
NONLINEAR TIME SERIES ANALYSIS OF MONKEYVOCALIZATIONS
by

Esin YavuzB.S. in Computer Engineering, Galatasaray University, 2006

Submitted to the Institute of Biomedial Engineeringin partial ful�llment of the requirementsfor the degree ofMaster of SieneinBiomedial Engineering
Bo§aziçi UniversityJune, 2008



ii
NONLINEAR TIME SERIES ANALYSIS OF MONKEYVOCALIZATIONS

APPROVED BY:
Assist. Prof. Burak Güçlü . . . . . . . . . . . . . . . . . . .(Thesis Advisor)Asso. Prof. Yasemin Kahya . . . . . . . . . . . . . . . . . . .Assist. Prof. Can Yüesoy . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 24.06.2008



iiiACKNOWLEDGMENTS
I am grateful to my advisor Dr. Burak Gulu for his help and motivation in�nishing my thesis and for enouraging and supporting me during all my studies.I would also like to thank Dr. Mar Hauser from Harvard University for pro-viding the monkey voalization database and for his omments about this work.



ivABSTRACTNONLINEAR TIME SERIES ANALYSIS OF MONKEYVOCALIZATIONSPrimate voalizations are produed as a result of interations between andwithin the simple voal system and the omplex signal oming from the nervous system.As a onsequene of the nature of this organization, the resulting voie signal is ofnonlinear nature. Moreover, in ontrast to humans, in many examples of nonhumanprimate voalizations, the voal folds do not synhronize. Consequently, produedsignal is rather omplex.Nonlinear tehniques were shown to be useful in analyzing nonhuman primatevoalizations. Deterministi versus stohasti (DV S) predition tehnique is one ofthese methods whih an be used to determine the amount of nonlinearity in animalvoalizations. This method serves to alulate the low-dimensional nonlinearity mea-sure (LNM), whih indiates the presene of a low-dimensional attrator. By usingthis method, it was demonstrated that while the nonlinearity measure is useful in voiesignals with harmoni omponents, in highly irregular signals like sreams and barks,the detetable amount of nonlinearity was omparatively small.In this study, the amount of nonlinearity in rhesus monkey voies was alulatedby using DV S analysis and this measure was used to distinguish di�erent all typesand individual properties of the monkeys. Voie signals with harmoni omponentsshowed relatively high SNR and low-dimensional nonlinearity, while these phenomenaould not be deteted in irregular voies. The signals were analyzed and omparedamong di�erent allers, di�erent all types and also among all subtypes.Keywords: Deterministi versus Stohasti Analysis, Monkey Voalization, RhesusMaaque, Nonlinearity Measure.



vÖZETMAYMUN SESLER�N�N L�NEER OLMAYAN ZAMANSER�S� ANAL�Z�Primat sesleri, mekanik ses üretim sistemi ile sinir sisteminden gelen karma³�ksinir i³aretinin etkile³iminin bir sonuudur. Bu sistemin do§as� gere§i, sistemin olu³-turdu§u ses i³areti nonlineerdir. �nsan olmayan primatlar�n seslerinde görülen nonli-neerli§in ses üretim sisteminin yap�sal özelliklerinden kaynakland�§� ve karma³�k birsinirsel kontrol mekanizmas�n�n varl�§�n� zorunlu k�lmad�§� öne sürülmü³tür.Hayvan seslerindeki nonlineerlik miktar� DV S öngörü yöntemiyle belirlenebilir.Bu yöntem, sistemde az-boyutlu bir çekiinin bulundu§unu gösteren LNM de§erinihesaplamaya yarar. Bu yöntem kullan�larak, harmonik bile³enler içeren seslerde buölçütün iyi sonuçlar vermesine ra§men düzensiz seslerde tespit edilebilen nonlineerli§innispeten dü³ük oldu§u gösterilmi³tir.Bu çal�³mada rhesus makaklar�n�n normal ve agresif tip ses i³aretlerindeki nonli-neerli§i tespit etmek ve anlamland�rmak için bir nonlineer zaman serisi analizi yöntemiolan DV S analiz yöntemi kullan�lm�³t�r. Harmonik bile³enler içeren seslerde az say�dakom³u kullan�larak yap�lan öngörülerin daha iyi sonuç verdi§i; buna kar³�n düzensizseslerde kom³uluk say�s�n�n öngörü ba³ar�s�nda bir fark yaratmad�§� gözlemlendi. Seslerinelendikten sonra farkl� bireyler, farkl� ses tipleri ve ses alt gruplar� ay�rt edilmeyeçal�³�ld�.Anahtar Sözükler: DV S Çözümleme, Maymun sesi, Rhesus Makak�, NonlineerlikÖlçütü
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11. INTRODUCTION
1.1 Motivation and ObjetivesVoie is the most important medium for primate ommuniation. By shapingthe air �ow by larynx, voal trat and respiratory avities, not only humans, but alsoother primates produe voal signals that orrespond to a large diversity of soialontext [1℄.Nonlinear phenomena have been shown in human [2℄ and nonhuman mammal[3, 4℄ voies. Moreover, these works showed that while humans avoid produing ir-regular voies by using the voal folds as oupled osillators; this is not the ase innonhuman mammals. The morphologial features of voal folds and laryngeal muslesin nonhuman primates indiate that in ontrast to the human larynx, the nonhumanprimate larynx allows for a greater range in voal pith as well as greater instability [5℄.Furthermore, nonlinearities are ommon in nonhuman mammal voalizations and thismay play a role in their ommuniation: the voie signal may arry some informationabout the properties like age, size, and mood of the animal.Common strutures and behaviors that are seen in nonlinear systems suh assteady state attrators, limit yles, subharmonis, haos and bifurations an be dis-tinguished form the time series data of mammal voalizations [4℄. These phenomenaan also be observed in spetrographi analysis of voie signals. Furthermore, om-puter simulations of biomehanial modeling showed that these irregularities may beresulted from the desynhronization of the left and right voal fold or due to the desyn-hronization of vertial and horizontal vibratory modes of a single fold [6, 7, 8℄.Deterministi versus Stohasti (DV S) predition tehnique was shown to bee�ient for investigating the nonlinear phenomena by quantifying the amount of non-linearity in animal voalizations [9℄. In the DV S tehnique, deterministi and stohas-



