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ABSTRACT

MULTIMODAL SEGMENTATION OF BRAIN MR IMAGES
THROUGH HIDDEN MARKOV RANDOM FIELDS

Segmentation of brain MR images, especially into three main tissue types: CSF,
GM and WM, is an essential task in clinical applications as it aids surgical planning,
computer-aided neurosurgery and diagnosis. However, every single MR image contains
degenerative components such as noise and RF inhomogeneity which dramatically re-
duces the accuracy of the results of automatic post-processing techniques.

A number of methods are proposed in the literature for tissue segmentation of
brain MR images. Among these, Otsu thresholding, ML estimation and MRF model
based methods are the ones that widely used. Moreover, 2D segmentation of True−T1

and True− T2 images almost completely removes the artifacts mentioned above hence
results in the best results ever reported. However, the required scan time of the method
and the expence of the process makes this method inapplicable to clinical applications.

In this study, three di�erent segmentation schemes for brain MR images, namely
Otsu thresholding, ML classi�cation and MRF model based segmentation, are analyzed
taking the segmentation results of 2D segmented true parameter images and a novel
multivariate MRF segmentation method using T1 and T2-weighted images is proposed.

As a result, the performance of the segmentation methods when two dimensional
data were used increased. Moreover, multivariate HMRF model-based segmentation
method achieved the best results.

Keywords: Magnetic resonance imaging, Otsu thresholding, ML classi�cation, MRF
theory, multivariate segmentation.
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ÖZET

BEY�N MR �MGELER�N�N G�ZL� MARKOV RASGELE
ALANLARIYLA ÇOK DE���KENL� BÖLÜTLENMES�

Beyin MR imgelerinin, özellikle üç ana doku tipi olan CSF, GM ve WM'a,
bölütlenmesi, uygulaman�n cerrahi planlama, bilgisayar destekli nörocerrahi ve tan�daki
katk�lar�ndan dolay�, klinik uygulamalarda vazgeçilmezdir. Bununla birlikte, her bir
MR imgesi otomatik sonradan i³leme tekniklerinin sonuçlar�n�n hatas�zl�§�n� çarp�c�
ölçüde dü³üren gürültü ve RF inhomojenligi gibi bozucu bile³enler içermektedir.

Literatürde beyin MR imgelerinin bölütlenmesi için birtak�m metotlar öner-
ilmektedir. Bunlar aras�nda Otsu e³iklemesi, ML ve MRF modele dayal� metotlar en
çok kullan�lanlard�r. Ayr�ca gerçek T1 ve T2 görüntülerinin iki boyutlu bölütlenmesi
yukar�da bahsi geçen bozulmalar� neredeyse tamamen ortadan kald�rd�g� için ³u ana
kadar bildirilmi³ en iyi sonuçlar� vermektedir. Fakat, metot için gereken tarama zaman�
ve sürecin masraf� bu yöntemi klinik uygulamalar aç�s�ndan uygunsuz k�lmaktad�r.

Bu çal�³mada üç farkl� bölütleme düzeni, s�ras�yla Otsu e³iklemesi, ML s�n��and�rma
ve MRF modele dayal� metot, gerçek de§i³kenli imgelerin iki boyutlu bölütlemesi baz
al�narak incelenecek, T1 ve T2 a§�rl�kl� imgeler kullan�larak yeni çok de§i³kenli MRF
bölütlenme metodu arz edilecektir.

Sonu³ olarak, iki boyutlu veri kullan�m�, bölütlenme algoritmalar�n�n ba³ar�m�n�
artt�rm�³t�r. Buna ek olarak, çok de§i³kenli HMRF model tabanl� bölütlenme en
ba³ar�l� bölütlenme sonuçlar�n� vermi³tir.

Anahtar Sözcükler: Manyetik rezonans görüntüleme, Otsu e³iklemesi, ML s�n��and�rma,
MRF teori, çok de§i³kenli bölütlenme.

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2007For Evaluation Only.
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) provides detailed images using nuclear mag-
netic resonance (NMR) principles, and is used for both brain and body human studies
[1]. It has several advantages over other imaging modalities enabling it to provide
three-dimensional (3D) data with high soft tissue contrast. However, amount of data
is far too much for manual image analysis, and this has been one of the biggest problems
in the e�ective use of MRI. For this reason, automatic or semi-automatic techniques of
computer-aided image analysis are necessary. Segmentation of MR images into di�er-
ent tissue classes, especially gray matter (GM), white matter (WM) and cerebrospinal
�uid (CSF), is an important task in medical applications [2]. That is because, the
quantitative assessment of brain tissue volumes plays an important role in diagno-
sis, surgical planning, monitoring the clinical outcome and treatment e�ects in many
diseases, such as Alzheimer disease, multiple sclerosis, schizophrenia, alcoholism and
AIDS-related dementia.

A wide variety of approaches have been proposed for brain MR image segmen-
tation, such as clustering methods, histogram-based methods, region-growing methods
and the statistical ones. Among these, statistical methods, especially the parametric
ones, are widely employed in the literature [3, 4]. "This type of method labels pixels
according to probability values, which are determined based on intensity distribution
of the image. With a suitable assumption about the distribution, statistical approaches
attempt to solve the problem of estimating the associated class label, given only the
intensity for each pixel. Such an estimation problem is necessarily formulated from
an established criterion". Maximum a posteriori (MAP) or maximum likelihood (ML)
principles are two such methods adopted for this kind of applications. "But before those
criteria can be assessed, the formula for the density function of the pixel intensity has
to be chosen carefully [5]. Finite Mixture (FM) models, in particular �nite Gaussian
Mixture (FGM) model when the Gaussian likelihood distribution is assumed [6, 7], is
one of the most widely used models in segmentation. FM models have a number of
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elegant features and are mathematically simple. However, being a histogram-based
model, the FM has an intrinsic limitation - spatial information is not taken into ac-
count because all the data points are considered to be independent samples drawn from
a population" [2]. Because of this limitation, the FM models work well on the images
with low levels of noise; unfortunately, this is often not the case with MR images due
to artifacts such as the partial volume e�ect and bias �eld distortion. Under these
conditions, FM model-based methods come up with unaccurate segmentation results
and any other method which resolves partial volume e�ects and bias �eld distortion
problems should be considered.

