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ABSTRACT

STATISTICAL ANALYSIS OF COGNITIVE SIGNALS
MEASURED BY {NIRS

Further standardization in signal processing tools is needed in the area of func-
tional near infrared spectroscopy (fNIRS) before it is recognized as a reliable neu-
roimaging modality. This thesis study attempts to present a comprehensive analysis
of the feasibility of applying statistical inference methods to fNIRS signals. Using
hierarchical linear models, both classical and Bayesian techniques are pursued and
performances of different methods are presented on a comparative basis. The results
obtained from a set of cognitive signals show that fNIRS can identify cognitive activity
both at the subject and group levels. The analysis suggests that mixed or Bayesian
hierarchical models are especially convenient for fNIRS signals. A related problem
that is discussed in this thesis study is to relate the outcome of the statistical analysis
with the underlying physiology. This problem is studied by putting constraints over
the parameters to be estimated. Carrying the problem to a Bayesian framework, the
constraints were turned into prior distributions and Gibbs sampling was used to infer
from the posterior distributions. The results exhibit that in addition to preventing
unlikely results to appear at the end of the analysis, using parameter constraints is
also more efficient in revealing activations which are obscured by heavy noise. The last
part of this thesis study departs from hypothesis-based statistical inference techniques
and introduces the use of information-theoretic measures for fNIRS by particularly
concentrating on neural complexity and functional clustering. It is demonstrated that
this type of measures may capture organizational aspects of the brain which are hard

to reveal with classical statistical inference techniques.

Keywords: Functional near infrared spectroscopy, Statistical inference, Bayesian

statistics, General linear model, Constrained estimation, Complexity.



vi
OZET

iYKAS ILE OLCULMUS BILISSEL SINYALLERIN
ISTATISTIKSEL ANALIZI

Islevsel yakin kirmizialt: spektroskopi'nin (iYKAS) giivenilir bir nérogoriin-
tiilleme yontemi olarak kabul edilebilmesi icin sinyal igleme teknikleri agisindan bir
standartlagtirmaya ihtiya¢ vardir. Bu tez ¢aligmasi istatistiksel cikarsama yontem-
lerinin iYKAS sinyallerine uygulanmasinin kapsamli bir olurluk incelemesini yapmay1
amaclamigtir. Siradiizensel dogrusal modeller kullanilarak, hem klasik hem de Bayesci
cercevede degisik yontemlerin bagarimi kargilagtirmali olarak sunulmustur. Biligsel bir
deney sirasinda oOlciilen sinyallerden elde edilen sonuclar iYKAS’in hem denek hem
de grup seviyesinde biligsel aktiviteyi belirleyebildigini gostermistir. Yapilan anali-
zler karigik ya da Bayesgi siradiizensel modellerin iYKAS sinyalleri i¢in daha uygun
oldugunu ortaya koymustur. Bununla ilintili olarak bu tez ¢aligmasinda tartigilan
diger bir problem istatistiksel analizin sonuclarinin altta yatan fizyolojiyle uyumu-
nun garanti edilmesidir. Bu problem kestirilecek parametreler iizerinde kisitlar koyul-
masiyla ele alinmigtir. Ardindan problemi Bayes¢i bir cerceveye tagiyarak kisitlar
onsel dagilimlara doniistiiriilmiis ve Gibbs Orneklemesi kullanilarak sonsal dagilimlar
tizerinden gikarsama yapilmigtir. Sonuclar, parametre kisitlar: koymanin, analizin sonu-
cunda olasi olmayan sonuclar cikmasini engellemenin yani sira agir giiriiltiiyle ortiilmiis
aktivitelerin de ortaya cikarilmasi i¢in daha etkin oldugunu ortaya koymustur. Tezin
son boliimi hipotez temelli istatistiksel ¢ikarsama tekniklerinden uzaklagmakta ve bilgi-
kuramsal dlgiitlerin iYKAS i¢in kullanimina girig yapmaktadir. Bunu yaparken 6zellikle
noral karmagiklik ve iglevsel topaklandirma tizerinde yogunlasilmig ve bu tip 6lciitlerin
beynin orgiitlesimine iligkin klasik istatistiksel ¢ikarsama yontemleriyle fark edilmesi

giic yonleri yakalayabildigi gosterilmigtir.

Anahtar Sozciikler: Yakin kirmizialt: spektroskopi, Istatistiksel cikarsama, Bayesci

istatistik, Siradiizensel dogrusal model, Kisith kestirim, Karmagiklik.
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1. INTRODUCTION

Near infrared spectroscopy (NIRS) opened up a new path in the quest for un-
derstanding the functioning of the brain. After its introduction as a tool for measuring
average tissue oxygen saturation and total hemoglobin concentration |1, increasing
number of researchers have started using NIRS for observing cognitive activity. Bear-
ing the name functional near infrared spectroscopy (fNIRS), the method was used
for studying the basic functions of the prefrontal cortex |2, 3, 4, 5|, motor cortex
[6, 7, 8, 9] and visual cortex [10, 11, 12, 13|. Besides these studies on healthy subjects,
fNIRS has been employed for exploring neural underpinnings of psychiatric disorders
|14, 15, 16, 17]. fNIRS was even used for studying cognitive mechanisms involved in
emotion processing [18, 19, 20]. With the growing interest in building brain-computer
interfaces (BCI) in the recent years, the feasibility of employing fNIRS in this area has
also been put under investigation [21, 22, 23, 24].

The drive of the researchers towards using fNIRS in these broad areas of re-
search was mainly motivated by several potential advantages of {NIRS over other neu-
roimaging modalities. fNIRS shares much in common with the blood oxygenation level
dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) and mea-
sures the concentration changes of oxygenated and deoxygenated hemoglobin (oxy-Hb
and deoxy-Hb) resulting from the hemodynamic response. Moreover, both fNIRS and
fMRI are indirect measures of brain activity. Besides these similarities, {NIRS offers the
researchers the possibility of making measurements in various clinical and natural en-
vironments. Unlike fMRI, which necessitates bulky and heavy equipments which limit
the movements of the subjects, fNIRS devices are relatively user-friendly and portable.
This aspect is especially important in the ability to observe cognitive activities with
minimum disturbance to the subject. It is even possible to build wireless fNIRS devices
[25, 26]. The advantages of {NIRS may further be extended to the absence of radiation,
the low cost of the procedure and the ability to measure both oxy-Hb and deoxy-Hb

simultaneously. However, as with the rest of the modalities, {NIRS also comes with its



inherent limitations. The major drawbacks of fNIRS may be listed as its low spatial res-
olution ( 1em?), shallow depth of penetration and consequently inevitable uncertainty

about the probed region.

The increasing use of fNIRS as a neuroimaging modality brings with itself the
need for reliable and efficient procedures to analyze and interpret the observed data.
Although there are efforts in this line, [27], there is yet no standard method to process
fNIRS data. The goal of this thesis study may be stated in broadest terms as making

a contribution to the efforts for building a framework for analyzing fNIRS data.

Neuroimaging generally works with statistical models which make explicit as-
sumptions about data. As long as these assumptions hold, statistics is an effective
way to separate the noise from the signal. On the other hand, limitations of statistical
analysis should also be noted [28|. This thesis is devoted to the investigation of the
feasibility of applying statistical models to fNIRS signals. Main body of the thesis is
related with one of the most common types of statistical models, that is general linear
model (GLM). Due to its simple and valid assumptions, GLM is the most preferred
method for making statistical inference from fMRI data [29]. In addition to its compu-
tational simplicity, GLM also lends itself easily to hierarchical structures which may be
employed for making group level inferences. Consequently, one of the main goals of this
thesis is to employ hierarchical GLMs for making subject and group level inferences

from {NIRS data.

(Classical inference from neuroimaging data proceeds with null hypothesis signif-
icance test procedure (NHSTP). The researcher is not allowed to ask questions directly
regarding the probability distribution of the variable of interest. Rather, the null hy-
pothesis is tested and the decision whether to reject it or not is given based on the
significance. Bayesian methodology, on the other hand, provides the researchers with
necessary tools for exploring the posterior probability distributions of the variables. In
this thesis, classical and Bayesian methods for analyzing GLM are investigated in a

comparative basis.



Although the general emphasis of this thesis is on model-based analysis, the
separation of signal from noise problem is also discussed within an information-theoretic
framework. For this purpose, complexity measures are applied with the assumption
that cognitive activity causes a change in the interaction type among the brain regions.
Conjecturing that this change manifests itself in terms of a change in "complexity",
a number of approaches are discussed and evaluated for fNIRS modality. The main
difference of these methods from the aforementioned GLM based techniques is that
there is no a priori temporal or spatial model. Hence, a wide variety of "structures"
can be revealed using complexity measures. However, the cost is that the strict control

over the physiological plausibility is lost.

The plausibility of the analysis is generally an overlooked necessity in neuroimag-
ing. With the increasing elasticity of the models, there appears to be a risk of arriving
at results which are not physiologically probable. This study approaches the afore-
mentioned problem for GLM-based analysis and proposes a simple way for making
statistical inference under parameter contraints which guarantees the plausibility of

the estimates.

In summary, this thesis study aims at making three concrete contributions: i)
In depth analysis of multilevel statistical inference techniques for fNIRS, ii) A method
for making GLM analysis under parameter constraints, iii) Application of information-
theoretic measures to fNIRS. These three contributions will be explained in three sep-
arate chapters which are preceded with a background information on near infrared

spectroscopy and followed by general conclusions and perspectives for future research.



2. NEAR INFRARED SPECTROSCOPY

Photons travelling through a tissue undergo mainly two types of interactions
with the tissue: Absorption and scattering. Both of these events cause attenuation in
the energy of the light passing through the tissue and this attenuation forms the basis
for optical apparatus used for probing the tissue. Imaging devices use sender-receiver
pairs for sending the light at some point and receiving it at some other point after it
is transmitted or reflected through the tissue. The concentration of a light absorbing

molecule in tissues may be determined by the Beer-Lambert Law:
A=ecd (2.1)

where A = log(1,/I;) is the extinction of light which is proportional to the incident
(1,) versus measured light (I1), € is the extinction coefficient, ¢ is the substance con-
centration, and d is the distance from source to detector. Beer-Lambert Law assumes
infinitesimal substance concentrations and therefore negligible light scattering. How-
ever, in real cases, substance concentrations are higher and Eq. 2.1 should be modified
to take into account extra loss of light and longer pathlength of the photons due to
scattering. Therefore, in the modified Beer-Lambert Law [30], a multiplicative term
(B) and an additive term (G) which account for longer pathlength and loss of light,

respectively, are added:
A=eccdB+G (2.2)

Generally the concern is the difference between the two situations and assuming con-

stant light scattering, G term cancels due to subtraction:

AA =eAcd.B (2.3)

If the pathlength factor, B, is known then it is possible to calculate absolute
concentrations. The ignorance about the pathlength and the actual path of the pho-
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Figure 2.1 Absorption characteristics of oxy-Hb, deoxy-Hb and water [26].

tons are the major drawbacks of the optical imaging. There are different methods for
determining the pathlength: One is to measure the time of flight of a very short (in the
order of pico seconds) light pulse traveling through the tissues [31|. Another approach
is to measure the phase shift of a light source which is intensity-modulated at a certain
frequecy [32]. If it is not possible to determine the pathlength then the measurements
obtained by optical imaging are relative. There are studies which experimentally deter-
mine optical pathlengths for different subject groups, |32], and these values are widely

used by the researchers.