2ti predition e�ienies are ompared and as an indiation of this di�erene, low-dimensional nonlinearity measure (LNM) is alulated. A high LNM is found whendeterministi predition is more e�ient than stohasti predition and it indiates thepresene of a low-dimensional attrator.Low-dimensionality of a system may be a result of synhronization of severalomponents in order to produe harmoni omponents. Furthermore, it has beendemonstrated by Ruelle and Takens that in a system with many degrees of freedom,when there is a transition to haos, many degrees of freedom are oupled and thenumber of dimensions drastially dereases [10℄. After the transition to haos, thenumber of degrees of freedom may inrease. Nevertheless, DV S tehnique gives goodresults about the low-dimensionality of the system even if the signal shows partiallow-dimensional behavior.A usual way to investigate a nonlinear system is to model the system by usingdi�erential equations and analyzing the results. However, the voal system onsists ofmany omponents and it is very di�ult to estimate the dimensions of the attratorby numerially integrating the partial di�erential equations. Instead dealing with thisproblem, DV S analysis uses the state spae reonstrution tehnique [11℄. The mainquestion here is whether the time series from a high dimensional deterministi systeman be approximately modeled with a low dimensional non-linear stohasti model, ashas been suggested when there are large, spatially oherent strutures in the system[12℄. For a high dimensional nonlinear system with low level observational noise, alarge noise term an be indued in the predition step by the proess of state spaereonstrution from time series data, onsequently it is not possible to make aurateshort-term foreasting of the time series, irrespetive of the length of the time series [13℄.As a result of that, a high dimensional nonlinear system is equivalent to a stohastisystem, whih results in a low LNM .Tokuda et al. [9℄ used the DV S method to show that while the nonlinearitymeasure is useful in voie signals with harmoni omponents, in highly irregular signalssuh as juvenile maaque sreams, piglet sreams, and some dog barks, the detetable



3amount of nonlinearity was omparatively small. It has been disussed that the nonlin-earities in nonhuman primate voalizations may be a onsequene of the interationsbetween strutural properties of the peripheral prodution mehanism, whih allows in-dividuals to generate highly omplex and unpreditable voalizations without requiringa omplex neural ontrol mehanism [3℄.Analyzing nonhuman primate voal ommuniation is indispensable for investi-gating the evolution of speeh and language. In addition, understanding the onstraintson the pereptual and motor domains of primates' voal behavior will be a big step tounderstand their ognitive abilities [14℄.In the present study, amount of nonlinearity of monkey voies was determined byDV S method and individual properties of monkeys and soial ontexts were omparedwith respet to the nonlinearity measure.
1.2 OutlineThe work is presented as follows: In Chapter 2, bakground information aboutthe anatomy and the physiology of voal system is given. In Chapter 3, materials andmethods used in the present study are explained. Next, results are given in Chapter4. Finally, results are disussed in Chapter 5 and onlusion is made in Chapter 6.