In order to cope with this problems the use of HMRF models were adressed in
[8, 9, 10], which are stochastic processes generated by a MRF whose state sequence
cannot be observed directly but with the help of some observed values, such as pixel
intensities in our context. The importance of the HMRF model derives from MRF
theory, in which the spatial information in an image is encoded through the relationship
among neighboring pixels. By adopting such a constraint other than just using the
intenstiy values, the expectation of the neigboring pixels to be the member of the same
class increases.

Further a new approach [11] addresses the degenerative e�ect of bias �elds in
MR data. In that approach one gets eight scans of the same slice for eight di�erent
parameter sets and �ts a curve using the intensities of each pixel according to the
theoretical intensity equation and �nds global parameters, namely true-T1's and true-
T2's. These true-T1 and true-T2 values for each pixel constructs true-T1 image and
true-T2 image, respectively. All in all, the result is a 2D image from a total of eight
images which eliminates the bias �eld e�ect greatly. However, the time required to
get these images from the patient, and the expense of the scan makes that method
unfeasible for clinical purposes. A more comprehensive explanations of the methods
will be given in the next section.

Taking the aforementioned disadvantages of the methods above into account, a
robust fully automatic and reliable method with a short data acquisition time is in-
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evitable. The proposed method in this thesis is the use of HMRF model in segmentation
with the probabilistic information coming from just two of the images corresponding to
two di�erent parameters sets. This method greatly reduces the scan time and expenses
with a comparable success in segmentation results.

All the methods in this thesis were implemented in C++ using Microsoft Visual
Studio 8. For reading images in DICOM format, ITK ( Insight Tool Kit ) was used.
For the visualization of images VTK ( Visualization Tool Kit ) was used. These kits
can be found in www.itk.org and www.vtk.org, respectively.

In Chapter-2 signal intensity artifacts on MR data, ML classi�cation and the
calculation of true parameter images will be discussed. Chapter-3 gives the mathemat-
ical background of MRF theory and HMRF models in image analysis. In Chapter-4
segmentation results corresponding to di�erent classi�cation algorithm will be given
with the quantitative analysis of the segmented images. Chapter-5 discusses the re-
sults in detail and o�ers new methods for future work. Appendix-A is the proof of
Levenberg-Marquardt algorithm used in the calculation of true parameters of the im-
ages and Appendix-B gives the mathematics underlying Otsu thresholding.
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2. BACKGROUND

In this chapter, bias �eld and its e�ects on image and image processing tech-
niques, ML classi�cation and HMRF models and segmentation using true parameter
images will be covered in detail.

2.1 Image Artifacts in MRI

Although being one of the most popular imaging techniques of today's tech-
nology, MR data still su�er from some signal intensity artifacts which in some cases
greatly reduces the image quality. These artifacts can be divided mainly into three
cathegories.

First of them is the main magnetic �eld distortion. This artifacts are the results
of the inhomogeneities in B0 �eld. The distortions can be spatial, intensity or both.

Secondly, the problems in the gradient �eld coils creates the gradient �eld ar-
tifacts in the image. An inhomogeneity along the gradient direction or the abnormal
currents passing through the coils are the underlying factors of such distortions.

Thirdly, bias �eld, known as RF (B1) inhomogeneity is the presence of an un-
desired variation in signal intensity across an image. The cause is either a nonuniform
B1 �eld or a nonuniform sensitivity in a receive only coil. Some RF coils, such as
surface coils, naturally have variations in sensitivity and will always cause bias �eld to
be present in the image. The presence of this artifact in other coils may be due to the
failure of an element in the RF coil or the presence of a metal object in the body [11].
Bias �eld is the most important signal intensity artifact in MRI as it is present in all
data and signi�cantly reduces the performance of post processing applications. Thus,
we will concentrate on the reduction of this artifact in the following sections.
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Figure 2.1 Bias Field Distortion in T1-Weighted Phantom Scan.
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Figure 2.2 Intensity Pro�le.
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Figure 2.3 T1-weighted MR Image.

In Figure 2.1 it is easy to visualize the e�ect of bias �eld distortion. The �gure
is a scan of homogeneous phantom which is a standard object used to measure the
degree of distortion in the machine. The inhomogeneity in the slice is obvious. The
intensity inhomogeneity can be better visualized if one plots the intensity values of the
pixels in just one row or column. The intensity pro�le for the vertical black line in the
�gure can be seen in Figure 2.2. Figure 2.3 is a T1-weighted MR head scan. The pixel
intensities corresponding to the horizontal black line are plotted. The inhomogeneity
in Figure 2.4 is the bias �eld e�ect on the MR data.

The most intuitive approach to intensity inhomogeneity correction is the use of
high-pass �lter for smoothing. This approach assumes that intensity inhomogeneity
is a slowly varying, low frequency signal which can be eliminated by high pass �lters.
However, since the imaged objects themselves usually contain low frequencies which is
obviously the case for MR brain scans, �ltering methods often fail to produce mean-
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Figure 2.4 Intensity Pro�le.

ingful corrections. In Dawant et al (1993), bias �eld is estimated by �tting splines to
the intensities at points selected on the images. This process again fails for compli-
cated RF distributions. The information minimization technique (Likar et al 2001), by
which the bias �eld is modeled by polynomials, has proved to be robust and accurate.
However, if higher dynamics are present in the bias �eld, the order of polynomials has
to be raised to 6 or more which in turn increases the number of parameters which
should be optimized during the process, which makes optimization very di�cult and
time consuming [12]. In [12], a nonparametric method combining the intensity and
spatial information is proposed. This method is proved to be accurate for even higher
dynamics in the bias �eld but is a separate process from segmentation and depends
on the selection of three di�erent parameters used in correction. This usually requires
intervention of the operator during the correction process.
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2.2 ML Classi�cation

Maximum likelihood classi�cation is one of the most widely used techniques in
segmentation problems. It is a popular statistical tool used for �tting a mathematical
model to data. Its use in image segmentation is explained below.

Let L and D be two alphabets;

L = {1, 2, ...., l}, D = {1, 2, ...., d}. (2.1)

Let S = {1, 2, ...., N} be the set of indexes and R = {ri, i ∈ S} denote any
family of random variables indexed by S in which each random variable Ri takes a
value ri in its state space. Such a family r is called a random �eld. The joint event
(Ri = ri, ...., RN = rN) is simpli�ed to R = r where r = {r1, ...., rN} is a con�guration
of R corresponding to a realization of this random �eld. Let X and Y be two such
random �elds whose state spaces are L and D, respectively, so that for ∀i ∈ S we have
Xi ∈ L and Yi ∈ D. Let x denote a con�guration of X and X be the set of all possible
con�gurations so that;

X = {x = (x1, ...., xN) | xi ∈ L, i ∈ S}. (2.2)

Similarly, let y be a con�guration of Y and Y be the set of all possible con�gu-
rations so that;

Y = {y = (y1, ...., yN) | yi ∈ D, i ∈ S}. (2.3)
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Given Xi = l, Yi follows a conditional distribution as;

p(yi | l) = f(yi; θl), ∀l ∈ L, (2.4)

where θl is the set of parameters. For all l, the function family f(·; θl) has the
same known analytic form.

