
 
 
 
 
 

LESION DETECTION IN MR MAMMOGRAPHY:  NMITR  MAPS, 
DYNAMIC AND MORPHOLOGICAL DESCRIPTORS 

 
 
 
 
 

by 

 
 
 
 
 

Gökhan Ertaş 
 
 
 

B.S., in Electronics Engineering, Erciyes University, 1999 
M.S., in Biomedical Engineering, Boğaziçi University, 2001 

 
 
 
 
 
 
 
 
 

Submitted to the Institute of Biomedical Engineering 
in partial fulfillment of the requirements 

for the degree of 
Doctor 

of 
Philosophy 

 
 
 
 
 

Boğaziçi University 
September 2007 



 
ii

 
 
 
 
 

LESION DETECTION IN MR MAMMOGRAPHY:  NMITR  MAPS, 
DYNAMIC AND MORPHOLOGICAL DESCRIPTORS 

 
 
 
 
 
 
 
 
 
 
APPROVED BY: 
 
 
 
 

Assoc. Prof. Dr. Halil Özcan Gülçür 
(Thesis Advisor) 

……………………………. 

  
  
Prof. Dr. Yekta Ülgen ……………………………. 
  
  
Prof. Dr. Mehtap Tunacı ……………………………. 
  
  
Prof. Dr. İrşadi Aksun ……………………………. 
  
  
Assoc. Prof. Dr. Albert Güveniş ……………………………. 

 
 
 
 
 
 
 
 
 
DATE OF APPROVAL:  September 18, 2007 
 



 
iii

ACKNOWLEDGMENTS 
 
 
 
 

This thesis is the result of four years of work during which I have been accompanied 

and supported by many people. It is now my great pleasure to take this opportunity to 

thank them. My sincerest thanks and appreciation goes to my supervisor Assoc. Prof. Dr. 

H. Özcan Gülçür. I thank him for his advice, invaluable time, input and mentorship which 

has made this study enjoyable and also a learning experience that, is unsurpassed by any 

means. My gratitude cannot be realistically expressed and extended in any form or words. 

Additional thanks for allowing me the opportunity to attend international conferences and 

inevitably see so many parts of the world through encouragement and financial support. I 

would like to thank Prof. Dr. Mehtap Tunacı, Istanbul University, Department of 

Radiology, for patiently giving me her time during extensive discussions and providing me 

with valuable comments and motivations. I am also indebted to Dr. Memduh Dursun, 

Istanbul University, Department of Radiology, for his extensive counseling and help 

during both collection and interpretation of breast MRI data. I would also like to thank to 

Asst.Prof.Dr. Onur Osman, Istanbul Commerce University, for giving me the inspiration to 

come up with new solutions to the technical problems during the processing of breast MR 

images. I would like to express my thanks to the members of the thesis committee, Prof. 

Dr. Yekta Ülgen, Assoc. Prof. Dr. Albert Güveniş and Prof. Dr. İrsadi Aksun for their 

careful reading and helpful suggestions on my thesis, for its being more comprehensive. I 

also thank to Research Foundation of Boğaziçi University for supporting the project 

04X1043 during this PhD study. 

One of the most important persons who has been with me in every moment of my 

PhD is my wife Gülay. I would like to thank her for the many sacrifices she has made to 

support me in undertaking my doctoral studies. By providing her steadfast support in hard 

times, she has once again shown the true affection and dedication she has always had 

towards me. I would also like to thank my son Sinan for his perpetual love that helped me 

in coming out of many frustrating moments during my PhD research. 



 
iv

ABSTRACT 
 

LESION DETECTION IN MR MAMMOGRAPHY:  NMITR MAPS, 
DYNAMIC AND MORPHOLOGICAL DESCRIPTORS 

 

In this thesis, algorithms, methods and techniques for dynamic contrast-enhanced 
magnetic resonance mammography (DCE-MRM) have been investigated to maximize 
sensitivity, specificity and reproducibility of breast cancer diagnoses. A novel lesion 
localization method that uses cellular neural networks (CNNs) was developed. The breast 
region was segmented from pre-contrast images using four specifically designed CNNs.  A 
3D normalized maximum intensity-time ratio (nMITR) map of the segmented breast was 
generated using a moving mask of 3×3 voxels on the dynamic images. This map was 
converted into a binary form and processed with a fuzzy CNN consisting of three layers of 
11×11 cells to segment out lesions from the surrounding tissues and to filter-out deceptive 
enhancements. A set of decision rules based on volume and 3D eccentricity of the 
suspicious regions were applied to minimize false-positive detections. The system was 
tested on a dataset consisting of 7020 MR mammograms in 1170 slices from 39 patients 
with 37 malignant and 39 benign mass lesions and was found to perform well with false-
positive detections of 0.34/lesion, 0.10/slice and 0.67/case at a maximum detection 
sensitivity of 99%. 

Enhancement and morphological descriptors of breast lesions derived from 3D 
nMITR maps were also studied for malignancy detection. The mean, the maximum value, 
the standard deviation and the entropy were the enhancement features found to have high 
significance (P< 0.001) and diagnostic accuracy (0.86-0.97). nMITR-entropy had the best 
performance. Among the morphological descriptors studied, 3D convexity, complexity and 
extent were found to have higher diagnostic accuracies (ranging between 0.70-0.81) and 
better performance than their 2D versions. Contact surface area ratio was found to be the 
most significant and accurate descriptor (75% sensitivity, 88% specificity, 89% PPV and 
74% NPV). 

The results demonstrate that nMITR maps inherently suppress enhancements due to 
normal parenchyma and blood vessels that surround lesions and have natural tolerance to 
small field homogeneities and thus are very effective for lesion localization and 
malignancy detection.   

Keywords: Breast cancer, MR mammography, lesion localization, malignancy detection, 
normalized maximum intensity-time ratio, cellular neural network. 
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ÖZET 
 

MR MAMOGRAFİDE LEZYON BELİRLENMESİ: NMITR 
HARİTALARI, DEVİNGEN VE BİÇİMSEL TANIMLAYICILAR  

 

Bu tez çalışmasında, devingen zıtlığı-çoğaltılmış manyetik rezonans mamografi 
verilerini çözümleyelecek, tanı duyarlılığını, belirliliğini ve yinelenebilirliğini 
olabildiğince arttıran algoritmalar, yöntemler ve teknikler araştırılmıştır. Hücresel sinir ağı 
(HSA) yapıları kullanan çok özel bir lezyon saptama yöntemi geliştirmiştir. Özel 
tasarımlanmış dört HSA kullanılarak meme alanı kesimlendi. Elde edilen meme bölgesi 
için devingen görüntüler üzerinde kayan 3×3 voksel boyutlarında bir maske kullanılarak üç 
boyutlu normalleştirilmiş en fazla yoğunluk-zaman oranı haritası elde edildi. Bu harita ikili 
biçime dönüştürüldü ve 11×11’lik hücrelerden oluşan, üç katmanlı, bulanık bir HSA ile 
lezyonları çevreleyen dokulardan kesimlemek ve aldatıcı tutulumları elemek üzere işlendi. 
Yanlış pozitif saptamaları azaltmak için şüpheli bölgelerin hacim ve üç boyutlu 
dışmerkezlilik özelliklerinden çıkartılan bir dizi karar kuralları uygulandı. Sistem 39 
hastaya ait, 37 kötü huylu ve 39 iyi huylu kütle lezyonu bulunan, 1170 adet kesitten oluşan, 
7020 adet MR mammogram üzerinde test edildi ve en fazla %99 tanı duyarlılığında her bir 
lezyon için 0.34,  kesit için 0.1 ve vaka için 0.67 yanlış pozitif saptama olmak üzere 
oldukça başarılı olduğu bulundu. 

Üç boyutlu normalleştirilmiş en fazla yoğunluk-zaman oranı haritalarından elde 
edilen meme lezyonlarının morfolojik ve tutulum betimleyicilerinin kanserin saptanmasına 
yönelik değerliliği araştırıldı. Ortalama, en fazla değer, standart sapma ve dağınım tutulum 
özelliklerinin yüksek anlamlı  (P< 0.001) ve tanım doğruluklu (0.86-0.97) olduğu bulundu. 
En fazla yoğunluk-zaman oranı dağınımı nicel tanı için en iyi başarıma sahip bulundu. 
Çalışılan morfolojik betimleyicilerden üç boyutlu dışbükeylik, normalize edilmiş 
karmaşıklık  ve kaplam özelliklerinin tanı doğruluklarının (0.70 ila 0.81 arasında değişen) 
iki boyutlu uyarlamalarına göre daha yüksek performansa sahip olduğu saptandı. Dokunma 
yüzey alanı oranının, anlamı ve doğruluğu en yüksek olan özellik olduğu saptandı (tanı 
duyarlılığı %75, belirlliği %88, pozitif kestirim %89 ve negative kestirim %74). 

Elde edilen sonuçlar, normalleştirilmiş en fazla yoğunluk-zaman oranı görüntülerinin 
doğal olarak lezyonları çevreleyen normal meme dokularını ve kan damarları tutulumlarını 
bastırdığı ve bu nedenle  de lezyon saptamada ve kanser belirlemede çok etkin olduklarını 
göstermiştir.  

Anahtar Sözcükler: Meme kanseri, MR mamografi, lezyon yerinin saptanması, habislik 
belirleme, normalleştirilmiş en büyük yoğunluk zaman oranı, hücresel sinir ağı. 
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1.   INTRODUCTION 

1.1  Breast Cancer 

Breast cancer is the most commonly diagnosed and the second leading cause of 

cancer death among women after lung cancer. The chance of a women having invasive 

breast cancer at some time during her life is about 1 in 8. A number of factors have been 

identified that increase breast cancer risk. These include age at menarche, age at the first 

full-term pregnancy, age at menopause, presence or history of benign breast disease, 

positive family history of a first-degree relative with breast cancer, certain mutations in the 

BRCA1 or BRCA2 genes, use of hormone replacement therapy, ionizing radiation to the 

breast (particularly early in life), substantial alcohol consumption, and obesity or a higher 

body mass index [1, 2]. 

Precise imaging techniques are vital for early detection of cancer and localization of 

the suspicious lesions for biopsy. Although X-ray mammography is the conventional 

screening tool used to detect breast cancer in its early stages, Magnetic Resonance 

Mammography (MRM) is gaining increased acceptance as an adjunct tool in breast 

evaluations. Among the currently available breast imaging techniques such as X-ray 

mammography, high frequency breast ultrasound, positron emission tomography and 

scintimammography, MR mammography offers the highest sensitivity for invasive breast 

cancer [3].  An important advantage of MRM, beside absence of ionizing radiation is that 

lesion-obscuring overlapping structures and summation shadows are much less pronounced 

in comparison with X-ray mammography. This is because MRM does not require 

excessive breast compression during imaging. Moreover, with the help of contrast agents 

that reveal the state of angiogenesis, dynamic contrast enhanced MR mammography 

(DCE-MRM) provides important tissue information on cross-sectional morphology, as 

well as functional information on perfusion and capillary leakage and thus makes possible 

localization, visualization and assessments of the aggressiveness and multifocality of the 

breast lesions.   
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In order to accurately assess breast cancer with DCE-MRM, a large volume of image 

data acquired at high spatial and temporal resolutions must be analyzed.  T2-weighted 

images, pre and post-contrast T1-weighted images and subtraction images created from the 

dynamic data must all be inspected by the radiologist slice by slice to localize lesions. This 

is a tedious and time consuming task, as suspected regions can be very small and there may 

be several deceptively enhanced healthy regions that need careful discrimination, such as 

blood vessels and normal parenchyma especially in case of premenopausal women. Once a 

lesion is localized, the radiologist must carefully evaluate its morphology and/or 

enhancement dynamics to detect malignancy.  The major motivation behind this is the fact 

that typically, irregular morphology, irregular or spiculated margins, heterogeneous 

internal enhancements and rim enhancements are signs of malignancy, while smooth 

margins and homogenous internal enhancements are associated with benign lesions. 

Malignant lesions are characterized by faster and stronger enhancements than benign 

lesions, although some malignant lesions may produce enhancement only slowly or 

minimally, and a variety of benign lesions may produce enhancement rapidly with marked 

signal increase. These assessments are highly time-intensive, experience and observer 

dependent, especially when lesion volumes are considered. In the standard clinical 

practice, due to the enormous image data that must be processed and interpreted, a typical 

(manual) patient evaluation requires constant and diligent attention for periods exceeding 

30 minutes.  Clearly there is a great need for systems that automatically extract important 

diagnostic features of the image data and present them to the radiologists for decision 

support. 

1.1.1  Lesion Localization 

As stated previously, a major task in DCE-MRM interpretations is the discrimination 

of deceptively enhancing regions and the localization of lesions. Recently, computerized 

systems have been developed that provide color-coded parametric maps of enhancements 

to make visualization of suspiciously enhancing regions uncomplicated and to facilitate 

overall analysis [4, 5, 6, 7]. Since these systems rely on manual identification of lesions, 

they are still time-consuming, highly subjective and error-prone. Clearly, there is a great 

need for automated estimation of lesion volumes for assisting radiologists in their clinical 

breast evaluations. A number of computerized techniques have been developed for use in 

diagnostic breast imaging, such as for X-ray mammography [8, 9], sonography [10], 



 
 

3

tomosynthesis [11] and computed tomography [12]. To our knowledge, only Bian et al 

[13] reported a fully automated lesion localization technique for DCE-MRM. A more 

detailed literature survey concerning lesion localization is presented in Sections 4.1 and 

5.1.  

1.1.2  Malignancy Detection  

Another major task in DCE-MRM interpretations is the detection of malignancy of 

the breast lesions based on their morphology and/or enhancement dynamics. The major 

motivation behind this is the fact that typically, irregular morphology, irregular or 

spiculated margins, heterogeneous internal enhancements and rim enhancements are signs 

of malignancy, while smooth margins and homogenous internal enhancements are 

associated with benign lesions [14]. During the past decade, the diagnostic significance of 

lesion morphology and qualitatively assessed morphological parameters have been studied 

[15, 16, 17]. These assessments are all highly time-intensive, experience and observer 

dependent, especially when lesion volumes are considered.  Automated methods have been 

developed to automatically extract diagnostically useful information using delayed fat 

suppressed post-contrast images or subtraction images that are helpful to suppress less 

enhancing normal parenchyma that surround the lesions and to highlight avidly enhancing 

regions [18, 19, 20, 21]. 

For detection of malignancy, since there is an overlap between enhancement 

dynamics of benign and malignant lesion, additional diagnostic information is preferably 

obtained by tracking the progress of the time-intensity curves for manually positioned 

small 2D region of interests (ROIs) [22, 23, 24].  Utmost care is a must during the 

positioning of the ROI, since missing of a very small detail may result in poor specificity 

and sensitivity in the final diagnosis. In general, it is advantageous to place a region of 

interest over the early enhancing component of a lesion. If a larger ROI is used, necrotic 

components of the lesion may undesirably affect the evaluations. To make accurate 

decisions, familiarity with the TICs of malignant and benign lesions is also necessary. 

Automated enhancement analysis methods make use of a number of protocols and 

quantitative interpretation criteria such as maximum signal enhancement rates at specific 
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times, time to maximum enhancement, wash-out ratio and maximum intensity-time ratio to 

improve diagnosis. [25-35]. 

Although the automated stated above make some improvements in lesion diagnosis, 

they require a great deal of experience to achieve reproducible results.  In case 

enhancement curves and morphologies of benign and malignant lesions are visually 

similar, the performance of these methods is still poor and for better characterization, 

whole volumes of the localized lesions must be analyzed systematically. A more detailed 

survey on available malignancy detection methods is given in Sections 6.1 and 7.1. 

1.1.3  Computer Assistance: Currently Available Software  

Undoubtedly, there is a great need for software packages that facilitate extraction of 

important diagnostic features of the DCE-MRM image data and present them to the 

radiologist for decision support. A pioneering work toward this goal was carried out by 

Leach et al, who developed MRIW, a software to quantify contrast agent uptake in 

dynamic contrast-enhanced MR images [6]. In a recent software, reported by Subramanian 

et al. [36], the user is interactively allowed to specify a TIC that represents malignancy. 

MTDYNA (Mevis Inc, Bremen, Germany) and CADstream (Confirma Inc, Kirkland, WA) 

generate color parametric maps of relative changes in intensity of each pixel over time to 

identify areas of significant enhancement and supply details about regions that show 

significant enhancement.  Although they provide considerable assistance to the 

radiologists, all of the above mentioned software packages also have serious limitations. A 

more detailed survey on available software packages is given in Section 8.1. 

1.2  Rationale and Objectives 

The major goal of this thesis is to investigate algorithms, methods and techniques to 

analyze DCE-MRM data that could be used to develop a standardized, reliable, efficient 

and accurate decision support system that minimizes processing time, minimizes the need 

for user intervention and experience, minimizes false-positive detections, miss-detections, 

intra- and inter-observer variability and maximizes detection sensitivity and reproducibility 

of the diagnoses. To achieve this goal, it is vital to develop an efficient lesion segmentation 
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method to segment out the lesion from the surrounding tissues and to filter-out deceptive 

enhancements from normal parenchyma, due to blood vessels, fat etc., or due to field 

inhomogeneities. This step determines the accuracy of lesion localization and size 

measurement for staging purposes, and is also important for proper delineation of the 

lesion for malignancy detection. Development of quantitative methods to facilitate lesion 

localization and to improve malignancy detection and a software package that provides 

decision support based features extracted from simultaneous dynamic and morphologic 

measurements for clinical practice are also aimed.  

1.3  Test Datasets 

The algorithms, methods and techniques developed in this thesis have been tested 

using datasets prepared in cooperation with the Radiology Department of Istanbul 

University. The breast MR examinations were performed at the 1.5 Tesla scanner 

(Magnetom Symphony; Siemens Medical Systems, Erlangen, Germany) of this 

department.  The scanner equipped with a gradient system having a maximum amplitude of 

30 mT/m. A dedicated four-element phased-array receiver breast coil was used. Patients 

were positioned prone with the breast to be imaged in gentle compression within the coil to 

minimize motion artifacts. The nature of the imaging procedure was explained to all the 

patients and their consents were secured. A variant of spoiled gradient-echo imaging, T1-

weighted 3D fast low angle shot (FLASH, TR/TE 9.80/4.76 msec, flip angle 25o, slice 

thickness 2.5 mm with no gap, 512×512 matrix, and 0.625×0.625 mm2 imaging sequence 

was used. During and immediately after the bolus injection of contrast agent Gd-DTPA 

(0.1 mmol/kg body weight), one pre-contrast and five post-contrast high-resolution 

bilateral axial images were acquired per slice with a temporal resolution of approximately 

88 seconds. Several breast lesions such as fibroadenomas, adenosis, mastitis, infected cysts 

and other benign changes, invasive carcinomas, ductal carcinoma in situ were studied. All 

cases were proved either by histopathological examination or by clinical follow-up. 

Dynamic 12-bit grayscale image sets were transferred from the MR scanner to a personnel 

computer in DICOM format for further analysis. nMITR maps were generated from the 

enhancement data and analyzed to extract important features, to automate lesion 

localization and to improve accuracy and reproducibility of malignancy detection. 
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1.4  Overview of the Thesis 

The motivation, rationale and the objectives of the thesis are given in this 

introduction. Background information concerning breast physiology, breast diseases, 

benign and malignant changes, and breast cancer risk factors  and a brief summary of 

currently available diagnostic breast imaging modalities is also presented are presented in 

Chapter 2. Fundamentals of dynamic contrast enhanced magnetic resonance 

mammography (DCE-MRM); hardware, contrast agents, imaging sequences, resolution 

considerations, lesion interpretation criteria, enhancement dynamics, multifactorial 

interpretation, computer assistance and quantitative methods are discussed in Chapter 3.  

Chapter 4 is on breast segmentation and lesion detection with cellular neural networks and 

3D template matching. In this chapter, a fully automated 3D lesion detection system for 

bilateral, axial DCE-MR mammograms is introduced that does not require prior knowledge 

concerning breast anatomy such as chest wall flatness, prior mastectomy history. 

Extraction of the breast regions by a segmentation scheme based on cellular neural 

networks, lesion detection with a 3D template and the performance of the segmentation are 

discussed. Chapter 5 presents a novel computerized lesion localization technique for MR 

mammography based on 3D nMITR maps, multilayer cellular neural networks and fuzzy 

c-partitioning.  Minimization of false-positive detections and a performance analysis are 

also given in this chapter. 

In Chapter 6, a novel, fast volumetric lesion segmentation method that requires user 

interaction only during initialization is described that is based on the use of a small 

sampling mask that is moved through the entire volume of interest, voxel by voxel to 

obtain accurately samples, enhancement characteristics and an nMITR map of the tissues 

involved. Diagnostic relevance of statistical parameters extracted from the generated 

nMITR map is studied in detail. Chapter 7 is on malignancy assessment based on nMITR 

maps and morphological descriptors; 2D and 3D descriptors such as convexity, normalized 

complexity, extent and eccentricity and enclosed area to contact surface area ratio are 

discussed in this chapter.  An interactive dynamic analysis and decision support software, 

DynaMammoAnalyst, for MR mammography is presented in Chapter 8.  Chapter 9 gives 

general conclusions and recommendations for future work.  
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2.   BACKGROUND 

2.1  Introduction 

Breast cancer is the most commonly diagnosed cancer and the second leading cause 

of cancer death among women. The only way today to find out for sure if a breast lump or 

abnormal tissue is cancer is by having a biopsy. A suspicious tissue is removed by a 

surgical excision or needle biopsy and is examined under a microscope by a pathologist 

who makes the diagnoses. Imaging techniques of the breast are therefore vital since they 

will allow early detection of cancer and localization of the suspicious lesion in the breast 

for a biopsy procedure.  

To develop and improve breast cancer detection and consider imaging modalities, the 

physiology of the breast, risk factors, breast diseases and the way in which tumor 

development occurs should first be considered. 

2.2  Breast Physiology 

The breast (mammary gland) consists of 15 to 20 lobes with varying number of ducts 

and lobules (Figure 2.1). These structures are surrounded by collagenous connective tissue. 

A lobule contains approximately 30 terminal branches that form the parencyhmal part of 

the lobule. All terminal ducts open into a lactiferous duct that runs toward the nipple. The 

15 to 20 main lactiferous ducts open in the nipple. The body of the gland is embedded in 

fatty tissue. It is supplied by a network of blood and lymph vessels and is supported in the 

subcutaneous fatty tissue by connective-tissue structures known as Cooper ligaments. 

These ligaments arise from the stromal tissue of the body of the gland and insert into the 

prepectoral fascia and the skin. The body of the gland, which can vary greatly in form, size 

and composition, converges toward the nipple, is generally symmetrical. 
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Figure 2.1 Schematic diagram of mammary gland [37]. 

 

The breast is affected by physiologic changes in morphology and function 

throughout life from menarche to menopause, and during each menstrual cycle. These 

changes are based on hormonal activity, mainly by prolactin, estrogen and progesterone. 

At menarche, the main events include development and growth of ductal and lobular units. 

At pregnancy, a remarkable rise of hormone levels induces growth and secretory activity of 

the breast. Postmenopausally, the breast undergoes involution characterized by atrophy of 

the parenchymal structures. The breast tissue is dense and parenchyma is rich in a young 

woman, with age, the fat content of the breast tissue increases as the woman ages [38]. 
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2.3  Common Breast Diseases 

2.3.1  Benign Changes 

Most benign lesions can actually be regarded as aberrations of normal processes. It 

has been stated that “the borderline between a normal change and a disease should be more 

defined in relation to their clinical aspects than to histologic findings” [39]. 

Fibrocystic Change 

Fibrocystic changes are related to regular and sometimes irregular, menstrual cycles 

with hormonal fluctuations. This disease is one of the most common benign conditions that 

affect more than 50 percent of women having palpably irregular breasts, cyclic pain, and 

tenderness. The mammary tissue, in response to the imbalanced estrogen and progesterone 

stimulation over time, undergoes a wide variety of morphologic changes. Changes occur in 

the ducts (cyst and ductal hyperplasia formation), lobules (adenosis -lobular hyperplasia- 

and sclerosing adenosis) and the stroma (fibrosis). 

Cysts 

Cysts usually occur in the terminal ductal lobular units associated with fibrocystic 

changes. They are locally distended peripherial ductal segments filled with fluid. 

Approximately half of all women 30 to 40 years and up develop fibrocystic changes in the 

breast that manifest themselves in single or multiple cysts of varying sizes. While simple 

cysts are always benign, complicated cysts can sometimes harbour malignancy. They 

become clinically important when the patient presents with pain or when a palpable 

findings require further diagnostic studies. 

Ductal Hyperplasia 

Ductal hyperplasia refers to epithelial proliferation in tissue with fibrocystic changes 

in the ductal system. It does not usually present as a palpable tumor. Monoclonal 

neoplastic proliferation within ducts already occupied by ordinary hyperplasia is termed as 

atypical ductal hyperplasia. It is close to ductal carcinoma in situ, but does not fulfill all the 
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criteria. However, in the later stages, ductal carcinoma in situ and then invasive ductal 

cancer can occur as illustrated in Figure 2.2. 

Adenosis 

Adenosis refers to a spectrum of changes within the lobules beginning from the 

hyperplasia to the subsequent fibrosis and calcifications and can present as a mass. 

Fibrosis 

Fibrosis is an increase of fibrous connective tissue. The lobules in particular are 

reduced in number and in size. Focal fibrosis may present as a palpable mass. 

 

 
 

(a)    (b)        (c)      (d)         (e) 

Figure 2.2  (a) Normal duct, (b) ductal hyperplasia, (c) ductal hyperplasia with atypia, (d) ductal carcinoma 
in situ, (e) invasive ductal cancer [40]. 

 

Benign Papillary Neoplasm and Changes 

Intraductal Papilloma 

Intraductal papilloma usually occurs within a major duct in the subareolar region 

with bloody or serous nipple discharges. They are characterized by small, usually less than 

1-2 cm in size lesions. Papillomas associated with hemorrhage and cystic change may be 

larger than 4 cm. There may be multiple peripheral papillomas that involve groups of 

ducts. These are associated with an increased risk for local recurrence and subsequent 

development of breast carcinoma. 
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Radial Scar 

Benign ductal hyperplasia, intraductal papilloma and/or sclerosing adenosis causes 

distortion of the ducts and ductules arranged in a radiating pattern referring to radial scar. 

Therefore radial scars are speculated masses or areas of architectural distortion, often with 

multiple long spicules and central areas of lucency.  

Fibroepithelial Tumors 

Fibroadenoma 

Fibroadenomas consist of epithelial and fibrous tissues that surround branching and 

budding ducts. They are smooth, rubbery or hard lumps that move easily within the breast 

tissue. They are the most common solid benign breast tumors seen in women under the age 

of 35 years. Most fibroadenomas are 2-3 cm in size, but may reach to 6-7 cm. Very rarely 

ductal or lobular carcinoma in situ occurs within fibroadenomas. Invasive carcinoma has 

also been reported to arise in a fibroadenoma [41]. Thus, it is important to evaluate the 

surrounding tissue of fibroadenoma to determine the extent of disease for optimal 

treatment. 

