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vABSTRACTSTATISTICAL ANALYSIS OF COGNITIVE SIGNALSMEASURED BY fNIRSFurther standardization in signal proessing tools is needed in the area of fun-tional near infrared spetrosopy (fNIRS) before it is reognized as a reliable neu-roimaging modality. This thesis study attempts to present a omprehensive analysisof the feasibility of applying statistial inferene methods to fNIRS signals. Usinghierarhial linear models, both lassial and Bayesian tehniques are pursued andperformanes of di�erent methods are presented on a omparative basis. The resultsobtained from a set of ognitive signals show that fNIRS an identify ognitive ativityboth at the subjet and group levels. The analysis suggests that mixed or Bayesianhierarhial models are espeially onvenient for fNIRS signals. A related problemthat is disussed in this thesis study is to relate the outome of the statistial analysiswith the underlying physiology. This problem is studied by putting onstraints overthe parameters to be estimated. Carrying the problem to a Bayesian framework, theonstraints were turned into prior distributions and Gibbs sampling was used to inferfrom the posterior distributions. The results exhibit that in addition to preventingunlikely results to appear at the end of the analysis, using parameter onstraints isalso more e�ient in revealing ativations whih are obsured by heavy noise. The lastpart of this thesis study departs from hypothesis-based statistial inferene tehniquesand introdues the use of information-theoreti measures for fNIRS by partiularlyonentrating on neural omplexity and funtional lustering. It is demonstrated thatthis type of measures may apture organizational aspets of the brain whih are hardto reveal with lassial statistial inferene tehniques.Keywords: Funtional near infrared spetrosopy, Statistial inferene, Bayesianstatistis, General linear model, Constrained estimation, Complexity.



viÖZETiYKAS �LE ÖLÇÜLMÜ� B�L��SEL S�NYALLER�N�STAT�ST�KSEL ANAL�Z��³levsel yak�n k�rm�z�alt� spektroskopi'nin (iYKAS) güvenilir bir nörogörün-tüleme yöntemi olarak kabul edilebilmesi için sinyal i³leme teknikleri aç�s�ndan birstandartla³t�rmaya ihtiyaç vard�r. Bu tez çal�³mas� istatistiksel ç�karsama yöntem-lerinin iYKAS sinyallerine uygulanmas�n�n kapsaml� bir olurluk inelemesini yapmay�amaçlam�³t�r. S�radüzensel do§rusal modeller kullan�larak, hem klasik hem de Bayesçiçerçevede de§i³ik yöntemlerin ba³ar�m� kar³�la³t�rmal� olarak sunulmu³tur. Bili³sel birdeney s�ras�nda ölçülen sinyallerden elde edilen sonuçlar iYKAS'�n hem denek hemde grup seviyesinde bili³sel aktiviteyi belirleyebildi§ini göstermi³tir. Yap�lan anali-zler kar�³�k ya da Bayesçi s�radüzensel modellerin iYKAS sinyalleri için daha uygunoldu§unu ortaya koymu³tur. Bununla ilintili olarak bu tez çal�³mas�nda tart�³�landi§er bir problem istatistiksel analizin sonuçlar�n�n altta yatan �zyolojiyle uyumu-nun garanti edilmesidir. Bu problem kestirileek parametreler üzerinde k�s�tlar koyul-mas�yla ele al�nm�³t�r. Ard�ndan problemi Bayesçi bir çerçeveye ta³�yarak k�s�tlarönsel da§�l�mlara dönü³türülmü³ ve Gibbs örneklemesi kullan�larak sonsal da§�l�mlarüzerinden ç�karsama yap�lm�³t�r. Sonuçlar, parametre k�s�tlar� koyman�n, analizin sonu-unda olas� olmayan sonuçlar ç�kmas�n� engellemenin yan� s�ra a§�r gürültüyle örtülmü³aktivitelerin de ortaya ç�kar�lmas� için daha etkin oldu§unu ortaya koymu³tur. Tezinson bölümü hipotez temelli istatistiksel ç�karsama tekniklerinden uzakla³makta ve bilgi-kuramsal ölçütlerin iYKAS için kullan�m�na giri³ yapmaktad�r. Bunu yaparken özelliklenöral karma³�kl�k ve i³levsel topakland�rma üzerinde yo§unla³�lm�³ ve bu tip ölçütlerinbeynin örgütle³imine ili³kin klasik istatistiksel ç�karsama yöntemleriyle fark edilmesigüç yönleri yakalayabildi§i gösterilmi³tir.Anahtar Sözükler: Yak�n k�rm�z�alt� spektroskopi, �statistiksel ç�karsama, Bayesçiistatistik, S�radüzensel do§rusal model, K�s�tl� kestirim, Karma³�kl�k.
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11. INTRODUCTION
Near infrared spetrosopy (NIRS) opened up a new path in the quest for un-derstanding the funtioning of the brain. After its introdution as a tool for measuringaverage tissue oxygen saturation and total hemoglobin onentration [1℄, inreasingnumber of researhers have started using NIRS for observing ognitive ativity. Bear-ing the name funtional near infrared spetrosopy (fNIRS), the method was usedfor studying the basi funtions of the prefrontal ortex [2, 3, 4, 5℄, motor ortex[6, 7, 8, 9℄ and visual ortex [10, 11, 12, 13℄. Besides these studies on healthy subjets,fNIRS has been employed for exploring neural underpinnings of psyhiatri disorders[14, 15, 16, 17℄. fNIRS was even used for studying ognitive mehanisms involved inemotion proessing [18, 19, 20℄. With the growing interest in building brain-omputerinterfaes (BCI) in the reent years, the feasibility of employing fNIRS in this area hasalso been put under investigation [21, 22, 23, 24℄.The drive of the researhers towards using fNIRS in these broad areas of re-searh was mainly motivated by several potential advantages of fNIRS over other neu-roimaging modalities. fNIRS shares muh in ommon with the blood oxygenation leveldependent (BOLD) signal of funtional magneti resonane imaging (fMRI) and mea-sures the onentration hanges of oxygenated and deoxygenated hemoglobin (oxy-Hband deoxy-Hb) resulting from the hemodynami response. Moreover, both fNIRS andfMRI are indiret measures of brain ativity. Besides these similarities, fNIRS o�ers theresearhers the possibility of making measurements in various linial and natural en-vironments. Unlike fMRI, whih neessitates bulky and heavy equipments whih limitthe movements of the subjets, fNIRS devies are relatively user-friendly and portable.This aspet is espeially important in the ability to observe ognitive ativities withminimum disturbane to the subjet. It is even possible to build wireless fNIRS devies[25, 26℄. The advantages of fNIRS may further be extended to the absene of radiation,the low ost of the proedure and the ability to measure both oxy-Hb and deoxy-Hbsimultaneously. However, as with the rest of the modalities, fNIRS also omes with its



2inherent limitations. The major drawbaks of fNIRS may be listed as its low spatial res-olution ( 1cm2), shallow depth of penetration and onsequently inevitable unertaintyabout the probed region.The inreasing use of fNIRS as a neuroimaging modality brings with itself theneed for reliable and e�ient proedures to analyze and interpret the observed data.Although there are e�orts in this line, [27℄, there is yet no standard method to proessfNIRS data. The goal of this thesis study may be stated in broadest terms as makinga ontribution to the e�orts for building a framework for analyzing fNIRS data.Neuroimaging generally works with statistial models whih make expliit as-sumptions about data. As long as these assumptions hold, statistis is an e�etiveway to separate the noise from the signal. On the other hand, limitations of statistialanalysis should also be noted [28℄. This thesis is devoted to the investigation of thefeasibility of applying statistial models to fNIRS signals. Main body of the thesis isrelated with one of the most ommon types of statistial models, that is general linearmodel (GLM). Due to its simple and valid assumptions, GLM is the most preferredmethod for making statistial inferene from fMRI data [29℄. In addition to its ompu-tational simpliity, GLM also lends itself easily to hierarhial strutures whih may beemployed for making group level inferenes. Consequently, one of the main goals of thisthesis is to employ hierarhial GLMs for making subjet and group level inferenesfrom fNIRS data.Classial inferene from neuroimaging data proeeds with null hypothesis signif-iane test proedure (NHSTP). The researher is not allowed to ask questions diretlyregarding the probability distribution of the variable of interest. Rather, the null hy-pothesis is tested and the deision whether to rejet it or not is given based on thesigni�ane. Bayesian methodology, on the other hand, provides the researhers withneessary tools for exploring the posterior probability distributions of the variables. Inthis thesis, lassial and Bayesian methods for analyzing GLM are investigated in aomparative basis.



3Although the general emphasis of this thesis is on model-based analysis, theseparation of signal from noise problem is also disussed within an information-theoretiframework. For this purpose, omplexity measures are applied with the assumptionthat ognitive ativity auses a hange in the interation type among the brain regions.Conjeturing that this hange manifests itself in terms of a hange in "omplexity",a number of approahes are disussed and evaluated for fNIRS modality. The maindi�erene of these methods from the aforementioned GLM based tehniques is thatthere is no a priori temporal or spatial model. Hene, a wide variety of "strutures"an be revealed using omplexity measures. However, the ost is that the strit ontrolover the physiologial plausibility is lost.The plausibility of the analysis is generally an overlooked neessity in neuroimag-ing. With the inreasing elastiity of the models, there appears to be a risk of arrivingat results whih are not physiologially probable. This study approahes the afore-mentioned problem for GLM-based analysis and proposes a simple way for makingstatistial inferene under parameter ontraints whih guarantees the plausibility ofthe estimates.In summary, this thesis study aims at making three onrete ontributions: i)In depth analysis of multilevel statistial inferene tehniques for fNIRS, ii) A methodfor making GLM analysis under parameter onstraints, iii) Appliation of information-theoreti measures to fNIRS. These three ontributions will be explained in three sep-arate hapters whih are preeded with a bakground information on near infraredspetrosopy and followed by general onlusions and perspetives for future researh.



42. NEAR INFRARED SPECTROSCOPY
Photons travelling through a tissue undergo mainly two types of interationswith the tissue: Absorption and sattering. Both of these events ause attenuation inthe energy of the light passing through the tissue and this attenuation forms the basisfor optial apparatus used for probing the tissue. Imaging devies use sender-reeiverpairs for sending the light at some point and reeiving it at some other point after itis transmitted or re�eted through the tissue. The onentration of a light absorbingmoleule in tissues may be determined by the Beer-Lambert Law:

A = ǫ.c.d (2.1)where A = log(Io/IL) is the extintion of light whih is proportional to the inident(Io) versus measured light (IL), ǫ is the extintion oe�ient, c is the substane on-entration, and d is the distane from soure to detetor. Beer-Lambert Law assumesin�nitesimal substane onentrations and therefore negligible light sattering. How-ever, in real ases, substane onentrations are higher and Eq. 2.1 should be modi�edto take into aount extra loss of light and longer pathlength of the photons due tosattering. Therefore, in the modi�ed Beer-Lambert Law [30℄, a multipliative term(B) and an additive term (G) whih aount for longer pathlength and loss of light,respetively, are added:
A = ǫ.c.d.B + G (2.2)Generally the onern is the di�erene between the two situations and assuming on-stant light sattering, G term anels due to subtration:
∆A = ǫ.∆c.d.B (2.3)If the pathlength fator, B, is known then it is possible to alulate absoluteonentrations. The ignorane about the pathlength and the atual path of the pho-
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Figure 2.1 Absorption harateristis of oxy-Hb, deoxy-Hb and water [26℄.tons are the major drawbaks of the optial imaging. There are di�erent methods fordetermining the pathlength: One is to measure the time of �ight of a very short (in theorder of pio seonds) light pulse traveling through the tissues [31℄. Another approahis to measure the phase shift of a light soure whih is intensity-modulated at a ertainfrequey [32℄. If it is not possible to determine the pathlength then the measurementsobtained by optial imaging are relative. There are studies whih experimentally deter-mine optial pathlengths for di�erent subjet groups, [32℄, and these values are widelyused by the researhers.Biologial tissues are relatively transparent to light in the near infrared rangebetween 700 and 1000 nm, largely beause water whih is the greatest omponent inthe tissues, relatively absorbs little at these wavelengths (see Figure 2.1). NIRS useslight soures with wavelengths in the near infrared region to observe onentrationhanges of oxy-Hb and deoxy-Hb within the probed tissues. In addition to hangesat the intraellular level, whih are hard to observe with NIRS, loal brain ativityauses an inrease in erebral blood volume (CBV) and erebral blood �ow (CBF). Atthe apillary level CBF inrease is aomplished by higher blood per apillary whihis assoiated with higher blood veloity. During this proess, termed as neurovasularoupling [33℄, the inrease in CBF and oxygen delivery exeeds the loal onsumptionof oxygen and erebral blood oxygenation rises in the ativation area. Beause oxy-Hb
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Figure 2.2 Banana-shaped photon path [26℄.and deoxy-Hb have harateristi optial properties, it is possible to measure their on-entration hanges during neurovasular oupling using modi�ed Beer-Lambert Law.fNIRS devies introdue photons to the salp through light emitting diodes orlasers. Sine large amount of the photons follow a banana shaped path, it is possibleto detet them as they leave the head by photodetetors, as illustrated in Figure 2.2.It may be notied that photons spend a onsiderable amount of time in non-erebraltissues, suh as skin, skull and erebrospinal �uid. Consequently, the total absorptionmeasured by a photodetetor has signi�ant ontributions from these tissues. Forontinuous-wave systems whih does not have a depth-resolution ability, wavelengthsof the devie and experimental paradigms should be seleted and designed so as tominimize this non-erebral ontribution.A ontinuous-wave fNIRS devie (NIROXCOPE 301) built in Biophotonis Lab-oratory of Bo§aziçi University [34, 35, 36℄ was used in this study. The devie is apableof transmitting near-infrared light at two wavelengths (730 nm and 850 nm). Calula-tion of onentration hanges of oxy-Hb and deoxy-Hb in blood is based on modi�edBeer-Lambert Law whih is summarized by Eq. 2.2 and Eq. 2.3. Employing four lightemitting diodes (LEDs) and 10 detetors, the devie an sample 16 di�erent volumesin the brain simultaneously (see Figure 2.3 for the details of the probe).
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Figure 2.3 NIROXCOPE 301 probe (on the right) is attahed to the forehead. Soure-detetorgeometry ensures probing of un-overlapped 16 volumes when the light soures are time multiplexed.(Head image was obtained from MATLAB Central File Exhange).The retangular probe geometry was hosen for obtaining non-overlapping areas.Soure-to-detetor distanes was spei�ed as 2.5 m, sine this amount of separationhas been shown to reliably probe the ortial ativity [37, 38, 39, 40℄. LEDs anddetetors were plaed in a �exible printed iruit board that was speially designed to�t the urvature of the forehead. Sampling frequeny of the devie was 1.4 Hz.



83. MULTILEVEL STATISTICAL INFERENCE FROM fNIRSSIGNALS
Parametri statistial analysis (PSA) of neuroimaging data tries to answer thequestion of whether the measured data signi�antly arry omponents representativeof ognitive ativity or not. In the hypothesis-based approah, this investigation be-gins with tailoring the omponents that will be searhed for. In fMRI and fNIRS thisomponent is hemodynami response funtion (HRF). Based on the past researh andexperimental studies, an HRF model is used to generate hypothetial ognitive ompo-nents. Then the task is to test if this hypothetial omponent is aptured by the realdata. Statistis enters into play at this point. Beginning with some statistial assump-tions about data and noise, PSA produes estimates and their assoiated probabilitiesfor the parameters whih are to be inferred on.Neuroimaging typially works with groups of subjets. The goal may be toreveal the average ativity of these subjets or to �nd the ativity di�erenes betweentwo groups of subjets. Consequently, the hypothesis should be answered at the highestlevel of the hierarhy. This highest level often represents the e�et analysis over someor all of several measurements, detetors, sessions and subjets in a population. GLMhas been the most ommonly used tool to make inferenes from fMRI data [29℄. GLMmay also be extended to a hierarhial mode to arrive at multilevel statistial inferenes[41, 42℄. In reent years, hierarhial GLM has arisen as an e�etive tool for proeedingfrom the data at the subjet level to higher levels.Apart from a few inherent di�erenes between them, both fMRI and fNIRS aimto detet and loalize brain hemodynami ativity based upon neurovasular ouplingmodel. Thus, it would be logial to extend the GLM methodology to fNIRS signals.This was �rst attempted using a visual stimulus and the onlusion was that the GLMtype of analysis was feasible espeially for deoxy-Hb [27℄. In another study, it was shownthat model-based analysis with GLM is apable of deteting event-related human brain



9ativity reorded with fNIRS in the oipital ortex [43℄. A shift method has also beenproposed to reover small signals within the GLM framework, by exploiting the highertemporal resolution of fNIRS with respet to fMRI [44℄. In summary, these studiesprovided us with promising but not onlusive results.
3.1 Statistial Analysis of the Hierarhial GLMIn this thesis study, the multilevel statistial inferene problem for fNIRS signalshas also been addressed using a hierarhial GLM to link the measurement spae tothe upper-level parameters. The expositions presented in this hapter are based on[45℄. A omparative approah was adopted and three lassial methods of multilevelinferene, namely, �xed e�ets (FFX), random e�ets (RFX), mixed e�ets (MFX)analyses, and two Bayesian inferene methods were implemented simultaneously. Oneof the Bayesian methods also goes by the name of pseudo-mixed e�ets (ΨFX) [46℄,sine it employs the basi GLM at the subjet level and uses the Bayesian methodologyto merge the subjet parameters at the group level. The seond method, denoted asBayesian posterior estimation (BPE), is a fully Bayesian one.
3.1.1 Classial InfereneClassial analysis of multilevel funtional neuroimaging data generally proeedsin a bottom-up fashion. One the statistis that summarize the data at one level arealulated, they are arried to the upper level. The main di�erene among the threelassial statistial inferene tehniques of FFX, RFX and MFX lies in the determi-nation of the variane estimates [47, 48℄. Details of the lassial inferene is given inAppendix A. Brie�y, FFX and RFX ignore the between-subjet and within-subjetvarianes, respetively. Note that, sine it ignores the between-subjet variane, theinferene of FFX is limited to the partiular set of subjets. After alulating thesubjet parameter and variane estimates using GLM spei�ally designed for eahsubjet, FFX takes the average variane estimate as the group variane. On the other



10hand, RFX alulates the group variane over the estimated parameters of the sub-jets. MFX tries to integrate both within and between-subjet varianes by arryingthe subjet variane estimates to the group level.In this study, MFX was arried on as desribed in [47℄ and implemented in [49℄.FFX, RFX and MFX are all summary statistial approahes, that is, beginning fromthe bottom level, eah level is analyzed separately and only the parameters of interestare arried to the upper level. The main bene�t of working with a summary statistisapproah is its omputational ease, whih beomes very important for high dimensionaldata like fMRI.The statistis proposed by [46℄, alled pseudo-mixed e�ets (ΨFX), is a mix-ture of lassial and Bayesian proedures. The parameter and variane estimates arealulated at the subjet level using the GLM. Then to arrive at the group deision,the posterior distribution of one subjet is taken as the prior distribution of anothersubjet. The end result is an average of subjet parameter estimates inversely weightedby their variane estimates. In essene, this is a �xed-e�ets approah, sine it doesnot take into aount between-subjet varianes. Note that, this is also a summarystatistis method.In onlusion, parameters estimated at subjet level are the same for all ofthese four methods, namely FFX, RFX and MFX and ΨFX. After speifying subjet-spei� GLMs, one alulates subjets' parameters and varianes and ontinues towardsaverage group ativation alulation. Sine, we are generally not interested in all ofthe parameters but rather in a partiular linear ombination of them, ontrast vetorsare spei�ed at the subjet level and applied to the parameter and variane estimates.
3.1.2 Bayesian InfereneBayesian analysis of hierarhial GLM has been applied extensively to fMRIsignals [41, 42, 48℄. Implementation of Bayesian methodology for fNIRS signals will



11also follow similar proedures. Noninformative priors were spei�ed as in [48℄, sine noprior information is available and generally the number of subjets is so small to makethe in�uene of the prior signi�ant. The details of the Bayesian analysis are presentedin Appendix B. Sine the modes of the onditional posterior probability distributionfuntions an easily be alulated, an algorithm like iterated onditional modes (ICM),[50℄, an be used. Beginning from some initial values we an yle through the modesuntil onvergene. ICM was preferred to some other Monte Carlo shemes like Gibbssampling beause of its simpliity and speed, whih are important riteria espeiallyfor pratial purposes. For multimodal distributions ICM has the risk of getting stukat a loal minimum or osillating, but for unimodal distributions (as it is in this ase)ICM gives quik solutions. In atual implementation, the onvergene of the algorithmto the same output was heked by starting the hain at di�erent initial points.The ontrast vetor was applied only after all of the estimation proess has endedand that group parameters were available. As in the lassial analysis ase, this may beahieved by speifying a ontrast vetor. The marginal posterior of ontrasted groupparameters obeys a univariate nonentral Student's t-distribution [51℄. We an makeinferenes using this posterior, and ask whether our ontrasted parameter estimatesare higher than a partiular value.The main di�erene between the Bayesian analysis presented here (BPE) andthe methods mentioned in the previous setion is that the former is not summarystatistis. Bayesian analysis, in this implementation, inorporates the group variablesinto subjet parameter estimation proess. Hene, all subjets should be analyzedsimultaneously, and if a new subjet is inluded in the group, the analysis should berepeated for every subjet.
3.2 ExperimentsThe partiular experimental protool that we used in this study is a variantof Stroop task, whih is known to be a good ativator for prefrontal ortex [52, 53℄.



12Subjets were asked to perform olor-word mathing Stroop task whose trials are theTurkish versions of Zysset et al. [54℄. Subjets were presented with two words onewritten above the other. The top one was written in ink-olor whereas the bottomone was in white (over a blak bakground). Subjets were asked to judge whether theword written below orretly denotes the olor of the upper word or not. If olor andword mathed, then subjets were to press the left mouse button with their fore�nger,and if not, the right mouse button with their middle �nger. Subjets were informed toperform the task as quikly and orretly as possible. The words stayed on the sreenuntil the response was given with a maximum time of 3 se. The sreen was blankbetween the trials.The experiment onsisted of neutral, ongruent and inongruent trials. In theneutral ondition upper word onsisted of four X's (XXXX) in ink-olor. In the ongru-ent ondition ink-olor of the upper word and the word itself were the same, whereasin the inongruent ondition they were di�erent.The trials were presented in a semi-bloked manner. Eah blok onsisted of6 trials. Inter-stimulus interval within the blok was 4.5 seonds and the bloks wereplaed 20 seonds apart in time. The trial type within a blok was homogeneous (butthe arrangements of false and orret trials were altering) There were 10 bloks ofeah type. Experiments were performed in a silent, lightly dimmed room. Words werepresented via an LCD sreen that was 0.5 m away from the subjets. The task protoolis approved by the Ethis Review Board of Bo§aziçi University.12 healthy (7 female, 5 male) subjets from the university ommunity (right-handed, mean age 26.17 ± 4.30, range 20 − 31) partiipated in the study. Subjetshad no reported neurologial, medial and psyhiatri disorders. None were takingmediations at the time of measurement. All the subjets had normal or orreted-to-normal vision and normal olor vision. Written informed onsent was obtained fromall subjets before the measurement.