Using Eq 2.4 with Bayes' Theorem yields;

p(l | yi) =
p(yi | l)p(l)

p(yi)
. (2.5)

In Eq 2.5, p(yi) is any constant in any case so, can be dropped. Moreover,
although it is not the case for brain MR images, p(l)'s for each tissue types can be
taken the same so this term can be dropped, too, resulting in;

p(l | yi) ∝ p(yi | l). (2.6)

Thus, for a given pixel intensity, ML classi�cation estimates the class label
according to the following criteria;

x̂ = arg max
l∈L

p(yi | l). (2.7)
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where x̂ is the estimated class label corresponding to the pixel i with intensity
value yi.

In Eq 2.7 Gaussian distributions are used for almost every application. That is;

p(yi | l) = g(y; θl) =
1√
2πσ2

l

exp

(
−(y − µl)

2

2σ2
l

)
. (2.8)

where θl = (µl, σl) is the parameter set for pixel i. In the parameter set µl

denotes the mean and σl denotes the standard deviation of the class l.

2.3 True-T1 and True-T2 Images

Recently a novel approach for the elimination of RF coil inhomogeneity artifacts
is proposed that depends on true-T1 and T2 images instead of the weighted MR images
[11]. The method relies on data acquisition at di�erent TE and TR values.

2.3.1 Data Acquisition

Calculation of true-T1 and true-T2 values for brain tissues requires the acquisi-
tion of images at di�erent imaging parameters.

Signal intensity in MRI for spin-echo sequence can be expressed as;

AE = M0
z

(
1− e−TR/T1

)
e−TE/T2 , (2.9)
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Figure 2.5 T1 Relaxation Characteristic Curve.

where AE is the signal intensity acquired, M0
z is the proton density, TR is the

repetition time and TE is the echo time.

For the calculation of T1 values, �rst of all, a short TE relative to the T2 values
of the tissues must be selected in order to eliminate T2 e�ect on the images. This kind
of a image is referred to as T1-weighted MR image.

With a short TE duration, the signal intensity reduces to the following;

AE = M0
z

(
1− e−TR/T1

)
. (2.10)

The exponentially increasing curve in Figure 2.5 can be sampled by changing
TR values.

The calculation of T2 values follows a similar procedure. In that case, a relatively
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Figure 2.6 T2 Relaxation Characteristic Curve.

long TR relative to the T1 values of the tissues must be used in order to eliminate T1

e�ect on the images and TE should be varied to be able to sample the decreasing
exponential curve in Figure 2.6. The image gathered by this way is referred to as
T2-weighted MR image. The signal intensity AE with T1 e�ect eliminated reduces to;

AE = M0
z e−TE/T2 . (2.11)

2.3.2 Motion Artifacts and Registration

As the method requires the acquisition of more than one image for each slice,
motion of the subject inside the MR machine becomes one of the biggest issues. With-
out correcting that artifact, the method becomes unreliable and useless. For a pixel to
represent the same region of the tissue in the brain, head motions should be eliminated
before processing the data. For that purpose, an image registration algorithm was
used. Moreover, during data acquisition the stabilizers of the MR images can be used.
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2.3.3 Segmentation of True Parameter Images

After �nding the true-T1 and true-T2 images from the data collected, ML clas-
si�er can be used in order to segment brain tissues, namely WM, GM and CSF. Seg-
mentation can be performed on just true-T1 or true-T2 images as well as on true-T1

vs. true-T2 image by constructing a multivariate Gaussian distribution. By doing so,
one can use the full information coming from both the true-T1 and true-T2 images,
resulting in a more accurate and reliable segmentation.
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3. METHOD

ML classi�cation is one of the most widely used techniques in medical image
processing. Its mathematically simple model and low computational burden associated
with it, makes it favorable among other techniques. However, being a pure histogram-
based method forces it to just work on well de�ned images with low levels of noise.
But it is well known that, MR data acquisition incorporates a number of factors which
degrade image quality. One and probably the most important problem in MR data is
the B1 inhomogeneity artifact which, in some cases, dramatically reduces the accuracy
of, especially automatic, post-processing applications.

As it is crucial to detect absolute or relative volumes of di�erent tissues in brain
for reliable diagnosis and surgical planning, the need for a more accurate and clinically
usable method for medical image segmentation of brain images emerges immediately.
The method in [11] addresses that problem and solves it in a great extent with high
rates of success. Although being a golden standard in segmentation of brain MR
images, this method brings a number of issues with it. First of all,the method is
clinically unfeasible as it requires the subject to be scanned for hours which is a great
problem, especially for some people who have claustrophobia. In addition, the cost
of multiple scans makes the method una�ordable for almost all cases. Moreover, the
time required to gather enough scans brings another problem with it, motion artifacts.
These artifacts can be reduced during scan time by the use of stabilizers, but remaining
motion artifacts must strictly be removed before proceeding any further, which is an
additional computational burden.

To overcome the di�culties explained above, a novel approach to brain MR
image segmentation is proposed in this study. MRF modeling and its application
in image segmentation have been investigated by many other researchers [8, 13, 14]
and in recent years has become popular. However, the application of MRF theory in
brain MR image segmentation has con�ned to the use of only T1 or only T2-weighted
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images. A multimodal segmentation of MR images has not been reported yet. In this
work, a multimodal brain MR image segmentation using hidden Markov random �eld
model with expectation maximization algorithm is presented. Maximum a posteriori
estimates are adopted for the optimization and highest con�dence �rst algorithm is
applied for the convergence of MRFs.

3.1 MRF Theory

Markov random �elds theory is a branch of probability theory for analyzing the
spatial or contextual dependencies of physical phenomena which is �rst described in
physics for lattice systems. It is used in visual labeling, especially for segmentation
of the images and edge-detection algorithms [14]. The modeling of the contextual
dependencies among image pixels is achieved through the encoding of mutual in�uences
between neigboring pixels with the use of conditional distributions.