Phyllodes Tumor 

Phyllodes tumor is the malignant equivalent of fibroadenoma in which the epithelial 

elements are benign, but the fibrous tissue is malignant.  It varies in size from 1 cm to 

greater than 15 cm and occurs in about 1% of patients who have fibroadenoma for several 

years. 

Benign and Malignant Epithelial and Nonepithelial Tumors 

Hamartoma 

Variable amounts of fat, glandular tissue and fibrous connective tissue may compose 

hamartoma, which is a circumscribed benign nodule.  
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2.3.2  Malignant Changes 

Most malignant breast diseases originate in the ductal lobular units.  These units are 

composed of the terminal duct and the lobules branching from them and are liable to 

disturbances in the complex processes of cell proliferation and differentiation. In the pre-

invasive stage, the malignancy is confined within the ducts and lobules and the basement 

membrane is intact or only focally discontinuous. Conversion to invasive form  is 

associated with stromal invasion. 

Ductal Carcinoma in Situ (DCIS) 

Ductal carcinoma in situ is a condition in which the cells lining the ducts are 

cancerous, but stay contained within the ducts without growing through into the 

surrounding breast tissue. It accounts for 3–5% of palpable breast lesions and usually 

presented as microcalcifications; the solid type may or may not be associated with 

calcifications. A variant is lobular carcinoma in situ (LCIS) which is a precursor lesion for 

invasive lobular carcinoma, but in most cases, it does not progress to the invasive stage. It 

is regarded as a marker of increased risk of either lobular or ductal carcinoma. It is always 

an incidental finding that does not form a palpable tumor or a specific mammographic 

finding. 

Invasive Carcinoma 

Invasive breast carcinoma differs from ductal carcinoma in situ by the presence of 

stromal invasion, through which tumor cells spread not only locally but also regionally and 

distantly via vascular lymphatic space. Tumor size is closely related to lymph node 

metastasis and prognosis. Seventy to 80% of all breast cancers are invasive ductal 

carcinoma. Approximately 15% of invasive carcinomas are lobular. Lobular carcinoma 

infiltrates in a diffuse manner without altering the surrounding tissue, which often leads to 

discrepancy between imaging findings and histologic tumor size. The remaining 5% are 

infiltrating lobular carcinomas such as papillary [64]. 
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2.4  Stages in Lesion Growth 

Originally, most solid tumors present as vascular tumor cell aggregates, which get 

nutrients by simple diffusion. This is called the prevascular phase and can last for up to 

several years. Growth beyond a tumor size of 1–2 mm requires formation of new micro 

vessels. During this process, the epithelial cells release so-called angiogenic factors that 

interact with endothelium of the surrounding capillaries. These newly formed endothelial 

cells arrange into loops and canalize to form new vessels. The new vessels may also 

originate from the host tissue, when the venules incorporate into the tumor. This is the 

beginning of the vascular phase of the tumor. In addition to tumor growth, angiogenesis is 

also necessary for metastatic spread in which tumor cells enter the vascular structures, 

spread within them to the target organs, implant and grow. This complex process involves 

numerous angiogenic factors such as vascular permeability factor, vascular endothelial 

growth factor and basic fibroblast growth factor. Therefore, the vessel architecture in 

malignant tumors is characterized by caliber fluctuations, irregular course, formation of 

sinusoids and arteriovenous shunts. 

2.5  Breast Cancer Risk Factors 

Factors that increase breast cancer risk include younger age at menarche, older age at 

first full-term pregnancy, older age at menopause, presence or history of benign breast 

disease, positive family history of a first-degree relative with breast cancer, certain 

mutations in the BRCA1 or BRCA2 genes, use of hormone replacement therapy, ionizing 

radiation to the breast (particularly early in life), substantial alcohol consumption, and 

obesity or a higher body mass index [1, 2]. 

2.6  Breast Imaging Techniques 

It is important to detect and localize suspicious lesions early in their development 

stages and if malignancy is suspected, to perform biopsy. Various imaging techniques are 

in use for detecting and localizing breast abnormalities and for detection of malignancy.  In 

breast examinations, the term “screening mammography” is used for imaging techniques 
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employed for detecting abnormalities in the general population and the term “diagnostic 

mammography” used for imaging techniques used for localization of lesions and detection 

of malignancy.  Importance of screening has been shown in a number of studies [42, 43, 

44]. Various breast-imaging modalities are discussed below.  

2.6.1  Conventional X-Ray Mammography 

Due to its high sensitivity and cost-effectiveness, conventional X-Ray 

mammography has been the established technique for breast examinations; both for 

diagnostic and screening purposes.  However, X-ray mammography has a number of 

disadvantages. It lacks contrast, its sensitivity is decreased in radiologically dense breasts, 

and differentiation between malignant and benign lesions is difficult and X-ray radiations 

are known to cause damage to the DNA of cells.   It has been shown that the use of X-Ray 

mammography as the sole tool for breast examinations results in as much as 70% 

unnecessary biopsies and false-negative rates that may be as high as 34% [45, 46]. 

Recently, X-Ray mammography is challenged by other imaging modalities. 

2.6.2  Digital X-Ray Imaging 

Full field digital mammography provides high resolution, high contrast images with 

the lowest possible radiation dose to the patient.  Recently, a technique known as single 

energy X-Ray technique or as diffraction-enhanced imaging is being developed where a 

single energy X-ray source is used to create significantly sharper, more detailed pictures of 

breast tissue.  Another experimental technique under development is known as 

tomosynthesis. In this method, multiple images are acquired as the X-ray tube is moved in 

an arc above the stationary breast and digital detector. The total radiation dose required for 

imaging the entire breast is less than the dose used for a single film screen mammography. 

Tomosynthesis has the potential to improve the specificity of mammography by reducing 

the contribution of normal fibroglandular breast that mask presence of a lesion. This 

technique is claimed to be particularly advantageous for women with radiologically dense 

breasts. All these techniques have limitations similar to conventional X-ray Mammography 

especially during the diagnosis of detected lesions. 
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2.6.3  Ultrasound Imaging 

Ultrasound is the most important adjunctive imaging modality. Its excellent accuracy 

in the diagnosis of cysts reduces the number of unnecessary biopsies. It can provide 

important information to confirm the presence of palpable carcinomas in radiodense tissue. 

The accuracy in detecting malignant process depends both on the surrounding tissue and 

on the lesion itself. Accuracy is limited for small carcinomas and in particular preinvasive 

carcinoma. For this reason, ultrasound should never be used to role out a malignant process 

without corresponding mammographic studies. Benign findings in the presence of 

mammographic or clinical signs of a suspected malignant process do not exclude 

malignancy [47]. In view of these restrictions, the known examiner-dependent accuracy 

and it high physician time requirements, ultrasound is also not a suitable modality. 

2.6.4  Nuclear Imaging 

Cancerous cells take up more glucose when compared with healthy cells. Hence, it is 

possible to trace cells that are over-active and consume excessive glucose using dedicated 

radioactive tracers. To detect breast tumors, nuclear imaging with 99mTc-Sestamibi as the 

tracer is generally used. Another imaging method for detecting breast tumors is positron 

emission tomography in which fluorodeoxyglucose is the tracer commonly used. 

Unfortunately, the signal-to-noise ratio in both of these imaging modalities is not sufficient 

enough to diagnose small tumors. Moreover, the instrumentations are expensive; therefore 

these techniques are currently used only in a few selected cases [48, 49]. 

2.6.5  Electical Impedance Imaging 

Changes in cellular water content and cell membrane properties cause a significant 

change in tissue complex electrical impedance.  This makes possible to visualize cancerous 

and pre-cancerous lesions by electrical impedance measurements. Such a system could be 

particularly effective in detecting breast tumors of women who have dense breast tissue 

and therefore are difficult to examine using conventional X-ray mammography. At present, 

this method is not suitable for use in clinical breast examinations [50, 51].  
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2.6.6  Optical Diffusion Imaging 

Recently, there are increased interests in imaging systems that use light. Near 

infrared (NIR) is particularly attractive because it allows non-invasive probing of tissue 

oxygenation and metabolism.  Tissue has a low absorbing window in the NIR and allows 

light penetration for several centimeters. The information obtained depends on the 

attenuation characteristics of the breast tissues and can be used to detect  malignancy. Main 

advantages of these systems are the absence of ionizing radiation and the relatively low 

cost of instrumentation.  These systems have not yet been developed enough for 

identifying small lesions and lesions situated deep in the breast parenchyma and cannot be 

used clinically. 

2.6.7  Magnetic Resonance Imaging 

Unlike mammography that uses low dose X-rays to image the breast, magnetic 

resonance imaging (MRI) uses powerful magnetic fields and radio waves to create images 

of the breast. The MRI system is able to switch magnetic fields and radio waves to achieve 

views in any plane and from any orientation while X-ray mammography requires re-

orientation of the breast and mammography system for each view desired.  

In the beginning of breast MRI, the use of spin-echo (SE) sequences were the only 

choice. They revealed good tissue contrast enabling good measurements of T1 (spin-lattice 

relaxation time), T2 (spin-spin relaxation time) and proton density values, but the low 

spatial and temporal resolution was a problem. Turbo spin-echo sequences were developed 

to shorten acquisition times. Because of hyper-intensity of the fat signal and insufficient 

diagnostic information provided, this type of sequences have found limited applications 

and have been only used with T2-weighting in distinguishing liquid from solid content 

lesions [52]. 

Experimentation with SE sequences showed that malignant breast lesions have 

higher T1 and T2 values than normal breast tissues, but shorter T1 and T2 values than some 

benign breast lesions at 1.5 Tesla as listed in Table 2.1. The overlap in T1 and T2 values 

between benign and malignant breast lesions, sensitivity and specificity of the spin-echo 
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sequences were not adequate for detection and diagnosis of malignancies until the 

development of dynamic contrast enhanced MR mammography (DCE-MRM) [54]. DCE-

MRM is discussed in more detail in the next chapter. 

 

Table 2.1 
T1 and T2 values of the breast tissue at 1.5 Tesla [53]. 

 

Tissue N samples Mean T1 ± Std.Dev. Mean T2 ± Std.Dev. 

Fat 28 265 ± 2 58 ± 1 

Normal Breast Tissue 23 796 ± 21 63 ± 4 

Malignant Lesions 11 876 ± 29 75 ± 4 

Benign Lesions 17 1049 ± 40 89 ± 8 
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3.   FUNDAMENTALS OF DYNAMIC CONTRAST ENHANCED     

MR MAMMOGRAPHY 

3.1  Introduction 

For over 20 years, dynamic contrast-enhanced MR Mammogpraphy (DCE-MRM), or 

breast MRI, has been investigated as a method for breast cancer detection and diagnosis 

[55, 56, 57, 58, 59, 60, 61]. The technique consists of injecting a contrast-enhancing dye 

like material into the patient blood stream and using magnetic resonance imaging to 

monitor the way in which this material is taken up and cleared out by the tumor tissue. The 

ability to identify a mass in the breast requires that the mass have a different appearance 

(or a different contrast) from normal tissue. With DCE-MRM, the contrast between soft 

breast tissues is 10 to 100 times greater than that obtained with X-rays.  

A typical exam consists of a series of 2 to 6 sequences, with each sequence lasting 

between 2 - 15 minutes. An “MRI sequence” is an acquisition of data that yields a specific 

image orientation and a specific type of image appearance or “contrast.”  Indications of the 

imaging technique include differential diagnosis and characterization of lesions, detection 

of extent of carcinoma, mammographically dense breasts, evaluation of inflating 

carcinoma, post radiation complications and accepted as a gold standard in the pre-

operative evaluation of multicentric and contralateral breast carcinomas [62, 63]. 

Studies among asymptomatic high-risk women report sensitivities to breast cancer 

between 71% and 100%. Reported specificities, however, have varied widely (37-99%) 

depending on techniques and criteria for cancer detection. In addition to these, it is not 

recommended for evaluating the dense breast of young patients (below the age of 35) in 

the absence of a significantly increased risk of malignancy, differentiation of 

microcalcifications, excluding malignancy in breast with signs of inflammation [64]. 
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     (a)        (b) 

Figure 3.1 (a) Bilateral breast coil, (b) position of a patient prone on the breast coil before placing in the 
magnet bore [67]. 

3.2  Technical Perspectives 

3.2.1  Hardware 

MR Mammography can be performed using any tomography equipment used for 

whole-body imaging.  Usual field strengths are 0.5–1.5 Tesla. High-performance gradient 

coils with a minimum ascent velocity of 15 mT/m and dedicated surface coils permitting 

signal-to-noise ratio optimization and reducing slice thickness to < 3 mm are two 

fundamental requirements [65].  

Since different coil designs results in different capabilities, care must be taken to 

choose the proper coil for the desired results [66]. A bilateral breast coil manufactured by 

Siemens is presented in Figure 3.1a. The patient is placed directly on the table (a) and the 

technologist has visual control of breast position through a transparent window as 

illustrated in Figure 3.1b.   

It is important that the breasts are correctly placed within the coils, well centered and 

cushioned or slightly compressed, to diminish movement during the image acquisition. 

Compression should not be too marked, as it will distort the normal breast configuration, 

making the correct description of lesion localization and the comparison to other methods 

difficult. It is important that the patient is comfortable, with breast well positioned in the 
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coil.  This way the patient will be able to keep the same exact position, without any 

movement during the whole examination and the motion artifacts will be reduced. 

3.2.2  Paramagnetic Contrast Agents 

Although Gadolinium (Gd3+) is the most frequently used paramagnetic contrast 

medium, it cannot be used as contrast medium in its free form because of its toxicity and 

tendency to form salts with few relaxation properties. Therefore, it is bound to a chelating 

molecule to obtain a non-toxic substance with better bio-distribution and solubility in 

water. Currently, there are four chelates authorized by the Federal Drug Administration in 

the USA. These are Gd–DTPA (Magnevist, Schering), Gd–DOTA (Dotarem, Guerbert) for 

ionic contrast media, Gd–HP-DO3A (Prohance, Bracco) and Gd–DTPA–BMA (Omniscan, 

Nycomed) for non-ionic contrast media.  Among them, because of its inability to penetrate 

the cell membrane and its rapid spread in the vascular system exclusively in the 

extracellular compartment, Gd–DTPA is the most popular contrast agent for DCE-MRM 

and is injected to  patients at various doses (0.1–0.2 mmol/kg). Its plasma half-life is about 

90 min and it is excreted unaltered through the renal system without being metabolized 

[68]. The effect for various breast tissues is calculated by modifying the tissue relaxation 

time T1 using Eq. 3.1 [69].  

1
1 1

1 1
( ) (0)

nX C
T c T

= +      (3.1) 

where T1(0) is baseline (i.e. precontrast) relaxation time, X1 is relaxivity of Gd-DTPA for a 

given filed strength, C and n describe the molar concentration of the tissue compartment 

and the fraction of tissue volume accessible to contrast agent molecules respectively. The 

relaxivities of X1 of Gd-DTPA are equal to 3.5 3.57 and 4.06 (mMs)-1 at 1.5, 1.0 and 0.5 

Tesla respectively [70].  The published baseline (precontrast) nuclear magnetic resonance 

relaxation data for various tissues allow one to derive an empiric formula, as given in Eq. 

3.2, for the magnetic field dependence of T1 [71]. 

1(0) bT aB=      (3.2) 
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where B is the strength of main magnetic field in Tesla. The values accepted are as given in 

Table 3.1.  

 
Table 3.1   

a and b values for various breast tissue [71]. 
 

Tissue a b 

Normal fibrous tissue 732.05 0.4203 

Breast carcinoma 784.79 0.3999 

Fibroadenoma 988.59 0.4669 

 

3.2.3  Imaging Sequences 

Among the pulse sequences tested for breast evaluations, gradient-echo (GE) 

sequences, with their short acquisition times and good spatial resolutions, are currently 

considered to be the most suitable for dynamic contrast enhanced breast MR studies [72]. 

These types of sequences are similar to spin-echo sequences, with two modifications: 1) 

use of a flip angle (< 90o), rather than the 90o pulse used in SE and 2) use of a gradient 

reversal, instead of a 180o pulse to form an echo (a GE instead of a SE). These two 

modifications enable a substantial amount of longitudinal magnetization to remain in the 

direction of the static magnetic field, without being removed by either a 90o or an 180o 

pulse. This eliminates the need to wait to allow re-growth of the longitudinal magnetization 

and as a result, a complete image can be acquired in seconds instead of minutes.  

Gradient echo imaging also has slightly different pulse sequence versions, termed 

“spoiled” and “unspoiled”. The “spoiled” version of gradient-echo imaging is commonly 

used in DCE-MRM. The term “spoiled” refers to the fact that no transverse magnetization 

remains just prior to the next repetition of the pulse sequence. This spoiling occurs 

naturally due to T2* decay for long repetition times (greater than 100-200 ms). For shorter 

repetition times, steps are taken in spoiled gradient echo imaging after signal measurement 

and before the next repetition of the pulse sequence to ensure that no transverse 

magnetization remains. The signal for spoiled gradient-echo imaging is a function of 

repetition time TR, echo time TE, and flip angle θ given by [73]. 
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In Eq. 3.3, ρ denotes spin density. 

Note that T2*, not T2, governs the decay of transverse magnetization, the result of 

forming a gradient echo rather than a spin echo. In addition, the flip angle, θ, enters the 

formula in a slightly complicated way. The new parameter θ, in combination with TR, 

controls the T1 weighting of the pulse sequence. Table 3.2 describes the TR, TE, and flip 

angle settings needed to weight spoiled gradient-echo imaging toward T1, T2*, or ρ. One 

common feature often overlooked in spoiled gradient-echo imaging is that to maximize 

SNR and contrast-to-noise ratio (CNR) between tissues, as TR is decreased (to reduce to 

imaging time), θ also should be decreased, while TE must be sufficient to provide on-phase 

fat and water signals. 

 

Table 3.2 
Settings of spoiled gradient echo pulse sequences for different weights [73]. 

 
Sequence Weighting TR Setting TE Setting Flip Angle Setting 

T1 < 500msec. as short as possible 15-90 o depending on TR 
T2* any setting as long as possible up to 2TR/3 

or 100msec. 
10-30 o 

ρ <  50msec. as short as possible <10o 

 

Fat has a very short T1 relaxation rate, thus it returns a high signal on most T1 

weighted sequences. To evidence focal enhancing lesions, fat suppression is necessary.  

Fat saturation (Fat Sat) and subtraction are the two techniques applied for breast MRI. Fat 

Sat takes advantage of the difference in resonant frequencies between water and fat. A 90o 

RF pulse, tuned to the resonant frequency of fat is applied, flipping the bulk magnetic 

vector from fat into the transverse plane. Spoiler gradients are then applied to destroy the 

phase coherence of the signal. This saturation routine is followed immediately by the 
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imaging sequence and the images will only show signal from the remaining water nuclei. 

Fat based nuclei will not produce a signal until there is time for significant T1 based 

recovery (approx. 100 msec).  The great attraction of the Fat Sat technique is that it only 

modifies the fat signal; all other contrast relationships and signal characteristics remain the 

same. However, fat suppression by subtraction of the pre-contrast image from the contrast 

images is particularly appropriate in the breast where the anatomy is prone to extreme 

magnetic field inhomogeneity even after patient shimming.  Therefore, subtraction images 

from dynamic data of spoiled GE sequences allows improved lesion detection and is 

preferred in the clinical practice. 

GE sequences with 2D acquisitions provide a limited number of images from the 

whole breast. However, volumetric acquisitions with 3D GE sequences allow proper 

coverage of the breast without any interslice gap. Therefore, these latter types of sequences 

give additional diagnostic information for both lesion localization and malignancy 

detection.  

In breast evaluations, the most commonly used sequence is the 3D Fast Low Angle 

Shot (FLASH) sequence, a variant of spoiled gradient-echo imaging with T1-weighting. 

The settings for typical FLASH sequences are given in Table 3.3. This sequence 

establishes a steady state longitudinal magnetization but destroys or spoils any residual 

transverse magnetization using spoiling gradients before a new radio-frequency pulse is 

applied (Figure 3.2). 

 

Table 3.3 
Settings for the 3D Fast Low Angle Shot (FLASH) sequence [64]. 

 
Sequence Weighting TR Setting TE Setting Flip Angle Setting Field Strength 

T1 12 msec. 5msec. 25o 1.5 Tesla 
T1 14 msec. 7msec. 25o 1.0 Tesla 
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Figure 3.2  3D FLASH sequence diagram. 

 

3.2.4  Spatial and Temporal Resolution Considerations 

The spatial resolution is critical for detecting small malignant lesions. A thin slice 

thickness is desired to get as accurate information as possible, but this will lead to a loss of 

signal, as the imaged voxel is smaller, thus giving away less signal. However, because of 

the different sizes, forms and extent of lesions, it can be difficult to detect certain lesions 

due to the partial volume effect. For example in small lesions that are not completely 

covered by one separate slice (especially for malignancies growing in a duct-like pattern), 

or in a wide but thin invasive cancer in the plane of the slice. A slice thickness of 2 mm is 

desired, and should not exceed 4 mm, to make it possible to detect malignant lesions of 4-5 

mm sizes. 

The temporal resolution is very important in the evaluation of enhancement 

dynamics. Typically, a malignant lesion enhances strongly and early, combined with 

washout in the later phase. If long imaging times are used per acquisition, the possibility to 

discern a malignant from a benign lesion using dynamic parameters diminishes. The rim 

enhancement and inhomogeneities in malignant lesions can also be overlooked, as they 

often are discernible in early post contrast images; but for this evaluation, spatial resolution 

is the most crucial part. 
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3.3  Pitfalls 

There are two groups of pitfalls: Technical and non-technical. Technical pitfalls 

relate to patient factors or machine factors that can influence interpretation of the MR 

mammograms. These include metallic artifacts, field inhomogeneities and patient 

movement. Especially breathing causes small movements even when examined in the 

desired prone position. It is extremely important to motivate the patient not to move at all 

during image acquisition. As the slice thickness preferably is 1-2 mm, every very minor 

movement or shifting of the body causes serious problems in post processing and 

evaluation. This can for example cause changes of slice position between image series 

making subtraction infeasible.  

Non-technical pitfalls refer to misinterpretation of imaging findings in the absence of 

technical problems. These are physiological factors (menstrual cycle, pregnancy, and 

lactation), post-therapy changes (surgery, radiotherapy, and chemotherapy), 

histopathological correlation and criteria of malignancy (false positives and false 

negatives). Hormonally-induced enhancement may mimic disease. Surgery and 

radiotherapy induce morphological changes and enhancement within the breast. 

Chemotherapy may suppress enhancement and mask residual disease. Small lesions seen 

only on MRI may be difficult to locate in the pathological specimen. False positive results 

can arise from unfamiliarity with enhancement characteristics [74]. 

3.4  Lesion Interpretation Criteria 

Interpretation criteria involves morphology and enhancement pattern of lesions 

extracted by time intensity curves.  

3.4.1  Morphology 

To improve differentiation between benign and malignant lesions the use of 

morphological criteria have been developed and reported from several sites. The criteria 

include shape, margin and enhancing pattern of the inspected region.  While the form 
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describes the shape of enhancing region (Figure 3.3), outer contours of a contrast 

enhancing region is described by margins (Figure 3.4).  The contrast enhancement pattern 

describes the special distribution of contrast within the contrast enhancing region. The 

types of pattern are homogenous, inhomogeneous or septated (Figure 3.5). Another one is 

rim enhancement which is caused by stronger contrast uptake in tumor periphery in 

comparison to tumor center. Signal loss in tumor center is a sign of necrosis and fibrosis 

results in signal attenuation in tumor center [62]. 

 
 

 
(a)       (b)             (c) 

 

 
(d)           (e)               (f) 

Figure 3.3 Subtraction images illustrating the various shapes of contrast-enhancing regions. (a) Round, (b) 
oval, (c) polygonal, (d) linear, (e) branching, (f) spiculated [62]. 

 
 
 

 
(a)     (b) 

Figure 3.4  Subtraction images illustrating margin differences. (a) Well defined, (b) indistinct [62]. 
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(a)         (b)             (c) 

Figure 3.5  Subtraction images illustrating different contrast enhancement patterns. (a) Homogenous,         
(b) inhomogeneous, (c) septated [62]. 

 

Benign characteristics are well-defined margins and homogenous enhancement. On 

the contrary for rim enhancement, inhomogeneous internal pattern and irregular borders 

are considered typical malignant features. The analysis of shape and margin of a lesion and 

enhancement pattern can be of value in the differentiation, as for example fibrous strands 

occurring in fibroadenomas. There is however, overlap in benign and malignant features as 

there is with X-ray mammography. The positive and negative predictive values of various 

morphologic features encountered in MR imaging examinations of the breast are presented 

in Table 3.4. The use of scoring systems for classifying benign and malignant lesions have 

been advocated [24, 75].  

 

Table 3.4 
Positive predictive value of morphologic features [15]. 

 

Feature % Positive predictive value 

Smooth mass 5 - 17 

Mass with nonenhancing internal septations 0 - 2 

Ductal enhancement 24 - 85 

Rim enhancement 40 - 86 

Branching mass 32 - 84 

Spiculated mass 80 - 91 

 



 
 

28

3.4.2  Enhancement Dynamics 

In addition to the variety of contrast enhanced GE imaging sequences used, there 

exists a plethora of qualitative and quantitative enhancement analysis methods that have 

been applied to imaging data in an attempt to differentiate benign from malignant breast 

lesions. Underlying all analytic methods is an assumption that benign and malignant 

tumors differ physiologically in such a manner that the kinetics of Gd-DTPA enhancement 

will differ between the pathologic entities and that these differences can be defined by 

DCE-MRM [76].  

Angiogenesis is a crucial component in the development of various tumors and 

several other physiologic processes including wound healing, embryogenesis and growth 

of metastasis. Since it is a limiting factor for both tumor growth and metastases, it 

correlates with tumor aggressiveness. Physiological differences in breast tumors can thus 

be explained in terms of angiogenesis. In fact, a strong correlation between the initial 

enhancement of breast carcinomas and micro vascular densities has been observed in DCE-

MRM  [77, 78, 79]. It is important to mention that there are three major regions that 

enhance: breast lesions, ducts and blood vessels. In most cases, rapid enhancement 

suggests malignant lesions and gradual enhancement benign lesions. It is perfectly healthy 

for blood vessels to enhance.  

There is some agreement regarding contrast enhancement dynamics, particularly in 

the positioning of the region-of-interest (ROI) and the analysis of the enhancement rate. 

After an enhancing lesion has been identified on subtracted images, its enhancement 

kinetics should be evaluated by identifying a ROI in the most enhancing part of the lesion. 

