
NONLINEAR TIME SERIES ANALYSIS OF MONKEYVOCALIZATIONS
by

Esin YavuzB.S. in Computer Engineering, Galatasaray University, 2006

Submitted to the Institute of Biomedi
al Engineeringin partial ful�llment of the requirementsfor the degree ofMaster of S
ien
einBiomedi
al Engineering
Bo§aziçi UniversityJune, 2008



ii
NONLINEAR TIME SERIES ANALYSIS OF MONKEYVOCALIZATIONS

APPROVED BY:
Assist. Prof. Burak Güçlü . . . . . . . . . . . . . . . . . . .(Thesis Advisor)Asso
. Prof. Yasemin Kahya . . . . . . . . . . . . . . . . . . .Assist. Prof. Can Yü
esoy . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 24.06.2008



iiiACKNOWLEDGMENTS
I am grateful to my advisor Dr. Burak Gu
lu for his help and motivation in�nishing my thesis and for en
ouraging and supporting me during all my studies.I would also like to thank Dr. Mar
 Hauser from Harvard University for pro-viding the monkey vo
alization database and for his 
omments about this work.



ivABSTRACTNONLINEAR TIME SERIES ANALYSIS OF MONKEYVOCALIZATIONSPrimate vo
alizations are produ
ed as a result of intera
tions between andwithin the simple vo
al system and the 
omplex signal 
oming from the nervous system.As a 
onsequen
e of the nature of this organization, the resulting voi
e signal is ofnonlinear nature. Moreover, in 
ontrast to humans, in many examples of nonhumanprimate vo
alizations, the vo
al folds do not syn
hronize. Consequently, produ
edsignal is rather 
omplex.Nonlinear te
hniques were shown to be useful in analyzing nonhuman primatevo
alizations. Deterministi
 versus sto
hasti
 (DV S) predi
tion te
hnique is one ofthese methods whi
h 
an be used to determine the amount of nonlinearity in animalvo
alizations. This method serves to 
al
ulate the low-dimensional nonlinearity mea-sure (LNM), whi
h indi
ates the presen
e of a low-dimensional attra
tor. By usingthis method, it was demonstrated that while the nonlinearity measure is useful in voi
esignals with harmoni
 
omponents, in highly irregular signals like s
reams and barks,the dete
table amount of nonlinearity was 
omparatively small.In this study, the amount of nonlinearity in rhesus monkey voi
es was 
al
ulatedby using DV S analysis and this measure was used to distinguish di�erent 
all typesand individual properties of the monkeys. Voi
e signals with harmoni
 
omponentsshowed relatively high SNR and low-dimensional nonlinearity, while these phenomena
ould not be dete
ted in irregular voi
es. The signals were analyzed and 
omparedamong di�erent 
allers, di�erent 
all types and also among 
all subtypes.Keywords: Deterministi
 versus Sto
hasti
 Analysis, Monkey Vo
alization, RhesusMa
aque, Nonlinearity Measure.



vÖZETMAYMUN SESLER�N�N L�NEER OLMAYAN ZAMANSER�S� ANAL�Z�Primat sesleri, mekanik ses üretim sistemi ile sinir sisteminden gelen karma³�ksinir i³aretinin etkile³iminin bir sonu
udur. Bu sistemin do§as� gere§i, sistemin olu³-turdu§u ses i³areti nonlineerdir. �nsan olmayan primatlar�n seslerinde görülen nonli-neerli§in ses üretim sisteminin yap�sal özelliklerinden kaynakland�§� ve karma³�k birsinirsel kontrol mekanizmas�n�n varl�§�n� zorunlu k�lmad�§� öne sürülmü³tür.Hayvan seslerindeki nonlineerlik miktar� DV S öngörü yöntemiyle belirlenebilir.Bu yöntem, sistemde az-boyutlu bir çeki
inin bulundu§unu gösteren LNM de§erinihesaplamaya yarar. Bu yöntem kullan�larak, harmonik bile³enler içeren seslerde buölçütün iyi sonuçlar vermesine ra§men düzensiz seslerde tespit edilebilen nonlineerli§innispeten dü³ük oldu§u gösterilmi³tir.Bu çal�³mada rhesus makaklar�n�n normal ve agresif tip ses i³aretlerindeki nonli-neerli§i tespit etmek ve anlamland�rmak için bir nonlineer zaman serisi analizi yöntemiolan DV S analiz yöntemi kullan�lm�³t�r. Harmonik bile³enler içeren seslerde az say�dakom³u kullan�larak yap�lan öngörülerin daha iyi sonuç verdi§i; buna kar³�n düzensizseslerde kom³uluk say�s�n�n öngörü ba³ar�s�nda bir fark yaratmad�§� gözlemlendi. Seslerin
elendikten sonra farkl� bireyler, farkl� ses tipleri ve ses alt gruplar� ay�rt edilmeyeçal�³�ld�.Anahtar Söz
ükler: DV S Çözümleme, Maymun sesi, Rhesus Makak�, NonlineerlikÖlçütü
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11. INTRODUCTION
1.1 Motivation and Obje
tivesVoi
e is the most important medium for primate 
ommuni
ation. By shapingthe air �ow by larynx, vo
al tra
t and respiratory 
avities, not only humans, but alsoother primates produ
e vo
al signals that 
orrespond to a large diversity of so
ial
ontext [1℄.Nonlinear phenomena have been shown in human [2℄ and nonhuman mammal[3, 4℄ voi
es. Moreover, these works showed that while humans avoid produ
ing ir-regular voi
es by using the vo
al folds as 
oupled os
illators; this is not the 
ase innonhuman mammals. The morphologi
al features of vo
al folds and laryngeal mus
lesin nonhuman primates indi
ate that in 
ontrast to the human larynx, the nonhumanprimate larynx allows for a greater range in vo
al pit
h as well as greater instability [5℄.Furthermore, nonlinearities are 
ommon in nonhuman mammal vo
alizations and thismay play a role in their 
ommuni
ation: the voi
e signal may 
arry some informationabout the properties like age, size, and mood of the animal.Common stru
tures and behaviors that are seen in nonlinear systems su
h assteady state attra
tors, limit 
y
les, subharmoni
s, 
haos and bifur
ations 
an be dis-tinguished form the time series data of mammal vo
alizations [4℄. These phenomena
an also be observed in spe
trographi
 analysis of voi
e signals. Furthermore, 
om-puter simulations of biome
hani
al modeling showed that these irregularities may beresulted from the desyn
hronization of the left and right vo
al fold or due to the desyn-
hronization of verti
al and horizontal vibratory modes of a single fold [6, 7, 8℄.Deterministi
 versus Sto
hasti
 (DV S) predi
tion te
hnique was shown to bee�
ient for investigating the nonlinear phenomena by quantifying the amount of non-linearity in animal vo
alizations [9℄. In the DV S te
hnique, deterministi
 and sto
has-



