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ABSTRACT

AN ARX MODEL APPROACH TO fNIRS DATA ACQUIRED
FROM MIGRAINE AND HEALTHY SUBJECTS

This study is focused on investigating the cerebrovascular dynamics of mi-
graine by analyzing data acquired from healthy and migraine subjects with a non-
invasive measuring technique, fNIRS during a breath holding task. Brain hemody-
namic responses of subjects are modeled via a parametric identi�cation technique,
Auto-regressive with Exogenous input (ARX) model. Analysis of modeled signals for
healthy and migraine subjects is performed both in frequency and time domains. In
frequency domain analysis, frequency intervals in which power spectrum estimates of
migraineurs signi�cantly di�er from healthy ones, are obtained as 0.01-0.03Hz, around
0.13 Hz and higher than 0.2 Hz (p<0.05). The energy of the estimated signals of
migraineurs in 0.01-0.03 Hz is approximately �ve folds smaller than the healthy ones,
whereas in 0.13 Hz and 0.25 Hz this di�erence is approximately 1.5 folds. Time do-
main analysis has shown that the amplitude of peak response of migraineurs is �ve folds
smaller than the healthy ones during all breath holding procedure (p<0.05). Required
model orders to ful�ll the dynamics of response are found higher in migraine case.
Results obtained show that response of cerebrovascular system of migraine subjects to
breath holding task is considerably di�erent with respect to normal subjects.

Keywords: Migraine, Cerebrovascular Dynamics, Functional Near Infrared Spec-
troscopy (fNIRS), Linear Parametric Identi�cation, Autoregressive Exogenous Input
(ARX) Model.
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ÖZET

NORMAL VE M�GRENL� DENEKLERDEN ��LEVSEL
YAKIN KIZIL ÖTES� SPEKTROSKOP� �LE ALINAN
ÖLÇÜMLER�N ARX MODELLEME YAKLA�IMI �LE

�NCELENMES�

Bu çal�³ma, migrenli ve sa§l�kl� deneklerden invazif olmayan bir ölçme yön-
temi olan ÍYKÖS ile al�nan bilgiyi analiz ederek migren hastal�§�n�n cerebrovasküler
dinamiklerini incelemeyi amaçlamaktad�r. Deneklerin beyin hemodinamik cevaplar�
parametrik bir tan�lama yöntemi olan özba§lan�ml� d�³yap�l� modelle modellenmi³tir.
Sa§l�kl� ve migrenli deneklerin modellenmi³ sinyallerinin analizi frekans ve zaman böl-
gelerinde yap�lm�³t�r. Frekans bölgesi analizinde, migrenli deneklerin modellenmi³
güç spektrumunun 0.01-0.03 Hz, 0.13 Hz civar�nda ve 0.2 Hz'den büyük frekanslarda
sa§l�kl� deneklerin modellenmi³ güç spektrumuna göre farkl�l�k gösterdi§i bulunmu³-
tur (p<0.05). Migrenlilere ait tahmini sinyallerin enerjileri 0.01-0.03 Hz frekans ar-
al�§�nda sa§l�kl� olanlarinkine göre 5 kat, 0.13 Hz ve 0.2 Hz frekanslar�nda ise 1.5 kat
daha küçüktür. Zaman bölgesi analizi, migrenlilerin cevaplar�n�n tepe noktas� de§erinin
sa§l�kl� deneklerin cevaplar�na göre be³ kat daha küçük oldu§unu göstermi³tir (p<0.05).
Ayr�ca, hemodinamik cevab� modellemek için gereken model dereceleri migrenli denek-
lerde daha yüksek bulunmu³tur. Bu çal�³ma sonunda elde edilen sonuçlar migrenli
deneklerin nefes tutma prokolüne verdikleri serebrovasküler cevaplar�n normal denek-
lere göre farkl� oldu§unu göstermi³tir.

Anahtar Sözcükler: Migren, Serebrovasküler Dinamikler, �³levsel Yak�n K�z�lötesi
Spektroskopi (iYKÖS), Do§rusal Parametrik Tan�lama, Özba§lan�ml� D�³yap�l� Model.
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1. INTRODUCTION

1.1 Motivation and Objectives

Migraine is a complex neurovascular disorder characterized by recurrent and
disabling headaches manifesting in attacks lasting 4-72 hours. A migraine attack has a
moderate or severe intensity, aggravated by physical activity and associated with nau-
sea, photophobia and phonophobia. Stress, emotional changes, altered sleep pattern,
some foods and drugs trigger migraine. Nearly 12% of world's population su�ers from
migraine which restrains patients from daily activity and upset during attacks. Beside
economic burden of medical costs for treatment, migraine disables patients from work
and decreases the life quality of su�erers. Since the underlying mechanisms of migraine
have not been fully understood, diagnosis of migraine is still a challenging subject.

This study is focused on investigating the cerebrovascular dynamics of migraine
by using a measurement technique which quanti�es the tissue oygenation. Data taken
from migraine and healthy subjects during a breath hold task, are analyzed with single
input single output parametric model (Autoregressive with Exeganous Input (ARX)).
ARX models have been applied on biomedical signals speci�cally on EEG and fMRI
signals because of the low signal to noise ratio of these signals. In this study, ARX
model parameters and the frequency response of the estimated models are compared
for two experiment groups. Di�erent ARX modeling schemes are applied to be capable
of model the whole process. It is intended to �nd signi�cant di�erences in the result
of modeling between two groups which will be useful in the analysis of cerebrovascular
dynamics.
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1.2 Outline of the Thesis

In this study, it is attempted to give a general information about migraine and
measurement system used. I tried to apply a mathematical parametric identi�cation
technique for the analysis of cerebrovascular dynamics of migraineurs.

In Chapter 2, physiology and medical background of migraine is explained brie�y
by summarizing di�erent approaches to elucidate the underlying mechanisms of mi-
graine. Neuroimaging tools used for research and diagnosis of migraine are mentioned
in the end of the second chapter.

Chapter 3 gives an introduction for the physical and mathematical basis of
functional near infrared spectroscopy (fNIRS). Recent studies on migraine imaging
with fNIRS are reviewed.

Chapter 4 begins with the experimental procedure and data collection. A brief
explanation of system identi�cation and Auto Regressive Exogenous model is followed
with introduction of modeling schemes applied on the measured data.

The results of modeling procedures are presented in Chapter 5. Results are dis-
cussed in the frame of di�erences in cerebrovascular responses of migraine and normal
subjects.

Chapter 6, gives a general discussion of the study and ends with the recommen-
dations to validate and improve the results obtained.



4

2. MIGRAINE

Headaches are classi�ed in two broad categories: primary headaches and sec-
ondary headaches. Primary headaches which are not caused by organic or structural
diseases include migraine, cluster headaches, tension-type headaches and the other
types. Secondary headaches are the result of underlying structural or organic diseases
ranging from brain tumours to head or neck injuries, sinus infections, abnormalities of
the spinal �uid. More than 90 % of headaches are primary headaches. Migraine is the
second common primary headache type after cluster headaches [2].

2.1 De�nition

Migraine is a complex neurobiological disorder characterized by throbbing head
pain usually sensed greater on one side of the brain. Migraine a�ects 2-15% of the
world's population leading periodic or unpredictable disability. A migraine attack is
described by four main phases to classify signs and symptomps: prodrome, aura, pain
and postdrome phases. The phases are not experienced by all migraineurs and also
vary from one migraine attack to another in the same patient. The prodrome phase
experienced by 60 % of migraineurs, begins hours or up to 2 days before the headache,
exhibiting typical symptoms such as depression, fatigue, yawning, food craving, hy-
persensitivity to light, sound or smell. Prodrome phase is preceded with the aura
phase indicating focal cerebral, cortical and/or brainstem dsyfunction. Typical aura
symptoms are grouped in two: visual and neurological. Visual symptoms include �ash-
ing lights, shimmering zigzag lines and blind spots whereas neurological ones include
paresthesia, numbness, unilateral weakness and speech disturbance (aphasia). The
aura experienced by 20% of migraneurs, gradually develops over 5-20 minutes and usu-
ally lasts less than 60 minutes. In the pain phase, migraineurs su�er severe headache
lasting from four hours to two or three days. Headache is typically unilateral, pulsat-
ing and accompanied with nausea, photophobia and phonophobia, sometimes vomiting,
and worsened by physical activity. The postdrome phase is a time for recovery and is
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characterized by impaired concentration, scalp tenderness, tiredness, exhaustion and
mild headache [2].