In clinical practice, the enhancement kinetics has been obtained by time intensity curves 

(TICs). The curve is plotted with signal intensity (SI) values directly or from computed 

signal enhancement (SE) rates using Eq. 3.4 [80].  
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where SIpre and SI(t) are the precontrast and post-contrast time varying intensity averages 

of positioned ROI. Additionally there are two well-known and accepted parameters: ISI  

(initial signal increase) and PSB  (post-initial signal behavior), which are defined by Eqs. 

3.5 and 3.6. A diagram for computing ISI  and PSB is presented in Figure  3.6 [62]. 
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(a) 

 

 

(b) 
Figure 3.6   Diagram for determination of (a) initial signal increase and (b) post-initial signal behavior [60]. 
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3.4.3  Multifactorial Interpretation 

In clinical practice for the evaluation of the lesions, it is recommended to use MR 

mammography breast imaging reporting and data system (MRM-BIRADS) employing a 

multifactorial protocol in which each evaluation criteria receives a point value. Using the 

system presented in Table 3.5, findings with a total score of less than 3 points generally 

correspond to benign lesions, whereas a total score greater than 3 points indicates 

malignancy as seen in Table 3.6.  

 

Table 3.5 
Multifactorial evaluation protocol [62]. 

 
Criterion Points 

Round 0 
Oval 0 
Polygonal 0 
Linear 0 
Branching 1 

Form 

Spiculated 1 
 

Well defined 0 Margins 
Indistinct 1 

 
Homogenous 0 
Inhomogenous 1 
Septated 0 

Enhancing pattern 

Rim enhancement 2 
 

< 50 % 0 
50 – 100 % 1 

Initial signal increase 

> 100% 2 
 

Steady increase 0 
Plateau 1 

Postinitial signal behavior 

Wash-out 2 

 

Table 3.6 
Evaluation scores [62]. 

 
Total Score 0 1 2 3 4 5 6 7 8 

Group 
 

I 
Benign 

II 
 

III 
Questionable 

IV 
 

V 
Malignant 
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3.5  Computer Assistance and Quantitative Methods in DCE-MRM  

In order to accurately assess breast cancer with DCE-MRM, a large volume of 

image data, acquired at high spatial and temporal resolutions must be analyzed. T2-

weighted images, pre and post-contrast T1-weighted images and subtraction images created 

from the dynamic data, must all be inspected by the radiologist slice by slice to localize 

lesions. This is a tedious and time consuming task, as suspected regions can be very small 

and there may be several deceptively enhanced healthy regions that need careful 

discrimination, such as blood vessels and normal parenchyma especially in case of 

premenopausal women. Once a lesion is localized, the radiologist must carefully evaluate 

its morphology and/or enhancement dynamics to detect malignancy. The major motivation 

behind this is the fact that typically, irregular morphology, irregular or spiculated margins, 

heterogeneous internal enhancements and rim enhancements are signs of malignancy, 

while smooth margins and homogenous internal enhancements are associated with benign 

lesions. Malignant lesions are characterized by faster and stronger enhancements than 

benign lesions, although some malignant lesions may produce enhancement only slowly or 

minimally, and a variety of benign lesions may produce enhancement rapidly with marked 

signal increase. These assessments are highly time-intensive, experience and observer 

dependent, especially when lesion volumes are considered. In the standard clinical 

practice, due to the enormous image data that must be processed and interpreted, a typical 

(manual) patient evaluation requires constant and diligent attention for periods exceeding 

30 minutes. Clearly, there is a great need for systems that automatically extract important 

diagnostic features of the image data and present them to the radiologists for decision 

support. 

Recently, a number of algorithms, methods and computerized systems have been 

developed to aid radiologists and several software packages that facilitate extraction of 

important diagnostic features and provide considerable assistance to the radiologists have 

been developed [6, 36]. Some of these software just provide color-coded parametric maps 

of enhancements to make visualization of suspiciously enhancing regions uncomplicated 

and to facilitate overall analysis [4-7] and rely on manual identification of lesions which 

make them time-consuming, highly subjective and error-prone. There are thus efforts 

reported in the literature to minimize the need for operator guidance in diagnostic 
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evaluations; for X-ray mammography [8, 9], for sonography [10], for tomosynthesis [11] 

and for computed tomography [12]. To the best of our knowledge, there is one short 

abstract reported on a fully automated lesion localization technique for DCE-MRM [13]. A 

more detailed literature survey concerning lesion localization is presented in Sections 4.1 

and 5.1.  

During the past decade, the diagnostic significance of lesion morphology and 

qualitatively assessed morphological parameters have been studied [15-17] and automated 

methods have been developed to automatically extract diagnostically useful information 

using delayed fat suppressed post-contrast images or subtraction images that are helpful to 

suppress less enhancing normal parenchyma that surround the lesions and to highlight 

avidly enhancing regions [18-21]. For detection of malignancy, automated enhancement 

analysis methods that make use of a number of protocols and quantitative interpretation 

criteria such as maximum signal enhancement rates at specific times, time to maximum 

enhancement, wash-out ratio and maximum intensity-time ratio to improve diagnosis have 

been developed [15, 22-35]. A more detailed survey on available malignancy detection 

methods is given in Sections 6.1 and 7.1. A summary of the available software packages 

that facilitate extraction of important diagnostic features and provide considerable 

assistance to the radiologists is given in Section 8.1. 
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4.   LESION LOCALIZATION WITH CELLULAR NEURAL 

NETWORKS AND 3D TEMPLATE MATCHING 

4.1  Introduction 

Breast cancer is the most commonly diagnosed and the second leading cause of 

cancer death among women. Although X-ray mammography is the conventional screening 

tool used to detect and diagnose breast cancer, due to it’s ionizing nature and well-known 

limitations, especially on fibroglandular tissues, high-resolution, dynamic contrast-

enhanced, magnetic resonance mammography (DCE-MRM) is gaining increased 

acceptance in breast evaluations [81, 82]. 

In DCE-MRM a radiologist first identifies enhancing regions and marks a region of 

interest (ROI) and then tries to detect and evaluate lesions according to their morphology, 

enhancement dynamics or both [15]. The acquired and constructed images for MRM are 

too many to be visually inspected by the radiologist; evaluation of these images is a time-

consuming and experience-dependent process.  Missing of a very small detail may   result 

in poor   specificity and sensitivity in the final diagnosis. Thus, automated systems that 

provide decision support to radiologists have been under development. These systems, in 

general, use features extracted from intensity changes between pre and post-contrast 

images. In a number of recent work reported in the literature, normalized maximum 

intensity-time ratio (nMITR) and features derived from it have been used in decision-

making. A brief summary of these is presented below. 

Szabo et al [16] used artificial neural networks to establish a diagnostic criterion. The 

MR features are morphology and enhancement dynamics of a number of 105 lesions. 

Lesion morphology was determined qualitatively. Enhancement dynamics were computed 

for manually drawn ROIs positioned over a tumor area that showed high contrast uptake at 

the early post-contrast stage. The performance of the proposed neural network model was 

found to be comparable to that of an expert radiologist with a diagnostic accuracy of 77%.  
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Liney et al [32] compared user-defined and semi-automated region of interests. A total 

number of 117 lesions were examined. Three types of analysis were performed: Whole 

lesion ROI, the most enhancing 9 voxel ROI and 10% threshold ROI. High significance 

was achieved when small semi-automated ROI approaches were used. However it was 

concluded that the significance of the ROI approaches was highly associated with the 

radiologists’ experience. Gibbs et al [34] assessed the benefits of quantification of contrast 

enhancement in the differential diagnosis of sub-1cm breast lesions. In the beginning of the 

analysis, for each lesion an experienced radiologist drew ROI to encompass the whole 

lesion as closely as possible. With a logistic regression model they achieved a diagnostic 

accuracy of 92%. Kneeshaw et al [35] applied whole lesion ROI drawn by radiologist and 

most enhancing 9 voxel inside the whole ROI detected by a software to differentiate breast 

diseases associated with screening detected microcalcifications. 88 patients enrolled in the 

study. The highest sensitivity is 80% and obtained using 9-voxel ROI.  

In the schemes discussed so far the ROI must be marked by an expert; clearly a time-

consuming process. The advantages of automated ROI selection were explored by Kuhl et 

al [83]. They showed that an automated ROI is able to cut down the time needed for 

quantitative analysis while improving the reproducibility of quantitative enhancement 

values due to standardization of ROI analysis.  

Tzacheva et al [20] analyzed two dimensional margin and shape features of masses 

segmented by operator-controlled intensity thresholding of post-contrast sagittal fat 

suppressed T1-weighted breast images to diagnose malignancy. Deurloo et al [84] rated 

morphological and temporal features in and around the segmented breast lesion. The 

segmentation is automatic in three dimensions after a point in the lesion is designated 

manually on the MR image by a radiologist. It was concluded that computerized analysis 

has the potential to increase overall performance for clinically and mammographically 

occult lesions. Chen et al [85] presented a fuzzy c-means (FCM) clustering based method 

for 3D segmentation of lesions from contrast enhanced breast MR images. The algorithm 

consisted of lesion enhancement within a manually selected ROI, FCM clustering, lesion 

membership map generation, connected-component labeling, object selection and hole-

filling.  
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In all the studies mentioned above, some kind of user interaction is necessary. The 

user must either mark a whole or partial ROI, or mark a single point inside a suspicious 

region, or give an intensity threshold value.  

In the present study, we introduce a fully automated method that detects lesions in 

three dimensions without any human interaction. It should be noted that the objective in 

the present work is solely detection, not discrimination and that for reliable extraction of 

discriminating features in diagnosing malignancy, a more accurate segmentation than used 

here may be mandatory. A simplified flow chart of the process is presented in Figure 4.1.  

 

 

Figure 4.1  Simplified flowchart of the proposed breast lesion detection scheme. 
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4.2  Imaging Protocol  

Magnetic resonance imaging is conducted on a 1.5 Tesla MR imager (Magnetom 

Symphony, Siemens Medical Systems, Erlangen, Germany) equipped with a gradient 

system having a maximum amplitude of 30 mT/m. Patients are placed in a prone position 

during the scan to minimize motion artifacts. A dedicated four-element phased-array 

receiver breast coil is used. The imaging sequence is a variant of spoiled gradient echo 

imaging sequence, 3D fast low angle shot (FLASH)  (TR/TE 9.80/4.76 ms, flip angle 25 o, 

field of view 320×320 mm, matrix size 512×512, slice thickness 2.5 mm, 0.625×0.625mm2 

resolution in x and y directions). Sequential axial images (One pre-contrast and five post-

contrast) are obtained per slice, during and immediately after the bolus injection of contrast 

agent Gd-DTPA (0.1 mmol/kg body weight).  

4.3  Patient Population and Image Dataset 

The dataset analyzed in this study consists of 2064 CE-MR mammograms from 19 

women (age: 32-83 years, mean age: 48.8 years) in 344 slices. 19 benign and 20 malignant 

lesions have been manually marked in the slices by two expert radiologists after mutual 

agreement (approximate lesion center is marked; the whole lesion contour is not 

delineated). The benign lesions are ten fibroadenomas, five adenosis, two mastitis, an 

abscess and an infected cyst. The malignant lesions are eleven invasive ductal carcinomas, 

five invasive papillary carcinomas, three invasive lobular carcinomas and a ductal 

carcinoma in situ. All these findings have been supported either by histopathological 

examination or by clinical follow-up. Dot like enhancements, smaller than 5 mm, have 

been left unmarked. The smallest lesion in the dataset is 0.14 cm3 in volume and has a 

round shape; the largest lesion is 17.23 cm3 in volume and has an irregular shape. Fourteen 

lesions are round and the remaining are ovoid or irregular.  

All images are transferred in a DICOM format from the imaging device to a 

personnel computer for analysis. The analysis method described in this thesis is 

numerically implemented using Matlab 7.0 (The MathWorks, Inc., USA). 
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4.4  Breast Region Extraction using Cellular Neural Networks 

During detection of lesions in axial breast MR images, regions that are out of interest 

such as thoracic cavity, lungs and heart must be carefully segmented out to reduce 

computational burden and to prevent false positive detections in the vicinity of these 

regions.   

Air produces a near-zero MR signal so the breast-air boundary can be detected easily 

by simply searching a sharp increase in the signal. On the other hand, detection of the 

breast chest wall boundary is an ill-posed problem due to motion of the hearth and lungs. 

Hayton et al [86] proposed a technique that performs morphological operations (iterative 

morphological erosion followed by dilation) and graph search to find an approximate 

location of the chest wall on the pre-contrast images. Although it generates accurate results 

for certain patients, it requires a long process time and fails if the patient’s chest is not flat. 

Twellmann et al [87] introduced a method that combines median filtering, gray-level based 

thresholding and morphological operations on pre-contrast images. Most probably, due to 

the thresholding technique that is used, breast tissue segmentation seems to fail in regions 

near the chest wall.  

In this study, we introduce a segmentation approach that does not require prior 

information concerning breast anatomy such as chest wall flatness, prior mastectomy 

history. The method uses Cellular Neural Networks (CNNs) as an alternative way to 

perform morphological operations, a technique described previously by Yang et al [88] and 

Brugge et al [89]. Since CNNs can be implemented in hardware using special CNN chips, 

images can be processed in (almost) real-time; for example, Harrer et al report that a basic 

morphological operation can be completed within 1µs, independent of the image size and 

the structuring elements [90]. 

CNNs have been used for medical image processing previously by various 

investigators. Rekeczky et al [91] have shown feasibility of CNN based real-time feature 

extraction from echocardiographic images. Zarandy et al. [92] have used a CNN to analyze 

X-ray mammograms.  Girodana et al [93] have proposed a CNN based technique for fast 

and accurate detection of craniofacial landmarks on X-ray images. Shitong et al [94] have 
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studied automated white blood cell detection methods using microscopic blood images and 

showed that the CNN based method works better when compared with the existing two 

methods: threshold segmentation followed by mathematical morphology and the fuzzy 

logic method. A general review of of CNN-based medical imaging can be found in [95]. 

CNNs are locally interconnected cells arranged into arrays (regularly spaced 

positions) [96]. Let Ci,j represent the cell located in the (i, j)-th position of a 2D M×N 

image and let Ni,j represent the r-neighborhood of the cell Ci,j  and is defined by   

         { }, , | max(| |,| |) ;  1 ,  1i j l mN C l i m j r l M m N= − − ≤ ≤ ≤ ≤ ≤    (4.1a) 

where r is a positive integer. The pixel intensity (the state) ( , )tx i j  at this location can be 

described by the following (discrete) state equations: 

 

1 , ,( , ) ( , ) ( , )

, , , ,

t l m t l mx i j A y i l j m B u i l j m b
C N C Nl m i j l m i j

+ = × + + + × + + +
∈ ∈
∑ ∑            (4.1b) 

{ }( , ) 0.5 ( , ) 1 ( , ) 1t t ty i j x i j x i j= × + − −                                    (4.1c) 

where ( , )u i j  is the input, ( , )tx i j and ( , )ty i j  are the  state and the output of the cell Ci,j at the 

t-th stage, respectively. ,l mA  and ,l mB  are the entries at the l,m-th neighborhood of the 

feedback and control templates A and B, centered at the location i,j. b is a constant bias 

parameter.  The initial state and the input is assumed to have a magnitudes less than or 

equal to 1.  Note that ( , ) 1ty i j ≤  for all 0t ≥ . Since the initial state values of CNNs are 

bounded between -1 and +1, the pre-contrast image intensity values are normalized before 

use by  

min( )
2 1

max( ) min( )
pre pre

pre
pre pre

I I
I

I I
⎛ ⎞−

= × −⎜ ⎟⎜ ⎟−⎝ ⎠
            (4.2) 

where preI  is the pre-contrast image, min(·) and max(·) denote the minimum and maximum 

operators. 
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In this study, we segment the breast region from the pre-contrast MR image by 

applying a CNN for gray-level thresholding (CNNT) followed by another CNN (CNNO) to 

erase small objects and smooth sharp corners. We use a modified version of the CNN of 

Chua et al [97] for thresholding and a modified version of the CNN of Zarandy et al [98] 

for removing small objects. The updated parameter values are given in Table 4.1. Note that 

although the bias b in Table 4.1 seems to remain the same for all the images, the actual 

threshold is not static because of normalization of the pre-contrast images. (The 

thresholding with the given parameters is equivalent to thresholding the image at 14% of 

the intensity range, i.e at min( ) 0.14 max( ) min( )pre pre preI I I⎡ ⎤+ × −⎣ ⎦ ).  Note also that to 

remove certain horizontal artifacts that could cause false detections, CNNO deliberately 

contains some “offset” and is therefore nonsymmetrical. 

 
 
 

Table 4.1 
 Parameter values of the CNNs used. 

 

 Input Initial State A B b 

CNNT 

CNN for 
Gray-level 

thresholding  
(r=1) 

0 Normalized pre-
contrast image 

0 0 0
0 2 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

0 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

0.72 

CNNO 
CNN for 

erasing Small 
Objects  
(r=2) 

0 
Thresholded 
pre-contrast 

image 

 

0 0 0 0 0
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 0 

 

Stopping the CNNs 

CNNT:  After each iteration of the CNN algorithm (1), the voxel values (normalized 

to have values between -1 to +1) change towards either +1 or -1, except those selected by 

the bias value.  As the process stabilizes, this change will eventually go towards zero.  
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Therefore we stop when the total number of voxel intensity having values of either -1 or +1 

do not change from  iteration to iteration. Our experience shows that after about 10 

iterations a stable state is reached.   

CNNO:  In this case, the image to be processed is binary; therefore after each iteration 

we look whether there is any difference between the voxel intensities.  If there is no 

difference after eight successive iterations we stop; we also stop if this creation cannot be 

met within 250 iterations. 

4.5  Lesion Detection with a 3D Template 

To detect lesions, MR mammograms are enhanced using contrast agents. 

Computerized enhancement analysis may be performed by using the enhancement rate of a 

tissue at a specific location. In this study, we use normalized maximum intensity-time ratio 

(nMITR) computed over the pre and post-contrast images using the following equations: 

 

( ) (0)( ) 100
(0)

I ISE
I
νν ℜ ℜ

ℜ
ℜ

−
= ×                                             (4.3) 

 

{ }
max

max SE
nMITR

T
ℜ

ℜ =                                                  (4.4) 

In Eqs. 4.3, 4.4, ℜ  denotes a region of interest (ROI), ( )I νℜ  and (0)Iℜ  are the mean 

intensity values of the ROI on the -thν  post-contrast and pre-contrast images, respectively 

( 1,2, ,5ν = ). ( )SE νℜ  is the enhancement rate of the ROI at the -thν  time point; 

{ }max SEℜ is the maximum enhancement rate and Tmax is the time in seconds when the 

maximum is reached [34].  

For the segmented breast tissue, we generate a 3D nMITR map ( , , )S i j k  using a 

moving ROI of 3×3 voxels. This map is passed through a threshold to identify suspicious 
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enhancements and remove (falsely enhanced) fatty tissue, muscles, and parenchymal breast 

tissue ( 1 0.33TH = ). This threshold value is chosen so that, after thresholding only tissue 

that has 

1. 40% and higher maximum enhancement at 2 minutes (after contrast agent 

administration), or 

2. 60% and higher maximum enhancement at 3 minutes (after contrast agent 

administration), or 

3. 150% and higher maximum enhancement at 8 minutes (after contrast agent 

administration)  

remains in the processed image. The 3D binary image obtained after the thresholding is 

given by: 

{ }( , , ) ( , , ) 0.33P i j k S i j kµ= −                                      (4.5) 

where ( )µ ⋅  represents the unit step function. 

In clinical practice, radiologists mentally make use of lesion anatomy for lesion 

detection. In this work, we use a similar approach with a 3D template that consists of three 

layers of 12×12 cells as as given in Eq. 4.6. Q  represents the template in the middle 

layer; Q+  and  Q−  the templates in the top and the bottom layers with respect to the middle 

layer. It is assumed that the template entries are zero at undefined locations. Using this 

template it is possible to detect small lesions; if more layers are used the resolution might 

decrease. The thresholded map, P(i,j,k) is processed with this template using the following 

convolution operation given in Eq. 4.7. 
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0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 1 1 1 2 2 1 1 1 0 0
0 0 1 1 2 2 2 2 1 1 0 0
0 1 1 2 2 2 2 2 2 1 1 0
0 1 1 2 2 2 2 2 2 1 1 0
0 0 1 1 2 2 2 2 1 1 0 0
0 0 1 1 1 2 2 1 1 1 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Q Q+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                             (4.6a) 

0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 1 1 1 2 2 1 1 1 0 0
0 1 1 1 2 2 2 2 1 1 1 0
0 1 1 2 2 2 2 2 2 1 1 0
1 1 2 2 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 2 2 1 1
0 1 1 2 2 2 2 2 2 1 1 0
0 1 1 1 2 2 2 2 1 1 1 0
0 0 1 1 1 2 2 1 1 1 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                               (4.6b) 

 

1 1 1

( , , ) ( , , ) ( , , )
M N O

l m n

R i j k Q l m n P i l j m k n
= = =

= × + + +∑∑∑                    (4.7) 

 

here M, N and O are the height, width and the depth of the projected image. At the end of 

the template processing, regions geometrically similar to the template become enhanced. 

To detect breast lesions, we pass the convolution result from a threshold that yields a 

similarity (to the template designed) of 47% (TH2= 150). A lower value will result in 

increased false positive detections due to enhanced blood vessels while higher values will 

result in missed lesions.   
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4.6  Performance Analysis 

The success of lesion detection is very much dependent on proper segmentation of 

the breast. Two metrics, RO (relative overlap) and MCR (misclassification rate) are used to 

quantify the performance of breast segmentation. These metrics have been used before by 

Song et al to compare accuracy of different segmentation methods for brain MR images 

[99]. The relative overlap (also called segmentation precision in [100]) and 

misclassification rate are calculated using  

s r

s r

B BRO
B B
∩

=
∪

         (4.8a) 

 

1 s r

r

B BMCR
B
∩

= −                             (4.8b) 

 

In (4.8a) and (4.8b), Bs denotes the set of voxels of the breast region estimated by the CNN 

segmentation and Br represents the set of voxels delineated by the expert (obtained by 

correcting the results of CNN segmentation). The value of RO ranges from 0 (no overlap) 

to 1 (complete overlap). The value of MCR is also bounded between 0 (no misclassified 

voxels) and 1 (total misclassification).  A breast region is considered to be properly 

segmented when the relative overlap is larger than 0.85 and when the misclassification rate 

is smaller than 0.10. 

To asses the success of lesion detection, Detection Sensitivity, FPslice (false-positive 

rate per slice) and FPlesion (false-positive rate per lesion) are used. These metrics are 

defined as follows [101]: 

 
  -   (%) 100

   
Number of True Positive DetectionsDetection Sensitivity

Total Number of Lesions
= ×           (4.9a) 

(%) 100slice
Number of  Slices Containing  False-Positive DetectionsFP

Total  Number of  Slices
= ×   (4.9b) 
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(%) 100lesion
Number of False-Positive DetectionsFP

Total Number of Lesions
= ×               (4.9c)  

 

A detection is accepted to be a true-positive detection if a voxel within the detected 

volume has previously been marked by experts as a lesion center; otherwise, it is a false-

positive detection. This definition is appropriate here because the objective is solely lesion 

detection, not discrimination. However, it should be applied with great caution for 

comparison purposes since it will favor a method that oversegments lesions. 

4.7  Results 

For illustrating the technique two cases are considered. The first case is for a patient 

with an ovoid malignant lesion (51-year-old woman with an invasive ductal carcinoma, on 

the left breast manually marked at slices 20-24). Figure 4.2a shows the pre-contrast image 

and the automatically segmented breast region (as a contour overlay) corresponding to the 

representative slice stack in which the lesion has the largest diameter (slice 22). Figure 

4.2b is an image that shows the maximum intensity regions for the stack under 

consideration. This maximum intensity image (MII) is generated pixel by pixel by 

assigning the maximum intensity among the five subtraction images of the stack, obtained 

by subtracting the post contrast images from the pre contrast image.  Figure 4.2c and 

Figure 4.2d show the nMITR maps computed for the whole slice and for the segmented 

breast. The results of template matching and thresholding are presented in Figures 4.2e-

4.2f. The lesion is detected in all slices without false positives. The breast region manually 

delineated by the expert, the region segmented automatically and the lesion detected are 

shown in Figures 4.3a-4.3e.  

 



 
 

45

 

(a) 

 

 

(b) 

Figure 4.2  Representative slice stack (slice 22) for a 51-year old woman with an ovoid malignant lesion.  (a) 
Pre-contrast axial breast image with superimposed automatically segmented breast region as a contour 
overlay, (b) maximum intensity image (“×” indicates the lesion center), (c) computed nMITR map for the 
whole slice (nMITR values greater than 0.33 are in white), (d) Figure 4.2c after masking with the segmented 
breast region, (e) output after 3D template matching, (f) suspiciously enhancing regions detected after 
thresholding. 

×

1 cm1 cm 

1 cm1 cm 
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(c) 

 
 

 

(d) 

Figure 4.2  Continued 
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(e) 

 
 

 

(f) 

Figure 4.2  Continued 
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(a) 

 

(b) 

 

(c) 

Figure 4.3  Breast region manually delineated by the expert (solid black contour), the region segmented 
automatically (gray colored area) and the lesion detected by the system (black colored area), (a-e) slices 20 to 
24. 
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(d) 

 

(e) 

Figure 4.3  Continued. 

 

In the second case a patient with an irregular malignant lesion (41-year-old woman 

with an invasive ductal carcinoma on the left breast manually marked at slices 13-25) is 

considered. The results for the representative slice stack (slice 18) are given in Figures  

4.4a-4.4f. As illustrated in Figures 4.5a-4.5m, the lesion is detected in all the slices without 

false positives. Note that lesion spicules are removed due to the round mass template; for 

lesion detection, this loss of morphological information is tolerable. For discriminating 

malignancy, however, morphological information is important and therefore different 

segmentation techniques that preserve morphology must be used. 
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(a) 

 
 

 

(b) 

Figure 4.4  Representative slice stack (slice 18) for a 41-year old woman with an irregular malignant lesion. 
(a) Pre-contrast axial breast image with superimposed automatically segmented breast region as a contour 
overlay, (b) maximum intensity image (“×” indicates the lesion center), (c) computed nMITR map for the 
whole slice, (d) Figure 4.4c after masking with the segmented breast region, (e) output after 3D template 
matching, (f) suspiciously enhancing regions detected after thresholding. 

× 

1 cm1 cm 

1 cm1 cm 
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(c) 

 
 

 

(d) 

Figure 4.4  Continued. 
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(e) 

 
 

 

(f) 

Figure 4.4  Continued. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5  Breast region manually delineated by the expert (solid black contour), the region segmented 
automatically (gray colored area) and the lesion detected by the system (black colored area). (a-m) Slices 13 
to 25. 
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(d) 

 

(e) 

 

(f) 

Figure 4.5  Continued. 
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(g) 

 

(h) 

 

(i) 

Figure 4.5  Continued. 
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(j) 

 

(k) 

 

(l) 

Figure 4.5  Continued. 
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(m) 

Figure 4.5  Continued. 