Biological tissues are relatively transparent to light in the near infrared range
between 700 and 1000 nm, largely because water which is the greatest component in
the tissues, relatively absorbs little at these wavelengths (see Figure 2.1). NIRS uses
light sources with wavelengths in the near infrared region to observe concentration
changes of oxy-Hb and deoxy-Hb within the probed tissues. In addition to changes
at the intracellular level, which are hard to observe with NIRS, local brain activity
causes an increase in cerebral blood volume (CBV) and cerebral blood flow (CBF). At
the capillary level CBF increase is accomplished by higher blood per capillary which
is associated with higher blood velocity. During this process, termed as neurovascular
coupling [33], the increase in CBF and oxygen delivery exceeds the local consumption

of oxygen and cerebral blood oxygenation rises in the activation area. Because oxy-Hb



Figure 2.2 Banana-shaped photon path [26].

and deoxy-Hb have characteristic optical properties, it is possible to measure their con-

centration changes during neurovascular coupling using modified Beer-Lambert Law.

fNIRS devices introduce photons to the scalp through light emitting diodes or
lasers. Since large amount of the photons follow a banana shaped path, it is possible
to detect them as they leave the head by photodetectors, as illustrated in Figure 2.2.
It may be noticed that photons spend a considerable amount of time in non-cerebral
tissues, such as skin, skull and cerebrospinal fluid. Consequently, the total absorption
measured by a photodetector has significant contributions from these tissues. For
continuous-wave systems which does not have a depth-resolution ability, wavelengths
of the device and experimental paradigms should be selected and designed so as to

minimize this non-cerebral contribution.

A continuous-wave fNIRS device (NIROXCOPE 301) built in Biophotonics Lab-
oratory of Bogazi¢i University [34, 35, 36] was used in this study. The device is capable
of transmitting near-infrared light at two wavelengths (730 nm and 850 nm). Calcula-
tion of concentration changes of oxy-Hb and deoxy-Hb in blood is based on modified
Beer-Lambert Law which is summarized by Eq. 2.2 and Eq. 2.3. Employing four light
emitting diodes (LEDs) and 10 detectors, the device can sample 16 different volumes

in the brain simultaneously (see Figure 2.3 for the details of the probe).
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Figure 2.3 NIROXCOPE 301 probe (on the right) is attached to the forehead. Source-detector
geometry ensures probing of un-overlapped 16 volumes when the light sources are time multiplexed.
(Head image was obtained from MATLAB Central File Exchange).

The rectangular probe geometry was chosen for obtaining non-overlapping areas.
Source-to-detector distances was specified as 2.5 cm, since this amount of separation
has been shown to reliably probe the cortical activity [37, 38, 39, 40]. LEDs and
detectors were placed in a flexible printed circuit board that was specially designed to

fit the curvature of the forehead. Sampling frequency of the device was 1.4 Hz.



3. MULTILEVEL STATISTICAL INFERENCE FROM fNIRS
SIGNALS

Parametric statistical analysis (PSA) of neuroimaging data tries to answer the
question of whether the measured data significantly carry components representative
of cognitive activity or not. In the hypothesis-based approach, this investigation be-
gins with tailoring the components that will be searched for. In fMRI and fNIRS this
component is hemodynamic response function (HRF). Based on the past research and
experimental studies, an HRF model is used to generate hypothetical cognitive compo-
nents. Then the task is to test if this hypothetical component is captured by the real
data. Statistics enters into play at this point. Beginning with some statistical assump-
tions about data and noise, PSA produces estimates and their associated probabilities

for the parameters which are to be inferred on.

Neuroimaging typically works with groups of subjects. The goal may be to
reveal the average activity of these subjects or to find the activity differences between
two groups of subjects. Consequently, the hypothesis should be answered at the highest
level of the hierarchy. This highest level often represents the effect analysis over some
or all of several measurements, detectors, sessions and subjects in a population. GLM
has been the most commonly used tool to make inferences from fMRI data [29]. GLM
may also be extended to a hierarchical mode to arrive at multilevel statistical inferences
|41, 42]. In recent years, hierarchical GLM has arisen as an effective tool for proceeding

from the data at the subject level to higher levels.

Apart from a few inherent differences between them, both fMRI and fNIRS aim
to detect and localize brain hemodynamic activity based upon neurovascular coupling
model. Thus, it would be logical to extend the GLM methodology to fNIRS signals.
This was first attempted using a visual stimulus and the conclusion was that the GLM
type of analysis was feasible especially for deoxy-Hb |27]. In another study, it was shown

that model-based analysis with GLM is capable of detecting event-related human brain



activity recorded with fNIRS in the occipital cortex [43]. A shift method has also been
proposed to recover small signals within the GLM framework, by exploiting the higher
temporal resolution of fNIRS with respect to fMRI [44|. In summary, these studies

provided us with promising but not conclusive results.

3.1 Statistical Analysis of the Hierarchical GLM

In this thesis study, the multilevel statistical inference problem for fNIRS signals
has also been addressed using a hierarchical GLM to link the measurement space to
the upper-level parameters. The expositions presented in this chapter are based on
[45]. A comparative approach was adopted and three classical methods of multilevel
inference, namely, fixed effects (FFX), random effects (RFX), mixed effects (MFX)
analyses, and two Bayesian inference methods were implemented simultaneously. One
of the Bayesian methods also goes by the name of pseudo-mixed effects (VFX) [46],
since it employs the basic GLM at the subject level and uses the Bayesian methodology
to merge the subject parameters at the group level. The second method, denoted as

Bayesian posterior estimation (BPE), is a fully Bayesian one.

3.1.1 Classical Inference

Classical analysis of multilevel functional neuroimaging data generally proceeds
in a bottom-up fashion. Once the statistics that summarize the data at one level are
calculated, they are carried to the upper level. The main difference among the three
classical statistical inference techniques of FFX, RFX and MFX lies in the determi-
nation of the variance estimates [47, 48]. Details of the classical inference is given in
Appendix A. Briefly, FFX and RFX ignore the between-subject and within-subject
variances, respectively. Note that, since it ignores the between-subject variance, the
inference of FFX is limited to the particular set of subjects. After calculating the
subject parameter and variance estimates using GLM specifically designed for each

subject, FFX takes the average variance estimate as the group variance. On the other
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hand, RFX calculates the group variance over the estimated parameters of the sub-
jects. MFX tries to integrate both within and between-subject variances by carrying

the subject variance estimates to the group level.

In this study, MFX was carried on as described in [47] and implemented in [49].
FFX, RFX and MFX are all summary statistical approaches, that is, beginning from
the bottom level, each level is analyzed separately and only the parameters of interest
are carried to the upper level. The main benefit of working with a summary statistics
approach is its computational ease, which becomes very important for high dimensional

data like fMRI.

The statistics proposed by [46], called pseudo-mixed effects (VFX), is a mix-
ture of classical and Bayesian procedures. The parameter and variance estimates are
calculated at the subject level using the GLM. Then to arrive at the group decision,
the posterior distribution of one subject is taken as the prior distribution of another
subject. The end result is an average of subject parameter estimates inversely weighted
by their variance estimates. In essence, this is a fixed-effects approach, since it does
not take into account between-subject variances. Note that, this is also a summary

statistics method.

In conclusion, parameters estimated at subject level are the same for all of
these four methods, namely FFX, RFX and MFX and WFX. After specifying subject-
specific GLMs, one calculates subjects’ parameters and variances and continues towards
average group activation calculation. Since, we are generally not interested in all of
the parameters but rather in a particular linear combination of them, contrast vectors

are specified at the subject level and applied to the parameter and variance estimates.

3.1.2 Bayesian Inference

Bayesian analysis of hierarchical GLM has been applied extensively to fMRI
signals [41, 42, 48|. Implementation of Bayesian methodology for fNIRS signals will
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also follow similar procedures. Noninformative priors were specified as in 48], since no
prior information is available and generally the number of subjects is so small to make
the influence of the prior significant. The details of the Bayesian analysis are presented
in Appendix B. Since the modes of the conditional posterior probability distribution
functions can easily be calculated, an algorithm like iterated conditional modes (ICM),
[50], can be used. Beginning from some initial values we can cycle through the modes
until convergence. ICM was preferred to some other Monte Carlo schemes like Gibbs
sampling because of its simplicity and speed, which are important criteria especially
for practical purposes. For multimodal distributions ICM has the risk of getting stuck
at a local minimum or oscillating, but for unimodal distributions (as it is in this case)
ICM gives quick solutions. In actual implementation, the convergence of the algorithm

to the same output was checked by starting the chain at different initial points.

The contrast vector was applied only after all of the estimation process has ended
and that group parameters were available. As in the classical analysis case, this may be
achieved by specifying a contrast vector. The marginal posterior of contrasted group
parameters obeys a univariate noncentral Student’s ¢-distribution [51]. We can make
inferences using this posterior, and ask whether our contrasted parameter estimates

are higher than a particular value.

The main difference between the Bayesian analysis presented here (BPE) and
the methods mentioned in the previous section is that the former is not summary
statistics. Bayesian analysis, in this implementation, incorporates the group variables
into subject parameter estimation process. Hence, all subjects should be analyzed
simultaneously, and if a new subject is included in the group, the analysis should be

repeated for every subject.

3.2 Experiments

The particular experimental protocol that we used in this study is a variant

of Stroop task, which is known to be a good activator for prefrontal cortex [52, 53|.
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Subjects were asked to perform color-word matching Stroop task whose trials are the
Turkish versions of Zysset et al. [54]. Subjects were presented with two words one
written above the other. The top one was written in ink-color whereas the bottom
one was in white (over a black background). Subjects were asked to judge whether the
word written below correctly denotes the color of the upper word or not. If color and
word matched, then subjects were to press the left mouse button with their forefinger,
and if not, the right mouse button with their middle finger. Subjects were informed to
perform the task as quickly and correctly as possible. The words stayed on the screen
until the response was given with a maximum time of 3 sec. The screen was blank

between the trials.

The experiment consisted of neutral, congruent and incongruent trials. In the
neutral condition upper word consisted of four X’s (XXXX) in ink-color. In the congru-
ent condition ink-color of the upper word and the word itself were the same, whereas

in the incongruent condition they were different.

The trials were presented in a semi-blocked manner. Each block consisted of
6 trials. Inter-stimulus interval within the block was 4.5 seconds and the blocks were
placed 20 seconds apart in time. The trial type within a block was homogeneous (but
the arrangements of false and correct trials were altering) There were 10 blocks of
each type. Experiments were performed in a silent, lightly dimmed room. Words were
presented via an LCD screen that was 0.5 m away from the subjects. The task protocol

is approved by the Ethics Review Board of Bogazici University.

