is much higher giving rise to an avalanche effect like in PMTs. Gains of 

102 to 103 are possible providing a good SNR. Their quantum efficiency is like 

photodiodes, in the range of 60% to 80%. The energy and timing performance is roughly 

equivalent to those of PMTs (Figure 2.9). 

 

 

Figure 2.9 Cross-section of a PD [12]. 

 

 

 

 

 

 



 20 

2.3.4 Detector Configurations 

2.3.4.1  Block detectors.      In this detector configuration, a relatively large block of 

scintillator material is segmented into an array of smaller detector elements. The saw cuts 

are filled with a white reflective material, in order to be able to isolate each element from 

the others. This detector block in Fig. 2.10 is coupled to four single-channel PMTs.  The 

depth of the saw-cuts is determined so that the scintillation light is shared by the four PMTs 

in a linear fashion. Sufficient light produces a unique distribution of scintillation light in 

each detector element and so unique signals on the PMTs.       

 
Figure 2.10 Block detector [13]. 

 

 

2.3.4.2  Quadrant-sharing detectors.      In this design, larger PMTs are used and each 

scintillation block is placed on the corner quadrants of four PMTs. Four PMTs are again 

being used to decode each block (Figure 2.11). The block in which the interaction occurs is 

determined by which four PMTs show a significant signal. One drawback of this approach  

is that it requires that blocks be structured into large planar panels and also there is not 

usable one half of a PMT width at each end of the panel.  

 

 
 

Figure 2.11 Schematic of the quadrant-sharing detector design [14].  

 

 



 21 

2.3.4.3  Continuous detectors.      Other approach is to use large-area, continuous 

scintillator coupled to a matrix of PMTs (Figure 2.12). Thicker crystals are used for 

sufficient efficiency. For the detection of the location of interaction, signal from each PMT 

is digitized and weighted so that the position of the interaction is linearly dependent to the 

positions calculated from the PMT outputs. The position information provided is 

continuous, namely not like the discrete position information provided from block 

detectors. If the thickness of the crystal is increased to get a high SNR, a degradation of the 

spatial resolution is observed. Another drawback of this configuration is that edges of the 

scintillator plates yield poor spatial resolution, because the shape light distribution changes 

due to the interactions of the photons with the edges of the crystal.  

 

 

Figure 2.12 Photograph of large-area continuous scintillator coupled to a matrix of PMTs [6].  

2.3.4.4  Detectors with PSPMTs or MCPMTs.      In several research PET systems 

single-channel PMTs have been replaced with multi-channel PMTs (PSPMT) and position 

sensitive PMTs (MCPMT) in various detectors. These are used for high-resolution PET 

systems because of their compact size and the ability to provide positional information. 

These devices are often used to decode arrays with large numbers of scintillator elements. 

The major drawbacks of PSPMTs and MCPMTs are the significant amount of dead space 

around their periphery and their high cost compared to single-channel PMTs. 

2.3.4.5  Phoswich detectors.      The uncertainty in the depth of interaction (DOI) leads to 

degradation of spatial resolution in PET imaging. There are methods used to overcome this 

problem. The first approach is based on the use of two layers of scintillators with different 
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decay times, so that they can be differentiated. The layer in which the interaction is 

determined by looking at the decay times of the pulses. Another approach is to place the 

photodetectors (for example, a PIN photodiode and a single-channel PMT) at both ends of 

the scintillator and to use of the ratio of the signals of the photodetectors to get a measure 

of the DOI. 

2.3.5 Limitations of PET Imaging 

 There are basically two effects in PET imaging causing errors in determining the 

line of response (LOR) along which a positron-emitting radionuclide is to be found. 

Blurring and limitation of spatial resolution are their major effects. Another limitation of 

PET is the detection of events other than true coincidences, like scatters or randoms as 

trues. 

2.3.5.1  Positron range.      It is the distance from the site of positron emission to the site 

where the annihilation occurs. Positrons follow a turtous path because of the many 

direction-changing interactions before they annihilate with an electron. But the PET 

scanner detects the annihilation photons along the line passing through the site where the 

annihilation occurs and does not detect them along the path where the decaying atom is 

located. This effect causes a mispositioning and the blurring ranges from a few tenths of a 

millimeter up to several millimeters depending on the radionuclide and its Emax. Positron 

range limits also the ultimate resolution of PET.  

2.3.5.2  Noncolinearity.      The cause of noncolinearity is the fact that positron and 

electron are not at rest when they annihilate. Because of that, the net momentum of these 

particles is not zero, so the angle between the two photons generated is not exactly 180º. 

The distribution of emitted angles is roughly Gaussian in shape with a FWHM of 

approximately 0.5º. The blurring effect coming from colinearity can be estimated as 

follows: 

Dnc ×=∆ 0022.0                                                       (2.15) 
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where D is the diameter of the PET scanner.  

2.3.5.3  Detected events other than true coincidences.      Event detection in PET relies 

on electronic collimation. An event is regarded as valid if two photons are detected within a 

predefined elecronic time window known as coincidence window, the subsequent line-of 

response formed between them is within a valid acceptance angle of the tomograph and the 

energy deposited in the crystal by both photons is within the selected energy window. 

 But also unwanted events as one or both of the photons has been scattered or the 

coincidence is the result of the accidental detection of two photons from unrelated positron 

annihilations. The terminology commonly used to describe the various events in PET 

detection are (Figure 2.13): 

(i) A single event, which is a single photon counted by a detector. A PET scanner 

typically converts between 1% and 10% of single events into paired 

coincidence events; 

(ii) A true coincidence event, which is an event that derives from a single 

positron-electron annihilation. The two annihilation photons both reach 

detectors on opposing sides of the tomograph without interacting significantly 

with the surrounding atoms and are recorded within the coincidence timing 

window; 

(iii) A random coincidence occurs when two nuclei decay at approximately at the 

same time. After annihilation of both positrons, four photons are emitted. Two 

of three photons from different annihilations are counted within the timing 

window and are considered to have come from the same positron, while the 

other two are lost. Random events can be removed either by estimating the 

random event rate from measurements of the single event rates or employing a 

delayed coincidence timing window; 

(iv) Multiple events are similar to random events, except three events from two 

annihilations are detected within the coincidece timing window. Due to the 
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ambiguity in deciding which pair of events arises from the same annihilation, 

the event is disregarded. Again, multiple event detection rate is a function of 

count rate; 

(v) Scattered events arise when one or both of the photons from a single positron 

annihilation detected within the selected coincidence timing window have 

undergone a Compton interaction. Compton scattering causes a loss in energy 

of the photon and change in direction of the photon. The consequence of 

counting a scattered event is that the line-of-response assigned to the event is 

uncorrelated with the origin of the annihilation event. This causes 

inconsistencies in the projection data, and leads to decreased contrast and 

inaccurate quantification in the final image.  

 

 

Figure 2.13 True, scatter, random and multiple events detected in PET imaging [4]. 

 

2.4 Photon Detection Algorithms 

 Physical restrictions of PET imaging limit the resolution and can hardly be 

improved, but with the improvement of detection algorithms for scintillation detection in 
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the crystal, the quality of PET scanners can be significantly improved. The quality of PET 

scanners is specified by several quantitative criteria explained in Section 2.3. 

The geometric configuration of a PET detector has a significant effect on the spatial 

resolution. If the scintillation point is far from the photodetector, the solid angle subtended 

by the photodetector and inevitably the number of photoelectrons produced, decreases. As 

a result, a higher uncertainty is observed in the received signal and the position estimation 

worsens. These distant events are much more subjected to edge effects, like multiple 

reflections and refractions. In such regions, the distorted light distribution causes the spatial 

resolution to degrade. 

 Another important problem in scintillation detection is the parallax effect (Figure 

2.13). If the crystal thickness is increased, in order to prevent the escapes and in that way to 

improve the sensitivity of the scanner, non-normal photons cause parallax effect, which 

depends on the depth of penetration of the gamma-ray and the sine of its incidence angle. 

p sinzδ θ= ∆ ⋅       (2.16) 

 

Figure 2.14 Parallax effect in a thick scintillation crystal [15]. 

 

 To overcome these problems and to obtain good performance characteristics, many 

positioning algorithms are developed. 
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2.4.1 Anger Algorithm 

 Anger algorithm is commonly used for scintillation positioning in nuclear medicine 

imaging. It is a centroid-based algorithm and calculates the scintillation coordinates with 

fixed weights given to photodetectors with respect to a certain point in the crystal, which is 

generally the center point.  

                                                           ∑=
i

iiest Vxx )(ω ,                                                (2.17) 

∑=
i

iiest Vyy )(ω                                                 (2.18) 

where ωi(x) and ωi(y) are the weights of the ith PMT in x and y directions with respect to 

the center of the crystal, respectively.  