2.2 Diagnosis of Migraine

Diagnosis of migraine has been improved with the publishment of consensus set
of diagnostic criteria for two main subtypes of migraine; migraine with aura and mi-
graine without aura by the International Headache Society (IHS). Although the criteria
are not perfect, they are accepted as more informative and reliable than prior tech-
niques. The criteria helps to distinguish migraine from other two common headaches
disorders, tension- and cluster-type. Migraine without aura termed as common mi-
graine is seen in 80% of migraine su�erers and typi�ed by at least 5 attacks lasting
4-72 hours. According to IHS criteria, attacks are unilateral, pulsating quality, quali�ed
as moderate to severe intensity and aggravated by routine physical activity. During
headache, at least one of three symptoms as nausea and/or vomiting, photophobia and
phonophobia and no evidence of related organic disease is required. Migraine with
aura termed as classic migraine is a recurring headache associated with reversible focal
neorological symptoms. Migraine with aura is subdivided in six categories for diag-
nosis: migraine with typical aura, migraine with prolonged aura, familial hemiplegic
migraine, basilar migraine, migraine aura without headache and migraine with acute
onset aura. For the diagnosis of migraine without aura, there must have been at least
2 attacks not attributable to another organic disease. At least 3 of 4 symptoms speci-
�ed by IHS should be ful�lled: one or more completely reversible aura symptoms that
indicate focal cerebral cortical or brain-stem dysfunction (or both) , at least one aura
symptom develops gradually over more than 4 minutes or two or more symptoms occur
in succession, no aura symptom lasts longer than 60 minutes and headache follows aura
in one hour. Furthermore at least one of aura features should be experienced: homony-
mous visual disturbance, unilateral paresthesis and/or numbness, unilateral weakness
and aphasia or unclassi�able speech di�culty [2, 3].

For an accurate method that satis�es the IHS criteria in diagnosis of migraine
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clinical history, physical and neurological features should be investigated. Age of onset,
family history, duration, character and intensity of pain, mode of onset, time between
onset to peak pain, temporal pro�le, aggravating or precipitaining factors should be
elicited [4]. The general physical examination evaluates at least the following: vital
signs such as blood pressure and heart rate; cardiac status; extracranial structures;
range of motion and the presence of pain in the cervical spine [5]. Neurological exami-
nations are performed for detecting headaches due to intracranial or systemic diseases.
Neuroimaging techniques provide a better understanding of the neuroanatomical and
physiological basis of the conditions [6].

2.3 Pathophysiology of Migraine

Researches on migraine have been augmented over the past few decades. Never-
theless pathophysiological mechanism underlying a migraine attack is not fully under-
stood. General opinion in migraine is the neuronal hyperexcitability to both genetic
and environmental factors which determine the threshold for triggering attacks [7]. It
is hypothesized that anyone can have a migraine attack initiated by migraine speci�c
triggers. However recurrement of attacks is related to the lowered threshold and the fre-
quency or intensity of the triggers. Genetic factors leading abnormality in ion-channel
function lower the threshold and internal and environmental factors including allergic
reactions, sensitivity to light, sound and certain foods, stress, changes in sleep pattern
and hormonal �uctuations a�ect the occurence of migraine [8].

Several theories have been proposed to elucidate the physiological events occur-
ring onset and during a migraine attack. Migraine has been long regarded as a vascu-
lar disorder caused by vasodilation of blood vessels. However recent researches show
evidences interrogating this theory by making a connection between central nervous
system and blood vessels. The two main hypotheses explaining the pathophysiology of
migraine are vascular theory and neurogenic theory.
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2.3.1 Vascular Theory

In the 1940s and 1950s, Wol� et al. proposed that intracranial vasoconstriction
is responsible for the aura of migraine and that the subsequent rebound vasodilatation
and activation of perivascular nociceptive nerves resulted in headache. This theory
was based on the observations that extracranial vessels become distended and pulsatile
during a migraine attack; stimulation of intracranial vessels in an awake person in-
duces headache; and vasoconstrictors such as ergots improve the headache, whereas
vasodilators such as nitroglycerin provoke an attack [9]. However, some studies have
shown that headache phase of migraine with aura starts while blood �ow is reduced
[10]. Furthermore, vasodilation alone cannot explain the local swelling and tenderness
of the headache that generally accompany migraine [11].

2.3.2 Neurogenic Theory

The neurogenic theory of migraine states that a complex series of neural and
vascular events initiate migraine challenging the early claims linking headache pain
with simply vasodilation. Migraneurs have a central neuronal hyperexcitability as a
physiological disturbance predisposing migraine [12]. Before proceeding in neurogenic
theory, two important physiological units; meninges and trigeminal nerve will be men-
tioned which are important in pathophysiology of the migraine linking the trigeminal
innervation of cranial vessels.

2.3.2.1 The Meninges. The meninges are a series of three membranes covering
the brain and spinal cord that act to protect and partition the central nervous system.
The membranes comprising the meninges are the dura mater, arachnoid layer, and
the pia mater. The outer layer, the dura mater, is composed of dense �brous tissue
which supports and surrounds large venous channels (dural sinuses). The more super-
�cial layer of dura mater is called periosteal layer which attaches to the periosteum of
the cranial bones. The meningeal layer of the dura mater lies deep to the periosteal
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Figure 2.1 The meninges [1]

layer. Two layers separate in dural venous sinuses to form large, blood �lled spaces.
Arachnoid matter lying underneath of the dura matter is composed of delicate web of
collagen and elastic �bers. The space between the arachnoid and the overlying dura
mater is the subdural space which is absent in the walls of large venous channels of
the dura matter. Penetration of arachnoid in the dura matter and projection into
veins is referred as arachnoid villi or arachnoid granulations. From arachnoid villi,
cerebrospinal �uid passes from the subarachnoid space to the venous blood. The pia
matter is the innermost layer of the meninges. It is a thin layer of delicate connective
�brous tissue and tightly adheres to brain following all contours of brain. Blood vessels
piercing the pia matter nourishes the brain. The pia and arachnoid are not separate
layers and sometimes together they are called the leptomeninges [1].

2.3.2.2 The Trigeminovascular System. The trigeminal nerve is the �fth of
twelve cranial nerves and is composed of three large nerve branches: ophthalmic (V1,
sensory), maxillary (V2, sensory) and mandibular (V3, motor and sensory) branches.
All sensations from the face and mouth namely discriminative touch, proprioception,
pain and temperature are covered by the mixed trigeminal nerve. The three branches
of the trigeminal nerve converge on the trigeminal ganglion from where the trigeminal
nerve courses backward to enter the mid-lateral aspect of the pons part of brain stem.
Immediately adjacent to the sensory root, a smaller motor root emerges from the pons
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at the same level. Branchial motor nerves exit the mid-lateral aspect of the pons,
course within the trigeminal nerve, pass through the trigeminal ganglion, and exit the
middle cranial fossa within the mandibular nerve through foramen ovale. All sensory
�bers from the face terminate in the trigeminal nucleus and send projections via the
thalamus to primary sensory cortices in cerebral cortex for higher order processing.