12 healthy (7 female, 5 male) subjects from the university community (right-
handed, mean age 26.17 £+ 4.30, range 20 — 31) participated in the study. Subjects
had no reported neurological, medical and psychiatric disorders. None were taking
medications at the time of measurement. All the subjects had normal or corrected-to-
normal vision and normal color vision. Written informed consent was obtained from

all subjects before the measurement.
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3.3 Results

Stimulus onset vectors for each type of stimulus (neutral, congruent and incon-
gruent) were formed and convolved with the canonical HRF [55|. These three vectors
constituted the cognitive part of the design matrix. The fNIRS data were digitally
low-pass filtered with a cut-off frequency of 330 mHz. To be able to cope with various
low-frequency trends, discrete cosine transform basis functions |56], were added to the
design matrix with a minimum period of 120 seconds. Incorrect and omitted trials
were modeled separately and they, together with the trend terms, form the nuisance

part of the design matrix.

3.3.1 Behavioral Results

Reaction times (RT) were calculated only from the correctly answered trials.
Figure 3.1 shows that the first and second subjects responded slower to congruent trials
in comparison to incongruent trials. Subject 6 responded slightly slower to neutral
trials than congruent trials. For the rest of the subjects the ordering of R'Ts is neutral-
congruent-incongruent. The average RTs to neutral, congruent and incongruent trials
are 1029.3 +277.1,1183.9 £ 370.5 and 1308.8 & 367.1 ms, respectively. Comparing the
RTs, two-tailed paired-t test revealed significant differences among all 3 trial types:
Incongruent vs. Neutral t(11) = 7.042 p = 0.000; Incongruent vs. Congruent ¢(11) =
2.882 p = 0.015; Congruent vs. Neutral ¢(11) = 4.351 p = 0.001.

There are two common effects in Stroop task: First, the interference effect refers
to the observation that subjects have more difficulty in answering incongruent trials
with respect to neutral trials. Second, facilitation effect comes from the observation
that subjects respond quicker to congruent trials compared to neutral trials [57]. Al-
though the interference effect was evident in RTs, we could not observe a facilitation
effect. Using the same kind of stimuli Zysset et al., |[54], has not observed facilitation
effect either. It has been pointed out that facilitation was not a necessary concomitant

of interference and it played a much lesser role than interference [52]. It was asserted
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Figure 3.1 Reaction times of the subjects.

that the missing facilitation was due to trying to speed up an already rapid response.
Additionally, the slower response to congruent trials may be related with the observa-
tion that the subjects try to judge whether the trial is congruent or incongruent, which

puts an extra cognitive load with respect to neutral trials.

Error rates were generally small, and most of the subjects did not make any
mistakes for neutral and congruent trials. Mean error rates (in percentage) were 0.56 +
1.92,0.56 £+ 1.30 and 4.31 4 5.97, respectively for neutral, congruent and incongruent
trials. No statistical test was carried out in terms of error rates since they were generally
so small; however, it can be said that interference effect also manifests itself in error

rates.

3.3.2 {NIRS Results

fNIRS device provides us with a set of time series recorded over 16 channels
over the scalp. For the locations of the probed regions refer to Figure 2.3. Note that
the ordering of the channels is from left to right, that is, "‘1"” is on the left and "*16"’

is on the right. Oxy-Hb and deoxy-Hb data were analyzed separately.
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3.3.2.1 Oxy-Hb results. The subject level and group level activation patterns

for interference effect (incongruent - neutral) are shown in Figure 3.2. These patterns
and the others presented in the following figures result from the thresholded z-scores
at 0.05 significance level (that is, ziresn = 1.65 and p = 0.05, adjusted for multiple
comparisons by Bonferroni correction). The posterior probabilities given by the WFX
and BPE are also converted to z statistics. Recall that subject-level activations are
common for FFX, RFX, MFX and UVFX, and estimated by ordinary least squares (OLS)

in a single step, whereas BPE estimates iteratively both subject and group parameters.

The first observation is that there is activation widespread over channels for
most of the subjects. Furthermore, all subject activations resemble each other for
both OLS and BPE approaches. This is usual and points to the fact that group
level variance is higher than subject level variance, which causes the effect of group
parameters being weighted down in the estimation of subject level parameters. Despite
the apparent similarity between OLS and BPE methods, the consistent activation in
channel 4 revealed by BPE is worth noticing. BPE finds that channel 4 is activated
for all of the subjects, while this is not the case for single-level GLM. The second
important observation is that the percentage of activated subjects per channel indicates
that activation is dominantly left lateral (Figure 3.2, middle row). When group level
inference is inspected (Figure 3.2, bottom row), this left laterality is especially evident
with RFX, MFX and BPE. Channels 1-4 are found to be active, with channel 4 giving
the highest z-value and consistency. Thirdly, it can be seen that the wide spread
activation at the subject level is carried over to the group level with FFX and YFX.
This is to be expected because these two methods do not consider the between-subject
variance. The consequence is that FFX and WFX have higher sensitivity but at the

risk of high false positive rates.

It was also investigated whether there was a significant activation difference
between incongruent and congruent trials. The behavioral results have shown that
there was no facilitation effect, that is, subjects had more difficulty with congruent
trials with respect to neutral trials. This also manifested itself in fNIRS findings and

the activations both at the subject and group levels are less pronounced this time (there
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Figure 3.2 Activation patterns for oxy-Hb for "incongruent - neutral" contrast. Top: Subject level
activations detected by OLS (left) and BPE (right). Middle: Activated subject count (%) for OLS
(left) and BPE (right). Bottom: Group level activations for FFX, RFX, MFX and UFX (left) and
BPE (right).

is no activated channel for subjects 1 and 6, see Figure 3.3, top row). FFX and VFX,
again, found higher number of activated channels compared to the other three methods
(Figure 3.3, bottom row). The activations of RFX, MFX and BPE are confined to the

left lateral channels.

It might be suggested that the medial activations detected by FFX and VFX
may be due to anterior cingulate cortex (ACC), which has been identified as a region
involved in Stroop-like inhibition paradigms [58]. However, it has been shown that ACC
is not specifically involved in interference processes, but rather in motor preparation
processes [54]. Hence, ACC should not be substantially activated when comparing
neutral and incongruent conditions, as the motor response preparation process, once
the decision is taken, is the same for both conditions in color-word matching Stroop
task [54]. Additionally, considering the penetration depth of near infrared light [59],
it is doubtful if fNIRS would be able to capture the activations in ACC with source-

detector separation of 2.5 cm. Hence, it may be concluded that the medial activations
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Figure 3.3 Activation patterns for oxy-Hb for "incongruent - congruent” contrast. Top: Subject
level activations detected by OLS (left) and BPE (right). Middle: Activated subject count (%) for
OLS (left) and BPE (right). Bottom: Group level activations for FFX, RFX, MFX and UFX (left)
and BPE (right).

detected by FFX and WFX are false activations.

Since subjects had more difficulty with answering congruent trials with respect
to neutral trials, the group level activation for the difference between these two trial
types was also investigated. Although there was some activation at the subject level,

no activation could be found at the group level.

It is possible to present the fitted cognitive waveforms to the measured signal as
in Figure 3.4. The large slow trend over the signal may be seen in this figure. For the
case of this subject, the contrast of 'incongruent vs. neutral’ trials is significant while

"incongruent vs. congruent'" contrast is not.

Up to this point, the main concern was the activation detection problem. In
other words, given a canonical HRF signal model it is checked whether there is activa-

tion or not in the measurements. The complementary problem would be the estimation
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Figure 3.4 An oxy-Hb time series with fitted cognitive waveforms and trend component.

of this HRF signal. To this effect a second GLM was applied where the HRF was mod-
eled as successive time bins, that is, as a finite impulse response filter. In this setting of
the problem, the coefficients of the filter should give the HRF waveform. Note that this
approach does not put any constraints over the HRF, and effectively, it averages the
event-related responses for each subject. Figure 3.5 demonstrates the HRF waveforms
for each type of stimulus averaged over subjects. For most of the channels the end result
is a plausible HRF waveform. We want to examine especially the waveforms acquired
from channels 1-4, since BPE identified channels 1-4 as activated for "incongruent vs.
neutral" contrast and channels 1 and 3 for "incongruent vs. congruent" contrast. The
resulting waveforms from these channels are also consistent with this result. A caveat
is that average waveforms are by no means a direct indication of group activation, but

the consistency between the detection and estimation procedures is worth noticing.

3.3.2.2 Deoxy-Hb results. The analysis of deoxy-Hb signals did not discover as

strong activation patterns as those of oxy-Hb. Figure 3.6 shows the activations for

"incongruent vs. neutral" contrast. In fact, there are activations at the subject level
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Figure 3.5 Estimated hemodynamic response function waveforms averaged over subjects (running
averages over 3 seconds), with hypothetical HRF at the bottom-right.

(Figure 3.6, top row), and these are carried to the group level by FFX and VFX;
however, RFX, MFX and BPE do not identify any of the channels as significantly
activated (Figure 3.6, bottom row). This is a consequence of the fact that deoxy-
Hb exhibits a greater variability among the subjects. To demonstrate this variability,
consider Figure 3.7. This figure presents the subjects’ parameter estimates for the
37¢ channel of deoxy-Hb for "incongruent vs. neutral" contrast and again the 37
channel of oxy-Hb for ’incongruent vs. congruent’ contrast. These combinations were
chosen because deoxy-Hb shows activation for 7 subjects (out of 12) but with no group
activation for RFX, MFX and BPE, whereas oxy-Hb shows activation for 6 subjects
along with group activation by the aforementioned methods. The reason for this lies
in the greater variance (mainly due to the 1°¢ and 3"¢ subjects) exhibited by deoxy-Hb.
The resulting activations of deoxy-Hb for "incongruent vs. congruent" contrast are

presented in Figure 3.8.
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Figure 3.6 Activation patterns for deoxy-Hb for "incongruent - neutral" contrast. Top: Subject
level activations detected by OLS (left) and BPE (right). Middle: Activated subject count (%) for
OLS (left) and BPE (right). Bottom: Group level activations for FFX, RFX, MFX and UFX (left)
and BPE (right).
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Figure 3.8 Activation patterns for deoxy-Hb for "incongruent - congruent" contrast. Top: Subject
level activations detected by OLS (left) and BPE (right). Middle: Activated subject count (%) for
OLS (left) and BPE (right). Bottom: Group level activations for FFX, RFX, MFX and FX (left) and
BPE (right).

3.3.2.3 Relation between hemodynamic and behavioral responses. The re-

lation between hemodynamic and behavioral responses were investigated by finding the
channel-by-channel correlation coefficients between the interference effects measured by
the difference in concentration changes and reaction times of incongruent and neutral
trials. Significant correlation was found for oxy-Hb in the 4 channel (r = —0.57
p = 0.05). The 4™ channel was the most consistently activated channel across sub-
jects. Scatter plot of behavioral vs. hemodynamic response for this channel is shown
in Figure 3.9. Note that, the correlation is negative, i.e., hemodynamic response is
smaller for higher behavioral interference effect. This finding supports the hypothe-
sis that "higher Stroop-specific brain activation leads to more successful inhibition of
competing responses and hence, a smaller behavioral interference effect" [60]. Not very
surprisingly, no significant correlation was found between reaction times and hemody-
namic responses for the "incongruent vs. congruent" contrast of oxy-Hb and for both

of the contrasts of deoxy-Hb.
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Figure 3.9 Correlation between the hemodynamic and behavioral responses for oxy-Hb in the 4th
channel during interference ("incongruent - neutral") condition.

