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vABSTRACTSTATISTICAL ANALYSIS OF COGNITIVE SIGNALSMEASURED BY fNIRSFurther standardization in signal pro
essing tools is needed in the area of fun
-tional near infrared spe
tros
opy (fNIRS) before it is re
ognized as a reliable neu-roimaging modality. This thesis study attempts to present a 
omprehensive analysisof the feasibility of applying statisti
al inferen
e methods to fNIRS signals. Usinghierar
hi
al linear models, both 
lassi
al and Bayesian te
hniques are pursued andperforman
es of di�erent methods are presented on a 
omparative basis. The resultsobtained from a set of 
ognitive signals show that fNIRS 
an identify 
ognitive a
tivityboth at the subje
t and group levels. The analysis suggests that mixed or Bayesianhierar
hi
al models are espe
ially 
onvenient for fNIRS signals. A related problemthat is dis
ussed in this thesis study is to relate the out
ome of the statisti
al analysiswith the underlying physiology. This problem is studied by putting 
onstraints overthe parameters to be estimated. Carrying the problem to a Bayesian framework, the
onstraints were turned into prior distributions and Gibbs sampling was used to inferfrom the posterior distributions. The results exhibit that in addition to preventingunlikely results to appear at the end of the analysis, using parameter 
onstraints isalso more e�
ient in revealing a
tivations whi
h are obs
ured by heavy noise. The lastpart of this thesis study departs from hypothesis-based statisti
al inferen
e te
hniquesand introdu
es the use of information-theoreti
 measures for fNIRS by parti
ularly
on
entrating on neural 
omplexity and fun
tional 
lustering. It is demonstrated thatthis type of measures may 
apture organizational aspe
ts of the brain whi
h are hardto reveal with 
lassi
al statisti
al inferen
e te
hniques.Keywords: Fun
tional near infrared spe
tros
opy, Statisti
al inferen
e, Bayesianstatisti
s, General linear model, Constrained estimation, Complexity.



viÖZETiYKAS �LE ÖLÇÜLMÜ� B�L��SEL S�NYALLER�N�STAT�ST�KSEL ANAL�Z��³levsel yak�n k�rm�z�alt� spektroskopi'nin (iYKAS) güvenilir bir nörogörün-tüleme yöntemi olarak kabul edilebilmesi için sinyal i³leme teknikleri aç�s�ndan birstandartla³t�rmaya ihtiyaç vard�r. Bu tez çal�³mas� istatistiksel ç�karsama yöntem-lerinin iYKAS sinyallerine uygulanmas�n�n kapsaml� bir olurluk in
elemesini yapmay�amaçlam�³t�r. S�radüzensel do§rusal modeller kullan�larak, hem klasik hem de Bayesçiçerçevede de§i³ik yöntemlerin ba³ar�m� kar³�la³t�rmal� olarak sunulmu³tur. Bili³sel birdeney s�ras�nda ölçülen sinyallerden elde edilen sonuçlar iYKAS'�n hem denek hemde grup seviyesinde bili³sel aktiviteyi belirleyebildi§ini göstermi³tir. Yap�lan anali-zler kar�³�k ya da Bayesçi s�radüzensel modellerin iYKAS sinyalleri için daha uygunoldu§unu ortaya koymu³tur. Bununla ilintili olarak bu tez çal�³mas�nda tart�³�landi§er bir problem istatistiksel analizin sonuçlar�n�n altta yatan �zyolojiyle uyumu-nun garanti edilmesidir. Bu problem kestirile
ek parametreler üzerinde k�s�tlar koyul-mas�yla ele al�nm�³t�r. Ard�ndan problemi Bayesçi bir çerçeveye ta³�yarak k�s�tlarönsel da§�l�mlara dönü³türülmü³ ve Gibbs örneklemesi kullan�larak sonsal da§�l�mlarüzerinden ç�karsama yap�lm�³t�r. Sonuçlar, parametre k�s�tlar� koyman�n, analizin sonu-
unda olas� olmayan sonuçlar ç�kmas�n� engellemenin yan� s�ra a§�r gürültüyle örtülmü³aktivitelerin de ortaya ç�kar�lmas� için daha etkin oldu§unu ortaya koymu³tur. Tezinson bölümü hipotez temelli istatistiksel ç�karsama tekniklerinden uzakla³makta ve bilgi-kuramsal ölçütlerin iYKAS için kullan�m�na giri³ yapmaktad�r. Bunu yaparken özelliklenöral karma³�kl�k ve i³levsel topakland�rma üzerinde yo§unla³�lm�³ ve bu tip ölçütlerinbeynin örgütle³imine ili³kin klasik istatistiksel ç�karsama yöntemleriyle fark edilmesigüç yönleri yakalayabildi§i gösterilmi³tir.Anahtar Söz
ükler: Yak�n k�rm�z�alt� spektroskopi, �statistiksel ç�karsama, Bayesçiistatistik, S�radüzensel do§rusal model, K�s�tl� kestirim, Karma³�kl�k.
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11. INTRODUCTION
Near infrared spe
tros
opy (NIRS) opened up a new path in the quest for un-derstanding the fun
tioning of the brain. After its introdu
tion as a tool for measuringaverage tissue oxygen saturation and total hemoglobin 
on
entration [1℄, in
reasingnumber of resear
hers have started using NIRS for observing 
ognitive a
tivity. Bear-ing the name fun
tional near infrared spe
tros
opy (fNIRS), the method was usedfor studying the basi
 fun
tions of the prefrontal 
ortex [2, 3, 4, 5℄, motor 
ortex[6, 7, 8, 9℄ and visual 
ortex [10, 11, 12, 13℄. Besides these studies on healthy subje
ts,fNIRS has been employed for exploring neural underpinnings of psy
hiatri
 disorders[14, 15, 16, 17℄. fNIRS was even used for studying 
ognitive me
hanisms involved inemotion pro
essing [18, 19, 20℄. With the growing interest in building brain-
omputerinterfa
es (BCI) in the re
ent years, the feasibility of employing fNIRS in this area hasalso been put under investigation [21, 22, 23, 24℄.The drive of the resear
hers towards using fNIRS in these broad areas of re-sear
h was mainly motivated by several potential advantages of fNIRS over other neu-roimaging modalities. fNIRS shares mu
h in 
ommon with the blood oxygenation leveldependent (BOLD) signal of fun
tional magneti
 resonan
e imaging (fMRI) and mea-sures the 
on
entration 
hanges of oxygenated and deoxygenated hemoglobin (oxy-Hband deoxy-Hb) resulting from the hemodynami
 response. Moreover, both fNIRS andfMRI are indire
t measures of brain a
tivity. Besides these similarities, fNIRS o�ers theresear
hers the possibility of making measurements in various 
lini
al and natural en-vironments. Unlike fMRI, whi
h ne
essitates bulky and heavy equipments whi
h limitthe movements of the subje
ts, fNIRS devi
es are relatively user-friendly and portable.This aspe
t is espe
ially important in the ability to observe 
ognitive a
tivities withminimum disturban
e to the subje
t. It is even possible to build wireless fNIRS devi
es[25, 26℄. The advantages of fNIRS may further be extended to the absen
e of radiation,the low 
ost of the pro
edure and the ability to measure both oxy-Hb and deoxy-Hbsimultaneously. However, as with the rest of the modalities, fNIRS also 
omes with its



2inherent limitations. The major drawba
ks of fNIRS may be listed as its low spatial res-olution ( 1cm2), shallow depth of penetration and 
onsequently inevitable un
ertaintyabout the probed region.The in
reasing use of fNIRS as a neuroimaging modality brings with itself theneed for reliable and e�
ient pro
edures to analyze and interpret the observed data.Although there are e�orts in this line, [27℄, there is yet no standard method to pro
essfNIRS data. The goal of this thesis study may be stated in broadest terms as makinga 
ontribution to the e�orts for building a framework for analyzing fNIRS data.Neuroimaging generally works with statisti
al models whi
h make expli
it as-sumptions about data. As long as these assumptions hold, statisti
s is an e�e
tiveway to separate the noise from the signal. On the other hand, limitations of statisti
alanalysis should also be noted [28℄. This thesis is devoted to the investigation of thefeasibility of applying statisti
al models to fNIRS signals. Main body of the thesis isrelated with one of the most 
ommon types of statisti
al models, that is general linearmodel (GLM). Due to its simple and valid assumptions, GLM is the most preferredmethod for making statisti
al inferen
e from fMRI data [29℄. In addition to its 
ompu-tational simpli
ity, GLM also lends itself easily to hierar
hi
al stru
tures whi
h may beemployed for making group level inferen
es. Consequently, one of the main goals of thisthesis is to employ hierar
hi
al GLMs for making subje
t and group level inferen
esfrom fNIRS data.Classi
al inferen
e from neuroimaging data pro
eeds with null hypothesis signif-i
an
e test pro
edure (NHSTP). The resear
her is not allowed to ask questions dire
tlyregarding the probability distribution of the variable of interest. Rather, the null hy-pothesis is tested and the de
ision whether to reje
t it or not is given based on thesigni�
an
e. Bayesian methodology, on the other hand, provides the resear
hers withne
essary tools for exploring the posterior probability distributions of the variables. Inthis thesis, 
lassi
al and Bayesian methods for analyzing GLM are investigated in a
omparative basis.



3Although the general emphasis of this thesis is on model-based analysis, theseparation of signal from noise problem is also dis
ussed within an information-theoreti
framework. For this purpose, 
omplexity measures are applied with the assumptionthat 
ognitive a
tivity 
auses a 
hange in the intera
tion type among the brain regions.Conje
turing that this 
hange manifests itself in terms of a 
hange in "
omplexity",a number of approa
hes are dis
ussed and evaluated for fNIRS modality. The maindi�eren
e of these methods from the aforementioned GLM based te
hniques is thatthere is no a priori temporal or spatial model. Hen
e, a wide variety of "stru
tures"
an be revealed using 
omplexity measures. However, the 
ost is that the stri
t 
ontrolover the physiologi
al plausibility is lost.The plausibility of the analysis is generally an overlooked ne
essity in neuroimag-ing. With the in
reasing elasti
ity of the models, there appears to be a risk of arrivingat results whi
h are not physiologi
ally probable. This study approa
hes the afore-mentioned problem for GLM-based analysis and proposes a simple way for makingstatisti
al inferen
e under parameter 
ontraints whi
h guarantees the plausibility ofthe estimates.In summary, this thesis study aims at making three 
on
rete 
ontributions: i)In depth analysis of multilevel statisti
al inferen
e te
hniques for fNIRS, ii) A methodfor making GLM analysis under parameter 
onstraints, iii) Appli
ation of information-theoreti
 measures to fNIRS. These three 
ontributions will be explained in three sep-arate 
hapters whi
h are pre
eded with a ba
kground information on near infraredspe
tros
opy and followed by general 
on
lusions and perspe
tives for future resear
h.



42. NEAR INFRARED SPECTROSCOPY
Photons travelling through a tissue undergo mainly two types of intera
tionswith the tissue: Absorption and s
attering. Both of these events 
ause attenuation inthe energy of the light passing through the tissue and this attenuation forms the basisfor opti
al apparatus used for probing the tissue. Imaging devi
es use sender-re
eiverpairs for sending the light at some point and re
eiving it at some other point after itis transmitted or re�e
ted through the tissue. The 
on
entration of a light absorbingmole
ule in tissues may be determined by the Beer-Lambert Law:

A = ǫ.c.d (2.1)where A = log(Io/IL) is the extin
tion of light whi
h is proportional to the in
ident(Io) versus measured light (IL), ǫ is the extin
tion 
oe�
ient, c is the substan
e 
on-
entration, and d is the distan
e from sour
e to dete
tor. Beer-Lambert Law assumesin�nitesimal substan
e 
on
entrations and therefore negligible light s
attering. How-ever, in real 
ases, substan
e 
on
entrations are higher and Eq. 2.1 should be modi�edto take into a

ount extra loss of light and longer pathlength of the photons due tos
attering. Therefore, in the modi�ed Beer-Lambert Law [30℄, a multipli
ative term(B) and an additive term (G) whi
h a

ount for longer pathlength and loss of light,respe
tively, are added:
A = ǫ.c.d.B + G (2.2)Generally the 
on
ern is the di�eren
e between the two situations and assuming 
on-stant light s
attering, G term 
an
els due to subtra
tion:
∆A = ǫ.∆c.d.B (2.3)If the pathlength fa
tor, B, is known then it is possible to 
al
ulate absolute
on
entrations. The ignoran
e about the pathlength and the a
tual path of the pho-
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Figure 2.1 Absorption 
hara
teristi
s of oxy-Hb, deoxy-Hb and water [26℄.tons are the major drawba
ks of the opti
al imaging. There are di�erent methods fordetermining the pathlength: One is to measure the time of �ight of a very short (in theorder of pi
o se
onds) light pulse traveling through the tissues [31℄. Another approa
his to measure the phase shift of a light sour
e whi
h is intensity-modulated at a 
ertainfreque
y [32℄. If it is not possible to determine the pathlength then the measurementsobtained by opti
al imaging are relative. There are studies whi
h experimentally deter-mine opti
al pathlengths for di�erent subje
t groups, [32℄, and these values are widelyused by the resear
hers.Biologi
al tissues are relatively transparent to light in the near infrared rangebetween 700 and 1000 nm, largely be
ause water whi
h is the greatest 
omponent inthe tissues, relatively absorbs little at these wavelengths (see Figure 2.1). NIRS useslight sour
es with wavelengths in the near infrared region to observe 
on
entration
hanges of oxy-Hb and deoxy-Hb within the probed tissues. In addition to 
hangesat the intra
ellular level, whi
h are hard to observe with NIRS, lo
al brain a
tivity
auses an in
rease in 
erebral blood volume (CBV) and 
erebral blood �ow (CBF). Atthe 
apillary level CBF in
rease is a