In an MRF, the sites in S are related to one another via a neighborhood system,
which is de�ned as N = {Ni, i ∈ S}, where Ni is the set of all sites neighboring i,
i /∈ Ni and i ∈ Nj ⇔ j ∈ Ni. A random �eld X is said to be an MRF on S with
respect to a neighborhood system N if and only if;

P (x) > 0, ∀x ∈ X
P (xi | xS−{i}) = P (xi | xNi

). (3.1)

In many applications such as 3D modeling, multidimensional neighborhood sys-
tems can be created [2].

According to the Hammersley-Cli�ord theorem [15], an MRF can be expressed
by Gibbs distribution. Thus;
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Figure 3.1 Sites and Cliques in an Image.

P (x) = Z−1exp (−U(x)) , (3.2)

where Z is a normalizing constant called the partition function and U(x) is an
energy function of the form;

U(x) =
∑
c∈C

Vc(x), (3.3)

which is a sum of clique potentials Vc(x) over all possible cliques C. A clique c

is de�ned as a subset of sites in S in which every pair of distinct sites are neighbors,
except for single-site cliques. The value of Vc(x) depends on the local con�guration of
clique c.

An example for sites and cliques in an image domain can be seen in Figure 3.1.
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For more detail on MRF and Gibbs distribution, the reader is referred to [8].

3.1.1 HMRF Model

"The concept of a hidden Markov random �eld model is derived from hidden
Markov models (HMM), which are de�ned as stochastic processes generated by a
Markov chain whose state sequence cannot be observed directly, only through a se-
quence of observations. Each observation is assumed to be a stochastic function of the
state sequence. The underlying Markov chain changes its state according to a l × l

transition probability matrix, where l is the number of states.

Since original (HMM)s were designed as one-dimensional Markov chains with
�rst-order neighborhood systems, they cannot directly be used in two-dimensional
problems as image segmentation. A special case of a (HMM) in which the underlying
stochastic process is a (MRF) instead of a Markov chain is considered for this purpose.
This special case is referred to as hidden Markov random �eld model". Mathematically
it can be characterized by the following:

• Hidden Random Field (MRF)

The random �eld X = {Xi, i ∈ S} is an underlying MRF assuming values in a
�nite state space L with probability distribution 3.2.

• Observable Random Field

Y = {Yi, i ∈ S} is a random �eld with a �nite state space D. Given any partic-
ular con�guration x ∈ X , every Yi follows a known conditional probability distribution
p(yi | xi) of the same functional form f(yi; θxi

), where θxi
are the involved parameters.

This distribution is called the emission probability function and Y is also referred to as
the emitted random �eld.
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• Conditional Independence

For any x ∈ X , the random variables Yi are conditionally independent;

P (y | x) =
∏
i∈S

P (yi | xi). (3.4)

Based on the above, the joint probability of (X,Y ) can be written as;

P (y,x) = P (y | x)P (x) (3.5)

= P (x)
∏
i∈S

P (yi | xi). (3.6)

According to the local characteristics of MRFs, the joint probability of any pair
of (Xi, Yi), given Xi's neighborhood con�guration XNi

, is;

P (yi, xi | xNi
) = P (yi | xi)P (xi | xNi

). (3.7)

Thus, the marginal probability distribution of Yi dependent on the parameter
set θ and XNi

can be computed as;

p(yi | xNi
, θ) =

∑

l∈L
p(yi, l | xNi

, θ) (3.8)

=
∑

l∈L
f(yi; θl)p(l | xNi

), (3.9)

where θ = θl, l ∈ L. This is called the hidden Markov random �eld model.

With a Gaussian emission distribution, that HMRF model can be speci�ed as;

p(yi | xNi
, θ) =

∑

l∈L
g(yi; θl)p(l | xNi

), (3.10)
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where θ and g are de�ned as in 2.8. This type of HMRFs are referred to as the
Gaussian hidden Markov random �eld (GHMRF) model [14].

3.2 MRF-MAP Classi�cation

The image segmentation problem here is the assignment of a proper label taking
a value from the set L to each image pixel. Pixels are indexed by S and characterized
by an intensity value yi from the set D. A labeling of the lattice S is denoted by x,
where xi, i ∈ S is the corresponding class label of pixel i. x̂ is the estimate of true
but unknown labeling of S. The problem of segmenting an image can be seen as the
problem of recovering the true labeling given the observed image y [2].

The criterion used in the estimation of x is given below;

x̂ = arg max
x∈X

{P (y | x)P (x)}. (3.11)

From 3.11, the prior probability of the class and the likelihood probability of the
observation need to be computed. Since x is considered as a realization of an MRF,
its prior probability can be derived from;

P (x) =
1

Z
exp (−U(x)) . (3.12)

It is also assumed that the pixel intensity yi follows a Gaussian distribution with
parameters θi = {µl, σl}, given the class label xi = l;

p(yi | xi) = g(yi; θl) =
1√
2πσ2

l

exp

(
−(yi − µl)

2

2σ2
l

)
. (3.13)

Based on the conditional independence assumption of y 3.4, the joint likelihood
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probability is;

P (y | x) =
∏
i∈S

p(yi | xi)

=
∏
i∈S

[
1√
2π

exp

(
−(yi − µxi

)2

2σ2
xi

− ln(σxi
)

)]
, (3.14)

which can be written as;

P (y | x) =
1

Z ′ exp (−U(y | x)) , (3.15)

with the likelihood energy;

U(y | x) =
∑
i∈S

U(yi | xi) (3.16)

=
∑
i∈S

[
(yi − µxi

)2

2σ2
xi

+ ln(σxi
)

]
, (3.17)

and the constant normalization term Z ′ = (2π)N/2. It is easy to show that;

log P (x | y) ∝ −U(x | y), (3.18)

where

U(x | y) = U(y | x) + U(x) + const, (3.19)

is the posterior energy. The MAP estimation is equivalent to minimizing the
posterior energy function;

x̂ = arg min
x∈X

{U(y | x) + U(x)}. (3.20)

Although mathematically simple, this type of MAP estimation clearly presents
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a huge computational burden and it is infeasible for direct calculation. Therefore,
optimal solutions should be computed using some iterative optimization techniques
[2]. In our study, we adopted highest con�dence �rst algorithm for the optimization of
MAP estimation.