 An improvement to Anger algorithm is done with threshold pre-amplification for 

each PMT. Based on the fact that distant events cause more uncertainty than the near ones, 

less strong weights are assigned to the distant PMTs with threshold amplification of 

signals, such that larger output signals receive greater amplification than weaker ones. 

 A second improvement to this algorithm is the bias correction. Bias is observed 

mostly for the regions distant from the center and it is tried to be overcome by subtracting 

an estimated bias value from the calculated coordinates according to the region estimated 

by the uncorrected Anger algorithm.  

 A third approach is placing virtual PMTs at the crystal edges and assigning realistic 

signal values to them on a event by event basis on the signals of nearby lying real PMTs. 

This approach is proposed in order to eliminate the degradation of spatial resolution at the 

edges [16]. 
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2.4.2 Statistical and Look-Up-Table (LUT) Based Algorithms 

 As a result of the bias problem of Anger algorithm, bias-free positioning algorithms 

are being investigated. One of these methods is the use of maximum-likelihood (ML) 

algorithm. ML based techniques have been developed in order to achieve efficient position 

estimators. It has been reported that ML algorithm offers advantages of improved spatial 

resolution and bias over conventional Anger algorithm and the useful field of view (UFOV) 

of the detectors is increased by using this algorithm. The basic principle of the ML method 

is to select the scintillation positions which maximize the probability of obtaining such 

PMT responses for a set of observed PMT responses. Line-response-functions (LRF) are 

determined experimentally by moving a point or line source on a known grid with a certain 

precision and observing each PMT response according to the source position. Later studies 

have improved this algorithm by adding also the DOI information and interpolating the 

PMT responses or fitting them in Gaussian or Poisson curves, eliminating the 

discontinuities or calculating them according to the solid angle coverage instead of 

measuring them with a lot of time consumption [17-21].  

 Other algorithms are developed which involve generation of crystal LUTs for PMT 

responses or flood histograms. These are implemented for pixellated and continuous 

crystals mounted on position sensitive APDs (PSAPD) and PMTs, respectively. These 

involve the use of nearest neighbor position estimation or other algorithms for estimation of 

detector intrinsic resolution and DOI. It is reported that the DOI affects the location 

estimation and therefore the resolution and the resolution is improved by using the LUT 

based positioning algorithm [22,23].  

2.4.3 Neural Network Based Algorithms 

 Another group of algorithms for accurate position estimation uses artificial neural 

networks (ANN) where the capability of the ANNs for modeling the detector response is 

used. The thought behind is to develop scanners with lower costs using continuous thick 

crystals to increase the sensitivity without sacrificing the spatial resolution. It is shown that 

implementation of ANNs enables fast, bias-corrected position estimation and correction of 
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non-linearities making the real time line-of-response (LOR) computation possible. It is also 

found out that incorporation of information about angles improves the accuracy of the 

position estimation [24,25]. 
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3. CURRENT PEM DESIGNS 

 Development of special purpose, dedicated PET scanners is an important issue in 

PET research. This fact is also valid for breast imaging. Many research groups have been 

developing so called PEM cameras since 1990’s. The need of use PEM arises from the fact 

that these scanners restrict the field of view (FOV) to a single breast, cover a larger solid 

angle around the breast, have higher efficiency and have lower cost compared to 

conventional PET scanners for detecting breast cancer. 

 The most common geometry consists of two planar detector modules, but there are 

other researchers who investigated PEM tomographs, cylindrical, hexagonal, rectangular or 

curved plate PEM configurations. 

 The first breast dedicated scanner is begun to be constructed by Thompson et al. 

[27] after a feasibility study done in 1994, where Monte Carlo (MC) simulations of a breast 

phantom made using PETSIM are compared with actual scans of this phantom in a 

conventional whole-body PET scanner [26] (Figure 3.1). Their configuration consists of 

two planar BGO blocks of dimensions 36 x 36 x 20 mm cut into 2 x 2 mm squares coupled 

to two 7.5 cm square PSPMTs (Hamamatsu R3941-05) and coincident events are back-

projected to form real-time multiple plane images. The sensitivity of the camera is about 

20-fold of the sensitivity of a conventional PET scanner achieving a reduced patient dose 

and cost per scan. The device is expected to have an in-plane spatial resolution about 2 mm 

full-width-at-half-maximum (FWHM).  

 

Figure 3.1  Schematic of the proposed positron emission mammography device. (a) X-ray detector with 
compression member, (b) X-ray detector and the integrated PEM camera [26]. 
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 In 1996 [28], the spatial resolution in the central region is measured to be 2.05 mm 

FWHM when only near normal LORs are accepted, this measured value was less than half 

that of a conventional whole-body PET scanner. In the case of accepting of all LORs, the 

spatial resolution is found to be 2.75 mm by the researchers. That year the effects of 

cutting, etching and potting on the spatial resolution are also investigated, and the spatial 

resolution is found to be of 3.22 mm, 2.61 mm and 2.05 mm FWHM, respectively. 

Thompson et al. [29] acquired the early clinical results from PEM-1 after scanning 11 

patients in the year of 1998. 2 false-negative results, 5 true-positives, 4 true-negatives and 

no false-positives are observed and based on these results the system sensitivity is 

estimated at 71%, the specificity at 100% and the accuracy at 82%. In 2000, the timing 

resolution is calculated to be 12 nsec and besides the effect of increasing the low energy 

threshold is studied and it is seen that scattered events are decreased, resulting in improved 

image contrast at the cost of the system efficiency (Figure 3.2).  

 

Figure 3.2 PEM-1 and the detailed patient position during scanning [29]. 

 Further investigations [30] showed that the completed system has a spatial 

resolution of 2.8 mm FWHM and new clinical PEM results are compared with X-ray 

mammography results (Table 3.1). 
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Table 3.1 
Comparison of PEM and mammography results by Murthy et al. [30]. 

 

 

 In the year of 1995, Moses et al. [31] presented another design of PET camera 

dedicated to breast imaging with high sensitivity and specificity, but low cost and injected 

FDG-dose. This design extends a previous design (Thompson et al. 1994) by completing 

the detector ring around the breast and constructing the detector ring with modules with 

DOI measurement resolution. The detector module consists of an 8 x 8 array of 3 mm x 3 

mm x 25 mm lutetium oxyorthosilicate Lu2SiO5:Ce (LSO) crystals coupled on one end to a 

PMT and on the other end to a silicon photodiode (PD) array. With these improvements, 

sensitivity is increased, angular sampling is improved and the extreme parallax errors are 

reduced. This geometry is calculated to have 100-fold greater sensitivity, 4-5-fold increased 

solid angle and a 20-fold lower attenuation than a conventional whole-body PET camera. 

In 1998, a 2D Fourier-based reconstruction algorithm is presented by the same group 

(Virador et al. 1998 [32]) and spatial resolution is calculated via simulation studies and also 

with the realistic camera. The camera is composed of 14 modules, each an 8 x 8 array of 

3mm x 3 mm x 30 mm crystals (Figure 3.3), mounted on a PMT for timing and a PD array 

for crystal interaction identification. The patient port is 9.6 cm x 6.0 cm.  
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Figure 3.3 PET camera design for imaging breast cancer and axillary node of Virador et al. (a) Simplified

 geometry showing modules, (b) Realistic camera geometry [32]. 

 

The spatial resolution of the camera is found to vary between 1.9 mm 2.8 mm 

FWHM, depending on the position of the point source in the FOV (Table 3.2) [32].  

 
Table 3.2 

Spatial resolutions found by Virador et al. (a) Spatial resolution at various locations  in the simplified 
detector for various DOI, (b) Spatial resolution at various locations in the realistic camera [32]. 

 

 

  

 In the year of 2001, Virador et al. [33] presented 3D reconstruction algorithms with 

irregular sampling and DOI for a camera dedicated to breast and axillary node imaging. 

Each detector module of the camera consists of 64 detector elements, each 3 mm x 3 mm x 

30 mm. As a result of MC simulations, artifact free and spatially isotropic images are 

obtained and spatial resolution is calculated to be 1.5 mm, 2.3 mm and 3.1 mm, at the 
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center, in the bulk and in the corners of the FOV, respectively. The results are summarized 

in Table 3.3.  

 

Table 3.3 
FWHM of point sources in various locations of the FOV by Virador et al. [33]. 

 

 

 In 1996, Weinberg et al. [34] proposed another PEM device which is mounted in a 

conventional X-ray mammography gantry. Each planar gamma-ray detector consisted of a 

slab of 1 cm thick BGO crystal coupled to a position-sensitive photomultiplier (Hamamatsu 

R3941 PS-PMT). The FOV is 6 cm by 6 cm. The spatial resolution is 3.1 mm FWHM and 

it is concluded that it is possible to image a breast cancer with a dedicated PEM scanner, 

mounted in a conventional mammography unit in less than 5 min with minimal breast 

compression (Figure 3.4).  