Branches of the ophthalmic nerve (V1) convey sensory information from the
skin of the forehead, upper eyelids, and lateral aspects of the nose and provides sensory
innervation to the eyeball structures, nasal mucosa, and cutaneous areas around the
eye, the dorsum of the nose and the frontal area. Branches of the maxillary nerve (V2)
convey sensory information from the lower eyelids, zygomae, and upper lip. Branches
of the mandibular nerve (V3) convey sensory information from the lateral scalp, skin
anterior to the ears, lower cheeks, lower lips, and anterior aspect of the mandible.
Its function is to provide sensory innervation to the rostral 2/3 of the tongue, skin
of the intermandibular area, skin on the concave surface of the ear, and skin on the
cheek. Also maxillary nerve provides motor innervation to the muscles of mastication
[13, 14, 15].

Beside conveying sensory information from face and mouth, small calibre trigem-
inal axons innervates the meninges and bifurcate near small blood vessels branching
from the pial and dural arteries. Innervation of meninges and the cerebral and in-
tracranial vessels by the trigeminal nerve forms the trigeminovascular system (Fig.
2.2). Sensory information from the trigeminovascular system is carried through the
ophthalmic branch of the trigeminal nerve. Trigeminal nerve �bers are situated at the
interface between blood and cerebrospinal �uid or brain parenchyma, possibly to detect
the presence of any noxious substances originating from these sources. Sensitization or
activation of trigeminovascular a�erents release vasoactive neuropeptides: calcitonin
gene-related peptide (CGRP), substance P and neurokinin A that mediate vasodila-
tion and edema [16]. Innervation of blood vessels in dura matter by peripheral a�erent
�bers of trigeminal system points out that this part is sensitive to pain and neurogenic
in�ammation within dura matter constitutes the grounds of the neurogenic hypothesis.
Activation of trigeminovascular system leads to release of in�ammatory and vasodila-
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Figure 2.2 The trigeminovascular system

tory neuroactive susbtances. These substances cause vasodilation and extravasation
of plasma proteins from peripheral meningeal vessels and induce nociceptors to facili-
tate headache [16]. Some researches have been supported that CGRP levels in jugular
vein of patients increased during migraine attacks [17]. Furthermore, stimulation of
meningeal primary a�erent neurons in the trigeminal ganglion followed by stimulation
of central trigeminocervical neurons causes the nociceptive �bers sensitive to arterial
pulse and head movements. Hypersensitivity could mediate the throbbing pain of mi-
graine and its worsening during coughing, bending over, or other physical activities
that increase intracranial pressure [18].

It has been hypothesized that cortical spreading depression (CSD) which is
characterized as a wave of depolarization that propagates slowly across the cortex, de-
pressing neuronal activity for a few minutes and transiently increases cerebral blood
�ow followed by vasoconstriction, initiates migraine headache [19]. CSD is �rst de-
scribed by Leao that a migraine aura is due to a wave of neuronal excitation in the
cortical gray matter that spreads across cerebral cortex at the rate of 2-6 mm/min
[20]. Recent studies with imaging techniques like MRI have been shown a link between
CSD and migraine aura. Recordings within occipital cortex during visual aura have
shown that aura is accompanied by a propagating event which is moving from central
to peripheral visual �elds [21].

Triggering mechanisms of CSD in human cortex during migraine have not been
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fully understood. Cortical trauma, exposure to high excitatory amino acid and potas-
sium ion, direct electrical stimulation, inhibition of Na+/K+-ATPase and energy fail-
ure may trigger CSD. Genetic and environmental factors may represent risk by lowering
the CSD threshold and cortical excitation may cause su�cient elevation in extracellular
K+ and glutamate to initiate CSD [22]. In the case of Familial Hemiplegic Migraine
(FHM) type 1, a gene mutation is found in the P/Q type calcium channel which con-
trols release of the excitatory amino acid, glutamate in the synaptic cleft. In the case
of FHM type 2 gene mutation occurs in the Na/K ATPase enzyme. Accumulation of
glutamate or potassium ions in the synaptic cleft initiates CSD [19].

2.4 Functional Neuroimaging In Migraine

Diagnosis of primary headaches including migraine is a clinical task. Although
some researches propose that migraineurs are under increased risk for subclinical le-
sions in certain areas relative to non migraineurs, it is still a controversial issue [23].
However, recently functional neuroimaging techniques let a better understanding of
pathophysiology of migraine. With the introduction of neurogenic theory, it has been
proposed that migraine pain leads neural function in trigeminovascular system. The
trigeminal ganglion, spinal trigeminal nucleus and the somatosensory cortex constitut-
ing the nociceptive pathway in humans, could be imaged via a non-invasive neuroimag-
ing technique, functional magnetic resonance imaging (fMRI) [24]. fMRI measures
changes in blood �ow by using di�erences in paramagnetic properties of hemoglobin
and deoxyhemoglobin. Change in blood �ow is considered as the change in neural
activity. Activation during a migraine attack are mapped on to anotomical brain im-
ages which provide assessment to active brain regions [24]. Another neuroimaging
technique, positron emission tomography (PET) which requires injection of labeled ra-
dioactive isotopes to blood, provides the quantative measurement of regional cerebral
blood �ow and can elucidate imaging of active brain regions.
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3. FUNCTIONAL NEAR INFRARED SPECTROSCOPY

Near infrared spectroscopy (NIRS) is a non-invasive method for determination of
changes in regional cerebral oxygenation and hemodynamics within the brain. Recently,
measuring the cerebral blood �ow and cerebral blood volume is possible by using near
infrared light [25, 26]. NIRS measurement is based on the absorption of near infrared
lights proportional to concentrations of oxy-hemoglobin and deoxy-hemoglobin.

In 1977, Jobsis [27] �rst demonstrated that changes in oxygenation of brain
could be monitored by near infrared radiation. NIR light when exposed on head can
penetrate the scalp and skull and is attenuated within the tissue. Attenuation of the
near infrared light in tissue is described with Beer-Lambert law:

log(I0/I) = ε · c · d (3.1)

where I0 is the incident light intensity, I is the transmitted light intensity, ε is the
speci�c extinction coe�cient of the compound, c is the concentration of the compound,
and d is the length of the light path through tissue.

Attenuation of NIR light in tissue is due to light scattering of cellular and sub
cellular compartments and absorption of certain compounds of tissue called chromo-
pheres. Important tissue chromophores are melanin, myoglobin water, hemoglobin and
cytochrome oxidase. Melanin is the pigment of epidermal layer of human skin which
absorbs NIR light also. Since its concentration does not change during measurement,
its e�ect can be compensated in di�erence computation of concentration. Myoglobin
is the primary oxygen carrying pigment of muscle tissues. Unlike the hemoglobin,
the binding of oxygen by myoglobin is una�ected by the oxygen pressure in the sur-
rounding tissue. Absorption of light of hemoglobin varies with its oxygenation status.
In the near infrared region between 650-1000nm, water has a lesser absorption level
compared to hemoglobin. This transperancy window allows NIR light to penetrate
tissue to illuminate deeper structures such as cerebral cortex (Fig. 3.1). From that
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Figure 3.1 The absorption spectrum of chromophores

point, concentration changes of oxyhemoglobin and deoxyhemoglobin which together
give the regional oxygenation information can be measured based on light absorption
measurement.

Beer-Lambert law can be applied on stituations where attenuation of light is
only due to absorption or direct transmission. Since absolute attenuation in tissue can
not be determined due to scattering, calculation of absolute hemoglobin concentration
can not be achieved. In order to overcome this di�culty, quantative measurements in
near infrared spectroscopy is based on the modi�ed Beer-Lambert's law [28]:

A = ε · c · d ·B + G (3.2)

where B is the di�erential pathlength factor and G is the signal loss due to light
scattering. By using Equation 3.2 scattering of light is embedded in pathlength of
light through tissue. Di�erential pathlength factor represents the increase in distance
traveled by light and can be calculated [29]. Because of unknown factor G, the so-
lution of the Equation 3.2 cannot provide a measure of the total concentration of
the chromophore in the medium. However, on the assumption that tissue geometry
is unchanged during measurement, change in the chromophore concentration can be
determined from the changes in light attenuation.
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3.1 fNIRS in Migraine Imaging

In recent years, fNIRS studies have been become widespread in brain activity
researches associated with cerebral hemodynamics changes. Since there has been gen-
eral belief that migraine is a neurovascular disorder, investigating the cerebrovascular
responses of migraineurs with neuroimaging tools has been an interesting topic. In this
section only studies that used fNIRS in migraine imaging will be summarized.