2ti
 predi
tion e�
ien
ies are 
ompared and as an indi
ation of this di�eren
e, low-dimensional nonlinearity measure (LNM) is 
al
ulated. A high LNM is found whendeterministi
 predi
tion is more e�
ient than sto
hasti
 predi
tion and it indi
ates thepresen
e of a low-dimensional attra
tor.Low-dimensionality of a system may be a result of syn
hronization of several
omponents in order to produ
e harmoni
 
omponents. Furthermore, it has beendemonstrated by Ruelle and Takens that in a system with many degrees of freedom,when there is a transition to 
haos, many degrees of freedom are 
oupled and thenumber of dimensions drasti
ally de
reases [10℄. After the transition to 
haos, thenumber of degrees of freedom may in
rease. Nevertheless, DV S te
hnique gives goodresults about the low-dimensionality of the system even if the signal shows partiallow-dimensional behavior.A usual way to investigate a nonlinear system is to model the system by usingdi�erential equations and analyzing the results. However, the vo
al system 
onsists ofmany 
omponents and it is very di�
ult to estimate the dimensions of the attra
torby numeri
ally integrating the partial di�erential equations. Instead dealing with thisproblem, DV S analysis uses the state spa
e re
onstru
tion te
hnique [11℄. The mainquestion here is whether the time series from a high dimensional deterministi
 system
an be approximately modeled with a low dimensional non-linear sto
hasti
 model, ashas been suggested when there are large, spatially 
oherent stru
tures in the system[12℄. For a high dimensional nonlinear system with low level observational noise, alarge noise term 
an be indu
ed in the predi
tion step by the pro
ess of state spa
ere
onstru
tion from time series data, 
onsequently it is not possible to make a

urateshort-term fore
asting of the time series, irrespe
tive of the length of the time series [13℄.As a result of that, a high dimensional nonlinear system is equivalent to a sto
hasti
system, whi
h results in a low LNM .Tokuda et al. [9℄ used the DV S method to show that while the nonlinearitymeasure is useful in voi
e signals with harmoni
 
omponents, in highly irregular signalssu
h as juvenile ma
aque s
reams, piglet s
reams, and some dog barks, the dete
table



3amount of nonlinearity was 
omparatively small. It has been dis
ussed that the nonlin-earities in nonhuman primate vo
alizations may be a 
onsequen
e of the intera
tionsbetween stru
tural properties of the peripheral produ
tion me
hanism, whi
h allows in-dividuals to generate highly 
omplex and unpredi
table vo
alizations without requiringa 
omplex neural 
ontrol me
hanism [3℄.Analyzing nonhuman primate vo
al 
ommuni
ation is indispensable for investi-gating the evolution of spee
h and language. In addition, understanding the 
onstraintson the per
eptual and motor domains of primates' vo
al behavior will be a big step tounderstand their 
ognitive abilities [14℄.In the present study, amount of nonlinearity of monkey voi
es was determined byDV S method and individual properties of monkeys and so
ial 
ontexts were 
omparedwith respe
t to the nonlinearity measure.
1.2 OutlineThe work is presented as follows: In Chapter 2, ba
kground information aboutthe anatomy and the physiology of vo
al system is given. In Chapter 3, materials andmethods used in the present study are explained. Next, results are given in Chapter4. Finally, results are dis
ussed in Chapter 5 and 
on
lusion is made in Chapter 6.