133.3 ResultsStimulus onset vetors for eah type of stimulus (neutral, ongruent and inon-gruent) were formed and onvolved with the anonial HRF [55℄. These three vetorsonstituted the ognitive part of the design matrix. The fNIRS data were digitallylow-pass �ltered with a ut-o� frequeny of 330 mHz. To be able to ope with variouslow-frequeny trends, disrete osine transform basis funtions [56℄, were added to thedesign matrix with a minimum period of 120 seonds. Inorret and omitted trialswere modeled separately and they, together with the trend terms, form the nuisanepart of the design matrix.3.3.1 Behavioral ResultsReation times (RT) were alulated only from the orretly answered trials.Figure 3.1 shows that the �rst and seond subjets responded slower to ongruent trialsin omparison to inongruent trials. Subjet 6 responded slightly slower to neutraltrials than ongruent trials. For the rest of the subjets the ordering of RTs is neutral-ongruent-inongruent. The average RTs to neutral, ongruent and inongruent trialsare 1029.3± 277.1, 1183.9± 370.5 and 1308.8± 367.1 ms, respetively. Comparing theRTs, two-tailed paired-t test revealed signi�ant di�erenes among all 3 trial types:Inongruent vs. Neutral t(11) = 7.042 p = 0.000; Inongruent vs. Congruent t(11) =

2.882 p = 0.015; Congruent vs. Neutral t(11) = 4.351 p = 0.001.There are two ommon e�ets in Stroop task: First, the interferene e�et refersto the observation that subjets have more di�ulty in answering inongruent trialswith respet to neutral trials. Seond, failitation e�et omes from the observationthat subjets respond quiker to ongruent trials ompared to neutral trials [57℄. Al-though the interferene e�et was evident in RTs, we ould not observe a failitatione�et. Using the same kind of stimuli Zysset et al., [54℄, has not observed failitatione�et either. It has been pointed out that failitation was not a neessary onomitantof interferene and it played a muh lesser role than interferene [52℄. It was asserted
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Figure 3.1 Reation times of the subjets.that the missing failitation was due to trying to speed up an already rapid response.Additionally, the slower response to ongruent trials may be related with the observa-tion that the subjets try to judge whether the trial is ongruent or inongruent, whihputs an extra ognitive load with respet to neutral trials.Error rates were generally small, and most of the subjets did not make anymistakes for neutral and ongruent trials. Mean error rates (in perentage) were 0.56±

1.92, 0.56 ± 1.30 and 4.31 ± 5.97, respetively for neutral, ongruent and inongruenttrials. No statistial test was arried out in terms of error rates sine they were generallyso small; however, it an be said that interferene e�et also manifests itself in errorrates.3.3.2 fNIRS ResultsfNIRS devie provides us with a set of time series reorded over 16 hannelsover the salp. For the loations of the probed regions refer to Figure 2.3. Note thatthe ordering of the hannels is from left to right, that is, "`1"' is on the left and "`16"'is on the right. Oxy-Hb and deoxy-Hb data were analyzed separately.



153.3.2.1 Oxy-Hb results. The subjet level and group level ativation patternsfor interferene e�et (inongruent - neutral) are shown in Figure 3.2. These patternsand the others presented in the following �gures result from the thresholded z -soresat 0.05 signi�ane level (that is, zthresh = 1.65 and p = 0.05, adjusted for multipleomparisons by Bonferroni orretion). The posterior probabilities given by the ΨFXand BPE are also onverted to z statistis. Reall that subjet-level ativations areommon for FFX, RFX, MFX and ΨFX, and estimated by ordinary least squares (OLS)in a single step, whereas BPE estimates iteratively both subjet and group parameters.The �rst observation is that there is ativation widespread over hannels formost of the subjets. Furthermore, all subjet ativations resemble eah other forboth OLS and BPE approahes. This is usual and points to the fat that grouplevel variane is higher than subjet level variane, whih auses the e�et of groupparameters being weighted down in the estimation of subjet level parameters. Despitethe apparent similarity between OLS and BPE methods, the onsistent ativation inhannel 4 revealed by BPE is worth notiing. BPE �nds that hannel 4 is ativatedfor all of the subjets, while this is not the ase for single-level GLM. The seondimportant observation is that the perentage of ativated subjets per hannel indiatesthat ativation is dominantly left lateral (Figure 3.2, middle row). When group levelinferene is inspeted (Figure 3.2, bottom row), this left laterality is espeially evidentwith RFX, MFX and BPE. Channels 1-4 are found to be ative, with hannel 4 givingthe highest z -value and onsisteny. Thirdly, it an be seen that the wide spreadativation at the subjet level is arried over to the group level with FFX and ΨFX.This is to be expeted beause these two methods do not onsider the between-subjetvariane. The onsequene is that FFX and ΨFX have higher sensitivity but at therisk of high false positive rates.It was also investigated whether there was a signi�ant ativation di�erenebetween inongruent and ongruent trials. The behavioral results have shown thatthere was no failitation e�et, that is, subjets had more di�ulty with ongruenttrials with respet to neutral trials. This also manifested itself in fNIRS �ndings andthe ativations both at the subjet and group levels are less pronouned this time (there
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Figure 3.2 Ativation patterns for oxy-Hb for "inongruent - neutral" ontrast. Top: Subjet levelativations deteted by OLS (left) and BPE (right). Middle: Ativated subjet ount (%) for OLS(left) and BPE (right). Bottom: Group level ativations for FFX, RFX, MFX and ΨFX (left) andBPE (right).is no ativated hannel for subjets 1 and 6, see Figure 3.3, top row). FFX and ΨFX,again, found higher number of ativated hannels ompared to the other three methods(Figure 3.3, bottom row). The ativations of RFX, MFX and BPE are on�ned to theleft lateral hannels.It might be suggested that the medial ativations deteted by FFX and ΨFXmay be due to anterior ingulate ortex (ACC), whih has been identi�ed as a regioninvolved in Stroop-like inhibition paradigms [58℄. However, it has been shown that ACCis not spei�ally involved in interferene proesses, but rather in motor preparationproesses [54℄. Hene, ACC should not be substantially ativated when omparingneutral and inongruent onditions, as the motor response preparation proess, onethe deision is taken, is the same for both onditions in olor-word mathing Strooptask [54℄. Additionally, onsidering the penetration depth of near infrared light [59℄,it is doubtful if fNIRS would be able to apture the ativations in ACC with soure-detetor separation of 2.5 m. Hene, it may be onluded that the medial ativations
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Figure 3.3 Ativation patterns for oxy-Hb for "inongruent - ongruent" ontrast. Top: Subjetlevel ativations deteted by OLS (left) and BPE (right). Middle: Ativated subjet ount (%) forOLS (left) and BPE (right). Bottom: Group level ativations for FFX, RFX, MFX and ΨFX (left)and BPE (right).deteted by FFX and ΨFX are false ativations.Sine subjets had more di�ulty with answering ongruent trials with respetto neutral trials, the group level ativation for the di�erene between these two trialtypes was also investigated. Although there was some ativation at the subjet level,no ativation ould be found at the group level.It is possible to present the �tted ognitive waveforms to the measured signal asin Figure 3.4. The large slow trend over the signal may be seen in this �gure. For thease of this subjet, the ontrast of 'inongruent vs. neutral' trials is signi�ant while"inongruent vs. ongruent" ontrast is not.Up to this point, the main onern was the ativation detetion problem. Inother words, given a anonial HRF signal model it is heked whether there is ativa-tion or not in the measurements. The omplementary problem would be the estimation
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Figure 3.4 An oxy-Hb time series with �tted ognitive waveforms and trend omponent.of this HRF signal. To this e�et a seond GLM was applied where the HRF was mod-eled as suessive time bins, that is, as a �nite impulse response �lter. In this setting ofthe problem, the oe�ients of the �lter should give the HRF waveform. Note that thisapproah does not put any onstraints over the HRF, and e�etively, it averages theevent-related responses for eah subjet. Figure 3.5 demonstrates the HRF waveformsfor eah type of stimulus averaged over subjets. For most of the hannels the end resultis a plausible HRF waveform. We want to examine espeially the waveforms aquiredfrom hannels 1-4, sine BPE identi�ed hannels 1-4 as ativated for "inongruent vs.neutral" ontrast and hannels 1 and 3 for "inongruent vs. ongruent" ontrast. Theresulting waveforms from these hannels are also onsistent with this result. A aveatis that average waveforms are by no means a diret indiation of group ativation, butthe onsisteny between the detetion and estimation proedures is worth notiing.3.3.2.2 Deoxy-Hb results. The analysis of deoxy-Hb signals did not disover asstrong ativation patterns as those of oxy-Hb. Figure 3.6 shows the ativations for"inongruent vs. neutral" ontrast. In fat, there are ativations at the subjet level
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Figure 3.5 Estimated hemodynami response funtion waveforms averaged over subjets (runningaverages over 3 seonds), with hypothetial HRF at the bottom-right.(Figure 3.6, top row), and these are arried to the group level by FFX and ΨFX;however, RFX, MFX and BPE do not identify any of the hannels as signi�antlyativated (Figure 3.6, bottom row). This is a onsequene of the fat that deoxy-Hb exhibits a greater variability among the subjets. To demonstrate this variability,onsider Figure 3.7. This �gure presents the subjets' parameter estimates for the
3rd hannel of deoxy-Hb for "inongruent vs. neutral" ontrast and again the 3rdhannel of oxy-Hb for 'inongruent vs. ongruent' ontrast. These ombinations werehosen beause deoxy-Hb shows ativation for 7 subjets (out of 12) but with no groupativation for RFX, MFX and BPE, whereas oxy-Hb shows ativation for 6 subjetsalong with group ativation by the aforementioned methods. The reason for this liesin the greater variane (mainly due to the 1st and 3rd subjets) exhibited by deoxy-Hb.The resulting ativations of deoxy-Hb for "inongruent vs. ongruent" ontrast arepresented in Figure 3.8.
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Figure 3.6 Ativation patterns for deoxy-Hb for "inongruent - neutral" ontrast. Top: Subjetlevel ativations deteted by OLS (left) and BPE (right). Middle: Ativated subjet ount (%) forOLS (left) and BPE (right). Bottom: Group level ativations for FFX, RFX, MFX and ΨFX (left)and BPE (right).