 

Figure 3.4 Geometry for PEM of Weinberg et al.[34]. 
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 In the year of 2002, Weinberg et al. [35] constructed a PEM scanner where two 

detector heads able to move under computer control fit within custom paddles. The purpose 

of this travel is to bring in flexibility in order to acquire a full-breast image or to sweep the 

detector heads across the central portion of the breast. Each of the two PET detector heads 

consists of 12 arrays of 13 x 13 lutetium-based crystals where each crystal was of size 2mm 

x 2 mm x 10 mm. The spatial resolution of the system is measured to be 2.6 mm FWHM 

using a Na-22 source (Figure 3.5). 

 

Figure 3.5 PEM-2400 detector [35]. 

 

 In 1997, Freifelder and Karp [36] asserted that thalium doped sodium iodide 

(NaI(Tl)) detectors can be adapted for a breast imaging scanner and use of small detectors 

to optimize spatial resolution and sensitivity. To separate the breast from the body, in order 

to make the breast more uniform and less variable in density, it is proposed that the patient 

lies in a prone position and letting her breast hanging away from the chest wall. So 

attenuation correction may not be necessary. Two designs have been considered, one is a 

small ring of NaI(Tl) to surround the breast and the other configuration uses two flat 

detectors placed on the opposite sides of the breast. The ring geometry is thought to 

preclude imaging of the lymph nodes and the axillary tail, but the planar geometry can 

provide a more flexible geometry and allows imaging of breasts of different sizes. 

However, it also has limitations like lack of complete angular sampling. Both 

configurations are simulated. For the ring configuration, the separation distance between 

the detectors is set to 17.2 cm to accommodate different breast sizes. The detectors are 

simulated to be 20 cm long and 9 or 19 mm thick and the detector resolution is found to be 



 35 

4.0 mm and 4.7 mm, respectively. Stationary planar detectors are also investigated, two 20 

cm x 20 cm detectors with either 9 mm or 19 mm thicknesses are simulated. The separation 

between the detectors are set to be 10 cm and detector resolution is again found to be 4.0 

mm and 4.7 mm, respectively (Figure 3.6).  

 

 Figure 3.6  Dedicated PET scanner of Freifelder et al. (a) Ring scanner configuration, (b) Planar scanner 
configuration [36]. 

 

 In the year of 2002, Freifelder et al. [37] presented the first imaging results from 

phantom measurements of a dedicated, breast-only positron emission imager, BPET, which 

uses 19 mm thick curve plate NaI(Tl) detectors in a split-ring design. The detectors 

surround the breast of the patient when the woman lies prone letting her breasts hang down 

from the body (Figure 3.7). Each detector is instrumented with forty-five 39 mm diameter 

PMTs and the active area of each is 22 mm from the top surface of the detector and the 

total active area is 28 cm x 21 cm. The detectors are mounted on a flexible gantry whose 

separation can be varied from 10.6 cm to 60 cm (Figure 3.8). The measured energy 

resolution of the system is 10% at 511 keV. The radial spatial resolution is 3.8 mm at r = 0 

cm and 4.5 mm at r = 5 cm. 

 

Figure 3.7 Schematic diagram of BPET showing the woman lying prone [37]. 
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 Figure 3.8  BPET breast imager (a) Schematic of the curve plate detectors and the housing of the NaI(Tl) 
crystal, (b) Completed prototype of BPET breast imager [37].  

 

 Raylman et al. [38] carried out a phantom study to investigate the capabilities and 

limitations of PEM in detecting breast tumors in 2000. Initially, basic scanner parameters 

like resolution, sensitivity and scatter fraction are measured and the effect of breast 

imaging parameters like length of acquisition, breast thickness and breast density are also 

explored utilizing phantoms. The PEM imager consists of two opposing detectors. Each 

detector contains a 4 x 4 array of compact Hamamatsu R5900-C8 PSPMTs and a 30 x 30 

array of GSO crystals which has a higher light output and shorter pulse widths. Each GSO 

crystal has dimensions of 3.1 mm x 3.1 mm x 10 mm. The completed PEM scanner has a 

square FOV of 10 cm x 10 cm and the average pixel spacing was 3.3 mm. An energy 

discrimination window of 400-600 keV is applied to the data in order to reduce acceptance 

of Compton scatters and a confocal reconstruction algorithm is used to produce planar 

images. The FWHM of the line spread functions (LSF) are calculated to be between a 

range of 3.9 mm and 4.6 mm, at the center of the FOV and at distances of ± 3 cm from the 

center of the imager. In thin compressed breasts (2 cm) spheres of 5 mm diameter can be 

detected, where increased breast thickness increases the minimum detectable sphere size to 

8 mm.  

 An initial experimental evaluation of 3D breast imaging with tomographic 

acquisitions using dual planar detectors is made by Smith et al. [39] in the year of 2004 and 

compressed breast phantom and point source studies are compared with the stationary 

PEM. The breast scanner used is the design of Raylman et al. (2000) [38], using R7600-C8 
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PSPMTs, instead of R5900-C8 (Figure 3.9). Two tomographic datasets are created with 

rotational increments of 20º and 60º. Point sorce studies show that for stationary PEM 

averaged resolution is 0.89 ± 0.18 cm FWHM normal to the detector and 0.37 ± 0.07 cm 

parallel to it when all LORs are included. For tomographic acquisition of 60º increments, 

the averaged radial resolution is 0.55 ± 0.06 cm and the averaged tangential resolution is 

0.9 ± 0.08 cm at 4 cm from the axis of rotation (AOR). The radial resolution for the 20º 

increment data is 0.57 ± 0.03 cm and the tangential resolution is 0.9 ± 0.03 cm again 4 cm 

from AOR. Reconstructions of the compressed breast phantom showed excellent lesion 

visualization for all PEM and PEM tomography (PEMT) acquisitions (Figure 3.10). 

 
 Figure 3.9 PEM design by Smith et al. (a) Side view of the detectors with a separation of 10 cm for 

tomographic acquisitions and the compressed breast phantom at a 90º rotation angle, (b) 
Compressed breast phantom at a zero degree rotation angle with a detector separation of 6.3 cm 
for one of the static PEM acquisitions [39]. 

 
 

 

Figure 3.10 Slices through image reconstructions of the compressed breast phantom, (a) perpendicular to 
compression direction (parallel to detectors for the single angle PEM case), (b) normal to the 
detectors .through the 9 mm sphere (normal to the axis of rotation (AOR) for PEM tomography) 
and (c) normal to the detectors through the 12 and 15 mm spheres (and normal to the AOR for 
PEM tomography). From left to right the columns are (1) PEM, 6.3 cm detector separation, (2) 
PEM, 8.0 cm detector separation, (3) PEM, 10.0 cm detector separation, (4) PEMT, 10 cm 
detector separation and 60º rotation increment and (5) PEMT, 10 cm detector separation and 20º 
rotation increment. The rows from top to bottom are with 4.0, 3.5, 3.0, 2.5 and 2.0 mm FWHM 
3D post-reconstruction Gaussian filters. Each subimage slice is scaled to its own maximum [39]. 
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Doshi et al. [10] designed and developed a modular PET detector that is composed 

of a 9 x 9 array of 3 mm x 3 mm x 20 mm LSO scintillator crystals couple to an optical 

fiber taper, which is coupled to a Hamamatsu R5900-C8 PSPMT, which has a surface area 

of 3 cm x 3 cm and an active photocathode area of 2.2 cm x 2.2 cm (Figure 3.11). 

Irradiating the detectors with radioactive isotopes, the average energy resolution for the 

entire detector module is found to be 19.5% with a standard deviation of 1.3%. The timing 

resolution of the system is 2.4 ns and according to the point spread function of the entire 

row of crystals, the spatial resolution is measured to be 2.3 mm, with the worst being 2.6 

mm. The energy threshold applied is chosen to be 350 keV.  

 

Figure 3.11  PET detector design by Doshi et al. (a) Coupling of scintillator arrays to Hamamatsu  R5900-C8 

PSPMTs, (b) A picture of plastic grid showing 9 of 81 LSO crystals in place. The wall thickness 

is 0.3 mm [10]. 

 

 In 2001, Doshi et al. [40] improved their previous design and presented a new breast 

scanner mammary and axillary region PET (MaxPET). The system consists of two planar 

detector plates of size 15 cm x 15 cm, each of which is composed of 5 x 5 modular 

detectors. The modular detectors are each composed of a 9 x 9 array of 3 mm x 3 mm x 20 

mm LSO scintillator crystals couple to an optical fiber bundle, which is coupled to a 

Hamamatsu R5900-C8 PSPMT. The optical fiber bundle is composed of many thousands 

of micron diameter glass fibers used together (Figure 3.12). An acrylic phantom is filled 

with FDG and imaged. The averaged energy resolution for detector plate 1 is 22.9% and for 

detector plate 2 is 20.4%. The time resolution is measured to be 8.1 ns FWHM. The 
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resolution in projection images is 4 mm based on profiles taken through the line source 

phantom images.  