42. VOICE PRODUCTION MECHANISMS IN HUMANAND NONHUMAN PRIMATES
2.1 Comparison of Human and Nonhuman Vo
al SystemsVoi
e signal is produ
ed by shaping the air pumped by the lungs in vo
al tra
t.Even if there are some important di�eren
es; vo
al system anatomy, espe
ially thevo
al produ
tion me
hanism, is very similar in humans and nonhuman primates.The main sour
e for voi
e produ
tion is the air pressure 
oming from the lungs.The air pressure is maintained and adjusted by the lungs, diaphragm, 
hest and ab-dominal mus
les.Air �ow 
oming from the respiratory system then passes the larynx and vo
alfolds. The main fun
tion of the larynx is to 
hoose between swallowing and breathinga
tions and thus prote
t the lungs. Its fun
tion in voi
e produ
tion is to regulate vo
alfold tension. Nonhuman primates also have air sa
s atta
hed to their larynges. Theselarge sa
s do not exist in humans and their fun
tions are not 
learly known.The basi
 sound of the voi
e is produ
ed by the vibration of vo
al folds. Therate of vibration is 
alled the vo
al pit
h. Vibration o

urs in vibratory 
y
les. At�rst, air pressure opens the bottom of vo
al folds. Then, the pressure moves upwardsthrough the vo
al folds and opens the top. After this step, bottom of the vo
al foldsis 
losed be
ause of the "Bernoulli e�e
t" 
reated by the low pressure behind the fastair movement. This 
auses the vo
al folds 
lose and 
ut the air �ow, and release an airpulse [15℄.From physi
al point of view, vo
al folds 
an be thought as 
oupled os
illators.This 
oupled os
illator system is the main stru
ture that 
reates the nonlinear phe-nomena in voi
e.
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Figure 2.1 Anatomy of voi
e produ
tion in orangutan, 
himpanzee and human (a to 
, respe
tively).Upper panel shows MRI images of vo
al system, and lower panel 
ontains the illustrations of the vo
alsystem of human and other primates. Red 
olor signi�es the tongue body, yellow the larynx and bluethe air sa
s [1℄After the voi
e sound is produ
ed by the vibrations of vo
al folds, it is �nallyshaped in vo
al tra
t, whi
h 
onsists of the throat, nasal and oral 
avities. This shapingis realized by a series of band-pass �lters 
alled formants. This �ltering pro
ess isindependent of the vo
al pit
h determined in the vo
al folds. Therefore, larynx andvo
al tra
t 
an be thought as two independent systems. This theory of voi
e produ
tionis 
alled the sour
e/�lter theory. The a
ousti
s, anatomy, innervation and 
entral
ontrol of human and animal vo
al tra
ts are fundamentally similar [1℄. For humans,individual re
ognition is a result of this shaping, namely the resonan
e.The �nal step, arti
ulation, is provided by shaping the sound by lips, tongueand soft palate in order to produ
e more spe
i�
 vo
alizations, whi
h 
orrespond to thewords in human vo
alization. This step is very weak in nonhuman primates, thereforethey 
an not develop languages as humans do. Nevertheless, Hauser et al. showed thatrhesus monkeys have the ability to modify the spe
tral 
hara
teristi
s of the signal bymodifying the lip protrusion, lip separation, teeth separation and mandibular position,and maybe also the tongue position [16℄, and this modi�
ations may play a role in



6produ
ing distin
t sounds.Comparison of primate vo
al systems is shown in Figure 2.1. The �gure showsthat the human larynx is pla
ed lower in the throat than in the apes. Moreover,oral 
avity is longer and tongue shape is di�erent in humans 
ompared to the otherprimates. These di�eren
es allow a mu
h greater range of sounds to be produ
ed byhumans, whi
h would have been signi�
ant in the evolution of spee
h [1℄.



73. METHODOLOGY
3.1 Monkey Voi
e DatabaseThe data used in this study in
ludes digitized vo
alizations of rhesus ma
aquesobtained from Harvard University Primate Cognitive Neuros
ien
e Laboratory. Thedatabase 
ontains monkey 
alls that are re
orded from rhesus monkeys living on theisland of Cayo Santiago, Puerto Ri
o by Mar
 Hauser and �eld assistants.The database 
ontained examplars from 10 major 
all types. Some of these 
alltypes 
ontained some additional 
all subtypes. Within these 
all types, 
oos, aggressive
alls, girneys, grunts, harmoni
 ar
hes, and s
reams are examined.The database in
luded di�erent 
all type exemplars from di�erent individuals.For some individuals, multiple examplars of the same 
all type were also provided. Allvoi
e signals used in this study were re
orded from adults; on Cayo Santiago Island,females rea
h reprodu
tive maturity at approximately 3 years and males at approxi-mately 4 years.The database in
luded di�erent 
all types, six of whi
h are analyzed here. These
alls di�er in 
ontext and in a
ousti
al properties:Coos: Coos are 
alls that are produ
ed during a variety of so
ial intera
tionslike friendly approa
hes or approa
hing a 
ommon food. It has been reported thatindividuals produ
e very distin
tive 
oos [5℄.Aggressive 
alls: These 
alls are the vo
alizations that are produ
ed as a threator in a �ght. The sound database in
luded three types of aggressive 
alls: pant threats,barks and growls. All signals were re
orded from adults.