3.3 Model Fitting Using EM Algorithm

In the previous section, the functional form of the statistical model that will
be used in the segmentation of brain MR images was derived. However, a statistical
model is not complete until its parameters are determined completely. That procedure,
the estimation of model parameters, is also known as model �tting. What to be solved
in this case is the parameter set θ = {θl, l ∈ L}. If the Gaussian emission distribution
is assumed for the observable random �eld y, the mean and the standard deviation of
the distribution of each class should be determined, namely θl = (µl, σl).

The data set in segmentation process is incomplete since both the class label
and the parameter set are unknown and they are strongly interdependent. Thus, this
kind of parameter estimation is regarded as an incomplete-data problem. In [16], an
algorithm called the expectation maximization algorithm was proposed for such kind of
incomplete data problems. The strategy underlying the EM algorithm consists of the
following: estimate the missing part as x̂, given the current θ estimate and then use
it to form the complete data set {x̂,y}; new θ can be estimated by maximizing the
expectation of the complete-data log likelihood, E [log P (x,y | θ)]. Description of the
EM algorithm is as follows [17]:

• Start

An initial estimate θ(0) is decided according to Otsu thresholding.

• The E-Step
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Q
(
θ | θ(t)

)
= E [

log P (x,y | θ)
∣∣y, θ(t)

]

=
∑
x∈X

p(x | y, θ(t)) log p(x,y | θ). (3.21)

• The M-Step

Maximize Q(θ | θ(t)) to obtain next estimate;

θ(t+1) = arg max
θ

Q(θ | θ(t)). (3.22)

Using Eq 3.10, the Q-function can be formulated as;

Q =
∑
i∈S

∑

l∈L

{
P (t)(l | yi)W + C

}
, (3.23)

where;

W = log p(t)(l | xNi
)− ln σl − (yi − µl)

2

2σ2
l

, (3.24)

and C = −0.5 ln(2π).

Application of the EM algorithm yields the following update rules for the pa-
rameters;

µ
(t+1)
l =

∑
i∈S P (t)(l | yi)yi∑
i∈S P (t)(l | yi)

, (3.25)

(
σ

(t+1)
l

)2

=

∑
i∈S P (t)(l | yi)(yi − µl)

2

∑
i∈S P (t)(l | yi)

, (3.26)

where;

P (t)(l | yi) =
g(t)(yi; θl)P

(t)(l | xNi
)

p(yi)
. (3.27)
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3.4 Highest Con�dence First Algorithm

Highest Con�dence First (HCF) is a serial, deterministic algorithm used for the
convergence of MRFs where the label set is discrete, L = {1, 2, ...., l}. At the beginning
of the algorithm the discrete label set L is augmented by the inclusion of a special
uncommitted label 0 as L+ = {0, 1, 2, ...., l}. A label xi is said to be uncommitted
if xi = 0, or committed if xi ∈ L. Initially all labels are set to 0 and the following
rule is imposed for the labeling: once a site is committed, it's label cannot go back
uncommitted but can change to another value in L.

The conditional posterior potential for site i can be given as follows;

Ei(xi) = V (xi | yi, xNi
)

= V (yi | xi) +
∑
c:i∈c

Vc(xi | xNi
), (3.28)

where c : i ∈ c means any clique containing site i. After augmenting the label
set the conditional potential for a committed label xi ∈ L is de�ned as;

Ei(xi) = V (xi | yi, xNi
)

= V (yi | xi) +
∑
c:i∈c

V ′
c (xi | xNi

), (3.29)

where;

V ′
c =





0 if xj = 0 ∃j ∈ c;

Vc otherwise.

From Eq. 3.29 one can conclude that, a site has no e�ect on its neighbors when
it is uncommitted. In addition, when no neighbor is active, the local energy measure
reduces to the likelihood of the label.
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The stability of site i with respect to x is de�ned as

Si(x) =





−minl∈L,l 6=lmin
[Ei(l)− Ei(lmin)] if xi = 0;

minl∈L,l 6=xi
[Ei(l)− Ei(xi)] otherwise.

where lmin = arg minl∈L Ei(l). The stability S of an uncommitted site is the
negative di�erence between the lowest and the second lowest local energies ( conditional
potentials ). The stability S of a committed site is the di�erence between the current
local energy and the lowest possible energy due to any other label. A negative stability
re�ects the possible change of the current label. May the following rule is imposed
for deciding the order of update: At each step, only the least stable site ( lowest
magnitude ) is allowed to change its label or to make its commitment. Suppose that
k = arg maxi |Si(x)| is the least stable site. Then if xk = 0, change xk to;

x′k = arg min
l∈L

Ek(l), (3.30)

otherwise change xk to;

x′k = arg min
l∈L,l 6=xk

[Ek(l)− Ek(xk)] . (3.31)

As opposed to the use of iterated conditional modes (ICM) in most applications,
in this study HCF algorithm is preferred as it is reported to be better in terms of
remaining energy in the image. Moreover, initialization is not a problem for HCF as
it is always set to 0's at the beginning [14].

3.5 Step-by-Step HMRF-EM Algorithm

The theory underlying the segmentation of brain MR images was given in the
sections above. Here the steps which cover the HMRF model with EM algorithm will
be summarized.
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1. Perform the initial parameter estimation for the probability distribution Eq 3.13;

2. Calculate the likelihood distribution according to;

p(t)(yi | xi) = g(t)(yi; θ(xi)); (3.32)

3. Estimate the class labels by HMRF-MAP estimation as;

x(t) = arg max
x∈X

{P (y | x, θ(t)) + P (x)}; (3.33)

4. Calculate the posterior distribution according to;

P (t)(l | yi) =
g(t)(yi; θl)p

(t)(l | xNi
)

p(yi)
; (3.34)

5. Update parameters by;

µ
(t+1)
l =

∑
i∈S P (t)(l | yi)yi∑
i∈S P (t)(l | yi)

, (3.35)

(
σ

(t+1)
l

)2

=

∑
i∈S P (t)(l | yi)(yi − µl)

2

∑
i∈S P (t)(l | yi)

; (3.36)

6. Increment the index t by 1 and repeat from (2) until enough iterations have been
performed.

For the �rst step above, initial parameter estimation is done using a variate of
Otsu's Algorithm [18], namely modi�ed Otsu [19].

For the Gaussian prior, in 1D-classi�cation Eq 3.13 is used. In 2D-classi�cation
a multivariate version of Gaussian distribution will be used as follows;

p(~yi | xi) =
1

2π|Σxi
|1/2

exp

(
−1

2
(~yi − ~µxi

)T Σ−1
xi

(~yi − ~µxi
)

)
. (3.37)

where, ~yi = [yT1 , yT2 ] is the intensity vector for pixel i, ~µxi
= [µT1 , µT2 ] is the

mean of intensities for class label xi ∈ L and Σxi
is the covariance matrix for tissue
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Parameters (q)

Intensity (y) Labels (x)

Figure 3.2 Bayesian graph of the variables.

class xi.