A study performed by Ak�n et al. which inspired this work, has shown the cere-
brovascular dynamics of migraine during breath holding task. Both deoxyhemoglobin
and oxyhemoglobin signals are evaluated using a mathematical gaussian function [30].
In a similar study di�erences in the peak and latencies of the initial dip and recovery
phases for deoxyhemoglobin and oxyhemoglobin signals during breath holding for mi-
graine and healthy subjects have been demonstrated [31]. A recent study combining
transcranial Doppler and NIRS, compares the cerebral blood �ow velocity and con-
centrations of oxyhemoglobin and deoxyhemoglobin of migraine and healthy subjects
where subjects are performing a breath holding task. It has been found that cerebral
blood �ow velocity of migraneurs does not show signi�cant di�erences in baseline con-
ditions whereas during the breath holding task there exists a dispersion between two
groups [32]. Shinoura et al. conducted a head-down maneuver experiment on migraine
and healthy subjects in order to compare the changes in total hemoglobin and regional
oxygen saturation of the right and left frontal lobes. Results of the study show that
increase in right-sided total hemoglobin concentration of migraneurs is smaller than
healthy subjects whereas on the left side no di�erence is seen. The change in regional
oxygen saturation of migraneurs shows a smaller decrease in both sides compared with
healthy subjects [33].
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4. METHOD

4.1 Experimental Procedure

Six subjects diagnosed with migraine without aura (six females) according to
IHS criteria and six healthy subjects (four males, two females) joined the study. Mi-
graine subjects were not using prophylactic drugs and did not experienced any migraine
attack at least three days prior to experiment. During the experiment, subjects were
positioned in supine position and performed breath holding task for four times. Pro-
cedure of the experiment is normal breathing for 90 seconds and after exhaling air
holding breath for 30 seconds.

4.2 fNIRS Data Collection

fNIRS system NIROXCOPE 201 developed at the Biophotonics Laboratory1

is used during experiment. fNIRS system is composed of a �exible probe placed on
the subject's forehead, NIROXCOPE 201 data acquisition unit, data gathering and
recording computer.

Probe has four light emitting diodes (Epitex, L4*730/4*805/4*850-40Q96-I)
which emit light at multiple wavelengths of 730 nm, 805 nm and 850 nm in the near
infrared region and ten photodetectors (TI-Burr Brown, OPT101). Emitted light from
diodes pass through the tissue and undergoes scattering, absorption or re�ection. Ref-
erencing to the Figure 3.1 in Chapter 3, at 805 nm deoxygenated hemoglobin (Hb)
and oxygenated hemoglobin (HbO2) equally absorb light and it is accepted as isobestic
point. Concentrations of Hb and HbO2 can be measured approximately from the fact
that near infrared light at 703 nm is highly absorbed by Hb and 850 nm light is
mostly absorbed by HbO2. The intensity of re�ected light from tissue is detected by

1www.bme.boun.edu.tr/biophotonics
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Figure 4.1 Niroxcope 201 probe: Source-detector locations

photodetectors. Four non-overlapping quadruples of photodetectors are obtained by
multiplexing time and wavelength. Detectors are located equidistant to the each diode
lying at the center of each quadrant. The source detector distance is 2.5 cm enabling
penetration of light nearly 1.5 cm of the adult cortex. Schematic diagram of probe is
shown in Figure 4.1.

4.3 Data Preprocessing

Collection and preprocessing of data is very important in system identi�cation.
Outliers and aliasing e�ects should be eliminated not to distort the output. Eliminating
�uctuations in the heart rate due to respiration, blood pressure regulation and arterial
pulse which reveal themselves on certain frequencies, is avoided, since this study aims
exactly investigating the frequency responses. Observing e�ects of these signals is
preferred on the frequency domain data. Outlier elimination is performed with a fourth
degree Butterworth �lter having a cuto� frequency at 0.2 Hz.

4.4 System Identi�cation and Modeling

System is an object in which variables of di�erent kinds interact and produce
observable signals. Observable signals are called output and the external stimuli are
called input. The derivation of a relevant system description from observed data is
termed as system identi�cation and the resultant system description a model. Mod-
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eling and identi�cation methods are needed for the interpretation of observations and
measurements obtained from some system of study. Models present a relation between
the variables of a system. Depending on the complexity of this relation and the pur-
pose of the model, classi�cation of models is performed. Depending on the model class,
di�erent approaches to system identi�cation is adopted. Linear systems have a partic-
ular signi�cance in the comparison of models, since both modeling and identi�cation
presume linear, proportional relationships to exist between variables.

Nonlinear systems can be modeled by linear time-invariant approximations. Sys-
tem identi�cation is an example for this type of approximations and it is possible to
estimate a linear model without considering the fact that the input and output mea-
surements come from a nonlinear system. Since linear time-invariant models minimize
a mean square error criterion, they are assumed as optimal [34].

The System Identi�cation Procedure
Identi�cation of a system involves four main steps:

1. Acquisition of a data set: Since system identi�cation constructs a mathematical
model from input and output values in a time interval which are collected from an
experimental setup, obtained data should ful�ll the prerequisites of identi�cation
method. Choice of input becomes very important at the point of excitation of
system. Ljung ([35]) and Johansson ([36]) present hints and guidelines for the
appropriate design of experiments and the selection of input.

2. Selection of a model or a model structure: A suitable model among candidates
is selected according to the representation capability of the model of the system.
a priori knowledge about the system dynamics or the physical properties of the
system give advantage in the prediction of the suitable model.

3. Parameter Estimation: Identi�cation part arises and several parameter estima-
tion methods are applied on a set of candidate models

4. Model Validation: After �nding a particular model, this model is tested according
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Figure 4.2 Algorithm for the system identi�cation

to a chosen criterion. Relation between the model and the measured signal,
prediction capability of future outputs and the consistency of the model with the
purpose are tested by model validation processes.

All aspects of system identi�cation will not be discussed. In this study, ARX
modeling is used as a system identi�cation tool to model brain hemodynamic response.
One of the reason applying ARX model is no a priori information about the system is
required and its simplicity in application. Section 4.5 discusses ARX model as a linear
parametric identi�cation technique and modeling schemes associated with it.

4.5 ARX Model

ARX model describes the relationship between output signal, input signal and
noise term in a form of di�erence equations. Value of the output signal at time t is
equal to the summation of determined number of past values of input and output signal
and noise term. Di�erence equation is in the form:

y(t)+a1y(t−1)+ ...+anay(t−na) = b1u(t−nk)+ ...+bnbu(t−nk−nb +1)+e(t) (4.1)

where y(t) represents the output at time t, u(t) represents the input at time t, na is the
number of a parameters, nb is the number of b parameters, nk is the number of samples
before the input a�ects output of the system (the delay), and e(t) is the white-noise
disturbance. na and nb are orders of ARX model. Transfer function representation of
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Figure 4.3 Block diagram of ARX model

the Equation 4.1 is2 :

y(t) = G(q)u(t) + H(q)e(t) (4.2)

where A(q) = 1 + a1q
−1 + .... + anaq

−na and B(q) = b1q
−1 + .... + anbq

−nb. G(q) and
H(q) is therefore;

G(q) =
B(q)

A(q)
=

b1q
−1 + .... + anbq

−nb

1 + a1q−1 + .... + anaq−na
(4.3)

H(q) =
1

A(q)
=

1

1 + a1q−1 + .... + anaq−na
(4.4)

The calculation of output signal in Equation 4.1 from past data depends on the
parameters in the vector θ = [a1...anb1....bn] and φ(t) = [−y(t − 1).... − y(t − n)u(t −
1)....u(t−m)] which can be represented as:

ŷ(t) = φT (t)θ (4.5)