 

The system was tested using a dataset consisting of 2064 high-resolution axial 

images in 344 slices, each containing one pre-contrast and five post-contrast axial MR 

mammograms from 19 patients with 20 malignant and 19 benign lesions marked by 

experts. 97% of the breasts were segmented properly and all the lesions were detected 

correctly (i.e., 100% detection sensitivity). Due to segmentation artifacts and a number of 

large-diameter blood vessels, there were some false-positive detections (31%/lesion, 

10%/slice).  These statistics suggest that this system may be used to facilitate detection of 

lesions in DCE-MR mammograms.  

4.8  Conclusion 

Due to the limitations and the ionizing nature of X-ray mammography there is a 

growing interest in  the use of contrast enhanced dynamic MR mammography  for breast 

cancer diagnosis. Since the number of acquired and constructed images for DCE-MRM is 

too many, qualitative evaluation is a time consuming process and requires great deal of 

experience.  Missing of minute details may result in poor specificity and sensitivity in the 

final diagnosis. Therefore, quantitative methods are being developed to aid radiologists. 
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These methods require manually marked regions of interests which is also a time-

consuming process.  

In this chapter, we introduce a fully automated 3D lesion detection system for 

bilateral, axial DCE-MR mammograms. The system does not require prior knowledge 

concerning breast anatomy such as chest wall flatness, prior mastectomy history. Breast 

regions in the images are extracted by a segmentation scheme based on cellular neural 

networks. The performance of the segmentation is quantified using two metrics; relative 

overlap and misclassification rate. Segmentation with CNNs is very effective and is an 

alternative method to perform morphological operations. A CNN based system can be 

realized either by software that runs on a digital computer, or by a dedicated hardware that 

uses special CNN chips. When implemented in such a dedicated hardware, very high 

throughputs can be achieved and images can be processed in (almost) real-time.  

For the segmented breast, using a moving ROI of 3×3 voxels, a 3D nMITR map is 

generated. To identify suspicious enhancements and to remove (deceptively enhanced) 

fatty tissue, muscles and normal parenchyma, this map is converted into a binary form  

employing a carefully selected threshold.  The resultant map is then processed with a 3D 

template of three layers of 12×12 cells using a convolution-like operation. This operation is 

quite similar to what radiologists do for lesion detection; they mentally use templates based 

on their experience and evaluations of lesion anatomies. The template is so designed that it 

can detect small or large lesions with different shapes. At the end of the template 

processing, volumes geometrically similar to the template become enhanced. To detect 

breast lesions, the convolution result is passed from a threshold that yields a similarity of 

47%. A lower value will result in increased false positive detections due to enhanced blood 

vessels, while higher values will result in missed lesions.   

To our knowledge, there are no publications on computerized methods that focus 

solely on DCE-MRM lesion detection.  Bian et al [13] seem to be working on this topic 

and in a recent abstract reported their initial results. When tested on a dataset consisting of 

20 cases with 21 lesions, their  method correctly detected 16 of the lesions and on average, 

there were 9 false-positive detections per case (see the footnote on page 149).  These 
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findings correspond to a detection sensitivity of 76% and a false-positive detection rate per 

lesion of 857%. In comparison, the performance of our system is better (detection 

sensitivity = 100%, false-positive detection rate per lesion = 31%). 

Proper segmentation of the breast is vital for the success of the system. There are 

cases in which segmentation may not be very accurate, especially for fat patients. Since 

intensities are reduced further away from the breast coil, segmentation may end 

inappropriately within the axilla at an arbitrary edge, leading to false negative detections. 

When there is a suspected lesion within the axilla, due to its better coverage, sagittal 

imaging should be used to minimize problems. 

Patient motion can lead to serious diagnostic complications as a result of 

misalignments of the image sequences during acquisition of contrast-enhanced MR 

mammograms. Several image registration techniques have been proposed that attempt to 

solve this difficult problem [102, 103, 104, 105]. Although the present system does not 

include a dedicated motion correction scheme, it is inherently capable of compensating 

small motion artifacts due to the averaging nature of the nMITR maps. 

During 3D template matching there may be some loss of morphological information. 

This loss of is tolerable in the current system since it is intended only for localizing lesions. 

This localization information can later be used as a guide for more accurate lesion 

segmentation that preserves morphology for malignancy discrimination. 

The system is capable of distinguishing deceptive enhancements due to blood vessels 

that make evaluations difficult and time-consuming. Moreover, the system has the 

potential of facilitating  detection of multifocality and multicentricity; an important issue 

since presence of multicentricity is highly correlated with cancer re-occurrence. We hope 

that its use in clinical practice and for surgical planning will result in a decrease in the 

number of unnecessary mastectomies and a reduction in mortality. 

This study is a preliminary search into computerized detection of lesions using 

nMITR maps of DCE-MR mammograms. We need to point out that the results presented 
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here are far from complete. There are still many problems waiting further exploration and 

room for improvements:  Classical optimization techniques or genetic algorithms may be 

used to compute optimal patient-specific template parameters and thresholds;  3D CNNs 

can be used for  lesion detection to minimize computational costs; false positive findings 

due to blood vessels and segmentation problems may be further reduced  through 3D 

morphological and enhancement analysis and  the system can be equipped with 

discrimination capabilities based on dynamic and morphological features. 
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5.   IMPROVED LESION LOCALIZATION                                        

WITH FUZZY C-PARTITIONING 

5.1  Introduction 

X-ray mammography is the conventional screening tool used to detect breast cancer 

in its early stage. Due to reported false-negative rates that may be as high as 34% [46], 

limitations on dense breasts,  ionizing nature, overlapping structures, summation shadows 

and patient discomfort during breast compression, contrast-enhanced magnetic resonance 

mammography (CE-MRM) is gaining increased acceptance as an adjunct tool [106]. In 

CE-MRM, additional information supplied by the enhancements that  reflect vascularity 

and permeability of the relevant tissues lead to superior detection and classification of 

breast cancers and to higher positive predictive values when compared to X-ray 

mammography [107]. For improving interpretation accuracy and reproducibility further, 

recent analysis strategies use semi-automatically selected region of interests (ROIs) to 

detect lesions and to extract quantitative enhancement and/or morphologic descriptors.  

Tzacheva et al [20] developed a semi-automated 2D lesion detection algorithm for 

the assessment of morphological features of breast lesions. The algorithm applies user-

controlled intensity thresholding followed by binary conversation on a single post-contrast 

sagittal fat suppressed T1-weighted image of the breast in which the lesion is present. The 

processed images have intensity values ranging between 0 and 255. Liney et al [21] 

defined a similar method based on intensity thresholding using fat suppressed T1-weighted 

breast images. Deurloo et al [84] proposed the use of an automated method in three 

dimensions after a point in the lesion designated manually on the first post contrast 

subtraction image by the radiologist. For 3D detection of lesions from contrast enhanced 

MR mammograms, Chen et al [85] developed a method based on Fuzzy c-means clustering 

(FCM). Radiologist first selects an ROI; FCM is applied next on the enhancement values 

calculated for the ROI. Membership map is then binarized and lesion is detected after 

connected-component labeling, object selection, and hole-filling. 
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In all the studies mentioned above, user guidance is necessary; the user must mark 

the ROI and select a point inside the lesion or an intensity threshold value. Considering the 

acquired and constructed images for CE-MRM, the radiologist has to visually inspect 

hundreds of images. Missing of a very small detail may result in poor specificity and 

sensitivity in the final diagnosis. Moreover, normal regions that appear deceptively 

enhanced due to vascularizations, especially in premenopausal women make the task 

complicated. To facilitate overall analysis, visualization of suspiciously enhancing regions 

has been improved by recent computerized systems that provide color coded parametric 

maps of enhancements [4-7]. However, these systems still rely on qualitative assessment of 

enhancing lesion volumes which is subjective, erroneous, highly observer-dependent and 

time-consuming. There is a need for automated detection and estimation of lesion volumes. 

A number of computerized techniques have been developed for use in diagnostic breast 

imaging, such as for X-ray mammography [8, 9], sonography [10], tomosynthesis [11] and 

computed tomography [12]. To our knowledge, for CE-MRM, only Bian et al [13] reported 

a fully automated lesion localization technique. This technique consists of four consecutive 

stages: breast volume segmentation based on a volume growing method, fuzzy c-means 

clustering analysis on voxel-based enhancements within the 3D breast image data, voxel-

by-voxel membership assignment to the most-enhancing categories and connectivity and 

size criteria for eliminating some false-positive detections (see the footnote on page 149).  

In the present study, we introduce a novel, robust and accurate method for improved 

lesion localization based on the use of cellular neural networks (CNNs). The proposed 

scheme employs four coupled 2D CNNs connected in cascade to segment the breast region 

of interest from pre-contrast images.  For the segmented tissues, relative enhancements are 

computed and a 3D normalized maximum intensity-time ratio (nMITR) map is generated. 

This map is converted into  binary form using a thresholding operation and processed by a 

3D CNN with a fuzzy c-partitioning output function to boost lesions and to eliminate 

moderately enhanced normal parenchyma, fat and blood vessels. Suspicious regions in the 

resultant map are pre-localized through volumetric 6-neighborhood connectivity search. A 

set of decision rules extracted from volume and 3D eccentricity features are used finally to 

decide whether these pre-localized regions are lesions. This further reduces possible false 

detections due to artifacts caused by highly enhanced normal tissue, such as blood vessels, 
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nipples and normal parenchyma and due to chest-wall artifacts caused by over 

segmentation. 

5.2  Imaging Protocol  

Magnetic resonance imaging is performed on a 1.5 Tesla MR scanner (Magnetom 

Symphony, Siemens Medical Systems, Erlangen, Germany) equipped with a dedicated 

four-element phased-array receiver breast coil. Patients are positioned prone with the 

breast to be imaged in gentle compression within the coil to minimize motion artifacts. The 

imaging sequence is 3D fast low angle shot (FLASH) (TR/TE 9.80/4.76 msec, flip angle 

25o, matrix size 512×512, slice thickness 2.5 mm, 0.625×0.625mm2 in-plane resolution). 

During and immediately after the bolus injection of contrast agent Gd-DTPA (0.1 mmol/kg 

body weight), one pre-contrast and five post-contrast high-resolution bilateral axial images 

are acquired per slice with a temporal resolution of approximately 88 seconds. 12-bit 

grayscale image sets are transferred from the MR scanner to a personnel computer in 

DICOM format for further analysis using Matlab 7.0 (The Mathworks Inc, Natick, MA, 

USA). 

5.3  Patient Population and Image Dataset 

Thirty-nine women (age range, 32-83 years; mean age, 48.4 years) were 

retrospectively entered into this study.  The nature of the imaging procedure was explained 

to all the patients considered in this study and their consents were secured.  For each breast 

MR examination, 180 images corresponding to 30 slices were analyzed. A total of 76 mass 

lesions (39 benign and 37 malignant) ranging in size between 0.14 cm3 and 17.23 cm3 were 

marked by two experienced radiologists on the slices by mutual agreement. All the 

findings were supported either by histopathological examination or by clinical follow-up. 

From this data, a training dataset was formed that included 21 benign and 25 malignant 

lesions. The remaining data consisting of 18 benign and 12 malignant lesions was used as 

the test dataset. 
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5.4  Image Processing using Cellular Neural Networks 

Image processing involves combinations of highly complicated mathematical 

operations that may include a variety of transformations, convolutions, statistical 

computations, smoothing, filtering, pattern recognition, etc.  Computational burden of 

many of these operations are far greater than that can be handled within practical time 

limits by existing sequential machines having Von-Neuman architecture.   This burden can 

be “eased-out” by distributing the workload using parallel designs.   In fact, Chua in 1988, 

introduced Cellular Neural Networks (CNNs), which are massively parallel cellular 

structures with learning abilities [108]. Due to their extremely high throughputs, CNNs 

offer almost real-time solutions to complex image processing applications [109, 110]. For 

example, using hardware CNN implementation basic morphological operations can be 

completed within 1µs, independent of image size and structuring elements [90]. 

In medical image processing, CNNs have been used by various investigators (for a 

good review see Aizenberg et al [95]). Rekeczky et al [91] have shown feasibility of CNN 

based real-time feature extraction from echocardiographic images. Zarandy et al [92] have 

used a CNN to analyze X-ray mammograms.  Girodana et al [93] have proposed a CNN 

based technique for fast and accurate detection of craniofacial landmarks on X-ray images. 

Shitong et al [94] have studied automated white blood cell detection methods using 

microscopic blood images and showed that the CNN based method works better when 

compared with the existing two methods: threshold segmentation followed by 

mathematical morphology and the fuzzy logic method. Zhang et al [111] have automated 

the detection of small-size pulmonary nodules from computed tomography images with a 

CNN based scheme.  

A discrete-time CNN can be defined by an array of locally interconnected cells. 

Consider a 3D L×M×N image and a cell located at position (i, j, k), 1,  2,...,i L= ,  

1,  2,...,j M= , 1,  2,...,k N= . The r-neighborhood of the cell located at position (i, j, k) is 

defined by:    

( ) { }, , ( , , ) max(| |,| |,| |) ;  1 ,  1 ,  1|i j kN r l m n i l j m k n r l L m M n N= − − − ≤ ≤ ≤ ≤ ≤ ≤ ≤          (5.1a) 
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where r is a positive integer.  The output , , ( )i j ky t  and the state , , ( )i j kx t  at step 1,2,3...t =  

can be written as [90]: 

{ } , ,, , , , , , , ,( ) 0.5 ( 1) 1 ( 1) 1 ,   (0)
i j ki j k i j k i j k i j ky t x t x t x χ= × − + − − − =              (5.1b) 

, , , , , , , , , ,( ) ( )
( , , ) ( ) ( , , ) ( ), , , ,

i j k l m n i l j m k n l m n i l j m k nx t A y t B u b
l m n N r l m n N ri j k i j k

+ + + + + += × + × +
∈ ∈
∑ ∑       

(5.1c) 

where , ,i j ku  is the input, , ,l m nA  and , ,l m nB  are the entries at the l,m,n-th neighborhood of the 

feedback and control templates and b is a constant bias parameter. The magnitudes of the 

input , ,i j ku  and the initial state 
, ,, , (0)

i j ki j kx χ= are less than or equal to one.  For a 2D 

network, the third index k can be dropped.  Note that the template A operates in a feedback 

loop along with a nonlinearity and that template B forms a simple feed-forward finite 

impulse response filtered version of the input.  Although a number of templates have been 

reported for some basic image processing [92, 97, 112], depending on the application, they 

may not be directly usable and some modifications may be necessary.  The templates used 

in the present thesis are discussed in the following sections. 

5.5  Segmentation of Breast 

A typical bilateral axial breast MR image includes several regions that are out of 

interest such as chest muscles, heart, lungs and thoracic cavity. To reduce false positive 

detections from these regions, segmentation of the breast region is a necessity for any 

computerized lesion localization technique. The breast region can be segmented as the 

middle section between breast-air and breast-chest wall boundaries.  

Air produces a near-zero image intensity so that the breast-air boundary may be 

identified by simply searching a sharp increase in the intensity of the mammogram. 

However, due to the intensity inhomogeneity artifacts and the presence of muscles near the 

chest wall, breast-chest wall boundary detection is a complicated problem. Hayton et al 

[86] developed a method based on morphological operations (iterative morphological 
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erosion followed by dilation) and graph search to find an approximate location of the chest 

wall on the pre-contrast images. For certain patients, the algorithm generates satisfactory 

results but it requires a long process time and fails if the patient’s chest is not flat. 

Twellmann et al [87] proposed a simple technique that applies median filtering, gray-level 

based histogram thresholding and morphological operations on pre-contrast images. 

However, it may fail to segment breast tissues close to the chest wall, most probably, due 

to the used thresholding method. Wenzhu et al [113] discussed a method that uses 

mathematical morphology and region growing to locate breast-air boundary and active 

contour model to locate breast-chest boundary from pre-contrast images. The performance 

of the algorithm depends on appropriate selection of field of view (FOV) and makes 

several assumptions such as locations of the axilla, mid-sternum and nipples. It may not 

work properly especially if the patient has prior mastectomy.  

In this study, for breast segmentation we use four specially designed 2D CNNs 

connected in cascade.  This segmentation technique is robust and does not require prior 

information concerning breast anatomy and FOV. The initial state of the first net, CNNT  

are the intensity values of pre-contrast MR image,  normalized to be between -1 and +1. 

This net is used for gray-level thresholding; its output is processed by the second net, 

CNNO. CNNO performs binary morphological image closing, removes small objects and 

smoothes out sharp corners. Although the performance of this net is reasonably good in 

segmenting target tissues, inhomogeneity artifacts may lead to falsely segmented regions 

from the chest wall, lung and the heart. Therefore, two additional nets; CNNE and CNNR 

are used to perform morphological image erosion followed by image reconstruction. Thus 

irrelevant regions are removed and the biggest breast region of interest is detected.   

Although, in the literature   [92, 97, 112], a number of templates have been reported 

for the tasks undertaken by CNNT, CNNO, CNNE and CNNR, direct use of these templates in 

the present application lead to serious segmentation artifacts. To minimize these artifacts 

template A in CNNO  was  modified by adding two extra rows and two extra columns and 

the bias parameter b in CNNT   was changed to 0.79. A  summary of the templates used in 

segmentation are  presented in Table 5.1. 
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Table 5.1 

Parameter values of the CNNs used.   
 

 Input Initial State A B b 

CNNT 
 

CNN for 
Gray-level 

thresholding  
(r=1) 

 

0 Normalized pre-
contrast image 

0 0 0
0 2 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 0.79 

CNNO 
 

CNN for 
erasing small 

objects  
(r=2) 

 

0 
Thresholded 
pre-contrast 

image 

0 0 0 0 0
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 0 

CNNE 
 

CNN for 
morphological 

erosion  
(r=1) 

 

0 
Small objects 
erased pre-

contrast image 

0 0 0
0 1 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 1 0
1 1 1
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 -4.00 

CNNR 
 

CNN for 
breast mask 

reconstruction 
(r=1) 

 

Small 
objects 

erased pre-
contrast 
image 

Eroded and 
small objects 
erased pre-

contrast image 

0 1 0
1 2 1
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0 0
0 2 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 2.50 

 

The stopping criteria for these nets are defined as follows: 

CNNT: After each iteration, the voxel values change towards either +1 or -1, except 

those selected by the bias value.  This change will eventually go towards zero as the 

process stabilizes. Therefore, the iteration is stopped when the total number of voxel 

intensity remains unchanged from iteration to iteration.  
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CNNO:  In this case, the image to be processed is binary (i.e., black-and-white).  The 

iteration is stopped if there is no difference between the voxel intensities after eight 

consecutive iterations; it is also stopped if this criterion cannot be met within 200 

iterations. 

CNNE: The binary image is eroded until the total number of white voxels is reduced 

by 50%. 

CNNR: The breast mask is reconstructed until there is no difference between the 

voxel intensities after eight consecutive iterations. 

5.6  Lesion Localization 

To distinguish deceptively enhancing regions from lesions in clinical practice, 

radiologists mentally make use of enhancement properties and lesion anatomy; in this 

study, we follow a similar approach using a fifth net with a fuzzy c-partitioning based 

output function. Unlike the previous nets, this net CNNL is a 3D net and is used for 

detecting suspiciously enhancing regions. The inputs of this net are the normalized 

maximum intensity-time ratio (nMITR) maps, generated as described below: Consider the 

(i,j,k)-th voxel of an image inside the segmented breast. The mean , , ( )i j kI v  of (2D) 1-

neighborhood intensity ( 1r = ) values , , ( )i j kI v of the pre-contrast image ( 0v = ) and the 

post-contrast images ( 1,2, ,5v = ) is computed as 

 
1 1

, , , ,
1 1

1( ) ( )
9i j k i l j m k

l m

I v I v+ +
=− =−

= ×∑ ∑                (5.2a) 

The normalized enhancement is defined by [54]: 

, , , ,
, ,

, ,

( ) (0)
( ) 100, 0

(0)
i j k i j k

i j k
i j k

I v I
E v    v

I
−

= × ≠       (5.2b) 
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Now let { }, ,max ( )i j kE v   be the maximum normalized enhancement and let Tmax be the time 

in seconds when the maximum is reached. The (i,j,k)-th voxel of the nMITR map is 

defined as [34]: 

{ }, ,
, ,

max

max ( )i j k
i j k

E v
nMITR

T
=           (5.2c) 

 

Performing the above computations for the whole images a 3D nMITR map is 

generated. These values are passed through a fixed threshold ( 1TH ) to obtain a binary 

image: 

{ }, , , , 1sgni j k i j kR nMITR TH= −              (5.3) 

 

where sgn( )⋅  represents the signum function. For the dataset used in the present work, this 

threshold is  TH1 =0.33 sec-1; it  is chosen so that, after thresholding, only tissue that show 

20%, 40%, 158% and higher maximum enhancements at 1, 2 and 8 minutes after contrast 

agent administration remains in the processed image, respectively. This way, fatty tissues 

and other moderately enhanced normal tissues such as blood vessels, parenchyma and 

muscles are eliminated.  

CNNL processes Ri, j, k as the input to localize suspiciously enhancing regions.  This 

net uses 5-neighborhood ( 5r = ) and has a 11 11 3× ×  control template as given in Eqs. 

5.4.a and 5.4b. It is assumed that the template entries are zero at undefined locations. 

Regions geometrically similar to the template become enhanced after a single iteration. 

When the template and the region under examination have no common voxels, the final 

state will reach its minimum of -274. On the other hand, when the voxels within the 

template and the region under examination are all common, it will reach its maximum of 

+274.  The output of CNNL is calculated using Eq. 5.4c. 
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, ,0

0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 2 2 2 1 1 0 0
0 1 1 2 2 2 2 2 1 1 0
1 1 2 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 2 1 1
0 1 1 2 2 2 2 2 1 1 0
0 0 1 1 2 2 2 1 1 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0

l mB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                    (5.4a) 

, , 1 , , 1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 2 2 2 1 1 0 0
0 1 1 2 2 2 2 2 1 1 0
0 1 1 2 2 2 2 2 1 1 0
0 1 1 2 2 2 2 2 1 1 0
0 0 1 1 2 2 2 1 1 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

l m l mB B− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                        (5.4b) 

 

{ }, , , , 2 , ,( ) sgn ( 1) ,   (0) 0i j k i j k i j ky t x t TH x= − − =                 (5.4c) 

 

This equation differs from Eq. 5.1b; it depends on a threshold 2TH  which is determined 

adaptively for each patient using the maximum entropy principle and fuzzy c-partitioning 

[114]. To minimize artifacts from very small regions of normal tissues that show high 

enhancements, final state values within the range -150 to +274 are considered only and 

mapped into a single dimensional array s. 

Spline-based membership function of a potential lesion ( , , )l s a cµ and the 

membership function of normal tissues that show high enhancement (and thus likely to 

cause false detection) ( , , )f s a cµ  are defined as: 
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2

1,

1 2 ,
2( , , )

2 ,
2

0,

l

s a

s a a ca s
c as a c

c s a c s c
c a

s c

µ

≤⎧ ⎫
⎪ ⎪

− +⎛ ⎞⎪ ⎪− < ≤⎜ ⎟⎪ ⎪−⎪ ⎪⎝ ⎠= ⎨ ⎬
− +⎛ ⎞⎪ ⎪< <⎜ ⎟⎪ ⎪−⎝ ⎠⎪ ⎪

≥⎪ ⎪⎩ ⎭

     (5.5a) 

2

2

0,

2 ,
2

( , , )

1 2 ,
2

1,

f

s a

s a a ca s
c a

s a c
c s a c s c
c a

s c

µ

≤⎧ ⎫
⎪ ⎪

− +⎛ ⎞⎪ ⎪< ≤⎜ ⎟⎪ ⎪−⎪ ⎝ ⎠ ⎪= ⎨ ⎬
− +⎛ ⎞⎪ ⎪− < <⎜ ⎟⎪ ⎪−⎝ ⎠⎪ ⎪

≥⎪ ⎪⎩ ⎭

    (5.5b) 

 

In Eqs. (5.5a-5.5b) a and c are parameters that determine the extremes of the sloped 

portion of the membership functions; 2TH  is the arithmetic mean of the “optimal” values 

of these parameters, â  and ĉ : 

 

2
ˆ ˆ

2
a cTH +

=        (5.5c) 

 

â  and ĉ  are obtained  from the fuzzy 2-partition that has the maximum entropy. This 

partition is determined through an exhaustive search. The probabilities of the fuzzy events, 

( , )lP a c , ( , )fP a c  and the entropy of the specified partition, ( , )H a c  are calculated in terms 

of the probability of the occurrence of s, Pr( )s  using: 

274

150
( , ) ( , , ) Pr( )l l

s
P a c s a c sµ

=−

= ∑              (5.5d) 

274

150

( , ) ( , , ) Pr( )f e
s

P a c s a c sµ
=−

= ∑                (5.5e) 

( ) ( )( , ) ( , ) log ( , ) ( , ) log ( , )f f l lH a c P a c P a c P a c P a c= − × − ×           (5.5f) 
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5.7  Elimination of False-Positive Detections 

The output of CNNL cannot be used directly for lesion detection because normal 

tissue, such as blood vessels, nipples and normal parenchyma that appear as highly 

enhanced regions in the dynamic mammograms may leave many artifacts that could result 

in false detections. Moreover, over segmentation problems may cause similar artifacts 

from vascularized tissues in the chest-wall.    Therefore, it is very important to discriminate 

such regions carefully. To do this, objects in this binary image are identified by a 

volumetric 6-neighborhood connectivity search and volume and 3D eccentricity criteria are 

used to decide whether suspicious regions are indeed lesions, as explained next. 