 

Figure 3.12 MaxPET detector design (a) A picture of MaxPET assembly, (b) A Maxpet detector plate [40]. 

 Lecoq and Varela [41] proposed in 2002 the Clear-PEM concept. The basic 

component of the proposed system is lutetium aluminum perovskite Lu2AlO3 (LuAP) 

crystal developed by Crystal Clear Collaboration at CERN. LuAP has a density of 8.34 

g/cm3. (LSO and BGO have densities of 7.4 g/cm3 and 7.1 g/cm3, respectively.) Its light 

yield is about 10 photons/keV. (Light yield of LSO is 27/keV and of BGO is 9 

photons/keV.) The emission spectrum has its peak at 365 nm and the time constant is 18 ns 

(compared to 40 ns for LSO and 300 ns for BGO). The energy resolution of LuAP is 

approximately 10% FWHM. The crystal dimensions are thought to be 2 mm x 2 mm x 20 

mm according to its properties. The detectors are based on two planar plates, each formed 8 

x 4 crystal matrices. The total number of crystals is 3000 and the surface area of each plate 

is about 10 cm x 12 cm. The planes are thought to be able to rotate to collect data in several 

orientations for 3D iamge reconstruction. The “phoswich” technique (LuAP and LSO) is 

thought to be used in order to obtain DOI information. APDs are planned to be used instead 

of PMTs or PSPMTs because of its advantages explained in Chapter 2.  
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 In 2004, Ribeiro et al. [42] presented a simulation study of Clear-PEM with the 

dimensions explained in detail above [41]. Simulations are done using a dedicated MC 

simulation platform GEANT4 and ROOT. Three additional modules are developed, which 

are PhantomFactory to simulate radioactive decay in different phantoms, PEMsim to 

perform the detector simulation and DIGITsim to simulate the signal formation process in 

the scintillation crystals, photosensors and associated electronics. The intrinsic resolution 

of Clear-PEM for a point source in the center of the FOV is estimated to be 1.2 mm 

FWHM. DOI studies are made for a single LuAP:Ce crystal with double side readout and 

with the best configuration, DOI resolution is found to be 2.4 mm FWHM. Abreu et al. 

made another study to evaluate the performance of the imaging system Clear-PEM in the 

year of 2006. The camera consists of detector heads having dimensions of 16.5 cm x 14.5 

cm for breast and axilla imaging. The design is renewed to have cerium doped lutetium 

yttrium orthosilicate Lu2(1−x−y)Y2xSiO5:Cey (LYSO:Ce) crystals of dimensions  2 mm x 2 

mm x 20 mm and with different surface treatments, polished, slightly polished and rough. 

All crystals are coupled to Hamamatsu S8550 APD matrices. The energy resolution is 

observed to be 13% FWHM at 511 keV with flood irradiation. Performing phantom 

measurements, after 10 Expectation Maximization (EM) iterations, the point source in the 

center of the FOV presents a transaxial and axial spatial resolution of 1.4 mm FWHM. If 

the point source is placed 2.5 cm away from the center of the FOV, transaxial and axial 

resolutions are measured to be 1.7 mm and 2.6 mm, respectively [43]. 

 In 2003, Adler et al. [44] introduced another PEM device mounted on a streotactic 

X-ray mammography unit, in order to demonstrate the feasibility of a hybrid 

functional/anatomic breast imaging platform with biopsy capability for facilitating lesion 

detection and diagnosis. Their design differs from first versions in the choice of detector 

crystal. They use pixellated GSO crystals of 3 mm x 3 mm x 15 mm having a short time of 

30 nsec, enabling better handling of high count rates and permitting reduced shielding 

requirements. The effective FOV is approximately 5 cm x 5 cm. The spatial resolution is 

measured with point sources as approximately 2.5 mm FWHM (Figure 3.13) and in 2003 

Levine et al. [45] accomplished a study in women scheduled for stereotactic breast biopsy 

using the design of Adler et al. [44]. 18 breast lesions are evaluated, among which 7 were 

carcinoma and 11 were benign. The lesion-to-background ratio is found between a range of 



 41 

1.32 and 7.7, where the average ratio for malignant lesions was 3.95 and for the benign 

ones was 1.94. The findings are listed in Table 3.4. 

 

 Figure 3.13 Geometry for PEM detector by Adler et al. After PEM image acquisition, X-ray-guided biopsy  
can proceed without releasing breast compression [44].      

 
 

Table 3.4 
Clinical findings of Levine et al. [45]. 

 

 In 2003, Del Guerra et al. [46] presented YAP-PEM prototype composed of two 

planar, stationary detectors of 30 x 30 cerium doped yttrium aluminium perovskite 

YAlO3:Ce (YAP:Ce) finger crystals each having a dimension of 2 mm x 2 mm x 30 mm. 

The active area of the detector heads are 6 cm x 6 cm. The separation between the 
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detectors, axial FOV dimension, can be varied 5 cm to 10 cm (Figure 3.14). PSPMTs are 

chosen as photosensors of YAP-PEM. Energy resolution of the system is simulated as 25% 

at 511 keV, which agrees with value measured with YAP-PET. MC simulations showed 

that the proposed scanner is able to detect tumors down to 0.065 cm3, when positioned in 

the center of the FOV (SNR = 10:1). It is also shown that the reduction of the width of the 

energy window decreases the SNR, so the lowest energy threshold is used which is 50 keV 

and the upper threshold is set to be 650 keV. The simulations also confirmed the 

importance of the compression by showing that at a compression of 5 cm, a tumor of size 

0.065 cm3 was detectable with a good SNR of 8.7±1.0. A tumor of size 0.5 cm3 was 

detectable at a distance of 1 cm from the center of the FOV. 

 

Figure 3.14 YAP-PEM prototype by Del Guerra et al. [46]. 
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 Motta et al. [47] presented another Monte Carlo study of YAP-PEM prototype in 

2004, where the relationship between the SNR and the tumor size, width of the energy 

window, compressor distance and distance from the center are clearly shown (Figure 3.15). 

 

 Figure 3.15 Performance measurements of YAP-PEM (a) Tumor volume vs. SNR, (b) Width of energy
 window vs. SNR, (c) Compressor distance vs. SNR, (d) Distance from the FOV center vs. SNR  
[47].  

 

 In the year of 2004, Belcari et al. [48] evaluated the performance the YAP-PEM 

system by uniform irradiation. The photosensors of the system are a 3 x 3 array of 

Hamamatsu R8520-C12 with an area of 25.7 mm x 25.7 mm, which has an active area of 

22 mm x 22 mm (Figure 3.16). When the detector is irradiated with a 22Na source and only 

the crystals that are facing the active area of a tube are identified, the mean FWHM of the 

pixel image is measured to be 0.9 mm. But if the flood field image is obtained with 511 

keV photons and using a 3 mm quartz window, where pixels facing the active area are 

covered with black tape and the others are left open, pixel FWHM is found to be 1.4 mm.   
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 Figure 3.16   Components of YAP-PEM prototype (a) A photograph of YAP:Ce crystal matrix, (b) A
 photograph of 9 PSPMTs [48]. 

 

 In the years of 2004 and 2005, Karimian et al. [49,50] proposed a cylindrical breast 

imager for the patients in prone position. In CYBPET an individual breast hangs from the 

body and covered by a thin plastic to make a mild pressure and is positioned in the center 

FOV, where the rest of the body is shielded properly.  The CYBPET consists of 6912 BGO 

crystals, each having dimensions of 3.0 mm transaxial, 5.0 mm axial and 20 mm radial and 

grouped in detector blocks of 8 x 8 crystals. Each detector block has 32 rings and a 

transaxial-axial FOV of 17.0 cm with a ring diameter of 22 cm. The crystals are coupled 

directly to APDs. The energy threshold is set to 400 keV and the minimum tangential and 

radial resolution for the system is found to be 2.8 mm by performing simulations using 

PETSIM. The maximum tangential and radial resolutions are found to be 3.2 mm and 3.4 

mm, respectively.  
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4. MONTE CARLO SIMULATIONS 

 Monte Carlo methods are a widely used class of computational algorithms for 

simulating the behavior of various physical and mathematical systems which are too 

complicated to solve analitically. These methods are based on generating random numbers 

and observing that fraction of the numbers obeying some property or properties. 

 In our study, GRIT, BUILDER and DETECT2000 Monte Carlo simulation 

programs are used, which are developed by Tri-University Meson Facility (TRIUMF) 

detector group. 

4.1 GRIT  

GRIT is the first module of the simulation platform. GRIT stands for “Gamma-Ray 

Interaction Tracking”. Using this program, the Compton and photoelectric interactions of 

gamma-rays produced by a point or spherical source of a specified geometry are simulated. 