8Girneys: Girneys are the voi
e signals that are produ
ed during so
ial intera
-tions su
h as grooming and handling of infants by females. The 
hara
teristi
 of thissignal type is the drop of fundamental frequen
y over the 
ourse of the bout.S
reams: These signals are produ
ed when the animal is under threat or atta
kof another dominant animal. Five sub
lasses of s
reams have been reported [17℄: tonal,noisy, ar
hed, pulsed and undulating. The subgroups di�er in frequen
y and 
omplex-ity, and ea
h subtype is given in a di�erent 
ontext. Noisy s
reams were produ
edin order to 
all help by juveniles when a higher rank animal atta
ked. Undulatings
reams also told of an atta
k by a higher ranking opponent, but without physi
al
onta
t. Ar
hed s
reams indi
ated a lower ranking aggressor and did not indi
ate anyphysi
al 
onta
t. Pulsed and tonal s
reams tended to indi
ate a squabble within theimmediate family. The s
reams are thought to 
arry information about the situation,the lo
ation and identity of the 
alling individual in addition to the degree of fear. Itis important to note that although the monkeys appeared to distinguish the soundseasily, human resear
hers had to rely on voi
e prints at �rst.Grunts: these signals are given during so
ial intera
tions like approa
hing togroom, approa
hing to 
ommon food items, and group movement. They sound likepant threat type of aggressive 
alls, but in 
ontrast to pant threats, they are given ina friendly 
ontext.Harmoni
 Ar
hes: These are given when a high quality, rare food is dis
overed.
3.2 Prepro
essing of SignalsBefore starting the nonlinearity analysis, all the samples were normalized inorder to make them have the same properties.In the original database, signals were provided with di�erent sampling rates.First, all signals were downsampled to 20020 Hz. After resampling, the amplitudes



9were normalized to 1 VRMS . Silent periods at the beginning and at the end of there
ordings were dis
arded.Frequen
y range of ea
h signal was determined by power spe
tral density esti-mation. Spe
trograms of some samples are shown in Figure 3.1. Harmoni
 
omponents
an be 
learly seen in 
oos and harmoni
 ar
hes while the frequen
y 
omponents ofaggressive 
alls are not very 
lear. S
reams also have 
lear harmoni
 
omponents, butin this 
ase the signal is not stationary.
3.3 Nonlinear Time Series AnalysisA time series is a dis
rete time sequen
e of data observed from one or more
hannels from a system. Time series analysis methods are widely used in many di�erentresear
h areas as they serve to extra
t information about the underlying me
hanisms.Most of the time series analysis methods are linear predi
tion models but non-linear models have also been introdu
ed. Time series analysis is a very important toolfor investigating the systems that exhibit nonlinear dynami
s sin
e we generally do notknow the exa
t 
omponents of the system. The only data we have is usually the onedimensional output of the system, namely the time series data. Nonlinear time seriesanalysis methods are very useful to 
onstru
t the original phase spa
e of the systemand investigate the underlying dynami
al behavior.Casdagli [13℄ introdu
ed a method that 
ombines and 
ompares a deterministi
nonlinear predi
tion model [18℄ with a sto
hasti
 linear predi
tion model [19℄ by meansof predi
tion a

ura
y. If a low-dimensional attra
tor exists at least partially in thesystem, the deterministi
 model would give more a

urate predi
tion results than thesto
hasti
 model. The di�eren
e of predi
tion a

ura
y between the linear and non-linear predi
tion models, namely the low-dimensional nonlinearity measure (LNM)estimates the strength of nonlinearity in the signal.
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113.3.1 Deterministi
 Versus Sto
hasti
 AnalysisDV S analysis is based on Takens embedding theorem [11℄ and 
ompares pre-di
tion su

ess of deterministi
 and sto
hasti
 predi
tion methods.A

ording to this theorem, embedding is done as follows:. Ea
h ve
tor in thedelay 
oordinate spa
e 
onsists of the data point at time t, and d data points beforethat point. Data points in the ve
tor are � elements far from ea
h other.x(t) = (xt; xt�� ; xt�2� ; :::; xt�(d�1)� ) (3.1)where d refers to the embedding dimension and � is the delay time.After that, for every data point x(t), distan
es from other points are 
al
ulatedand D 
losest neighbors of x(t) are found. The data point itself and its temporally
lose points are not in
luded in the neighbors. Then, one step further state of x(t) ispredi
ted by using a lo
al linear predi
tor as in Eq. 3.2.~xt+1 = d�1Xk=0 ak(t)xt�k� (3.2)
In Eq. 3.2, the predi
tion 
oe�
ients a0(t); a1(t); :::; ad�1(t) are determined bya Least-Square algorithm for D neighbors. The predi
tion a

ura
y is 
omputed by�nding the di�eren
e between the predi
ted signal and the a
tual signal. This di�eren
egave the residual signal (r). The signal to noise ratio (SNR) is 
al
ulated as in Eq.3.3. SNR[dB℄ = 10log "PNt=dfxt � �xgPNt=dfrt � �rg # (3.3)where �x = 1N � d+ 1 NXt=d xt ; �r 1N � d+ 1 NXt=d rt: (3.4)