42. VOICE PRODUCTION MECHANISMS IN HUMANAND NONHUMAN PRIMATES
2.1 Comparison of Human and Nonhuman Voal SystemsVoie signal is produed by shaping the air pumped by the lungs in voal trat.Even if there are some important di�erenes; voal system anatomy, espeially thevoal prodution mehanism, is very similar in humans and nonhuman primates.The main soure for voie prodution is the air pressure oming from the lungs.The air pressure is maintained and adjusted by the lungs, diaphragm, hest and ab-dominal musles.Air �ow oming from the respiratory system then passes the larynx and voalfolds. The main funtion of the larynx is to hoose between swallowing and breathingations and thus protet the lungs. Its funtion in voie prodution is to regulate voalfold tension. Nonhuman primates also have air sas attahed to their larynges. Theselarge sas do not exist in humans and their funtions are not learly known.The basi sound of the voie is produed by the vibration of voal folds. Therate of vibration is alled the voal pith. Vibration ours in vibratory yles. At�rst, air pressure opens the bottom of voal folds. Then, the pressure moves upwardsthrough the voal folds and opens the top. After this step, bottom of the voal foldsis losed beause of the "Bernoulli e�et" reated by the low pressure behind the fastair movement. This auses the voal folds lose and ut the air �ow, and release an airpulse [15℄.From physial point of view, voal folds an be thought as oupled osillators.This oupled osillator system is the main struture that reates the nonlinear phe-nomena in voie.
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Figure 2.1 Anatomy of voie prodution in orangutan, himpanzee and human (a to , respetively).Upper panel shows MRI images of voal system, and lower panel ontains the illustrations of the voalsystem of human and other primates. Red olor signi�es the tongue body, yellow the larynx and bluethe air sas [1℄After the voie sound is produed by the vibrations of voal folds, it is �nallyshaped in voal trat, whih onsists of the throat, nasal and oral avities. This shapingis realized by a series of band-pass �lters alled formants. This �ltering proess isindependent of the voal pith determined in the voal folds. Therefore, larynx andvoal trat an be thought as two independent systems. This theory of voie produtionis alled the soure/�lter theory. The aoustis, anatomy, innervation and entralontrol of human and animal voal trats are fundamentally similar [1℄. For humans,individual reognition is a result of this shaping, namely the resonane.The �nal step, artiulation, is provided by shaping the sound by lips, tongueand soft palate in order to produe more spei� voalizations, whih orrespond to thewords in human voalization. This step is very weak in nonhuman primates, thereforethey an not develop languages as humans do. Nevertheless, Hauser et al. showed thatrhesus monkeys have the ability to modify the spetral harateristis of the signal bymodifying the lip protrusion, lip separation, teeth separation and mandibular position,and maybe also the tongue position [16℄, and this modi�ations may play a role in



6produing distint sounds.Comparison of primate voal systems is shown in Figure 2.1. The �gure showsthat the human larynx is plaed lower in the throat than in the apes. Moreover,oral avity is longer and tongue shape is di�erent in humans ompared to the otherprimates. These di�erenes allow a muh greater range of sounds to be produed byhumans, whih would have been signi�ant in the evolution of speeh [1℄.



73. METHODOLOGY
3.1 Monkey Voie DatabaseThe data used in this study inludes digitized voalizations of rhesus maaquesobtained from Harvard University Primate Cognitive Neurosiene Laboratory. Thedatabase ontains monkey alls that are reorded from rhesus monkeys living on theisland of Cayo Santiago, Puerto Rio by Mar Hauser and �eld assistants.The database ontained examplars from 10 major all types. Some of these alltypes ontained some additional all subtypes. Within these all types, oos, aggressivealls, girneys, grunts, harmoni arhes, and sreams are examined.The database inluded di�erent all type exemplars from di�erent individuals.For some individuals, multiple examplars of the same all type were also provided. Allvoie signals used in this study were reorded from adults; on Cayo Santiago Island,females reah reprodutive maturity at approximately 3 years and males at approxi-mately 4 years.The database inluded di�erent all types, six of whih are analyzed here. Thesealls di�er in ontext and in aoustial properties:Coos: Coos are alls that are produed during a variety of soial interationslike friendly approahes or approahing a ommon food. It has been reported thatindividuals produe very distintive oos [5℄.Aggressive alls: These alls are the voalizations that are produed as a threator in a �ght. The sound database inluded three types of aggressive alls: pant threats,barks and growls. All signals were reorded from adults.