Figure 3.7 An example set of ontrasted subjet level parameters (see text for detailed explanation).
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Figure 3.8 Ativation patterns for deoxy-Hb for "inongruent - ongruent" ontrast. Top: Subjetlevel ativations deteted by OLS (left) and BPE (right). Middle: Ativated subjet ount (%) forOLS (left) and BPE (right). Bottom: Group level ativations for FFX, RFX, MFX and FX (left) andBPE (right).3.3.2.3 Relation between hemodynami and behavioral responses. The re-lation between hemodynami and behavioral responses were investigated by �nding thehannel-by-hannel orrelation oe�ients between the interferene e�ets measured bythe di�erene in onentration hanges and reation times of inongruent and neutraltrials. Signi�ant orrelation was found for oxy-Hb in the 4th hannel (r = −0.57

p = 0.05). The 4th hannel was the most onsistently ativated hannel aross sub-jets. Satter plot of behavioral vs. hemodynami response for this hannel is shownin Figure 3.9. Note that, the orrelation is negative, i.e., hemodynami response issmaller for higher behavioral interferene e�et. This �nding supports the hypothe-sis that "higher Stroop-spei� brain ativation leads to more suessful inhibition ofompeting responses and hene, a smaller behavioral interferene e�et" [60℄. Not verysurprisingly, no signi�ant orrelation was found between reation times and hemody-nami responses for the "inongruent vs. ongruent" ontrast of oxy-Hb and for bothof the ontrasts of deoxy-Hb.
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Figure 3.9 Correlation between the hemodynami and behavioral responses for oxy-Hb in the 4thhannel during interferene ("inongruent - neutral") ondition.3.4 DisussionThe results orroborate the onjeture that fNIRS data lend itself to multilevelstatistial inferene. Consistent ativation patterns were observed during Stroop inter-ferene, partiularly for oxy-Hb. It may be reommended that appliation of multilevelstatistial inferene to fNIRS data should always inlude random e�ets, and MFX orBayesian methods may be preferred for this purpose. The problem with �xed e�etsmodels is that it ignores between subjet variability and sine within-subjet varianeis muh smaller it beomes possible for the hannels to have illusory ativation. Tooverome this risk, extensions to FFX, like onjuntion analysis, may be pursued [61℄.Bayesian methodology may have a number of advantages over lassial proe-dures in analyzing multilevel GLMs. First of all, it an ope better with the lassialproblem of within-subjet and between-subjet varianes in a more prinipled frame-work [41℄. Bayesian analysis also in this work enabled us to inlude the informationobtained from the rest of the group in the analysis of the partiular subjet.Moreover, Bayesian statistis yield posterior distributions for the parameters



23of interest. This enrihes our statistial test ditionary, whih means that we are nolonger limited with just NHSTP. Hene we are able to test whether the e�et is greaterthan a meaningful size in relation to the underlying physiology [41℄. This is importantbeause the statistial signi�ane obtained by NHSTP in lassial statistis does nottruly re�et the magnitude of the e�et [62℄. For example, a very small but onsistente�et might be found to be statistially signi�ant. Although, a small but very reliableativation may be interesting, neuroimaging is generally interested in ativations ofnontrivial magnitude, and this speaks for the usefulness of Bayesian inferene. The as-soiated probability, p, of the NHSTP statisti is a onditional probability, p(data|H0),
H0 being the null hypothesis. If p(data|H0) is small, this does not neessarily implythat p(H0|data) is small or that p(H1|data) is big, H1 being the alternative hypothesis.Thus, NHSTP does not allow us to ask suh questions related with the posterior distri-bution as "what is the probability that the e�et size is bigger than 1?" or "what is theprobability that it is 0?" or "does the e�et explain 10% of the total energy ontent ofthe signal?" This sort of questions beome important for fNIRS monitoring of ogni-tive ativity beause it is known that, given enough data (in terms of number of timepoints, subjets et.) the probability of false ativations inreases. Thus, it is desiredto be able to di�erentiate trivial departures from the null hypothesis from signi�antnontrivial e�ets, and this demands for the probability distribution of the ativationgiven the data. In this respet, lassial statistis falls short of proving or disprovingativation patterns in a "long" and temporally orrelated reord of an fNIRS signal.An interesting point is that using noninformative priors arries the Bayesianinferene loser to lassial inferene. This was also pointed out in [63℄ in a di�erentontext. The rationale for the use of noninformative priors is that ognitive fNIRSstudies are at their early stage of development and it would be better not to ommitourselves prematurely; furthermore generally the number of subjets is small so as tomake the in�uene of the prior a lot signi�ant. One of the goals in this study wasto ompare lassial and Bayesian inferene methods for fNIRS data. Sine lassialproedures work with the null hypothesis and ask whether the e�et size is greaterthan zero or not, the same threshold was also assigned for the Bayesian analysis foromparison.



24The proposed Bayesian method neessitates the simultaneous analysis of thedata of all the subjets'. Thus, if a new subjet is added to the group, it is neessaryto redo the whole analysis. Obviously this poses a problem for fMRI sine in thisase there are thousands of voxels, and hene for all of them the analysis must restartfrom srath. Although fNIRS also requires redoing all the alulations, the numberof detetors is two orders of magnitude less, in fat on the order of tens. Moreover, wemake use of a fast iterative sheme, ICM, whih substantially redues the runtime ofthe algorithm. During the analysis no ontrasts were applied in the intermediate levelsand all the parameter estimates were passed up to the highest level. This enables us�rst, to take into aount the orrelations among the subjet level parameter estimatesand seond, to make the simultaneous testing of a number of hypotheses.The multiple omparison problem arising from the simultaneous testing of anumber of hannels was tried to be irumvented by Bonferroni orretion. It is knownthat Bonferroni orretion is too onservative, espeially when there is spatial orre-lation between the measurements [64℄. A promising method for NIRS signals was putforward using the false disovery rate proedure [65℄. However, as also noted in thatstudy, multiple omparison orretion of multihannel NIRS studies is still an openproblem.One partiular issue that has not been disussed so far is the e�et of di�erentialpath length fator (DPF). Although in this study it was kept �xed aross subjets (DPF= 5.93), it is known that DPF may show variations among subjets [32℄. However, itis not possible to estimate the exat DPF for every subjet. It was proposed to useDPF-independent measures in the analysis of fNIRS signals and GLM was put forwardas a andidate for this task [27℄. The reason was that the statistis produed by GLMwas independent of the DPF. Relevant to this study is that when we try to ombinethe parameter estimations from di�erent subjets this DPF dependeny will learlya�et the results. Despite this fat, it is possible to redue this e�et substantially byMFX, ΨFX and BPE type of algorithms. In these algorithms the e�et of subjetson the group results is inversely proportional to their estimation varianes. Hene,this proedure also ats as a normalizing term, and eliminates, in part, the e�ets of



25DPF variations. RFX, on the other hand, diretly alulates group variane estimatefrom the variane of subjet parameter estimates. Then, the estimated variane willde�nitely inlude both real onentration hange varianes and also the variationsaused by DPF di�erenes.The Stroop �ndings are generally onsistent with the literature, though they arenot as strong and onlusive as those of [66℄, where they showed ativation bilaterally forboth oxy-Hb and deoxy-Hb. However, in this study ativation was found only for oxy-Hb in the left lateral prefrontal ortex and there was no ativation (at the group level)for deoxy-Hb. These results oinide more with those of [67℄, where they also found onlyleft lateral ativation for oxy-Hb and showed that the ativations for deoxy-Hb weremuh weaker. In a omprehensive review, [52℄, it was onluded that the left hemispheregenerally showed more interferene than the right. These �ndings also point to animportant aspet of fNIRS data analysis: The onsistenies and ontroversies betweenthe results obtained by oxy-Hb and deoxy-Hb. In [27℄, using a visual stimulus, it wasonluded that deoxy-Hb is more amenable to GLM. However, in another study, [68℄,it was onluded that ortial ativation ould lead to di�erent patterns in deoxy-Hband was proposed oxy-Hb as the best indiator of regional erebral blood �ow hanges.There were also other �ndings supporting this hypothesis [67℄. On a reproduibilitystudy of event related fNIRS, it was stated that deoxy-Hb was assoiated with lowert-values at single subjets' level as well as at the seond level if ompared to oxy-Hb[69℄. In another study on false memory on the prefrontal ortex [4℄, deoxy-Hb did notshow any signi�ant ativations and the authors stated that this might be attributableto the instability of deoxy-Hb onentration whih was largely determined by the wash-out e�et of the regional erebral blood �ow inrease [70℄. In a simultaneous fMRI-fNIRS study [71℄, it was found that oxy-Hb was a more robust hemodynami signaland orrelated more with fMRI-BOLD response. This was attributed to the lowersignal-to-noise ratio of deoxy-Hb signal. However, in another study [72℄, using anexperimental design that inreased the signal-to-noise ratio of NIRS signals, it wasfound that deoxy-Hb was more orrelated with fMRI-BOLD signal. When evaluatedtogether, these �ndings point to the fat that although oxy-Hb is more dominantlylabeled as the arrier of ognitive information, the potential of NIRS for measuring



26ognitive ativity and the interpretation of deoxy-Hb and oxy-Hb still need furtherresearh. The results of this study indiate that oxy-Hb is more sensitive to regionalblood �ow hanges in the prefrontal ortex aused by ognitive stimulus. Consistent leftprefrontal ativation was found for oxy-Hb during Stroop interferene. The ativationpatterns at the subjet level are more strutured and the hemodynami results show abetter orrelation with the behavioral results for oxy-Hb than deoxy-Hb.



274. GLM ANALYSIS UNDER PARAMETER CONSTRAINTS
One of the most important aspets of GLM analysis is the seletion of appropri-ate waveforms for modeling hemodynami response funtion. Canonial HRF (HRF),whih is omposed of the di�erene of two gamma funtions, is ommonly used for thispurpose. Sine mismathes between the hypothetial and atual waveforms an sub-stantially derease the detetion performane, some �exibility is allowed in the basimodel in order to better apture the variations in the hemodynami response. Em-ploying temporal and dispersion derivatives (TD and DD) along with the HRF is oneof the most ommon ways to attain a more robust analysis [55℄. Aordingly, the HRFis modeled as a linear ombination of three waveforms. However, even if a suessfulwaveform modeling is apparently obtained, there is still a onern about the reliabilityof the analysis and it should be heked whether it represents a plausible HRF or not.Obviously if there are no restritions on the linear ombination weights, then unrealis-ti HRFs may be obtained, and onsequently ativations may be deteted when thereare none.Constraining the basis set for modeling the HRF has been studied using vari-ational Bayes where basis waveforms were formed via singular value deompositionof a set of plausible HRF sample waveforms [63℄. Then using regression analysis, amultivariate normal distribution was �tted for the basis weights and this informationwas used as prior distribution in the Bayesian analysis. This was a "soft-onstraint"approah in the sense that multivariate normal ould not apture all details of the truedistribution. Despite this limitation, this work has shown that onstraining the basisset allowed for superior separation of ative voxels from non-ative voxels in fMRI data.The method of onstraining the linear ombinations of the basis set has also been takenup in the anonial orrelation analysis framework [73℄. The limitation of this work,however, is that only positivity of the linear ombination oe�ients is required.



28In this hapter, whih is based on [74℄, the problem of doing onstrained param-eter estimation and inferene with GLM is studied in a Bayesian framework. Using theanonial basis set, onsisting of the anonial waveform, its temporal derivative anddispersion derivative, an admissible region is de�ned in the three-dimensional weightspae, and Gibbs sampling is used to arrive at posterior distributions. More expli-itly, uniform prior distributions are spei�ed for the parameters. The support of theseuniform distributions represents our a priori knowledge, and thus we are sure that theparameter estimates belong to the feasible set. Sine, a new basis set is not introduedand the anonial basis set is used, the method is a diret extension of the ommonlyused GLM for neuroimaging.The researh for the temporal dynamis of HRF is generally based on fMRI.There are numerous studies where funtional magneti resonane imaging and near in-frared spetrosopy data are simultaneously aquired and the estimated hemodynamiresponses are ompared [72, 75℄. Although there is a ommonly aepted anonialHRF waveform, the instantiations of observed e�ets an di�er in terms of rise time,undershoot, delay, duration et. The onstrained HRF estimation may be expeted tobe more e�etive for NIRS analysis, on the one hand, by allowing ontrolled variationsaround a anonial HRF that was tailored for fMRI, and on the other hand by leadingto a better assessment of the ognitive ativity via fNIRS. In summary, onstrainingthe GLM may enable us to be �exible enough to ope with variations in the HRFwaveform, but also stringent enough not to allow unrealisti HRF shapes.
4.1 Constraining the Basis SetThe anonial basis set is reprodued in Figure 4.1a, where the peak values of thewaveforms are saled to unity. Sample HRF waveforms were generated by varying theoe�ients of the two derivative terms in linear ombinations. The resulting waveformswere tested for their plausibility and a tally of the oe�ients that satis�ed these riteriawas kept. An HRF is shown in Figure 4.1b with the parameters that haraterize itsmain features. The setting of parameter ranges was based on information gleaned
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Figure 4.1 a) Canonial HRF with its temporal and dispersion derivatives (maximum value saledto unity), b) Parameters that haraterize the HRF: t1: Time to peak, t2: Time to undershoot frompeak instant, m1: Magnitude of initial dip, m2: Magnitude of main response, m3: Magnitude ofundershoot.from the literature on temporal dynamis of the HRF [76, 77, 78℄ and the work ononstrained basis sets [63℄. An alternative might be using a physiologial model, likethe balloon model [70℄, and obtain sample HRFs from this model. The riteria used indetermining the plausible HRF waveforms an be listed as,
• A main response with a peri-stimulus time of 3 − 8 seonds: 3 ≤ t1 ≤ 8,
• More than one positive peak,
• No more than two negative dips,
• An initial dip with magnitude not greater than quarter of the magnitude of theonset: 0 ≤ m1 ≤ m2/4,
• An undershoot after 2 − 8 seonds after the main peak: 2 ≤ t2 ≤ 8,
• Magnitude of the undershoot not greater than half of the magnitude of the onset:

0 ≤ m3 ≤ m2/2.Figure 4.2a shows the feasible region of oe�ients of the temporal derivative(TD) and that of the dispersion derivative (DD). The nonretangular shape of the



30feasible region indiates that TD and DD oe�ients are statistially dependent. Figure4.2b shows the plausible HRF waveforms obtained by sampling the permissible TD-DDregion.Sine the ativation is de�ned as an inrease of oxy-Hb and a derease of deoxy-Hb, the oe�ient of the HRF is expeted to be positive. The NIRS devie measuresthe onentration value in molar units, and the oe�ient of the HRF is onstrainedto be between 0 and 5 miro molar. This range is broader than typial ognitiveativation magnitudes in the prefrontal ortex found in several NIRS studies [79, 80℄.For deoxy-Hb, the time-series an be inverted in sign and the same onstraints an beapplied. The onstraints on these 3 parameters then de�ne a volume in 3-d spae.4.1.1 Bayesian Analysis of the Constrained GLMGLM is formulated in the same manner as the subjet-level GLM of the previoushapter, and its details are given in Appendix A. As a reiteration, Y = Xb + Zh + e,desribes the basi GLM, where Y is the N -sample vetor of NIRS data (oxy-Hb ordeoxy-Hb), X is the N × p design matrix, b is the p vetor of parameters for e�etsof interest, Z is the N × q matrix modeling the nuisane e�ets, h is the q vetor ofparameters for nuisane e�ets, and e is the N -long noise vetor. Y , X and Z areknown and b, h and e are unknown. In the Bayesian analysis of the GLM, priorsare spei�ed for the unknown variables and posterior distributions are derived. Theonstraints for b, e�etively the priors of b, have already been de�ned in the previoussetion. To omplete the Bayesian analysis we have to speify priors for h and e.Sine we have no prior information about nuisane e�ets, their prior will be set touniform distribution: p(h) α uniform. The noise is assumed to be unorrelated, zero-mean, Gaussian distributed with variane σ2, for whih the Je�reys (noninformative)prior is used: p(σ2) α σ−2. Using Bayes rule, full onditional posterior distributionsfor the variables are found so that Gibbs sampling an be used to generate samplevalues from the posterior. At eah sampling instane, the feasible intervals for theelements of the b vetor are imposed. Note that the posterior of the b vetor is just
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Figure 4.2 a) Feasible values for the oe�ients of the derivative terms. Straight arrows indiatetwo instanes of admissible waveforms and dashed arrow indiates a non-admissible waveform, b) Theset of plausible HRF waveforms (maximum values saled to unity).



32the trunated version of the likelihood, sine p(b/Y ) = p(Y/b)p(b), and p(b) ats likea range delimiter. We an use the tehnique introdued in [81℄ to draw samples fromthis trunated distribution: If Fi is the likelihood funtion for bi, and U is a uniform
(0, 1) variate, then b̂i = F−1

i [Fi(a) + U(Fi(b) − Fi(a))] is a random variate from thetrunated likelihood (posterior), where the feasible interval for bi is [ab]. The exeutionof the Gibbs sampling an be summarized as below:1. From i = 1 : p, sample bi from p(bi|b−i, h, σ2), where by onvention b
−i denotesall the b parameters exept the ith one,2. Sample h from p(h|b, σ2),3. Sample σ2, from p(σ2|b, h).Sine we are assuming additive Gaussian noise, the likelihood funtion also has a Gaus-sian form. Hene, the distribution in the �rst step is a trunated univariate Gaussian;the distribution in the seond step is a multivariate Gaussian and in the last step it isinverse Gamma distributed. After obtaining the posterior distribution of the parame-ters given the observations, we an use these posteriors to make inferenes about theparameters and the related events. In the exeution of Gibbs sampling, the hain wasrun for 10.000 iterations and the �rst 2.000 iterations were disarded as burn-in. Then,the marginal posterior distribution an be obtained by smoothing the sample-basedhistogram with a Gaussian kernel.

4.2 ExperimentsNIRS data were reorded from 15 volunteers (8 male, age 26.5 ± 4.7 years) re-ruited from the university ommunity. Subjets had no reported neurologial, medialand psyhiatri disorders. None were taking mediations at the time of measurement.Written informed onsent was obtained from all subjets before the measurement. Data



33were obtained from the prefrontal ortex of the subjets during olor-word mathingStroop task [54℄, whose details are given in the previous hapter.
4.3 ResultsTo put into evidene the role of onstrained GLM vis-à-vis unonstrained GLMtwo sets of experiments were ran. These two approahes are denoted, respetively ina more suggestive way, as the Bayesian approah and the non-Bayesian or frequenti-est approah. In the �rst experiment, the algorithm was applied on null hypothesisdata, where we expet the Bayesian approah to yield low signi�ane values while thefrequentiest approah strives to model events even where there are none. Conversely,the Bayesian approah is expeted to yield higher reliability sores on the alternativehypothesis data, that is, when there is an event. In lassial analysis, the e�et sizesfor di�erent ontrasts are tested against zero. Sine in the onstrained analysis theoe�ient of the HRF has already been restrited to be positive, a di�erene ontrastshould be used. On the other hand, sine Bayesian analysis gives us posterior distri-butions, it is possible to de�ne a threshold other than zero, and make inferene evenin one stimulus ase. In these experiments with arti�ial and real data, experimentalparadigms with more than one stimulus were used. Inferene for ativation was basedon the main omponent (HRF) while the two derivative terms (TD and DD) modeledthe variations in the basi HRF, that is, the assoiated t statisti was produed forHRF to test the ativation. An alternative might be to investigate the total powerexplained by the linear ombination of the basis funtions with an F statisti. How-ever, it it known that F statisti is always less sensitive and t statisti based on theHRF is reommended, espeially when the shift in the HRF is known to be less than1 seond [82℄.
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Figure 4.3 a) Histograms of the z-statistis for the unonstrained and onstrained analysis fromarti�ial null data, b) Log probability - Log probability plots for the tail masses of theoretial andempirial (onstrained and unonstrained) ases.4.3.1 Arti�ial null data10.000 arti�ial null data were generated using Gaussian noise and a number oftrend terms simulating the bakground ativity. A thought-experiment was designedwith two stimuli in an event related setting with inter stimulus interval of 20 seonds.Forming a design matrix using HRF, its derivatives and disrete osine transform fun-tions for modeling the linear trends (nuisane part), the parameters were estimated us-ing both unonstrained OLS and onstrained Bayesian analysis. Finally, the z -statistisof the ontrast between the HRF parameter values of the two stimuli were alulated.The z -statistis (or pseudo-z-statistis [63℄) were obtained from the marginal posteriorfor the onstrained ase Figure 4.3a shows the histogram of z -statistis obtained for thearti�ial null data for the two analysis ases. It an be observed that the z -histogram ismore onentrated around 0 for the onstrained ase. The reason is that onstrainingthe basis set penalizes the unlikely parameter values and lowers their signi�ane. Thelog-log probability plot in Figure 4.3b shows the probabilities under the tail for a givenz -statisti for both frequentiest (unonstrained) and Bayesian (onstrained) analysis.It may be observed that the empirial frequentiest probabilities are in onformanewith the theoretial probability values, that is, the z -sores one would obtain in purenoise, whereas the Bayesian analysis produes muh smaller probabilities. This meansthat onstraining the basis set redues false ativations.



354.3.2 fNIRS dataReation times for the neutral, ongruent and inongruent trials were 1028.9 ±

193.2, 1160.6 ± 265.6 and 1260.9 ± 242.1 ms, while the error rates were 0.22 ± 0.86,
1.33± 2.11 and 4.00± 4.58, respetively. Sine error rates were small, the interferenee�et (inongruent - neutral) was alulated only in terms of reation times. Therewas a lear interferene e�et with p < 0.0001. The di�erene between the reationtimes of inongruent and ongruent trials and ongruent and neutral trials were alsosigni�ant (p < 0.01).Sine interferene e�et is known to be well pronouned in Stroop task [52℄,whih has also manifested itself in the behavioral analysis, it was deided to onentrateon this ontrast for hemodynami response results. Although NIRS an measure bothoxygenated and deoxygenated hemoglobin, only oxygenated hemoglobin was used, sinethe results of the previous hapter showed that oxygenated hemoglobin was a moresensitive indiator of ognitive ativity in the prefrontal ortex during Stroop task.In the GLM to analyze NIRS data, the design matrix (X) onsisted of the HRFand its derivatives onvolved with the stimulus onset vetors for eah type of trial. Thedesign matrix modeling the nuisane e�ets (Z) onsisted of disrete osine transformfuntions to ope with various low-frequeny trends. Inorret and omitted trials weremodeled separately and inluded in the design matrix as nuisane e�ets. In otherwords, inferene was based on only orret trials. Eah hannel of eah subjet wasanalyzed individually.Figure 4.4 shows the histogram of z -statistis for the unonstrained and on-strained ases for the overall data, 15 (subjects) × 16 (channels), for the interferenee�et. It may be observed that, as it was the ase with the arti�ial null data, his-togram is denser for low z values (-2 to 2) under onstrained estimation. The reasonis that onstrained linear ombinations prelude unlikely parameter ourrenes. Atthe same time, the onstrained histogram has higher absolute z -values at both ends,sine in the ase of strong ativations and deativations that satisfy the onstraints, our



36method yields lower variane estimates, whih in turn auses the signi�ane sores toinrease. Figure 4.5 shows the ativation matrix for OLS and Bayesian analysis. Onean observe that the onstrained analysis results in some deleted ativation ells whilenew ativations are added. For instane, while frequentiest inferene does not result inany ativation for the 11th subjet, onstrained analysis identi�es three ative hannelsat the left lateral ortex. Figure 4.6 explains the reason for this phenomenon. Thereording shown is from the 4th hannel of the 11th subjet. In Figure 4.6a the �ttedwaveforms with the unonstrained and onstrained approahes are superimposed. Theatual NIRS reording is very noisy and there is a ontinuous osillation that hidesthe ativation. In the unonstrained ase, the OLS estimate tries to �t the modelto these osillations by inreasing the derivative terms and suppressing the anonialHRF. On the other hand, onstrained estimate is not allowed to inrease the derivativeterms without limit and �nds the best �t that satis�es the onstraints. The result isthat, it models the variations in the basi HRF shape, but does not model the spu-rious osillations and reveals the ativation that OLS was not able to identify. Notethat we are testing for the ontrast "inongruent - neutral". Although the di�erenebetween unonstrained and onstrained ases seems to be more evident for ongruentbloks, there is a subtle di�erene for inongruent bloks. The oe�ients estimatedfor the anonial HRF, temporal derivative and dispersion derivative by unonstrainedanalysis for inongruent trials are 0.079, 0.436 and 0.163, respetively. The same o-e�ients are estimated as 0.228, 0.294 and 0.085 by the onstrained analysis. Figure4.6b shows the HRF waveforms generated by these oe�ients. Note that the mainresponse is similar and hene there seems to be only a minor di�erene between thetwo ases in Figure 4.6a. However, the unonstrained analysis produes an implausibleHRF with the oe�ient of the HRF being very small, whereas onstrained analysisaptures the same main response with HRF and annot inrease derivative terms tomake the waveform implausible. Consequently, the tested ontrast beomes signi�antfor onstrained analysis. Hene, onstraining the GLM improves the estimates in twoopposite diretions: It eliminates the ativations due to non-sensible HRF waveformsand it brings forth ativations that would otherwise remain hidden.Figure 4.7 shows the HRF waveforms of inongruent trials obtained from the
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Figure 4.4 Histograms of the z-statistis for the unonstrained and onstrained analysis of NIRSdata.