12SNR is 
al
ulated for di�erent number of neighbors by in
reasing the per
entageof the number of neighbors from 0 to 100. For very small number of neighbors, thepredi
tion is very sensitive to noise; therefore the SNR is very low. As the numberof neighbors in
reases, the SNR also in
reases. For a nonlinear dynami
al system,the SNR a
hieves an optimum value for an intermediate number of neighbors. Asthe number of neighbors is further in
reased, linear predi
tion does not give a

urateresults be
ause of the nonlinear nature of the system. Global linear predi
tion whi
huses the maximum number of neighbors is almost identi
al to AR modeling [9℄. Thedi�eren
e between the optimum SNR and the global-linear-predi
tion SNR gave theLNM .Examples of DV S analysis are applied to simulated sine wave, Lorenz system,and random data signals. 3D proje
tion of the phase spa
e and SNR are shown inFigure 3.2.Lorenz data is simulated by the Runge-Kutta integration with time step 0.01.The Equation used in simulation is given in Eq. 3.5.dxdt = �(y � x)dydt = �xz + rx� ydzdt = xy � bz: (3.5)where �=16.0, b=4 and r=45.92. With these parameters, the system shows 
haoti
behavior.Sine wave is generated between �5� and 5� with time step 0.01, and randomdata is generated by rand 
ommand of MATLAB.In Figure 3.2, it 
an be seen that the phase spa
e re
onstru
tion 
an generatethe Lorenz attra
tor and also the LNM measure is high for the Lorenz system. For thesine wave, the limit 
y
le 
an be re
onstru
ted by embedding, and the LNM measureis very low as the sine wave 
an be obtained by linear models, and therefore sto
hasti
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14predi
tion gives results that 
an be obtained as good as by using deterministi
 models.Finally, no parti
ular shape 
an be obtained in the 3D proje
tion of the phase spa
e ofrandom data, for whi
h the LNM is very low. One important point here is that bothrandom data and sine wave shows low LNM ; however the amount of SNR is high forsine wave while it is low for random data.
3.3.2 Parameter EstimationChoosing the time delay is a 
riti
al fa
tor for DV S analysis. If the time de-lay is too small, it is not possible to observe a signi�
ant 
hange in one time step.On the other hand, if the time delay is 
hosen to be too large, data points will beun
orrelated; espe
ially if the system is 
haoti
; be
ause in a 
haoti
 system, nearbytraje
tories diverge exponentially fast. The 
orrelation between two points in a delay
oordinate spa
e 
an be estimated by �nding the average mutual information betweenthese two points. Average mutual information (AMI) gives the amount of informationavailable for a point by making an observation at another point. The AMI betweenthe observations [20℄ at two di�erent points, s(n) and s(n+ �) isI(�) = NXn=1 P (s(n); s(n+ �)) �log2 P (s(n); s(n+ �))P (s(n)P (s(n+ �))� (3.6)If the time delay is too small, the system may not evolve enough in one time step,therefore s(n) and s(n + �) will be 
orrelated, whi
h leads to a high value of AMI.On the other hand, if the time delay is too high, two 
onse
utive signals may beun
orrelated, espe
ially if the system is 
haoti
. Therefore, the �rst minimum of I(�)gives an appropriate 
hoi
e for the time delay.Examples of AMI 
an be seen in Figure 3.3. These �gures 
orrespond to theAMI of the sine wave, Lorenz system, and the random data of whi
h LNM measuresand 3D phase spa
e peoje
tions are shown in Figure 3.2.
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164. RESULTS
DV S method is applied to voi
e signals from six 
all types of all 
allers. Thenumber of exemplars from ea
h 
all type is given in Table 4.1.Before starting the analysis, delay time parameter for DV S analysis was 
al
u-lated. Delay time � was determined by AMI method. Best time delays found by thismethod are shown in Table 4.2 for ea
h 
all.Table 4.1Number of samples from ea
h 
all typeCall Type Number of SamplesCoos 25Aggressive Calls 54Pant Threats 9Growls 7Barks 34Other 4S
reams 32Ar
hed 5Tonal 5Pulsed 4Noisy 2Other 16Girneys 16Harmoni
 Ar
hes 16Grunts 47To determine the optimal delay time for embedding, AMI for every signal wss
al
ulated. The average of the �rst minima for ea
h group was found and this numberwas 
hosen as the delay time parameter for DV S analysis.