8Girneys: Girneys are the voie signals that are produed during soial intera-tions suh as grooming and handling of infants by females. The harateristi of thissignal type is the drop of fundamental frequeny over the ourse of the bout.Sreams: These signals are produed when the animal is under threat or attakof another dominant animal. Five sublasses of sreams have been reported [17℄: tonal,noisy, arhed, pulsed and undulating. The subgroups di�er in frequeny and omplex-ity, and eah subtype is given in a di�erent ontext. Noisy sreams were produedin order to all help by juveniles when a higher rank animal attaked. Undulatingsreams also told of an attak by a higher ranking opponent, but without physialontat. Arhed sreams indiated a lower ranking aggressor and did not indiate anyphysial ontat. Pulsed and tonal sreams tended to indiate a squabble within theimmediate family. The sreams are thought to arry information about the situation,the loation and identity of the alling individual in addition to the degree of fear. Itis important to note that although the monkeys appeared to distinguish the soundseasily, human researhers had to rely on voie prints at �rst.Grunts: these signals are given during soial interations like approahing togroom, approahing to ommon food items, and group movement. They sound likepant threat type of aggressive alls, but in ontrast to pant threats, they are given ina friendly ontext.Harmoni Arhes: These are given when a high quality, rare food is disovered.
3.2 Preproessing of SignalsBefore starting the nonlinearity analysis, all the samples were normalized inorder to make them have the same properties.In the original database, signals were provided with di�erent sampling rates.First, all signals were downsampled to 20020 Hz. After resampling, the amplitudes



9were normalized to 1 VRMS . Silent periods at the beginning and at the end of thereordings were disarded.Frequeny range of eah signal was determined by power spetral density esti-mation. Spetrograms of some samples are shown in Figure 3.1. Harmoni omponentsan be learly seen in oos and harmoni arhes while the frequeny omponents ofaggressive alls are not very lear. Sreams also have lear harmoni omponents, butin this ase the signal is not stationary.
3.3 Nonlinear Time Series AnalysisA time series is a disrete time sequene of data observed from one or morehannels from a system. Time series analysis methods are widely used in many di�erentresearh areas as they serve to extrat information about the underlying mehanisms.Most of the time series analysis methods are linear predition models but non-linear models have also been introdued. Time series analysis is a very important toolfor investigating the systems that exhibit nonlinear dynamis sine we generally do notknow the exat omponents of the system. The only data we have is usually the onedimensional output of the system, namely the time series data. Nonlinear time seriesanalysis methods are very useful to onstrut the original phase spae of the systemand investigate the underlying dynamial behavior.Casdagli [13℄ introdued a method that ombines and ompares a deterministinonlinear predition model [18℄ with a stohasti linear predition model [19℄ by meansof predition auray. If a low-dimensional attrator exists at least partially in thesystem, the deterministi model would give more aurate predition results than thestohasti model. The di�erene of predition auray between the linear and non-linear predition models, namely the low-dimensional nonlinearity measure (LNM)estimates the strength of nonlinearity in the signal.
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113.3.1 Deterministi Versus Stohasti AnalysisDV S analysis is based on Takens embedding theorem [11℄ and ompares pre-dition suess of deterministi and stohasti predition methods.Aording to this theorem, embedding is done as follows:. Eah vetor in thedelay oordinate spae onsists of the data point at time t, and d data points beforethat point. Data points in the vetor are � elements far from eah other.x(t) = (xt; xt�� ; xt�2� ; :::; xt�(d�1)� ) (3.1)where d refers to the embedding dimension and � is the delay time.After that, for every data point x(t), distanes from other points are alulatedand D losest neighbors of x(t) are found. The data point itself and its temporallylose points are not inluded in the neighbors. Then, one step further state of x(t) ispredited by using a loal linear preditor as in Eq. 3.2.~xt+1 = d�1Xk=0 ak(t)xt�k� (3.2)
In Eq. 3.2, the predition oe�ients a0(t); a1(t); :::; ad�1(t) are determined bya Least-Square algorithm for D neighbors. The predition auray is omputed by�nding the di�erene between the predited signal and the atual signal. This di�erenegave the residual signal (r). The signal to noise ratio (SNR) is alulated as in Eq.3.3. SNR[dB℄ = 10log "PNt=dfxt � �xgPNt=dfrt � �rg # (3.3)where �x = 1N � d+ 1 NXt=d xt ; �r 1N � d+ 1 NXt=d rt: (3.4)



