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ABSTRACT

NONLINEAR TIME SERIES ANALYSIS OF MONKEY
VOCALIZATIONS

Primate vocalizations are produced as a result of interactions between and
within the simple vocal system and the complex signal coming from the nervous system.
As a consequence of the nature of this organization, the resulting voice signal is of
nonlinear nature. Moreover, in contrast to humans, in many examples of nonhuman
primate vocalizations, the vocal folds do not synchronize. Consequently, produced

signal is rather complex.

Nonlinear techniques were shown to be useful in analyzing nonhuman primate
vocalizations. Deterministic versus stochastic (DV'S) prediction technique is one of
these methods which can be used to determine the amount of nonlinearity in animal
vocalizations. This method serves to calculate the low-dimensional nonlinearity mea-
sure (LNM), which indicates the presence of a low-dimensional attractor. By using
this method, it was demonstrated that while the nonlinearity measure is useful in voice
signals with harmonic components, in highly irregular signals like screams and barks,

the detectable amount of nonlinearity was comparatively small.

In this study, the amount of nonlinearity in rhesus monkey voices was calculated
by using DV'S analysis and this measure was used to distinguish different call types
and individual properties of the monkeys. Voice signals with harmonic components
showed relatively high SN R and low-dimensional nonlinearity, while these phenomena
could not be detected in irregular voices. The signals were analyzed and compared

among different callers, different call types and also among call subtypes.

Keywords: Deterministic versus Stochastic Analysis, Monkey Vocalization, Rhesus

Macaque, Nonlinearity Measure.



OZET

MAYMUN SESLERININ LINEER OLMAYAN ZAMAN
SERISI ANALIZIi

Primat sesleri, mekanik ses iiretim sistemi ile sinir sisteminden gelen karmagik
sinir igsaretinin etkilesiminin bir sonucudur. Bu sistemin dogasi geregi, sistemin olug-
turdugu ses isareti nonlineerdir. Insan olmayan primatlarin seslerinde goriilen nonli-
neerligin ses iiretim sisteminin yapisal 6zelliklerinden kaynaklandigi ve karmagik bir

sinirsel kontrol mekanizmasinin varligini zorunlu kilmadigi 6ne siiriilmiigtiir.

Hayvan seslerindeki nonlineerlik miktart DV'.S 6ngorii yontemiyle belirlenebilir.
Bu yontem, sistemde az-boyutlu bir ¢ekicinin bulundugunu gosteren LN M degerini
hesaplamaya yarar. Bu yontem kullanilarak, harmonik bilegenler iceren seslerde bu
oOlciitiin iyi sonuglar vermesine ragmen diizensiz seslerde tespit edilebilen nonlineerligin

nispeten diisiik oldugu gosterilmistir.

Bu ¢aligmada rhesus makaklarinin normal ve agresif tip ses isaretlerindeki nonli-
neerligi tespit etmek ve anlamlandirmak i¢in bir nonlineer zaman serisi analizi yontemi
olan DV'S analiz yontemi kullanilmigtir. Harmonik bilegenler iceren seslerde az sayida
komsu kullanilarak yapilan éngoriilerin daha iyi sonug verdigi; buna kargin diizensiz
seslerde komguluk sayisinin 6ngorii basarisinda bir fark yaratmadigi gézlemlendi. Sesler
incelendikten sonra farkl bireyler, farkli ses tipleri ve ses alt gruplar1 ayirt edilmeye

calisildi.

Anahtar Sozciikler: DV'S Coziimleme, Maymun sesi, Rhesus Makaki, Nonlineerlik

Olciitii
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1. INTRODUCTION

1.1 Mbotivation and Objectives

Voice is the most important medium for primate communication. By shaping
the air flow by larynx, vocal tract and respiratory cavities, not only humans, but also
other primates produce vocal signals that correspond to a large diversity of social

context [1].

Nonlinear phenomena have been shown in human [2| and nonhuman mammal
[3, 4] voices. Moreover, these works showed that while humans avoid producing ir-
regular voices by using the vocal folds as coupled oscillators; this is not the case in
nonhuman mammals. The morphological features of vocal folds and laryngeal muscles
in nonhuman primates indicate that in contrast to the human larynx, the nonhuman
primate larynx allows for a greater range in vocal pitch as well as greater instability [5].
Furthermore, nonlinearities are common in nonhuman mammal vocalizations and this
may play a role in their communication: the voice signal may carry some information

about the properties like age, size, and mood of the animal.