Figure 4.5 Ativation matrix (subjects × channels) thresholded at p = 0.05 (z = 1.65), for (a)unonstrained, (b) onstrained analysis; () Plaement of the LEDs and photodetetors; hannelloations are depited with numbers.
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Figure 4.6 (a) Fitted waveforms to a noisy NIRS signal under onstrained and unonstrained analyses(N: Neutral, C: Congruent, I: Inongruent trial bloks) (b) Estimated HRF waveforms for inongruentstimulus.ativated hannels by onstrained and unonstrained analysis. It may be seen that mostof the waveforms remain unhanged but the unrealisti HRF shapes are eliminated.
4.4 DisussionThe method presented in this hapter is a diret extension of the lassial GLManalysis with the main di�erene being the onstraints put on the solution spae toensure that the resulting HRF is physiologially plausible. The Bayesian methodologyenters into the play to onstrain the estimation of the parameter vetor. It shouldbe emphasized that the proposed approah does not overlook the importane of theexploratory methods. Nevertheless, as the name implies, GLM is a model-based ap-proah and onstraining the solution spae is a way to ensure that this model reallyholds. In another seminal work [63℄, a method for onstraining the linear ombination
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Figure 4.7 HRF waveforms of the inongruent trial for the ativated hannels obtained by (a)unonstrained and (b) onstrained analysis.of basis sets using variational Bayes was introdued. In that work, a set of plausibleHRF waveforms were generated and the basis set that best spanned these waveformswas found. In ontrast, rather than developing a new model, an "option" is pro-posed for lassial GLM analysis. In other words, the basis set was onsidered asgiven and then all the plausible HRF waveforms that might be generated with it werefound. Consequently, a "hard-onstraint" approah was adopted in the sense that theprior for the parameter vetor is spei�ed as a range-limiting uniform distribution. Inthe Bayesian analysis uniform prior distributions or indiator funtions give rise totrunated posterior distributions, and the latter an be easily inferred upon by Gibbssampling [83, 84, 85℄. In this hapter a simple method was employed to generate sam-ples from a trunated distribution in univariate ross setions [81℄. This allowed us, nomatter how ompliated the onstrained spae is, to implement the Gibbs sampler afterspeifying the full onditional posterior distributions of the parameters [83℄. Anotherimplementation of sampling from a trunated distribution is to ignore the onstraintsuntil the end and then use only the values that satisfy the onstraints [51℄. However,this sheme beomes very ine�ient when the dimensionality of the parameter spaeis large.The whiteness assumption about the noise vetor is ertainly a simpli�ation.In a reent study [86℄, the severity of the e�ets of non-white noise on the inferenefrom fMRI signals was reiterated. The harateristis of the noise in fMRI signals is



40well-studied and a number of models have been proposed, the most widely used beingthe autoregressive one [87, 88℄. However, the noise in fNIRS signals has not beeninvestigated in detail, yet. It may be onjetured that the models proposed for fMRImay also be valid for fNIRS. However, within this thesis study we assumed that noisevetor is white and leave the investigation of its harateristis as a future work.The riteria proposed for onstraining the HRF are by no means omplete. Theonstrained spae was tried to keep as �exible as possible but also to respet the main�ndings of the related theoretial and experimental studies. In summary, a generalmethod is proposed to use the domain knowledge in the form of parameter onstraintsand inorporate them into the GLM analysis. These riteria an obviously be adjustedas our knowledge on HRF dynamis improves.



415. COMPLEXITY ANALYSIS OF fNIRS SIGNALS
The previous hapters investigate the problem of disriminating signal fromnoise in a hypothesis-based setting. The signi�ane of some prede�nite temporalomponents were determined using lassial and Bayesian tehniques. Although thisapproah stands lose to human pereption and produes well interpretable results, itis not the only way to searh for some patterns in a multivariate time-series data.Amongst the others, information theoreti omplexity estimation methods providesummary information in the form of quantitative measures. A omplexity de�tionwas put forward for the brain based on its two intervening properties. Neural omplex-ity (CN) was introdued to re�et the interplay between the funtional segregation andintegration within omplex dynamial systems, of whih neural system is an interest-ing partiular ase [89℄. In this model, (CN) is low for systems whose omponents areharaterized either by total independene or total dependene, and high for systemswhih exhibit both speialization and integration. Speialization implies here loalorganization of a neural system to aomplish one or more sub-task.The idea of positioning omplexity between the two extremes was also advoatedby other researhers [90, 91℄. Exess entropy was proposed to measure the amount ofapparent randomness at small bloks that is explained away by onsidering orrelationsover larger and larger bloks [92℄. As will be evident in the following paragraphs this isthe same mehanism used for alulating CN . An interesting ase is the passage from1-dimension to higher dimensions. Sine in 1-dimension there is a natural orderingof elements, the alulations of entropy and omplexity are rather straightforward.However, in higher dimensions there is no natural ordering of elements and the waythat these elements are brought together also projets additional spurious strutureonto the on�guration. This problem was studied using multidimensional templatesmoving over the data and it was shown that exess entropy is apable of athingstrutures in dimensions more than one [92, 93℄. Although not formulated expliitly, CNproposes a di�erent way to ope with the problems introdued with multidimensional



42data. CN onsiders all possible parsings of the data and alulates the omplexity foreah ase and takes the average.
CN was applied to funtional magneti resonane imaging (fMRI) data obtainedduring photi simulation of healthy subjets. In this ase fMRI measurements fromwithin the brain showed greater omplexity from the same data but sampled outsidethe brain [94℄. It was also predited that CN would be redued in neurologial disorderswhere onsiousness is redued. However, testing this onjeture on eletroenephalog-raphy (EEG) data from generalized seizures and postanoxi enephalopathy, it wasfound that CN of the patients was atually higher than the ontrols [95℄. In anotherstudy with EEG signals, neural omplexity during a visual oddball task has been shownto orrelate with subjet's ognitive state in a way that depends on the stimulus ontext[96℄. Neural omplexity measure was also applied to magnetoenephalography (MEG)data in Alzheimer's disease, and it was found that neural omplexity did not dereasein patients, but that there were di�erenes in the frequeny bands between ontrols andAlzheimer subjets [97℄. When evaluated together, the �ndings of these works suggestthat although neural omplexity is orrelated with ognitive ativity of the brain, thisrelationship may not manifest itself always onsistently. A topographial approah toneural lustering for understanding, in a more intuitive way, the omplexity of a graphhas also been proposed [98℄.This sheme for studying the neuroanatomial organization of the brain haslater been extended with the introdution of "funtional lustering" [99, 100℄. A fun-tional luster in the brain an be de�ned as a set of neural elements that are stronglyinterative among themselves, but weakly interative with the rest of the system. Astudy with EEG using photi and auditory stimuli showed the existene and di�erentpatterns of funtional lusters between normal ontrols and shizophrenis [101℄. Inanother study with EEG during viewing a random dot stereogram, it was observedthat brains of the normal ontrols exhibited greater omplexity when they pereived a3D objet than when they did not, and suh pereptions also gave rise to a well-de�nedlustering pattern [102℄.



435.1 Calulation of neural omplexity, CN

CN was introdued as a tool to solve the long-lasting ontroversy between theloalizationist and holist views of the brain [89℄. CN is intended to estimate omplex-ity in the sense of information shared among parts of a system and to eluidate thefuntional segregation and integration within a uni�ed framework. These two aspetsof a system are haraterized by deviations from statistial independene among itsomponents, whih are measured by entropy and mutual information. Aordingly,highly irregular or highly regular systems will show low values of omplexity whereassystems with both segregation and integration will have large values of omplexity.For a system Θ with n elementary omponents, mutual information (MI) be-tween the jth subset onsisting of k elements (Θk
j ) and its omplement (Θ − Θk

j ) is,
MI

(

Θk
j ; Θ − Θk

j

)

= H
(

Θk
j

)

+ H
(

Θ − Θk
j

)

− H (Θ) , (5.1)where H (.) denotes entropy of the system. Integration is the generalization of theonept of mutual information to multivariate ase. Integration of the system Θ,denoted as I (Θ), is de�ned as the di�erene between the sum of the entropies of allindividual omponents {θi} onsidered independently and entropy of the system Θonsidered as a whole:
I (Θ) =

n
∑

i=1

H (θi) − H (Θ) . (5.2)If subsets, Θk, omposed of k-out of-n omponents are onsidered, the average integra-tion for these subsets may be denoted as 〈I (

Θk
j

)

〉, where the average is taken over all
n!/n! (n − k)! ombinations of k omponents. Consequently, the omplexity CN (Θ) ofa system Θ is de�ned as the di�erene between the values of 〈I (

Θk
j

)

〉 expeted from alinear inrease for inreasing subset size k and the atual disrete values observed (seeFigure 5.1):
CN (Θ) =

∑

i=1:n

[

(k − 1)

(n − 1)
I (Θ) − 〈I

(

Θk
j

)

〉

]

. (5.3)
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Figure 5.1 Calulation of neural omplexity.Assuming a multivariate normal distribution integration an be alulated by,
I (Θ) = −ln |CORR (Θ)] , (5.4)where CORR (Θ) is the determinant of the orrelation matrix.

5.2 Determination of funtional lustersA funtional luster is a group of units whih are more interative among them-selves than with the rest of the system (see Figure 5.2). It an be de�ned as the ratioof the integration of the luster to the mutual information between that luster andthe rest of the system [99℄:
CI

(

Θk
j

)

=
I

(

Θk
j

)

MI
(

Θk
j ; Θ − Θk

j

) , (5.5)where CI stands for the luster index. A luster merits to be a funtional one only ifits luster index is greater than 1. Sine CI is an extensive quantity, that is it growsmonotonially with luster size, one should normalize it for omparing the signi�aneof lusters of di�erent size. This normalization an be ahieved by generating random
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Figure 5.2 Illustration of funtional lustering (image obtained from [100℄).samples with the same luster size and overall integration but not ontaining anyfuntional lusters. Then, a Student's t-like statisti may be alulated by subtratingthe mean CI of these random samples from the CI of the original data and dividing bythe standard deviation of the CI of the random samples. 1000 random samples wereused in this study and the signi�ane threshold was determined as 0.05. In order tointerpret the pattern of funtional lustering using the proedure desribed in [102℄,for eah detetor the proportion of signi�ant lusters that they were inluded in wasalulated. Hene, a value between 0 and 1, showing the "probability" of that detetorbeing a member of a funtional luster, was obtained. This proedure was applied toeah subjet and a mean probability value was derived for eah detetor position.
5.3 ExperimentsTo evaluate the performane of the information theoreti omplexity measuresfor fNIRS, data were olleted from a group of subjets while doing mental arithmeti(MA) task. MA was used as a stress induing (negative emotion) task in several stud-ies [103℄. Relationship between the asymmetry of the prefrontal ortex ativity andheart rate (HR) during MA task has been investigated by near infrared spetrosopy



46(NIRS) [104℄. NIRS demonstrated inreases of oxy-Hb and total hemoglobin (total-Hb) assoiated with dereases of deoxy-Hb in the bilateral prefrontal orties. More-over, the prefrontal hemodynami ativity in the high-HR group was predominantlyright-lateralized whereas in the low-HR group the ativity was dominated by the lefthemisphere. The idea of searhing for relations between brain ativity and HR stemsfrom the fat that several ortial areas are reognized as the regulators of ardiaperformane [105℄. At the level of erebral ortex, it has been shown that HR inreasewas predominantly aomplished by right-hemispheri ativity [106℄. This is the onse-quene of the fat that sympatheti ontrol whih auses the aeleration of the heartdepends more on right hemispheri in�uenes [107℄. The researh on hemisphere asym-metry, on the other hand, has suggested that relatively greater left frontal ativity isassoiated with positive e�et, whereas greater right frontal ativity is assoiated withnegative e�et [108℄. Although the hypothesis that right hemisphere's in�uene onthe sympatheti ontrol is seondary to hemisphere di�erenes in emotional funtionshas been objeted [107℄, the results of the past researh may be summed up as tasksausing negative emotions should be related with right frontal ortex ativation andshould ause an inrease in the HR.The experimental protool was similar to the one used in [104℄. The experimentbegins with 60 seonds rest followed by 60 seonds of task period during whih subjetsare asked to subtrat a 2-digit number from a 4-digit number as quikly as possible (selfpaed). After a reovery period of 90 seonds subjets perform a seond task periodagain lasting 60 seonds. The experiment ends with a 60 seonds reovery period.NIRS data were obtained from 14 high shool students (7 female, ages 15-16years). Written onsent from all the subjets were obtained from the subjets beforethe measurements. This study has been approved by the Ethial Review Board ofBogazii University.