omplished by higher blood per 
apillary whi
his asso
iated with higher blood velo
ity. During this pro
ess, termed as neurovas
ular
oupling [33℄, the in
rease in CBF and oxygen delivery ex
eeds the lo
al 
onsumptionof oxygen and 
erebral blood oxygenation rises in the a
tivation area. Be
ause oxy-Hb
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Figure 2.2 Banana-shaped photon path [26℄.and deoxy-Hb have 
hara
teristi
 opti
al properties, it is possible to measure their 
on-
entration 
hanges during neurovas
ular 
oupling using modi�ed Beer-Lambert Law.fNIRS devi
es introdu
e photons to the s
alp through light emitting diodes orlasers. Sin
e large amount of the photons follow a banana shaped path, it is possibleto dete
t them as they leave the head by photodete
tors, as illustrated in Figure 2.2.It may be noti
ed that photons spend a 
onsiderable amount of time in non-
erebraltissues, su
h as skin, skull and 
erebrospinal �uid. Consequently, the total absorptionmeasured by a photodete
tor has signi�
ant 
ontributions from these tissues. For
ontinuous-wave systems whi
h does not have a depth-resolution ability, wavelengthsof the devi
e and experimental paradigms should be sele
ted and designed so as tominimize this non-
erebral 
ontribution.A 
ontinuous-wave fNIRS devi
e (NIROXCOPE 301) built in Biophotoni
s Lab-oratory of Bo§aziçi University [34, 35, 36℄ was used in this study. The devi
e is 
apableof transmitting near-infrared light at two wavelengths (730 nm and 850 nm). Cal
ula-tion of 
on
entration 
hanges of oxy-Hb and deoxy-Hb in blood is based on modi�edBeer-Lambert Law whi
h is summarized by Eq. 2.2 and Eq. 2.3. Employing four lightemitting diodes (LEDs) and 10 dete
tors, the devi
e 
an sample 16 di�erent volumesin the brain simultaneously (see Figure 2.3 for the details of the probe).



7

Figure 2.3 NIROXCOPE 301 probe (on the right) is atta
hed to the forehead. Sour
e-dete
torgeometry ensures probing of un-overlapped 16 volumes when the light sour
es are time multiplexed.(Head image was obtained from MATLAB Central File Ex
hange).The re
tangular probe geometry was 
hosen for obtaining non-overlapping areas.Sour
e-to-dete
tor distan
es was spe
i�ed as 2.5 
m, sin
e this amount of separationhas been shown to reliably probe the 
orti
al a
tivity [37, 38, 39, 40℄. LEDs anddete
tors were pla
ed in a �exible printed 
ir
uit board that was spe
ially designed to�t the 
urvature of the forehead. Sampling frequen
y of the devi
e was 1.4 Hz.



83. MULTILEVEL STATISTICAL INFERENCE FROM fNIRSSIGNALS
Parametri
 statisti
al analysis (PSA) of neuroimaging data tries to answer thequestion of whether the measured data signi�
antly 
arry 
omponents representativeof 
ognitive a
tivity or not. In the hypothesis-based approa
h, this investigation be-gins with tailoring the 
omponents that will be sear
hed for. In fMRI and fNIRS this
omponent is hemodynami
 response fun
tion (HRF). Based on the past resear
h andexperimental studies, an HRF model is used to generate hypotheti
al 
ognitive 
ompo-nents. Then the task is to test if this hypotheti
al 
omponent is 
aptured by the realdata. Statisti
s enters into play at this point. Beginning with some statisti
al assump-tions about data and noise, PSA produ
es estimates and their asso
iated probabilitiesfor the parameters whi
h are to be inferred on.Neuroimaging typi
ally works with groups of subje
ts. The goal may be toreveal the average a
tivity of these subje
ts or to �nd the a
tivity di�eren
es betweentwo groups of subje
ts. Consequently, the hypothesis should be answered at the highestlevel of the hierar
hy. This highest level often represents the e�e
t analysis over someor all of several measurements, dete
tors, sessions and subje
ts in a population. GLMhas been the most 
ommonly used tool to make inferen
es from fMRI data [29℄. GLMmay also be extended to a hierar
hi
al mode to arrive at multilevel statisti
al inferen
es[41, 42℄. In re
ent years, hierar
hi
al GLM has arisen as an e�e
tive tool for pro
eedingfrom the data at the subje
t level to higher levels.Apart from a few inherent di�eren
es between them, both fMRI and fNIRS aimto dete
t and lo
alize brain hemodynami
 a
tivity based upon neurovas
ular 
ouplingmodel. Thus, it would be logi
al to extend the GLM methodology to fNIRS signals.This was �rst attempted using a visual stimulus and the 
on
lusion was that the GLMtype of analysis was feasible espe
ially for deoxy-Hb [27℄. In another study, it was shownthat model-based analysis with GLM is 
apable of dete
ting event-related human brain



9a
tivity re
orded with fNIRS in the o

ipital 
ortex [43℄. A shift method has also beenproposed to re
over small signals within the GLM framework, by exploiting the highertemporal resolution of fNIRS with respe
t to fMRI [44℄. In summary, these studiesprovided us with promising but not 
on
lusive results.
3.1 Statisti
al Analysis of the Hierar
hi
al GLMIn this thesis study, the multilevel statisti
al inferen
e problem for fNIRS signalshas also been addressed using a hierar
hi
al GLM to link the measurement spa
e tothe upper-level parameters. The expositions presented in this 
hapter are based on[45℄. A 
omparative approa
h was adopted and three 
lassi
al methods of multilevelinferen
e, namely, �xed e�e
ts (FFX), random e�e
ts (RFX), mixed e�e
ts (MFX)analyses, and two Bayesian inferen
e methods were implemented simultaneously. Oneof the Bayesian methods also goes by the name of pseudo-mixed e�e
ts (ΨFX) [46℄,sin
e it employs the basi
 GLM at the subje
t level and uses the Bayesian methodologyto merge the subje
t parameters at the group level. The se
ond method, denoted asBayesian posterior estimation (BPE), is a fully Bayesian one.
3.1.1 Classi
al Inferen
eClassi
al analysis of multilevel fun
tional neuroimaging data generally pro
eedsin a bottom-up fashion. On
e the statisti
s that summarize the data at one level are
al
ulated, they are 
arried to the upper level. The main di�eren
e among the three
lassi
al statisti
al inferen
e te
hniques of FFX, RFX and MFX lies in the determi-nation of the varian
e estimates [47, 48℄. Details of the 
lassi
al inferen
e is given inAppendix A. Brie�y, FFX and RFX ignore the between-subje
t and within-subje
tvarian
es, respe
tively. Note that, sin
e it ignores the between-subje
t varian
e, theinferen
e of FFX is limited to the parti
ular set of subje
ts. After 
al
ulating thesubje
t parameter and varian
e estimates using GLM spe
i�
ally designed for ea
hsubje
t, FFX takes the average varian
e estimate as the group varian
e. On the other



10hand, RFX 
al
ulates the group varian
e over the estimated parameters of the sub-je
ts. MFX tries to integrate both within and between-subje
t varian
es by 
arryingthe subje
t varian
e estimates to the group level.In this study, MFX was 
arried on as des
ribed in [47℄ and implemented in [49℄.FFX, RFX and MFX are all summary statisti
al approa
hes, that is, beginning fromthe bottom level, ea
h level is analyzed separately and only the parameters of interestare 
arried to the upper level. The main bene�t of working with a summary statisti
sapproa
h is its 
omputational ease, whi
h be
omes very important for high dimensionaldata like fMRI.The statisti
s proposed by [46℄, 
alled pseudo-mixed e�e
ts (ΨFX), is a mix-ture of 
lassi
al and Bayesian pro
edures. The parameter and varian
e estimates are
al
ulated at the subje
t level using the GLM. Then to arrive at the group de
ision,the posterior distribution of one subje
t is taken as the prior distribution of anothersubje
t. The end result is an average of subje
t parameter estimates inversely weightedby their varian
e estimates. In essen
e, this is a �xed-e�e
ts approa
h, sin
e it doesnot take into a

ount between-subje
t varian
es. Note that, this is also a summarystatisti
s method.In 
on
lusion, parameters estimated at subje
t level are the same for all ofthese four methods, namely FFX, RFX and MFX and ΨFX. After spe
ifying subje
t-spe
i�
 GLMs, one 
al
ulates subje
ts' parameters and varian
es and 
ontinues towardsaverage group a
tivation 
al
ulation. Sin
e, we are generally not interested in all ofthe parameters but rather in a parti
ular linear 
ombination of them, 
ontrast ve
torsare spe
i�ed at the subje
t level and applied to the parameter and varian
e estimates.
3.1.2 Bayesian Inferen
eBayesian analysis of hierar
hi
al GLM has been applied extensively to fMRIsignals [41, 42, 48℄. Implementation of Bayesian methodology for fNIRS signals will



11also follow similar pro
edures. Noninformative priors were spe
i�ed as in [48℄, sin
e noprior information is available and generally the number of subje
ts is so small to makethe in�uen
e of the prior signi�
ant. The details of the Bayesian analysis are presentedin Appendix B. Sin
e the modes of the 
onditional posterior probability distributionfun
tions 
an easily be 
al
ulated, an algorithm like iterated 
onditional modes (ICM),[50℄, 
an be used. Beginning from some initial values we 
an 
y
le through the modesuntil 
onvergen
e. ICM was preferred to some other Monte Carlo s
hemes like Gibbssampling be
ause of its simpli
ity and speed, whi
h are important 
riteria espe
iallyfor pra
ti
al purposes. For multimodal distributions ICM has the risk of getting stu
kat a lo
al minimum or os
illating, but for unimodal distributions (as it is in this 
ase)ICM gives qui
k solutions. In a
tual implementation, the 
onvergen
e of the algorithmto the same output was 
he
ked by starting the 
hain at di�erent initial points.The 
ontrast ve
tor was applied only after all of the estimation pro
ess has endedand that group parameters were available. As in the 
lassi
al analysis 
ase, this may bea
hieved by spe
ifying a 
ontrast ve
tor. The marginal posterior of 
ontrasted groupparameters obeys a univariate non
entral Student's t-distribution [51℄. We 
an makeinferen
es using this posterior, and ask whether our 
ontrasted parameter estimatesare higher than a parti
ular value.The main di�eren
e between the Bayesian analysis presented here (BPE) andthe methods mentioned in the previous se
tion is that the former is not summarystatisti
s. Bayesian analysis, in this implementation, in
orporates the group variablesinto subje
t parameter estimation pro
ess. Hen
e, all subje
ts should be analyzedsimultaneously, and if a new subje
t is in
luded in the group, the analysis should berepeated for every subje
t.
3.2 ExperimentsThe parti
ular experimental proto
ol that we used in this study is a variantof Stroop task, whi
h is known to be a good a
tivator for prefrontal 
ortex [52, 53℄.



12Subje
ts were asked to perform 
olor-word mat
hing Stroop task whose trials are theTurkish versions of Zysset et al. [54℄. Subje
ts were presented with two words onewritten above the other. The top one was written in ink-
olor whereas the bottomone was in white (over a bla
k ba
kground). Subje
ts were asked to judge whether theword written below 
orre
tly denotes the 
olor of the upper word or not. If 
olor andword mat
hed, then subje
ts were to press the left mouse button with their fore�nger,and if not, the right mouse button with their middle �nger. Subje
ts were informed toperform the task as qui
kly and 
orre
tly as possible. The words stayed on the s
reenuntil the response was given with a maximum time of 3 se
. The s
reen was blankbetween the trials.The experiment 
onsisted of neutral, 
ongruent and in
ongruent trials. In theneutral 
ondition upper word 
onsisted of four X's (XXXX) in ink-
olor. In the 
ongru-ent 
ondition ink-
olor of the upper word and the word itself were the same, whereasin the in
ongruent 
ondition they were di�erent.The trials were presented in a semi-blo
ked manner. Ea
h blo
k 
onsisted of6 trials. Inter-stimulus interval within the blo
k was 4.5 se
onds and the blo
ks werepla
ed 20 se
onds apart in time. The trial type within a blo
k was homogeneous (butthe arrangements of false and 
orre
t trials were altering) There were 10 blo
ks ofea
h type. Experiments were performed in a silent, lightly dimmed room. Words werepresented via an LCD s
reen that was 0.5 m away from the subje
ts. The task proto
olis approved by the Ethi
s Review Board of Bo§aziçi University.12 healthy (7 female, 5 male) subje
ts from the university 
ommunity (right-handed, mean age 26.17 ± 4.30, range 20 − 31) parti
ipated in the study. Subje
tshad no reported neurologi
al, medi
al and psy
hiatri
 disorders. None were takingmedi
ations at the time of measurement. All the subje
ts had normal or 
orre
ted-to-normal vision and normal 
olor vision. Written informed 
onsent was obtained fromall subje
ts before the measurement.