12SNR is alulated for di�erent number of neighbors by inreasing the perentageof the number of neighbors from 0 to 100. For very small number of neighbors, thepredition is very sensitive to noise; therefore the SNR is very low. As the numberof neighbors inreases, the SNR also inreases. For a nonlinear dynamial system,the SNR ahieves an optimum value for an intermediate number of neighbors. Asthe number of neighbors is further inreased, linear predition does not give aurateresults beause of the nonlinear nature of the system. Global linear predition whihuses the maximum number of neighbors is almost idential to AR modeling [9℄. Thedi�erene between the optimum SNR and the global-linear-predition SNR gave theLNM .Examples of DV S analysis are applied to simulated sine wave, Lorenz system,and random data signals. 3D projetion of the phase spae and SNR are shown inFigure 3.2.Lorenz data is simulated by the Runge-Kutta integration with time step 0.01.The Equation used in simulation is given in Eq. 3.5.dxdt = �(y � x)dydt = �xz + rx� ydzdt = xy � bz: (3.5)where �=16.0, b=4 and r=45.92. With these parameters, the system shows haotibehavior.Sine wave is generated between �5� and 5� with time step 0.01, and randomdata is generated by rand ommand of MATLAB.In Figure 3.2, it an be seen that the phase spae reonstrution an generatethe Lorenz attrator and also the LNM measure is high for the Lorenz system. For thesine wave, the limit yle an be reonstruted by embedding, and the LNM measureis very low as the sine wave an be obtained by linear models, and therefore stohasti
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(f) Random Data SNRFigure 3.2 Appliation of DV S method to omputer data



14predition gives results that an be obtained as good as by using deterministi models.Finally, no partiular shape an be obtained in the 3D projetion of the phase spae ofrandom data, for whih the LNM is very low. One important point here is that bothrandom data and sine wave shows low LNM ; however the amount of SNR is high forsine wave while it is low for random data.
3.3.2 Parameter EstimationChoosing the time delay is a ritial fator for DV S analysis. If the time de-lay is too small, it is not possible to observe a signi�ant hange in one time step.On the other hand, if the time delay is hosen to be too large, data points will beunorrelated; espeially if the system is haoti; beause in a haoti system, nearbytrajetories diverge exponentially fast. The orrelation between two points in a delayoordinate spae an be estimated by �nding the average mutual information betweenthese two points. Average mutual information (AMI) gives the amount of informationavailable for a point by making an observation at another point. The AMI betweenthe observations [20℄ at two di�erent points, s(n) and s(n+ �) isI(�) = NXn=1 P (s(n); s(n+ �)) �log2 P (s(n); s(n+ �))P (s(n)P (s(n+ �))� (3.6)If the time delay is too small, the system may not evolve enough in one time step,therefore s(n) and s(n + �) will be orrelated, whih leads to a high value of AMI.On the other hand, if the time delay is too high, two onseutive signals may beunorrelated, espeially if the system is haoti. Therefore, the �rst minimum of I(�)gives an appropriate hoie for the time delay.Examples of AMI an be seen in Figure 3.3. These �gures orrespond to theAMI of the sine wave, Lorenz system, and the random data of whih LNM measuresand 3D phase spae peojetions are shown in Figure 3.2.
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164. RESULTS
DV S method is applied to voie signals from six all types of all allers. Thenumber of exemplars from eah all type is given in Table 4.1.Before starting the analysis, delay time parameter for DV S analysis was alu-lated. Delay time � was determined by AMI method. Best time delays found by thismethod are shown in Table 4.2 for eah all.Table 4.1Number of samples from eah all typeCall Type Number of SamplesCoos 25Aggressive Calls 54Pant Threats 9Growls 7Barks 34Other 4Sreams 32Arhed 5Tonal 5Pulsed 4Noisy 2Other 16Girneys 16Harmoni Arhes 16Grunts 47To determine the optimal delay time for embedding, AMI for every signal wssalulated. The average of the �rst minima for eah group was found and this numberwas hosen as the delay time parameter for DV S analysis.