Common structures and behaviors that are seen in nonlinear systems such as
steady state attractors, limit cycles, subharmonics, chaos and bifurcations can be dis-
tinguished form the time series data of mammal vocalizations [4]. These phenomena
can also be observed in spectrographic analysis of voice signals. Furthermore, com-
puter simulations of biomechanical modeling showed that these irregularities may be
resulted from the desynchronization of the left and right vocal fold or due to the desyn-

chronization of vertical and horizontal vibratory modes of a single fold [6, 7, §|.

Deterministic versus Stochastic (DV'S) prediction technique was shown to be
efficient for investigating the nonlinear phenomena by quantifying the amount of non-

linearity in animal vocalizations [9]. In the DV'S technique, deterministic and stochas-



tic prediction efficiencies are compared and as an indication of this difference, low-
dimensional nonlinearity measure (LN M) is calculated. A high LN M is found when
deterministic prediction is more efficient than stochastic prediction and it indicates the

presence of a low-dimensional attractor.

Low-dimensionality of a system may be a result of synchronization of several
components in order to produce harmonic components. Furthermore, it has been
demonstrated by Ruelle and Takens that in a system with many degrees of freedom,
when there is a transition to chaos, many degrees of freedom are coupled and the
number of dimensions drastically decreases [10]. After the transition to chaos, the
number of degrees of freedom may increase. Nevertheless, DV S technique gives good
results about the low-dimensionality of the system even if the signal shows partial

low-dimensional behavior.

A usual way to investigate a nonlinear system is to model the system by using
differential equations and analyzing the results. However, the vocal system consists of
many components and it is very difficult to estimate the dimensions of the attractor
by numerically integrating the partial differential equations. Instead dealing with this
problem, DV'S analysis uses the state space reconstruction technique [11]. The main
question here is whether the time series from a high dimensional deterministic system
can be approximately modeled with a low dimensional non-linear stochastic model, as
has been suggested when there are large, spatially coherent structures in the system
[12]. For a high dimensional nonlinear system with low level observational noise, a
large noise term can be induced in the prediction step by the process of state space
reconstruction from time series data, consequently it is not possible to make accurate
short-term forecasting of the time series, irrespective of the length of the time series [13].
As a result of that, a high dimensional nonlinear system is equivalent to a stochastic

system, which results in a low LN M.

Tokuda et al. [9] used the DV'S method to show that while the nonlinearity
measure is useful in voice signals with harmonic components, in highly irregular signals

such as juvenile macaque screams, piglet screams, and some dog barks, the detectable



amount of nonlinearity was comparatively small. It has been discussed that the nonlin-
earities in nonhuman primate vocalizations may be a consequence of the interactions
between structural properties of the peripheral production mechanism, which allows in-
dividuals to generate highly complex and unpredictable vocalizations without requiring

a complex neural control mechanism [3].

Analyzing nonhuman primate vocal communication is indispensable for investi-
gating the evolution of speech and language. In addition, understanding the constraints
on the perceptual and motor domains of primates’ vocal behavior will be a big step to

understand their cognitive abilities [14].

In the present study, amount of nonlinearity of monkey voices was determined by
DV S method and individual properties of monkeys and social contexts were compared

with respect to the nonlinearity measure.

1.2 Outline

The work is presented as follows: In Chapter 2, background information about
the anatomy and the physiology of vocal system is given. In Chapter 3, materials and
methods used in the present study are explained. Next, results are given in Chapter

4. Finally, results are discussed in Chapter 5 and conclusion is made in Chapter 6.



2. VOICE PRODUCTION MECHANISMS IN HUMAN
AND NONHUMAN PRIMATES

2.1 Comparison of Human and Nonhuman Vocal Systems

Voice signal is produced by shaping the air pumped by the lungs in vocal tract.
Even if there are some important differences; vocal system anatomy, especially the

vocal production mechanism, is very similar in humans and nonhuman primates.

The main source for voice production is the air pressure coming from the lungs.
The air pressure is maintained and adjusted by the lungs, diaphragm, chest and ab-

dominal muscles.