The moment of order ( i j kp p p+ + ) of a binary 3D object, imaged with a scanner 

whose slice thickness is rk and resolutions in the horizontal and the vertical directions  are 

ri and rj  is defined as: 

 

( ) ( ) ( ) , ,
, ,

ji k

i j k

pp p
p p p i j k i j k

i j k

m r i r j r k f= × × × × × ×∑     (5.6) 

 

where  , ,i j kf  is an indicator function which is one if   the voxel  ( , , )i j k is inside the object 

and zero otherwise. Eq. 5.6 is modified from [115] and considers anisotropic nature of 

image resolutions. Note that the volume of the object can be computed in terms of the 

moments as 000( )i j kV r r r m= × × ×  and the centroid ( , , )i j kg g g g=  as 100 000ig m m= , 

010 000jg m m=  and 010 000jg m m= . We define 3D eccentricity, Ecc as: 

 
2
min
2
max

1 dEcc
d

= −            (5.7a) 

where dmin and dmax represent the lengths along the principal directions that correspond to 

the minimum and the maximum eigenvalues of the normalized second order central 

moment matrix η : 
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200 110 101

110 020 011
000

101 011 002

1
m

µ µ µ
η µ µ µ

µ µ µ

⎡ ⎤
⎢ ⎥× ⎢ ⎥
⎢ ⎥⎣ ⎦

=      (5.7b) 

 

In the above expression 
i j kp p pµ  represents the central moment:  

( ) ( ) ( ) , ,
, ,

ji k

i j k

pp p
p p p i i j j k k i j k

i j k

r i g r j g r k g fµ = × − × × − × × − ×∑               (5.7c) 

 

Eccentricity is a quantity that ranges from 0 (round) to 1 (elongated); it is invariant to 

translation, orientation and scale change and can be adoptable to different scanners with 

different imaging resolutions. Since blood vessels are more elongated than lesions of 

similar sizes, in the present study, eccentricity is used to distinguish blood vessels from 

lesions.   

Through extensive experimentation on the training dataset, we have come up with 

the following decision rules for identifying lesions:  

Rule 1: A suspicious region is not a lesion if 30.08 cmV < . 

Rule 2: A suspicious region is a lesion if 3 30.08 cm 1.00 cm   and  0.91V Ecc< < < .  

Rule 3: A suspicious region is not a lesion if 31.00 cm   and  0.97V Ecc≥ > . 

The above criteria have been shown to be very successful in reducing a great deal of 

problematic false detections due  to artifacts caused by  highly enhanced normal tissue, 

such as blood vessels, nipples and normal parenchyma and artifacts from vascularized 

tissues in the chest-wall due to over segmentation. 
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5.8  Performance Analysis 

To determine the success of the automated breast segmentation, several metrics are 

computed based on Cs, the set of voxels within the breast region estimated by the CNN 

segmentation and Cr , the set of voxels delineated by manual correction of the 

segmentation.  Let TP s rC C C= ∩  and ( )FP s s rC C C C= − ∩ . The subscripts TP and FP 

stand for true positive and false positive. Segmentation precision PR (also called as relative 

overlap in [99]) is calculated using [100]: 

 

 ( , ) TP

s r

C
s r

C C

n
PR C C

n ∪

=                    (5.8a) 

 

nℜ  denotes the total number of voxels within region ℜ . 1 

Segmentation accuracy is assessed using true positive volume fraction TPVF (the 

fraction of total amount of voxels delineated by the radiologists that was covered by our 

method) and false positive volume fraction FPVF (the voxels falsely identified by our 

method as a fraction of the amount of the voxels in Cr).  Clearly, the greater the TPVF and 

the smaller the FPVF values are, the better will be the accuracy. These parameters are 

computed using  

( , ) TP

r

C
TP r

C

n
TPVF C C

n
=                        (5.8b) 

 ( , ) FP

r

C
FP r

C

n
FPVF C C

n
=                  (5.8c) 

                                                 
1  Note that in this work, to minimize the time required for manual segmentations, manual corrections to 
computerized segmentations are used as references. These segmentations are not “blind” to computer 
segmentations, and hence comparison of segmentation performance with methods that use “pure” manual 
segmentation is not entirely right. However, from experience we know that, for breast to air boundary, 
computerized segmentations and pure manual segmentations are almost the same.  
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The performance of the lesion detection is quantified by Se (sensitivity), FPslice 

(false-positive rate per slice), FPlesion (false-positive rate per lesion) and FPcase (false-

positive rate per case) using [101]: 

   
  

Number of True - Positive DetectionsSe
Number of Lesions

=            (5.9a) 

slice
Number of  Slices Containing  False - Positive DetectionsFP

Number of  Slices
=          (5.9b) 

lesion
Number of  False - Positive DetectionsFP

Number of  Lesions
=         (5.9c) 

case
Number of  False - Positive DetectionsFP

Number of  Cases
=       (5.9d) 

5.9  Results 

In this preliminary study, a dataset consisting of 1170 slices containing one pre-

contrast and five post-contrast bilateral axial MR mammograms from 39 patients with 76 

mass lesions was used. 600 slices of this set containing 21 benign and 25 malignant lesions 

was used to form the training dataset. The remaining data consisting of 570 slices with 18 

benign and 12 malignant lesions was used as the test dataset. The images contained not 

only breast tissue, but also muscles, heart, lungs and thoracic cavity. To prevent false 

detections from irrelevant tissues, breast tissue region was first segmented from pre-

contrast images using four cascade-connected 2D CNNs. The segmentation algorithm 

performed well with high average precision, high true positive volume fraction and low 

false positive volume fraction with an overall performance of 0.93±0.05, 0.96±0.04 and 

0.03±0.05, respectively (training: 0.93±0.04, 0.94±0.04 and 0.02±0.03; test: 0.93±0.05, 

0.97±0.03 and 0.05±0.06). Suspicious regions were detected from normalized maximum 

intensity-time ratio (nMITR) maps computed over the pre and post-contrast images of the 

segmented breast region. A fuzzy 3D CNN with a control template consisting of three 

layers of 11×11 cells was applied next to discriminate previously marked lesions. To 

reduce false-positive detections due  to artifacts caused by  deceptively enhanced blood 

vessels, nipples and normal parenchyma and artifacts from vascularized tissues in the 
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chest-wall due to over segmentation, a set of decision rules extracted empirically from 

volume and 3D eccentricity features were used to make final decisions and localize lesions. 

Free-response receiver operating characteristic curves that show the performance of 

lesion detection sensitivity versus false positives per lesion, per slice and per case are given 

in Figure 5.1.  From these curves, it can be observed that the performance of the system is 

quite satisfactory. For the training dataset, the maximum detection sensitivity is 100% with 

false-positive detections of 0.28/lesion, 0.09/slice and 0.65/case. However, for the test 

dataset, the maximum detection sensitivity is 97% with false-positive detections of 

0.43/lesion, 0.11/slice and 0.68/case. This is due to a missed 0.16cm3  small benign lesion 

that has moderate continuous enhancement. On the average, for a detection sensitivity of 

99%, the overall performance of the system is 0.34/lesion, 0.10/slice and 0.67/case.  

 

 

 

 

(a) 

Figure 5.1 Free-response receiver operating characteristic curves that show the performance of lesion 
detection sensitivity (a) for false positives per lesion, (b) for false positives per slice and (c) for false 
positives per case. 
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(b) 

 

 

(c) 

Figure 5.1 Continued. 
 
 

For illustrating the technique, a patient with a small benign lesion (49-year-old 

women with a fibroadenoma finding on right breast near to the chest-wall) is considered. 

The lesion is present in four slices (begins at slice 14 and ends at slice 17). Figure 5.2 

shows the maximum intensity projection (MIP) of the representative slice in which the 

lesion has the largest diameter (slice 16). The lesion is located near the chest wall and 

therefore may be missed when the breast is not segmented accurately. However, using the 
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method introduced, the breast is segmented reasonably correctly. Figure 5.3 shows the pre-

contrast image and the automatically segmented breast region (as a contour overlay) 

corresponding to the representative slice.  The outputs of CNNT , CNNO , CNNE and CNNR 

are given in Figure 5.4. 

 

 

Figure 5.2  The maximum intensity projection of the representative slice (slice 16). 
 
 
 
 

 

Figure 5.3  Pre-contrast image and the automatically segmented breast region. 

1 cm1 cm 

1 cm1 cm 
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(a) 

 
 
 
 
 
 

 

(b) 

Figure 5.4  (a-d) Outputs of CNNT, CNNO , CNNE and CNNR. 

 



 
 

80

 

 

(c) 

 
 
 
 
 
 

 

(d) 

Figure 5.4  Continued. 
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The 3D nMITR map of the breast region is generated using a small ROI moved over 

all the pre and post-contrast images. The nMITR map corresponding to the representative 

slice is shown in Figure 5.5 (regions having nMITR values greater than 0.33 are shown in 

white). This 3D map is passed through a threshold and processed with a 3D fuzzy CNN 

designed to enhance breast lesions. A 2-fuzzy partition having maximum entropy is formed 

when the membership functions are characterized with the parameters ˆ 124= −a  and 

ˆ 97= −c  and 2 110.5= −TH , as shown in Figure 5.6.  

 
 
 
 

 

Figure 5.5  nMITR map corresponding to the representative slice (regions having nMITR values greater then 
0.33 are shown in white). 

 

After applying volume and 3D eccentricity criteria, the lesion is successfully 

identified in all the slices without false positives. The breast region manually delineated by 

the expert (solid black contour), the region segmented automatically (gray colored area) 

and the lesion localized (black colored area) are presented in Figures 5.7a-d. 
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Figure 5.6  Plots of membership functions that form 2-fuzzy partition with maximum entropy. 

 

 

 

(a) 

Figure 5.7  Breast region manually delineated by the expert (solid black contour), the region segmented 
automatically (gray colored area) and the lesion localized by the system (black colored area). (a) Slice 14, (b) 
slice 15, (c) slice 16, (d) slice 17. 
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(b) 

 

(c) 

 

(d) 

Figure 5.7  Continued. 
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5.10  Discussion 

Qualitative evaluation of CE-MRM is time consuming and requires a great deal of 

user experience since the number of acquired and constructed images is far too many. 

Missing of minute details may result in poor specificity and sensitivity in the final 

diagnosis. Deceptively enhanced regions due to blood vessels and normal parenchyma, 

especially of premenopausal women, further complicate the evaluations. Although 

automated methods are being developed to aid radiologists, they still require visually 

identified and manually marked regions of interests.  

In this thesis, a fully automated 3D lesion localization system is introduced that does 

not require any user guidance.  The system makes use of massively parallel cellular 

structures with learning capabilities called Cellular Neural Networks (CNNs) that offer 

alternative solutions to complex image processing applications with their extremely high 

throughputs.  Breast region of interest is first segmented from the pre-contrast images 

using four coupled 2D CNNs connected in cascade. For the segmented tissues, relative 

enhancements are computed and a 3D normalized maximum intensity-time ratio (nMITR) 

map is generated. This map is converted into binary form using a threshold so chosen that 

tissues that have low degrees of enhancements are discarded while the rest are reserved.  

To boost lesions and to eliminate moderately enhanced normal tissues, the resulting binary 

image is processed by a 3D CNN with a fuzzy c-partitioning output function. Suspicious 

regions in the resultant map are pre-localized through volumetric 6-neighborhood 

connectivity search. A set of decision rules extracted from volume and 3D eccentricity 

features are used to make final decisions and localize lesions.  

The system introduced does not require prior information concerning breast 

anatomy; it is robust and exceptionally effective for detecting breast lesions. At a detection 

sensitivity of 99%, false positive rate per lesion is less than 0.34 and false positive rate per 

case is less than 0.67, overall. In comparison, computer identified regions from the most 

enhancing membership category, Bian’s method [13] detects only 16 lesions (76% of the 

studied cases) with a higher false positive rate per case (9.00) (see the footnote on page 

149).  
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We have also analysed the “extended” dataset using the lesion localization method 

based on 3D template matching, introduced in our previous study. For the training dataset, 

the maximum detection sensitivity was found to be  91% with false-positive detections of 

1.20/lesion, 0.47/slice and 2.75/case. However, for the test dataset, the maximum detection 

sensitivity was 70% with false-positive detections of 2.00/lesion, 0.73/slice and 3.16/case. 

The overall performance was as follows:  detection sensitivity  83%, false positive rate per 

lesion  1.52, false positive rate per slice 0.57 and false positive rate per case 2.91. 

The use of CNNs, fuzzy c-partitioning, volume and 3D eccentricity criteria reduces 

false-positive detections due to artifacts caused by deceptively enhanced blood vessels, 

nipples and normal parenchyma and artifacts from vascularized tissues in the chest-wall 

due to over segmentation. We hope that this system will facilitate breast MR examinations, 

improve localization of lesions, provide important information before surgery, help reduce 

mortality due to undetected cancer re-occurrence as a result of missed multicentricity and 

decrease the number of unnecessary biopsies and mastectomies.  

A software implementation of the proposed method, using a PC equipped with 

2.4GHz processor, 3GB RAM, and Matlab 7.0, requires less than 18 minutes to process a 

single patient data. Although, this time can be reduced to sub-minute levels, using 

optimizing compilers, a direct hardware implementation will allow almost “real-time” 

processing speeds and will certainly open up new clinical applications.  For example, 

quasi-automated MR-guided biopsies may be feasible and additional post-contrast lesion 

images can be acquired to improve morphological characterizations.   

The system is currently developed to segment axial breast images and to localize 

lesions but does not discriminate malignancy.  By a simple modification of the CNNO it 

can be extended to images acquired in other views and by considering additional dynamic 

and morphological features such as mean margin sharpness and nMITR entropy of a 

detected lesion volume it can be equipped with discrimination capabilities [19, 116]. 

Because these features are quantitative and come from 3D data, this will not only improve 

standardization and diagnostic accuracy, but will also result in considerable savings in 

overall evaluation times; these issues are especially important for multi-center facilities.  
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6.   ENHANCEMENT DESCRIPTORS                                              

FOR MALIGNANCY DETECTION 

6.1  Introduction 

Dynamic contrast enhanced magnetic resonance mammography (DCE-MRM) is 

gaining acceptance in mammographic evaluations. According to Pavic et.al., only DCE-

MRM “has the potential for detection of lesions not seen by (X-Ray) mammography and 

ultrasound, and for non-invasive characterization of breast lesions” [106].  Although the 

resolution of DCE-MRM is lower than X-ray mammography, its 3D properties are 

invaluable in exact localization, visualization, and the assessments of the aggressiveness 

and the multifocality of the lesions.  An important advantage in favor of DCE-MRM, 

beside absence of ionizing radiation is that lesion-obscuring overlapping structures and 

summation shadows are much less pronounced in comparison with X-ray mammography 

since in case of MRM there is no need for excessive breast compression during imaging.  

In DCE-MRM, a contrast agent is injected and several pre-contrast and sequential 

post-contrast MR images are acquired. The concentration of the contrast agent at malignant 

lesions will be higher than those of the surrounding regions due to increased vascularity in 

these regions. Image subtraction and/or maximum intensity projection (MIP) are used to 

augment and detect enhancing regions. Once identified, a lesion is evaluated using various 

qualitative and quantitative techniques based on its morphological and/or the enhancement 

properties.  

Qualitative methods are in general, based on a visual analysis of the morphology and 

shape of the contrast enhancement curve obtained for a manually positioned 2D region of 

interest (ROI) [15, 22, 23, 24]. Proper selection of the size and the position of an ROI is an 

important issue that depends highly on experience. In general, it is advantageous to place a 

region of interest (ROI) over the early enhancing component of a lesion. If a larger ROI is 

used, necrotic components of the lesion may undesirably affect the evaluations; in case 
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enhancement curves and morphologies of benign and malignant lesions are visually 

similar, the performance of methods that use qualitative techniques will be poor.  

Quantitative methods make use of a number of protocols and quantitative interpretation 

criteria such as maximum signal enhancement rates at specific times, time to maximum 

enhancement and wash-out ratio, etc. to standardize MR mammography and improve 

diagnosis [25, 26, 27, 28, 29, 30]; the ROI is manually or semi-automatically positioned.   

Recently, the maximum intensity time ratio (MITR) and its normalized form have been 

shown to be an important criterion for lesion detection. A summary of these studies and the 

key characteristics are presented in Table 6.1. 

Flickenger et al [31] claimed that the MITR is “the most accurate numerical 

descriptor of the enhancement pattern for separating benign breast lesions from malignant 

lesions”. They analyzed enhancement characteristics of palpable breast masses in 23 

patients (10 malign and 13 benign lesions) using large ROIs. Three of the eight 

fibroadenomas exhibited enhancement patterns indistinguishable from cancer; this might 

be due to intensity inhomogeneities. Had they used normalization, they would likely have 

had even better results. 

Liney et al [32] examined 117 breast MR lesions and evaluated the maximum 

enhancement rates and normalized MITR (nMITR) measurements over user-defined and 

semi-automated ROIs. In each case, a slice was selected that contained the largest cross 

section of the suspicious lesion. Three types of measurements were performed: whole 

lesion ROI, the most enhancing 9 pixel ROI and 10% threshold ROI. The results 

demonstrated the significance of nMITR values for benign and malignant tumors (P= 

0.096, 0.023 and 0.001 for each type of measurement, respectively). Although high 

significance can be achieved when the nMITR parameter was computed using a small 

semi-automated ROI, it was concluded that these approaches were highly dependent on the 

radiologists’ experience.  

Gibbs et al [33] developed and compared four breast cancer classification schemes 

that utilize enhancement and textural features of the lesions. Their data set included 45 

malignant  and  34  benign  lesions  from  79  women   (acquired  with  a  3D  MR imaging 
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Table 6.1 
Quantitative measurement of nMITR from manually drawn ROIs. 

 

 
Reference 

Imaging 
Resolution 

Number of 
Cases 

Measurement 
Strategy 

Parameter used to 
discriminate 

malignant and 
benign lesions 

P-
value 

Diagnostic 
Accuracy 

[31] NA 23 
(13 B, 10 M) 

Whole lesion ROI MITR NA Three of eight 
fibroadenomas 

indistinguishable 
from cancer. 

Whole lesion ROI nMITR 0.096 NA 

9 pixel ROI nMITR 0.023 NA 

[32] NA 117 
(36 B, 81 M) 

10% threshold 
ROI 

nMITR 0.001 NA 

Whole lesion ROI nMITR 0.130 0.620 [33] 256×128 79 
(34 B, 45 M) 

Whole lesion ROI Patient age, lesion 
size, time to max. 
enhancement and 

two textural 
parameters 

NA 0.920 

Whole lesion ROI The curve type, 
relative signal 

intensity decrease 
from the peak to the 

7th  and 5th 
postcontrast images, 

, relative signal 
intensity decrease 

from the first to the 
7th postcontrast 

image, nMITR and 
time-to-peak 

features 

NA 0.942 * 
0.737 ** 

[16] 112×256 115 
(35 B, 70 M) 

Whole lesion ROI All the kinetic and 
the morphologic 

features (totally 14 
features) 

NA 0.981 * 
0.786 ** 

Whole lesion ROI nMITR 0.060 0.640 [34] 256×128 49 
(17 B, 32 M) 

9 pixel ROI nMITR 0.023 0.650 

Whole lesion ROI nMITR 0.008 0.852 [35] 256×192 88 
(68 B, 20 M) 

9 pixel ROI nMITR 0.019 0.795 
 

* using the training set, ** using verification set, M: Malignant, B: Benign, NA: not available 
 
 

sequence and a matrix size of 256×128). An experienced radiologist examined and drew 

ROIs on the images to cover whole lesions as closely as possible while excluding 
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speculations and surrounding fatty tissues. Relative enhancement at 1 minute and 2 

minutes, maximum relative enhancement, time to maximum enhancement and nMITR 

were computed. nMITR had a P-value of 0.130 and a diagnostic accuracy of 0.620. Time 

to maximum enhancement was found to be the most significant enhancement parameter 

(P= 0.0002 and accuracy= 0.740) and therefore was used in all the schemes. The most 

diagnostically accurate scheme (accuracy= 0.920) was based on the patient age, lesion size, 

time to maximum enhancement and two textural parameters.   It was also concluded that 

the lack of discrimination power evident in nMITR was probably due to the large number 

of fibroadenomas (31 of 34) in the data set.  

Szabo et al [16] assessed the discriminative ability of morphologic and kinetic 

features of breast lesions and their relative relevance using artificial neural networks 

(ANNs). 105 breast lesions, 75 malignant and 30 benign, were considered. Dynamic MR 

imaging was performed using a 3D sequence and a 112×256 matrix. Manually drawn ROIs 

were positioned over a tumor area that showed high enhancement at early postcontrast 

images; the earliest and the strongest enhancements were chosen for each lesion. 

Morphologic parameters were margins, homogeneity, rim enhancement and septations. 

Kinetic features were signal intensities, percentage enhancement, curve type, relative 

signal intensity decrease, nMITR (they called as slope) and time to peak enhancement. 

They used an ANN, based on the curve type, relative signal intensity decrease from the 

peak to the 7th postcontrast image, relative signal intensity decrease from the peak to the 5th 

postcontrast image, relative signal intensity decrease from the first to the 7th postcontrast 

image, nMITR and time-to-peak features.  It showed a diagnostic accuracy of 0.942 on the 

training set and 0.737 on the verification set. If all the kinetic and the morphologic features 

(totally 14 features) were utilized, the accuracy was maximized (accuracy of 0.981 on the 

training set and 0.786 on the verification set).  

Gibbs et al [34] studied differential diagnosis of sub-1 cm breast lesions (32 

malignant and 17 benign) detected on contrast enhanced MR images from 43 women using 

a 3D sequence and a 256×128 matrix. ROIs, encompassing the whole lesion as closely as 

possible, were drawn by an expert radiologist.  9-pixel square ROIs were semi-

automatically positioned on the most enhancing area. Relative enhancement at 1 minute 

and 2 minutes, maximum relative enhancement, time to maximum enhancement, MITR 
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and nMITR were computed for each type of ROIs. Statistical analysis results demonstrated 

that nMITR gave higher performance than the MITR. For a whole lesion, nMITR gave the 

best performance (P= 0.060 and accuracy= 0.640±0.080) while good performance was 

achieved for 9-pixel square (P= 0.023 and accuracy= 0.650±0.080). The contrast 

enhancement rates were also fitted to a two-compartment pharmacokinetic model and 

amplitude, exchange rate constant and the washout rate constant were computed. The best 

individual parameter calculated from the dynamic images was found to be the exchange 

rate constant (with an accuracy of 0.740±0.080). A diagnostic accuracy of 0.920±0.030 

was achieved for a logistic regression model that combines exchange rate and qualitatively 

determined tumor morphology.  

Kneewshaw et al [35] analyzed breast MR images of 88 patients with 

mammographically detected micro calcifications (20 malignant and 68 benign). 3D images 

were acquired with a 256×192 matrix. Relative enhancement at 1 minute and nMITR were 

computed using whole lesion ROI and a 9-pixel box ROI (as used by Gibbs et al). For both 

methods, the most significant parameter to differentiate benign from malignant lesions was 

found to be the enhancement at 1 minute. However nMITR of whole ROI and 9-pixel 

square ROI were found to have greater diagnostic accuracies, 0.852 (P= 0.080) and 0.795 

(P= 0.109), respectively.  

Recently, there are some efforts to make use of computerized analysis of DCE-

MRM. MRIW is a software developed by Leach’s group is a frontier research to quantify 

contrast agent in dynamic contrast enhanced MR images [6]. Five parameters (onset time –

time taken to reach 10% enhancement-, initial gradient –rate of increase in signal intensity 

at the 10% point-, mean gradient –mean rate of signal intensity increase between the 10% 

point and the 90% point-, maximum enhancement and washout rate are calculated pixel-

by-pixel to generate color maps visualizing highly enhancing breast tissues with manual 

thresholding. These maps provide valuable information during the subjective placement of 

ROIs.  

MTDYNA (Mevis Inc, Germany) is another software tool that generates color 

parametric maps of relative changes in each pixel’s signal intensity over time. Three time 
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points are used to determine the color coding: the precontrast, first postcontrast and final 

time point. Enhancement of initial postcontrast time point relative to the baseline 

precontrast time point determines an initial color category. The final displayed colors for 

each pixel are determined by the rate of enhancement change between the initial 

postcontrast and last post contrast points. The software has a commercialized version 

called as DynaCAD (Invivo Inc., USA). It has improved capabilities in functional 

parametric analysis. Eleven parameters calculated pixel-by-pixel are maximum 

enhancement, enhancement at a time point, value at time point, two phase –the method of 

MTDYNA-, time to peak, MITR, maximum descent, maximum slope, mean transit time 

and integral –are under the curve. For better evaluation of suspicious enhancements, 

manually selected thresholded value is needed to be applied. However Wiener et al 

reported that the use of the software decreases the interpretation time for a case to 

approximately 5 min, while detecting malignant lesions easily. Achieved diagnostic 

accuracy was 0.898 [7].  

fTP (CAD Sciences Inc, USA) is a software that utilizes a parametric mapping 

method based on pharmacokinetic analysis. To do this, vessel permeability (K) and extra-

cellular volume (EVF) are calculated pixel-by-pixel by fitting a curve over all available 

time points. Tissue physiology histogram and fTP colorized images are the visual outputs. 

The software provides direct link between histogram plot and pixel location in the 

colorized image. In a clinical study, the mapping method is demonstrated to show 96% 

sensitivity and 82% specificity in solid lesions detection [4]. 

CADstream (Confirma Inc, USA) produces colored images to identify areas of 

significant enhancement after pixel-by-pixel analysis. In addition, it provides details about 

regions that show significant enhancement. To do this, the radiologist selects a specific 

area of significant enhancement and the program will automatically generate a synopsis of 

the full volume of that lesion, including the percentage of the lesions that shows washout, 

plateau and persistent enhancement. Lehman et al studied the benefits of these percentages 

in discrimination of breast cancer. They used threshold values of 25%, 50% and 100% 

enhancement. All malignant lesions showed significant enhancement at all thresholds. The 

computer-assisted analysis yielded false positive rates that were reduced by 25%, 33% and 

50% for each threshold, respectively. There were no significant differences found between 
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enhancement profiles of benign and malignant lesions. All lesions showed a wide range of 

washout, plateau and persistent patterns of enhancement [5]. 

All these computerized methods try to overcome difficulties associated with 

subjective ROI analysis using several enhancement parameters. However, a manually 

selected threshold value that significantly affects the performance of lesion 

characterization is still a requirement.  MRIW and CADstream differ from the other 

algorithms since they also provide lesion identification and enhancement distributions. To 

do this, an expert radiologist must first draw an ROI encompassing the whole lesion 

appropriately or must mark the lesion. The radiologist must be familiar to the distribution 

data of malignant and benign lesions to make correct decisions.  

In the present study we introduce a novel automated 3D lesion detection technique.  

It is based on the use of  a moving 3×3 voxel mask placed within a rectangular prism 

volume of interest  (VOI), manually marked by an expert radiologist  that roughly includes 

suspicious legions on the computed subtraction images and/or MIPs.  Relative contrast 

enhancement rates and nMITR values corresponding to the center voxels of the moving 

mask are computed to generate nMITR projection data. This data is used to discriminate 

fatty tissue and vascular enhancements and to identify lesions within the VOI. A simplified 

flowchart of the technique is given in Figure 6.1. The details are described in the following 

section. 