3.4 Discussion

The results corroborate the conjecture that fNIRS data lend itself to multilevel
statistical inference. Consistent activation patterns were observed during Stroop inter-
ference, particularly for oxy-Hb. It may be recommended that application of multilevel
statistical inference to fNIRS data should always include random effects, and MFX or
Bayesian methods may be preferred for this purpose. The problem with fixed effects
models is that it ignores between subject variability and since within-subject variance
is much smaller it becomes possible for the channels to have illusory activation. To

overcome this risk, extensions to FFX| like conjunction analysis, may be pursued [61].

Bayesian methodology may have a number of advantages over classical proce-
dures in analyzing multilevel GLMs. First of all, it can cope better with the classical
problem of within-subject and between-subject variances in a more principled frame-
work [41]. Bayesian analysis also in this work enabled us to include the information

obtained from the rest of the group in the analysis of the particular subject.

Moreover, Bayesian statistics yield posterior distributions for the parameters
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of interest. This enriches our statistical test dictionary, which means that we are no
longer limited with just NHSTP. Hence we are able to test whether the effect is greater
than a meaningful size in relation to the underlying physiology [41]. This is important
because the statistical significance obtained by NHSTP in classical statistics does not
truly reflect the magnitude of the effect |62]. For example, a very small but consistent
effect might be found to be statistically significant. Although, a small but very reliable
activation may be interesting, neuroimaging is generally interested in activations of
nontrivial magnitude, and this speaks for the usefulness of Bayesian inference. The as-
sociated probability, p, of the NHSTP statistic is a conditional probability, p(data|Hy),
Hy being the null hypothesis. If p(data|Hy) is small, this does not necessarily imply
that p(Hyp|data) is small or that p(H;|data) is big, H; being the alternative hypothesis.
Thus, NHSTP does not allow us to ask such questions related with the posterior distri-
bution as "what is the probability that the effect size is bigger than 17" or "what is the
probability that it is 07" or "does the effect explain 10% of the total energy content of
the signal?" This sort of questions become important for fNIRS monitoring of cogni-
tive activity because it is known that, given enough data (in terms of number of time
points, subjects etc.) the probability of false activations increases. Thus, it is desired
to be able to differentiate trivial departures from the null hypothesis from significant
nontrivial effects, and this demands for the probability distribution of the activation
given the data. In this respect, classical statistics falls short of proving or disproving

activation patterns in a "long" and temporally correlated record of an fNIRS signal.

An interesting point is that using noninformative priors carries the Bayesian
inference closer to classical inference. This was also pointed out in [63] in a different
context. The rationale for the use of noninformative priors is that cognitive fNIRS
studies are at their early stage of development and it would be better not to commit
ourselves prematurely; furthermore generally the number of subjects is small so as to
make the influence of the prior a lot significant. One of the goals in this study was
to compare classical and Bayesian inference methods for fNIRS data. Since classical
procedures work with the null hypothesis and ask whether the effect size is greater
than zero or not, the same threshold was also assigned for the Bayesian analysis for

comparison.
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The proposed Bayesian method necessitates the simultaneous analysis of the
data of all the subjects’. Thus, if a new subject is added to the group, it is necessary
to redo the whole analysis. Obviously this poses a problem for fMRI since in this
case there are thousands of voxels, and hence for all of them the analysis must restart
from scratch. Although fNIRS also requires redoing all the calculations, the number
of detectors is two orders of magnitude less, in fact on the order of tens. Moreover, we
make use of a fast iterative scheme, ICM, which substantially reduces the runtime of
the algorithm. During the analysis no contrasts were applied in the intermediate levels
and all the parameter estimates were passed up to the highest level. This enables us
first, to take into account the correlations among the subject level parameter estimates

and second, to make the simultaneous testing of a number of hypotheses.

The multiple comparison problem arising from the simultaneous testing of a
number of channels was tried to be circumvented by Bonferroni correction. It is known
that Bonferroni correction is too conservative, especially when there is spatial corre-
lation between the measurements [64]. A promising method for NIRS signals was put
forward using the false discovery rate procedure [65]. However, as also noted in that
study, multiple comparison correction of multichannel NIRS studies is still an open

problem.

One particular issue that has not been discussed so far is the effect of differential
path length factor (DPF). Although in this study it was kept fixed across subjects (DPF
= 5.93), it is known that DPF may show variations among subjects [32]. However, it
is not possible to estimate the exact DPF for every subject. It was proposed to use
DPF-independent measures in the analysis of fNIRS signals and GLM was put forward
as a candidate for this task [27|. The reason was that the statistics produced by GLM
was independent of the DPF. Relevant to this study is that when we try to combine
the parameter estimations from different subjects this DPF dependency will clearly
affect the results. Despite this fact, it is possible to reduce this effect substantially by
MFX, UFX and BPE type of algorithms. In these algorithms the effect of subjects
on the group results is inversely proportional to their estimation variances. Hence,

this procedure also acts as a normalizing term, and eliminates, in part, the effects of
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DPF variations. RFX, on the other hand, directly calculates group variance estimate
from the variance of subject parameter estimates. Then, the estimated variance will
definitely include both real concentration change variances and also the variations

caused by DPF differences.

The Stroop findings are generally consistent with the literature, though they are
not as strong and conclusive as those of [66], where they showed activation bilaterally for
both oxy-Hb and deoxy-Hb. However, in this study activation was found only for oxy-
Hb in the left lateral prefrontal cortex and there was no activation (at the group level)
for deoxy-Hb. These results coincide more with those of [67], where they also found only
left lateral activation for oxy-Hb and showed that the activations for deoxy-Hb were
much weaker. In a comprehensive review, |52|, it was concluded that the left hemisphere
generally showed more interference than the right. These findings also point to an
important aspect of fNIRS data analysis: The consistencies and controversies between
the results obtained by oxy-Hb and deoxy-Hb. In |27|, using a visual stimulus, it was
concluded that deoxy-Hb is more amenable to GLM. However, in another study, [68|,
it was concluded that cortical activation could lead to different patterns in deoxy-Hb
and was proposed oxy-Hb as the best indicator of regional cerebral blood flow changes.
There were also other findings supporting this hypothesis [67]. On a reproducibility
study of event related fNIRS, it was stated that deoxy-Hb was associated with lower
t-values at single subjects’ level as well as at the second level if compared to oxy-Hb
|69]. In another study on false memory on the prefrontal cortex [4], deoxy-Hb did not
show any significant activations and the authors stated that this might be attributable
to the instability of deoxy-Hb concentration which was largely determined by the wash-
out effect of the regional cerebral blood flow increase [70]. In a simultaneous fMRI-
fNIRS study |71], it was found that oxy-Hb was a more robust hemodynamic signal
and correlated more with fMRI-BOLD response. This was attributed to the lower
signal-to-noise ratio of deoxy-Hb signal. However, in another study [72|, using an
experimental design that increased the signal-to-noise ratio of NIRS signals, it was
found that deoxy-Hb was more correlated with fMRI-BOLD signal. When evaluated
together, these findings point to the fact that although oxy-Hb is more dominantly

labeled as the carrier of cognitive information, the potential of NIRS for measuring
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cognitive activity and the interpretation of deoxy-Hb and oxy-Hb still need further
research. The results of this study indicate that oxy-Hb is more sensitive to regional
blood flow changes in the prefrontal cortex caused by cognitive stimulus. Consistent left
prefrontal activation was found for oxy-Hb during Stroop interference. The activation
patterns at the subject level are more structured and the hemodynamic results show a

better correlation with the behavioral results for oxy-Hb than deoxy-Hb.
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4. GLM ANALYSIS UNDER PARAMETER CONSTRAINTS

One of the most important aspects of GLM analysis is the selection of appropri-
ate waveforms for modeling hemodynamic response function. Canonical HRF (cHRF),
which is composed of the difference of two gamma functions, is commonly used for this
purpose. Since mismatches between the hypothetical and actual waveforms can sub-
stantially decrease the detection performance, some flexibility is allowed in the basic
model in order to better capture the variations in the hemodynamic response. Em-
ploying temporal and dispersion derivatives (TD and DD) along with the cHRF is one
of the most common ways to attain a more robust analysis [55]. Accordingly, the HRF
is modeled as a linear combination of three waveforms. However, even if a successful
waveform modeling is apparently obtained, there is still a concern about the reliability
of the analysis and it should be checked whether it represents a plausible HRF or not.
Obviously if there are no restrictions on the linear combination weights, then unrealis-
tic HRFs may be obtained, and consequently activations may be detected when there

are nomne.

Constraining the basis set for modeling the HRF has been studied using vari-
ational Bayes where basis waveforms were formed via singular value decomposition
of a set of plausible HRF sample waveforms [63]. Then using regression analysis, a
multivariate normal distribution was fitted for the basis weights and this information
was used as prior distribution in the Bayesian analysis. This was a "soft-constraint"
approach in the sense that multivariate normal could not capture all details of the true
distribution. Despite this limitation, this work has shown that constraining the basis
set allowed for superior separation of active voxels from non-active voxels in fMRI data.
The method of constraining the linear combinations of the basis set has also been taken
up in the canonical correlation analysis framework [73|. The limitation of this work,

however, is that only positivity of the linear combination coefficients is required.
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In this chapter, which is based on |74], the problem of doing constrained param-
eter estimation and inference with GLM is studied in a Bayesian framework. Using the
canonical basis set, consisting of the canonical waveform, its temporal derivative and
dispersion derivative, an admissible region is defined in the three-dimensional weight
space, and Gibbs sampling is used to arrive at posterior distributions. More explic-
itly, uniform prior distributions are specified for the parameters. The support of these
uniform distributions represents our a priori knowledge, and thus we are sure that the
parameter estimates belong to the feasible set. Since, a new basis set is not introduced
and the canonical basis set is used, the method is a direct extension of the commonly

used GLM for neuroimaging.

The research for the temporal dynamics of HRF is generally based on fMRI.
There are numerous studies where functional magnetic resonance imaging and near in-
frared spectroscopy data are simultaneously acquired and the estimated hemodynamic
responses are compared |72, 75]. Although there is a commonly accepted canonical
HRF waveform, the instantiations of observed effects can differ in terms of rise time,
undershoot, delay, duration etc. The constrained HRF estimation may be expected to
be more effective for NIRS analysis, on the one hand, by allowing controlled variations
around a canonical HRF that was tailored for fMRI, and on the other hand by leading
to a better assessment of the cognitive activity via fNIRS. In summary, constraining
the GLM may enable us to be flexible enough to cope with variations in the HRF

waveform, but also stringent enough not to allow unrealistic HRF shapes.