Air flow coming from the respiratory system then passes the larynx and vocal
folds. The main function of the larynx is to choose between swallowing and breathing
actions and thus protect the lungs. Its function in voice production is to regulate vocal
fold tension. Nonhuman primates also have air sacs attached to their larynges. These

large sacs do not exist in humans and their functions are not clearly known.

The basic sound of the voice is produced by the vibration of vocal folds. The
rate of vibration is called the vocal pitch. Vibration occurs in vibratory cycles. At
first, air pressure opens the bottom of vocal folds. Then, the pressure moves upwards
through the vocal folds and opens the top. After this step, bottom of the vocal folds
is closed because of the "Bernoulli effect" created by the low pressure behind the fast
air movement. This causes the vocal folds close and cut the air flow, and release an air

pulse [15].

From physical point of view, vocal folds can be thought as coupled oscillators.
This coupled oscillator system is the main structure that creates the nonlinear phe-

nomena in voice.
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Figure 2.1 Anatomy of voice production in orangutan, chimpanzee and human (a to c, respectively).
Upper panel shows MRI images of vocal system, and lower panel contains the illustrations of the vocal
system of human and other primates. Red color signifies the tongue body, yellow the larynx and blue
the air sacs [1]

After the voice sound is produced by the vibrations of vocal folds, it is finally
shaped in vocal tract, which consists of the throat, nasal and oral cavities. This shaping
is realized by a series of band-pass filters called formants. This filtering process is
independent of the vocal pitch determined in the vocal folds. Therefore, larynx and
vocal tract can be thought as two independent systems. This theory of voice production
is called the source/filter theory. The acoustics, anatomy, innervation and central
control of human and animal vocal tracts are fundamentally similar [1]. For humans,

individual recognition is a result of this shaping, namely the resonance.

The final step, articulation, is provided by shaping the sound by lips, tongue
and soft palate in order to produce more specific vocalizations, which correspond to the
words in human vocalization. This step is very weak in nonhuman primates, therefore
they can not develop languages as humans do. Nevertheless, Hauser et al. showed that
rhesus monkeys have the ability to modify the spectral characteristics of the signal by
modifying the lip protrusion, lip separation, teeth separation and mandibular position,

and maybe also the tongue position [16], and this modifications may play a role in



producing distinct sounds.

Comparison of primate vocal systems is shown in Figure 2.1. The figure shows
that the human larynx is placed lower in the throat than in the apes. Moreover,
oral cavity is longer and tongue shape is different in humans compared to the other
primates. These differences allow a much greater range of sounds to be produced by

humans, which would have been significant in the evolution of speech [1].



3. METHODOLOGY

3.1 Monkey Voice Database

The data used in this study includes digitized vocalizations of rhesus macaques
obtained from Harvard University Primate Cognitive Neuroscience Laboratory. The
database contains monkey calls that are recorded from rhesus monkeys living on the

island of Cayo Santiago, Puerto Rico by Marc Hauser and field assistants.

The database contained examplars from 10 major call types. Some of these call
types contained some additional call subtypes. Within these call types, coos, aggressive

calls, girneys, grunts, harmonic arches, and screams are examined.

The database included different call type exemplars from different individuals.
For some individuals, multiple examplars of the same call type were also provided. All
voice signals used in this study were recorded from adults; on Cayo Santiago Island,
females reach reproductive maturity at approximately 3 years and males at approxi-

mately 4 years.

The database included different call types, six of which are analyzed here. These

calls differ in context and in acoustical properties:

Coos: Coos are calls that are produced during a variety of social interactions
like friendly approaches or approaching a common food. It has been reported that

individuals produce very distinctive coos [5].

Aggressive calls: These calls are the vocalizations that are produced as a threat
or in a fight. The sound database included three types of aggressive calls: pant threats,

barks and growls. All signals were recorded from adults.



Girneys: Girneys are the voice signals that are produced during social interac-
tions such as grooming and handling of infants by females. The characteristic of this

signal type is the drop of fundamental frequency over the course of the bout.