The energy of the gamma-rays, type and dimensions of the scintillation crystals can be 

specified by the user. GRIT determines how the gamma-rays deposit their energy in the 

scintillator and generates an interaction list file as output, which is accordance with the 

syntax of the program DETECT. The output files contains the scintillation coordinates in x, 

y and z directions, the number of light photon generated, the index of the interaction (0 for 

photoelectric interaction or starting from 0 increases for each sequential Compton scatter 

for each gamma-ray) and x and y coordinates of the source location. This file is used as the 

input file of the program BUILDER for the next steps of the simulation [51].  

4.2 BUILDER    

 BUILDER is a utility for managing model geometry definitions for input to the light 

transport simulation DETECT2000, specialized in the modeling of detectors for PET. 
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BUILDER is the interface between the user’s model definition and the DETECT 

simulation driver. Sophisticated detectors like cylindrical or rectangular PMTs, block or 

continuous detectors can be designed by the user by connecting simple box components. 

Once each component is defined, BUILDER connects them, checking for overlaps and 

incompatible surface finishes, and then translates these higher level definitions into the 

lower level language DETECT can understand [52]. 

4.3 DETECT2000 

DETECT is a Monte Carlo model of the behavior of optical systems with a special 

emphasis on scintillation detectors. It generates individual scintillation photons in specified 

portions of the scintillator, follows each photon in its passage through the various 

components and interactions with surfaces, allows for the possible absorption and re-

emission by a wave-shifting component, and records the fate (absorption, escape, or 

detection) of each. In addition to its ultimate fate, decay and delay times, total elapsed time 

to  detection, number of reflecting surfaces encountered, last coordinates and whether or 

not the photon was wavelength shifted are recorded for each photon traced. 

 A very general syntax for geometry specification exists to allow the representation 

of complex systems consisting of composites of many different scintillator and/or wave-

shifting elements. Any one element may consist of a volume specified by multiple planar, 

cylindrical, conical, or spherical surfaces with arbitrary orientation. More complex shapes 

can be built up by with “pseudo-surfaces” that are ignored by the simulation. The optical 

behavior of real surfaces may be specified to simulate possible reaction under polished, 

ground, painted, or metalized conditions. Surfaces in optical contact are treated using 

Snell's law of refraction. Within each optical element, bulk absorption, scattering, and 

wavelength shifting are simulated by specifying a mean distance of photon travel for each 

process. All these processes are wavelength dependent in DETECT2000. 

 The program uses initial definition statements to specify the optical properties of all 

materials and surface finishes used in the system. Abstract geometrical objects, planes, 
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cylinders, cones and spheres in convex or concave orientations are also defined. 

Components are then built out of these materials, finishes and objects. The optical behavior 

of each surface is chosen by selecting one of a set of previously defined surface finishes, 

including a photosensor surface representing the photocathode of a photomultiplier tube. 

Surfaces may either be external (assumed to be an interface with a vacuum) or shared with 

another component. An extensive set of consistency checks are incorporated to flag errors 

where possible.  

 Photons are isotropically generated within a defined material and volume subset of 

the system, a delay before emission being associated with the photon where the user has 

specified the probability distribution function (PDF) for that material. Photons are tracked 

on an individual basis until they are absorbed, detected, or have escaped from the system. 

At each photon reaction or scattering, the program logic determines the new direction of 

the photon, identifies the component in which it is traveling, and computes the next 

intersection with a surface. A random sampling is then made to determine if the photon is 

bulk absorbed, scattered, or wavelength shifted over this path. If none of these processes 

occur, the optical properties of the next surface determine whether the photon is reflected, 

refracted, detected, or absorbed. This process is then repeated for all subsequent paths in 

the history. A maximum flight time per history is specified to abort those cases in which a 

photon becomes internally trapped. In order to simulate the photosensor response time, a 

delay before detection is recorded for photons intersecting with detection type surfaces. In 

the absence of a user specified PDF, the delay is zero. After the specified number of 

histories have been completed, a report is prepared that summarizes the probability of 

occurrence and statistical uncertainty estimate of each of these possible fates.  

 Finally, data are reported on the detector response, the probability of wavelength 

shift, mean age (where age includes any scintillation decay time and photosensor response 

time), and mean number of surfaces encountered. This data is tabulated both for all photons 

and for just the subset that are ultimately detected. A histogram of photon ages can also be 

generated [53]. 
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Figure 4.1 Flow diagram of the simulations [15]. 
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5. NEURAL NETWORKS 

 The brain is a highly complex, nonlinear and parallel information-processing 

system. For certain computations, like pattern recognition, perception and motor control. It 

has the capability to organize its structural constituents, known as neurons, to perform 

certain computations. Although the most dramatic development of the human brain takes 

place during the first two years from birth, the development continues beyond that stage 

[54]. 

 A developing neuron means a plastic brain: Plasticity permits the developing 

nervous system to adapt to the environment. Plasticity appears to be essential also for the 

neural networks whose structural constituents are “artificial neurons”. A neural network is 

a structure that is designed to model the way in which the brain performs a particular task. 

To achieve good performance, neural networks employ a massive interconnection of 

simple computing neurons. Learning is attained through modification of synaptic weights 

between the neurons which is called “learning algorithm”. A neural network resembles the 

brain in two aspects [54]: 

(i) Knowledge is acquired by the network from its environment through a 

learning process. 

 

(ii) Interneuron connection strengths, known as synaptic weights, are used to store 

the acquired knowledge.  

 Advantages of using neural networks are [54]: 

(i) Nonlinearity, 

(ii) Input-output mapping, 

(iii) Adaptivity, 

(iv) Evidential response, 

(v) Contextual information, 
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(vi) Fault tolerance, 

(vii) Very-large-scale integration (VLSI) implementability, 

(viii) Uniformity of analysis and design, 

(ix) Neurobiological analogy. 

 The structural elements of neural networks are neurons and these have three basic 

elements (Figure 5.1) [54]: 

(i) A set of synapses or connecting links, each of which is characterized by a 

weight or strengths of its own. Specifically, a signal xj at the input of synapse j 

connected to neuron k is multiplied by the synaptic weight wkj. Unlike a 

synapse in the brain, the synaptic weight of an artificial neuron may lie in a 

range that includes negative as well as positive values. 

 

(ii) An adder for summing the input signals, weighted by the respective synapses 

of the neuron; the operations described here constitute a linear combiner. 

 

(iii) An activation function for limiting the amplitude of the output of a neuron. 

The activation function is also referred to as a squashing function in that it 

limits the permissible amplitude range of the output signal to some finite 

value.   

 

Figure 5.1 Nonlinear model of a neuron [54]. 
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 Figure 5.1 also includes an applied bias, bk. The bias is used to increase or lower the 

net input of the activation function, depending on whether it is positive or negative, 

respectively. 

 The mathematical description of a neuron k can be made through the following 

equation: 

∑
=

=
m

j

jkjk xu
1

ω                                                            (5.1) 

and 

( )kkk buy += ϕ                                                          (5.2) 

where x1, x2,……, xm are the input signals; ωk1, ωk2, ….., ωkm are the synaptic weights of 

neuron k; uk is the linear combiner output due to the input signals; bk is the bias; φ(.) is the 

activation function; and yk is the output signal of the neuron. The use of bias bk has the 

effect of applying an affine transformation to the output uk of the linear combiner as shown 

by 

kkk buv +=                                                              (5.3) 

where vk is called the induced local field or activation function of neuron k. 

 The activation function, denoted by φ(v), defines the output of a neuron in terms of 

the induced local field v. Here we identify three basic types of activation functions (Figure 

5.2): 
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 (i) Threshold Function: 

  ( )




<

≥
=

00

01

vif

vif
vϕ                                                        (5.4) 

 Correspondingly, the output of neuron k employing such a threshold function is 

expressed as:  





<

≥
=

00

01

vif

vif
yk                                                        (5.5) 

(ii) Piecewise-Linear Function: 
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vv
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vϕ                                                 (5.6) 

(iii) Sigmoid Function: 

( )
( )va

v
−+

=
exp1

1
ϕ                                                   (5.7) 

where a is the slope parameter of the sigmoid function. Hyperbolic tangent function is also 

used as an activation function: 

( ) ( )vv tanh=ϕ                                                       (5.8) 
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 Figure 5.2 Basic types of threshold functions (a) Threshold function, (b) Piecewise-linear function, (c) 
Sigmoid function [54]. 

 

 

 In this work, an important class of neural networks, multilayer perceptrons (MLP) 

are used, which are described in detail in the following sections of this chapter. 

 

 MLPs (Figure 5.3) typically consist of the input layer, one or more hidden layers 

and an output layer of computation nodes. They are applied to solve difficult problems in a 

supervised manner with an algorithm called error back-propagation algorithm. This 

algorithm is based on error correction learning rule, which can be seen as a generalization 

of the least-mean-square (LMS) algorithm.  