4.1 Constraining the Basis Set

The canonical basis set is reproduced in Figure 4.1a, where the peak values of the
waveforms are scaled to unity. Sample HRF waveforms were generated by varying the
coefficients of the two derivative terms in linear combinations. The resulting waveforms
were tested for their plausibility and a tally of the coefficients that satisfied these criteria
was kept. An HRF is shown in Figure 4.1b with the parameters that characterize its

main features. The setting of parameter ranges was based on information gleaned
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Figure 4.1 a) Canonical HRF with its temporal and dispersion derivatives (maximum value scaled
to unity), b) Parameters that characterize the HRF: ¢1: Time to peak, to: Time to undershoot from
peak instant, mi: Magnitude of initial dip, mo: Magnitude of main response, ms: Magnitude of

undershoot.

from the literature on temporal dynamics of the HRF [76, 77, 78] and the work on
constrained basis sets [63]. An alternative might be using a physiological model, like

the balloon model [70], and obtain sample HRFs from this model. The criteria used in

determining the plausible HRF waveforms can be listed as,

e A main response with a peri-stimulus time of 3 — 8 seconds: 3 <t; <8,

e More than one positive peak,

e No more than two negative dips,

e An initial dip with magnitude not greater than quarter of the magnitude of the

onset: 0 < my; < my/4,

e An undershoot after 2 — 8 seconds after the main peak: 2 <ty <8,

e Magnitude of the undershoot not greater than half of the magnitude of the onset:

0< ms < ma/2.

Figure 4.2a shows the feasible region of coefficients of the temporal derivative

(TD) and that of the dispersion derivative (DD). The nonrectangular shape of the
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feasible region indicates that TD and DD coefficients are statistically dependent. Figure
4.2b shows the plausible HRF waveforms obtained by sampling the permissible TD-DD

region.

Since the activation is defined as an increase of oxy-Hb and a decrease of deoxy-
Hb, the coefficient of the cHRF is expected to be positive. The NIRS device measures
the concentration value in molar units, and the coefficient of the cHRF is constrained
to be between 0 and 5 micro molar. This range is broader than typical cognitive
activation magnitudes in the prefrontal cortex found in several NIRS studies |79, 80].
For deoxy-Hb, the time-series can be inverted in sign and the same constraints can be

applied. The constraints on these 3 parameters then define a volume in 3-d space.

4.1.1 Bayesian Analysis of the Constrained GLM

GLM is formulated in the same manner as the subject-level GLM of the previous
chapter, and its details are given in Appendix A. As a reiteration, Y = Xb+ Zh + e,
describes the basic GLM, where Y is the N-sample vector of NIRS data (oxy-Hb or
deoxy-Hb), X is the N x p design matrix, b is the p vector of parameters for effects
of interest, Z is the N x ¢ matrix modeling the nuisance effects, h is the ¢ vector of
parameters for nuisance effects, and e is the N-long noise vector. Y, X and Z are
known and b, h and e are unknown. In the Bayesian analysis of the GLM, priors
are specified for the unknown variables and posterior distributions are derived. The
constraints for b, effectively the priors of b, have already been defined in the previous
section. To complete the Bayesian analysis we have to specify priors for h and e.
Since we have no prior information about nuisance effects, their prior will be set to
uniform distribution: p(h) o uniform. The noise is assumed to be uncorrelated, zero-
mean, Gaussian distributed with variance 2, for which the Jeffreys (noninformative)

prior is used: p(0?) a 072

Using Bayes rule, full conditional posterior distributions
for the variables are found so that Gibbs sampling can be used to generate sample
values from the posterior. At each sampling instance, the feasible intervals for the

elements of the b vector are imposed. Note that the posterior of the b vector is just
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Figure 4.2 a) Feasible values for the coeflicients of the derivative terms. Straight arrows indicate
two instances of admissible waveforms and dashed arrow indicates a non-admissible waveform, b) The

set of plausible HRF waveforms (maximum values scaled to unity).
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the truncated version of the likelihood, since p(b/Y) = p(Y/b)p(b), and p(b) acts like
a range delimiter. We can use the technique introduced in |81] to draw samples from
this truncated distribution: If Fj is the likelihood function for b;, and U is a uniform
(0,1) variate, then b; = F; ' [Fy(a) + U(F;(b) — Fy(a))] is a random variate from the
truncated likelihood (posterior), where the feasible interval for b; is [ab]. The execution

of the Gibbs sampling can be summarized as below:

1. From ¢ = 1 : p, sample b; from p(b;|b_;, h, 0?), where by convention b_; denotes

all the b parameters except the it one,
2. Sample h from p(h|b, o?),

3. Sample o2, from p(c?|b, h).

Since we are assuming additive Gaussian noise, the likelihood function also has a Gaus-
sian form. Hence, the distribution in the first step is a truncated univariate Gaussian;
the distribution in the second step is a multivariate Gaussian and in the last step it is
inverse Gamma distributed. After obtaining the posterior distribution of the parame-
ters given the observations, we can use these posteriors to make inferences about the
parameters and the related events. In the execution of Gibbs sampling, the chain was
run for 10.000 iterations and the first 2.000 iterations were discarded as burn-in. Then,
the marginal posterior distribution can be obtained by smoothing the sample-based

histogram with a Gaussian kernel.

4.2 Experiments

NIRS data were recorded from 15 volunteers (8 male, age 26.5 + 4.7 years) re-
cruited from the university community. Subjects had no reported neurological, medical
and psychiatric disorders. None were taking medications at the time of measurement.

Written informed consent was obtained from all subjects before the measurement. Data
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were obtained from the prefrontal cortex of the subjects during color-word matching

Stroop task |54], whose details are given in the previous chapter.

4.3 Results

To put into evidence the role of constrained GLM vis-a-vis unconstrained GLM
two sets of experiments were ran. These two approaches are denoted, respectively in
a more suggestive way, as the Bayesian approach and the non-Bayesian or frequenti-
est approach. In the first experiment, the algorithm was applied on null hypothesis
data, where we expect the Bayesian approach to yield low significance values while the
frequentiest approach strives to model events even where there are none. Conversely,
the Bayesian approach is expected to yield higher reliability scores on the alternative
hypothesis data, that is, when there is an event. In classical analysis, the effect sizes
for different contrasts are tested against zero. Since in the constrained analysis the
coefficient of the cHRF has already been restricted to be positive, a difference contrast
should be used. On the other hand, since Bayesian analysis gives us posterior distri-
butions, it is possible to define a threshold other than zero, and make inference even
in one stimulus case. In these experiments with artificial and real data, experimental
paradigms with more than one stimulus were used. Inference for activation was based
on the main component (cHRF) while the two derivative terms (TD and DD) modeled
the variations in the basic HRF, that is, the associated t statistic was produced for
cHRF to test the activation. An alternative might be to investigate the total power
explained by the linear combination of the basis functions with an F' statistic. How-
ever, it it known that F' statistic is always less sensitive and ¢ statistic based on the
cHRF is recommended, especially when the shift in the HRF is known to be less than
1 second |82].
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Figure 4.3 a) Histograms of the z-statistics for the unconstrained and constrained analysis from
artificial null data, b) Log probability - Log probability plots for the tail masses of theoretical and
empirical (constrained and unconstrained) cases.

4.3.1 Artificial null data

10.000 artificial null data were generated using Gaussian noise and a number of
trend terms simulating the background activity. A thought-experiment was designed
with two stimuli in an event related setting with inter stimulus interval of 20 seconds.
Forming a design matrix using cHRF, its derivatives and discrete cosine transform func-
tions for modeling the linear trends (nuisance part), the parameters were estimated us-
ing both unconstrained OLS and constrained Bayesian analysis. Finally, the z-statistics
of the contrast between the cHRF parameter values of the two stimuli were calculated.
The z-statistics (or pseudo-z-statistics [63]) were obtained from the marginal posterior
for the constrained case Figure 4.3a shows the histogram of z-statistics obtained for the
artificial null data for the two analysis cases. It can be observed that the z-histogram is
more concentrated around 0 for the constrained case. The reason is that constraining
the basis set penalizes the unlikely parameter values and lowers their significance. The
log-log probability plot in Figure 4.3b shows the probabilities under the tail for a given
z-statistic for both frequentiest (unconstrained) and Bayesian (constrained) analysis.
It may be observed that the empirical frequentiest probabilities are in conformance
with the theoretical probability values, that is, the z-scores one would obtain in pure
noise, whereas the Bayesian analysis produces much smaller probabilities. This means

that constraining the basis set reduces false activations.
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4.3.2 fNIRS data

Reaction times for the neutral, congruent and incongruent trials were 1028.9 &
193.2, 1160.6 + 265.6 and 1260.9 + 242.1 ms, while the error rates were 0.22 4+ 0.86,
1.33 £2.11 and 4.00 £ 4.58, respectively. Since error rates were small, the interference
effect (incongruent - neutral) was calculated only in terms of reaction times. There
was a clear interference effect with p < 0.0001. The difference between the reaction
times of incongruent and congruent trials and congruent and neutral trials were also

significant (p < 0.01).

Since interference effect is known to be well pronounced in Stroop task [52],
which has also manifested itself in the behavioral analysis, it was decided to concentrate
on this contrast for hemodynamic response results. Although NIRS can measure both
oxygenated and deoxygenated hemoglobin, only oxygenated hemoglobin was used, since
the results of the previous chapter showed that oxygenated hemoglobin was a more

sensitive indicator of cognitive activity in the prefrontal cortex during Stroop task.

In the GLM to analyze NIRS data, the design matrix (X') consisted of the cHRF
and its derivatives convolved with the stimulus onset vectors for each type of trial. The
design matrix modeling the nuisance effects (Z) consisted of discrete cosine transform
functions to cope with various low-frequency trends. Incorrect and omitted trials were
modeled separately and included in the design matrix as nuisance effects. In other
words, inference was based on only correct trials. Each channel of each subject was

analyzed individually.

Figure 4.4 shows the histogram of z-statistics for the unconstrained and con-
strained cases for the overall data, 15 (subjects) x 16 (channels), for the interference
effect. It may be observed that, as it was the case with the artificial null data, his-
togram is denser for low z values (-2 to 2) under constrained estimation. The reason
is that constrained linear combinations preclude unlikely parameter occurrences. At
the same time, the constrained histogram has higher absolute z-values at both ends,

since in the case of strong activations and deactivations that satisfy the constraints, our
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method yields lower variance estimates, which in turn causes the significance scores to
increase. Figure 4.5 shows the activation matrix for OLS and Bayesian analysis. One
can observe that the constrained analysis results in some deleted activation cells while
new activations are added. For instance, while frequentiest inference does not result in
any activation for the 11*" subject, constrained analysis identifies three active channels
at the left lateral cortex. Figure 4.6 explains the reason for this phenomenon. The
recording shown is from the 4 channel of the 11" subject. In Figure 4.6a the fitted
waveforms with the unconstrained and constrained approaches are superimposed. The
actual NIRS recording is very noisy and there is a continuous oscillation that hides
the activation. In the unconstrained case, the OLS estimate tries to fit the model
to these oscillations by increasing the derivative terms and suppressing the canonical
HRF'. On the other hand, constrained estimate is not allowed to increase the derivative
terms without limit and finds the best fit that satisfies the constraints. The result is
that, it models the variations in the basic HRF shape, but does not model the spu-
rious oscillations and reveals the activation that OLS was not able to identify. Note
that we are testing for the contrast "incongruent - neutral". Although the difference
between unconstrained and constrained cases seems to be more evident for congruent
blocks, there is a subtle difference for incongruent blocks. The coefficients estimated
for the canonical HRF, temporal derivative and dispersion derivative by unconstrained
analysis for incongruent trials are 0.079, 0.436 and 0.163, respectively. The same co-
efficients are estimated as (0.228, 0.294 and 0.085 by the constrained analysis. Figure
4.6b shows the HRF waveforms generated by these coefficients. Note that the main
response is similar and hence there seems to be only a minor difference between the
two cases in Figure 4.6a. However, the unconstrained analysis produces an implausible
HRF with the coefficient of the cHRF being very small, whereas constrained analysis
captures the same main response with cHRF and cannot increase derivative terms to
make the waveform implausible. Consequently, the tested contrast becomes significant
for constrained analysis. Hence, constraining the GLM improves the estimates in two
opposite directions: It eliminates the activations due to non-sensible HRF waveforms

and it brings forth activations that would otherwise remain hidden.