There are various methods for estimation of parameters. In this study linear least
square method is used for the calculation of parameters since it can be used even if
there is no a priori information available. Linear least square method aims to determine
the optimal values of the estimated parameters by minimizing the sum of the squared
errors between the predicted output and the observations [35]:

VN =
1

N

N∑

t=1

(y(t)− ŷ(t))2 =
1

N

N∑

t=1

(y(t)− φT (t)θ)2 (4.6)

2q−1u(t) = u(t− 1)
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The least square solution of θ that minimizes the squared error or loss function VN can
be found by taking the derivative of VN with respect to θ;

d

dθ
VN =

2

N

N∑

t=1

φ(t)(y(t)− φT (t)θ) = 0 (4.7)

N∑

t=1

φ(t)y(t) =
N∑

t=1

φ(t)φT (t)θ (4.8)

θ =

[
N∑

t=1

φ(t)φT (t)

]−1 N∑

t=1

φ(t)y(t) (4.9)

where N is the number of samples. Linear least squares method has some attractive
features for purposes of identi�cation. Least square estimates can be obtained by
matrix algebra and properties of solution of least squares estimation can be analyzed
according to statistical criteria [36]. For least square estimate to be consistent i.e.
the estimate θ̂ converges to the true value θ two conditions should be satis�ed. First,
∑N

t=1 φ(t)φT (t) is non-singular that is its inverse exists. Second, noise component of
the model is a sequence of independent random variables with a zero mean values and
input signal is uncorrelated with the noise component [35].

By introducing least square method, system identi�cation is reduced to deter-
mination of model orders and model parameters in the sense that optimal �tting of
output predicted from the model and measured output. Linear least squares method
�nds model parameters by minimizing the error between computed output and mea-
sured one. However, for the solution of Equation 4.6, determination of model orders
is needed. As the correct model order is not known a priori, several di�erent model
orders can be implemented and according to some error criteria one of them can be
selected. This process is known as model validation. Many tools are presented for
model validation where three of them are used in this study:

• Residual tests:
Di�erences between the observed output and the estimated output are called
residuals:

ε(t) = y(t)− ŷ(t) (4.10)
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If the model is correct, residuals should be uncorrelated to inputs and outputs.
The auto-correlation function of the residuals and the cross-correlation between
residuals and the input data are computed. A good model has the residual au-
tocorrelation function inside the model con�dence interval indicating that the
residuals are uncorrelated. If residuals are correlated with past inputs, this in-
dicates there is a part of output signal originates from the past input and is not
properly described by the model.

• Model Fit:
Minimum �t error between the simulated output and measured output indicates
a good model. The command 'compare' in Matlab program computes the model
�t as the percentage of the output variation:

fit = 100

(
1− ‖ ŷ(t)− y(t) ‖

‖ y(t)− y(t) ‖

)
(4.11)

where y(t) denotes mean of the measured output over the time interval. Since
error is subtracted from 1, the largest model �t is suitable.

• Cross validation
Cross validation method is performed with another set of output signal which is
not used in prediction of output. Validation data is generated by splitting the
measured data in two parts. Parameters that minimizes the criterion of the model
predicted from estimation data set ZN1

est are used for the evaluation of model from
the validation data set ZN2

val.

An attractive feature of cross-validation approach is the fact that regardless of
the probabilistic arguments and without any assumptions about the system, min-
imization of loss function makes sense.

Since output of a system in ARX modeling is represented by two components:
deterministic (input) and stochastic (white noise) signals, it is widely used in noise
free processes. One example of the ARX modeling in biomedical signal processing
is the analysis of EEG and fMRI signals in especially detection of evoked potentials
[37, 38, 39]. In these studies, it has been hypothesized that measured signal is composed
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of useful signal and noise contribution which is formulated as background activity. By
using ARX modeling as a �ltering procedure useful signal is extracted from measured
signal.

In this present study, regarding the previous studies on parametric identi�cation
of biomedical signals, three ARX modeling schemes are followed which di�er from each
other in the selection of inputs. It is important to note that, time-domain analysis
of fNIRS data was performed by using Gaussian functions in modeling brain hemo-
dynamic response of migraine and normal subjects previously [40]. In this previous
study, it is successfully shown that brain hemodynamic responses of migraine subjects
in time domain di�ers from normal ones in signal amplitude and time to peak para-
meters. Di�erent from that study, di�erences in frequency data of brain hemodynamic
responses of two experiment groups are investigated.

4.5.1 Determining Input and Output Signals of the ARX Model

In the �rst two modeling schemes, tissue oxygenation of the brain is supposed
as a system and input signal is constituted from breath holding protocol. It is assumed
that input signal takes zero value during normal breathing and one during breath
hold. [Hb] data obtained from 16 detectors of fNIRS for each one of the 12 subjects is
considered as output signal. After preprocessing, [Hb] data is partitioned in four parts
each corresponding to one breath hold. Each fraction of [Hb] data lasts 100 seconds
having 30 seconds of breath holding episodes. Output signal is downsampled3 with
a factor of three and input signal is generated synthetically for each of the fraction
according to start and end of breath hold i.e. during breath hold signal takes value of
one. Figure 4.4 shows input and output signals before partitioning into breath holds.

In the third modeling scheme, rather than using square wave as input, a reference
signal of [Hb] data is used. The input signal is selected as the average of a su�cient
number of detectors which provides mean behavior of the response for the considered

3Matlab command resample is used
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Figure 4.4 Input and output signals of the ARX models. (a) Hb signal taken from fourth detector
of fNIRS from a normal subject and corresponding hypothetical input signal and (b) Hb signal taken
from third detector of fNIRS from a migraine subject and corresponding hypothetical input signal

subject. By this way, it is aimed to eliminate background activity component and focus
on the response to breath holding task.

After decision of the input and output signals for the ARX models, three mod-
eling schemes are followed. One scheme is building ARX model for each breath hold
episode of each detector for every subject. After �nding most suitable ARX models for
each signal, frequency response of the predicted model is found and analyzed. For the
second modeling scheme, data from the 16 detectors and 4 breath hold episodes are
averaged for each subject. Optimal ARX models are generated for the averaged data
and analysis of the coe�cients of the ARX models is performed.For the third model-
ing scheme, ARX modeling is used as a �ltering preocedure to eliminate white noise
from measured signal. ARX models are built for each detector and power spectrum of
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�ltered signal is calculated.

4.5.2 ARX Modeling Scheme-1

The block diagram in Figure 4.5 illustrates the ARX modeling scheme 1 for each
subject. For each 6 healthy and 6 migraine subject, all possible causal ARX models
with orders m and n corresponding to number of past outputs and inputs respectively,
ranging from 10 to 20 utilizing square wave as input and [Hb] data as output are
considered (16x4x10x10=6400 models). The reason for using relative high orders is the
'di�culty' of modeling of the [Hb] data. Lower orders fail to model data. Interpretation
of using high orders is predicting the output value at time t requires more past values
in both output and input.

Predicted models are cross validated with the [Hb] data of the succeeding breath
hold. The �rst data set is used to estimate the model parameters and the succeeding
data set is used to calculate the normalized sum of the squares of the di�erence between
validation data output and the model output (loss function). For the cross-validation
test, the command 'arxstruc' in Matlab program is used which estimates an ARX model
for each model order from estimation data set. After calculation of loss functions of each
model with validation data set, model �ts between predicted output of each model and
measured data are computed according to the Equation 4.11. Models with minimum
loss functions and maximum model �ts are accepted as the optimal model. Frequency
response of optimal models are calculated. This procedure is followed for each of the
breath hold episode, detector and subject.

4.5.3 ARX Modeling Scheme-2

Modeling scheme 2 di�ers from 1 in the output signal. In this scheme, instead
of building model for each 16 detector recording, detector recordings are averaged and
4 models are constructed for each subject. This scheme surveys the diversity of the
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Figure 4.5 Block diagram of the ARX modeling scheme 1

parameters used in ARX modeling.