17Embedding theorem states that embedding an suesfully be done in any di-mension bigger than two times the original dimension of the system. In this study,embedding dimension was hosen to be d=10 for all the signals, as a dynamial systeman be onsidered low dimensional if it exhibits a few (approximately smaller than 10)degrees of freedom [9℄. Table 4.2Time delay parameters for DV S AnalysisCall Type Delay TimeCoos 8Aggressive Calls 8Sreams 5Girneys 7Harmoni Arhes 4Grunts 6Time and frequeny domain representations and parameter estimation resultsfor a oo all whih has a high LNM are shown in Figure 4.1, and the results for anaggressive all whih has low LNM are represented in Figure 4.2. The Spetrogramof the oo all reveals the fundamental frequeny and its harmonis. By embeddingthe data in delay oordinate state spae, it was possible to reonstrut the limit yleto whih the trajetory onverges. This limit yle orresponds to the fundamentalfrequeny. Conversely, the aggressive all exemplar is very irregular and it is notpossible to extrat any information about the existene of a fundamental frequeny fromthe spetrogram. For this irregular signal, no partiular attrator ould be obtained byembedding the time-series data in delay oordinate state spae, hene the data an bethought as output of a stohasti proess. Thus, LNM measure was very low. Statespae reonstrutions and SNR as a funtion of dimension perentage for these twosignals are ompared in Figure 4.3.Using the LNM measures, at �rst di�erent all types from all animals wereanalyzed and di�erene between all types were ompared.
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Figure 4.3 3-D projetions and SNR vs. neighborhood perentage for the signals in Figures 4.1 and4.2. Di�erene between maximum SNR and �nal SNR gives the LNM .After that, oo signals from di�erent individuals were ompared and the di�er-ene among allers was examined.Next, di�erent all types from same aller were analyzed and nonlinearity dif-ferene between all types of same aller was identi�ed.To human ear, grunts are very similar to pant threat type aggressive alls. Inorder to see if the nonlinearity measure an distinguish this di�erene, pant threatLNM mean was ompared to grunt LNM mean.



20Aggressive alls and sreams in the dataset were divided into subgroups. Finally,nonlinearity di�erene among aggressive and sream subgroups was analyzed.
4.1 Comparison of Di�erent Call TypesLNM values of 6 all types were ompared by unbalaned one-way ANOVAtest. Resulting p-value is nearly 0 whih means that the null hypothesis that laimsthat the all types has the same mean estimate an be rejeted. Therefore this testshows that the di�erene between all groups is highly signi�ant.Resulting statistis were analyzed by a multivariate data analysis with Tukey-Kramer riterion. This test showed that oo mean is signi�antly di�erent from meansof other �ve all types, while means of grunts and aggressives are similar and alsosream, harmoni arh and girney means are not signi�antly di�erent from eah other.MATLAB output of di�erenes among all types is shown in Figure 4.4.Another phenomenon that an be observed in Figure 4.4 is that oo mean ishigher that other all type means, and the grunt has lowest mean among all all types.Mean LNM estimates, standard deviation and mean of maximum SNR are given inTable 4.3. This table shows that for oos, not only LNM mean, but also maximumSNR mean is also far higher than other all types.Table 4.3Comparison of LNM and SNR of all typesCall Type Mean LNM Standard Deviation Mean Maximum SNRCoos 3.6455 1.6711 17.0468Aggressive Calls 0.1105 0.1395 8.38Sreams 2.1132 1.6846 7.103Girneys 0.6718 0.4600 10.88Harmoni Arhes 2.8021 1.4948 9.1231Grunts 0.0532 0.0573 9.2089
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4 groups have population marginal means significantly different from X1=ScreamsFigure 4.4 Di�erene between all types. Mean of oo alls is signi�antly di�erent from means ofother alls exept harmoni arhes. Mean of aggressive alls is lose to the mean of grunt and girneyalls. Mean of harmoni arhes is lose to the mean of sreams.4.2 Coo Calls among Di�erent CallersIn order to disriminate individuals by the nonlinearity measure, DV S methodis applied to oo alls of two individuals (n=4 from one, n=6 from the other, and LNMmeasures were analyzed by two-sample t-test. Resulting p-value is 0.47 and thereforet-test does not reveal any signi�ant di�erene between the nonlinearity of oo samplesfrom these two animals.
4.3 Di�erent Type Calls of an IndividualDi�erent type alls of one animal were analyzed (n=6 for oos, n=5 for girneys,n=2 for harmoni arhes, n=7 for grunts) by unbalaned one-way ANOVA method.Resulting statistis were tested by multivariate omparison test. Comparison of meansof di�erent all types or a single individual alulated by this analysis is shown inFigure 4.5. It was possible to test only four all types as no signals from other typeswere provided for this individual. Mean LNM , standard deviation of the LNM and
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2 groups have population marginal means significantly different from X1=CoosFigure 4.5 Comparison of means from di�erent all types. Mean of oo alls is signi�antly di�erentfrom means of girney and grunt type alls.mean of the maximum SNR obtained are given in Table 4.4Table 4.4Mean and standard deviation of LNM , and mean of the maximum SNR for di�erent all types ofan individualCall Type Mean LNM Standard Deviation Mean Maximum SNRCoos 3.2822 1.4385 11.6083Girneys 0.8804 0.5431 8.2440Harmoni Arhes 1.7328 0.1314 4.7Grunts 0.0498 0.0139 11.3871The analysis shows that the di�erene of nonlinearity between all types for asingle animal is also signi�ant as for the analysis for all animals in the �rst test (p<0.05). Again, highest mean among all types is obtained for oos.