Figure 4.7 shows the HRF waveforms of incongruent trials obtained from the
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Figure 4.6 (a) Fitted waveforms to a noisy NIRS signal under constrained and unconstrained analyses
(N: Neutral, C: Congruent, I: Incongruent trial blocks) (b) Estimated HRF waveforms for incongruent
stimulus.

activated channels by constrained and unconstrained analysis. It may be seen that most

of the waveforms remain unchanged but the unrealistic HRF shapes are eliminated.

4.4 Discussion

The method presented in this chapter is a direct extension of the classical GLM
analysis with the main difference being the constraints put on the solution space to
ensure that the resulting HRF is physiologically plausible. The Bayesian methodology
enters into the play to constrain the estimation of the parameter vector. It should
be emphasized that the proposed approach does not overlook the importance of the
exploratory methods. Nevertheless, as the name implies, GLM is a model-based ap-
proach and constraining the solution space is a way to ensure that this model really

holds.

In another seminal work [63], a method for constraining the linear combination
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Figure 4.7 HRF waveforms of the incongruent trial for the activated channels obtained by (a)
unconstrained and (b) constrained analysis.

of basis sets using variational Bayes was introduced. In that work, a set of plausible
HRF waveforms were generated and the basis set that best spanned these waveforms
was found. In contrast, rather than developing a new model, an "option" is pro-
posed for classical GLM analysis. In other words, the basis set was considered as
given and then all the plausible HRF waveforms that might be generated with it were
found. Consequently, a "hard-constraint" approach was adopted in the sense that the
prior for the parameter vector is specified as a range-limiting uniform distribution. In
the Bayesian analysis uniform prior distributions or indicator functions give rise to
truncated posterior distributions, and the latter can be easily inferred upon by Gibbs
sampling |83, 84, 85]. In this chapter a simple method was employed to generate sam-
ples from a truncated distribution in univariate cross sections [81]. This allowed us, no
matter how complicated the constrained space is, to implement the Gibbs sampler after
specifying the full conditional posterior distributions of the parameters [83]. Another
implementation of sampling from a truncated distribution is to ignore the constraints
until the end and then use only the values that satisfy the constraints [51]. However,
this scheme becomes very inefficient when the dimensionality of the parameter space

is large.

The whiteness assumption about the noise vector is certainly a simplification.
In a recent study [86], the severity of the effects of non-white noise on the inference

from fMRI signals was reiterated. The characteristics of the noise in fMRI signals is
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well-studied and a number of models have been proposed, the most widely used being
the autoregressive one |87, 88]. However, the noise in fNIRS signals has not been
investigated in detail, yet. It may be conjectured that the models proposed for fMRI
may also be valid for fNIRS. However, within this thesis study we assumed that noise

vector is white and leave the investigation of its characteristics as a future work.

The criteria proposed for constraining the HRF are by no means complete. The
constrained space was tried to keep as flexible as possible but also to respect the main
findings of the related theoretical and experimental studies. In summary, a general
method is proposed to use the domain knowledge in the form of parameter constraints
and incorporate them into the GLM analysis. These criteria can obviously be adjusted

as our knowledge on HRF dynamics improves.
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5. COMPLEXITY ANALYSIS OF fNIRS SIGNALS

The previous chapters investigate the problem of discriminating signal from
noise in a hypothesis-based setting. The significance of some predefinite temporal
components were determined using classical and Bayesian techniques. Although this
approach stands close to human perception and produces well interpretable results, it
is not the only way to search for some patterns in a multivariate time-series data.
Amongst the others, information theoretic complexity estimation methods provide
summary information in the form of quantitative measures. A complexity defition
was put forward for the brain based on its two intervening properties. Neural complex-
ity (Cn) was introduced to reflect the interplay between the functional segregation and
integration within complex dynamical systems, of which neural system is an interest-
ing particular case [89]. In this model, (Cy) is low for systems whose components are
characterized either by total independence or total dependence, and high for systems
which exhibit both specialization and integration. Specialization implies here local

organization of a neural system to accomplish one or more sub-task.

The idea of positioning complexity between the two extremes was also advocated
by other researchers |90, 91|. Excess entropy was proposed to measure the amount of
apparent randomness at small blocks that is explained away by considering correlations
over larger and larger blocks [92]. As will be evident in the following paragraphs this is
the same mechanism used for calculating C'y. An interesting case is the passage from
1-dimension to higher dimensions. Since in 1-dimension there is a natural ordering
of elements, the calculations of entropy and complexity are rather straightforward.
However, in higher dimensions there is no natural ordering of elements and the way
that these elements are brought together also projects additional spurious structure
onto the configuration. This problem was studied using multidimensional templates
moving over the data and it was shown that excess entropy is capable of catching
structures in dimensions more than one |92, 93]. Although not formulated explicitly, Cy

proposes a different way to cope with the problems introduced with multidimensional
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data. C'y considers all possible parsings of the data and calculates the complexity for

each case and takes the average.

Cy was applied to functional magnetic resonance imaging (fMRI) data obtained
during photic simulation of healthy subjects. In this case fMRI measurements from
within the brain showed greater complexity from the same data but sampled outside
the brain [94]. It was also predicted that Cy would be reduced in neurological disorders
where consciousness is reduced. However, testing this conjecture on electroencephalog-
raphy (EEG) data from generalized seizures and postanoxic encephalopathy, it was
found that Cy of the patients was actually higher than the controls [95]. In another
study with EEG signals, neural complexity during a visual oddball task has been shown
to correlate with subject’s cognitive state in a way that depends on the stimulus context
[96]. Neural complexity measure was also applied to magnetoencephalography (MEG)
data in Alzheimer’s disease, and it was found that neural complexity did not decrease
in patients, but that there were differences in the frequency bands between controls and
Alzheimer subjects [97]. When evaluated together, the findings of these works suggest
that although neural complexity is correlated with cognitive activity of the brain, this
relationship may not manifest itself always consistently. A topographical approach to
neural clustering for understanding, in a more intuitive way, the complexity of a graph

has also been proposed [98].

This scheme for studying the neuroanatomical organization of the brain has
later been extended with the introduction of "functional clustering" [99, 100]. A func-
tional cluster in the brain can be defined as a set of neural elements that are strongly
interactive among themselves, but weakly interactive with the rest of the system. A
study with EEG using photic and auditory stimuli showed the existence and different
patterns of functional clusters between normal controls and schizophrenics [101]. In
another study with EEG during viewing a random dot stereogram, it was observed
that brains of the normal controls exhibited greater complexity when they perceived a
3D object than when they did not, and such perceptions also gave rise to a well-defined

clustering pattern [102].
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5.1 Calculation of neural complexity, Cy

Cy was introduced as a tool to solve the long-lasting controversy between the
localizationist and holist views of the brain [89]. Cy is intended to estimate complex-
ity in the sense of information shared among parts of a system and to elucidate the
functional segregation and integration within a unified framework. These two aspects
of a system are characterized by deviations from statistical independence among its
components, which are measured by entropy and mutual information. Accordingly,
highly irregular or highly regular systems will show low values of complexity whereas

systems with both segregation and integration will have large values of complexity.

For a system © with n elementary components, mutual information (MI) be-

tween the jh subset consisting of k elements (©%) and its complement (6 — ©%) is,
MI (60 -6 =H(e})+H(e-ef)-H(®), (5.1)

where H (.) denotes entropy of the system. Integration is the generalization of the
concept of mutual information to multivariate case. Integration of the system O,
denoted as I (©), is defined as the difference between the sum of the entropies of all
individual components {6} considered independently and entropy of the system ©

considered as a whole:
I1(©)= ZH (0;) — H(O). (5.2)

If subsets, ©F, composed of k-out of-n components are considered, the average integra-
tion for these subsets may be denoted as (1 (@f)), where the average is taken over all
n!/n!(n — k)! combinations of £ components. Consequently, the complexity Cy (©) of
a system O is defined as the difference between the values of (I (@?)) expected from a
linear increase for increasing subset size k and the actual discrete values observed (see

Figure 5.1):

Cy () = _Zl (n_1)1(9>—<1(@§)>]. (5.3)
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Figure 5.1 Calculation of neural complexity.

Assuming a multivariate normal distribution integration can be calculated by,
I(©)=—-In|CORR(O)], (5.4)

where CORR (0©) is the determinant of the correlation matrix.

5.2 Determination of functional clusters

A functional cluster is a group of units which are more interactive among them-
selves than with the rest of the system (see Figure 5.2). It can be defined as the ratio
of the integration of the cluster to the mutual information between that cluster and

the rest of the system [99]:

k
cr(e}) = — (;,?(.@(;)_ &) (5.5)
77 J
where CI stands for the cluster index. A cluster merits to be a functional one only if
its cluster index is greater than 1. Since CI is an extensive quantity, that is it grows
monotonically with cluster size, one should normalize it for comparing the significance

of clusters of different size. This normalization can be achieved by generating random
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Figure 5.2 Illustration of functional clustering (image obtained from [100]).

samples with the same cluster size and overall integration but not containing any
functional clusters. Then, a Student’s t-like statistic may be calculated by subtracting
the mean CI of these random samples from the CT of the original data and dividing by
the standard deviation of the CI of the random samples. 1000 random samples were
used in this study and the significance threshold was determined as 0.05. In order to
interpret the pattern of functional clustering using the procedure described in [102],
for each detector the proportion of significant clusters that they were included in was
calculated. Hence, a value between 0 and 1, showing the "probability" of that detector
being a member of a functional cluster, was obtained. This procedure was applied to

each subject and a mean probability value was derived for each detector position.

5.3 Experiments

To evaluate the performance of the information theoretic complexity measures
for fNIRS, data were collected from a group of subjects while doing mental arithmetic
(MA) task. MA was used as a stress inducing (negative emotion) task in several stud-
ies [103|. Relationship between the asymmetry of the prefrontal cortex activity and

heart rate (HR) during MA task has been investigated by near infrared spectroscopy
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(NIRS) [104]. NIRS demonstrated increases of oxy-Hb and total hemoglobin (total-
Hb) associated with decreases of deoxy-Hb in the bilateral prefrontal cortices. More-
over, the prefrontal hemodynamic activity in the high-HR group was predominantly
right-lateralized whereas in the low-HR group the activity was dominated by the left
hemisphere. The idea of searching for relations between brain activity and HR stems
from the fact that several cortical areas are recognized as the regulators of cardiac
performance [105]. At the level of cerebral cortex, it has been shown that HR increase
was predominantly accomplished by right-hemispheric activity [106]. This is the conse-
quence of the fact that sympathetic control which causes the acceleration of the heart
depends more on right hemispheric influences [107]. The research on hemisphere asym-
metry, on the other hand, has suggested that relatively greater left frontal activity is
associated with positive effect, whereas greater right frontal activity is associated with
negative effect [108]. Although the hypothesis that right hemisphere’s influence on
the sympathetic control is secondary to hemisphere differences in emotional functions
has been objected [107], the results of the past research may be summed up as tasks
causing negative emotions should be related with right frontal cortex activation and

should cause an increase in the HR.