Screams: These signals are produced when the animal is under threat or attack
of another dominant animal. Five subclasses of screams have been reported [17]: tonal,
noisy, arched, pulsed and undulating. The subgroups differ in frequency and complex-
ity, and each subtype is given in a different context. Noisy screams were produced
in order to call help by juveniles when a higher rank animal attacked. Undulating
screams also told of an attack by a higher ranking opponent, but without physical
contact. Arched screams indicated a lower ranking aggressor and did not indicate any
physical contact. Pulsed and tonal screams tended to indicate a squabble within the
immediate family. The screams are thought to carry information about the situation,
the location and identity of the calling individual in addition to the degree of fear. It
is important to note that although the monkeys appeared to distinguish the sounds

easily, human researchers had to rely on voice prints at first.

Grunts: these signals are given during social interactions like approaching to
groom, approaching to common food items, and group movement. They sound like
pant threat type of aggressive calls, but in contrast to pant threats, they are given in

a friendly context.

Harmonic Arches: These are given when a high quality, rare food is discovered.

3.2 Preprocessing of Signals

Before starting the nonlinearity analysis, all the samples were normalized in

order to make them have the same properties.

In the original database, signals were provided with different sampling rates.

First, all signals were downsampled to 20020 Hz. After resampling, the amplitudes



were normalized to 1 Vgzpre . Silent periods at the beginning and at the end of the

recordings were discarded.

Frequency range of each signal was determined by power spectral density esti-
mation. Spectrograms of some samples are shown in Figure 3.1. Harmonic components
can be clearly seen in coos and harmonic arches while the frequency components of
aggressive calls are not very clear. Screams also have clear harmonic components, but

in this case the signal is not stationary.

3.3 Nonlinear Time Series Analysis

A time series is a discrete time sequence of data observed from one or more
channels from a system. Time series analysis methods are widely used in many different

research areas as they serve to extract information about the underlying mechanisms.

Most of the time series analysis methods are linear prediction models but non-
linear models have also been introduced. Time series analysis is a very important tool
for investigating the systems that exhibit nonlinear dynamics since we generally do not
know the exact components of the system. The only data we have is usually the one
dimensional output of the system, namely the time series data. Nonlinear time series
analysis methods are very useful to construct the original phase space of the system

and investigate the underlying dynamical behavior.

Casdagli [13] introduced a method that combines and compares a deterministic
nonlinear prediction model [18] with a stochastic linear prediction model [19] by means
of prediction accuracy. If a low-dimensional attractor exists at least partially in the
system, the deterministic model would give more accurate prediction results than the
stochastic model. The difference of prediction accuracy between the linear and non-
linear prediction models, namely the low-dimensional nonlinearity measure (LN M)

estimates the strength of nonlinearity in the signal.
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3.3.1 Deterministic Versus Stochastic Analysis

DV'S analysis is based on Takens embedding theorem [11] and compares pre-

diction success of deterministic and stochastic prediction methods.

According to this theorem, embedding is done as follows:. Each vector in the
delay coordinate space consists of the data point at time ¢, and d data points before

that point. Data points in the vector are 7 elements far from each other.

'T(t) = (:I;t? Lp—gy Tt—275 vy l‘t—(d—l)T) (31)

where d refers to the embedding dimension and 7 is the delay time.

After that, for every data point z(t), distances from other points are calculated
and D closest neighbors of z(¢) are found. The data point itself and its temporally
close points are not included in the neighbors. Then, one step further state of x(t) is

predicted by using a local linear predictor as in Eq. 3.2.

d—1
Ty = Z ar ()T kr (3.2)
k=0

In Eq. 3.2, the prediction coefficients a(t), a;(t), ..., aq_1(t) are determined by
a Least-Square algorithm for D neighbors. The prediction accuracy is computed by
finding the difference between the predicted signal and the actual signal. This difference
gave the residual signal (r). The signal to noise ratio (SNR) is calculated as in Eq.
3.3.

SNR[dB] = 10log [M] (3.3)
> imalre — 1}
where
1 al 1 al
(b e DOLELS s s DL 3.4

t=d t=d
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SNR is calculated for different number of neighbors by increasing the percentage
of the number of neighbors from 0 to 100. For very small number of neighbors, the
prediction is very sensitive to noise; therefore the SNR is very low. As the number
of neighbors increases, the SNR also increases. For a nonlinear dynamical system,
the SNR achieves an optimum value for an intermediate number of neighbors. As
the number of neighbors is further increased, linear prediction does not give accurate
results because of the nonlinear nature of the system. Global linear prediction which
uses the maximum number of neighbors is almost identical to AR modeling [9]. The
difference between the optimum SN R and the global-linear-prediction SN R gave the
LNM.