As similar to ARX modeling scheme 1, for each 6 healthy and 6 migraine subject
all possible causal ARX models with orders m and n corresponding to number of past
outputs and inputs respectively, ranging from 10 to 20 utilizing square wave as input
and [Hb] data as output are considered(4x10x10=400 models). The third term of the
model order, delay term d is determined by trial and error method. In addition to loss
function and model �t criterion, residual check is also performed to analyze the success
of models.

Residuals are the di�erences between predicted output and measured output.
It is assumed that model which has residuals exhibiting white noise pattern with zero
mean and variance λ and independent from past inputs is successful in predicting the
measured data. The autocorrelation function of the residuals carry information about
whether the residuals can be regarded as white. To investigate the independency
between the residuals and past inputs, cross correlation between input and output
can be checked. If the residuals are not uncorrelated with input, this means model
could not picked up a part of output which originates from past input. The con�dence
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interval for the auto correlation of residuals and cross correlation corresponds to the
range of residual values with a speci�c probability of being statistically insigni�cant
for the system.

In ARX modeling scheme-2 residual check is performed both for estimation
and validation data. Models are forced to have minimum 90 % model �t with the
estimation data. However, minimizing loss functions and pass of the residual check is
also performed.

4.5.4 ARX Modeling Scheme-3

It is intended to decompose the measured fNIRS signal into two contributions
and extract the uncorrupted [Hb] signal.

1. The �rst contribution is the 'useful signal' which is the cerebrovascular response
of brain to breath holding task. In Equation 4.2 the input signal is �ltered with
a transfer function obtained from the model (Fig. 4.6). The poles and zeros of
this transfer function are determined by using a proper identi�cation algorithm.
In the model s(k) denotes the �ltered average reference signal.

2. The second contribution is the background activity of fNIRS which can be mod-
eled as the response of an auto-regressive �lter driven by a white noise. In some
cases background activity hinders the main response of vessels to breath hold-
ing. To avoid this problem, it is assumed that �ltered version of white noise
corresponds to the background activity.

The block diagram of the processing procedure is depicted in Figure 4.6. In this
modeling scheme it is intended to model existent background activity of cerebrovascular
system i.e. concentration changes of [Hb] in absence of a stimulus, as an autoregressive
(AR) process driven by white noise [39]. To test this hypothesis, we take measurements
from four healthy subjects while subjects are in supine position and normal breathing.



27

Figure 4.6 Block diagram of the ARX modeling scheme 3: s(k) is the �ltered version of average
reference signal, n(k) denotes modeled background activity

Duration of measurements is adjusted as same in breath holding procedure. Normal
breathing data is modeled with autoregressive modeling which has a equation in the
form:

y(t) = −a1y(t− 1)− ...− anay(t− na) + e(t) (4.12)

where y(t) represents the output at time t, na is the number of a parameters, e(t) is
the white-noise disturbance. na is the order of AR model.

Measured [Hb] data stands for the output of AR model where AR models are
built in a detector based manner (Fig. 4.7). All possible casual AR models with order
ranging from 1 to 20 are used to �t the background activity measurements. Optimal
order for AR models are chosen regarding the whiteness of residuals and minimum loss
function criterion.
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Figure 4.7 Measured [Hb] data from 12. detector during normal breathing
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In ARX model case, for the model order m which denotes the AR process, result
of AR model is considered. Since the identi�cation of ARX model is utilized from a
reference input which has a similar pattern with the output signal, lower orders of n
are preferred ranging from 1 to 8. Validation of ARX models are performed regarding
the whiteness of residuals and maximum model �t between predicted and measured
response. In fact, assumption in this modeling scheme may not completely re�ect
the real case due to the linear superposition of background activity and hemodynamic
response relating to breath holding.
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5. RESULTS AND DISCUSSION

Results from system identi�cation of [Hb] data show signi�cant di�erences be-
tween normal and migraine subjects. Statistical signi�cance of data is tested by two-
way ANOVA. Common signi�cance level for p is 0.05 indicating one sample mean is
signi�cantly di�erent from the others. Throughout analysis, p value is used for the
indication of signi�cant di�erences between normals and migraineurs.

5.1 Results from ARX Modeling Scheme-1

ARX modeling scheme-1 estimates ARX models according to �rst the loss func-
tion and secondly model �t criterion. Model �t is forced to be minimum 80% to capture
all measured data. Figure 5.1 depicts the comparison between modeled and measured
response graphs for healthy and migraine subjects.

After building a model in time domain, frequency response analysis of the pre-
dicted model is performed in the frequency range (0, 0.2953). This frequency interval
is consistent with the sampling frequency (Fs = 0.5908). Power spectrum of predicted
model is plotted on the basis of 16 detectors and 4 breath holds. ANOVA test is ap-
plied at all 256 frequency points for each breath hold of each detector and frequencies
which are statistically signi�cant i.e. give p<0.05 in comparison of normal subjects
and migraineurs, are signed. Colored demonstration of signi�cant frequencies for each
breath hold is depicted in Figure 5.2. Color bar shows corresponding colors used for
frequencies in the interval (0, 0.2953). Horizontal axis of each graph shows detectors
from 1 to 16 and vertical axis shows the number of signi�cant frequencies.

In the �rst breath hold graph, signi�cant frequencies from all detectors are
mostly near 0.05 Hz and 0.15 Hz. Also some detectors show signi�cant frequencies near
0.15 Hz and above 0.25 Hz. In the second breath hold graph, number of signi�cant
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Figure 5.1 Model �t plots of [Hb] data taken from 14. detector during �rst (a,c) and second (b,d)
breathholds for healthy (a,b) and migraine (c,d) subjects
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frequencies is larger indicating estimated power spectrum of normals di�ers more from
estimated power spectrum of migraineurs. Signi�cant frequencies are located mostly
below 0.05 and around 0.1, 0.2 and above 0.25 Hz. On the contrary to �rst breath
hold, second breath hold gives more signi�cant frequencies near 0.1 Hz. Third breath
hold shows lesser low frequencies (near and below 0.05) whereas more high frequencies
(above 0.15 Hz). Fourth breath hold shows all type of frequencies. Common point for
all breath holds is nearly equal number of signi�cant frequencies below 0.05 Hz for all
detectors. From these graphs, it is interesting to note that frequencies between 0.1 Hz
and 0.2 Hz are not mostly signi�cant for �rst breath hold where as they appear mostly
in succeeding breath holds. In addition �rst breath hold is less 'colored' denoting power
spectrum of normals and migraineurs are close, whereas succeeding breath holds are
more 'colored'. Signi�cant frequencies between 0.1 and 0.2 are mostly observed in
second and third breath holds.

After applying ANOVA test on the estimated power spectrum of normals and
migraneurs on the basis of each detector, for further investigation of signi�cant frequen-
cies, power spectrums obtained from 16 detectors are averaged for each subject and
ANOVA test is applied on each frequency point for four breath holds to �nd signi�cant
frequencies. For each breath hold, each detector recording of all subjects is averaged
over subjects. Secondly, computed data is averaged over subjects. Thus, localization
assumption for subjects is avoided. On the averaged signal, values corresponding to sig-
ni�cant frequencies are summed for healthy and migraine subjects. Results are shown
in Table 5.1.