In Figure 3.2, the dependencies among the variables of the segmentation problem
can be better visualized.
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4. RESULTS

The main goal of the proposed study was to develop a multimodal segmentation
scheme which o�ers comparable result to the segmentation done by the use of calculated
True-T1 and True-T2 images while greatly reducing the time required to capture data.
This is done by gathering just two images, one T1-weighted and one T2-weighted, instead
of a total of eight images required for the calculation of true parameter and using post-
processing techniques on these two. To be more speci�c, HMRF models are used to aid
segmentation which takes the information hidden in the neighborhood con�gurations
of tissues into consideration. Moreover, using two-dimensional data, the proposed
method is expected to yield better results than 1D case as the information coming
from T2 images are not linearly dependent to the information coming from T1 images.
The images used in this study were captured for the following parameters:

• T1-weighted : TE = 15 ms ; TR = 250, 500, 1000 and 2000 ms.

• T2-weighted : TR = 3000 ms ; TE = 10, 103, 175 and 278 ms.

These parameters are the ones which result in the best �ts to the characteristic
relaxation curves. Originally, a total of twelve images were taken both for T1 and T2-
weighted images. After the comparison of the true parameters which were calculated
with di�erent combination of the images, the parameters above were chosen to be the
best sampling points.

4.1 Analysis of True Parameter Images

In this part of the study, a total of eight images were used in order to construct
True− T1 and True− T2 images according to Eq 2.10 and Eq 2.11. The classi�cation
scheme is ML estimation according to Eq 3.37. Considering the multivariate segmen-
tation method as golden standard, 1D ML classi�cation of the true parameter images
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will be compared to 2D case. The image set used for that purpose is given below. The
images used in the study are taken for the given TE and TR values in previous section.

All images below were used to construct true parameters image set. ML estimate
is used in that part as it was proven to give segmentation results with a success of
around 97% in classi�cation of the three main tissues, namely CSF, GM and WM [11].

Calculated True−T1 and True−T2 images can be seen in Figure 4.9 and 4.10.

Using the ML estimation with the parameters speci�ed in [11] yields the seg-
mented image in Figure 4.11.

In Figure 4.11, blue parts corresponds to CSF while yellows and claret-red in-
dicates GM and WM respectively.

For the analysis of true parameter images, 1D segmentations of True− T1 and
True− T2 images were also obtained, again using ML classi�cation.

As can be seen from Figure 4.12, the result is satisfactory considering the GM
and WM discrimination however, it is poor in the sense that CSF parts of the brain
could not be segmented well. On the contrary, Figure 4.13 is capable of classifying CSF
better than True− T1 image could. Together, these two images achieve the �nal goal
of an accurate segmentation. Confusion matrices corresponding to the segmentation
of True−T1 and True−T2 images are obtained by taking the 2D segmentation result
as a reference for a better quantitative analysis.

From Table 4.1, one can conclude that most of the CSF is misclassi�ed if True−
T1 images are used only.
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Figure 4.1 Image data ( TE = 15ms TR = 250ms ).
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Figure 4.2 Image data ( TE = 15ms TR = 500ms ).
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Figure 4.3 Image data ( TE = 15ms TR = 1000ms ).
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Figure 4.4 Image data ( TE = 15ms TR = 2000ms ).
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Figure 4.5 Image data ( TR = 3000ms TE = 10ms ).
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Figure 4.6 Image data ( TR = 3000ms TE = 103ms ).
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Figure 4.7 Image data ( TR = 3000ms TE = 175ms ).
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Figure 4.8 Image data ( TR = 3000ms TE = 278ms ).
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Figure 4.9 True− T1 image.
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Figure 4.10 True− T2 image.
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Figure 4.11 2D Segmentation of the complete image set.
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Figure 4.12 Segmented True− T1 image.
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Figure 4.13 Segmented True− T2 image.
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Table 4.1
True− T1 confusion matrix.

CSF GM WM
CSF 35.98 42.85 21.17
GM 0 96.62 3.38
WM 0 3.09 96.91

Table 4.2
True− T2 confusion matrix.

CSF GM WM
CSF 89.92 0 10.07
GM 7.92 0 92.08
WM 0.14 0 99.86

The probability distribution of the class labels for True − T2 image is given in
Figure 4.14. The misclassi�cation of GM parts as WM is the result of the closeness of
the distributions corresponding to these labels.

As it is obvious from Table 4.2, main contribution of the use of True−T2 images
in segmentation is the capability of these images to classify CSF.
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Figure 4.14 Probability distribution of WM and GM for True− T2 image.

4.2 1D Segmentation

In this part, individual MR data will be segmented using Otsu thresholding,
ML classi�cation and HMRF model based segmentation techniques separately.

4.2.1 Otsu Thresholding

In its basic form, Otsu's method is an image thresholding algorithm used in
reduction of a gray level image to a binary image. It gives the optimum threshold
separating those two classes so that their intra-class variance is minimal. However for
the segmentation of brain MR images, three di�erent classes are required in order to
represent three di�erent tissue classes. Thus, a modi�ed version of Otsu's method is
used for that purpose. In addition to being a separate segmentation technique, the
parameters obtained from this algorithm are used for both ML estimation and HMRF
models. The algorithm and its proof can be found in Appendix B.
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Figure 4.15 is the segmentation result of Figure 4.1 using modi�ed Otsu with
three labels. The confusion matrix corresponding to this application can be seen in
Table 4.3. As can be seen from the corresponding confusion matrix, the result for WM
segmentation with Otsu thresholding is satisfactory while it is not the case for GM and
CSF results.

Table 4.3
T1 image confusion matrix for Otsu thresholding.

CSF GM WM
CSF 71.99 26.78 1.23
GM 6.85 65.08 28.34
WM 0.86 5.14 94.00

Figure 4.16 is the segmented T2 image. Its confusion matrix can be seen in Table
4.4.
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Figure 4.15 Segmented T1 image with Otsu thresholding.
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Table 4.4
T2 image confusion matrix for Otsu thresholding.