Examples of DV'S analysis are applied to simulated sine wave, Lorenz system,
and random data signals. 3D projection of the phase space and SNR are shown in

Figure 3.2.

Lorenz data is simulated by the Runge-Kutta integration with time step 0.01.

The Equation used in simulation is given in Eq. 3.5.

d

d_:f = o(y—1)

d

d—z; = —rz+rr—yY

d

d—j = xy— bz. (3.5)

where 0—16.0, b—4 and r—45.92. With these parameters, the system shows chaotic

behavior.

Sine wave is generated between —57m and 57 with time step 0.01, and random

data is generated by rand command of MATLAB.

In Figure 3.2, it can be seen that the phase space reconstruction can generate
the Lorenz attractor and also the LN M measure is high for the Lorenz system. For the
sine wave, the limit cycle can be reconstructed by embedding, and the LN M measure

is very low as the sine wave can be obtained by linear models, and therefore stochastic
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prediction gives results that can be obtained as good as by using deterministic models.
Finally, no particular shape can be obtained in the 3D projection of the phase space of
random data, for which the LN M is very low. One important point here is that both
random data and sine wave shows low LN M; however the amount of SN R is high for

sine wave while it is low for random data.

3.3.2 Parameter Estimation

Choosing the time delay is a critical factor for DV S analysis. If the time de-
lay is too small, it is not possible to observe a significant change in one time step.
On the other hand, if the time delay is chosen to be too large, data points will be
uncorrelated; especially if the system is chaotic; because in a chaotic system, nearby
trajectories diverge exponentially fast. The correlation between two points in a delay
coordinate space can be estimated by finding the average mutual information between
these two points. Average mutual information (AM1T) gives the amount of information
available for a point by making an observation at another point. The AMI between
the observations [20] at two different points, s(n) and s(n + 7) is

al P(s(n),s(n + 1))
I(1) = Z P(s(n),s(n+ 7)) |logy Pls(n) P(s(n £ 7))

n=1

(3.6)

If the time delay is too small, the system may not evolve enough in one time step,
therefore s(n) and s(n + 7) will be correlated, which leads to a high value of AMI.
On the other hand, if the time delay is too high, two consecutive signals may be
uncorrelated, especially if the system is chaotic. Therefore, the first minimum of I(7)

gives an appropriate choice for the time delay.

Examples of AMI can be seen in Figure 3.3. These figures correspond to the
AMTI of the sine wave, Lorenz system, and the random data of which LN M measures

and 3D phase space peojections are shown in Figure 3.2.
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4. RESULTS

DV'S method is applied to voice signals from six call types of all callers. The

number of exemplars from each call type is given in Table 4.1.

Before starting the analysis, delay time parameter for DV'S analysis was calcu-
lated. Delay time 7 was determined by AMI method. Best time delays found by this

method are shown in Table 4.2 for each call.

Table 4.1
Number of samples from each call type

Call Type Number of Samples
Coos 25
Aggressive Calls 54
Pant Threats 9
Growls 7
Barks 34
Other 4
Screams 32
Arched 5
Tonal 5
Pulsed 4
Noisy 2
Other 16
Girneys 16
Harmonic Arches 16
Grunts 47

To determine the optimal delay time for embedding, AM I for every signal wss
calculated. The average of the first minima for each group was found and this number

was chosen as the delay time parameter for DV'S analysis.
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Embedding theorem states that embedding can succesfully be done in any di-
mension bigger than two times the original dimension of the system. In this study,
embedding dimension was chosen to be d=10 for all the signals, as a dynamical system
can be considered low dimensional if it exhibits a few (approximately smaller than 10)

degrees of freedom [9].