17Embedding theorem states that embedding 
an su

esfully be done in any di-mension bigger than two times the original dimension of the system. In this study,embedding dimension was 
hosen to be d=10 for all the signals, as a dynami
al system
an be 
onsidered low dimensional if it exhibits a few (approximately smaller than 10)degrees of freedom [9℄. Table 4.2Time delay parameters for DV S AnalysisCall Type Delay TimeCoos 8Aggressive Calls 8S
reams 5Girneys 7Harmoni
 Ar
hes 4Grunts 6Time and frequen
y domain representations and parameter estimation resultsfor a 
oo 
all whi
h has a high LNM are shown in Figure 4.1, and the results for anaggressive 
all whi
h has low LNM are represented in Figure 4.2. The Spe
trogramof the 
oo 
all reveals the fundamental frequen
y and its harmoni
s. By embeddingthe data in delay 
oordinate state spa
e, it was possible to re
onstru
t the limit 
y
leto whi
h the traje
tory 
onverges. This limit 
y
le 
orresponds to the fundamentalfrequen
y. Conversely, the aggressive 
all exemplar is very irregular and it is notpossible to extra
t any information about the existen
e of a fundamental frequen
y fromthe spe
trogram. For this irregular signal, no parti
ular attra
tor 
ould be obtained byembedding the time-series data in delay 
oordinate state spa
e, hen
e the data 
an bethought as output of a sto
hasti
 pro
ess. Thus, LNM measure was very low. Statespa
e re
onstru
tions and SNR as a fun
tion of dimension per
entage for these twosignals are 
ompared in Figure 4.3.Using the LNM measures, at �rst di�erent 
all types from all animals wereanalyzed and di�eren
e between 
all types were 
ompared.
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Figure 4.3 3-D proje
tions and SNR vs. neighborhood per
entage for the signals in Figures 4.1 and4.2. Di�eren
e between maximum SNR and �nal SNR gives the LNM .After that, 
oo signals from di�erent individuals were 
ompared and the di�er-en
e among 
allers was examined.Next, di�erent 
all types from same 
aller were analyzed and nonlinearity dif-feren
e between 
all types of same 
aller was identi�ed.To human ear, grunts are very similar to pant threat type aggressive 
alls. Inorder to see if the nonlinearity measure 
an distinguish this di�eren
e, pant threatLNM mean was 
ompared to grunt LNM mean.



20Aggressive 
alls and s
reams in the dataset were divided into subgroups. Finally,nonlinearity di�eren
e among aggressive and s
ream subgroups was analyzed.
4.1 Comparison of Di�erent Call TypesLNM values of 6 
all types were 
ompared by unbalan
ed one-way ANOVAtest. Resulting p-value is nearly 0 whi
h means that the null hypothesis that 
laimsthat the 
all types has the same mean estimate 
an be reje
ted. Therefore this testshows that the di�eren
e between 
all groups is highly signi�
ant.Resulting statisti
s were analyzed by a multivariate data analysis with Tukey-Kramer 
riterion. This test showed that 
oo mean is signi�
antly di�erent from meansof other �ve 
all types, while means of grunts and aggressives are similar and alsos
ream, harmoni
 ar
h and girney means are not signi�
antly di�erent from ea
h other.MATLAB output of di�eren
es among 
all types is shown in Figure 4.4.Another phenomenon that 
an be observed in Figure 4.4 is that 
oo mean ishigher that other 
all type means, and the grunt has lowest mean among all 
all types.Mean LNM estimates, standard deviation and mean of maximum SNR are given inTable 4.3. This table shows that for 
oos, not only LNM mean, but also maximumSNR mean is also far higher than other 
all types.Table 4.3Comparison of LNM and SNR of 
all typesCall Type Mean LNM Standard Deviation Mean Maximum SNRCoos 3.6455 1.6711 17.0468Aggressive Calls 0.1105 0.1395 8.38S
reams 2.1132 1.6846 7.103Girneys 0.6718 0.4600 10.88Harmoni
 Ar
hes 2.8021 1.4948 9.1231Grunts 0.0532 0.0573 9.2089
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X1=Harmonic Arches

X1=Grunts

X1=Girneys

X1=Aggressive Calls

X1=Coos

4 groups have population marginal means significantly different from X1=ScreamsFigure 4.4 Di�eren
e between 
all types. Mean of 
oo 
alls is signi�
antly di�erent from means ofother 
alls ex
ept harmoni
 ar
hes. Mean of aggressive 
alls is 
lose to the mean of grunt and girney
alls. Mean of harmoni
 ar
hes is 
lose to the mean of s
reams.4.2 Coo Calls among Di�erent CallersIn order to dis
riminate individuals by the nonlinearity measure, DV S methodis applied to 
oo 
alls of two individuals (n=4 from one, n=6 from the other, and LNMmeasures were analyzed by two-sample t-test. Resulting p-value is 0.47 and thereforet-test does not reveal any signi�
ant di�eren
e between the nonlinearity of 
oo samplesfrom these two animals.
4.3 Di�erent Type Calls of an IndividualDi�erent type 
alls of one animal were analyzed (n=6 for 
oos, n=5 for girneys,n=2 for harmoni
 ar
hes, n=7 for grunts) by unbalan
ed one-way ANOVA method.Resulting statisti
s were tested by multivariate 
omparison test. Comparison of meansof di�erent 
all types or a single individual 
al
ulated by this analysis is shown inFigure 4.5. It was possible to test only four 
all types as no signals from other typeswere provided for this individual. Mean LNM , standard deviation of the LNM and
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X1=Grunts