CSF GM WM
CSF 59.70 30.83 9.46
GM 1.22 67.00 31.78
WM 0 3.35 96.64

Comparing Table 4.3 and 4.4, it can be concluded that the pixel intensities in
T1 images for CSF volumes are better separated than the intensities in T2 images does.
On the other hand, segmentation results for WM and GM when T2 images are used
are better with Otsu's algorithm. As it is mentioned before, Otsu's method will be
used for both ML classi�cation and HMRF segmentation in order to �nd initial tissue
class parameters. To be more speci�c, means and variances of three tissue types are
calculated using that method which can be considered as a model �tting, �tting of the
image histogram to the optimum Gaussian mixture.
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Figure 4.16 Segmented T2 image with Otsu thresholding.
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4.2.2 ML Classi�cation

ML classi�cation is one of the most preferable techniques in image processing
for its mathematical simplicity and accuracy for images that have low levels of noise.
Bayesian rule is applied to the relationship between pixel intensities and class labels
and the Gaussian mixture model is completed using Otsu's method.

Figure 4.17 is the classi�ed T1 image of Figure 4.1 and Table 4.5 is the confusion
matrix.

Table 4.5
T1 image confusion matrix for ML classi�cation.

CSF GM WM
CSF 77.13 21.67 1.20
GM 9.25 63.74 27.01
WM 0.92 5.68 93.40

In Figure 4.18 the result of ML classi�cation can be seen for T2 image of Figure
4.6. Corresponding confusion matrix is Table 4.6.

Table 4.6
T2 image confusion matrix for ML classi�cation.

CSF GM WM
CSF 64.44 24.02 9.53
GM 2.66 64.18 33.16
WM 0 2.98 97.02

It is obvious from Tables 4.5, 4.4, 4.5 and 4.6 that segmentation results follow
the same trend. That is to say, both Otsu's method and ML classi�cation yields
better results for CSF with T1 images while the situation is opposite for WM and GM
segmentations.
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Figure 4.17 Segmented T1 image using ML classi�cation.
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Figure 4.18 Segmented T2 image using ML classi�cation.
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4.2.3 HMRF Segmentation

The images segmented above using Otsu's method and ML classi�cation are
now processed by a model-based classi�cation scheme. HMRF theory incorporates
likelihood of the class labels with the neighborhood con�guration hence yielding a
smoother and more accurate segmentation results. The result of HMRF approach for
Figure 4.1 is given in Figure 4.19.

The smoothness of the result comparing to Figures 4.15 and 4.17 is obvious.
The confusion matrix for Figure 4.19 is given in Table 4.7.

Table 4.7
T1 image confusion matrix for HMRF segmentation.

CSF GM WM
CSF 84.21 14.89 0.91
GM 12.49 63.73 23.78
WM 0.92 5.68 94.74

Again Figure 4.6 is processed with HMRF method and the resulting segmented
image is given in Figure 4.20.

Corresponding confusion matrix can be seen in Table 4.8.

Table 4.8
T2 image confusion matrix for HMRF segmentation.

CSF GM WM
CSF 75.19 14.59 10.23
GM 5.50 60.38 34.13
WM 0.02 1.99 97.99

Analysis of confusion matrices 4.3, 4.5 and 4.7,it is clear that a great improve-
ment in the segmentation of CSF volumes is achieved. On the other hand, segmentation
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Figure 4.19 Segmented T1 image with HMRF model.
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Figure 4.20 Segmented T2 image with HMRF model.
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results for WM and GM do not di�er too much. Again if confusion matrices for T2

images are analyzed ( Tables 4.4, 4.6 and 4.8 ) it can be concluded that the use of
HMRF segmentation in image analysis greatly increases the accuracy of CSF classi�-
cation while there is a slight improvement in WM extraction. However, there are more
misclassi�ed pixels in GM regions in MRF model relative to Otsu's method and ML.

4.3 2D Segmentation

The theory of MR imaging suggests that pixel intensities in T1 and T2-weighted
images are not linearly dependent to each other. In other words, using T2-weighted
images together with T1-weighted ones provides more information about the location of
the tissue types in the brain. These theoretical expectations were completely ful�lled
by the results obtain in previous sections. For Otsu's method and ML classi�cation,
T1-weighed images yield relatively good results for CSF classi�cation and T2-weighted
images provided WM and GM information. MRF segmentation on the other hand
o�ered better results for both CSF and GM while T2-weighted images provided 98%

success on segmentation. Using the aforementioned results in a multivariate ( 2D )
segmentation scheme, thus, is expected to end up with further improvements in tissue
classi�cation. In the next subsections segmentation results of MR images in a 2D

classi�cation scheme are given for both ML and HMRF models.

4.3.1 ML Segmentation

For the 2D ML classi�cation of three main tissues in the brain, Eq 3.37 is used as
posterior distribution. Gaussian parameters are calculated, again, using Otsu's method
and a numerically stable subroutine was written for the calculation of covariance ma-
trices. Segmentation result of Figures 4.1 and 4.6 is given in Figure 4.21.

The confusion matrix of Figure 4.21 can be seen in Table 4.9.
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Figure 4.21 Segmented T1-T2 image with ML.
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Table 4.9
T1-T2 image confusion matrix for ML classi�cation.

CSF GM WM
CSF 77.49 22.31 0.19
GM 3.57 71.17 25.25
WM 0.74 2.26 97.00

As can be seen from Table 4.9, this 2D segmentation provides a great improve-
ment in GM classi�cation, in which other 1D schemes gave poor results. Moreover, the
results for CSF classi�cation resulted in better results ( excluding MRF segmentation
used for T1-weighed images ) and are almost the best for WM detection up to now.

4.3.2 HMRF Segmentation

This section covers the results of the ultimate segmentation scheme, namely
multivariate HMRF model based segmentation. The �nal segmentation result is given
in Figure 4.22 and the confusion matrix in Table

Table 4.10
T1-T2 image confusion matrix for HMRF classi�cation.

CSF GM WM
CSF 80.00 20.03 0.05
GM 3.85 73.00 23.20
WM 0.99 1.41 98.00

Confusion matrix 4.10 shows that multivariate HMRF segmentation of MR im-
ages provides the best results for GM and WM discrimination while the classi�cation
rate for CSF is the second most successive one after the 1D MRF scheme for T1 images.
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Figure 4.22 Segmented T1-T2 image with HMRF model.
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5. CONCLUSION

Brain MR image segmentation is one of the most important post-processing
applications in the �eld of medical imaging. It has a great importance because an ap-
propriate computer guided surgical planning and surgery as well as treatment progress
and diagnosis of some neurological diseases rely extensively on accurate classi�cation
of three main tissue types in the brain, namely CSF, GM and WM.