At �rst glance to Table 5.1, one can observe that sum of averaged estimated
power spectrum of migraine subjects is always smaller than the healthy ones for every
frequency interval. Frequencies below 0.02 Hz are signi�cant frequencies for each breath
hold. Power spectrum corresponds to these frequency is very large. There are three
signi�cant frequency bands for �rst breath hold episode: below 0.06, 0.12 and 0.27 Hz.
Except the �rst breath hold episode, all episodes have signi�cant frequencies around
0.1-0.15 Hz. All episodes show signi�cant frequencies above 0.2 Hz. From this table, it
can be concluded that migraine subjects have a depressed estimated power spectrum
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Figure 5.2 Demonstration of statistically signi�cant frequencies based on 16 detector recordings for
each breath hold
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Table 5.1
Signi�cant frequency intervals and corresponding sum of estimated power spectrums

Signi�cant Frequency Sum of
Interval Power Spectrum

Start End Normal Migraine
0.0093 0.0336 48.5068 10.6591

First 0.0521 0.0649 13.7120 7.1704
Breath Hold 0.1251 0.1297 3.9079 2.6321

0.2711 0.2769 0.0334 0.0341

0.0012 0.0811 89.9575 23.6441
0.1228 0.1378 9.4806 5.2800

Second 0.1656 0.1749 4.7305 2.8850
Breath Hold 0.1981 0.2074 1.5195 0.8409

0.2398 0.2491 0.3001 0.1457
0.2734 0.2826 0.0460 0.0252

0.0012 0.0278 29.8673 9.0230
0.0985 0.1043 3.3643 2.7047

Third 0.1135 0.1205 7.7959 6.0922
Breath Hold 0.1332 0.1367 2.2281 1.7029

0.2097 0.2224 1.4926 0.7990
0.2398 0.2491 0.3223 0.1570

0.0012 0.0405 48.1610 11.9288
Fourth 0.0788 0.0846 3.4607 2.2513

Breath Hold 0.0973 0.1043 4.4311 2.4449
0.1992 0.2027 1.1038 0.4277
0.2491 0.2514 0.0612 0.0345
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response. Also frequency ranges found from averaged estimated power spectrum are
consistent with ones in Figure 5.2.

Figure 5.3 shows the average power spectrums of healthy and migraine subjects.
During all breath hold episodes, average power spectrum of normal subjects reach a
peak at a frequency below 0.05 Hz. However, amplitude of power spectrum of migraine
subjects are at same frequencies is very low relative to normals. Peak at spectrum below
0.05 Hz is due to rise in [Hb] amplitude in time domain. In normal subjects during
breath hold episodes [Hb] data resembles triangular wave with a period of minimum
30 seconds (Fig. 5.1). Frequency domain representation of triangular wave is a sinc
function centered at nearly 0.033, depending on the location of peak. Since migraine
subjects do not show a signi�cant [Hb] increase during breath hold, this peak can not
be observed as dominant relative to healthy case.

Spectral analysis of modeled [Hb] signal of migraine and healthy subjects gives
some clues in the vasoconstrictive character of cerebrovascular system of migraineurs.
A detailed analysis of Table 5.1 to determine the frequencies which are signi�cant in
all breath holds i.e. intersection of frequencies between all breath holds, deduces that
at very low frequency(VLF): 0.01-0.03 Hz, low frequency(LF): 0.13 Hz and high fre-
quency(HF): 0.25 Hz are mutual frequencies for four breath holds (Fig. 5.4). For both
healthy and migraine subjects, power spectrum of [Hb] signal takes its maximum val-
ues at VLF whereas energy of migrainuers response is approximately �ve times even
nine times for second breath hold, smaller than healthy subjects' response. Maximal
character of power spectrum in VLFs for both subject groups is related to the peak of
time domain [Hb] signal at the end of the 30 seconds breath holding period. Ampli-
tude di�erence in power spectrum may be an evident for the lack of vasoregulation in
migraneurs which is shown in other studies [31, 32, 41]. Breath holding task requires
the vasodilation of cerebral vessels by increasing the arterial partial pressure of car-
bon dioxide from its normal level and decreasing the arterial partial pressure of oxygen
[42]. Increased partial pressure of carbon dioxide leads vasodilation [43]. At VLF where
response to breath holding task dominates, vasoreactivity behavior of migraineurs is
found very di�erent from normals meaning an impairment in the autoregulation.
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Figure 5.3 Average power spectrum from healthy and migraine Patients

Spectral analysis of cerebrovascular dynamics and metabolism have been studied
widely with di�erent techniques to investigate the oscillations. However, there has been
no agreement on the frequency of oscillations [44]. In our study we found that around
0.13 Hz energy of estimated [Hb] signal of migraneurs shows a statistically signi�cant
diversity from healthy subjects with a 1.5 fold decrease. Although it is not clear, some
studies have shown that 0.13 can be a low frequency oscillation which stems from the
vascular or metabolic regulations [45, 46].

Although it can not seen from Figure 5.3, statistical analysis on frequency spec-
trum has shown a signi�cant di�erence at 0.25 Hz in the estimated power spectrum of
migraine and healthy subjects. Oscillations higher than 0.2 and 0.3 Hz are attributed
as respiratory frequency [47]. Similar to VLF and LF, energy estimates of migraineurs
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Figure 5.4 Overlapping frequencies in four breath holds. Pink colored cells are the mutual frequencies
where at least three breath holds show signi�cant di�erences. The energy of the each overlapping
interval is denoted on the left for normals and migraneurs

are found smaller relative to healthy subjects.

5.2 Results from ARX Modeling Scheme-2

ARX modeling scheme-2 estimates ARX models from averaged [Hb] data over
16 detectors recordings for each healthy and normal subjects. Di�erent from scheme-1
model �t between estimated and measured data is forced to 90%. Candidate models
that have small loss functions and 90% model �t are selected according to the residual
check. Residual check is performed on both estimation and validation data. Estimated
models which have an autocorrelation sequence of residuals and a cross correlation
sequence of residual and input lay in the con�dence region, are selected as optimal
models. Figure 5.5 depicts residual plot of a selected model.

Table 5.2 shows the required model orders to model averaged [Hb] data of
healthy and migraine subjects. All models ful�ll the loss function and model �t crite-
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Figure 5.5 Residual check performed on (a) estimation data and (b) validation data

rion, also they satisfy residual check.

Table 5.2 shows that in four breath hold episodes, although a statistical di�er-
ence can not be elicited for all breath holds, averaged [Hb] data of migraine subjects
requires higher model orders and in some cases ARX model fails in �nding successful
models when same input signal is applied.

5.3 Results from ARX Modeling Scheme-3

First of all, background activity is modeled as AR process by taking normal
breathing measurements from healthy subjects. Orders from 1 to 5 has been found
satisfying which successfully model all data from four subjects. Therefore AR order
which will be applied to ARX modeling is determined as [1:5].

The ARX modeling procedure in Section 4.5.4 is applied to the whole [Hb]
breath holding signals obtained from subjects. Signal u(k) is obtained by averaging
detectors which re�ect the behavior of response. All 16 detectors are not used not to
decompose the pattern of reference input. For each subject approximately 6 detectors
are accounted for modeling. Table 5.3 shows the averaged model orders for each subject
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Table 5.2
Orders of selected models for healthy and migraine subjects for each breath hold episodes

First Breathhold
Normal na nb nk(delay) Total Migraine na nb nk(delay) Total

N1 20 8 5 33 M1 14 17 4 35
N2 10 19 5 34 M2 20 13 2 35
N3 20 12 0 32 M3 20 13 3 36
N4 20 3 5 28 M4 14 17 0 31
N5 14 19 1 34 M5 20 14 2 36
N6 20 9 4 33 M6 not model not model not model

Mean 17.33 11.67 3.33 32.33 Mean 17.60 14.80 2.20 34.60
St Dev 4.32 6.38 2.25 2.25 St Dev 3.29 2.05 1.48 2.07

Second Breathhold
Normal na nb nk(delay) Total Migraine na nb nk(delay) Total

N1 19 9 5 33 M1 not model not model not model
N2 12 17 4 33 M2 20 14 0 34
N3 19 13 0 32 M3 20 18 1 39
N4 20 7 5 32 M4 11 20 5 36
N5 16 12 5 33 M5 19 15 2 36
N6 12 16 5 33 M6 20 6 5 31

Mean 16.33 12.33 4.00 32.67 Mean 18.00 14.60 2.60 35.20
St Dev 3.61 3.88 2.00 0.52 St Dev 3.94 5.37 2.30 2.95

Third Breathhold
Normal na nb nk(delay) Total Migraine na nb nk(delay) Total

N1 15 13 5 33 M1 18 12 4 34
N2 18 14 5 37 M2 19 14 5 38
N3 20 9 5 34 M3 20 5 5 30
N4 7 20 5 32 M4 13 19 5 37
N5 13 10 5 28 M5 17 12 4 33
N6 19 15 5 39 M6 11 20 3 34