X1=Harmonic Arches

X1=Girneys

X1=Coos

2 groups have population marginal means significantly different from X1=CoosFigure 4.5 Comparison of means from di�erent 
all types. Mean of 
oo 
alls is signi�
antly di�erentfrom means of girney and grunt type 
alls.mean of the maximum SNR obtained are given in Table 4.4Table 4.4Mean and standard deviation of LNM , and mean of the maximum SNR for di�erent 
all types ofan individualCall Type Mean LNM Standard Deviation Mean Maximum SNRCoos 3.2822 1.4385 11.6083Girneys 0.8804 0.5431 8.2440Harmoni
 Ar
hes 1.7328 0.1314 4.7Grunts 0.0498 0.0139 11.3871The analysis shows that the di�eren
e of nonlinearity between 
all types for asingle animal is also signi�
ant as for the analysis for all animals in the �rst test (p<0.05). Again, highest mean among 
all types is obtained for 
oos.



234.4 Pant Threats vs. GruntsGrunt and Pant threat type aggressive 
alls were analyzed using two-sample t-test (n=9 for pant threats, n=47 for grunts). Results show that there is no signi�
antdi�eren
e between these 
all types (p=0.583).
4.5 Subgroups AnalysisAggressive 
alls and s
reams were divided in subgroups by the 
ontexts in whi
hthey are given. LNM measures were 
ompared among subgroups for both 
all typesseparately.
4.5.1 Aggressive SubtypesThe dataset in
luded 3 types of aggressive 
alls: Pant threats (n=9), growls(n=7) and barks (n=34). Nonlinearity measures of these subgroups were 
ompared byunbalan
ed one-way ANOVA test. This analysis revealed that the di�eren
e betweensubgroup means is not signi�
ant (p=0.421).Resulting statisti
s were examined by multivariate data analysis. Comparisonof means is represented in Figure 4.6.Figure 4.6 shows that none of the subgroup's mean is signi�
antly di�erent fromother subgroups.4.5.2 S
ream SubtypesS
ream subgroups provided in the database were analyzed and LNM measuresper subgroup (n=5 for ar
hed, n=2 for noisy, n=4 for pulsed, n=5 for tonal) were
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X1=Pant Threats
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No groups have population marginal means significantly different from X1=BarksFigure 4.6 Marginal di�eren
e between aggressive sub
lasses
ompared by using unbalan
ed one-way ANOVA test, whi
h showed that the di�eren
ebetween subgroup means is signi�
ant (p<0.01). Resulting statisti
s were analyzedmultivariate post-ho
 test. Marginal di�eren
es among s
ream subtypes are shown inFigure 4.7Multivariate data analysis revealed that ar
hed s
ream mean is signi�
antlydi�erent than noisy and pulsed s
reams, while noisy s
reams also di�er from tonals
reams. Mean and varian
e of LNM and mean of the maximum SNR results aregiven in Table 4.5. Table 4.5Mean and standard deviation of LNM , and mean of the maximum SNR for s
ream subtypesMean LNM Standard Deviation Mean Maximum SNRAr
hed 3.9931 1.1727 10.93Noisy 0.2662 0.2926 1.72Pulsed 1.5064 1.0088 5.74Tonal 3.8030 1.5586 10.78Current database did not in
lude undulating s
reams; therefore it was not pos-
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X1=Noisy

X1=Pulsed

X1=Arched

X1=Tonal

2 groups have population marginal means significantly different from X1=ArchedFigure 4.7 Marginal di�eren
es between s
ream subtypessible to 
ompare this subtype with the others. However, there are two signals markedas "undulated>noisy"; and these signals had relatively higher LNM than noisy 
alls.Thus, it 
an be 
on
luded that these 
alls are undulated s
reams.
4.6 Signal-to-Noise Ratio vs. Low-dimensional NonlinearityLow-dimensional nonlinearity measure for all signals was 
ompared to maximumsignal to noise ratio obtained for all per
entage of neighbors. LNM seems to in
reasewith SNR, but with linear regression, a weak 
orrelation between SNR and LNMvalues is found. For all signals, slope of linear �t is 0.1670 and norm of residuals is20.19. For signals with high LNM (LNM>1), this 
orrelation was higher; the slopeis 0.1206 and norm of residuals is 10.717. Correlation plots are shown in Figure 4.8 forall signals and in Figure 4.9 for signals with high LNM .
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h show low-dimensional nonlinearity