Table 4.2
Time delay parameters for DV S Analysis

Call Type Delay Time

Coos

Aggressive Calls
Screams
Girneys

Harmonic Arches

S A~ N Ot 0o

Grunts

Time and frequency domain representations and parameter estimation results
for a coo call which has a high LN M are shown in Figure 4.1, and the results for an
aggressive call which has low LN M are represented in Figure 4.2. The Spectrogram
of the coo call reveals the fundamental frequency and its harmonics. By embedding
the data in delay coordinate state space, it was possible to reconstruct the limit cycle
to which the trajectory converges. This limit cycle corresponds to the fundamental
frequency. Conversely, the aggressive call exemplar is very irregular and it is not
possible to extract any information about the existence of a fundamental frequency from
the spectrogram. For this irregular signal, no particular attractor could be obtained by
embedding the time-series data in delay coordinate state space, hence the data can be
thought as output of a stochastic process. Thus, LN M measure was very low. State
space reconstructions and SNR as a function of dimension percentage for these two

signals are compared in Figure 4.3.

Using the LNM measures, at first different call types from all animals were

analyzed and difference between call types were compared.
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Figure 4.1 Preprocessing and parameter estimation for a coo call. In descending order, panels
correspond to the time-series data (normalized amplitude vs sample number), normalized Fourier
spectrogram (normalized frequency vs. time), average mutual information (AMT vs. 7)
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Figure 4.2 Preprocessing and parameter estimation for an aggressive call. In descending order,
panels correspond to the time-series data (normalized amplitude vs sample number), normalized
Fourier spectrogram (normalized frequency vs. time), average mutual information (AMI vs. 1)
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Figure 4.3 3-D projections and SN R vs. neighborhood percentage for the signals in Figures 4.1 and
4.2. Difference between maximum SN R and final SNR gives the LN M.

After that, coo signals from different individuals were compared and the differ-

ence among callers was examined.

Next, different call types from same caller were analyzed and nonlinearity dif-

ference between call types of same caller was identified.

To human ear, grunts are very similar to pant threat type aggressive calls. In
order to see if the nonlinearity measure can distinguish this difference, pant threat

LN M mean was compared to grunt LN M mean.
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Aggressive calls and screams in the dataset were divided into subgroups. Finally,

nonlinearity difference among aggressive and scream subgroups was analyzed.

4.1 Comparison of Different Call Types

LNM values of 6 call types were compared by unbalanced one-way ANOVA
test. Resulting p-value is nearly 0 which means that the null hypothesis that claims
that the call types has the same mean estimate can be rejected. Therefore this test

shows that the difference between call groups is highly significant.

Resulting statistics were analyzed by a multivariate data analysis with Tukey-
Kramer criterion. This test showed that coo mean is significantly different from means
of other five call types, while means of grunts and aggressives are similar and also
scream, harmonic arch and girney means are not significantly different from each other.

MATLAB output of differences among call types is shown in Figure 4.4.

Another phenomenon that can be observed in Figure 4.4 is that coo mean is
higher that other call type means, and the grunt has lowest mean among all call types.
Mean LN M estimates, standard deviation and mean of maximum SN R are given in
Table 4.3. This table shows that for coos, not only LN M mean, but also maximum

SN R mean is also far higher than other call types.

Table 4.3
Comparison of LNM and SNR of call types

Call Type Mean LN M | Standard Deviation | Mean Maximum SN R
Coos 3.6455 1.6711 17.0468
Aggressive Calls 0.1105 0.1395 8.38

Screams 2.1132 1.6846 7.103

Girneys 0.6718 0.4600 10.88
Harmonic Arches 2.8021 1.4948 9.1231

Grunts 0.0532 0.0573 9.2089
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Figure 4.4 Difference between call types. Mean of coo calls is significantly different from means of
other calls except harmonic arches. Mean of aggressive calls is close to the mean of grunt and girney
calls. Mean of harmonic arches is close to the mean of screams.

4.2 Coo Calls among Different Callers

In order to discriminate individuals by the nonlinearity measure, DV S method
is applied to coo calls of two individuals (n=4 from one, n=6 from the other, and LN M
measures were analyzed by two-sample t-test. Resulting p-value is 0.47 and therefore
t-test does not reveal any significant difference between the nonlinearity of coo samples

from these two animals.