133.3 ResultsStimulus onset ve
tors for ea
h type of stimulus (neutral, 
ongruent and in
on-gruent) were formed and 
onvolved with the 
anoni
al HRF [55℄. These three ve
tors
onstituted the 
ognitive part of the design matrix. The fNIRS data were digitallylow-pass �ltered with a 
ut-o� frequen
y of 330 mHz. To be able to 
ope with variouslow-frequen
y trends, dis
rete 
osine transform basis fun
tions [56℄, were added to thedesign matrix with a minimum period of 120 se
onds. In
orre
t and omitted trialswere modeled separately and they, together with the trend terms, form the nuisan
epart of the design matrix.3.3.1 Behavioral ResultsRea
tion times (RT) were 
al
ulated only from the 
orre
tly answered trials.Figure 3.1 shows that the �rst and se
ond subje
ts responded slower to 
ongruent trialsin 
omparison to in
ongruent trials. Subje
t 6 responded slightly slower to neutraltrials than 
ongruent trials. For the rest of the subje
ts the ordering of RTs is neutral-
ongruent-in
ongruent. The average RTs to neutral, 
ongruent and in
ongruent trialsare 1029.3± 277.1, 1183.9± 370.5 and 1308.8± 367.1 ms, respe
tively. Comparing theRTs, two-tailed paired-t test revealed signi�
ant di�eren
es among all 3 trial types:In
ongruent vs. Neutral t(11) = 7.042 p = 0.000; In
ongruent vs. Congruent t(11) =

2.882 p = 0.015; Congruent vs. Neutral t(11) = 4.351 p = 0.001.There are two 
ommon e�e
ts in Stroop task: First, the interferen
e e�e
t refersto the observation that subje
ts have more di�
ulty in answering in
ongruent trialswith respe
t to neutral trials. Se
ond, fa
ilitation e�e
t 
omes from the observationthat subje
ts respond qui
ker to 
ongruent trials 
ompared to neutral trials [57℄. Al-though the interferen
e e�e
t was evident in RTs, we 
ould not observe a fa
ilitatione�e
t. Using the same kind of stimuli Zysset et al., [54℄, has not observed fa
ilitatione�e
t either. It has been pointed out that fa
ilitation was not a ne
essary 
on
omitantof interferen
e and it played a mu
h lesser role than interferen
e [52℄. It was asserted
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Figure 3.1 Rea
tion times of the subje
ts.that the missing fa
ilitation was due to trying to speed up an already rapid response.Additionally, the slower response to 
ongruent trials may be related with the observa-tion that the subje
ts try to judge whether the trial is 
ongruent or in
ongruent, whi
hputs an extra 
ognitive load with respe
t to neutral trials.Error rates were generally small, and most of the subje
ts did not make anymistakes for neutral and 
ongruent trials. Mean error rates (in per
entage) were 0.56±

1.92, 0.56 ± 1.30 and 4.31 ± 5.97, respe
tively for neutral, 
ongruent and in
ongruenttrials. No statisti
al test was 
arried out in terms of error rates sin
e they were generallyso small; however, it 
an be said that interferen
e e�e
t also manifests itself in errorrates.3.3.2 fNIRS ResultsfNIRS devi
e provides us with a set of time series re
orded over 16 
hannelsover the s
alp. For the lo
ations of the probed regions refer to Figure 2.3. Note thatthe ordering of the 
hannels is from left to right, that is, "`1"' is on the left and "`16"'is on the right. Oxy-Hb and deoxy-Hb data were analyzed separately.



153.3.2.1 Oxy-Hb results. The subje
t level and group level a
tivation patternsfor interferen
e e�e
t (in
ongruent - neutral) are shown in Figure 3.2. These patternsand the others presented in the following �gures result from the thresholded z -s
oresat 0.05 signi�
an
e level (that is, zthresh = 1.65 and p = 0.05, adjusted for multiple
omparisons by Bonferroni 
orre
tion). The posterior probabilities given by the ΨFXand BPE are also 
onverted to z statisti
s. Re
all that subje
t-level a
tivations are
ommon for FFX, RFX, MFX and ΨFX, and estimated by ordinary least squares (OLS)in a single step, whereas BPE estimates iteratively both subje
t and group parameters.The �rst observation is that there is a
tivation widespread over 
hannels formost of the subje
ts. Furthermore, all subje
t a
tivations resemble ea
h other forboth OLS and BPE approa
hes. This is usual and points to the fa
t that grouplevel varian
e is higher than subje
t level varian
e, whi
h 
auses the e�e
t of groupparameters being weighted down in the estimation of subje
t level parameters. Despitethe apparent similarity between OLS and BPE methods, the 
onsistent a
tivation in
hannel 4 revealed by BPE is worth noti
ing. BPE �nds that 
hannel 4 is a
tivatedfor all of the subje
ts, while this is not the 
ase for single-level GLM. The se
ondimportant observation is that the per
entage of a
tivated subje
ts per 
hannel indi
atesthat a
tivation is dominantly left lateral (Figure 3.2, middle row). When group levelinferen
e is inspe
ted (Figure 3.2, bottom row), this left laterality is espe
ially evidentwith RFX, MFX and BPE. Channels 1-4 are found to be a
tive, with 
hannel 4 givingthe highest z -value and 
onsisten
y. Thirdly, it 
an be seen that the wide spreada
tivation at the subje
t level is 
arried over to the group level with FFX and ΨFX.This is to be expe
ted be
ause these two methods do not 
onsider the between-subje
tvarian
e. The 
onsequen
e is that FFX and ΨFX have higher sensitivity but at therisk of high false positive rates.It was also investigated whether there was a signi�
ant a
tivation di�eren
ebetween in
ongruent and 
ongruent trials. The behavioral results have shown thatthere was no fa
ilitation e�e
t, that is, subje
ts had more di�
ulty with 
ongruenttrials with respe
t to neutral trials. This also manifested itself in fNIRS �ndings andthe a
tivations both at the subje
t and group levels are less pronoun
ed this time (there
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Figure 3.2 A
tivation patterns for oxy-Hb for "in
ongruent - neutral" 
ontrast. Top: Subje
t levela
tivations dete
ted by OLS (left) and BPE (right). Middle: A
tivated subje
t 
ount (%) for OLS(left) and BPE (right). Bottom: Group level a
tivations for FFX, RFX, MFX and ΨFX (left) andBPE (right).is no a
tivated 
hannel for subje
ts 1 and 6, see Figure 3.3, top row). FFX and ΨFX,again, found higher number of a
tivated 
hannels 
ompared to the other three methods(Figure 3.3, bottom row). The a
tivations of RFX, MFX and BPE are 
on�ned to theleft lateral 
hannels.It might be suggested that the medial a
tivations dete
ted by FFX and ΨFXmay be due to anterior 
ingulate 
ortex (ACC), whi
h has been identi�ed as a regioninvolved in Stroop-like inhibition paradigms [58℄. However, it has been shown that ACCis not spe
i�
ally involved in interferen
e pro
esses, but rather in motor preparationpro
esses [54℄. Hen
e, ACC should not be substantially a
tivated when 
omparingneutral and in
ongruent 
onditions, as the motor response preparation pro
ess, on
ethe de
ision is taken, is the same for both 
onditions in 
olor-word mat
hing Strooptask [54℄. Additionally, 
onsidering the penetration depth of near infrared light [59℄,it is doubtful if fNIRS would be able to 
apture the a
tivations in ACC with sour
e-dete
tor separation of 2.5 
m. Hen
e, it may be 
on
luded that the medial a
tivations
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Figure 3.3 A
tivation patterns for oxy-Hb for "in
ongruent - 
ongruent" 
ontrast. Top: Subje
tlevel a
tivations dete
ted by OLS (left) and BPE (right). Middle: A
tivated subje
t 
ount (%) forOLS (left) and BPE (right). Bottom: Group level a
tivations for FFX, RFX, MFX and ΨFX (left)and BPE (right).dete
ted by FFX and ΨFX are false a
tivations.Sin
e subje
ts had more di�
ulty with answering 
ongruent trials with respe
tto neutral trials, the group level a
tivation for the di�eren
e between these two trialtypes was also investigated. Although there was some a
tivation at the subje
t level,no a
tivation 
ould be found at the group level.It is possible to present the �tted 
ognitive waveforms to the measured signal asin Figure 3.4. The large slow trend over the signal may be seen in this �gure. For the
ase of this subje
t, the 
ontrast of 'in
ongruent vs. neutral' trials is signi�
ant while"in
ongruent vs. 
ongruent" 
ontrast is not.Up to this point, the main 
on
ern was the a
tivation dete
tion problem. Inother words, given a 
anoni
al HRF signal model it is 
he
ked whether there is a
tiva-tion or not in the measurements. The 
omplementary problem would be the estimation
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Figure 3.4 An oxy-Hb time series with �tted 
ognitive waveforms and trend 
omponent.of this HRF signal. To this e�e
t a se
ond GLM was applied where the HRF was mod-eled as su

essive time bins, that is, as a �nite impulse response �lter. In this setting ofthe problem, the 
oe�
ients of the �lter should give the HRF waveform. Note that thisapproa
h does not put any 
onstraints over the HRF, and e�e
tively, it averages theevent-related responses for ea
h subje
t. Figure 3.5 demonstrates the HRF waveformsfor ea
h type of stimulus averaged over subje
ts. For most of the 
hannels the end resultis a plausible HRF waveform. We want to examine espe
ially the waveforms a
quiredfrom 
hannels 1-4, sin
e BPE identi�ed 
hannels 1-4 as a
tivated for "in
ongruent vs.neutral" 
ontrast and 
hannels 1 and 3 for "in
ongruent vs. 
ongruent" 
ontrast. Theresulting waveforms from these 
hannels are also 
onsistent with this result. A 
aveatis that average waveforms are by no means a dire
t indi
ation of group a
tivation, butthe 
onsisten
y between the dete
tion and estimation pro
edures is worth noti
ing.3.3.2.2 Deoxy-Hb results. The analysis of deoxy-Hb signals did not dis
over asstrong a
tivation patterns as those of oxy-Hb. Figure 3.6 shows the a
tivations for"in
ongruent vs. neutral" 
ontrast. In fa
t, there are a
tivations at the subje
t level
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Figure 3.5 Estimated hemodynami
 response fun
tion waveforms averaged over subje
ts (runningaverages over 3 se
onds), with hypotheti
al HRF at the bottom-right.(Figure 3.6, top row), and these are 
arried to the group level by FFX and ΨFX;however, RFX, MFX and BPE do not identify any of the 
hannels as signi�
antlya
tivated (Figure 3.6, bottom row). This is a 
onsequen
e of the fa
t that deoxy-Hb exhibits a greater variability among the subje
ts. To demonstrate this variability,
onsider Figure 3.7. This �gure presents the subje
ts' parameter estimates for the
3rd 
hannel of deoxy-Hb for "in
ongruent vs. neutral" 
ontrast and again the 3rd
hannel of oxy-Hb for 'in
ongruent vs. 
ongruent' 
ontrast. These 
ombinations were
hosen be
ause deoxy-Hb shows a
tivation for 7 subje
ts (out of 12) but with no groupa
tivation for RFX, MFX and BPE, whereas oxy-Hb shows a
tivation for 6 subje
tsalong with group a
tivation by the aforementioned methods. The reason for this liesin the greater varian
e (mainly due to the 1st and 3rd subje
ts) exhibited by deoxy-Hb.The resulting a
tivations of deoxy-Hb for "in
ongruent vs. 
ongruent" 
ontrast arepresented in Figure 3.8.
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Figure 3.6 A
tivation patterns for deoxy-Hb for "in
ongruent - neutral" 
ontrast. Top: Subje
tlevel a
tivations dete
ted by OLS (left) and BPE (right). Middle: A
tivated subje
t 
ount (%) forOLS (left) and BPE (right). Bottom: Group level a
tivations for FFX, RFX, MFX and ΨFX (left)and BPE (right).

Figure 3.7 An example set of 
ontrasted subje
t level parameters (see text for detailed explanation).
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Figure 3.8 A
tivation patterns for deoxy-Hb for "in
ongruent - 
ongruent" 
ontrast. Top: Subje
tlevel a
tivations dete
ted by OLS (left) and BPE (right). Middle: A
tivated subje
t 
ount (%) forOLS (left) and BPE (right). Bottom: Group level a
tivations for FFX, RFX, MFX and FX (left) andBPE (right).3.3.2.3 Relation between hemodynami
 and behavioral responses. The re-lation between hemodynami
 and behavioral responses were investigated by �nding the
hannel-by-
hannel 
orrelation 
oe�
ients between the interferen
e e�e
ts measured bythe di�eren
e in 
on
entration 
hanges and rea
tion times of in
ongruent and neutraltrials. Signi�
ant 
orrelation was found for oxy-Hb in the 4th 
hannel (r = −0.57

p = 0.05). The 4th 
hannel was the most 
onsistently a
tivated 
hannel a
ross sub-je
ts. S
atter plot of behavioral vs. hemodynami
 response for this 
hannel is shownin Figure 3.9. Note that, the 
orrelation is negative, i.e., hemodynami
 response issmaller for higher behavioral interferen
e e�e
t. This �nding supports the hypothe-sis that "higher Stroop-spe
i�
 brain a
tivation leads to more su

essful inhibition of
ompeting responses and hen
e, a smaller behavioral interferen
e e�e
t" [60℄. Not verysurprisingly, no signi�
ant 
orrelation was found between rea
tion times and hemody-nami
 responses for the "in
ongruent vs. 
ongruent" 
ontrast of oxy-Hb and for bothof the 
ontrasts of deoxy-Hb.
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Figure 3.9 Correlation between the hemodynami
 and behavioral responses for oxy-Hb in the 4th
hannel during interferen
e ("in
ongruent - neutral") 
ondition.3.4 Dis
ussionThe results 
orroborate the 
onje
ture that fNIRS data lend itself to multilevelstatisti
al inferen
e. Consistent a
tivation patterns were observed during Stroop inter-feren
e, parti
ularly for oxy-Hb. It may be re
ommended that appli
ation of multilevelstatisti
al inferen
e to fNIRS data should always in
lude random e�e
ts, and MFX orBayesian methods may be preferred for this purpose. The problem with �xed e�e
tsmodels is that it ignores between subje
t variability and sin
e within-subje
t varian
eis mu
h smaller it be
omes possible for the 
hannels to have illusory a
tivation. Toover
ome this risk, extensions to FFX, like 
onjun
tion analysis, may be pursued [61℄.Bayesian methodology may have a number of advantages over 
lassi
al pro
e-dures in analyzing multilevel GLMs. First of all, it 
an 
ope better with the 
lassi
alproblem of within-subje
t and between-subje
t varian
es in a more prin
ipled frame-work [41℄. Bayesian analysis also in this work enabled us to in
lude the informationobtained from the rest of the group in the analysis of the parti
ular subje
t.Moreover, Bayesian statisti
s yield posterior distributions for the parameters