 

 

Figure 5.3 Architectural graph of an MLP with two hidden neurons [54]. 
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 In a MLP, there are two kins of signals identified: 

(i) Function signals. A function signal is an input signal (stimulus), propagates 

through the network and emerges at the output end of the network as an output 

signal. 

(ii) Error signals. An error signal originates at an output neuron of the network 

and propagates backwards through the network. 

 Each hidden or output neuron of a MLP performs two computations: 

(i) The computation of the function signal appearing at the output of a neuron, 

which is expressed as a continuous nonlinear function of the input signal and 

synaptic weights associated with that neuron. 

(ii) The computation of an estimate of the gradient vector (gradients of the error 

surface with respect to the weights connected to the inputs of a neuron), which 

is needed for the backward pass through the network. 

 The error signal at the output of neuron j at iteration n is defined by 

( ) ( ) ( )nyndne jjj −= ,      neuron j is an output node                      (5.9) 

 The instantaneous value of the total error energy for neuron j is the sum of all error 

energies over all neurons in the output layer as follows 

( ) ( )∑
∈

=
Cj

j nen
2

2

1
ε                                                   (5.10) 
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 The averaged squared error energy is obtained by summing ε(n) over all n and then 

normalizing with respect to the set size N, as shown by 

( )∑
=

=
N

n

av n
N 1

1
εε                                                    (5.11) 

 For a giving training set, εav represents the cost function as a measure of learning 

performance. The objective of the learning process is to adjust the free parameters of the 

network to minimize εav by adjusting the weights on a pattern-by-pattern basis until one 

epoch (one complete presentation of the entire training set). The adjustments to the weights 

are made according to the errors computed for each pattern presented to the network. 

 The induced local field vj(n) produced at the in put of the activation function 

associated with neuron j is therefore 

( ) ( ) ( )∑
=

=
m

i

ijij nynnv
0

ω                                             (5.12) 

where m is the total number of inputs applied to neuron j. The synaptic weight ωj0 equals 

the bias bj applied to the neuron j. So, the function signal appearing at the output of neuron 

j at iteration n is  

( ) ( )( )nvny jj ϕ=                                                  (5.13) 

 Like in the LMS algorithm, the correction ∆ωji(n) to the synaptic weight is 

proportional to the partial derivative ( ) ( )nn jiωε ∂∂ / , which represents a sensitivity factor, 

determining the direction of search in weight space for the synaptic weight ωji. 
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 Differentiating both sides of Eq. 5.10 with respect to ej(n), we get 

( )
( )

( )ne
ne

n
j

j

=
∂

∂ε
                                                        (5.15) 

 Differentiating both sides of Eq. 5.9 with respect to yj(n), we get 

( )
( )

1−=
∂ ny

ne

j

j
                                                                     (5.16) 

 Next, differentiating Eq. 5.13 with respect to vj(n), we get 

( )
( )

( )( )nv
nv

ny
jj

j

j
ϕ ′=

∂

∂
                                                          (5.17) 

 Finally, differentiating Eq. 5.12 with respect to ωji(n) yields 

( )
( )

( )ny
n

nv
i

ji

j
=

∂

∂

ω
                                                      (5.18) 

 The use of Eqs. 5.15, 5.18 in 5.14 yields 

( )
( )

( ) ( )( ) ( )nynvne
n

n
ijjj

ji

ϕ
ω

ε
′−=

∂

∂
                               (5.19) 

 The correction ∆ωji(n) applied to ωji(n) is defined by the delay rule: 

( ) ( )
( )n

n
n

ji

ji
ω

ε
ηω

∂

∂
−=∆                                             (5.20) 
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where η is the learning-rate parameter of the back-projection algorithm. Accordingly, the 

use of Eqs. 5.19 and 5.20 yields 

( ) ( ) ( )nynn ijji δηω =∆                                             (5.21) 

where the local gradient δj(n) is defined by 

                                                           ( ) ( )
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j ∂

∂

∂

∂

∂

∂
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ε
                                       (5.22) 

                                                       ( ) ( )( )nvne jjj ϕ ′=  

 From Eqs. 5.21 and 5.22, it is clearly seen that a key factor for the calculation of 

∆ωji(n) is the error signal ej(n) at the output of the neuron j. So, two different cases must be 

identified according to the location of neuron j. In one case it is an output node and in the 

other it is a hidden node. 

 Neuron j is an output node.    The computation of the error signal for an output node 

is done, see Eq. 5.9. Having determined ej(n), the local gradient δj(n) can be easily 

computed using Eq. 5.22. 

 Neuron j is a hidden node.    If neuron j is located in a hidden layer, there is no 

output signal specified to it. The error signal cannot be computed directly, so the 

development of the back-propagation algorithm gets complicated. 
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Figure 5.4 Signal-flow graph showing the details of output neuron k to hidden neuron j [54]. 

 

 According to the Eq. 5.22, the local gradient of hidden neuron j can be computed as 

( ) ( )
( )

( )
( )nv

ny
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j
∂
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ε
δ  

( )
( )

( )( )nv
ny

n
jj

j

ϕ
ε

′
∂

∂
−= ,      neuron j is hidden                            (5.23) 

where in the second line the Eq. 5.17 is used. To calculate the partial derivative 

( ) ( )nyn j∂∂ /ε , we may proceed as follows. From Fig. 5.4, it is seen that 

( ) ( )∑
∈

=
Ck

k nen
2

2

1
ε ,     neuron k is an output node              (5.24) 
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 Differentiating Eq. 5.24 with respect to the function signal yj(n), we get 

( )
( )

( )
( )∑

∂

∂
=

∂

∂

k j
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e
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nε
                                        (5.25) 

 Rewriting the Eq. 5.25 
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ε
                                      (5.26)  

 From Fig. 5.4, we note that k is an output neuron and ek(n) can be calculated easily. 

                                                          ( ) ( ) ( )nyndne kkk −=  

                       ( ) ( )( )nvnd kkk ϕ−= ,     neuron k is an output node      (5.27) 

Hence, 

                
( )
( )

( )( )nv
nv

ne
kk

k

k ϕ ′−=
∂

∂
                                                (5.28) 

 For neuron k, the induced local field is calculated as 

( ) ( ) ( )∑
=

≈
m

j

jkjk nynnv
0

ω                                         (5.29) 

where m is the total number of inputs (excluding the bias) applied to neuron k. Here again, 

the synaptic weight ωk0(n) is equal to the bias bk(n) applied to neuron k corresponding input 

is fixed at the value +1. Differentiating the Eq. 5.29 with respect to yj(n) yields 
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( )
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 By using Eqs. 5.28, 5.30 in 5.26 we get 
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 ( ) ( )∑−=
k

jkk nn ωδ  

 Finally, using Eq. 5.31 in 5.23, we get the back-propagation formula fro the local 

gradient δj(n) as described: 

( ) ( )( ) ( ) ( )∑′=
k

jkkjjj nnnvn ωδϕδ ,     neuron j is hidden                   (5.32) 

 To summarize, the correction ∆ωji(n) applied to the synaptic weight connecting 

neuron i to neuron j is defined by the delta rule: 
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                 (5.33) 

 In the application of the back-propagation algorithm, there are two distinct passes. 

The first pass is the forward pass and the second one is the backward pass. In the forward 

pass, the synaptic weights are not altered through out the network and the function signals 

of the network are computed on a neuron-by-neuron basis. On the other hand, the backward 

pass starts at the output layer and propagates leftward toward the input layer and the error 

signals are used to compute the local gradient of each neuron. This recursive process 

permits the synaptic weights of the network to undergo changes in accordance with the 

delta rule according to the Eq. 5.33. 
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6. METHODOLOGY AND RESULTS 

 In our simulations, we designed a continuous LSO detector with a detection surface 

area of 49 mm x 49 mm [25]. The thickness of the scintillator varies between 3 mm and 24 

mm with increments of 3 mm. The photodetector to which the LSO coupled is Hamamatsu 

8500 multi-anode PMT (MAPMT) and has a 8 x 8 matrix of anodes [25]. The pixel size of 

each anode is 5.8 mm x 5.8 mm. The total effective area of the MAPMT is 49 mm x 49 

mm, which is 88.79% of the overall active area (Figure 6.1). A borosilicate glass window 

of thickness of 1.5 mm is modeled between the crystal and the detection surface of the 

MAPMT. 

 

 Figure 6.1   Hamamatsu H8500 Flat Panel MAPMT (a) Left: H8500, Right: H8500B [55],  (b)  Detailed top 
view of the PMT (units in mm).  