4.3 Different Type Calls of an Individual

Different type calls of one animal were analyzed (n=6 for coos, n=>5 for girneys,
n=2 for harmonic arches, n=7 for grunts) by unbalanced one-way ANOVA method.
Resulting statistics were tested by multivariate comparison test. Comparison of means
of different call types or a single individual calculated by this analysis is shown in
Figure 4.5. It was possible to test only four call types as no signals from other types

were provided for this individual. Mean LN M, standard deviation of the LNM and
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Figure 4.5 Comparison of means from different call types. Mean of coo calls is significantly different
from means of girney and grunt type calls.

mean of the maximum SN R obtained are given in Table 4.4

Table 4.4
Mean and standard deviation of LN M, and mean of the maximum SN R for different call types of
an individual

Call Type Mean LN M | Standard Deviation | Mean Maximum SN R
Coos 3.2822 1.4385 11.6083
Girneys 0.8804 0.5431 8.2440
Harmonic Arches 1.7328 0.1314 4.7

Grunts 0.0498 0.0139 11.3871

The analysis shows that the difference of nonlinearity between call types for a
single animal is also significant as for the analysis for all animals in the first test (p

<0.05). Again, highest mean among call types is obtained for coos.
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4.4 Pant Threats vs. Grunts

Grunt and Pant threat type aggressive calls were analyzed using two-sample t-
test (n=9 for pant threats, n—=47 for grunts). Results show that there is no significant

difference between these call types (p=0.583).

4.5 Subgroups Analysis

Aggressive calls and screams were divided in subgroups by the contexts in which
they are given. LN M measures were compared among subgroups for both call types

separately.

4.5.1 Aggressive Subtypes

The dataset included 3 types of aggressive calls: Pant threats (n—=9), growls
(n=7) and barks (n=34). Nonlinearity measures of these subgroups were compared by
unbalanced one-way ANOVA test. This analysis revealed that the difference between

subgroup means is not significant (p=0.421).

Resulting statistics were examined by multivariate data analysis. Comparison

of means is represented in Figure 4.6.

Figure 4.6 shows that none of the subgroup’s mean is significantly different from

other subgroups.

4.5.2 Scream Subtypes

Scream subgroups provided in the database were analyzed and LN M measures

per subgroup (n=>5 for arched, n—=2 for noisy, n—=4 for pulsed, n=>5 for tonal) were
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Figure 4.6 Marginal difference between aggressive subclasses

compared by using unbalanced one-way ANOVA test, which showed that the difference
between subgroup means is significant (p<<0.01). Resulting statistics were analyzed
multivariate post-hoc test. Marginal differences among scream subtypes are shown in

Figure 4.7

Multivariate data analysis revealed that arched scream mean is significantly
different than noisy and pulsed screams, while noisy screams also differ from tonal
screams. Mean and variance of LNM and mean of the maximum SNR results are

given in Table 4.5.

Table 4.5
Mean and standard deviation of LN M, and mean of the maximum SN R for scream subtypes

Mean LN M | Standard Deviation | Mean Maximum SNR
Arched 3.9931 1.1727 10.93
Noisy 0.2662 0.2926 1.72
Pulsed 1.5064 1.0088 5.74
Tonal 3.8030 1.5586 10.78

Current database did not include undulating screams; therefore it was not pos-
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Figure 4.7 Marginal differences between scream subtypes

sible to compare this subtype with the others. However, there are two signals marked
as "undulated >noisy"; and these signals had relatively higher LN M than noisy calls.

Thus, it can be concluded that these calls are undulated screams.

4.6 Signal-to-Noise Ratio vs. Low-dimensional Nonlinearity

Low-dimensional nonlinearity measure for all signals was compared to maximum
signal to noise ratio obtained for all percentage of neighbors. LN M seems to increase
with SNR, but with linear regression, a weak correlation between SNR and LNM
values is found. For all signals, slope of linear fit is 0.1670 and norm of residuals is
20.19. For signals with high LNAM (LNM>1), this correlation was higher; the slope
is 0.1206 and norm of residuals is 10.717. Correlation plots are shown in Figure 4.8 for

all signals and in Figure 4.9 for signals with high LN M.
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Figure 4.9 Correlation plot for signals which show low-dimensional nonlinearity
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5. DISCUSSION

In this thesis, nonlinearity of monkey voice signals was studied by DV S analysis
and this measure was examined among different call types for all animals, different call
types of one single animal, coo calls of two different animals, pant threats and grunts,

and subtypes of aggressive calls and screams.