475.4 ResultsIn order to observe MA indued variations in the neural omplexity and on-omitant funtional lustering in the brain while seeking to orrelate these variationswith the heart rate and to be able to ompare the results with those of [104℄, thesubjets were divided into two groups: Subjets who show a big hange in HR duringtask periods (high-HR) and subjets who show a moderate hange during task periods(low-HR).In terms of CN , one an predit that omplexity would inrease during taskperiods with respet to rest periods; but the question that was sought to be answeredwas whether this inrease would di�er between high-HR and low-HR groups. Anotheraim was to explore the brain asymmetry during MA task using funtional lustering.Based on published researh results, we hypothesized that funtional lusters would bemore loalized in the right prefrontal ortex for the high HR group. Whether the samepattern would be obtained for the low-HR group was the seond major question to beanswered.NIRS parameters and HR indeed exhibit their expeted patterns during the MAtask, that is, oxy-Hb, total-Hb and HR all inrease and deoxy-Hb dereases (see Figure5.3. The hanges during the seond period pf MA task are generally smaller thanthe �rst task period for NIRS parameters for both of the groups whereas HR shows adi�erent behavior for the two groups.
5.4.1 HR ChangesHigh-HR and low-HR groups were analyzed separately. Eah group onsistedof 7 subjets and Figure 5.4 shows the average HR for these groups for the task andontrol periods. Resting HR values are lose to eah other and HR returns to baselinevalues after the task periods. MA task auses an inrease in both groups, but with thelow-HR group it is muh lower. High-HR group exhibits hanges of 27.81 ± 8.21 and
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Figure 5.3 Typial examples of hanges in NIRS parameters and heart rate during MA. Shadedareas denote the task period.
19.80±12.58 for the �rst and seond task periods, respetively. Low HR group exhibitshanges of 8.91±3.49 and 9.20±8.49 for the �rst and seond task periods, respetively.The di�erene between the amount of inreases is statistially signi�ant (p < 0.001)for the �rst task period, but insigni�ant for the seond task period (p = 0.089).It may be notied that the inrease in HR is lower during the seond task periodfor high-HR group whereas it is about the same for the low-HR group (although thedi�erenes between the task periods are not statistially signi�ant for both of thegroups). There may be two reasons for this phenomenon: First, sine high-HR groupexhibited a great inrease, 90 seonds may not be enough for reovery, and thereforethe seond task period may take plae on an elevated baseline. Although, the atualmeasurements show that the HR values return to their baseline values in the reoveryperiod, this possibility annot be totally eliminated. Seond, subjets may get usedto the experiment and experiene less stress during the seond task period. On theother hand, sine low-HR group experiene a smaller variation, that is the di�ereneHR inreases in the two sueeding periods is less pronouned, 90 seonds pause maybe enough for reovery or the habituation e�et (if any) is not observable.



49

Figure 5.4 Heart rate hanges for low and high-HR groups during eah period of the experiment.5.4.2 Changes in CN

CN values were alulated for every subjet during eah segment of the experi-ment. Figure 5.5 shows, for oxy-Hb, that although average values of the low-HR groupare slightly lower than those of the high-HR group, they are not di�erent signi�antly,in other words, they both inrease. The results for deoxy-Hb and total-Hb (not shown)are also similar. The most striking observation is that CN inreases in the �rst taskperiod for both of the groups, but then it gradually dereases. It does not inreasefor the seond task period and it does not return to baseline values after the tasksduring the reovery periods. Another observation is that low-HR group exhibited alower value of CN already at the �rst rest period.
5.4.3 Funtional ClusteringIn [104℄, it was shown that MA task indued ativity was right lateral for high-HR subjets and left lateral for low-HR subjets. To evaluate the lateralization of thebrain within the information-theoreti framework, the funtional lusters were iden-ti�ed during the task periods. Figures 5.6 and 5.7 piture the funtional lusters foroxy-Hb and deoxy-Hb, respetively. High-HR group showed a right-lateral lusteringpattern for oxy-Hb during the �rst task period with small lusters in the medial parts;
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Figure 5.5 Change of neural omplexity for oxy-Hb during eah period of the experiment.this right-lateralization ontinues during the seond task period but in a more on�nedregion and the lusters in the medial regions totally disappear. Low-HR group showedright medial lustering in the �rst task period and in the seond task period new lus-ters emerge at the right lateral prefrontal ortex. Consequently, although funtionallusters over a smaller area during the seond task period for the high-HR group,lusters beome more wide-spread for low-HR group. However, all of the ativity isalways in the right hemisphere.For deoxy-HB, lustering behavior of the brain during MA is di�erent. High-HRgroup has right medial lusters both for the �rst and seond task periods. The lusterbeomes wider and stronger for the seond task period. One important di�ereneobserved with the low-HR group was that this group showed a left lateral lusteringin the �rst and seond task periods in addition to right medial lusters. Interestingly,the right medial luster is stronger in the �rst task period and beomes weaker in theseond task period whih is aompanied by the widening of the left lateral luster.
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Figure 5.6 Funtional lusters in the prefrontal ortex for oxy-Hb a) First task period high-HRgroup, b) Seond task period high-HR group, ) First task period low-HR group, d) Seond taskperiod low-HR group.

Figure 5.7 Funtional lusters in the prefrontal ortex for deoxy-Hb a) First task period high-HRgroup, b) Seond task period high-HR group, ) First task period low-HR group, d) Seond taskperiod low-HR group.



525.5 DisussionThe results on�rm some of our preditions, while ontradit some others. MAtask aused a stress for all the subjets as evidened by inreases in HR during taskperiods. The NIRS parameters, in aordane with the HR values, albeit di�erent,show hanges for both of the task periods. However, CN does not follow the samepattern. It inreases for the �rst task period and then follows a ontinuously dereasingtrend. This is an unexpeted result sine we were hypothesizing that neural omplexityshould always be higher during the task periods ompared to rest onditions. Thistype of disrepanies was also reported by other researhers using the CN [95, 97,102℄. In [97℄, an interesting result was also obtained suh that the CN of the reoveryperiod at the end of the experiment was alulated to be higher than during the taskperiod. These researhers put forward the possibility that subjets' brains might well beonentrated on some problems during rest whih aused a higher omplexity than thetask. This point is also related with the muh disussed "baseline" ativity [109, 110℄.
CN is related with the organization of the brain and is not dependent on the signalmagnitudes. Hene, these results assert that although the magnitude of the signalinreases for the seond task period, organization of the brain does not beome moreomplex as measured by the CN metri.Another point is that there were no signi�ant di�erenes between low-HR andhigh-HR groups during both rest and task periods. To ompare this �nding, we al-ulated for oxy-Hb and deoxy-Hb the average onentration hange over all detetorsduring task periods. There was a signi�ant di�erene (p < 0.05) between the groupsfor oxy-Hb during the �rst task period (0.71 ± 0.55 vs. 0.16 ± 0.37). The di�ereneduring the seond task period was not signi�ant. Deoxy-Hb onentration hangeswere not signi�antly di�erent between the groups, either.These �ndings on CN may open a path to irumvent one of the major drawbaksof NIRS, that is, ontribution of the extraerebral tissues when trying to observe thebrain. HR hanges are diretly re�eted on the irulation in the skin. Sine thelight of NIRS probes skin, salp, erebrospinal �uid and erebral ortex, it is not



53easy to extrat the signal oming solely from the ortex. When the analysis is solelybased on onentration hanges, there is always the risk of identifying some "skinativation" as "ognitive ativation." However, this risk may be lowered if oneptslike neural omplexity, whih are not diretly related to the magnitude of the signalsbut organizational aspets of this bundle of signals, are used.Funtional lustering analysis shows that there is a right dominane of the hemi-spheri ativity during MA, for both of the high-HR and low-HR groups, but with thesubtle di�erene that high-HR group shows a lear right lateralization whereas thelow-HR group has strong lusters in the medial regions. The lusters beome weaker inthe seond task period for high-HR group, while it beomes wider and stronger for thelow-HR group. It may be onjetured that high-HR group exhibits an "exaggerated"response during the �rst task period whih is lowered during the seond task periodwith the e�et of getting used to the experiment. However, the low-HR group doesnot show the same habituation e�et. There is a onsistent right medial lusteringfor deoxy-Hb for both of the groups for both of the task periods. It is interesting tonote that there are also left lateral lusters for low-HR group. Previous researh hasshown that high-HR group has a right lateral ativity whereas low-HR group has aleft lateral ativity [104℄. Although our methods do not allow us to make a diretomparison with these �ndings, the left lateral lusters may have a similar origin. Onthe other hand, diret projetions from the medial prefrontal ortex to brain stem andspinal regions whih are assoiated with sympatheti vasomotor funtion have alreadybeen desribed [105℄. These pathways have been impliated as mediating the ortiallyevoked irulatory responses.In a review study [111℄, it was pointed out that a simple left/right dihotomywith respet to hemispheri speialization for the autonomi omponent of the emo-tional response was probably untenable noting that ortial and subortial asymme-tries in the entral and autonomi nervous systems proessing of emotional informationmight be reversed. Hene, hemispheri asymmetry should be treated with reservationsand it should be avoided to make lear ut onlusions.



546. CONCLUSIONS
The previous three hapters tried to make a ontribution to the debate onthe apability of fNIRS for measuring ognitive ativity. It would be appropriate tonote that fNIRS has some inherent drawbaks whih annot be solely irumventedby signal proessing tehniques. However, e�etive algorithmi tools may be valuablein extrating the information arried by the signals and interpreting them. Owingto the literature on neuroimaging, this thesis study put forward statistial inferenemethods as the best andidate for this purpose and investigated their feasibility. It wasfound that MFX or Bayesian analysis of hierarhial GLMs may be used for identifyingognitive ativity by fNIRS. This is the main onlusion of this study. This �ndingwas then extended in two related routes. In the �rst route, onstraining the GLMfor sensible HRFs was investigated and it was shown that by using simple Bayesiantehniques it beame possible to make sure that the outome of the analysis is aplausible HRF. This was important beause identifying ativations whih are unrealistilearly inreases false positives of the analysis whih is the greatest soure of error inneuroimaging. The seond route departed from hypothesis-based statistial infereneand an introdution to the appliation of information-theoreti measures to fNIRS wasmade. Promising results were obtained showing that in the brain some organizationaldi�erenes take plae during ognitive ativity whih an be deteted by these measures.