23of interest. This enri
hes our statisti
al test di
tionary, whi
h means that we are nolonger limited with just NHSTP. Hen
e we are able to test whether the e�e
t is greaterthan a meaningful size in relation to the underlying physiology [41℄. This is importantbe
ause the statisti
al signi�
an
e obtained by NHSTP in 
lassi
al statisti
s does nottruly re�e
t the magnitude of the e�e
t [62℄. For example, a very small but 
onsistente�e
t might be found to be statisti
ally signi�
ant. Although, a small but very reliablea
tivation may be interesting, neuroimaging is generally interested in a
tivations ofnontrivial magnitude, and this speaks for the usefulness of Bayesian inferen
e. The as-so
iated probability, p, of the NHSTP statisti
 is a 
onditional probability, p(data|H0),
H0 being the null hypothesis. If p(data|H0) is small, this does not ne
essarily implythat p(H0|data) is small or that p(H1|data) is big, H1 being the alternative hypothesis.Thus, NHSTP does not allow us to ask su
h questions related with the posterior distri-bution as "what is the probability that the e�e
t size is bigger than 1?" or "what is theprobability that it is 0?" or "does the e�e
t explain 10% of the total energy 
ontent ofthe signal?" This sort of questions be
ome important for fNIRS monitoring of 
ogni-tive a
tivity be
ause it is known that, given enough data (in terms of number of timepoints, subje
ts et
.) the probability of false a
tivations in
reases. Thus, it is desiredto be able to di�erentiate trivial departures from the null hypothesis from signi�
antnontrivial e�e
ts, and this demands for the probability distribution of the a
tivationgiven the data. In this respe
t, 
lassi
al statisti
s falls short of proving or disprovinga
tivation patterns in a "long" and temporally 
orrelated re
ord of an fNIRS signal.An interesting point is that using noninformative priors 
arries the Bayesianinferen
e 
loser to 
lassi
al inferen
e. This was also pointed out in [63℄ in a di�erent
ontext. The rationale for the use of noninformative priors is that 
ognitive fNIRSstudies are at their early stage of development and it would be better not to 
ommitourselves prematurely; furthermore generally the number of subje
ts is small so as tomake the in�uen
e of the prior a lot signi�
ant. One of the goals in this study wasto 
ompare 
lassi
al and Bayesian inferen
e methods for fNIRS data. Sin
e 
lassi
alpro
edures work with the null hypothesis and ask whether the e�e
t size is greaterthan zero or not, the same threshold was also assigned for the Bayesian analysis for
omparison.
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essitates the simultaneous analysis of thedata of all the subje
ts'. Thus, if a new subje
t is added to the group, it is ne
essaryto redo the whole analysis. Obviously this poses a problem for fMRI sin
e in this
ase there are thousands of voxels, and hen
e for all of them the analysis must restartfrom s
rat
h. Although fNIRS also requires redoing all the 
al
ulations, the numberof dete
tors is two orders of magnitude less, in fa
t on the order of tens. Moreover, wemake use of a fast iterative s
heme, ICM, whi
h substantially redu
es the runtime ofthe algorithm. During the analysis no 
ontrasts were applied in the intermediate levelsand all the parameter estimates were passed up to the highest level. This enables us�rst, to take into a

ount the 
orrelations among the subje
t level parameter estimatesand se
ond, to make the simultaneous testing of a number of hypotheses.The multiple 
omparison problem arising from the simultaneous testing of anumber of 
hannels was tried to be 
ir
umvented by Bonferroni 
orre
tion. It is knownthat Bonferroni 
orre
tion is too 
onservative, espe
ially when there is spatial 
orre-lation between the measurements [64℄. A promising method for NIRS signals was putforward using the false dis
overy rate pro
edure [65℄. However, as also noted in thatstudy, multiple 
omparison 
orre
tion of multi
hannel NIRS studies is still an openproblem.One parti
ular issue that has not been dis
ussed so far is the e�e
t of di�erentialpath length fa
tor (DPF). Although in this study it was kept �xed a
ross subje
ts (DPF= 5.93), it is known that DPF may show variations among subje
ts [32℄. However, itis not possible to estimate the exa
t DPF for every subje
t. It was proposed to useDPF-independent measures in the analysis of fNIRS signals and GLM was put forwardas a 
andidate for this task [27℄. The reason was that the statisti
s produ
ed by GLMwas independent of the DPF. Relevant to this study is that when we try to 
ombinethe parameter estimations from di�erent subje
ts this DPF dependen
y will 
learlya�e
t the results. Despite this fa
t, it is possible to redu
e this e�e
t substantially byMFX, ΨFX and BPE type of algorithms. In these algorithms the e�e
t of subje
tson the group results is inversely proportional to their estimation varian
es. Hen
e,this pro
edure also a
ts as a normalizing term, and eliminates, in part, the e�e
ts of



25DPF variations. RFX, on the other hand, dire
tly 
al
ulates group varian
e estimatefrom the varian
e of subje
t parameter estimates. Then, the estimated varian
e willde�nitely in
lude both real 
on
entration 
hange varian
es and also the variations
aused by DPF di�eren
es.The Stroop �ndings are generally 
onsistent with the literature, though they arenot as strong and 
on
lusive as those of [66℄, where they showed a
tivation bilaterally forboth oxy-Hb and deoxy-Hb. However, in this study a
tivation was found only for oxy-Hb in the left lateral prefrontal 
ortex and there was no a
tivation (at the group level)for deoxy-Hb. These results 
oin
ide more with those of [67℄, where they also found onlyleft lateral a
tivation for oxy-Hb and showed that the a
tivations for deoxy-Hb weremu
h weaker. In a 
omprehensive review, [52℄, it was 
on
luded that the left hemispheregenerally showed more interferen
e than the right. These �ndings also point to animportant aspe
t of fNIRS data analysis: The 
onsisten
ies and 
ontroversies betweenthe results obtained by oxy-Hb and deoxy-Hb. In [27℄, using a visual stimulus, it was
on
luded that deoxy-Hb is more amenable to GLM. However, in another study, [68℄,it was 
on
luded that 
orti
al a
tivation 
ould lead to di�erent patterns in deoxy-Hband was proposed oxy-Hb as the best indi
ator of regional 
erebral blood �ow 
hanges.There were also other �ndings supporting this hypothesis [67℄. On a reprodu
ibilitystudy of event related fNIRS, it was stated that deoxy-Hb was asso
iated with lowert-values at single subje
ts' level as well as at the se
ond level if 
ompared to oxy-Hb[69℄. In another study on false memory on the prefrontal 
ortex [4℄, deoxy-Hb did notshow any signi�
ant a
tivations and the authors stated that this might be attributableto the instability of deoxy-Hb 
on
entration whi
h was largely determined by the wash-out e�e
t of the regional 
erebral blood �ow in
rease [70℄. In a simultaneous fMRI-fNIRS study [71℄, it was found that oxy-Hb was a more robust hemodynami
 signaland 
orrelated more with fMRI-BOLD response. This was attributed to the lowersignal-to-noise ratio of deoxy-Hb signal. However, in another study [72℄, using anexperimental design that in
reased the signal-to-noise ratio of NIRS signals, it wasfound that deoxy-Hb was more 
orrelated with fMRI-BOLD signal. When evaluatedtogether, these �ndings point to the fa
t that although oxy-Hb is more dominantlylabeled as the 
arrier of 
ognitive information, the potential of NIRS for measuring
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ognitive a
tivity and the interpretation of deoxy-Hb and oxy-Hb still need furtherresear
h. The results of this study indi
ate that oxy-Hb is more sensitive to regionalblood �ow 
hanges in the prefrontal 
ortex 
aused by 
ognitive stimulus. Consistent leftprefrontal a
tivation was found for oxy-Hb during Stroop interferen
e. The a
tivationpatterns at the subje
t level are more stru
tured and the hemodynami
 results show abetter 
orrelation with the behavioral results for oxy-Hb than deoxy-Hb.



274. GLM ANALYSIS UNDER PARAMETER CONSTRAINTS
One of the most important aspe
ts of GLM analysis is the sele
tion of appropri-ate waveforms for modeling hemodynami
 response fun
tion. Canoni
al HRF (
HRF),whi
h is 
omposed of the di�eren
e of two gamma fun
tions, is 
ommonly used for thispurpose. Sin
e mismat
hes between the hypotheti
al and a
tual waveforms 
an sub-stantially de
rease the dete
tion performan
e, some �exibility is allowed in the basi
model in order to better 
apture the variations in the hemodynami
 response. Em-ploying temporal and dispersion derivatives (TD and DD) along with the 
HRF is oneof the most 
ommon ways to attain a more robust analysis [55℄. A

ordingly, the HRFis modeled as a linear 
ombination of three waveforms. However, even if a su

essfulwaveform modeling is apparently obtained, there is still a 
on
ern about the reliabilityof the analysis and it should be 
he
ked whether it represents a plausible HRF or not.Obviously if there are no restri
tions on the linear 
ombination weights, then unrealis-ti
 HRFs may be obtained, and 
onsequently a
tivations may be dete
ted when thereare none.Constraining the basis set for modeling the HRF has been studied using vari-ational Bayes where basis waveforms were formed via singular value de
ompositionof a set of plausible HRF sample waveforms [63℄. Then using regression analysis, amultivariate normal distribution was �tted for the basis weights and this informationwas used as prior distribution in the Bayesian analysis. This was a "soft-
onstraint"approa
h in the sense that multivariate normal 
ould not 
apture all details of the truedistribution. Despite this limitation, this work has shown that 
onstraining the basisset allowed for superior separation of a
tive voxels from non-a
tive voxels in fMRI data.The method of 
onstraining the linear 
ombinations of the basis set has also been takenup in the 
anoni
al 
orrelation analysis framework [73℄. The limitation of this work,however, is that only positivity of the linear 
ombination 
oe�
ients is required.
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hapter, whi
h is based on [74℄, the problem of doing 
onstrained param-eter estimation and inferen
e with GLM is studied in a Bayesian framework. Using the
anoni
al basis set, 
onsisting of the 
anoni
al waveform, its temporal derivative anddispersion derivative, an admissible region is de�ned in the three-dimensional weightspa
e, and Gibbs sampling is used to arrive at posterior distributions. More expli
-itly, uniform prior distributions are spe
i�ed for the parameters. The support of theseuniform distributions represents our a priori knowledge, and thus we are sure that theparameter estimates belong to the feasible set. Sin
e, a new basis set is not introdu
edand the 
anoni
al basis set is used, the method is a dire
t extension of the 
ommonlyused GLM for neuroimaging.The resear
h for the temporal dynami
s of HRF is generally based on fMRI.There are numerous studies where fun
tional magneti
 resonan
e imaging and near in-frared spe
tros
opy data are simultaneously a
quired and the estimated hemodynami
responses are 
ompared [72, 75℄. Although there is a 
ommonly a

epted 
anoni
alHRF waveform, the instantiations of observed e�e
ts 
an di�er in terms of rise time,undershoot, delay, duration et
. The 
onstrained HRF estimation may be expe
ted tobe more e�e
tive for NIRS analysis, on the one hand, by allowing 
ontrolled variationsaround a 
anoni
al HRF that was tailored for fMRI, and on the other hand by leadingto a better assessment of the 
ognitive a
tivity via fNIRS. In summary, 
onstrainingthe GLM may enable us to be �exible enough to 
ope with variations in the HRFwaveform, but also stringent enough not to allow unrealisti
 HRF shapes.
4.1 Constraining the Basis SetThe 
anoni
al basis set is reprodu
ed in Figure 4.1a, where the peak values of thewaveforms are s
aled to unity. Sample HRF waveforms were generated by varying the
oe�
ients of the two derivative terms in linear 
ombinations. The resulting waveformswere tested for their plausibility and a tally of the 
oe�
ients that satis�ed these 
riteriawas kept. An HRF is shown in Figure 4.1b with the parameters that 
hara
terize itsmain features. The setting of parameter ranges was based on information gleaned
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Figure 4.1 a) Canoni
al HRF with its temporal and dispersion derivatives (maximum value s
aledto unity), b) Parameters that 
hara
terize the HRF: t1: Time to peak, t2: Time to undershoot frompeak instant, m1: Magnitude of initial dip, m2: Magnitude of main response, m3: Magnitude ofundershoot.from the literature on temporal dynami
s of the HRF [76, 77, 78℄ and the work on
onstrained basis sets [63℄. An alternative might be using a physiologi
al model, likethe balloon model [70℄, and obtain sample HRFs from this model. The 
riteria used indetermining the plausible HRF waveforms 
an be listed as,
• A main response with a peri-stimulus time of 3 − 8 se
onds: 3 ≤ t1 ≤ 8,
• More than one positive peak,
• No more than two negative dips,
• An initial dip with magnitude not greater than quarter of the magnitude of theonset: 0 ≤ m1 ≤ m2/4,
• An undershoot after 2 − 8 se
onds after the main peak: 2 ≤ t2 ≤ 8,
• Magnitude of the undershoot not greater than half of the magnitude of the onset:

0 ≤ m3 ≤ m2/2.Figure 4.2a shows the feasible region of 
oe�
ients of the temporal derivative(TD) and that of the dispersion derivative (DD). The nonre
tangular shape of the



30feasible region indi
ates that TD and DD 
oe�
ients are statisti
ally dependent. Figure4.2b shows the plausible HRF waveforms obtained by sampling the permissible TD-DDregion.Sin
e the a
tivation is de�ned as an in
rease of oxy-Hb and a de
rease of deoxy-Hb, the 
oe�
ient of the 
HRF is expe
ted to be positive. The NIRS devi
e measuresthe 
on
entration value in molar units, and the 
oe�
ient of the 
HRF is 
onstrainedto be between 0 and 5 mi
ro molar. This range is broader than typi
al 
ognitivea
tivation magnitudes in the prefrontal 
ortex found in several NIRS studies [79, 80℄.For deoxy-Hb, the time-series 
an be inverted in sign and the same 
onstraints 
an beapplied. The 
onstraints on these 3 parameters then de�ne a volume in 3-d spa
e.4.1.1 Bayesian Analysis of the Constrained GLMGLM is formulated in the same manner as the subje
t-level GLM of the previous
hapter, and its details are given in Appendix A. As a reiteration, Y = Xb + Zh + e,des
ribes the basi
 GLM, where Y is the N -sample ve
tor of NIRS data (oxy-Hb ordeoxy-Hb), X is the N × p design matrix, b is the p ve
tor of parameters for e�e
tsof interest, Z is the N × q matrix modeling the nuisan
e e�e
ts, h is the q ve
tor ofparameters for nuisan
e e�e
ts, and e is the N -long noise ve
tor. Y , X and Z areknown and b, h and e are unknown. In the Bayesian analysis of the GLM, priorsare spe
i�ed for the unknown variables and posterior distributions are derived. The
onstraints for b, e�e
tively the priors of b, have already been de�ned in the previousse
tion. To 
omplete the Bayesian analysis we have to spe
ify priors for h and e.Sin
e we have no prior information about nuisan
e e�e
ts, their prior will be set touniform distribution: p(h) α uniform. The noise is assumed to be un
orrelated, zero-mean, Gaussian distributed with varian
e σ2, for whi
h the Je�reys (noninformative)prior is used: p(σ2) α σ−2. Using Bayes rule, full 
onditional posterior distributionsfor the variables are found so that Gibbs sampling 
an be used to generate samplevalues from the posterior. At ea
h sampling instan
e, the feasible intervals for theelements of the b ve
tor are imposed. Note that the posterior of the b ve
tor is just
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Figure 4.2 a) Feasible values for the 
oe�
ients of the derivative terms. Straight arrows indi
atetwo instan
es of admissible waveforms and dashed arrow indi
ates a non-admissible waveform, b) Theset of plausible HRF waveforms (maximum values s
aled to unity).



32the trun
ated version of the likelihood, sin
e p(b/Y ) = p(Y/b)p(b), and p(b) a
ts likea range delimiter. We 
an use the te
hnique introdu
ed in [81℄ to draw samples fromthis trun
ated distribution: If Fi is the likelihood fun
tion for bi, and U is a uniform
(0, 1) variate, then b̂i = F−1

i [Fi(a) + U(Fi(b) − Fi(a))] is a random variate from thetrun
ated likelihood (posterior), where the feasible interval for bi is [ab]. The exe
utionof the Gibbs sampling 
an be summarized as below:1. From i = 1 : p, sample bi from p(bi|b−i, h, σ2), where by 
onvention b
−i denotesall the b parameters ex
ept the ith one,2. Sample h from p(h|b, σ2),3. Sample σ2, from p(σ2|b, h).Sin
e we are assuming additive Gaussian noise, the likelihood fun
tion also has a Gaus-sian form. Hen
e, the distribution in the �rst step is a trun
ated univariate Gaussian;the distribution in the se
ond step is a multivariate Gaussian and in the last step it isinverse Gamma distributed. After obtaining the posterior distribution of the parame-ters given the observations, we 
an use these posteriors to make inferen
es about theparameters and the related events. In the exe
ution of Gibbs sampling, the 
hain wasrun for 10.000 iterations and the �rst 2.000 iterations were dis
arded as burn-in. Then,the marginal posterior distribution 
an be obtained by smoothing the sample-basedhistogram with a Gaussian kernel.

4.2 ExperimentsNIRS data were re
orded from 15 volunteers (8 male, age 26.5 ± 4.7 years) re-
ruited from the university 
ommunity. Subje
ts had no reported neurologi
al, medi
aland psy
hiatri
 disorders. None were taking medi
ations at the time of measurement.Written informed 
onsent was obtained from all subje
ts before the measurement. Data



33were obtained from the prefrontal 
ortex of the subje
ts during 
olor-word mat
hingStroop task [54℄, whose details are given in the previous 
hapter.
4.3 ResultsTo put into eviden
e the role of 
onstrained GLM vis-à-vis un
onstrained GLMtwo sets of experiments were ran. These two approa
hes are denoted, respe
tively ina more suggestive way, as the Bayesian approa
h and the non-Bayesian or frequenti-est approa
h. In the �rst experiment, the algorithm was applied on null hypothesisdata, where we expe
t the Bayesian approa
h to yield low signi�
an
e values while thefrequentiest approa
h strives to model events even where there are none. Conversely,the Bayesian approa
h is expe
ted to yield higher reliability s
ores on the alternativehypothesis data, that is, when there is an event. In 
lassi
al analysis, the e�e
t sizesfor di�erent 
ontrasts are tested against zero. Sin
e in the 
onstrained analysis the
oe�
ient of the 
HRF has already been restri
ted to be positive, a di�eren
e 
ontrastshould be used. On the other hand, sin
e Bayesian analysis gives us posterior distri-butions, it is possible to de�ne a threshold other than zero, and make inferen
e evenin one stimulus 
ase. In these experiments with arti�
ial and real data, experimentalparadigms with more than one stimulus were used. Inferen
e for a
tivation was basedon the main 
omponent (
HRF) while the two derivative terms (TD and DD) modeledthe variations in the basi
 HRF, that is, the asso
iated t statisti
 was produ
ed for
HRF to test the a
tivation. An alternative might be to investigate the total powerexplained by the linear 
ombination of the basis fun
tions with an F statisti
. How-ever, it it known that F statisti
 is always less sensitive and t statisti
 based on the
HRF is re
ommended, espe
ially when the shift in the HRF is known to be less than1 se
ond [82℄.



34

Figure 4.3 a) Histograms of the z-statisti
s for the un
onstrained and 
onstrained analysis fromarti�
ial null data, b) Log probability - Log probability plots for the tail masses of theoreti
al andempiri
al (
onstrained and un
onstrained) 
ases.4.3.1 Arti�
ial null data10.000 arti�
ial null data were generated using Gaussian noise and a number oftrend terms simulating the ba
kground a
tivity. A thought-experiment was designedwith two stimuli in an event related setting with inter stimulus interval of 20 se
onds.Forming a design matrix using 
HRF, its derivatives and dis
rete 
osine transform fun
-tions for modeling the linear trends (nuisan
e part), the parameters were estimated us-ing both un
onstrained OLS and 
onstrained Bayesian analysis. Finally, the z -statisti
sof the 
ontrast between the 
HRF parameter values of the two stimuli were 
al
ulated.The z -statisti
s (or pseudo-z-statisti
s [63℄) were obtained from the marginal posteriorfor the 
onstrained 
ase Figure 4.3a shows the histogram of z -statisti
s obtained for thearti�
ial null data for the two analysis 
ases. It 
an be observed that the z -histogram ismore 
on
entrated around 0 for the 
onstrained 
ase. The reason is that 
onstrainingthe basis set penalizes the unlikely parameter values and lowers their signi�
an
e. Thelog-log probability plot in Figure 4.3b shows the probabilities under the tail for a givenz -statisti
 for both frequentiest (un
onstrained) and Bayesian (
onstrained) analysis.It may be observed that the empiri
al frequentiest probabilities are in 
onforman
ewith the theoreti
al probability values, that is, the z -s
ores one would obtain in purenoise, whereas the Bayesian analysis produ
es mu
h smaller probabilities. This meansthat 
onstraining the basis set redu
es false a
tivations.



354.3.2 fNIRS dataRea
tion times for the neutral, 
ongruent and in
ongruent trials were 1028.9 ±

193.2, 1160.6 ± 265.6 and 1260.9 ± 242.1 ms, while the error rates were 0.22 ± 0.86,
1.33± 2.11 and 4.00± 4.58, respe
tively. Sin
e error rates were small, the interferen
ee�e
t (in
ongruent - neutral) was 
al
ulated only in terms of rea
tion times. Therewas a 
lear interferen
e e�e
t with p < 0.0001. The di�eren
e between the rea
tiontimes of in
ongruent and 
ongruent trials and 
ongruent and neutral trials were alsosigni�
ant (p < 0.01).Sin
e interferen
e e�e
t is known to be well pronoun
ed in Stroop task [52℄,whi
h has also manifested itself in the behavioral analysis, it was de
ided to 
on
entrateon this 
ontrast for hemodynami
 response results. Although NIRS 
an measure bothoxygenated and deoxygenated hemoglobin, only oxygenated hemoglobin was used, sin
ethe results of the previous 
hapter showed that oxygenated hemoglobin was a moresensitive indi
ator of 
ognitive a
tivity in the prefrontal 
ortex during Stroop task.In the GLM to analyze NIRS data, the design matrix (X) 
onsisted of the 
HRFand its derivatives 
onvolved with the stimulus onset ve
tors for ea
h type of trial. Thedesign matrix modeling the nuisan
e e�e
ts (Z) 
onsisted of dis
rete 
osine transformfun
tions to 
ope with various low-frequen
y trends. In
orre
t and omitted trials weremodeled separately and in
luded in the design matrix as nuisan
e e�e
ts. In otherwords, inferen
e was based on only 
orre
t trials. Ea
h 
hannel of ea
h subje
t wasanalyzed individually.Figure 4.4 shows the histogram of z -statisti
s for the un
onstrained and 
on-strained 
ases for the overall data, 15 (subjects) × 16 (channels), for the interferen
ee�e
t. It may be observed that, as it was the 
ase with the arti�
ial null data, his-togram is denser for low z values (-2 to 2) under 
onstrained estimation. The reasonis that 
onstrained linear 
ombinations pre
lude unlikely parameter o

urren
es. Atthe same time, the 
onstrained histogram has higher absolute z -values at both ends,sin
e in the 
ase of strong a
tivations and dea
tivations that satisfy the 
onstraints, our



36method yields lower varian
e estimates, whi
h in turn 
auses the signi�
an
e s
ores toin
rease. Figure 4.5 shows the a
tivation matrix for OLS and Bayesian analysis. One
an observe that the 
onstrained analysis results in some deleted a
tivation 
ells whilenew a
tivations are added. For instan
e, while frequentiest inferen
e does not result inany a
tivation for the 11th subje
t, 
onstrained analysis identi�es three a
tive 
hannelsat the left lateral 
ortex. Figure 4.6 explains the reason for this phenomenon. There
ording shown is from the 4th 
hannel of the 11th subje
t. In Figure 4.6a the �ttedwaveforms with the un
onstrained and 
onstrained approa
hes are superimposed. Thea
tual NIRS re
ording is very noisy and there is a 
ontinuous os
illation that hidesthe a
tivation. In the un
onstrained 
ase, the OLS estimate tries to �t the modelto these os
illations by in
reasing the derivative terms and suppressing the 
anoni
alHRF. On the other hand, 
onstrained estimate is not allowed to in
rease the derivativeterms without limit and �nds the best �t that satis�es the 
onstraints. The result isthat, it models the variations in the basi
 HRF shape, but does not model the spu-rious os
illations and reveals the a
tivation that OLS was not able to identify. Notethat we are testing for the 
ontrast "in
ongruent - neutral". Although the di�eren
ebetween un
onstrained and 
onstrained 
ases seems to be more evident for 
ongruentblo
ks, there is a subtle di�eren
e for in
ongruent blo
ks. The 
oe�
ients estimatedfor the 
anoni
al HRF, temporal derivative and dispersion derivative by un
onstrainedanalysis for in
ongruent trials are 0.079, 0.436 and 0.163, respe
tively. The same 
o-e�
ients are estimated as 0.228, 0.294 and 0.085 by the 
onstrained analysis. Figure4.6b shows the HRF waveforms generated by these 
oe�
ients. Note that the mainresponse is similar and hen
e there seems to be only a minor di�eren
e between thetwo 
ases in Figure 4.6a. However, the un
onstrained analysis produ
es an implausibleHRF with the 
oe�
ient of the 
HRF being very small, whereas 
onstrained analysis
aptures the same main response with 
HRF and 
annot in
rease derivative terms tomake the waveform implausible. Consequently, the tested 
ontrast be
omes signi�
antfor 
onstrained analysis. Hen
e, 
onstraining the GLM improves the estimates in twoopposite dire
tions: It eliminates the a
tivations due to non-sensible HRF waveformsand it brings forth a
tivations that would otherwise remain hidden.Figure 4.7 shows the HRF waveforms of in
ongruent trials obtained from the
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Figure 4.4 Histograms of the z-statisti
s for the un
onstrained and 
onstrained analysis of NIRSdata.