234.4 Pant Threats vs. GruntsGrunt and Pant threat type aggressive alls were analyzed using two-sample t-test (n=9 for pant threats, n=47 for grunts). Results show that there is no signi�antdi�erene between these all types (p=0.583).
4.5 Subgroups AnalysisAggressive alls and sreams were divided in subgroups by the ontexts in whihthey are given. LNM measures were ompared among subgroups for both all typesseparately.
4.5.1 Aggressive SubtypesThe dataset inluded 3 types of aggressive alls: Pant threats (n=9), growls(n=7) and barks (n=34). Nonlinearity measures of these subgroups were ompared byunbalaned one-way ANOVA test. This analysis revealed that the di�erene betweensubgroup means is not signi�ant (p=0.421).Resulting statistis were examined by multivariate data analysis. Comparisonof means is represented in Figure 4.6.Figure 4.6 shows that none of the subgroup's mean is signi�antly di�erent fromother subgroups.4.5.2 Sream SubtypesSream subgroups provided in the database were analyzed and LNM measuresper subgroup (n=5 for arhed, n=2 for noisy, n=4 for pulsed, n=5 for tonal) were
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No groups have population marginal means significantly different from X1=BarksFigure 4.6 Marginal di�erene between aggressive sublassesompared by using unbalaned one-way ANOVA test, whih showed that the di�erenebetween subgroup means is signi�ant (p<0.01). Resulting statistis were analyzedmultivariate post-ho test. Marginal di�erenes among sream subtypes are shown inFigure 4.7Multivariate data analysis revealed that arhed sream mean is signi�antlydi�erent than noisy and pulsed sreams, while noisy sreams also di�er from tonalsreams. Mean and variane of LNM and mean of the maximum SNR results aregiven in Table 4.5. Table 4.5Mean and standard deviation of LNM , and mean of the maximum SNR for sream subtypesMean LNM Standard Deviation Mean Maximum SNRArhed 3.9931 1.1727 10.93Noisy 0.2662 0.2926 1.72Pulsed 1.5064 1.0088 5.74Tonal 3.8030 1.5586 10.78Current database did not inlude undulating sreams; therefore it was not pos-
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2 groups have population marginal means significantly different from X1=ArchedFigure 4.7 Marginal di�erenes between sream subtypessible to ompare this subtype with the others. However, there are two signals markedas "undulated>noisy"; and these signals had relatively higher LNM than noisy alls.Thus, it an be onluded that these alls are undulated sreams.
4.6 Signal-to-Noise Ratio vs. Low-dimensional NonlinearityLow-dimensional nonlinearity measure for all signals was ompared to maximumsignal to noise ratio obtained for all perentage of neighbors. LNM seems to inreasewith SNR, but with linear regression, a weak orrelation between SNR and LNMvalues is found. For all signals, slope of linear �t is 0.1670 and norm of residuals is20.19. For signals with high LNM (LNM>1), this orrelation was higher; the slopeis 0.1206 and norm of residuals is 10.717. Correlation plots are shown in Figure 4.8 forall signals and in Figure 4.9 for signals with high LNM .
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Figure 4.8 Correlation plot for all signals
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Figure 4.9 Correlation plot for signals whih show low-dimensional nonlinearity