6.2  Imaging Protocol  

Magnetic resonance imaging was conducted on a 1.5 Tesla MR imager (Magnetom 

Symphony, Siemens Medical Systems, Erlangen, Germany) equipped with a gradient 

system having a maximum amplitude of 30 mT/m. A dedicated four-element phased-array 

receiver breast coil was used. Patients were placed in a prone position during the scan to 

minimize motion artifacts. The imaging sequence was a variant of spoiled gradient echo 

imaging, T1-weighted 3D fast low angle shot (FLASH, TR/TE 9.80/4.76 msec, flip angle 

25o, slice thickness 2.5 mm with no gap, 512×512 matrix and 0.625mm×0.625 mm2 

resolution in the  x and y directions).  During and immediately after bolus  injection  of  the  
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Figure 6.1 Simplified flowchart of the lesion detection scheme. 

 

contrast agent, (Gd-DTPA, 0.1 mmol/kg body weight) one precontrast and five 

postcontrast axial images were acquired per slice with a temporal resolution of 

approximately 88 seconds.  

6.3  Lesion Dataset 

52 lesions, 23 benign and 29 malignant, from 46 women aged between 32 and 83 

years (mean 46 years) were retrospectively entered in this study2. Written informed 

consent was obtained from each patient. The lesion volumes ranged from 0.07 cm3 to 17.20 

cm3 (mean 2.58 cm3). All cases were proved either by histopathological examination or by 

clinical follow-up and labeled as benign or malign. Dynamic 12-bit grayscale image sets 

                                                 
2 As part of our program, we prospectively perform MR mammography for preoperative staging of patients with known malignancies 

and for characterization of lesions for patients diagnosed to have solid lesions detected by mammographical or ultrasound examinations. 
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that showed sufficient anatomical alignment were transferred from the MR scanner to a 

personnel computer in DICOM format for further analysis using Matlab 7.0 (The 

Mathworks, Inc., USA). 

6.4  Volume of Interest Selection 

As the initial step, an expert radiologist should first manually mark a rectangular 

prism volume of interest (VOI) that roughly includes suspicious regions on the computed 

subtraction images and/or MIPs. This VOI should include the first and the last slices of the 

region.   

6.5  nMITR Projection Generation 

Enhancement computations are performed using a 3×3 voxel mask ℜ , placed at 

some reference voxel within the VOI. The relative contrast enhancement rate 

corresponding to the voxel at the center of the mask is computed using [54]:  

( ) (0)( ) 100
(0)

I i IE i
I

ℜ ℜ
ℜ

ℜ

−
= ×                                          (6.1) 

where 1, 2,...5i =  is a time index and represents the times at which postcontrast images are 

taken. (0)Iℜ  is the average intensity of the precontrast image (at the reference time 0) 

within ℜ , ( )I iℜ  is the average intensity of the post-contrast image at time 

88  t i= × seconds within ℜ . ( )E iℜ  represents the enhancement value of ℜ  at time 

88  t i= × .  The nMITR values are computed using 

{ }
max

max E
nMITR

T
ℜ

ℜ =                                                (6.2) 

In Eq. 6.2, maxT  denotes the time, in seconds, when the enhancement Eℜ reaches to its 

maximum. The above computations are repeated after moving ℜ  to another voxel position 
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within the VOI.  When every voxel within the VOI is covered,  a 3D nMITR projection 

data set is generated.  This data set is basically used for the subsequent analyses, 

evaluations and visualizations. 

6.6  3D Lesion Segmentation 

Volumetric lesion segmentation is performed using a semi-automated method. To 

reduce diffuse background enhancements due to fatty and vascular tissues surrounding the 

lesion as much as possible, the nMITR projection data is passed through an empirically 

determined threshold (0.277 sec-1). A lesion identification procedure is carried out to 

discriminate highly enhancing vessels within the VOI as follows:  An 18-neighbourhood 

connectivity search and labeling operation is performed first to identify enhancing objects 

(regions) in 3D. The object that has the biggest volume is identified as the lesion.  

Morphological hole filling is applied next to include necrotic tissues inside the lesion that 

show low nMITR.  

6.7  Feature Extraction 

The nMITR values within projection data of the identified lesion are first reformatted 

so that they have 0.1% precision. This data is then explored statistically to extract the 

following six potentially diagnostic features: The maximum value, the mean value, the 

standard deviation, the kurtosis, the skewness and the nMITR-entropy using the following 

equations: 

1
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=
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In the above equations, µ is the average nMITR value and p(j) is the probability of 

the j-th nMITR. N represents the number of distinct nMITR values (within the 0.1%  

precision). 

6.8  Statistics 

The significance and the diagnostic accuracy of each feature in discriminating 

malignant and benign lesions are evaluated using SPSS 14 (SPSS Inc., USA). The 

independent samples t-test with either a pooled or separate variance as determined by the 

Levene’s test for equality of variances is performed. A P-value of <0.05 is considered 

statistically significant. Receiver operating characteristic (ROC) analysis is carried out to 

determine the diagnostic accuracies of the features [117]. 

6.9  Results 

Fifty-two breast lesions identified from high-resolution MR images of 46 patients are 

studied. A semi-automated method is used to identify the lesion inside a rectangular prism 

VOI roughly marked by an expert. Relative contrast enhancements are calculated using a 

voxel sampling method based on a moving 3×3 mask and a 3D nMITR projection is 

generated for the VOI. The projection is passed through a threshold to differentiate the 

suspicious lesion appropriately while eliminating false enhancements of fatty tissues and 

small blood vessels. A search procedure is performed on the binarized projection to 

identify suspicious lesions and other highly enhanced vascular regions. Using the nMITR 

projection data of the identified lesion generated, the following statistical features are 

computed: The maximum value, the mean value, the standard deviation, the skewness, the 
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kurtosis and the entropy of the nMITR. These values reflect enhancement measurements 

from a total of 151964 voxels on which the moving 3×3 voxel mask is automatically 

positioned inside the (estimated) lesions by the system. Examples of the breast lesions 

estimated by the system are presented in Figures 6.2 and 6.3 as 2D slices. Plots of distinct 

nMITR values and their probabilities for each lesion are shown in Figure 6.4.  

 
 
 
 
 

  

                         (a)         (b) 

Figure 6.2  Example of a benign lesion. (a) MIPs, (b) VOI, (c) volumes of the detected objects, (d) identified 
3D lesion. 
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(c) 

 

 

(d) 

Figure 6.2 Continued. 

 



 
 

99

 
 
 

   

                              (a)            (b)  

Figure 6.3  Example of a malignant lesion. (a) MIPs, (b) VOI, (c) volumes of the detected objects, (d) 
identified 3D lesion. 

 



 
 

100

 
 

 

(c) 

 

 

(d) 

Figure 6.3 Continued. 
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(a) 

 
 
 

 

(b) 

Figure 6.4 Distinct nMITR values and their probabilities. (a) Benign lesion, (b) malignant lesion 
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Extracted features are statistically analyzed to determine their significances and 

accuracies on breast cancer diagnosis.  Student t-test results are given in Table 6.2. Area 

under the ROC curve (AUC) computed for each feature is listed in Table 6.3. The nMITR-

entropy shows the highest significance (P=1.59×10-12) and diagnostic accuracy (AUC= 

0.97±0.03) while the standard deviation, the maximum and the mean parameters are also 

found to be significant (P= 3.80×10-8, 3.90×10-9 and 1.39×10-6, respectively). The standard 

deviation of the nMITR is also found to be a significant feature as much as the maximum 

nMITR and the diagnostic accuracies of both features are found to be similar (AUC=  

0.90±0.04 and 0.92±0.04, respectively). The diagnostic accuracy of the mean nMITR is 

found as 0.86±0.05.   Plots of the ROC curves of the significant parameters are shown in 

Figure 6.5.  

Insignificant features are skewness and kurtosis (P= 0.63 and 0.84, respectively). 

Skewness reflects the asymmetry of the nMITR data around the mean and kurtosis 

indicates how outlier-prone the distribution of nMITR is. Independent of the lesion type 

(malignant or benign), nMITR values commonly spread out more to the right of the mean 

than to the left and nMITR distribution is more outlier-prone than the normal distribution. 

 

Table 6.2 
Significance of nMITR based features. 

 

Benign Malignant 

Feature Mean ± Std.Dev.   Mean ± Std.Dev.  t value P-value 

maxnMITR  1.56 ± 1.02 4.11 ± 1.54 -7.160 3.90×10-9 

µ  0.56 ± 0.23 1.05 ± 0.40 -5.546 1.39×10-6 

σ  0.24 ± 0.16 0.69 ± 0.32 -6.678 3.80×10-8 

s  1.20 ± 0.72 1.29 ± 0.57 -0.438 6.31×10-1 

k  2.07 ± 4.03 1.88 ± 2.62 0.198 8.44×10-1 

e  5.40 ± 0.58 6.77 ± 0.48 -9.327 1.59×10-12 
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Table 6.3 
Diagnostic accuracy of nMITR based features. 

 

%95 CI of AUC 

Feature AUC Std. Error Lower 
Bound 

Upper 
Bound 

maxnMITR  0.92 0.04 0.85 0.99 

µ  0.86 0.05 0.76 0.96 

σ  0.90  0.04 0.82 0.98 

s  0.59 0.08 0.43 0.76 

k  0.55  0.08 0.39 0.71 

e  0.97  0.03 0.91 1.00 

 

 

 

 
Figure 6.5  ROC curves of the significant features: The maximum nMITR, the  mean nMITR, sd of nMITR 
and nMITR-entropy. 
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6.10  Discussion 

In clinical practice, lesion enhancement analysis starts by manually placing  a couple 

of 2D ROIs on the most suspicious areas of the early post contrast images that show high 

enhancements after a visual inspection of the acquired images and only a few 

measurements are used to assess a 3D lesion.  Placement of these ROIs is critical and 

requires lots of experience to achieve reproducible results. For automated ROI placement, 

the suspected regions must be volumetrically segmented; a difficult and time-consuming 

process if performed manually. Some region growing and thresholding algorithms have 

been developed as a partial solution to this problem [5, 6, 20, 30, 84]. These techniques 

require user supplied information such as a seed point or a threshold value to localize a 

lesion.  In the present study, we describe a novel, fast volumetric lesion segmentation 

method that requires user interaction only during initialization to roughly mark a 

rectangular prism VOI covering a suspicious region; the lesion is then automatically 

identified within milliseconds.  

For assessing the identified lesions as benign or malign, a small sampling mask is 

moved to through the entire VOI, voxel by voxel to obtain accurately samples, 

enhancement characteristics and an nMITR projection of the tissues involved. Diagnostic 

relevance of statistical parameters extracted from the generated nMITR projection is 

studied in detail. The maximum, the mean, the standard deviation and the entropy of the 

nMITR are found to be highly significant; the skewness and the kurtosis are found to be 

insignificant.  The significance of the mean and the maximum value have been reported 

earlier [16, 31, 32, 33, 34, 35]; however, standard deviation and entropy have not been 

reported. In our work, the significance of the standard deviation and the maximum are 

found to be similar and that of the nMITR-entropy is found to be the most significant. In 

general, the significance of the parameters studied in this work are found to be greater than 

those reported in the literature due to the 3D nature of our method, the use of the voxel 

sampling via moving masks and the use of high resolution images.  

Current methods for evaluation of lesions in MR mammography are mostly 

subjective and require a great deal of user experience to avoid false positive biopsies. To 

reduce unnecessary biopsies, enhancement analysis must use quantitative methods and 
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must be standardized. Due to the quantitative and the standardized nature of the technique 

introduced in this work, we expect that its use will result in increased diagnostic 

reproducibility and improved overall performance especially for clinically and 

mammographically occult lesions.  Our results demonstrate that benign lesions can be 

discriminated from malign lesions accurately using the nMITR-entropy, the most 

significant and diagnostically accurate parameter among the parameters studied in this 

work.  The use of this parameter and the technique introduced in this work will certainly be 

very helpful during decision making, surgical planning and in predicting the extent of 

residual disease after neoadjuvant chemotherapy.   

In conclusion, our findings demonstrate usefulness of the nMITR features, illustrate 

improvements in the diagnostic accuracies achievable with high resolution images and 

enhancement measurements of each tissue inside a volumetrically segmented breast lesion 

using voxel sampling based on a moving mask. The proposed method is robust, efficient 

and reliable in terms of observer variability, allows better standardization of the 

evaluations, and appears promising.  However, generalization of the results requires further 

testing on large number of cases, lesion sizes and subgroups, reproducibility, applicability 

to other populations and other MRI systems. For future work, we are planning a 

multicenter study to expand our database and design a classification scheme that also 

considers lesion morphology hoping to further improve the performance of diagnosis by 

detecting rapidly enhancing fibroadenomas. 
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7.   MORPHOLOGICAL DESCRIPTORS                                           

FOR MALIGNANCY DETECTION 

7.1  Introduction 

Dynamic Contrast-enhanced MR-Mammography (DCE-MRM), when compared 

with X-ray mammography, offers an alternative imaging technology that has sufficient 

potential for detection and noninvasive characterization of breast cancer [106]. It does not 

use ionizing radiation and hence is particularly suitable for young women, who tend to 

have dense breasts. Since there is no need for excessive breast compression during 

imaging, lesion-obscuring overlapping structures and summation shadows are much less 

pronounced in comparison with X-ray mammography.  DCE-MRM makes possible 

accumulation of a wealth of information on the investigated lesion including tissue 

relaxation times and perfusion as revealed by contrast enhancement dynamics as well as 

morphology which are representative of the histologic features of lesions [75].  

Morphological characteristics of lesions in DCE-MRM contain important diagnostic 

information and can be used for discriminating malignancy. Typically, irregular 

morphology, irregular or spiculated margins, heterogeneous internal enhancements and rim 

enhancements are signs of malignancy while smooth margins and homogenous internal 

enhancements are associated with benign lesions [14]. A number of researchers analyzed 

the diagnostic usefulness of qualitatively assessed morphological parameters. Using their 

own architectural interpretation model, Nunes et al [15] reported that negative predictive 

value for malignancy for smooth margins was 95% and for lobulated margins 90%, while 

for irregular and spiculated margins, positive predictive value for malignancy was 84% and 

91%, respectively. Wedegartner et al [17] demonstrated significance of irregular lesion 

contour and shape. Using an artificial neural network, Szabo et al [16] showed that 

discriminative ability of morphologic parameters such as lesion margins, homogeneity, 

presence of ring enhancement and septations are comparable to that of an expert 

radiologist. However, qualitative assessment of lesion morphology is highly time-
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intensive, experience dependent and inter-observer variable, especially when lesion 

volumes are considered. Therefore, during the past decade, quantification of lesion 

morphology has been studied by a number of researchers. A summary of these studies is 

presented in Table 7.1. 

 
Table 7.1 

Summary of significant descriptors discussed in literature. 
 

Reference 

Number of 

Cases Dimension 

Significant 

Descriptors P-value Accuracy 

[18] 33  

(M:15 B:18) 

3D Spherical shape index 0.0063 NA 

Smoothness of uptake NA 0.71 [19] 80  

(M:40 B:40) 

3D 

Mean margin sharpness NA 0.70 

[20] 14  

(M:10 B:4) 

2D Combined feature set 
including 5 parameters 

(Curvature, eccentricity, 
filled area, solidity and gray 

level threshold value) 

NA 0.91 

Convexity 0.001 NA [21] 47  

(M:32 B:15) 

2D 

Complexity 0.044 NA 

 
   M: Malignant, B: Benign, NA: not available 

 

Shahar et al [18] calculated volume-to-surface area ratio and spherical shape index 

measures from boundaries of 33 breast lesions (15 malignant and 18 benign) represented 

by triangular meshes a using an interactive volume rendering software. Only spherical 

shape index was found to be a significant discriminator of malignancy (P=0.006). Gilhuijs 

et al [19] computed mean margin sharpness, variation in margin sharpness and smoothness 

of uptake from 80 lesions (40 malignant and 40 benign). For each case, a seed point within 

the lesion was manually marked on the subtraction images and the lesion volume was 

segmented automatically. Smoothness of uptake  and the mean margin sharpness  were the 

significant features (maximum accuracy: 0.71 and 0.70, respectively). Tzacheva et al 

[20]computed curvature scalar, eccentricity, filled area and solidity of 14 lesions (10 

malignant and 4 benign) on fat-suppressed late post-contrast images. Lesions were 
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segmented by manually selecting signal intensity thresholds. These descriptors and 

selected threshold values were supplied to a feed forward neural network to discriminate 

malignancy. They achieved an accuracy of 0.912.  Liney et al [21] calculated convexity, 

complexity, circularity and elongatedness from fat-suppressed late post-contrast images of 

47 lesions (32 malignant and 15 benign) in which the lesions had the maximum diameter. 

Lesion boundaries were drawn manually or were extracted by a semi-automated algorithm 

after selection of an intensity threshold value. 2D convexity was the most significant 

parameter for both methods (P=0.006 and P=0.001, respectively) while the automated 

method had significantly different values of complexity (P=0.044).  

In the present study, we introduce a novel measurement method that provides an 

objective, consistent and accurate way to extract principal morphological features of 

lesions in discrimination of malignancy. It is based on normalized maximum intensity time 

ratio (nMITR) maps of roughly marked rectangular prism volume of interest (VOI) that 

suitably covers a lesion. Using this VOI data, the lesion is segmented volumetrically and 

the morphological descriptors are extracted.  

7.2  Patients and Lesions  

DCE-MR imaging was performed for 51 women (age: 28-83 years; mean age: 46 

years) to clarify uncertain clinical, mammographical or sonographical findings and to 

assess preoperative staging of patients with known malignancies. Informed consent 

explaining the nature of the imaging procedure was secured from each patient. 26 benign 

and 32 malignant lesions, confirmed by histopathological examination or clinical follow-

up, were retrospectively included in the study.   

7.3  MR Imaging Protocol 

Imaging was conducted using a 1.5 Tesla MR scanner (Symphony; Siemens AG, 

Medical Solutions, Erlangen, Germany). Patients were positioned prone with the breast to 

be imaged in gentle compression within a commercially available 4-channel phased-array 
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breast coil of the same manufacturer. Dynamic data was captured using a T1-weighted fast 

spoiled gradient-echo sequence (3D FLASH) in the axial plane with TR/TE= 9.80/4.76 ms, 

flip angle= 25o, a 512×512 matrix and 0.625×0.625 mm2 resolutions in the x and y 

directions, 2.5 mm slice thickness with no gap. An intravenous bolus of 0.1 mmol/kg body 

weight of Gd-DTPA (Magnevist, Schering) was administered for enhancing contrast. One 

pre-contrast and five post-contrast images were acquired for each image slice. 12-bit 

grayscale image sets were transferred from the MR scanner to a personnel computer in 

DICOM format for subsequent analysis. 

7.4  Lesion Localization 

To localize lesions DynaMammoAnalyst, a special 32-bit software written by the 

authors in Borland Delphi 7.0 (Borland Software Cooperation, Inc., USA) is used. The 

software provides acquired pre and post-contrast images, subtraction images, maximum 

intensity images (MIIs) and uniquely color-coded maps of normalized maximum intensity 

time ratio (nMITR). For each slice, subtraction images and MII are generated by 

processing pre and post contrast images pixel-by-pixel. The nMITR map is calculated 

using a 3×3 pixel moving window, ℜ  [34]: 

 

max 0

0 max

( ) ( )
( )

I InMITR
I T
ℜ − ℜ

=
ℜ ×

      (7.1) 

 

where 0 ( )I ℜ  and max ( )I ℜ  are the average intensity of the pre-contrast image and 

maximum average intensity among the post-contrast images. maxT  denotes the time (in 

seconds) when the average intensity reaches to its maximum.  nMITR maps are displayed 

in HSV color format; values lower than 0.14 sec-1 are shown in blue while values higher 

than a threshold (default value 0.27 sec-1) are displayed in red. This threshold should be 

interactively adjusted by an expert radiologist carefully to distinguish a lesion from its 

surrounding normal parenchyma and moderately enhanced blood vessels.   
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For a localized lesion, using DynaMammoAnalyst the expert roughly marks a 

rectangular prism volume of interest (VOI) that suitably covers the lesion based on the 

nMITR maps by supplying its width, height, starting and ending slice numbers and the 

coordinates of the upper leftmost pixel. This VOI data is used during volumetric 

segmentation of the lesion to extract morphological descriptors.  

7.5  Extraction of Morphological Descriptors 

To extract potential morphological descriptors in discrimination of malignancy, we 

developed a fully automated software called MorphoAnalyst using Matlab Image 

Processing Toolbox (The Mathworks, Inc., USA). This software assigns labels to objects 

inside the supplied VOI by using 18-pixel neighbor connectivity search and performs 

volume thresholding to detect lesions and to eliminate blood vessels.   Holes within a 

detected lesion are filled to include necrotic tissue with low nMITR and morphological 

descriptors of the segmented lesion volume are extracted. The software also determines the 

representative slice in which the lesion has the largest diameter and computes its 

morphological descriptors. These descriptors are convexity, complexity, extent, 

eccentricity and enclosed area to contact surface area ratio as explained next.  

7.5.1  Convexity 

Convexity (also called as solidity in [20]) is a measure of roundedness of a lesion. 

For 2D, it is defined as the ratio of the lesion area LA , to the area of the convex hull, CHA , 

[21]:  

2D L

CH

AConvexity
A

=      (7.2a) 

For 3D convexity is defined as the ratio of the lesion volume, LV to the volume of the 

convex hull, CHV .   
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3D L

CH

VConvexity
V

=       (7.2b) 

7.5.2  Extent 

Extent (also called compactness in [118]) is a measure of the flatness of a lesion. For 

2D, it is defined as the ratio of the lesion area to the area of the bounding box, BBA  :  

2D L

BB

AExtent
A

=      (7.3a) 

For 3D, it is defined as the ratio of the lesion volume to the volume of the bounding 

box, BBV .  

3D L

BB

VExtent
V

=      (7.3b) 

7.5.3  Normalized Complexity 

Normalized complexity is a measure of irregularity of lesion border and for 2D is 

calculated from lesion area, LA  and the lesion perimeter p using3 [21]:  

2
2

41D LAnComplexity
p

π ×
= −      (7.4a) 

Inspired from the above definition, we define 3D normalized complexity as:  

3D
a a s s c cnComplexity w nComp w nComp w nComp= × + × + ×    (7.4b) 

where the subscripts a, s and c correspond to axial, sagittal and coronal views. 

,   ( , , )jnComp j a s c=  represents the average normalized complexity calculated over the 

                                                 
3 In [21] complexity is defined as 

2

4 LA
p

π × .   
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slices in which the lesion area is larger than 9mm2. The weights [ ]a s cw w w=w  are 

determined from the following rules:  

1. if anComp , snComp  and cnComp  are available then 4 1 1
6 6 6= ⎡ ⎤⎣ ⎦w  

2. if anComp  and snComp  are available then 4 1
5 5 0⎡ ⎤= ⎣ ⎦w  

3. if anComp  and cnComp  are available then 4 1
5 50⎡ ⎤= ⎣ ⎦w  

4. if only anComp  is available then 1 0 0⎡ ⎤= ⎣ ⎦w  

The weights in the above rules follow from the fact that images are acquired in the 

axial plane with an isotropic resolution and the fact that the slice thickness is four times 

greater  than the in-plane resolution.  

 

7.5.4  Eccentricity 

Eccentricity expresses elongatedness of a lesion and ranges from 0 (round) to 1 

(elongated). It is defined as the ratio of the distance fd , between the foci of the ellipse and 

its major axis length md [20]: 

 

2 fD

m

d
Eccentricity

d
=      (7.5a) 

 

For a 3D image we have an ellipsoid instead of an ellipse and we define eccentricity 

as the ratio of the distance Fd  between the greatest foci of the ellipsoid bounding the 

lesion to its major axis length md .  
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3D F

m

dEccentricity
d

=      (7.5b) 

7.5.5  Enclosed Area to Contact Surface Area Ratio 

Enclosed area to contact surface area ratio, CSAR is a measure of lesion surface 

irregularity in 3D and is defined as [119]:  

2v

c

n aCSAR
A
×

= −               (7.6a) 

where Ac is the contact surface area calculated by summing the areas of the contact 

surfaces which are common to two voxels, n is the number of voxels that composes the 

lesion and av is the total area of the six faces of a typical voxel computed using 

( )2v x y x z y za r r r r r r= × × + × + ×           (7.6b) 

rx and ry are the resolutions of the imaging protocol in the x and y directions, respectively 

and rz is the slice thickness.  

7.6  Statistical Analysis 

To study the effectiveness of the descriptors, statistical analyses of the computed 

descriptors for the benign and malignant groups are carried out using SPSS 14 (SPSS Inc., 

USA). The independent samples t-test with either a pooled or separate variance as 

determined by the Levene’s test for equality of variances is performed. A P-value of <0.05 

is considered statistically significant. Receiver operating characteristic (ROC) curves are 

plotted and the areas under the ROC curves (AUC) are used as an index of diagnostic 

accuracy.  

The cut-off values of the diagnostic descriptors can be determined using utility-based 

decision theory in combination with ROC analysis. Criteria such as Youden index, odds 

ratios and kappa index as a function of sensitivity (Se) and specificity (Sp) pair provides 
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practical solutions [117]. In this study, the following optimality function is used for the 

most diagnostic descriptor [120]: 

( )(1 )( , ) ( 1)
( )

FP TN

FN TP

C CPJ Se Sp Se Sp
P C C

⎡ ⎤−−⎡ ⎤= + × × −⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
   (7.7) 

 

where P is the expected prevalence of malignancy in the study dataset and CFP, CFN, CTN 

and CTP are the costs of false-positive, false-negative, true-negative and true-positive 

decisions, respectively.  We assign no cost to correct decisions and same cost to incorrect 

decisions; i.e., CFP = CFN = 1 and CTN = CTP = 0.  The cut-off value for which Se and Sp 

maximizes J is determined as the optimal cut-off  T̂ . Additional diagnostic characteristics 

of the descriptor at T̂  are assessed by PPV and NPV (positive and negative predictive 

values) calculated using: 

(1 ) (1 )
Se PPPV

Se P Se P
×

=
× + − × −

    (7.8a) 

(1 )
(1 ) (1 )

Sp PNPV
Sp P Se P

× −
=

× − + − ×
    (7.8b) 

 

The performance of the descriptor for T̂  is assessed by the diagnostic characteristics 

such as sensitivity, specificity, positive and negative predictive values. 

7.7  Results 

Using DynaMammoAnalyst, DCE-MRM data from 51 women is explored and 58 

lesions (26 benign and 32 malignant) are localized. Rectangular prism volume of interests 

(VOIs) that suitably cover lesions are roughly marked by an expert radiologist on the 

nMITR maps. Lesions within the VOIs are segmented in 3D and morphological descriptors 

are extracted using MorphoAnalyst. Convexity, normalized complexity, extent and 

eccentricity are computed in 2D, using   the representative slices in which the lesions have 
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the largest diameters. The 3D versions of these descriptors and enclosed area to contact 

surface area ratio (CSAR) are also computed from segmented lesions.   

For illustrating the technique two typical lesions; a benign lesion (fibroadenoma) and 

a malignant lesion (invasive lobular carcinoma) are considered. The maximum intensity 

images of the representative slices for each lesion  are presented in Figures 7.1a and 7.1b. 