Figure 4.5 A
tivation matrix (subjects × channels) thresholded at p = 0.05 (z = 1.65), for (a)un
onstrained, (b) 
onstrained analysis; (
) Pla
ement of the LEDs and photodete
tors; 
hannello
ations are depi
ted with numbers.
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Figure 4.6 (a) Fitted waveforms to a noisy NIRS signal under 
onstrained and un
onstrained analyses(N: Neutral, C: Congruent, I: In
ongruent trial blo
ks) (b) Estimated HRF waveforms for in
ongruentstimulus.a
tivated 
hannels by 
onstrained and un
onstrained analysis. It may be seen that mostof the waveforms remain un
hanged but the unrealisti
 HRF shapes are eliminated.
4.4 Dis
ussionThe method presented in this 
hapter is a dire
t extension of the 
lassi
al GLManalysis with the main di�eren
e being the 
onstraints put on the solution spa
e toensure that the resulting HRF is physiologi
ally plausible. The Bayesian methodologyenters into the play to 
onstrain the estimation of the parameter ve
tor. It shouldbe emphasized that the proposed approa
h does not overlook the importan
e of theexploratory methods. Nevertheless, as the name implies, GLM is a model-based ap-proa
h and 
onstraining the solution spa
e is a way to ensure that this model reallyholds. In another seminal work [63℄, a method for 
onstraining the linear 
ombination
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Figure 4.7 HRF waveforms of the in
ongruent trial for the a
tivated 
hannels obtained by (a)un
onstrained and (b) 
onstrained analysis.of basis sets using variational Bayes was introdu
ed. In that work, a set of plausibleHRF waveforms were generated and the basis set that best spanned these waveformswas found. In 
ontrast, rather than developing a new model, an "option" is pro-posed for 
lassi
al GLM analysis. In other words, the basis set was 
onsidered asgiven and then all the plausible HRF waveforms that might be generated with it werefound. Consequently, a "hard-
onstraint" approa
h was adopted in the sense that theprior for the parameter ve
tor is spe
i�ed as a range-limiting uniform distribution. Inthe Bayesian analysis uniform prior distributions or indi
ator fun
tions give rise totrun
ated posterior distributions, and the latter 
an be easily inferred upon by Gibbssampling [83, 84, 85℄. In this 
hapter a simple method was employed to generate sam-ples from a trun
ated distribution in univariate 
ross se
tions [81℄. This allowed us, nomatter how 
ompli
ated the 
onstrained spa
e is, to implement the Gibbs sampler afterspe
ifying the full 
onditional posterior distributions of the parameters [83℄. Anotherimplementation of sampling from a trun
ated distribution is to ignore the 
onstraintsuntil the end and then use only the values that satisfy the 
onstraints [51℄. However,this s
heme be
omes very ine�
ient when the dimensionality of the parameter spa
eis large.The whiteness assumption about the noise ve
tor is 
ertainly a simpli�
ation.In a re
ent study [86℄, the severity of the e�e
ts of non-white noise on the inferen
efrom fMRI signals was reiterated. The 
hara
teristi
s of the noise in fMRI signals is



40well-studied and a number of models have been proposed, the most widely used beingthe autoregressive one [87, 88℄. However, the noise in fNIRS signals has not beeninvestigated in detail, yet. It may be 
onje
tured that the models proposed for fMRImay also be valid for fNIRS. However, within this thesis study we assumed that noiseve
tor is white and leave the investigation of its 
hara
teristi
s as a future work.The 
riteria proposed for 
onstraining the HRF are by no means 
omplete. The
onstrained spa
e was tried to keep as �exible as possible but also to respe
t the main�ndings of the related theoreti
al and experimental studies. In summary, a generalmethod is proposed to use the domain knowledge in the form of parameter 
onstraintsand in
orporate them into the GLM analysis. These 
riteria 
an obviously be adjustedas our knowledge on HRF dynami
s improves.



415. COMPLEXITY ANALYSIS OF fNIRS SIGNALS
The previous 
hapters investigate the problem of dis
riminating signal fromnoise in a hypothesis-based setting. The signi�
an
e of some prede�nite temporal
omponents were determined using 
lassi
al and Bayesian te
hniques. Although thisapproa
h stands 
lose to human per
eption and produ
es well interpretable results, itis not the only way to sear
h for some patterns in a multivariate time-series data.Amongst the others, information theoreti
 
omplexity estimation methods providesummary information in the form of quantitative measures. A 
omplexity de�tionwas put forward for the brain based on its two intervening properties. Neural 
omplex-ity (CN) was introdu
ed to re�e
t the interplay between the fun
tional segregation andintegration within 
omplex dynami
al systems, of whi
h neural system is an interest-ing parti
ular 
ase [89℄. In this model, (CN) is low for systems whose 
omponents are
hara
terized either by total independen
e or total dependen
e, and high for systemswhi
h exhibit both spe
ialization and integration. Spe
ialization implies here lo
alorganization of a neural system to a

omplish one or more sub-task.The idea of positioning 
omplexity between the two extremes was also advo
atedby other resear
hers [90, 91℄. Ex
ess entropy was proposed to measure the amount ofapparent randomness at small blo
ks that is explained away by 
onsidering 
orrelationsover larger and larger blo
ks [92℄. As will be evident in the following paragraphs this isthe same me
hanism used for 
al
ulating CN . An interesting 
ase is the passage from1-dimension to higher dimensions. Sin
e in 1-dimension there is a natural orderingof elements, the 
al
ulations of entropy and 
omplexity are rather straightforward.However, in higher dimensions there is no natural ordering of elements and the waythat these elements are brought together also proje
ts additional spurious stru
tureonto the 
on�guration. This problem was studied using multidimensional templatesmoving over the data and it was shown that ex
ess entropy is 
apable of 
at
hingstru
tures in dimensions more than one [92, 93℄. Although not formulated expli
itly, CNproposes a di�erent way to 
ope with the problems introdu
ed with multidimensional



42data. CN 
onsiders all possible parsings of the data and 
al
ulates the 
omplexity forea
h 
ase and takes the average.
CN was applied to fun
tional magneti
 resonan
e imaging (fMRI) data obtainedduring photi
 simulation of healthy subje
ts. In this 
ase fMRI measurements fromwithin the brain showed greater 
omplexity from the same data but sampled outsidethe brain [94℄. It was also predi
ted that CN would be redu
ed in neurologi
al disorderswhere 
ons
iousness is redu
ed. However, testing this 
onje
ture on ele
troen
ephalog-raphy (EEG) data from generalized seizures and postanoxi
 en
ephalopathy, it wasfound that CN of the patients was a
tually higher than the 
ontrols [95℄. In anotherstudy with EEG signals, neural 
omplexity during a visual oddball task has been shownto 
orrelate with subje
t's 
ognitive state in a way that depends on the stimulus 
ontext[96℄. Neural 
omplexity measure was also applied to magnetoen
ephalography (MEG)data in Alzheimer's disease, and it was found that neural 
omplexity did not de
reasein patients, but that there were di�eren
es in the frequen
y bands between 
ontrols andAlzheimer subje
ts [97℄. When evaluated together, the �ndings of these works suggestthat although neural 
omplexity is 
orrelated with 
ognitive a
tivity of the brain, thisrelationship may not manifest itself always 
onsistently. A topographi
al approa
h toneural 
lustering for understanding, in a more intuitive way, the 
omplexity of a graphhas also been proposed [98℄.This s
heme for studying the neuroanatomi
al organization of the brain haslater been extended with the introdu
tion of "fun
tional 
lustering" [99, 100℄. A fun
-tional 
luster in the brain 
an be de�ned as a set of neural elements that are stronglyintera
tive among themselves, but weakly intera
tive with the rest of the system. Astudy with EEG using photi
 and auditory stimuli showed the existen
e and di�erentpatterns of fun
tional 
lusters between normal 
ontrols and s
hizophreni
s [101℄. Inanother study with EEG during viewing a random dot stereogram, it was observedthat brains of the normal 
ontrols exhibited greater 
omplexity when they per
eived a3D obje
t than when they did not, and su
h per
eptions also gave rise to a well-de�ned
lustering pattern [102℄.



435.1 Cal
ulation of neural 
omplexity, CN

CN was introdu
ed as a tool to solve the long-lasting 
ontroversy between thelo
alizationist and holist views of the brain [89℄. CN is intended to estimate 
omplex-ity in the sense of information shared among parts of a system and to elu
idate thefun
tional segregation and integration within a uni�ed framework. These two aspe
tsof a system are 
hara
terized by deviations from statisti
al independen
e among its
omponents, whi
h are measured by entropy and mutual information. A

ordingly,highly irregular or highly regular systems will show low values of 
omplexity whereassystems with both segregation and integration will have large values of 
omplexity.For a system Θ with n elementary 
omponents, mutual information (MI) be-tween the jth subset 
onsisting of k elements (Θk
j ) and its 
omplement (Θ − Θk

j ) is,
MI

(

Θk
j ; Θ − Θk

j

)

= H
(

Θk
j

)

+ H
(

Θ − Θk
j

)

− H (Θ) , (5.1)where H (.) denotes entropy of the system. Integration is the generalization of the
on
ept of mutual information to multivariate 
ase. Integration of the system Θ,denoted as I (Θ), is de�ned as the di�eren
e between the sum of the entropies of allindividual 
omponents {θi} 
onsidered independently and entropy of the system Θ
onsidered as a whole:
I (Θ) =

n
∑

i=1

H (θi) − H (Θ) . (5.2)If subsets, Θk, 
omposed of k-out of-n 
omponents are 
onsidered, the average integra-tion for these subsets may be denoted as 〈I (

Θk
j

)

〉, where the average is taken over all
n!/n! (n − k)! 
ombinations of k 
omponents. Consequently, the 
omplexity CN (Θ) ofa system Θ is de�ned as the di�eren
e between the values of 〈I (

Θk
j

)

〉 expe
ted from alinear in
rease for in
reasing subset size k and the a
tual dis
rete values observed (seeFigure 5.1):
CN (Θ) =

∑

i=1:n

[

(k − 1)

(n − 1)
I (Θ) − 〈I

(

Θk
j

)

〉

]

. (5.3)
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Figure 5.1 Cal
ulation of neural 
omplexity.Assuming a multivariate normal distribution integration 
an be 
al
ulated by,
I (Θ) = −ln |CORR (Θ)] , (5.4)where CORR (Θ) is the determinant of the 
orrelation matrix.

5.2 Determination of fun
tional 
lustersA fun
tional 
luster is a group of units whi
h are more intera
tive among them-selves than with the rest of the system (see Figure 5.2). It 
an be de�ned as the ratioof the integration of the 
luster to the mutual information between that 
luster andthe rest of the system [99℄:
CI

(

Θk
j

)

=
I

(

Θk
j

)

MI
(

Θk
j ; Θ − Θk

j

) , (5.5)where CI stands for the 
luster index. A 
luster merits to be a fun
tional one only ifits 
luster index is greater than 1. Sin
e CI is an extensive quantity, that is it growsmonotoni
ally with 
luster size, one should normalize it for 
omparing the signi�
an
eof 
lusters of di�erent size. This normalization 
an be a
hieved by generating random
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Figure 5.2 Illustration of fun
tional 
lustering (image obtained from [100℄).samples with the same 
luster size and overall integration but not 
ontaining anyfun
tional 
lusters. Then, a Student's t-like statisti
 may be 
al
ulated by subtra
tingthe mean CI of these random samples from the CI of the original data and dividing bythe standard deviation of the CI of the random samples. 1000 random samples wereused in this study and the signi�
an
e threshold was determined as 0.05. In order tointerpret the pattern of fun
tional 
lustering using the pro
edure des
ribed in [102℄,for ea
h dete
tor the proportion of signi�
ant 
lusters that they were in
luded in was
al
ulated. Hen
e, a value between 0 and 1, showing the "probability" of that dete
torbeing a member of a fun
tional 
luster, was obtained. This pro
edure was applied toea
h subje
t and a mean probability value was derived for ea
h dete
tor position.
5.3 ExperimentsTo evaluate the performan
e of the information theoreti
 
omplexity measuresfor fNIRS, data were 
olle
ted from a group of subje
ts while doing mental arithmeti
(MA) task. MA was used as a stress indu
ing (negative emotion) task in several stud-ies [103℄. Relationship between the asymmetry of the prefrontal 
ortex a
tivity andheart rate (HR) during MA task has been investigated by near infrared spe
tros
opy



46(NIRS) [104℄. NIRS demonstrated in
reases of oxy-Hb and total hemoglobin (total-Hb) asso
iated with de
reases of deoxy-Hb in the bilateral prefrontal 
orti
es. More-over, the prefrontal hemodynami
 a
tivity in the high-HR group was predominantlyright-lateralized whereas in the low-HR group the a
tivity was dominated by the lefthemisphere. The idea of sear
hing for relations between brain a
tivity and HR stemsfrom the fa
t that several 
orti
al areas are re
ognized as the regulators of 
ardia
performan
e [105℄. At the level of 
erebral 
ortex, it has been shown that HR in
reasewas predominantly a

omplished by right-hemispheri
 a
tivity [106℄. This is the 
onse-quen
e of the fa
t that sympatheti
 
ontrol whi
h 
auses the a

eleration of the heartdepends more on right hemispheri
 in�uen
es [107℄. The resear
h on hemisphere asym-metry, on the other hand, has suggested that relatively greater left frontal a
tivity isasso
iated with positive e�e
t, whereas greater right frontal a
tivity is asso
iated withnegative e�e
t [108℄. Although the hypothesis that right hemisphere's in�uen
e onthe sympatheti
 
ontrol is se
ondary to hemisphere di�eren
es in emotional fun
tionshas been obje
ted [107℄, the results of the past resear
h may be summed up as tasks
ausing negative emotions should be related with right frontal 
ortex a
tivation andshould 
ause an in
rease in the HR.The experimental proto
ol was similar to the one used in [104℄. The experimentbegins with 60 se
onds rest followed by 60 se
onds of task period during whi
h subje
tsare asked to subtra
t a 2-digit number from a 4-digit number as qui
kly as possible (selfpa
ed). After a re
overy period of 90 se
onds subje
ts perform a se
ond task periodagain lasting 60 se
onds. The experiment ends with a 60 se
onds re
overy period.NIRS data were obtained from 14 high s
hool students (7 female, ages 15-16years). Written 
onsent from all the subje
ts were obtained from the subje
ts beforethe measurements. This study has been approved by the Ethi
al Review Board ofBogazi
i University.