275. DISCUSSION
In this thesis, nonlinearity of monkey voi
e signals was studied by DV S analysisand this measure was examined among di�erent 
all types for all animals, di�erent 
alltypes of one single animal, 
oo 
alls of two di�erent animals, pant threats and grunts,and subtypes of aggressive 
alls and s
reams.For 
omparisons among di�erent 
all types, both analysis for all animals andfor a single animal, I found that 
oos, harmoni
 ar
hes and s
reams have relativelyhigher LNM value and thus they show a higher low-dimensional nonlinearity thanaggressive 
alls, grunts and girneys. High LNM value for 
oos and harmoni
 ar
heswas expe
ted, as in most of the 
ases, a fundamental frequen
y 
an be distinguishedfrom frequen
y domain analysis of these signals. In some 
ases, 
oos 
an show 
haoti
behavior [3℄ , whi
h also results in de
reasing in number of dimensions, therefore inhigh LNM value. Similarly, low LNM mean of aggressive 
alls was also expe
ted asthese signals are highly irregular.S
reams are type of signals that are not stationary in the time 
ourse. Whatis surprising when we look from the 
on
eptual point of view is that while s
reamsare not ordinary 
ommuni
ative signals and in this sense their purpose should be totake attention of other individuals (in order to 
all for help et
.), resulting LNM wasrather high in s
reams, espe
ially for tonal and ar
hed 
alls. In this sense, maybe itis not the irregularity of the signal whi
h takes attention of other individuals; but theunstationarity may make the voi
e signal distin
tive among other voi
es that otherindividuals hear.Another important point about s
reams is that there are �ve di�erent subtypeswhi
h di�er not only in 
omplexity and frequen
y, but also in 
ontext. We showedthat nonlinearity measure 
an distinguish the di�eren
e between subtypes in mostof 
ases. S
ream signals are the most studied 
all types with 
oos be
ause of their



28ri
hness of 
ontext. In this sense of variety of 
ontexts, it is somehow expe
ted thats
reams and 
oos have high LNM value and high standard deviation. Nonlinearityanalysis on human voi
es like 
rying, s
reaming, laughing may be useful to 
omparethis phenomenon to human vo
alizations.Call types that 
orrespond to so
ial intera
tions resulted in moderate LNMvalue. Girneys and grunts are this type of 
all groups. Nevertheless, it should be notedthat girney and grunt means were not signi�
antly di�erent from aggressive 
all meantherefore it is not possible to make a 
on
lusion about the 
ontext by only looking atthe nonlinearity measure.Fit
h et al. [3℄ proposed that the nonlinearity of the signal may 
hange be-tween animals and be useful for individual re
ognition. We applied a t-test to di�erent
oo samples from two animals in order to see if there is a signi�
ant di�eren
e ofnonlinearity among 
alls of di�erent individuals. The t-test did not reveal any sig-ni�
ant di�eren
e between di�erent 
allers. Nevertheless, it should be noted that thedataset that we analyzed for di�erent 
all types of the same animal was too small, andtherefore future analysis with more data may give more reliable results. In addition,
omparison of nonlinearity of voi
es from di�erent individuals require more detailedtests that investigate the bifur
ations, fundamental frequen
y (or frequen
ies for voi
eswith subharmoni
s), number of limit 
y
les and their properties et
.It was reported in the do
umentation of vo
al database that grunts are very sim-ilar to pant threat 
alls, but these two 
all types are given in very di�erent 
ontexts. Weanalyzed the di�eren
e between these two 
all types in order to see if the nonlinearitymeasure may distinguish a di�eren
e between these two 
all types. Two-sample t-testdid not show any di�eren
e (p>0.05), so LNM measure 
an not be used to distinguishbetween these two 
all types. Similarly, ANOVA test between aggressive subgroupsdid not reveal any di�eren
e between group subtypes (p>0.05). These results showthat although there is signi�
an
e between mean di�eren
es for main 
all groups, theLNM is not very useful itself to distinguish similar 
alls with low LNM . The linear
orrelation between LNM and SNR also de
reased for signals with low LNM . Thus,



29nonlinearity measure is not very useful to analyze 
on
eptual information from the
omplex signals.In addition, the weak 
orrelation between SNR and LNM may be a result oflow LNM obtained from the majority of the data in monkey voi
e database. Higher
orrelation for signals that show low-dimensional nonlinearity supports this idea.



306. CONCLUSION
In this study, rhesus ma
aque vo
alizations were 
ompared by using a nonlineartime series analsis method. Results were used to 
ompare individual properties ofanimals.Nonlinearity measure was useful to roughly distinguish the di�eren
e between
all types. However, it fails to distinguish subtle properties of the voi
e that 
arriesindividual information. Ex
ept the s
ream subtype analysis, the results obtained bythis method did not 
arry any di�erent information than spe
tral analysis. There-fore, this method 
an not be a repla
ement to spe
tral analysis, but it may serve tounderstand the underlying dynami
s behind the voi
e produ
tion. Moreover, s
reamsubtype analysis shows that this method 
an be used with the spe
trograms wherespe
tral analysis methods 
annot give any more information.Another important point here is that the database was small for detailed analysislike individual re
ognition. Therefore, results for these small groups may not be reliableenough and more detailed analysis on larger databases may give better results.One other important analysis on this dataset 
an be 
haos tests, but as the voi
edata is very unstationary, Lyapunov exponent 
al
ulation and some other methodsbe
ome more di�
ult. Another possible method 
an be to use Poin
aré Maps onre
onstru
ted phase spa
e; but the problem with this method is the large noise term inthe data. Thus, future work may be to investigate the underlying dynami
s in a moredetailed manner.
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