Mean 15.33 13.50 5.00 33.83 Mean 16.33 13.67 4.33 34.33
St Dev 4.84 3.94 0.00 3.87 St Dev 3.56 5.47 0.82 2.88

Fourth Breathhold
Normal na nb nk(delay) Total Migraine na nb nk(delay) Total

N1 18 12 4 36 M1 19 13 5 37
N2 19 14 5 37 M2 12 20 5 37
N3 20 5 5 31 M3 17 20 1 34
N4 13 19 5 26 M4 20 7 4 35
N5 17 12 4 33 M5 19 19 0 38
N6 11 20 3 34 M6 15 18 1 35

Mean 16.33 13.67 4.33 32.83 Mean 17.00 16.17 2.67 36.00
St Dev 3.56 5.47 0.82 3.97 St Dev 3.03 5.19 2.25 1.55
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where model orders are denoted as mean(stdev) over selected detectors. It can be seen
that model orders required for modeling scheme-3 are very low comparing to orher
modeling schemes due to the di�erence in input signals. In modeling scheme-3, models
predict the output signal from a similar signal whereas in other modeling schemes input
is square wave.

Table 5.3
Averaged orders of models for healthy and migraine subjects

Normals na nb Migraine na nb
N1 1.00 3.80 (0.84) M1 1.40 (0,55) 3.20 (1,79)
N2 1.00 3.25 (1.39) M2 1.80 (1,79) 4.00 (1,87)
N3 1.60 (0,34) 3.60 (1.67) M3 1.17 (0,41) 5.33 (3,67)
N4 1.00 2.40 (0.55) M4 1.00 4.00 (1,15)
N5 1.38 (0,52) 2.63 (1.06) M5 1.00 3.60 (0,89)
N6 1.00 2.40 (0.55) M6 1.00 3.67 (2,08)

Mean 1.16 (0,26) 3.01 (0.62) Mean 1.23 (0,32) 3.97 (0,73)

Figure 5.6 shows examples of the �ltered responses acquired from healthy and
migraine subjects. As seen from �gure, parametric ARX modeling could discard the
unexpected �uctuations and abruptness in the measured signal due to movement or
motion of subjects during data collection. Thus, a signi�cant improvement is elicited
from measured signal to �ltered signal. Modeled background activity is depicted in
Figure 5.7. Signal n(k) is found by subtracting �ltered response from measured signal.
Comparison of the signal in Figure 5.7 with measured normal breathing signal in Figure
4.7 which shows the normal breathing measurements, demonstrates how ARX model
is successful in �ltering the measured signal.

Before going on the time domain analysis of �ltered responses, frequency char-
acteristics of background activity of migraine and normal subjects is analyzed. As
shown in Section 5.1, frequency response of migraineurs during breath holding task
is signi�cantly di�erent from healthy subjects. We searched whether this di�erence is
also valid for normal activity of neurovascular system. Simulated breath holding [Hb]
signal is subtracted from measured signal and power spectrum of extracted signal is
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Figure 5.6 Measured and �ltered responses. (a) Hb signal taken from 12. detector of fNIRS from a
normal subject and corresponding �ltered signal and (b) Hb signal taken from 4. detector of fNIRS
from a migraine subject and corresponding �ltered signal
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Figure 5.8 Power spectrum of modeled background activity for migraine and healthy subjects

calculated via fast Fourier transform. In order to avoid problems in Fourier transform
stem from di�erence in length of signals, each signal length is normalized. Figure 5.8
shows power spectrum of background activity for migraine and healthy subjects.

Power spectrum graph displays depressed background activity in migraine sub-
jects. At frequencies below 0.05Hz, healthy subjects' activity is nearly three fold of
migraineurs. At frequencies higher than 0.05 Hz, this di�erence continues in two fold
manner where magnitude of power spectrum belonging to healthy subjects is around
0.1 and migraine subjects around 0.05.

In previous section, it has been shown that frequency domain data of migraineurs
signi�cantly di�er from healthy subjects in both amplitude and frequency character-
istics. It is important to analyze the time domain data of the signal obtained after
parametric identi�cation, s(k), for the demonstration of di�erence between two groups.
This analyses would show whether there exists a dissimilarity in neurovascular dynam-
ics of migraineurs to adapt breath holding task. For the analyses of cerebrovascular
dynamics mainly two parameters are investigated: peak amplitude of the s(k) dur-
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ing four breath holds and time to peak amplitude from beginning of the breath hold.
The amplitude values grouped on the basis of breath holds and p values obtained
by applying ANOVA test on �ltered responses of six migraine and six subjects are
demonstrated in Table 5.4. As seen from table, magnitudes of amplitudes belonging
to migraineurs are supressed for all breath holds supporting the observation obtained
in frequency domain. These results may be evident for the vasoconstrictive character
of the cerebrovascular system of migraineurs.

Table 5.4
Amplitude values of averaged [Hb] data obtained from parametric identi�cation for four breath holds

(mean(std))

Breath holds Normal Migraine p value
First 1.83 (1.03) 0.70 (1.05) 0.088
Second 2.00 (1.56) -0.08 (1.03) 0.021
Third 2.11 (1.02) 0.28 (1.33) 0.023
Fourth 1.82 (1.05) 0.47 (0.79) 0.03

Time to peak parameter indicates time between the rise of [Hb] response and the
start of breath hold. Table 5.5 demonstrates no signi�cant di�erence between migraine
and healthy subjects. This may show that both group members have approximately
same oxygen consumption time although oxygen consumption rate is not same due to
di�erences in peak amplitude. It is important to mention that determining the time
to peak of migraineurs is di�cult because of the �uctuating character of [Hb] signal
during breath holds. Even in some cases, expected signi�cant rise in [Hb] data could
not visualized throughout analysis leading to a confusion in the time to peak parameter.
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Table 5.5
Time to peak values of averaged [Hb] data obtained from parametric identi�cation for four breath

holds (mean(std))

Breath holds Normal Migraine p value
First 28.50 (7.03) 35.13 (2.7) 0.056
Second 31.23 (7.66) 35.09 (2.05) 0.54
Third 32.46 (4.13) 34.06 (2.65) 0.44
Fourth 36.17 (16.06) 35.10 (2.44) 0.77
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6. CONCLUSIONS

In this study, data acquired from healthy and migraine subjects with fNIRS dur-
ing a breath holding task is analysed by using a parametric identi�cation technique to
investigate the cerebrovascular dynamics of migraine. Three modeling methodologies
are followed to test the success of identi�cation algorithm in modeling the brain hemo-
dynamic response (BHR). First modeling scheme depicts the frequency intervals for
four breath holds in which BHR of migraineurs di�ers from the healthy ones. Frequen-
cies between 0.01 Hz and 0.03 Hz which correspond to rise in [Hb] data, are signi�cantly
di�erent in two groups. Also, estimate power spectrum of migraneurs show diversity
at 0.13 Hz and 0.25Hz. At these frequencies energy of the spectrum is found smaller
in migraneurs relative to normals. Second modeling scheme depicts largeness in model
orders of migraineurs relative to healthy subjects. Final modeling scheme is performed
by using a reference signal obtained by averaging HBRs rather than a square wave.
Results of this scheme show the supressed behavior of migraneurs' responses.

6.1 Recommendations for future work

Success of ARX modeling can be tested in synthetic trials composed by the
superposition of background activity and mathematical functions that models [Hb]
data during breath holding task. In the modeling procedure, responses which involve
abrupt changes originating from motions of subjects, sometimes force higher model
orders. This problem can be encountered by changing probe design to which would
not a�ect from this motions.

Even though linear parametric modeling have been quite capable of capturing
the BHRs of subjects, other modeling techniques involving non-linear and non paramet-
ric modeling or neural network analysis can improve both time and frequency domain
analysis of BHR.
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