475.4 ResultsIn order to observe MA indu
ed variations in the neural 
omplexity and 
on-
omitant fun
tional 
lustering in the brain while seeking to 
orrelate these variationswith the heart rate and to be able to 
ompare the results with those of [104℄, thesubje
ts were divided into two groups: Subje
ts who show a big 
hange in HR duringtask periods (high-HR) and subje
ts who show a moderate 
hange during task periods(low-HR).In terms of CN , one 
an predi
t that 
omplexity would in
rease during taskperiods with respe
t to rest periods; but the question that was sought to be answeredwas whether this in
rease would di�er between high-HR and low-HR groups. Anotheraim was to explore the brain asymmetry during MA task using fun
tional 
lustering.Based on published resear
h results, we hypothesized that fun
tional 
lusters would bemore lo
alized in the right prefrontal 
ortex for the high HR group. Whether the samepattern would be obtained for the low-HR group was the se
ond major question to beanswered.NIRS parameters and HR indeed exhibit their expe
ted patterns during the MAtask, that is, oxy-Hb, total-Hb and HR all in
rease and deoxy-Hb de
reases (see Figure5.3. The 
hanges during the se
ond period pf MA task are generally smaller thanthe �rst task period for NIRS parameters for both of the groups whereas HR shows adi�erent behavior for the two groups.
5.4.1 HR ChangesHigh-HR and low-HR groups were analyzed separately. Ea
h group 
onsistedof 7 subje
ts and Figure 5.4 shows the average HR for these groups for the task and
ontrol periods. Resting HR values are 
lose to ea
h other and HR returns to baselinevalues after the task periods. MA task 
auses an in
rease in both groups, but with thelow-HR group it is mu
h lower. High-HR group exhibits 
hanges of 27.81 ± 8.21 and
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Figure 5.3 Typi
al examples of 
hanges in NIRS parameters and heart rate during MA. Shadedareas denote the task period.
19.80±12.58 for the �rst and se
ond task periods, respe
tively. Low HR group exhibits
hanges of 8.91±3.49 and 9.20±8.49 for the �rst and se
ond task periods, respe
tively.The di�eren
e between the amount of in
reases is statisti
ally signi�
ant (p < 0.001)for the �rst task period, but insigni�
ant for the se
ond task period (p = 0.089).It may be noti
ed that the in
rease in HR is lower during the se
ond task periodfor high-HR group whereas it is about the same for the low-HR group (although thedi�eren
es between the task periods are not statisti
ally signi�
ant for both of thegroups). There may be two reasons for this phenomenon: First, sin
e high-HR groupexhibited a great in
rease, 90 se
onds may not be enough for re
overy, and thereforethe se
ond task period may take pla
e on an elevated baseline. Although, the a
tualmeasurements show that the HR values return to their baseline values in the re
overyperiod, this possibility 
annot be totally eliminated. Se
ond, subje
ts may get usedto the experiment and experien
e less stress during the se
ond task period. On theother hand, sin
e low-HR group experien
e a smaller variation, that is the di�eren
eHR in
reases in the two su

eeding periods is less pronoun
ed, 90 se
onds pause maybe enough for re
overy or the habituation e�e
t (if any) is not observable.
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Figure 5.4 Heart rate 
hanges for low and high-HR groups during ea
h period of the experiment.5.4.2 Changes in CN

CN values were 
al
ulated for every subje
t during ea
h segment of the experi-ment. Figure 5.5 shows, for oxy-Hb, that although average values of the low-HR groupare slightly lower than those of the high-HR group, they are not di�erent signi�
antly,in other words, they both in
rease. The results for deoxy-Hb and total-Hb (not shown)are also similar. The most striking observation is that CN in
reases in the �rst taskperiod for both of the groups, but then it gradually de
reases. It does not in
reasefor the se
ond task period and it does not return to baseline values after the tasksduring the re
overy periods. Another observation is that low-HR group exhibited alower value of CN already at the �rst rest period.
5.4.3 Fun
tional ClusteringIn [104℄, it was shown that MA task indu
ed a
tivity was right lateral for high-HR subje
ts and left lateral for low-HR subje
ts. To evaluate the lateralization of thebrain within the information-theoreti
 framework, the fun
tional 
lusters were iden-ti�ed during the task periods. Figures 5.6 and 5.7 pi
ture the fun
tional 
lusters foroxy-Hb and deoxy-Hb, respe
tively. High-HR group showed a right-lateral 
lusteringpattern for oxy-Hb during the �rst task period with small 
lusters in the medial parts;



50

Figure 5.5 Change of neural 
omplexity for oxy-Hb during ea
h period of the experiment.this right-lateralization 
ontinues during the se
ond task period but in a more 
on�nedregion and the 
lusters in the medial regions totally disappear. Low-HR group showedright medial 
lustering in the �rst task period and in the se
ond task period new 
lus-ters emerge at the right lateral prefrontal 
ortex. Consequently, although fun
tional
lusters 
over a smaller area during the se
ond task period for the high-HR group,
lusters be
ome more wide-spread for low-HR group. However, all of the a
tivity isalways in the right hemisphere.For deoxy-HB, 
lustering behavior of the brain during MA is di�erent. High-HRgroup has right medial 
lusters both for the �rst and se
ond task periods. The 
lusterbe
omes wider and stronger for the se
ond task period. One important di�eren
eobserved with the low-HR group was that this group showed a left lateral 
lusteringin the �rst and se
ond task periods in addition to right medial 
lusters. Interestingly,the right medial 
luster is stronger in the �rst task period and be
omes weaker in these
ond task period whi
h is a

ompanied by the widening of the left lateral 
luster.
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Figure 5.6 Fun
tional 
lusters in the prefrontal 
ortex for oxy-Hb a) First task period high-HRgroup, b) Se
ond task period high-HR group, 
) First task period low-HR group, d) Se
ond taskperiod low-HR group.

Figure 5.7 Fun
tional 
lusters in the prefrontal 
ortex for deoxy-Hb a) First task period high-HRgroup, b) Se
ond task period high-HR group, 
) First task period low-HR group, d) Se
ond taskperiod low-HR group.



525.5 Dis
ussionThe results 
on�rm some of our predi
tions, while 
ontradi
t some others. MAtask 
aused a stress for all the subje
ts as eviden
ed by in
reases in HR during taskperiods. The NIRS parameters, in a

ordan
e with the HR values, albeit di�erent,show 
hanges for both of the task periods. However, CN does not follow the samepattern. It in
reases for the �rst task period and then follows a 
ontinuously de
reasingtrend. This is an unexpe
ted result sin
e we were hypothesizing that neural 
omplexityshould always be higher during the task periods 
ompared to rest 
onditions. Thistype of dis
repan
ies was also reported by other resear
hers using the CN [95, 97,102℄. In [97℄, an interesting result was also obtained su
h that the CN of the re
overyperiod at the end of the experiment was 
al
ulated to be higher than during the taskperiod. These resear
hers put forward the possibility that subje
ts' brains might well be
on
entrated on some problems during rest whi
h 
aused a higher 
omplexity than thetask. This point is also related with the mu
h dis
ussed "baseline" a
tivity [109, 110℄.
CN is related with the organization of the brain and is not dependent on the signalmagnitudes. Hen
e, these results assert that although the magnitude of the signalin
reases for the se
ond task period, organization of the brain does not be
ome more
omplex as measured by the CN metri
.Another point is that there were no signi�
ant di�eren
es between low-HR andhigh-HR groups during both rest and task periods. To 
ompare this �nding, we 
al-
ulated for oxy-Hb and deoxy-Hb the average 
on
entration 
hange over all dete
torsduring task periods. There was a signi�
ant di�eren
e (p < 0.05) between the groupsfor oxy-Hb during the �rst task period (0.71 ± 0.55 vs. 0.16 ± 0.37). The di�eren
eduring the se
ond task period was not signi�
ant. Deoxy-Hb 
on
entration 
hangeswere not signi�
antly di�erent between the groups, either.These �ndings on CN may open a path to 
ir
umvent one of the major drawba
ksof NIRS, that is, 
ontribution of the extra
erebral tissues when trying to observe thebrain. HR 
hanges are dire
tly re�e
ted on the 
ir
ulation in the skin. Sin
e thelight of NIRS probes skin, s
alp, 
erebrospinal �uid and 
erebral 
ortex, it is not



53easy to extra
t the signal 
oming solely from the 
ortex. When the analysis is solelybased on 
on
entration 
hanges, there is always the risk of identifying some "skina
tivation" as "
ognitive a
tivation." However, this risk may be lowered if 
on
eptslike neural 
omplexity, whi
h are not dire
tly related to the magnitude of the signalsbut organizational aspe
ts of this bundle of signals, are used.Fun
tional 
lustering analysis shows that there is a right dominan
e of the hemi-spheri
 a
tivity during MA, for both of the high-HR and low-HR groups, but with thesubtle di�eren
e that high-HR group shows a 
lear right lateralization whereas thelow-HR group has strong 
lusters in the medial regions. The 
lusters be
ome weaker inthe se
ond task period for high-HR group, while it be
omes wider and stronger for thelow-HR group. It may be 
onje
tured that high-HR group exhibits an "exaggerated"response during the �rst task period whi
h is lowered during the se
ond task periodwith the e�e
t of getting used to the experiment. However, the low-HR group doesnot show the same habituation e�e
t. There is a 
onsistent right medial 
lusteringfor deoxy-Hb for both of the groups for both of the task periods. It is interesting tonote that there are also left lateral 
lusters for low-HR group. Previous resear
h hasshown that high-HR group has a right lateral a
tivity whereas low-HR group has aleft lateral a
tivity [104℄. Although our methods do not allow us to make a dire
t
omparison with these �ndings, the left lateral 
lusters may have a similar origin. Onthe other hand, dire
t proje
tions from the medial prefrontal 
ortex to brain stem andspinal regions whi
h are asso
iated with sympatheti
 vasomotor fun
tion have alreadybeen des
ribed [105℄. These pathways have been impli
ated as mediating the 
orti
allyevoked 
ir
ulatory responses.In a review study [111℄, it was pointed out that a simple left/right di
hotomywith respe
t to hemispheri
 spe
ialization for the autonomi
 
omponent of the emo-tional response was probably untenable noting that 
orti
al and sub
orti
al asymme-tries in the 
entral and autonomi
 nervous systems pro
essing of emotional informationmight be reversed. Hen
e, hemispheri
 asymmetry should be treated with reservationsand it should be avoided to make 
lear 
ut 
on
lusions.



546. CONCLUSIONS
The previous three 
hapters tried to make a 
ontribution to the debate onthe 
apability of fNIRS for measuring 
ognitive a
tivity. It would be appropriate tonote that fNIRS has some inherent drawba
ks whi
h 
annot be solely 
ir
umventedby signal pro
essing te
hniques. However, e�e
tive algorithmi
 tools may be valuablein extra
ting the information 
arried by the signals and interpreting them. Owingto the literature on neuroimaging, this thesis study put forward statisti
al inferen
emethods as the best 
andidate for this purpose and investigated their feasibility. It wasfound that MFX or Bayesian analysis of hierar
hi
al GLMs may be used for identifying
ognitive a
tivity by fNIRS. This is the main 
on
lusion of this study. This �ndingwas then extended in two related routes. In the �rst route, 
onstraining the GLMfor sensible HRFs was investigated and it was shown that by using simple Bayesiante
hniques it be
ame possible to make sure that the out
ome of the analysis is aplausible HRF. This was important be
ause identifying a
tivations whi
h are unrealisti

learly in
reases false positives of the analysis whi
h is the greatest sour
e of error inneuroimaging. The se
ond route departed from hypothesis-based statisti
al inferen
eand an introdu
tion to the appli
ation of information-theoreti
 measures to fNIRS wasmade. Promising results were obtained showing that in the brain some organizationaldi�eren
es take pla
e during 
ognitive a
tivity whi
h 
an be dete
ted by these measures.