557. PERSPECTIVES
In the Introdution, it was stated that statistis is an e�etive way to separatenoise from signal as long as the assumptions hold. Hene, the assumptions of this studyalso onstitute the researh areas of future work.First of all, the assumption of whiteness about the noise may be reonsideredand a study on the temporal and spatial harateristis of the noise may be arriedout. The popular autoregressive models may be investigated as the begining step.The appliation of GLM is univariate in this study. This means that spatialdependenies between the detetors are not taken into aount. It is known that thisalso auses the multiple omparison problem. By also exploiting the fat that fNIRSgenerally has a small number of detetors, a multivariate analysis method may bedeveloped. Consequently, the multiple omparison problem for fNIRS signals may alsobe studied.A strong assumption of the thesis is linearity. The linearity assumption is underinvestigation both for fNIRS, [112, 113, 114, 115℄, and fMRI, [116, 117℄. Consequently,a future study may be planned investigating the validity of linearity assumption andnonlinear aspets of fNIRS signal.An HRF model whih was o�ered mainly for fMRI is used in this study. Theaurate estimation of the HRF as measured by fNIRS remains as a further study.An exploratory approah may be adopted for this purpose. Bayesian and blind soureseparation tehniques may have an important role in this task.Another assumption whih simpli�es the analysis is that the hemodynami re-sponse is onstant in time. However, there are studies whih puts this assumptionunder disussion [118, 119℄. Hene, a model with a temporally varying HRF may be



56developed to apture this time-dependent harateristis of hemodynami response.These suggestions for future work learly imply a more sophistiated model.It may be onjetured that Bayesian methodology may manifest its potential betterwith these types of models. Aordingly, it may be suggested to onentrate moreon Bayesian methods and develop tools that will better apture the harateristis offNIRS data.The suggestions till now are related with statistial inferene framework. Theusage of information-theoreti measures for fNIRS signals in this study should be on-sidered as preliminary. Therefore this introdution may be enrihed with additionalmethods. The Renyi entropy whih was proven to be useful for EEG signals, [120℄ andwhih was partly investigated in the fNIRS framework, [121℄, may provide an initialstarting point.This thesis study limited itself with the observation of basi ognitive tasks.This was mainly beause a partiular goal of the study was to validate that fNIRShad the apability to measure ognitive ativity and it would be better to onentrateon the basi funtions. However, future work should de�nitely reonsider this pointand try to �nd the best tasks that fNIRS is suitable for observing. BCI and emotionproessing may open interesting study areas in this sense, sine these are the tasks thatthe subjets should feel the least disturbane.Improvement of the apabilities of fNIRS may ome with the olletive e�ort ofdi�erent disiplines. This thesis study stood on the side of signal proessing and triedto develop some basi routines for fNIRS signal analysis. De�nitely, a more sophis-tiated integration between hardware design, algorithm development and theoretialand experimental physis will bring greater ahievements.



57APPENDIX A. STATISTICAL INFERENCE TECHNIQUES
The simplest struture of a hierarhial GLM is a two-level model whih is usedfor determining average group ativation. In a two-level hierarhial GLM (see FigureA.1, the �rst level models within-subjet e�ets:

Yk = Xkbk + Zkhk + ek (A.1)where Yk is the N -sample fNIRS data for subjet k, Xk is the N × p design matrixfor the parameters of interest, bk is the p vetor of unknown parameters, Zk is the
N × m design matrix for the nuisane parameters, hk is the q vetor of unknownnuisane parameters, and ek is the N -long error vetor. Parameters of interest onsistof ognitive omponents and nuisane parameters onsist of some ovariates, metaboliosillations et. We are assuming that the nuisane parameters are subjet-spei�whereas ognitive parameter vetors of individual subjets are representative samplesfrom some population. Thus we proeed with,

bk = Xgkbg + egk (A.2)where Xgk is the p × q design matrix linking the subjet's parameters to the groupparameters, bg is the q vetor of group parameters, and egk is the p term error vetor.In lieu of expression Eq. A.2, the group-level model an be written as,
b = Xgbg + eg (A.3)where b is the Kp dimensional onatenated parameter vetor, Xg is the Kp×q group-level design matrix: Xg =

[

Xg1 Xg2 · · · XgK

]T , where, bg is the q vetor of groupparameters and eg is the Kp error vetor. Note that, we arried all the parameters fromthe subjet level to the group level, i.e. no ontrasts were applied at the subjet level.Thus, group-level model is inherently multivariate sine it brings together the subjet-level estimates (a vetor) to arrive at a group deision. De�ne the matrix B suh thatits kth row is onstituted of the kth subjet's parameters: B =
[

bT
1 bT

2 · · · bT
K

]T .



58If we introdue the vec(.) operator, whih staks the olumns of its matrix argumentfrom left to right into a single vetor, one an simply write b = vec(BT ). Then,
B = Xm

g Bg + Eg (A.4)where Xm
g is the K × r group-level design matrix, Bg is the r × p matrix of groupparameters, and Eg is the K × p error vetor. Note that, bg = vec(Bg), eg = vec(Eg),and r × p = q. Generally the group-level design matries are simple. For example foraverage group ativation, Xg = 1K ⊗Ip, and Xm

g = 1K , where 1K stands for a K vetorof 1 's and ⊗ is the Kroneker produt. In this ase, p = q and r = 1. The probabilitydistribution funtion (pdf) of the subjet-level error vetor is assumed to be Gaussianwith no temporal orrelation, that is, cov(ek) = σ2
k × IN . Sine the group-level modelis multivariate, the de�nition of the ovariane for the error matrix should take intoaount the two soures of variability: within and between subjets. Consider thefollowing de�nition of ovariane for the error vetor in Eq. A.3:

cov(eg) = Φ ⊗ Σwhere Φ is the between-subjets ovariane matrix, and Σ is the within-subjet ovari-ane matrix. Reall that we are now dealing with parameter estimates of the subjets.Hene, "within" and "between" refer to the parameters, unlike the �rst level in whih"within" refers to the subjets' time series. Sine we are assuming that the subjets aredrawn independently and identially from a population, Φ is a K ×K identity matrix,that is, Φ = IK , whereas the p× p within-subjet ovariane matrix Σ is some positivede�nite matrix. We have no prior information about Σ and hene we will assume thatit has a general struture. De�ne Σ = Cg, where Cg is positive de�nite. Consequently,
cov(eg) = IK ⊗ Cg = CG (A.5)Having de�ned the variables we may proeed with the steps spei� to lassial andBayesian inferene.
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Figure A.1 Two-level GLM for average group ativation.A.1 Classial InfereneFor the ease of expositions, begin by onatenating the design matries andparameter vetors and de�ne, Xc
k =

[

Xk
... Zk

] , and bc
k =

[

bT
k

... hT
k

]T Ordinaryleast squares estimate of bc
k is given by,

b̂c
k =

(

Xc
k
T Xc

k

)

−1
Xc

k
T Yk (A.6)This estimate has variane,

cov(b̂c
k) = σ2

k

(

Xc
k
T Xc

k

)

−1
, (A.7)where the noise variane, σ2

k, is estimated from the residuals. In the summary-statistisapproah to multilevel GLM, the seond level of the model takes as input the estimatesof the �rst level but not the true (and unobservable) parameters [122℄. Hene, theseond level (Eq. A.3) model is modi�ed as:
b̂ = Xgbg + eg +

(

b̂ − b
)

= Xgbg + êg. (A.8)Then, the variane of the error vetor, êg, is,
Vĝ = diag

((

σ2
k(X

c
k
T Xc

k)
−1

))

+ σ2
gCg, (A.9)



60The �rst omponent of the variane spei�es the within subjet variane-ovariane ofthe parameter vetor (�xed e�ets) and the seond omponent indiates the betweensubjets variane (random e�ets). Sine, generally the desired inferene is on a parti-ular ontrast of parameters, cbk, b̂ beomes b̂cont =
[

cb̂1 . . . cb̂K

]T

.. Subjet-levelerror varianes beome then,
cov

(

cb̂k

)

= σ2
kc

(

Xc
k
T Xc

k

)

−1
cT (A.10)and Cg has a simple form, typially IK . Summary-statistis MFX proedure aountsfor both of these soures of variane whereas FFX and RFX ignore the seond and �rstomponents of the variane, respetively.

A.2 Bayesian InfereneTo derive the equations for Bayesian inferene we will begin from Eq. A.1, Eq.A.2, Eq. A.3 and Figure A.1. The onditional posterior pdf's an be written using theBayesian rule (posterior α prior × likelihood):
p (bk|M, r.v.) α p (bk|M, bg, Cg) p

(

Yk|M, bk, hk, σ
2
k

)

, (A.11)
p (hk|M, r.v.) α p (hk|M) p

(

Yk|M, bk, hk, σ
2
k

)

, (A.12)
p

(

σ2
k|M, r.v.

)

α p
(

σ2
k|M

)

p
(

Yk|M, bk, hk, σ
2
k

)

, (A.13)
p (bg|M, r.v.) α p (bg|M)

∏

k=1:K

p (bk|M, bg, Cg) , (A.14)
p (Cg|M, r.v.) α p (Cg|M)

∏

k=1:K

p (bk|M, bg, Cg) . (A.15)where r.v stands for remaining variables. We need to speify prior distributions for hk,
σ2

k, bg, and Cg to be able to derive onditional posterior pdf's. Sine prior information



61about the distributions of these variables is typially not available, we deided to usenoninformative priors. Note that we do not have to speify priors for subjet-levelparameter estimates, bk, sine the group parameters in the model hierarhy at as thepriors of subjets' parameters.The onditional posterior of subjet level parameters depend on both subjets'data and group level parameters. If we write Eq. A.11 expliitly,
p (bk|M, r.v.) α |Cg|

−1/2 exp
{

− (bk − Xgkbg)
T C−1

g (bk − Xgkbg)
} (A.16)

×σ
−N/2
k exp

{

− (Yk − Xkbk − Zkhk)
T (Yk − Xkbk − Zkhk) /σ2

k

}

.The onditional posterior of subjet level parameters are the produt of two Gaussiandistributions, hene they are also Gaussian. Atually, subjets' parameters are esti-mated from data and instantaneous group parameter estimates inversely weighted withtheir orresponding variane estimates.The noninformative prior for nuisane parameters are the uniform distribution,and onsequently their onditional posterior is just the likelihood term:
p (hk|M, r.v.) α σ

−N/2
k exp

{

− (Yk − Xkbk − Zkhk)
T (Yk − Xkbk − Zkhk) /σ2

k

}

. (A.17)The noninformative Je�reys prior for subjet level error variane is, p (σ2
k|M) α σ−2

k .Consequently, we an write Eq. A.13 as,
p

(

σ2
k|M, r.v.

)

α σ
−(N+2)/2
k exp

{

− (Yk − Xkbk − Zkhk)
T (Yk − Xkbk − Zkhk) /σ2

k

}

.(A.18)Hene, onditional posteriors for subjet level varianes are inverse Gamma.Sine the noninformative prior for group level parameters is the uniform distri-bution, the onditional posterior of them may be written as,
p (bg|M, r.v.) α |CG|

−1/2 exp
{

− (b − Xgbg)
T C−1

G (b − Xgbg)
}

, (A.19)



62whih is a multivariate Gaussian distribution.
Cg models the dependenies among the elements of the subjet level parameterestimates. The noninformative prior for group level error variane is, p (Cg|M) α |Cg|

−1.The onditional posterior may be written as,
p (Cg|M) α |Cg|

−(K+2)/2 exp
{

trC−1
g

(

B − Xm
g Bg

)T (

B − Xm
g Bg

)

}

. (A.20)Finally, group ovariane matrix has onditionally an inverse-Wishart distribution [51℄.The onsequene of assuming Gaussian distributions for noise vetors and usingnoninformative priors is that onditional posterior pdf's have analytial forms whosemodes an be easily alulated. Thus, we may proeed with an algorithm like iteratedonditional modes (ICM) [50℄. Beginning from some initial values we may yle throughthe modes until onvergene. The algorithm is summarized below:
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, (A.21)
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