The experimental protocol was similar to the one used in [104]. The experiment
begins with 60 seconds rest followed by 60 seconds of task period during which subjects
are asked to subtract a 2-digit number from a 4-digit number as quickly as possible (self
paced). After a recovery period of 90 seconds subjects perform a second task period

again lasting 60 seconds. The experiment ends with a 60 seconds recovery period.

NIRS data were obtained from 14 high school students (7 female, ages 15-16
years). Written consent from all the subjects were obtained from the subjects before
the measurements. This study has been approved by the Ethical Review Board of

Bogazici University.
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5.4 Results

In order to observe MA induced variations in the neural complexity and con-
comitant functional clustering in the brain while seeking to correlate these variations
with the heart rate and to be able to compare the results with those of [104], the
subjects were divided into two groups: Subjects who show a big change in HR during
task periods (high-HR) and subjects who show a moderate change during task periods
(low-HR).

In terms of Cl, one can predict that complexity would increase during task
periods with respect to rest periods; but the question that was sought to be answered
was whether this increase would differ between high-HR and low-HR groups. Another
aim was to explore the brain asymmetry during MA task using functional clustering.
Based on published research results, we hypothesized that functional clusters would be
more localized in the right prefrontal cortex for the high HR group. Whether the same
pattern would be obtained for the low-HR group was the second major question to be

answered.

NIRS parameters and HR indeed exhibit their expected patterns during the MA
task, that is, oxy-Hb, total-Hb and HR all increase and deoxy-Hb decreases (see Figure
5.3. The changes during the second period pf MA task are generally smaller than
the first task period for NIRS parameters for both of the groups whereas HR shows a

different behavior for the two groups.

5.4.1 HR Changes

High-HR and low-HR groups were analyzed separately. Each group consisted
of 7 subjects and Figure 5.4 shows the average HR for these groups for the task and
control periods. Resting HR values are close to each other and HR returns to baseline
values after the task periods. MA task causes an increase in both groups, but with the

low-HR group it is much lower. High-HR group exhibits changes of 27.81 £ 8.21 and
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Figure 5.3 Typical examples of changes in NIRS parameters and heart rate during MA. Shaded
areas denote the task period.

19.80412.58 for the first and second task periods, respectively. Low HR group exhibits
changes of 8.9143.49 and 9.2048.49 for the first and second task periods, respectively.
The difference between the amount of increases is statistically significant (p < 0.001)
for the first task period, but insignificant for the second task period (p = 0.089).
It may be noticed that the increase in HR is lower during the second task period
for high-HR group whereas it is about the same for the low-HR group (although the
differences between the task periods are not statistically significant for both of the
groups). There may be two reasons for this phenomenon: First, since high-HR group
exhibited a great increase, 90 seconds may not be enough for recovery, and therefore
the second task period may take place on an elevated baseline. Although, the actual
measurements show that the HR values return to their baseline values in the recovery
period, this possibility cannot be totally eliminated. Second, subjects may get used
to the experiment and experience less stress during the second task period. On the
other hand, since low-HR group experience a smaller variation, that is the difference
HR increases in the two succeeding periods is less pronounced, 90 seconds pause may

be enough for recovery or the habituation effect (if any) is not observable.
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Figure 5.4 Heart rate changes for low and high-HR groups during each period of the experiment.

5.4.2 Changes in Cy

Cy values were calculated for every subject during each segment of the experi-
ment. Figure 5.5 shows, for oxy-Hb, that although average values of the low-HR group
are slightly lower than those of the high-HR group, they are not different significantly,
in other words, they both increase. The results for deoxy-Hb and total-Hb (not shown)
are also similar. The most striking observation is that C'y increases in the first task
period for both of the groups, but then it gradually decreases. It does not increase
for the second task period and it does not return to baseline values after the tasks
during the recovery periods. Another observation is that low-HR group exhibited a

lower value of Cy already at the first rest period.

5.4.3 Functional Clustering

In [104], it was shown that MA task induced activity was right lateral for high-
HR subjects and left lateral for low-HR subjects. To evaluate the lateralization of the
brain within the information-theoretic framework, the functional clusters were iden-
tified during the task periods. Figures 5.6 and 5.7 picture the functional clusters for
oxy-Hb and deoxy-Hb, respectively. High-HR group showed a right-lateral clustering

pattern for oxy-Hb during the first task period with small clusters in the medial parts;
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Figure 5.5 Change of neural complexity for oxy-Hb during each period of the experiment.

this right-lateralization continues during the second task period but in a more confined
region and the clusters in the medial regions totally disappear. Low-HR group showed
right medial clustering in the first task period and in the second task period new clus-
ters emerge at the right lateral prefrontal cortex. Consequently, although functional
clusters cover a smaller area during the second task period for the high-HR group,
clusters become more wide-spread for low-HR group. However, all of the activity is

always in the right hemisphere.

For deoxy-HB, clustering behavior of the brain during MA is different. High-HR
group has right medial clusters both for the first and second task periods. The cluster
becomes wider and stronger for the second task period. Omne important difference
observed with the low-HR group was that this group showed a left lateral clustering
in the first and second task periods in addition to right medial clusters. Interestingly,
the right medial cluster is stronger in the first task period and becomes weaker in the

second task period which is accompanied by the widening of the left lateral cluster.
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Figure 5.6 Functional clusters in the prefrontal cortex for oxy-Hb a) First task period high-HR
group, b) Second task period high-HR group, c¢) First task period low-HR group, d) Second task
period low-HR group.

Figure 5.7 Functional clusters in the prefrontal cortex for deoxy-Hb a) First task period high-HR
group, b) Second task period high-HR group, c¢) First task period low-HR group, d) Second task
period low-HR group.



22

5.5 Discussion

The results confirm some of our predictions, while contradict some others. MA
task caused a stress for all the subjects as evidenced by increases in HR during task
periods. The NIRS parameters, in accordance with the HR values, albeit different,
show changes for both of the task periods. However, Cy does not follow the same
pattern. It increases for the first task period and then follows a continuously decreasing
trend. This is an unexpected result since we were hypothesizing that neural complexity
should always be higher during the task periods compared to rest conditions. This
type of discrepancies was also reported by other researchers using the Cy |95, 97,
102|. In [97], an interesting result was also obtained such that the Cy of the recovery
period at the end of the experiment was calculated to be higher than during the task
period. These researchers put forward the possibility that subjects’ brains might well be
concentrated on some problems during rest which caused a higher complexity than the
task. This point is also related with the much discussed "baseline" activity [109, 110].
Cy is related with the organization of the brain and is not dependent on the signal
magnitudes. Hence, these results assert that although the magnitude of the signal
increases for the second task period, organization of the brain does not become more

complex as measured by the Cy metric.

Another point is that there were no significant differences between low-HR and
high-HR groups during both rest and task periods. To compare this finding, we cal-
culated for oxy-Hb and deoxy-Hb the average concentration change over all detectors
during task periods. There was a significant difference (p < 0.05) between the groups
for oxy-Hb during the first task period (0.71 + 0.55 vs. 0.16 £ 0.37). The difference
during the second task period was not significant. Deoxy-Hb concentration changes

were not significantly different between the groups, either.

These findings on C'y may open a path to circumvent one of the major drawbacks
of NIRS, that is, contribution of the extracerebral tissues when trying to observe the
brain. HR changes are directly reflected on the circulation in the skin. Since the

light of NIRS probes skin, scalp, cerebrospinal fluid and cerebral cortex, it is not
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easy to extract the signal coming solely from the cortex. When the analysis is solely
based on concentration changes, there is always the risk of identifying some "skin
activation" as "cognitive activation." However, this risk may be lowered if concepts
like neural complexity, which are not directly related to the magnitude of the signals

but organizational aspects of this bundle of signals, are used.

Functional clustering analysis shows that there is a right dominance of the hemi-
spheric activity during MA, for both of the high-HR and low-HR groups, but with the
subtle difference that high-HR group shows a clear right lateralization whereas the
low-HR group has strong clusters in the medial regions. The clusters become weaker in
the second task period for high-HR group, while it becomes wider and stronger for the
low-HR group. It may be conjectured that high-HR group exhibits an "exaggerated"
response during the first task period which is lowered during the second task period
with the effect of getting used to the experiment. However, the low-HR group does
not show the same habituation effect. There is a consistent right medial clustering
for deoxy-Hb for both of the groups for both of the task periods. It is interesting to
note that there are also left lateral clusters for low-HR group. Previous research has
shown that high-HR group has a right lateral activity whereas low-HR group has a
left lateral activity [104]. Although our methods do not allow us to make a direct
comparison with these findings, the left lateral clusters may have a similar origin. On
the other hand, direct projections from the medial prefrontal cortex to brain stem and
spinal regions which are associated with sympathetic vasomotor function have already
been described [105|. These pathways have been implicated as mediating the cortically

evoked circulatory responses.

In a review study [111], it was pointed out that a simple left/right dichotomy
with respect to hemispheric specialization for the autonomic component of the emo-
tional response was probably untenable noting that cortical and subcortical asymme-
tries in the central and autonomic nervous systems processing of emotional information
might be reversed. Hence, hemispheric asymmetry should be treated with reservations

and it should be avoided to make clear cut conclusions.
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6. CONCLUSIONS

The previous three chapters tried to make a contribution to the debate on
the capability of fNIRS for measuring cognitive activity. It would be appropriate to
note that fNIRS has some inherent drawbacks which cannot be solely circumvented
by signal processing techniques. However, effective algorithmic tools may be valuable
in extracting the information carried by the signals and interpreting them. Owing
to the literature on neuroimaging, this thesis study put forward statistical inference
methods as the best candidate for this purpose and investigated their feasibility. It was
found that MFX or Bayesian analysis of hierarchical GLMs may be used for identifying
cognitive activity by fNIRS. This is the main conclusion of this study. This finding
was then extended in two related routes. In the first route, constraining the GLM
for sensible HRFs was investigated and it was shown that by using simple Bayesian
techniques it became possible to make sure that the outcome of the analysis is a
plausible HRF. This was important because identifying activations which are unrealistic
clearly increases false positives of the analysis which is the greatest source of error in
neuroimaging. The second route departed from hypothesis-based statistical inference
and an introduction to the application of information-theoretic measures to fNIRS was
made. Promising results were obtained showing that in the brain some organizational

differences take place during cognitive activity which can be detected by these measures.
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7. PERSPECTIVES

In the Introduction, it was stated that statistics is an effective way to separate
noise from signal as long as the assumptions hold. Hence, the assumptions of this study

also constitute the research areas of future work.