275. DISCUSSION
In this thesis, nonlinearity of monkey voie signals was studied by DV S analysisand this measure was examined among di�erent all types for all animals, di�erent alltypes of one single animal, oo alls of two di�erent animals, pant threats and grunts,and subtypes of aggressive alls and sreams.For omparisons among di�erent all types, both analysis for all animals andfor a single animal, I found that oos, harmoni arhes and sreams have relativelyhigher LNM value and thus they show a higher low-dimensional nonlinearity thanaggressive alls, grunts and girneys. High LNM value for oos and harmoni arheswas expeted, as in most of the ases, a fundamental frequeny an be distinguishedfrom frequeny domain analysis of these signals. In some ases, oos an show haotibehavior [3℄ , whih also results in dereasing in number of dimensions, therefore inhigh LNM value. Similarly, low LNM mean of aggressive alls was also expeted asthese signals are highly irregular.Sreams are type of signals that are not stationary in the time ourse. Whatis surprising when we look from the oneptual point of view is that while sreamsare not ordinary ommuniative signals and in this sense their purpose should be totake attention of other individuals (in order to all for help et.), resulting LNM wasrather high in sreams, espeially for tonal and arhed alls. In this sense, maybe itis not the irregularity of the signal whih takes attention of other individuals; but theunstationarity may make the voie signal distintive among other voies that otherindividuals hear.Another important point about sreams is that there are �ve di�erent subtypeswhih di�er not only in omplexity and frequeny, but also in ontext. We showedthat nonlinearity measure an distinguish the di�erene between subtypes in mostof ases. Sream signals are the most studied all types with oos beause of their



28rihness of ontext. In this sense of variety of ontexts, it is somehow expeted thatsreams and oos have high LNM value and high standard deviation. Nonlinearityanalysis on human voies like rying, sreaming, laughing may be useful to omparethis phenomenon to human voalizations.Call types that orrespond to soial interations resulted in moderate LNMvalue. Girneys and grunts are this type of all groups. Nevertheless, it should be notedthat girney and grunt means were not signi�antly di�erent from aggressive all meantherefore it is not possible to make a onlusion about the ontext by only looking atthe nonlinearity measure.Fith et al. [3℄ proposed that the nonlinearity of the signal may hange be-tween animals and be useful for individual reognition. We applied a t-test to di�erentoo samples from two animals in order to see if there is a signi�ant di�erene ofnonlinearity among alls of di�erent individuals. The t-test did not reveal any sig-ni�ant di�erene between di�erent allers. Nevertheless, it should be noted that thedataset that we analyzed for di�erent all types of the same animal was too small, andtherefore future analysis with more data may give more reliable results. In addition,omparison of nonlinearity of voies from di�erent individuals require more detailedtests that investigate the bifurations, fundamental frequeny (or frequenies for voieswith subharmonis), number of limit yles and their properties et.It was reported in the doumentation of voal database that grunts are very sim-ilar to pant threat alls, but these two all types are given in very di�erent ontexts. Weanalyzed the di�erene between these two all types in order to see if the nonlinearitymeasure may distinguish a di�erene between these two all types. Two-sample t-testdid not show any di�erene (p>0.05), so LNM measure an not be used to distinguishbetween these two all types. Similarly, ANOVA test between aggressive subgroupsdid not reveal any di�erene between group subtypes (p>0.05). These results showthat although there is signi�ane between mean di�erenes for main all groups, theLNM is not very useful itself to distinguish similar alls with low LNM . The linearorrelation between LNM and SNR also dereased for signals with low LNM . Thus,



29nonlinearity measure is not very useful to analyze oneptual information from theomplex signals.In addition, the weak orrelation between SNR and LNM may be a result oflow LNM obtained from the majority of the data in monkey voie database. Higherorrelation for signals that show low-dimensional nonlinearity supports this idea.



306. CONCLUSION
In this study, rhesus maaque voalizations were ompared by using a nonlineartime series analsis method. Results were used to ompare individual properties ofanimals.Nonlinearity measure was useful to roughly distinguish the di�erene betweenall types. However, it fails to distinguish subtle properties of the voie that arriesindividual information. Exept the sream subtype analysis, the results obtained bythis method did not arry any di�erent information than spetral analysis. There-fore, this method an not be a replaement to spetral analysis, but it may serve tounderstand the underlying dynamis behind the voie prodution. Moreover, sreamsubtype analysis shows that this method an be used with the spetrograms wherespetral analysis methods annot give any more information.Another important point here is that the database was small for detailed analysislike individual reognition. Therefore, results for these small groups may not be reliableenough and more detailed analysis on larger databases may give better results.One other important analysis on this dataset an be haos tests, but as the voiedata is very unstationary, Lyapunov exponent alulation and some other methodsbeome more di�ult. Another possible method an be to use Poinaré Maps onreonstruted phase spae; but the problem with this method is the large noise term inthe data. Thus, future work may be to investigate the underlying dynamis in a moredetailed manner.
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