The benign lesion appears as a lobulated area of homogeneous enhancement while the 

malignant lesion has inhomogeneous enhancement and has a distinctly irregular shape and 

spiculated margins. The nMITR maps are shown in Figures 7.2a and 7.2b. The benign 

lesion occupies 4 slices and the malignant lesion resides in 6 slices.  Figures 7.3 and 7.4 

show the VOIs marked by the expert and the results of volumetric segmentation. The 

malignant lesion occupies a volume of 2.10cm3 and the benign lesion 0.36cm3. Computed 

diagnostic morphological descriptors of these lesions are summarized in Table 7.2.  

 

 

Table 7.2  
2D and 3D descriptors computed for two representative lesions (benign and malignant). 

 

Descriptor Benign Malignant Comments 

Convexity 0.95 0.91 Low values indicate malignancy 

Extent 0.71 0.72 Low values indicate malignancy.  However, in this 
representative slice this measure does not properly 

reflect the aggressiveness of the lesion 

nComplexity 0.19 0.24 High values indicate malignancy 

Eccentricity 0.85 0.66 Low values indicate malignancy 

Convexity 3D 0.94 0.82 Low values indicate malignancy 

Extent 3D 0.47 0.37 Low values indicate malignancy 

nComplexity 3D 0.23 0.31 High values indicate malignancy 

Eccentricity 3D 0.88 0.82 Low values indicate malignancy 

CSAR 0.38 0.21 Low values indicate malignancy 

 



 
 

116

 

 

(a) 

 

 

 

(b) 

Figure 7.1  The maximum intensity images for representative lesions: (a) malignant, (b) benign. 
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(a) 

 

 

 

(b) 

Figure 7.2  nMITR maps for representative lesions: (a) malignant, (b) benign. 
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(a) 

 
 
 
 
 

 

(b) 

Figure 7.3  Slice view of selected VOIs for representative lesions: (a) malignant, (b) benign. 
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(a) 

 

 

 

(b) 

Figure 7.4  Segmented 3D views of representative lesions: (a) malignant, (b) benign. 
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The results of statistical analyses of the computed descriptors for the benign and 

malignant groups are given in Table 7.3.  Malignant lesions are distinguishable from 

benign lesions with lower values of convexity, extent, eccentricity and contract surface 

area ratio and higher values of complexity. Student t-test results show that when 

measurements in 2D are considered, there are significant differences between the benign 

and malignant lesions in terms of convexity (0.88±0.07 and 0.82±0.10, P=0.005), 

complexity (0.31±0.19 and 0.47±0.20, P=0.002) and extent (0.64±0.09 and 0.59±0.10, 

P=0.045). Eccentricity is the insignificant descriptor (P> 0.05). Measurements in 3D lead 

to several improvements: higher significances are obtained for convexity (0.90±0.19 and 

0.72±0.13, P<0.001), complexity (0.32±0.15 and 0.45±0.13, P=0.001), extent (0.42±0.11 

and 0.34±0.09, P=0.006) and eccentricity (0.83±0.09 and 0.76±0.10, P=0.018). The 

descriptor for differentiating benign lesions from malignant lesions with the highest 

significance is found to be the contact surface area ratio (0.43±0.14 and 0.27±0.08, P< 

0.001). 

 
Table 7.3  

Mean values of the 2D and 3D descriptors computed for the dataset. 
 

Descriptor 

Benign (N= 26) 

Mean ± Std.Dev. 

Malignant (N= 32) 

Mean ± Std.Dev. P-value 

Convexity 0.88 ± 0.07 0.82 ± 0.10 0.005 

Extent 0.64 ± 0.09 0.59 ± 0.10 0.045 

nComplexity 0.31 ± 0.19 0.47 ± 0.20 0.002 

Eccentricity 0.70 ± 0.17 0.67 ± 0.14 0.392 

Convexity 3D 0.90 ± 0.19 0.72 ± 0.13 < 0.001 

Extent 3D 0.42 ± 0.11 0.34 ± 0.09 0.006  

nComplexity 3D 0.32 ± 0.15 0.45 ± 0.13 0.001 

Eccentricity 3D 0.83 ± 0.09 0.76 ± 0.10 0.018 

CSAR  0.43 ± 0.14 0.27 ± 0.08 < 0.001 

 

The results of ROC analysis for significant descriptors are presented in Table 7.4. 

Among these descriptors, the CSAR stands out in terms of its higher diagnostic accuracy 
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(0.87).  In comparison, accuracies of the other descriptors (convexity, complexity and 

extent) are lower and range between 0.81 and 0.66. Another observation that can be 

deduced from this table is that, in discriminating malignancy, the 3D descriptors perform 

better than the 2D descriptors. Sensitivity, specificity and optimality function plots for 

CSAR are presented in Figure 7.5. From this figure, the optimal threshold is determined to 

be 0.30.  At this threshold, the CSAR achieves 92% specificity, 72% sensitivity, 92% 

positive predictive value and 73% negative predictive value. 

 
Table 7.4 

Summary of the ROC analyses. 
  

95% CI of AUC 

Descriptor AUC Std. Error Lower Bound Upper Bound 

CSAR  0.87 0.05 0.77 0.97 

Convexity 3D 0.81 0.06 0.69 0.93 

nComplexity 3D 0.74 0.07 0.61 0.87 

Extent 3D 0.72 0.07 0.58 0.86 

nComplexity 0.71 0.07 0.57 0.85 

Convexity 0.70 0.07 0.56 0.83 

Eccentricity 3D 0.68 0.07 0.54 0.82 

Extent 0.66 0.07 0.56 0.83 

 

 
Figure 7.5 Sensitivity, specificity and optimality function plots of CSAR. 
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7.8  Discussion 

Morphological characteristics of lesions in DCE-MRM contain important diagnostic 

information and can be used for assessing breast abnormalities.  For example, irregular 

shape, irregular or spiculated margins, heterogeneous internal enhancements and rim 

enhancements are signs of malignancy while smooth margins and homogenous internal 

enhancements are associated with benign lesions.   

Recently, a number of quantitative methods have been developed to detect 

malignancy based on lesion morphology. Diagnostically useful information is commonly 

extracted using delayed fat suppressed post-contrast images or subtraction images that are 

helpful to suppress less enhancing normal parenchyma and to highlight avidly enhancing 

regions.  In this study, we introduce a novel method that is based on the use of nMITR 

maps. These maps, generated from dynamic MRM datasets, do not require prior fat 

suppression or superb homogeneity and moreover, can improve contrast by suppressing 

enhancements of blood vessels and normal parenchyma that surround the lesions and 

therefore are especially advantageous during evaluation premenopausal women.  

In a majority of previous morphological studies, lesion assessment is carried out 

using morphological measures from a “representative” slice in which the lesion has the 

largest diameter.  In one study, a neural network, trained by a feature vector consisting of 

curvature, eccentricity, gray-level threshold, filled area and solidity is demonstrated to 

have high diagnostic accuracy on a limited data set of 14 lesions [20]. In another study, the 

value of complexity, convexity, circularity and degree of elongation in discrimination of 

malignancy is compared [21].  Convexity and complexity are found to be the significant 

measures. Our results from convexity, normalized complexity, extent and eccentricity 

measurements in 2D verify these findings.  Moreover, due to the special technique used we 

achieve higher significance figures. 

Morphological studies have recently been extended to volumetrically segmented 

lesions.  In one study, a spherical shape index is reported to have high significance [18], 

while in another study smoothness of uptake and mean margin sharpness are shown to 

have good diagnostic accuracies [19]. When compared with these findings, the 3D 
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morphological descriptors introduced in this study, namely, contact surface area ratio, 

convexity, complexity and extent have higher significances and accuracies (see Table 7.1). 

In other words, 3D morphological analysis provides a better way to reflect aggressiveness 

of malignant lesions than 2D analysis.  

In conclusion, our results illustrate that the 3D morphological descriptors extracted 

from the nMITR maps have improved diagnostic performance in discrimination of 

malignancy; they are efficient and allow better standardization. Among these, the contact 

surface area ratio has the highest significance and highest diagnostic accuracy; it can be 

computed easily and is adaptable to any imaging protocol.  Morphological descriptors of 

small lesions or large but lobulated lesions alone may not be sufficient to successfully 

discriminate malignancy.  For such cases, during decision-making, it may be useful to 

exploit morphological descriptors as well as the dynamic enhancements properties. 



 
 

124

8.   DECISION SUPPORT SOFTWARE FOR MR MAMMOGRAPHY 

8.1  Introduction  

MR mammography (MRM) is gaining increased acceptance for detecting breast 

cancer in its early stages since lesion-obscuring overlapping structures and summation 

shadows are much less pronounced, as there is no need for excessive breast compression 

during imaging. It does not use ionizing radiation and hence is particularly suitable for 

young women, who tend to have dense breasts [106]. With the help of contrast agents that 

reveal the state of angiogenesis, MR mammography provides important tissue information 

on cross-sectional morphology, as well as functional information on perfusion and 

capillary leakage and thus makes possible localization, visualization and assessments of the 

aggressiveness and multifocality of the breast lesions [75].  Moreover, among the currently 

available breast imaging techniques such as “X-ray mammography, high frequency breast 

ultrasound, positron emission tomography and scintimammography, MR mammography 

offers the highest sensitivity for invasive breast cancer”  [3]. 

For accurate assessment of cancer, a large volume of image data produced with high 

spatial and temporal resolutions must be analyzed. Acquired T2-weighted images, pre and 

post-contrast T1-weighted images and subtraction images created from the dynamic data 

should all be inspected by the radiologist carefully slice by slice to identify suspicious 

regions. This is a very time consuming task and a heavy workload, as these regions can be 

very small and there may be several deceptively enhanced healthy regions such as blood 

vessels and normal parenchyma especially in case of premenopausal women. To obtain 

optimal malignancy discrimination, the morphology and the enhancement dynamics of 

every suspicious region identified as a lesion, should be carefully evaluated visually [121].  

Typically, irregular morphology, irregular or spiculated margins, heterogeneous 

internal enhancements and rim enhancements are signs of malignancy, while smooth 

margins and homogenous internal enhancements are associated with benign lesions. Rapid 
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enhancement suggests in most cases malignant lesions and gradual enhancement suggests 

usually benign lesions [14]. A simple and therefore common technique for enhancement 

dynamics is the evaluation of the shape of a representative “time–signal intensity curve” of 

the lesion. To initiate this, the radiologist should place a small region of interest (ROI) over 

the most rapidly and intensely enhancing component of the lesion [22]. Utmost care is a 

must during the positioning of the ROI, since missing of a very small detail may result in 

poor specificity and sensitivity in the final diagnosis. The user must also be familiar with 

the TICs of malignant and benign lesions to make accurate decisions.  Due to the enormous 

image data that must be processed and interpreted, a typical manual patient evaluation 

requires constant and diligent attention of the radiologist for periods exceeding 30 minutes.   

For improved diagnosis, a number of quantitative methods have been developed that 

make use of a number of protocols and interpretation criteria such as eccentricity, solidity, 

maximum enhancement rates at specific times, time to maximum enhancement and 

washout ratio, etc., [20, 25, 122,123]. Among them, complexity and normalized maximum 

intensity-time ratio, computed from a “representative” image from the acquired images, fat 

suppressed images or first subtraction images of a lesion, have been shown to be important 

criteria [21, 35]. However all these methods are far from practical use and undoubtedly, 

there is a great need for software packages that automatically extract important diagnostic 

features of the image data and present them to the radiologists for decision support in the 

clinical practice. 

A pioneering work toward this goal was carried out by Leach et al, who developed 

MRIW, a software to quantify contrast agent in dynamic contrast-enhanced MR images 

[6]. Five parameters, onset time (time taken to reach 10% enhancement), initial gradient 

(rate of increase in signal intensity at the 10% point), mean gradient (mean rate of signal 

intensity increase between the 10% point and the 90% point), maximum enhancement and 

wash-out rate were calculated pixel-by-pixel to generate color maps visualizing highly 

enhancing breast tissues with manual thresholding. These maps provided valuable 

information during the subjective placement of ROIs. The software was equipped with a 

facility to display the histogram of the distribution of the relevant parameter within a 

drawn ROI.  
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In a recent software, reported by Subramanian et al. [36], the user is interactively 

allowed to specify a TIC that represents malignancy. A similarity confidence degree is then 

automatically assigned to each voxel and displayed in different intensities of red. 

Alternatively, the user could manually identify a suspicious region and draw an ROI inside 

it; the software then plots its TIC. Since lesions with different TICs may be missed, this 

system has limited lesion detection capability.  

MTDYNA (Mevis Inc, Bremen, Germany) is another software that generates color 

parametric maps of relative changes in intensity of each pixel over time. Three time points 

are used to determine the color-coding; the precontrast, the first post-contrast and the final 

time point. Enhancement of the initial post-contrast time point relative to the baseline pre-

contrast time point determines an initial color category. The final displayed colors for each 

pixel are determined by the rate of enhancement change between the initial post-contrast 

and last post-contrast points. The software has a commercial version called DynaCAD 

(Invivo Copr., Orlando, FL). It has improved capabilities; eleven parameters (maximum 

enhancement, enhancement at a time point, value at time point, two phase –the method of 

MTDYNA-, time to peak, maximum intensity-time ratio, maximum descent, maximum 

slope, mean transit time and integral) are calculated pixel-by-pixel. For better evaluation of 

suspicious enhancements, a manually selected threshold value must be supplied. Wiener et 

al report that the use of the software decreases interpretation time for a case to 

approximately 5 min. while detecting malignant lesions Achieved diagnostic accuracy was 

89% [7].  

fTP (CAD Sciences Inc, White Plains, NY) is a software that utilizes a parametric 

mapping method based on pharmacokinetic analysis. Vessel permeability and extra-

cellular volume are calculated pixel-by-pixel by fitting a curve over all available time 

points. Tissue physiology histogram and fTP colorized images are the visual outputs. The 

software provides a direct link between histogram plot and pixel location in the colorized 

image. In a clinical study, the mapping method is demonstrated to have 96% sensitivity 

and 82% specificity in solid lesions detection [4]. 
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CADstream (Confirma Inc, Kirkland, WA) is another software that produces colored 

images to identify areas of significant enhancement after pixel by pixel analysis. In 

addition, it provides details about regions that show significant enhancement. Once the 

user selects a specific area showing significant enhancement, the program automatically 

generates a synopsis of the full volume of that region, including the percentage of the 

tissue that shows wash-out, plateau and persistent enhancement. Lehman et al studied the 

benefits of these percentages in discrimination of breast cancer. They used threshold values 

of 25%, 50% and 100% enhancement. All malignant lesions showed significant 

enhancement at all thresholds. Computer-assisted analysis yielded false positive rates that 

were reduced by 25%, 33% and 50% for each threshold, respectively. There were no 

significant differences found between enhancement profiles of benign and malignant 

lesions. All lesions showed a wide range of wash-out, plateau and persistent patterns of 

enhancement [5]. 

All these computerized methods try to overcome difficulties associated with 

subjective ROI analysis using several enhancement parameters. However, a manually 

selected threshold value that significantly affects the performance of lesion 

characterization is still a requirement.  MRIW and CADstream differ from the other 

software since they also provide lesion identification and enhancement distributions. To do 

this, the radiologist must first draw an ROI, encompassing the whole lesion appropriately 

or must mark the lesion. To make correct decisions however he/she must be familiar with 

the distribution data of malignant and benign lesions.  This subjective nature of the 

assessment clearly results in increases inter-observer variability.  

In this thesis, we present DynaMammoAnalyst, a novel decision support software that 

facilitates lesion identification, delineation and evaluation by providing improved 

visualization, segmentation and localization of suspiciously enhancing regions, interactive 

plots of time-intensity curves and time-intensity curve distributions. It minimizes the time 

required to explore breast MRI data and reduces inter and intra-observer variability by 

providing decision support for simultaneous quantitative dynamic and morphologic 

evaluations.  
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8.2  Overview of DynaMammoAnalyst 

DynaMammoAnalyst, is a special 32-bit software, designed to run on personal 

computers with Microsoft Windows operating systems. It is written by the authors in 

Borland Delphi 7.0 (Borland Software Cooperation, Inc., USA) and has user-friendly 

graphical interfaces to explore breast MRI in the Digital Imaging and Communications in 

Medicine (DICOM) standard created by the National Electrical Manufacturers Association. 

There are four specially designed windows; “Main” window, “Slice Explorer” window, 

“Zoom” window and “Dynamic Analysis” window. 

8.2.1  Loading of Patient Data  

The user selects the patient study file, usually named as DICOMdir, to be processed 

via the “Main” window. This file acts as a directory for DICOM file sets and holds a full 

four level hierarchy (Patient, Study, Series and Image).  It stores information about the 

breast MR examination such as the patient name, the study date, the imaging protocols 

used, the names of the acquired image files and their locations. Using these data, the 

software populates MR image filenames into slice locations under the imaging protocols 

and creates a study tree, as seen in Figure 8.1. To start diagnostic analysis, the user should 

select a slice. 

8.2.2  Visualization of Suspicious Enhancements  

If the selected slice belongs to a scan acquired without contrast agent such as a T2 

weighted scans or a fat suppressed T1-weighted scans, the software only displays the 

relevant image on the “Slice Explorer” window. At the top of this window, patient 

information and the imaging protocol used is displayed and a slice navigation bar is 

presented, as seen in Figure 8.2. However if a slice is selected from a dynamic scan then 

the software displays acquired pre and post-contrast images, subtraction images, maximum 

intensity image and uniquely color coded map of normalized maximum intensity time ratio 

(nMITR) on the “Slice Explorer” window  (see Figure 8.3) as discussed below. 
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Figure 8.1 Main window and study tree populated from the selected DICOMdir file. 

 

 
 

Figure 8.2 Slice Explorer window for a scan without contrast agent. 
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Figure 8.3 Slice Explorer window for a dynamic scan. 
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Subtraction images and MIP are generated by processing acquired pre and post-

contrast images pixel-by-pixel for the slice. These images, except MIP, may also be 

displayed in the cine-mode. The relative enhancements and the nMITR map are calculated 

using the following equations [54], [34]: 
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In the above equations, ℜ  represents a small moving ROI, 3×3 pixels in size. It is initially 

placed to the upper leftmost portion of the slice stack, and moved to a new location until 

the whole stack is covered. 1, 2,...5i = ,  is the acquisition order of the post-contrast images; 

( )I iℜ  and ( )E iℜ  are the average intensity and the relative enhancement of the i–th post-

contrast image within ℜ . (0)Iℜ  is the average intensity of the pre-contrast image. maxT  

denotes the time (in seconds) at which the enhancement Eℜ reaches to its maximum.  

The nMITR maps are displayed in HSV color format; values smaller than a lower 

threshold value (default 0.14 sec-1) are shown in blue while values bigger than an upper 

threshold value (default 0.27 sec-1) are displayed in red. The default threshold values have 

been optimized to distinguish lesions from the surrounding vascular tissues such as 

moderately enhanced normal parenchyma, blood vessels and fat.  Although they work well 

in most applications, the user can interactively adjust the upper threshold for improving 

contrast.  The software makes possible to superimpose the MIP on the nMITR map. 

8.2.3  Interactive Enhancement Analysis  

When the “Slice Explorer” window is opened for a dynamic scan, the system 

automatically creates and displays all the relevant images and places a 3×3 pixel ROI at the 

current cursor location.   
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A magnified nMITR map of the region centered at the current cursor location, 

focused by a cross, is also displayed in the “Zoom” window. It is also possible to 

synchronize this view with the magnified MIP of the region centered at the same cursor 

location (see Figure 8.4a). The corresponding enhancement values, the time that 

enhancement reaches its maximum, nMITR value, ISB (initial signal behavior) and PSB 

(post-initial signal behavior) of the tissue at this location are computed (using Eqs. 8.1.a-d, 

[62]) and the TIC is plotted in the “Dynamic Analysis” window.  (see Figure 8.4b). If the 

user changes the cursor to a new location, all these computations and visualization will be 

repeated. Thus, the user can interactively guide the system to facilitate lesion localization 

and malignancy detection. 
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(a) 

Figure 8.4 (a) The Zoom Window that displays magnified nMITR map and MII of the region centered at the 
current cursor location, (b) the Dynamic Analysis window that displays computed enhancement parameters 
of the tissue at the current cursor location. 
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(b) 

Figure 8.4 Continued. 

 

8.2.4  Automated Lesion Segmentation and Diagnosis 

Once a lesion is identified, the user may easily segment it by manually selecting a 

seed point inside on its nMITR map. Region growing is then automatically performed to 

generate irregular whole ROI. Several descriptive parameters are next computed and 

displayed in “Zoom” and “Dynamic Analysis” windows.  

The superimposed nMITR map of the lesion and generated ROI (in navy) are 

presented in the “Zoom” window scaled by a zoom factor of three. The superimposed MIP 

of the lesion and generated ROI (in blue) is also presented in the same window (see Figure 

8.5a).  Center location of the lesion (shown in navy and blue in the magnified images), it’s 

area and bounding box area, valuable for MR-guided interventions, are displayed in this 

window above two diagnostic features, namely normalized complexity and maximum 

nMITR. The tissue with the maximum nMITR inside the ROI is interrogated pixel-by-pixel 

to determine the enhancement behavior of the lesion while normalized complexity of the 
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ROI (expressed as the square of the ROI perimeter divided by the 4π×ROI Area) is 

computed to quantify the shape of the lesion. Mean enhancement values, mean time-

intensity curve, percentages of tissues within the ROI with continues increase (PSB> 10%), 

plateau (-10% < PSB < 10% ) and wash-out (PSB< -10%) enhancement patterns, mean 

initial signal increase and post-initial signal behaviors, mean nMITR and mean Tmax are 

displayed in the “Dynamic Analysis” window. A diagnostic decision supplied by a 

classifier embedded into the software is also displayed at the bottom of the “Zoom” 

window to help the user (see Figure 8.5b). The classifier is a maximum likelihood 

estimator designed using a training set. Gaussian density functions for two-class (benign or 

malignant) data are determined by 

 

1 2

1
1 2 1/ 2

1 1( , ) exp ( ) ' ( )
22

x x x
x

f x x C
C

µ µ
π

−⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

x x   (8.2) 

 

where x1 and x2 are the maximum nMITR and normalized complexity features computed 

from the slice in which the lesion has the largest diameter; µ and Cx are the mean-value 

vector and the covariance matrix, respectively.  

8.2.5  Experimental Data 

Breast imaging is performed on a 1.5 Tesla MR scanner (Magnetom Symphony, 

Siemens Medical Systems, Erlangen, Germany) equipped with a dedicated four-element 

phased-array receiver breast coil. Patients are positioned prone with the breast to be 

imaged in gentle compression within the coil to minimize motion artifacts. The imaging 

sequence is 3D fast low angle shot (FLASH) (TR/TE 9.80/4.76 msec, flip angle 25o, matrix 

size 512×512, slice thickness 2.5 mm, 0.625×0.625mm2 in-plane resolution). During and 

immediately after the bolus injection of contrast agent Gd-DTPA (0.1 mmol/kg body 

weight), one pre-contrast and five post-contrast high-resolution bilateral axial images are 

acquired per slice with a temporal resolution of approximately 88 seconds.  12-bit 

grayscale image sets are transferred from the MR scanner to a personnel computer in 

DICOM format for further analysis. 
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(a) 

 
 

 

(b) 

Figure 8.5 (a) The Zoom Window that presents the superimposed nMITR map of the lesion and generated 
ROI (in navy) and superimposed MIP of the lesion and generated ROI (in blue) scaled by a zoom factor of 
three and that displays supplied decision support, (b) Dynamic Analysis window that shows the result of 
enhancement computations. 
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The software has been tested on a dataset consisting of contrast enhanced MR 

mammograms from 40 women (age: 32-62 years; mean age: 49 years).  The nature of the 

imaging procedure is explained to all the patients and their consents are secured.  20 

benign and 24 malignant lesions have been manually marked on the nMITR maps by two 

expert radiologists after mutual agreement (approximate lesion center is marked; the whole 

lesion contour is not delineated). All the findings have been supported either by 

histopathological examination or by clinical follow-up.  

8.2.6  Statistical Analysis 

The significances of the features in discrimination of malignancy are evaluated using 

SPSS 15 (SPSS Inc., USA). The independent samples t-test with either a pooled or 

separate variance as determined by the Levene’s test for equality of variances is performed. 

Accuracies of the features are calculated from the area under the ROC curve [117].  

The classifier was trained with 10 benign and 12 malignant lesions and tested with 

the remaining 22 lesions. Diagnostic characteristics of the classifier were assessed by Se 

(sensitivity), Sp (specificity), DA (diagnostic accuracy), PPV and NPV (positive and 

negative predictive values) calculated using: 
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where TP, FN, TN and FP are true-positive, false-negative, true-negative and false-positive 

decisions of the classifier, respectively. Pr is the expected prevalence of malignancy in the 

study dataset. 

8.3  Results 

DynaMammoAnalyst permits an easy and fast way to explore and analyze breast MR 

data. Although subtraction images and MIPs are helpful to highlight suspicious enhancing 

regions, presence of image intensity non-uniformity on these images may lead to faulty 

detections. To minimize such problems and to improve contrast, the system makes use of 

color-coded nMITR maps from dynamic data. Interactive TIC plots make it easy to analyze 

suspicious enhancements and therefore facilitate lesion identification. When the user 

selects a seed point inside an identified lesion, whole lesion ROI is automatically generated 

and a number of diagnostic features, valuable for MR-guided interventions and diagnosis, 

are computed. Moreover, a maximum likelihood classifier is embedded within the software 

supplies decision support to the user based on computed normalized complexity and 

maximum nMITR. 

Measurements from the nMITR maps in which the lesions have the largest diameter 

show that there are significant differences between the benign and malignant lesions for 

normalized complexity (0.27 ± 0.14 and 0.50 ± 0.21, P= 0.002, accuracy= 0.77) and 

maximum nMITR (1.27 ± 0.70 and 3.22 ± 1.42, P <0.001, accuracy= 0.92). Our results 

from maximum nMITR and normalized complexity verify the recent studies mentioned 

previously.  Moreover, due to the special technique used, higher significance values are 

achieved. The classifier was trained with 10 benign and 12 malignant lesions and tested 

with the remaining 22 lesions. For the test dataset, the classifier achieved 92% sensitivity, 

90% specificity, 91% diagnostic accuracy, 92% positive predictive value and 90% negative 

predictive value.  

The usefulness of the developed software is illustrated using three cases. First, a 52 

years old woman is considered. Using the slice navigator in the “Slice Explorer” window, 

visual examination of the images shows that there is a lesion on her right breast. Figures 
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8.6a and 8.6b shows the generated MIP and nMITR image for the selected slice (slice 14). 