557. PERSPECTIVES
In the Introdu
tion, it was stated that statisti
s is an e�e
tive way to separatenoise from signal as long as the assumptions hold. Hen
e, the assumptions of this studyalso 
onstitute the resear
h areas of future work.First of all, the assumption of whiteness about the noise may be re
onsideredand a study on the temporal and spatial 
hara
teristi
s of the noise may be 
arriedout. The popular autoregressive models may be investigated as the begining step.The appli
ation of GLM is univariate in this study. This means that spatialdependen
ies between the dete
tors are not taken into a

ount. It is known that thisalso 
auses the multiple 
omparison problem. By also exploiting the fa
t that fNIRSgenerally has a small number of dete
tors, a multivariate analysis method may bedeveloped. Consequently, the multiple 
omparison problem for fNIRS signals may alsobe studied.A strong assumption of the thesis is linearity. The linearity assumption is underinvestigation both for fNIRS, [112, 113, 114, 115℄, and fMRI, [116, 117℄. Consequently,a future study may be planned investigating the validity of linearity assumption andnonlinear aspe
ts of fNIRS signal.An HRF model whi
h was o�ered mainly for fMRI is used in this study. Thea

urate estimation of the HRF as measured by fNIRS remains as a further study.An exploratory approa
h may be adopted for this purpose. Bayesian and blind sour
eseparation te
hniques may have an important role in this task.Another assumption whi
h simpli�es the analysis is that the hemodynami
 re-sponse is 
onstant in time. However, there are studies whi
h puts this assumptionunder dis
ussion [118, 119℄. Hen
e, a model with a temporally varying HRF may be



56developed to 
apture this time-dependent 
hara
teristi
s of hemodynami
 response.These suggestions for future work 
learly imply a more sophisti
ated model.It may be 
onje
tured that Bayesian methodology may manifest its potential betterwith these types of models. A

ordingly, it may be suggested to 
on
entrate moreon Bayesian methods and develop tools that will better 
apture the 
hara
teristi
s offNIRS data.The suggestions till now are related with statisti
al inferen
e framework. Theusage of information-theoreti
 measures for fNIRS signals in this study should be 
on-sidered as preliminary. Therefore this introdu
tion may be enri
hed with additionalmethods. The Renyi entropy whi
h was proven to be useful for EEG signals, [120℄ andwhi
h was partly investigated in the fNIRS framework, [121℄, may provide an initialstarting point.This thesis study limited itself with the observation of basi
 
ognitive tasks.This was mainly be
ause a parti
ular goal of the study was to validate that fNIRShad the 
apability to measure 
ognitive a
tivity and it would be better to 
on
entrateon the basi
 fun
tions. However, future work should de�nitely re
onsider this pointand try to �nd the best tasks that fNIRS is suitable for observing. BCI and emotionpro
essing may open interesting study areas in this sense, sin
e these are the tasks thatthe subje
ts should feel the least disturban
e.Improvement of the 
apabilities of fNIRS may 
ome with the 
olle
tive e�ort ofdi�erent dis
iplines. This thesis study stood on the side of signal pro
essing and triedto develop some basi
 routines for fNIRS signal analysis. De�nitely, a more sophis-ti
ated integration between hardware design, algorithm development and theoreti
aland experimental physi
s will bring greater a
hievements.



57APPENDIX A. STATISTICAL INFERENCE TECHNIQUES
The simplest stru
ture of a hierar
hi
al GLM is a two-level model whi
h is usedfor determining average group a
tivation. In a two-level hierar
hi
al GLM (see FigureA.1, the �rst level models within-subje
t e�e
ts:

Yk = Xkbk + Zkhk + ek (A.1)where Yk is the N -sample fNIRS data for subje
t k, Xk is the N × p design matrixfor the parameters of interest, bk is the p ve
tor of unknown parameters, Zk is the
N × m design matrix for the nuisan
e parameters, hk is the q ve
tor of unknownnuisan
e parameters, and ek is the N -long error ve
tor. Parameters of interest 
onsistof 
ognitive 
omponents and nuisan
e parameters 
onsist of some 
ovariates, metaboli
os
illations et
. We are assuming that the nuisan
e parameters are subje
t-spe
i�
whereas 
ognitive parameter ve
tors of individual subje
ts are representative samplesfrom some population. Thus we pro
eed with,

bk = Xgkbg + egk (A.2)where Xgk is the p × q design matrix linking the subje
t's parameters to the groupparameters, bg is the q ve
tor of group parameters, and egk is the p term error ve
tor.In lieu of expression Eq. A.2, the group-level model 
an be written as,
b = Xgbg + eg (A.3)where b is the Kp dimensional 
on
atenated parameter ve
tor, Xg is the Kp×q group-level design matrix: Xg =

[

Xg1 Xg2 · · · XgK

]T , where, bg is the q ve
tor of groupparameters and eg is the Kp error ve
tor. Note that, we 
arried all the parameters fromthe subje
t level to the group level, i.e. no 
ontrasts were applied at the subje
t level.Thus, group-level model is inherently multivariate sin
e it brings together the subje
t-level estimates (a ve
tor) to arrive at a group de
ision. De�ne the matrix B su
h thatits kth row is 
onstituted of the kth subje
t's parameters: B =
[

bT
1 bT

2 · · · bT
K

]T .



58If we introdu
e the vec(.) operator, whi
h sta
ks the 
olumns of its matrix argumentfrom left to right into a single ve
tor, one 
an simply write b = vec(BT ). Then,
B = Xm

g Bg + Eg (A.4)where Xm
g is the K × r group-level design matrix, Bg is the r × p matrix of groupparameters, and Eg is the K × p error ve
tor. Note that, bg = vec(Bg), eg = vec(Eg),and r × p = q. Generally the group-level design matri
es are simple. For example foraverage group a
tivation, Xg = 1K ⊗Ip, and Xm

g = 1K , where 1K stands for a K ve
torof 1 's and ⊗ is the Krone
ker produ
t. In this 
ase, p = q and r = 1. The probabilitydistribution fun
tion (pdf) of the subje
t-level error ve
tor is assumed to be Gaussianwith no temporal 
orrelation, that is, cov(ek) = σ2
k × IN . Sin
e the group-level modelis multivariate, the de�nition of the 
ovarian
e for the error matrix should take intoa

ount the two sour
es of variability: within and between subje
ts. Consider thefollowing de�nition of 
ovarian
e for the error ve
tor in Eq. A.3:

cov(eg) = Φ ⊗ Σwhere Φ is the between-subje
ts 
ovarian
e matrix, and Σ is the within-subje
t 
ovari-an
e matrix. Re
all that we are now dealing with parameter estimates of the subje
ts.Hen
e, "within" and "between" refer to the parameters, unlike the �rst level in whi
h"within" refers to the subje
ts' time series. Sin
e we are assuming that the subje
ts aredrawn independently and identi
ally from a population, Φ is a K ×K identity matrix,that is, Φ = IK , whereas the p× p within-subje
t 
ovarian
e matrix Σ is some positivede�nite matrix. We have no prior information about Σ and hen
e we will assume thatit has a general stru
ture. De�ne Σ = Cg, where Cg is positive de�nite. Consequently,
cov(eg) = IK ⊗ Cg = CG (A.5)Having de�ned the variables we may pro
eed with the steps spe
i�
 to 
lassi
al andBayesian inferen
e.
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Figure A.1 Two-level GLM for average group a
tivation.A.1 Classi
al Inferen
eFor the ease of expositions, begin by 
on
atenating the design matri
es andparameter ve
tors and de�ne, Xc
k =

[

Xk
... Zk

] , and bc
k =

[

bT
k

... hT
k

]T Ordinaryleast squares estimate of bc
k is given by,

b̂c
k =

(

Xc
k
T Xc

k

)

−1
Xc

k
T Yk (A.6)This estimate has varian
e,

cov(b̂c
k) = σ2

k

(

Xc
k
T Xc

k

)

−1
, (A.7)where the noise varian
e, σ2

k, is estimated from the residuals. In the summary-statisti
sapproa
h to multilevel GLM, the se
ond level of the model takes as input the estimatesof the �rst level but not the true (and unobservable) parameters [122℄. Hen
e, these
ond level (Eq. A.3) model is modi�ed as:
b̂ = Xgbg + eg +

(

b̂ − b
)

= Xgbg + êg. (A.8)Then, the varian
e of the error ve
tor, êg, is,
Vĝ = diag

((

σ2
k(X

c
k
T Xc

k)
−1

))

+ σ2
gCg, (A.9)



60The �rst 
omponent of the varian
e spe
i�es the within subje
t varian
e-
ovarian
e ofthe parameter ve
tor (�xed e�e
ts) and the se
ond 
omponent indi
ates the betweensubje
ts varian
e (random e�e
ts). Sin
e, generally the desired inferen
e is on a parti
-ular 
ontrast of parameters, cbk, b̂ be
omes b̂cont =
[

cb̂1 . . . cb̂K

]T

.. Subje
t-levelerror varian
es be
ome then,
cov

(

cb̂k

)

= σ2
kc

(

Xc
k
T Xc

k

)

−1
cT (A.10)and Cg has a simple form, typi
ally IK . Summary-statisti
s MFX pro
edure a

ountsfor both of these sour
es of varian
e whereas FFX and RFX ignore the se
ond and �rst
omponents of the varian
e, respe
tively.

A.2 Bayesian Inferen
eTo derive the equations for Bayesian inferen
e we will begin from Eq. A.1, Eq.A.2, Eq. A.3 and Figure A.1. The 
onditional posterior pdf's 
an be written using theBayesian rule (posterior α prior × likelihood):
p (bk|M, r.v.) α p (bk|M, bg, Cg) p

(

Yk|M, bk, hk, σ
2
k

)

, (A.11)
p (hk|M, r.v.) α p (hk|M) p

(

Yk|M, bk, hk, σ
2
k

)

, (A.12)
p

(

σ2
k|M, r.v.

)

α p
(

σ2
k|M

)

p
(

Yk|M, bk, hk, σ
2
k

)

, (A.13)
p (bg|M, r.v.) α p (bg|M)

∏

k=1:K

p (bk|M, bg, Cg) , (A.14)
p (Cg|M, r.v.) α p (Cg|M)

∏

k=1:K

p (bk|M, bg, Cg) . (A.15)where r.v stands for remaining variables. We need to spe
ify prior distributions for hk,
σ2

k, bg, and Cg to be able to derive 
onditional posterior pdf's. Sin
e prior information



61about the distributions of these variables is typi
ally not available, we de
ided to usenoninformative priors. Note that we do not have to spe
ify priors for subje
t-levelparameter estimates, bk, sin
e the group parameters in the model hierar
hy a
t as thepriors of subje
ts' parameters.The 
onditional posterior of subje
t level parameters depend on both subje
ts'data and group level parameters. If we write Eq. A.11 expli
itly,
p (bk|M, r.v.) α |Cg|

−1/2 exp
{

− (bk − Xgkbg)
T C−1

g (bk − Xgkbg)
} (A.16)

×σ
−N/2
k exp

{

− (Yk − Xkbk − Zkhk)
T (Yk − Xkbk − Zkhk) /σ2

k

}

.The 
onditional posterior of subje
t level parameters are the produ
t of two Gaussiandistributions, hen
e they are also Gaussian. A
tually, subje
ts' parameters are esti-mated from data and instantaneous group parameter estimates inversely weighted withtheir 
orresponding varian
e estimates.The noninformative prior for nuisan
e parameters are the uniform distribution,and 
onsequently their 
onditional posterior is just the likelihood term:
p (hk|M, r.v.) α σ

−N/2
k exp

{

− (Yk − Xkbk − Zkhk)
T (Yk − Xkbk − Zkhk) /σ2

k

}

. (A.17)The noninformative Je�reys prior for subje
t level error varian
e is, p (σ2
k|M) α σ−2

k .Consequently, we 
an write Eq. A.13 as,
p

(

σ2
k|M, r.v.

)

α σ
−(N+2)/2
k exp

{

− (Yk − Xkbk − Zkhk)
T (Yk − Xkbk − Zkhk) /σ2

k

}

.(A.18)Hen
e, 
onditional posteriors for subje
t level varian
es are inverse Gamma.Sin
e the noninformative prior for group level parameters is the uniform distri-bution, the 
onditional posterior of them may be written as,
p (bg|M, r.v.) α |CG|

−1/2 exp
{

− (b − Xgbg)
T C−1

G (b − Xgbg)
}

, (A.19)



62whi
h is a multivariate Gaussian distribution.
Cg models the dependen
ies among the elements of the subje
t level parameterestimates. The noninformative prior for group level error varian
e is, p (Cg|M) α |Cg|

−1.The 
onditional posterior may be written as,
p (Cg|M) α |Cg|

−(K+2)/2 exp
{

trC−1
g

(

B − Xm
g Bg

)T (

B − Xm
g Bg

)

}

. (A.20)Finally, group 
ovarian
e matrix has 
onditionally an inverse-Wishart distribution [51℄.The 
onsequen
e of assuming Gaussian distributions for noise ve
tors and usingnoninformative priors is that 
onditional posterior pdf's have analyti
al forms whosemodes 
an be easily 
al
ulated. Thus, we may pro
eed with an algorithm like iterated
onditional modes (ICM) [50℄. Beginning from some initial values we may 
y
le throughthe modes until 
onvergen
e. The algorithm is summarized below:
b̂k =

(

C−1
g + σ−2

k XT
k Xk

)

−1 (

C−1
g + σ−2

k XT
k (Yk − Zkhk)

)

, (A.21)
ĥk =

(

ZT
k Zk

)

−1
ZT

k (Yk − Xkbk) , (A.22)
σ̂2

k =
(Yk − Xkbk − Zkhk)

T (Yk − Xkbk − Zkhk)

N + 2
, (A.23)

b̂g =
(

XT
g C−1

G Xg

)

−1
XT

g C−1
G b, (A.24)

Ĉg =

(

B − Xm
g Bg

)T (

B − Xm
g Bg

)

K + 2
. (A.25)
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