First of all, the assumption of whiteness about the noise may be reconsidered
and a study on the temporal and spatial characteristics of the noise may be carried

out. The popular autoregressive models may be investigated as the begining step.

The application of GLM is univariate in this study. This means that spatial
dependencies between the detectors are not taken into account. It is known that this
also causes the multiple comparison problem. By also exploiting the fact that f{NIRS
generally has a small number of detectors, a multivariate analysis method may be
developed. Consequently, the multiple comparison problem for fNIRS signals may also

be studied.

A strong assumption of the thesis is linearity. The linearity assumption is under
investigation both for fNIRS, [112, 113, 114, 115|, and fMRI, [116, 117]. Consequently,
a future study may be planned investigating the validity of linearity assumption and

nonlinear aspects of {NIRS signal.

An HRF model which was offered mainly for fMRI is used in this study. The
accurate estimation of the HRF as measured by fNIRS remains as a further study.
An exploratory approach may be adopted for this purpose. Bayesian and blind source

separation techniques may have an important role in this task.

Another assumption which simplifies the analysis is that the hemodynamic re-
sponse is constant in time. However, there are studies which puts this assumption

under discussion [118, 119]. Hence, a model with a temporally varying HRF may be
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developed to capture this time-dependent characteristics of hemodynamic response.

These suggestions for future work clearly imply a more sophisticated model.
It may be conjectured that Bayesian methodology may manifest its potential better
with these types of models. Accordingly, it may be suggested to concentrate more
on Bayesian methods and develop tools that will better capture the characteristics of

fNIRS data.

The suggestions till now are related with statistical inference framework. The
usage of information-theoretic measures for {NIRS signals in this study should be con-
sidered as preliminary. Therefore this introduction may be enriched with additional
methods. The Renyi entropy which was proven to be useful for EEG signals, [120] and
which was partly investigated in the fNIRS framework, [121], may provide an initial

starting point.

This thesis study limited itself with the observation of basic cognitive tasks.
This was mainly because a particular goal of the study was to validate that fNIRS
had the capability to measure cognitive activity and it would be better to concentrate
on the basic functions. However, future work should definitely reconsider this point
and try to find the best tasks that f{NIRS is suitable for observing. BCI and emotion
processing may open interesting study areas in this sense, since these are the tasks that

the subjects should feel the least disturbance.

Improvement of the capabilities of fNIRS may come with the collective effort of
different disciplines. This thesis study stood on the side of signal processing and tried
to develop some basic routines for fNIRS signal analysis. Definitely, a more sophis-
ticated integration between hardware design, algorithm development and theoretical

and experimental physics will bring greater achievements.
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APPENDIX A. STATISTICAL INFERENCE TECHNIQUES

The simplest structure of a hierarchical GLM is a two-level model which is used
for determining average group activation. In a two-level hierarchical GLM (see Figure

A.1, the first level models within-subject effects:
Yk = Xkbk + Zkhk + e (Al)

where Y} is the N-sample fNIRS data for subject k£, X} is the N X p design matrix
for the parameters of interest, b, is the p vector of unknown parameters, Z; is the
N x m design matrix for the nuisance parameters, h; is the ¢ vector of unknown
nuisance parameters, and e is the N-long error vector. Parameters of interest consist
of cognitive components and nuisance parameters consist of some covariates, metabolic
oscillations etc. We are assuming that the nuisance parameters are subject-specific
whereas cognitive parameter vectors of individual subjects are representative samples

from some population. Thus we proceed with,
b, = ngbg + egk (A2)

where X, is the p x ¢ design matrix linking the subject’s parameters to the group
parameters, by is the ¢ vector of group parameters, and e, is the p term error vector.

In lieu of expression Eq. A.2, the group-level model can be written as,
b= X,b, + e, (A.3)

where b is the Kp dimensional concatenated parameter vector, X, is the Kp x ¢ group-
level design matrix: X, = | X3 X, - Xy T, where, b, is the ¢ vector of group
parameters and e4 is the Kp error vector. Note that, we carried all the parameters from
the subject level to the group level, i.e. no contrasts were applied at the subject level.
Thus, group-level model is inherently multivariate since it brings together the subject-
level estimates (a vector) to arrive at a group decision. Define the matrix B such that

T
its k' row is constituted of the k" subject’s parameters: B = | pT pI ... pL
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If we introduce the vec(.) operator, which stacks the columns of its matrix argument

from left to right into a single vector, one can simply write b = vec(BT). Then,
B=X"B,+ E, (A.4)

where X" is the K x r group-level design matrix, By is the r x p matrix of group
parameters, and £, is the K x p error vector. Note that, b, = vec(B,), e, = vec(Ey),
and r X p = ¢q. Generally the group-level design matrices are simple. For example for
average group activation, X, = 1x ® [, and X" = 1k, where 1y stands for a K vector
of 1’s and ® is the Kronecker product. In this case, p = ¢ and r = 1. The probability
distribution function (pdf) of the subject-level error vector is assumed to be Gaussian
with no temporal correlation, that is, cov(e;) = o7 x Iy. Since the group-level model
is multivariate, the definition of the covariance for the error matrix should take into
account the two sources of variability: within and between subjects. Consider the

following definition of covariance for the error vector in Eq. A.3:
cov(e,)) =P X

where ® is the between-subjects covariance matrix, and > is the within-subject covari-
ance matrix. Recall that we are now dealing with parameter estimates of the subjects.
Hence, "within" and "between" refer to the parameters, unlike the first level in which
"within" refers to the subjects’ time series. Since we are assuming that the subjects are
drawn independently and identically from a population, ® is a K x K identity matrix,
that is, ® = [, whereas the p x p within-subject covariance matrix . is some positive
definite matrix. We have no prior information about ¥ and hence we will assume that

it has a general structure. Define X = Cj, where Cy is positive definite. Consequently,
cov(ey) = Ik ® Cy = Cq (A.5)

Having defined the variables we may proceed with the steps specific to classical and

Bayesian inference.
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Figure A.1 Two-level GLM for average group activation.

A.1 Classical Inference

For the ease of expositions, begin by concatenating the design matrices and
T
parameter vectors and define, X = [ X,  Z } ,and by = [ AN Y } Ordinary

least squares estimate of 0f, is given by,
b = (X{7X5) T XV (A.6)
This estimate has variance,
cou(l) = oF (X7X5) (A7)

where the noise variance, o2, is estimated from the residuals. In the summary-statistics
approach to multilevel GLM, the second level of the model takes as input the estimates
of the first level but not the true (and unobservable) parameters [122|. Hence, the
second level (Eq. A.3) model is modified as:

b= Xgby + ey + (b—b) = Xgby + &, (A.8)
Then, the variance of the error vector, é4, is,

V; = diag ((o2(X{"X5)™")) + 02C,, (A.9)
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The first component of the variance specifies the within subject variance-covariance of
the parameter vector (fixed effects) and the second component indicates the between
subjects variance (random effects). Since, generally the desired inference is on a partic-
ular contrast of parameters, cby, b becomes Z;cont = { 061 d}K ' .. Subject-level

error variances become then,
A -1
cov (cbk) = ojc (X,ﬁTX,ﬁ) cr (A.10)

and C, has a simple form, typically Ix. Summary-statistics MFX procedure accounts
for both of these sources of variance whereas FFX and RFX ignore the second and first

components of the variance, respectively.

A.2 Bayesian Inference

To derive the equations for Bayesian inference we will begin from Eq. A.1, Eq.
A.2, Eq. A.3 and Figure A.1. The conditional posterior pdf’s can be written using the

Bayesian rule (posterior « prior x likelihood):

p (bl M,r0.) a p(be|M, by, Cy) p (YelM, by, by, 0F) | (A.11)
p (he| M, r0.) a p (| M) p (Ve M, by, g, 07) (A.12)
p(aﬂM,r.v.) ap(a,ﬂM) p(Yk|M, bk,hk,ag), (A.13)
p(bg|M,r.v.) o p(by| M) kle[:Kp(bHM, by, Cy) (A.14)
p(Cy|M,rv.) ap(C,/M) kle[:Kp(bﬂM,bg,Cg). (A.15)

where r.v stands for remaining variables. We need to specify prior distributions for hy,

o2, by, and C, to be able to derive conditional posterior pdf’s. Since prior information
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about the distributions of these variables is typically not available, we decided to use
noninformative priors. Note that we do not have to specify priors for subject-level
parameter estimates, by, since the group parameters in the model hierarchy act as the

priors of subjects’ parameters.

The conditional posterior of subject level parameters depend on both subjects’
data and group level parameters. If we write Eq. A.11 explicitly,

p (b M, rv.) o [Col ™M exp{— (bs — Xgrbg)" Cyt (b — Xiby) | (A.16)

g

XU;;N/z exrp {_ (Ve = Xabi — Zhi)" (i — Xibi — Zihy,) /U’z} '

The conditional posterior of subject level parameters are the product of two Gaussian
distributions, hence they are also Gaussian. Actually, subjects’ parameters are esti-
mated from data and instantaneous group parameter estimates inversely weighted with

their corresponding variance estimates.

The noninformative prior for nuisance parameters are the uniform distribution,

and consequently their conditional posterior is just the likelihood term:

P (hk|M, ’f’.’U.) (6% O'k_N/2 exrp {— (Yk — Xkbk — Zkhk)T (Yk — Xkbk — Zkhk) /0‘%} . (Al?)

The noninformative Jeffreys prior for subject level error variance is, p (0| M) o 05, 2.

Consequently, we can write Eq. A.13 as,

D (0,%|M, r.v.) «Q U,:(NH)/Q exp {— (Ve — Xpbp — Zkhk)T (Y — Xpbr — Zihy) /a,%} )
(A.18)

Hence, conditional posteriors for subject level variances are inverse Gamma.

Since the noninformative prior for group level parameters is the uniform distri-

bution, the conditional posterior of them may be written as,

p(bg|M,rv.) o |Ca| ™ exp{— (b— Xzb))" C5" (b= Xyby)}, (A.19)
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which is a multivariate Gaussian distribution.

Cy models the dependencies among the elements of the subject level parameter
estimates. The noninformative prior for group level error variance is, p (Cy|M) a |Cy| ™.

The conditional posterior may be written as,
T
p(C,IM) a |Gy S cp {t'rC’g_l (B-x7B,)" (B- X;”Bg)} . (A20)

Finally, group covariance matrix has conditionally an inverse-Wishart distribution [51].

The consequence of assuming Gaussian distributions for noise vectors and using
noninformative priors is that conditional posterior pdf’s have analytical forms whose
modes can be easily calculated. Thus, we may proceed with an algorithm like iterated
conditional modes (ICM) [50]. Beginning from some initial values we may cycle through

the modes until convergence. The algorithm is summarized below:

b= (C; + o X X0) (G + 0 XE (Vi — Zuhw) (A.21)
~ -1
he = (ZE20) 28 (Vi = Xy, (A.22)
o (Yo — Xoby, — Zihi)" (Y — Xiby — Zihy,)
52 = Y , (A.23)
b= (X7C5'X,) XTCEM, (A.24)

T
Cy = (B o B;()' +(f = Bg)‘ (A.25)
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