 Optical properties of surfaces and detector components are modeled in BUILDER, 

choosing painted for side surfaces and ground for face surfaces. Reflection coefficient for 

ground face is set to 0.95 and for painted sides it is set to 0.85. LSO crystal and glass are 

modeled to have index of refraction of 1.82 and 1.52, respectively.  
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 For each crystal thickness, two groups of simulations are performed. The first group 

is used to train our ANN and the second group is done to test the performance of our 

network. Taking into account the symmetry of our system, the simulations are performed 

only for the first quadrant of our detector covering an area of 24 mm x 24 mm (Figure 6.2). 

 

 Figure 6.2 Simulated LSO crystal (49 mm x 49 mm), the photons are sent to the first quadrant of the crystal
 according to the symmetry properties of the detector. 

 During the generation of our training set, the selected area is divided into a 24 x 24 

grid with a pixel size of 1 mm x 1 mm. A narrow beam of 100 photons of 511 keV energy 

are sent to each grid point from 50 mm away from the crystal surface. To prepare the test 

data, the area is divided into a 5 x 5 grid with pixel sizes of 6 mm x 6 mm and to each grid 

point, 1000 photons (again of 511 keV energy) are sent from 50 mm away. This procedure 

is repeated for every detector configuration of different crystal thickness. An energy 

threshold of 350 keV is applied to the data, in order to eliminate a portion of the Compton 

scatter events, where these energy threshold values are in agreement with the literature 

[10,46]. Signals detected from each anode are weighted according to the locations of the 

anodes and 64 outputs from the anodes are reduced 4 [25].  

 The energy resolution obtained from our simulations is 12.2% for a crystal thickness 

of 15 mm. The quantum efficiency of our MAPMT is assumed to be 22.5%. The pulse 

height spectrum can be seen in Figure 6.3. 
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Figure 6.3 Pulse Height Spectrum of LSO for our detector for 511 keV photons. 

 Our MLP consists of one input layer of 4 neurons, two hidden layers with 15 and 8 

neurons and an output layer of 1 neuron. The 4 neurons in the input layer correspond to the 

4 MAPMT outputs and the neuron in the output layer corresponds to the x coordinate, 

which is tried to be estimated. The MLP code is written partially in Matlab and in C 

programming language. 

In this work, an activation function of sigmoidal type (Eq. 5.7) is used, which 

satisfies the requirement of being differentiable, where the slope parameter is chosen as 1. 

 In order to make the trajectory of the weight space smoother, the learning rate 

parameter η is chosen small, namely as 0.1. Choosing η smaller provides the changes to the 

synaptic weights smaller. On the other hand, making η too large in order to speed up the 

learning, the resulting changes may cause the network to be unstable, namely oscillatory. 
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For the training of our network for all crystal thicknesses, the number of iterations is 

chosen to be 10000, for which the cost function for all crystal thicknesses reaches a 

saturation plateau. 

In the following sections, resolution and bias values for all thicknesses for 350 keV 

energy threshold are summarized. For the calculation of optimal bin width of point spread 

functions for FWHM, Eq. 6.1 [56] is used.  

( ) ( )( ) 3/1**2 −
= xsizexiqrw ,                                    (6.1) 

where x is the vector of calculated x coordinates for the x value which is tried to be 

estimated and iqr(x) is the interquartile range of the values in x. 
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6.1 Results: Crystal Thickness is 3 mm  

 Table 6.1, 6.2 and 6.3 compares the bias and spatial resolution obtained with Anger 

algorithm and with MLP. The biases and resolutions are calculated using data of the test 

grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.4 and 6.5 are point spread functions obtained from Anger algorithm and 

MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.4 PSFs of Anger for crystal thickness 3 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.5 PSFs of MLP for crystal thickness 3 mm (a) for x =0, (b) for x=12 and (c) for x=24. 

 



 66 

Table 6.1 
Anger and MLP results for crystal thickness 3 mm for x = 0 at (0,0). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.613 0.329 

Bias (mm) -0.186 -0.305 

 
 
 
 

Table 6.2 
Anger and MLP results for crystal thickness 3 mm for x = 12 at (12,12). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.741 1.022 

Bias (mm) 4.203 -0.647 

 
 
 
 

Table 6.3 
Anger and MLP results for crystal thickness 3 mm for x = 24 at (24,24). 

 

 Anger(350 keV) MLP(350 keV) 

Resolution (mm) 0.742 0.382 

Bias (mm) 13.523 0.010 
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6.2 Results: Crystal Thickness is 6 mm  

 Table 6.4, 6.5 and 6.6 compares the bias and spatial resolution obtained with Anger 

algorithm and with MLP. The biases and resolutions are calculated using data of the test 

grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.6 and 6.7 are point spread functions obtained from Anger algorithm and 

MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.6 PSFs of Anger for crystal thickness 6 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.7 PSFs of MLP for crystal thickness 6 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Table 6.4 
Anger and MLP results for crystal thickness 6 mm for x = 0 at (0,0). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.625 0.321 

Bias (mm) -0.059 -0.391 

 
 
 
 

Table 6.5 
Anger and MLP results for crystal thickness 6 mm for x = 12 at (12,12). 

 

 Anger(350 keV) MLP(350 keV) 

Resolution (mm) 0.907 2.086 

Bias (mm) 6.027 0.264 

 
 
 
 
 

Table 6.6 
Anger and MLP results for crystal thickness 6 mm for x = 24 at (24,24). 

 

 Anger(350 keV) MLP(350 keV) 

Resolution (mm) 1.045 0.677 

Bias (mm) 16.670 -0.112 
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6.3 Results: Crystal Thickness is 9 mm  

 Table 6.7, 6.8 and 6.9 compares the bias and spatial resolution obtained with Anger 

algorithm and with MLP. The biases and resolutions are calculated using data of the test 

grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.8 and 6.9 are point spread functions obtained from Anger algorithm and 

MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.8 PSFs of Anger for crystal thickness 9 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.9 PSFs of MLP for crystal thickness 9 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Table 6.7 
Anger and MLP results for crystal thickness 9 mm for x = 0 at (0,0). 

 

 Anger(350 keV) MLP(350 keV) 

Resolution (mm) 0.538 0.459 

Bias (mm) -0.146 -0.344 

 
 
 
 
 

Table 6.8 
Anger and MLP results for crystal thickness 9 mm for x = 12 at (12,12). 

 

 Anger(350 keV) MLP(350 keV) 

Resolution (mm) 1.138 1.013 

Bias (mm) 6.494 0.697 

 
 
 
 
 

Table 6.9 
Anger and MLP results for crystal thickness 9 mm for x = 24 at (24,24). 

 

 Anger(350 keV) MLP(350 keV) 

Resolution (mm) 0.839 0.752 

Bias (mm) 17.936 -0.081 
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6.4 Results: Crystal Thickness is 12 mm 

 Table 6.10, 6.11 and 6.12 compares the bias and spatial resolution obtained with 

Anger algorithm and with MLP. The biases and resolutions are calculated using data of the 

test grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.10 and 6.11 are point spread functions obtained from Anger algorithm 

and MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.10 PSFs of Anger for crystal thickness 12 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.11 PSFs of MLP for crystal thickness 12 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Table 6.10 
Anger and MLP results for crystal thickness 12 mm for x = 0 at (0,0). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.695 0.432 

Bias (mm) -0.072 -0.181 

 
 
 
 
 

Table 6.11 
Anger and MLP results for crystal thickness 12 mm for x = 12 at (12,12). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.880 1.898 

Bias (mm) 6.949 0.364 

 
 
 
 
 

Table 6.12 
Anger and MLP results for crystal thickness 12 mm for x = 24 at (24,24). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.831 0.648 

Bias (mm) 18.603 -0.126 
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6.5 Results: Crystal Thickness is 15 mm  

 Table 6.13, 6.14 and 6.15 compares the bias and spatial resolution obtained with 

Anger algorithm and with MLP. The biases and resolutions are calculated using data of the 

test grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.12 and 6.13 are point spread functions obtained from Anger algorithm 

and MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.12 PSFs of Anger for crystal thickness 15 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.13 PSFs of Anger for crystal thickness 15 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Table 6.13 

Anger and MLP results for crystal thickness 15 mm for x = 0 at (0,0). 
 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.706 0.820 

Bias (mm) 0.092 -0.829 

 
 
 
 
 

Table 6.14 
Anger and MLP results for crystal thickness 15 mm for x = 12 at (12,12). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.861 1.626 

Bias (mm) 7.478 -0.938 

 
 

 
 
 

Table 6.15 
Anger and MLP results for crystal thickness 15 mm for x = 24 at (24,24). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.859 0.669 

Bias (mm) 19.024 -0.117 
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6.6 Results: Crystal Thickness is 18 mm  

 Table 6.16, 6.17 and 6.18 compares the bias and spatial resolution obtained with 

Anger algorithm and with MLP. The biases and resolutions are calculated using data of the 

test grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.14 and 6.15 are point spread functions obtained from Anger algorithm 

and MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.14 PSFs of Anger for crystal thickness 18 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.15 PSFs of Anger for crystal thickness 18 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Table 6.16 
Anger and MLP results for crystal thickness 18 mm for x = 0 at (0,0). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.662 0.865 