It is the “representative” slice in which lesion has its largest diameter. Whole lesion ROI 

automatically generated after supplying a seed point inside the lesion by the user. From 

this ROI, several descriptive parameters are computed and displayed in the “Zoom” 

window (Figure 8.6c) and in the “Dynamic Analysis” window (Figure 8.6d). The mean 

enhancement curve and the percentages of voxels within the ROI with persistent, plateau 

and wash-out enhancement patterns are plotted in the latter window. The lesion has an 

ovoid shape and show homogeneous enhancement. Its mean TIC curve shows plateau and 

the mean nMITR is low. However, the lesion has a high maximum nMITR value of 3.82 

and TIC distributions emphasize that 37% of the tissues inside it show wash-out. The 

decision support given is as malignant and is correct since histopathological examination 

confirmed that the lesion is an invasive lobular carcinoma.  

 

 

 

(a) 

Figure 8.6 (a) MIP and (b) nMITR image for the representative slice (slice 14) of a lesion of a 52 years old 
woman on her right breast. (Histopathology: Invasive lobular carcinoma). 
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(b) 

 
 
 

                

(c)       (d) 

Figure 8.6 Continued. 
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Figures 8.7a and 8.7b shows the generated MIP and nMITR image for the 

representative slice (slice 20) of a lesion of a 48 years old woman on her left breast near to 

the chest-wall. Descriptive parameters computed from the generated whole lesion ROI and 

displayed in the “Zoom” window and in the “Dynamic Analysis” window are presented in 

Figures 8.7c and 8.7d. The lesion has an ovoid shape and show homogeneous 

enhancement. Its mean TIC curve shows continues increase and the mean nMITR is low. 

The lesion has a low maximum nMITR value of 1.36, however TIC distributions 

emphasize that 42% of the tissues inside it show plateau or wash-out. The decision support 

given as benign; and it is correct since histopathological examination verifies that the 

lesion is a fibroadenoma.  

 

 

 

 

(a) 

Figure 8.7 (a) MIP and (b) nMITR image for the representative slice (slice 20) of a lesion of a 48 years old 
woman on her left breast near to the chest-wall. (Histopathology: Fibroadenoma). 
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(b) 

 
 
 

                

(c)       (d) 

Figure 8.7 Contiued 
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Figures 8.8a and 8.8b shows the generated MIP and nMITR image for the 

representative slice (slice 22) of a lesion of a 42 years old woman. Descriptive parameters 

computed from the generated whole lesion ROI and displayed in the “Zoom” window and 

in the “Dynamic Analysis” window are presented in Figures 8.8c and 8.8d. The lesion has  

spiculated margins and inhomogeneous enhancement. It is difficult to make a diagnosis 

only using the mean enhancement computation values. Mean TIC curve shows plateau (not 

a wash-out) and the mean nMITR is low. However, the lesion has a high maximum nMITR 

value of 4.37 and TIC distributions prove that 61% of the tissues inside it show wash-out. 

The decision support is given as malignant; and it is correct since histopathological 

examination verifies that the lesion is an invasive ductal carcinoma.  

 

 

 

 

(a) 

Figure 8.8 (a) MIP and (b) nMITR image for the representative slice (slice 22) of a lesion of a 42 years old 
woman (Histopathology: Invasive ductal carcinoma). 
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(b) 

 
 
 

                

(c)       (d) 

Figure 8.8 Continued. 



 
 

144

8.4  Conclusion 

MR mammography (MRM) is gaining increased acceptance for detecting breast 

cancer in its early stages since it offers the highest sensitivity among other breast imaging 

modalities. In MRM, lesion-obscuring overlapping structures and summation shadows are 

much less pronounced as there is no need for excessive breast compression during 

imaging. Moreover, it does not use harmful ionizing radiation and with the help of contrast 

agents, it provides important tissue information on cross-sectional morphology, as well as 

functional information on perfusion and capillary leakage.  

For accurate assessment of breast cancer however, a large volume of image data 

must be acquired at high spatial and temporal resolutions with an MR scanner and must be 

analyzed meticulously. The morphology and enhancement dynamics of every suspicious 

region must be visually evaluated diligently by placing a small region of interest (ROI) 

over the early enhancing component of the lesion and tracking its course over time. As 

these regions can be very small and there may be several deceptively enhanced regions 

from healthy tissues, manual identification of lesions from acquired images and subtraction 

images requires intensive attention of an expert radiologist for periods that may exceed 30 

minutes. Moreover, the final diagnoses reflect the experience of the examiners and are thus 

subjective.  

DynaMammoAnalyst is a novel decision support software developed by the authors 

to speed up the examinations and overcome subjectiveness via computation of several 

enhancement parameters.  It facilitates lesion identification, delineation and evaluation by 

providing improved visualization, segmentation and localization of suspiciously enhancing 

regions, interactive plots of time-intensity curves and time-intensity curve distributions. It 

shortens the time required to explore breast MRI data considerably and reduces inter and 

intra-observer variability by providing decision support for simultaneous quantitative 

dynamic and morphologic evaluations. DynaMammoAnalyst is able to process breast MR 

images acquired in different orientations with different resolutions and is able to show 

images in DICOM format from other modalities such as X-ray mammography and breast 

ultrasound, supplying adjunct diagnostic information to the radiologist. It requires minimal 

user interaction and post processing of the images is pleasingly fast. 
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Improved diagnostic performance in discrimination of malignancy is achieved using 

morphological and enhancement descriptors extracted from nMITR maps. These maps, 

generated from dynamic MRM datasets, do not require prior fat suppression or superb 

homogeneity (as do subtraction images and maximum intensity projections) and moreover, 

can improve contrast by suppressing enhancements of blood vessels and normal 

parenchyma that surround the lesions and therefore are especially advantageous during 

evaluation premenopausal women.  

To be self-sufficient, the present software must be empowered with additional 

functionalities, such as volumetric visualization, diagnostic feature extraction and 

automated lesion localization.  To improve classification accuracy further, the fast 

localization technique that the authors have recently developed to segment breasts, detect 

suspiciously enhancing regions and eliminate false-positive detections [124] can be 

implemented and the maximum likelihood classifier can be replaced with a better 

classifier.  Another potential area that is worthy of exploration is the diagnostic 

significance of 3D features such as nMITR-entropy and 3D visualizations [116].  Although 

DynaMammoAnalyst is inherently capable of compensating small motion artifacts due to 

the averaging nature of the nMITR maps, it does not include a dedicated motion correction 

scheme. Patient motion may lead to serious diagnostic complications as a result of 

misalignments of the image sequences during acquisition of dynamic images. Some of the 

image registration techniques that have been proposed in the literature on motion 

correction can be used to deal with this difficult problem [102, 103, 104, 105].  We intend 

to tackle this problem also in the future. 
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9.   CONCLUSIONS 

9.1  General  

Dynamic Contrast Enhanced Magnetic Resonance Mammography (DCE-MRM) is 

gaining increased acceptance for detecting breast cancer in its early stages since it offers 

the highest sensitivity among other breast imaging modalities. In DCE-MRM, lesion-

obscuring overlapping structures and summation shadows are much less pronounced as 

there is no need for excessive breast compression during imaging. Moreover, it does not 

use harmful ionizing radiation and with the help of contrast agents, it provides important 

tissue information on cross-sectional morphology, as well as functional information on 

perfusion and capillary leakage.  

For accurate assessment of breast cancer however, a large volume of image data 

must be acquired at high spatial and temporal resolutions with an MR scanner and must be 

analyzed meticulously. The morphology and enhancement dynamics of every suspicious 

region must be visually evaluated diligently by placing a small region of interest (ROI) 

over the early enhancing component of the lesion and tracking its course over time. As 

these regions can be very small and there may be several deceptively enhanced regions 

from healthy tissues, manual identification of lesions from acquired images and subtraction 

images requires intensive attention of an expert radiologist for periods that may exceed 30 

minutes. Moreover, the final diagnoses reflect the experience of the examiners and are 

subjective. The basic goal in this thesis was, therefore, to develop the foundations for a 

decision support system that can assist radiologists and relieve their heavy burden of 

meticulous visual examinations of a large number of images by automatically performing 

computerized lesion localization and in assisting them in their final malignancy detections.  
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9.2  Lesion Localization 

Lesion localization is a complex and computationally expensive process in which 

regions that are out of interest and deceptive enhancements must be carefully segmented 

out to prevent false-positive detections in the vicinity of these regions.  In this thesis, a 

fully automated 3D lesion localization system is developed that does not need user 

supervision.  The system makes use of massively parallel cellular structures with learning 

capabilities called cellular neural networks (CNNs) that offer alternative solutions to 

complex image processing applications with their extremely high throughputs. To prevent 

false-positive detections in the vicinity of regions out of interest such as thoracic cavity, 

lungs and heart, breast region of interest is first segmented from the pre-contrast images 

using two cascaded 2D CNNs, specifically designed for this purpose. The first net 

performs gray level thresholding and the second net is used to erase small objects and to 

smooth-out sharp corners. For the segmented breast, to be able to identify suspicious 

enhancements and to remove low deceptively enhanced tissues such as blood vessels, fatty 

tissue, muscles and normal parenchyma, a 3D nMITR map is generated using a moving 

ROI of 3×3 voxels and converted into binary form via a carefully selected threshold.  The 

resultant map is next processed with a 3D template of three layers of 12×12 cells using a 

convolution-like operation that is quite similar to what radiologists do for lesion detection; 

they mentally use templates based on their experience and evaluations of lesion anatomies. 

Using the designed template it is possible to detect small lesions. At the end of the 

template processing, volumes geometrically similar to the template become enhanced. To 

boost lesions and to eliminate moderately enhanced normal tissues, the convolution result 

is passed from a threshold that yields a similarity of 47%. A lower value will result in 

increased false-positive detections due to enhanced blood vessels, while higher values will 

result in missed lesions. This method was tested with a dataset of 2064 MR mammograms 

containing 39 marked lesions. Ninety-seven percent of the breasts were segmented 

properly and all the lesions were detected correctly (detection sensitivity=100%), however, 

there were some false-positive detections (0.31/lesion, 0.10/slice). 

To our knowledge, there are no publications on computerized methods that focus 

solely on DCE-MRM lesion detection. Bian et al. [13] seem to be working on this topic 
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and in a recent abstract reported their initial results4. When tested on dataset consisting of 

20 cases with 21 lesions, their method correctly detected 16 of the lesions and on average, 

there were 9 false positive detections per case. These findings correspond to a detection 

sensitivity of 76% and a false-positive detection rate per lesion of 857%. In comparison, 

the performances of our system are better.  

Proper segmentation of the breast is vital for the success of the system. There are 

cases in which segmentation may not be very accurate, especially for fat patients. Since 

intensities are reduced further away from the breast coil, segmentation may end 

inappropriately within the axilla at an arbitrary edge, leading to false negative detections. 

When there is a suspected lesion within the axilla, due to its better coverage, sagittal 

imaging should be used to minimize problems. During 3D template matching there may be 

some loss of morphological information. This loss of is tolerable in the current system 

since it is intended only for localizing lesions. This localization information can later be 

used as a guide for more accurate lesion segmentation that preserves morphology for 

malignancy discrimination. Patient motion can lead to serious diagnostic complications as 

a result of misalignments of the image sequences during acquisition of contrast-enhanced 

MR mammograms. Several image registration techniques have been proposed that attempt 

to solve this difficult problem. Although the present system does not include a dedicated 

motion correction scheme, it is inherently capable of compensating small motion artifacts 

due to the averaging nature of the nMITR maps. 

To improve the work on lesion localization mentioned above, we have experimented 

with a number of different CNN architectures on an expanded dataset. In one study, to 

segment the breast region of interest, instead of the two CNN architecture, we tried using 

four coupled 2D CNNs connected in cascade. The similarity threshold and the 3D template 

were replaced by a 3D CNN with a fuzzy c-partitioning output function. To minimize false 

positive detections, a set of decision rules extracted from volume and 3D eccentricity 

features of the suspicious regions were used to make localize lesions. This method was 

tested with a dataset that included 7020 MR mammograms with 76 marked mass lesions. 

                                                 
4 We contacted the authors for more information and received the following message in response: “The study 
you mentioned was presented at the AAPM conference this year and we only have an abstract published so 
far for that topic”. 
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3600 mammograms with 46 lesions of this set were used for training the system, the 

remaining data was used for test purposes. The segmentation algorithm performed well 

with high average precision, high true positive volume fraction and low false positive 

volume fraction with an overall performance of 0.93±0.05, 0.96±0.04 and 0.03±0.05, 

respectively (training: 0.93±0.04, 0.94±0.04 and 0.02±0.03; test: 0.93±0.05, 0.97±0.03 and 

0.05±0.06). For the training dataset, the maximum lesion detection sensitivity was 100% 

with false-positive detections of 0.28/lesion, 0.09/slice and 0.65/case; however for the test 

dataset, the maximum detection sensitivity was 97% with false-positive detections of 

0.43/lesion, 0.11/slice and 0.68/case, overall.  

The use of CNNs, fuzzy c-partitioning, volume and 3D eccentricity criteria reduces 

false-positive detections due  to artifacts caused by  deceptively enhanced blood vessels, 

nipples and normal parenchyma and artifacts from vascularized tissues in the chest-wall 

due to over segmentation. We hope that this system will facilitate breast MR examinations, 

improve localization of lesions, provide important information before surgery, help reduce 

mortality due to undetected cancer re-occurrence as a result of missed multicentricity and 

decrease the number of unnecessary biopsies and mastectomies.  

A software implementation of the proposed method, using a PC equipped with 

2.4GHz processor, 3GB RAM, and Matlab 7.0, requires less than 18 minutes to process a 

single patient data. Although, this time can be reduced to sub-minute levels, using 

optimizing compilers, a direct hardware implementation will allow almost “real-time” 

processing speeds and will certainly open up new clinical applications.  For example, 

quasi-automated MR-guided biopsies may be feasible and additional post-contrast lesion 

images can be acquired to improve morphological characterizations.   

9.3  Malignancy Detection 

We studied the effectiveness of a number of morphological and enhancement 

descriptors of breast lesions derived from nMITR projections for detection of malignancy. 

To do this, we first developed a method to segment and analyze lesions in three 

dimensions.  The method consisted of four consecutive stages: volume of interest selection, 
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nMITR projection generation using a moving 3×3 mask, three-dimensional lesion 

segmentation and feature extraction. Diagnostic relevance of enhancement features 

extracted from the generated nMITR projection was studied in detail. The maximum, the 

mean, the standard deviation and the entropy of the nMITR were found to be highly 

significant; the skewness and the kurtosis were found to be insignificant.  The nMITR-

entropy had the highest significance and the significances of the standard deviation and the 

maximum were similar. In general, the significance of the parameters studied in this work 

are found to be greater than those reported in the literature due to the 3D nature of our 

method, the use of the voxel sampling via moving masks and the use of high resolution 

images.  

Morphological characteristics of lesions contain important diagnostic information for 

malignancy detection; therefore, a number of morphological descriptors extracted from the 

generated nMITR projection were studied in detail. 2D convexity, normalized complexity, 

extent and eccentricity as well as 3D versions of these descriptors and contact surface area 

ratio (CSAR) were considered. In a majority of previous morphological studies, 2D 

convexity and complexity measured from a “representative” slice in which the lesion has 

the largest diameter showed high significances. Our results from convexity, normalized 

complexity, extent and eccentricity measurements in 2D verify these findings.  Moreover, 

due to the special technique used we achieve higher significance figures. Morphological 

descriptors introduced in this study, namely, 3D convexity, complexity and extent were 

found to have higher diagnostic accuracies (ranging between 0.70-0.81) and improved 

performance when compared with the recent studies that analyze volumetrically segmented 

lesions. CSAR was found to be the most significant and accurate descriptor (75% 

sensitivity, 88% specificity, 89% positive predictive value and 74% negative predictive 

value).  

The methods developed in this thesis were used to develop a decision support 

software to speed up DCE-MRM examinations.  This software, called 

DynaMammoAnalyst, requires minimal user guidance, facilitates lesion identification, 

delineation and evaluation by providing improved visualization, segmentation and 

localization of suspiciously enhancing regions, interactive plots of time-intensity curves 

and time-intensity curve distributions and computation of several enhancement parameters. 
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It can also handle breast MR images acquired in different orientations with different 

resolutions.  

In conclusion, our findings demonstrate that the nMITR maps generated from 

dynamic MRM datasets are very effective for lesion localization and malignancy detection. 

They inherently suppress enhancements due to normal parenchyma and blood vessels that 

surround lesions and have natural tolerance to small field homogeneities. In comparison 

with subtraction images and maximum intensity projections they can be used in breast 

evaluations without prior fat suppression. Morphological and enhancement descriptors 

extracted from nMITR maps, in particular  3D morphological descriptors have significant 

diagnostic information and can be used for improving performance in discrimination of 

malignancy. Among these, the contact surface area ratio and  the nMITR-entropy, have the 

higher significances and the higher diagnostic accuracies; they can be computed easily and 

are easily adaptable to different imaging protocols.  The volumetrical segmentation 

technique for breast lesions based on voxel sampling with  a moving mask is very effective 

and instrumental in improving diagnostic accuracies, 

Due to the quantitative and the standardized nature of the techniques introduced in this 

work and because they are robust, efficient and reliable, we expect that their use in clinical 

practice, for surgical planning, for decision making, and in predicting the extent of residual 

disease after neoadjuvant chemotherapy will facilitate breast MR examinations, improve 

lesion localizations, increase diagnostic reproducibilities,  decrease inter- and intra-

observer variabilities, improve  overall diagnostic performances especially for clinically 

and mammographically occult lesions, decrease the number of unnecessary biopsies and 

mastectomies, facilitate detection of multifocality and multicentricity and provide 

important information before surgery. Since presence of multicentricity is highly correlated 

with cancer re-occurrence, their use will also result in reductions in  mortality due to 

undetected cancer re-occurrence. 
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9.4  Contributions 

This PhD thesis is a preliminary search into computerized detection of lesions using 

nMITR maps of DCE-MR mammograms. A major contribution is the lesion localization 

techniques described in Chapters 4-5 that are based on nMITR maps and CNNs. The 

effectiveness and the efficiency of these techniques have been verified using a large 

dataset. The results are very promising and yield high detection sensitivities and result in  

very low false-positive detections. They can be used to detect multifocality and 

multicentricity. This is an important issue since presence of multicentricity is highly 

correlated with cancer re-occurrence.  

Another major contribution of this thesis is the malignancy detection techniques 

described in Chapters 6-7. These techniques are based on   morphological and 

enhancement features computed from volumetrically segmented lesions and can be used to 

standardize lesion evaluations with minimal user involvement.   Being robust, efficient and 

reliable, they can be used for decision making, for surgical planning and for predicting the 

extent of residual disease after a neoadjuvant chemotherapy and to and minimize inter- and 

intra- observer variabilities, to  increase diagnostic reproducibility and improve overall 

diagnostic performance especially for clinically and mammographically occult lesions.  

The  major efforts of this thesis is the development of a novel decision support 

software called as DynaMammoAnalyst to speed up the DCE-MRM examinations and 

overcome subjectiveness via computation of several enhancement parameters. This 

software is written to facilitate lesion identification, delineation and evaluation by 

providing improved visualization, segmentation and localization of suspiciously enhancing 

regions, interactive plots of time-intensity curves and time-intensity curve distributions. It 

shortens the time required to explore breast MRI data considerably and reduces inter and 

intra-observer variability by providing decision support for simultaneous quantitative 

dynamic and morphologic evaluations. It is also able to process breast MR images acquired 

in different orientations with different resolutions and is able to show images in DICOM 

format from other modalities such as X-ray mammography and breast ultrasound, 

supplying adjunct diagnostic information to the radiologist. It requires minimal user 

interaction and post processing of the images is pleasingly fast. Its use in clinical practice 
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and for surgical planning may result in a decrease in the number of unnecessary 

mastectomies and a reduction in mortality.  

9.5  Recommendations for Future Work 

The methods developed in this thesis for lesion localization and malignancy 

detection are robust, efficient and reliable in terms of observer variability, allows better 

standardization of the evaluations, and appears promising.  However, generalization of the 

results requires further testing on large number of cases, lesion sizes and subgroups, 

reproducibility, applicability to other populations and other MRI systems. A multi-center 

study should  be conducted to expand the dataset and design a classification scheme that 

also considers lesion morphology hoping to further improve the performance of diagnosis 

by detecting rapidly enhancing fibroadenomas. The following is a list of additional topics 

waiting further exploration and improvements:  

1. Classical optimization techniques or genetic algorithms may be used to compute 

optimal patient-specific template parameters and thresholds.  

2. 3D CNNs can be used for lesion detection to minimize false-positive findings due 

to deceptive enhancements.  

3. Segmentation problems may be further improved through 3D morphological and 

enhancement analysis. 

4. Morphological descriptors of small lesions or large but lobulated lesions alone may 

not be sufficient to successfully discriminate malignancy.  For such cases, new 

discrimination techniques  may be developed using a combination of  dynamic and 

morphological features such as mean margin sharpness and nMITR entropy of a 

detected lesion volume.  

5. During 3D template matching there may be some loss of morphological 

information. This loss is tolerable if the objective is just localization of lesions. The 

localization information can later be used as a guide for more accurate lesion 

segmentation that preserves morphology for malignancy discrimination.  

6. The segmentation technique discussed in Section 4.4 can be extended, by a simple 

modification of the CNNO so that images acquired in other views can also be 

handled.  
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7. The CNNs can be implemented in hardware to cut down the processing time. The 

images can then be processed in (almost) real-time. This will certainly open up new 

clinical applications;  for example, semi-automated MR-guided biopsies may be 

feasible and additional post-contrast lesion images can be acquired to improve 

morphological characterizations.   

There are also a number of improvements that can be incorporated to 

DynaMammoAnalyst;   it can be empowered with additional functionalities, such as 

volumetric visualization, diagnostic feature extraction and automated lesion localization. 

The  fast localization technique described in Chapter 6 can be implemented to segment 

breasts, detect suspiciously enhancing regions and eliminate false-positive detections and 

the maximum likelihood classifier can be replaced with a better classifier to improve 

classification accuracy.  Another potential area that is worthy of exploration is the 

diagnostic significance of 3D features such as nMITR-entropy and 3D visualizations. 

Although DynaMammoAnalyst is inherently capable of compensating small motion 

artifacts due to the averaging nature of the nMITR maps, it does not include a dedicated 

motion correction scheme. Patient motion may lead to serious diagnostic complications as 

a result of misalignments of the image sequences during acquisition of dynamic images. 

Motion correction schemes can be used to minimize the adverse effect of patient motion. 
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APPENDIX A. MATLAB FILES 

During this Ph.D. study, several procedures have been written in Matlab 7.0 (The 

MathWorks, Inc., USA) to analyze dynamic 12-bit grayscale image sets transferred from 

the MR scanner in DICOM format and to numerically implement the developed methods. 

The m files that perform specific functions are given in the attached compact disk and are 

explained below. 

SegmentCNN.m 

This m file segments a breast MR image in DICOM format using two cascade 

connected cellular neural networks  and saves the resultant image in BMP format. The 

details are given in Chapter 4. 

SegmentCNN2.m 

This m file segments a breast MR image in DICOM format using four cascade 

connected cellular neural networks  and saves the resultant image in BMP format. The 

details are given in Chapter 5. 

GeneratenMITRmapALL.m 

This m file generates 3D nMITR map of the whole imaged volume. To do this, it 

reads the pre-contrast and post-contrast image files listed in a text file and calculates the 

relative enhancements and nMITR of the tissues using a 3×3 moving window by calling 

“computenMITR.m” file. The resultant map is saved into a mat file with an “nMITR” 

extension. 

ComputenMITR.m 

This m file computes the nMITR for a given intensity and enhancement course data. 
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Localize3DTemp.m 

This m file reads the file with the nMITR extenstion (created by 

GeneratenMITRmapALL.m) and the BMP files for all slices generated by 

SegmentCNN.m. It extracts the 3D nMITR map of the breast and performs 3D template 

matching to localize lesions in the breast. It outputs a list that includes the detailed 

information on the detected lesions such as their volumes, starting and ending slices, etc. 

Localize3DCNN.m 

This m file reads the file with nMITR extenstion and the BMP files for all slices 

generated by SegmentCNN2.m. It extracts the 3D nMITR map of the breast and performs 

fuzyy 3D CNN processing to localize lesions reside in the breast. It outputs a list that 

includes  detailed information on the detected objects such as their volumes, 3D 

eccentricity, starting and ending slices, etc. The detected lesions are marked with “+++” 

while the deleted volumes are marked with “---”, after applying a false-positive elimination 

criteria. 

SegSuccess.m 

This m file performs grey-level conversion (threshold= 255) and hole filling on both 

images to obtain binary images and calls VFmeasure.m to measure segmentation 

performance on images generated by the automated segmentation method (using 

SegmentCNN.m or using SegmentCNN2.m) and by the manual correction saved in BMP 

format.  

VFmeasure.m 

This m file computes relative overlap, misclassification rate, precision, true-positive, 

false-negative, true-negative and false-positive volume fraction measures to quantify the 

success of breast segmentation using binary images generated by the automated 

segmentation method and by the manual correction saved in BMP format. The details are 

given in Chapters 4-5. 
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GeneratenMITRmap.m 

This m file generates 3D nMITR map of a specified volume of interest. To do this, it 

reads the image files and computes the relative enhancements of the tissues inside the 

supplied VOI data using a 3×3 moving window. The nMITR value of each tissue is 

computed by calling “computenMITR.m” file. The resultant map is saved into a mat file 

with “nMITRvoi” extension. 

nMITRStatistics.m 

This m file discriminates deceptively enhancing regions and segments the lesion in a 

3D nMITR map (generated by GeneratenMITRmap.m) of a roughly marked volume of 

interest. After segmentation, it computes enhancement descriptors derived from nMITR 

values of the tissues inside the lesion for malignancy detection. The details are given in 

Chapter 6. 

MorphoAnalyst.m 

This m file discriminates deceptively enhancing regions and segments the lesion in a 

3D nMITR map (generated by GeneratenMITRmap.m) of a roughly marked volume of 

interest. After segmentation, it computes morphological descriptors for malignancy 

detection. The details are given in Chapter 7.  

SofSI.m 

This m file is called by MorphoAnalyst.m to compute the total areas of contact 

surfaces and faces or the voxels of a binary 3D image of lesion volume considering the 

image resolutions. 
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APPENDIX B. DYNAMAMMOANALYST 

The methods developed in this thesis were used to develop a decision support 

software to speed up DCE-MRM examinations.  This software, called 

DynaMammoAnalyst, requires minimal user guidance, facilitates lesion identification, 

delineation and evaluation by providing improved visualization, segmentation and 

localization of suspiciously enhancing regions, interactive plots of time-intensity curves 

and time-intensity curve distributions and computation of several enhancement parameters. 

This software is explained in Chapter 8 in detail. A self-executable code of this software 

DynaMammoAnalyst.exe is given in the attached compact disk.  
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