For comparisons among different call types, both analysis for all animals and
for a single animal, I found that coos, harmonic arches and screams have relatively
higher LNM value and thus they show a higher low-dimensional nonlinearity than
aggressive calls, grunts and girneys. High LNM value for coos and harmonic arches
was expected, as in most of the cases, a fundamental frequency can be distinguished
from frequency domain analysis of these signals. In some cases, coos can show chaotic
behavior [3] , which also results in decreasing in number of dimensions, therefore in
high LNM value. Similarly, low LN M mean of aggressive calls was also expected as

these signals are highly irregular.

Screams are type of signals that are not stationary in the time course. What
is surprising when we look from the conceptual point of view is that while screams
are not ordinary communicative signals and in this sense their purpose should be to
take attention of other individuals (in order to call for help etc.), resulting LN M was
rather high in screams, especially for tonal and arched calls. In this sense, maybe it
is not the irregularity of the signal which takes attention of other individuals; but the
unstationarity may make the voice signal distinctive among other voices that other

individuals hear.

Another important point about screams is that there are five different subtypes
which differ not only in complexity and frequency, but also in context. We showed
that nonlinearity measure can distinguish the difference between subtypes in most

of cases. Scream signals are the most studied call types with coos because of their
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richness of context. In this sense of variety of contexts, it is somehow expected that
screams and coos have high LN M value and high standard deviation. Nonlinearity
analysis on human voices like crying, screaming, laughing may be useful to compare

this phenomenon to human vocalizations.

Call types that correspond to social interactions resulted in moderate LN M
value. Girneys and grunts are this type of call groups. Nevertheless, it should be noted
that girney and grunt means were not significantly different from aggressive call mean
therefore it is not possible to make a conclusion about the context by only looking at

the nonlinearity measure.

Fitch et al. [3] proposed that the nonlinearity of the signal may change be-
tween animals and be useful for individual recognition. We applied a t-test to different
coo samples from two animals in order to see if there is a significant difference of
nonlinearity among calls of different individuals. The t-test did not reveal any sig-
nificant difference between different callers. Nevertheless, it should be noted that the
dataset that we analyzed for different call types of the same animal was too small, and
therefore future analysis with more data may give more reliable results. In addition,
comparison of nonlinearity of voices from different individuals require more detailed
tests that investigate the bifurcations, fundamental frequency (or frequencies for voices

with subharmonics), number of limit cycles and their properties etc.

It was reported in the documentation of vocal database that grunts are very sim-
ilar to pant threat calls, but these two call types are given in very different contexts. We
analyzed the difference between these two call types in order to see if the nonlinearity
measure may distinguish a difference between these two call types. Two-sample t-test
did not show any difference (p>0.05), so LN M measure can not be used to distinguish
between these two call types. Similarly, ANOVA test between aggressive subgroups
did not reveal any difference between group subtypes (p>0.05). These results show
that although there is significance between mean differences for main call groups, the
LN M is not very useful itself to distinguish similar calls with low LNM. The linear
correlation between LN M and SN R also decreased for signals with low LN M. Thus,
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nonlinearity measure is not very useful to analyze conceptual information from the

complex signals.

In addition, the weak correlation between SNR and LN M may be a result of
low LN M obtained from the majority of the data in monkey voice database. Higher

correlation for signals that show low-dimensional nonlinearity supports this idea.
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6. CONCLUSION

In this study, rhesus macaque vocalizations were compared by using a nonlinear
time series analsis method. Results were used to compare individual properties of

animals.

Nonlinearity measure was useful to roughly distinguish the difference between
call types. However, it fails to distinguish subtle properties of the voice that carries
individual information. Except the scream subtype analysis, the results obtained by
this method did not carry any different information than spectral analysis. There-
fore, this method can not be a replacement to spectral analysis, but it may serve to
understand the underlying dynamics behind the voice production. Moreover, scream
subtype analysis shows that this method can be used with the spectrograms where

spectral analysis methods cannot give any more information.

Another important point here is that the database was small for detailed analysis
like individual recognition. Therefore, results for these small groups may not be reliable

enough and more detailed analysis on larger databases may give better results.

One other important analysis on this dataset can be chaos tests, but as the voice
data is very unstationary, Lyapunov exponent calculation and some other methods
become more difficult. Another possible method can be to use Poincaré Maps on
reconstructed phase space; but the problem with this method is the large noise term in
the data. Thus, future work may be to investigate the underlying dynamics in a more

detailed manner.
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