Bias (mm) -0.227 -1.146 

 
 

 
 
 

Table 6.17 
Anger and MLP results for crystal thickness 18 mm for x = 12 at (12,12). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.718 2.258 

Bias (mm) 7.753 0.402 

 

 
 

Table 6.18 
Anger and MLP results for crystal thickness 18 mm for x = 24 at (24,24). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 1.010 0.726 

Bias (mm) 19.411 0.026 
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6.7 Results: Crystal Thickness is 21 mm 

 Table 6.19, 6.20 and 6.21 compares the bias and spatial resolution obtained with 

Anger algorithm and with MLP. The biases and resolutions are calculated using data of the 

test grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.16 and 6.17 are point spread functions obtained from Anger algorithm 

and MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.16 PSFs of Anger for crystal thickness 21 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.17 PSFs of MLP for crystal thickness 21 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Table 6.19 
Anger and MLP results for crystal thickness 21 mm for x = 0 at (0,0). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.719 0.753 

Bias (mm) 0.066 1.318 

 
 
 
 
 

Table 6.20 
Anger and MLP results for crystal thickness 21 mm for x = 12 at (12,12). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 1.021 2.487 

Bias (mm) 8.350 -0.045 

 

 
 
 

Table 6.21 
Anger and MLP results for crystal thickness 21 mm for x = 24 at (24,24). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 1.172 0.841 

Bias (mm) 19.991 0.069 
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6.8 Results: Crystal Thickness is 24 mm  

 Table 6.22, 6.23 and 6.24 compares the bias and spatial resolution obtained with 

Anger algorithm and with MLP. The biases and resolutions are calculated using data of the 

test grid, corresponding to the same x coordinate (x=0, x=12 or x=24), which is tried to be 

estimated. Figure 6.18 and 6.19 are point spread functions obtained from Anger algorithm 

and MLP network for x=0, x=12 and x=24, respectively. 
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Figure 6.18 PSFs of Anger for crystal thickness 24 mm (a) for x =0, (b) for x=12 and (c) for x=24. 
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Figure 6.19 PSFs of MLP for crystal thickness 24 mm (a) for x =0, (b) for x=12 and (c) for x=24.   
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Table 6.22 
Anger and MLP results for crystal thickness 24 mm for x = 0 at (0,0). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.835 0.690 

Bias (mm) 0.139 1.091 

 

 

Table 6.23 
Anger and MLP results for crystal thickness 24 mm for x = 12 at (12,12). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 1.153 3.894 

Bias (mm) 8.957 1.921 

 
 
 
 
 

Table 6.24 
Anger and MLP results for crystal thickness 24 mm for x = 24 at (24,24). 

 

 Anger (350 keV) MLP (350 keV) 

Resolution (mm) 0.951 0.698 

Bias (mm) 20.240 0.181 
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6.9 Summary of Results 

 FWHM values calculated using Anger algorithm are corrected using bias maps for 

thickness (Figure 6.20 and Figure 6.21) and the results are plotted in Figure 6.22. Table 

6.25 and Table 6.26 compares FWHMs calculated with unbiased Anger and MLP.  
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Figure 6.20 Bias for different crystal thicknesses vs. x coordinates for Anger algorithm. 
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Figure 6.21 Interpolated x coordinates with Anger algorithm vs. x coordinates.  
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 Table 6.25 
Spatial resolutions calculated for the test point (0,0) with unbiased Anger and MLP. 

 
LSO thickness 

(mm) 
Anger (Unbiased) 
Resolution (mm)  

MLP 
Resolution (mm)  

3 0.910 0.329 

6 1.200 0.321 

9 0.930 0.459 

12 1.520 0.432 

15 1.520 0.820 

18 1.700 0.865 

21 1.730 0.753 

24 2.490 0.690 

 

Table 6.26 
Spatial resolutions calculated for the test point (12,12) with unbiased Anger and MLP. 

 
LSO thickness 

(mm) 
Anger (Unbiased) 
 Resolution (mm)  

MLP 
 Resolution (mm)  

3 1.170 1.022 

6 2.710 2.086 

9 2.860 1.013 

12 2.780 1.898 

15 2.840 1.626 

18 3.410 2.258 

21 4.470 2.487 

24 4.780 3.894 
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Figure 6.22 Spatial resolution vs. crystal thickness at x=0 and x=12. 
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Figure 6.23 Effect of crystal thickness on spatial resolution for Anger algorithm and MLP. 

 

 On Figure 6.23, the spatial resolution data points for both algorithms are fitted to 

linear curves for each crystal thickness, in order to investigate the effect of crystal thickness 

on the degradation on spatial resolution. 
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 The attenuation for a gamma ray is calculated according the Eq. 2.12, where the 

linear attenuation coefficient of LSO for gamma rays of 511 keV energy is 0.86 cm-1 [57]. 

The crystal efficiencies are calculated according to the attenuation and the percentage of 

interactions used due to the energy threshold. Crystal efficiencies according to the varying 

crystal thickness are shown in Table 6.27 and in Figure 6.23.  

Table 6.27 
Crystal thickness vs. crystal efficiency. 

 
LSO thickness 

 (mm) 
No energy threshold 

Efficiency (%) 
Energy Threshold=350 keV 

Efficiency (%) 

3 17.96 10.93 

6 39.83 30.75 

9 53.78 40.71 

12 61.50 55.37 

15 73.05 63.45 

18 77.48 69.45 

21 82.92 73.13 

24 86.61 65.28 
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Figure 6.24 Crystal thickness vs. crystal efficiency with no energy threshold and 350 keV energy thresholds. 
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DISCUSSION AND CONCLUSION 

 For this work, a MAPMT of 8 x 8 anodes is coupled to crystals, which has different 

thicknesses varying from 3 mm to 24 mm. A MLP of two hidden layers is used, which have 

15 and 8 neurons, respectively. The 64 outputs of the MAPMT is reduced to 4, in order to 

simplify the electronics of the real system, so the input layer consists of 4 neurons 

corresponding to the output vectors of the MAPMT and the output layer has one neuron for 

the estimated coordinate. 

 In this study, the crystal thickness has been varied and the performance parameters 

like spatial resolution and bias of a PET detector are compared and significantly better 

results are obtained with MLP when compared with Anger algorithm (Figure 6.22). This 

result shows that usage of thick scintillation crystals for small PEM detectors.  

 The spatial resolution got worse in the center of the FOV (12,12) because of the 

high-reflective side painting, which is chosen in order not to sacrifice the sensitivity of the 

detector and count statistics, but caused the photons reflect towards the center of the crystal 

and caused the light distribution to distort in the edges of the detector. This degradation can 

be compensated as a future work by using a more absorptive side painting, by training the 

network with more events per each grid position and by optimizing the network 

parameters, such as number of hidden layers and number of neurons in the hidden layers, 

for each crystal thickness. Moreover, the output of each anode can be used separately to 

feed the network, instead of decreasing the number from 64 to 4. 

 From Figure 6.23, it can be seen that both for (x = 0) and (x =12), the fitted curves 

have steeper slopes for Anger algorithm, meaning that it is more sensitive to changes in 

crystal thickness. This result reveals that the degradation in spatial resolution is less when 

an MLP is utilized for positioning. It is observed that there is a trade-off between 

sensitivity and crystal thickness for Anger algorithm. Since we obtained better results in 

spatial resolution using MLP based algorithm even for thick crystals, the sensitivity is not 

sacrificed.  
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 Among the crystal thicknesses utilized in the study, the worst results for the average 

resolution, the resolution at the center point of the crystal and at the point (12,12) are 

obtained for a crystal thickness of 24 mm. Moreover, the usage of crystals thicker than 24 

mm results in excessive Compton scatters, which are eliminated by applying an energy 

threshold. But Figure 6.24 reveals that the efficiency of the crystal starts to decrease after 

21 mm which is a consequence of energy thresholding.   

 The systematic error of the Anger algorithm is again shown in this thesis, therefore 

it is proven once more that new approaches for scintillation positioning are needed for 

electronically practical, time efficient and real-time applications. It can be clearly seen that 

increasing the crystal thickness results in more compression and the compression near the 

edges of the crystal is more than the compression in the center of the crystal. 

 A simplification can be done by training the different regions of the crystal with 

different networks allowing the usage of simpler neural networks and shortening the 

training times.   

 The gamma photons simulated in this work are sent perpendicularly to the crystal 

surface. For depth-of-interaction information, the training can be done also for oblique 

photon incidences. 

 Another prospective research can be the use of higher energy thresholds (400-450 

keV) for this detector configuration and investigate the effect on the crystal efficiency and 

the spatial resolution. 
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