The literature o�ers a number of image processing techniques in order to seg-
ment brain MR images such as histogram based methods, edge detection algorithms,
clustering methods, region growing methods, etc. However, considering the nature
of brain images, model-based statistical approaches become the most favorable ones
among all. That is because brain MR images are simple in nature and contrast regions
corresponding to di�erent tissues are piecewise constat. In other words, neglecting the
noise and the RF inhomogeneity present in the image, one expects a constant contrast
for each tissue in the brain. However, that is not the case in practice. First of all,
all data gathered from the subject contains some amount of noise which a�ects the
image negatively. But more importantly, all MR images su�er from another degra-
dation e�ect, namely the bias �eld or RF inhomogeneity which in some cases greatly
reduces the image quality. Bias �eld in images shows its deprecating e�ect up in au-
tomatic post-processing applications. In many cases, computer becomes incapable of
di�erentiating some tissue regions resulting in misclassi�ed pixels. In the literature
one can �nd a number of techniques which try to extract the bias �eld from the im-
age hence resulting in a more appropriate histogram for automatic detection. Some of
these methods model the inhomogeneity as a multiplicative Gaussian �eld while some
use non-parametric techniques. A novel approach addressing the bias �eld distortion is
presented in [11]. In this approach the same slice of the brain is scanned for a total of
eight times and the resulting pixel intensities are �tted to curves of Eq.s 2.10 and 2.11
for T1 and T2-weighted images respectively. Obtained True−T1 and True−T2 images
then segmented in a multimodal ML classi�cation algorithm according to Eq. 3.37.
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Although the method provides the best segmentation results in the literature, it has
some serious drawbacks. The main disadvantage of the method is the time required
to gather such huge amounts of data. For some cases the patient is required to stay
inside the machine for two to three hours. Apart from the discomfort to the subject,
the method greatly increases the expenses as the number of scans per slice increases
to eight. Moreover, the time spent inside the core brings another problem with it,
motion artifacts. This in turn requires a registration process in order to eliminate mo-
tion between scans before the application of curve �tting algorithms, which is an extra
computational burden.

In this study, we proposed a novel multimodal approach addressing the afore-
mentioned drawbacks. To be more speci�c, the method aims to obtain comparable
segmentation results by using two, not linearly dependent, images for more informa-
tion and neighborhood relations of pixels in the images. By doing so scan time is
reduced greatly by just taking two images per slice, one T1 and one T2-weighted, and
bias �eld e�ect is tried to be compensated in some degree with the help of local statis-
tics. Gaussian mixture model was adopted for the brain and MRF's were used to model
local statistics of pixels.

In the �rst part of the analysis, after obtaining the multivariate segmentation
of true parameter images, individual True − T1 and True − T2 images were analyzed
with the help of confusion matrices. Assuming Figure 4.11 as golden truth, confusion
matrices were constructed via a small subroutine. Looking at Tables 4.1 and 4.2,
it can be said that True − T1 images provide a good GM and WM discrimination
while True − T2 images gives better results on CSF and WM segmentations. Using
these two true parameter images in a 2D segmentation scheme provides the ultimate,
highly accurate segmentation results. The fact that the method in [11] provides the
best results for tissue classi�cation comes from its success on the almost complete
elimination of bias �eld artifact.

Secondly, individual T1 and T2 images were processed using three widely used
segmentation algorithms in a 1D classi�cation scheme. Otsu's method, which gives
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the optimum thresholds for gray scale images, was used in segmentation as well as to
provide necessary initial parameters estimates for ML and MRF classi�cation. Com-
paring Tables 4.3 and 4.4, it is easy to say thatT1-weighted images are again good at
CSF extraction while T2-weighted images are better at GM and WM segmentations.
That is exactly the same situation for ML estimates. Moreover, the improvement on
CSF classi�cation is obvious when ML estimation is used instead of Otsu's method.
However, there were no signi�cant improvements on WM discrimination when ML is
used for segmentation both with T1 and T2-weighted images. On the other hand, the
best result for WM classi�cation was obtained when ML was used with T2-weighted
MR images. Comparing MRF with ML and Otsu on T1-weighted images reveals that
MRF results in the best CSF and WM di�erentiations, while there were no signi�cant
improvement on GM segmentation. CSF and WM detection using MRF with T2 images
was again the best while in that case, we misclassi�ed around 5% more GM tissue.

For the last part of the analysis, as a novel approach, 2D segmentation of
weighted images were obtained both for ML and MRF techniques. Looking at Ta-
ble 4.9 one can conclude that all three tissue types were classi�ed correctly with a
higher accuracy compared to all 1D schemes. Especially the improvement on GM
segmentation is obvious. Going further, the proposed method: segmentation of brain
MR images using HMRF in a 2D segmentation scheme, provided the best results ever
obtained as it was expected. Comparing Table 4.10 with other confusion matrices, it is
obvious that the results as a whole improved greatly yielding comparable segmentations
while eliminating the aforementioned drawbacks of other classi�cation algorithms.

Although giving comparable segmentation results, the method still lacks high
accuracy especially on CSF and GM classi�cation. Hence, as a future work, any of the
bias �eld extraction methods can be adopted and combined with expectation maximiza-
tion algorithm in order to get better results. Using a maximum a posteriori criteria on
bias �eld and calculating the most probable bias �eld in each iteration, the complete
bias �eld can be extracted from the image gradually in each iteration resulting in a
more accurate segmentation result.
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APPENDIX A. LEVENBERG - MARQUARDT
ALGORITHM

The Levenberg - Marquardt algorithm provides a numerical solution to the
problem of minimizing a function, which is generally a nonlinear one, over a space of
parameters of the function.

A.1 The Problem

Given a set of empirical data pairs, (xi, yi) optimize the parameters β of the
model curve f(xi, β) so that the sum of the squared errors

S(β) =
m∑

i=1

[yi − f(xi, β)]2 (A.1)

becomes minimal.

A.2 The Solution

The Levenberg - Marquardt is an iterative optimization algorithm. To start a
minimization, the user has to make some initial guess for the parameter vector β. In
many cases, an uninformed initial value for the parameter vector as β = (1, 1, 1, ...., 1)

will work �ne while for other cases the algorithm converges only if the initial guess is
already close to the �nal solution.

In each iteration step, the parameter vector β, is replaced by a new estimate, β+

σ. To determine σ, the functions f(xi, β +σ) are approximated by their linearizations;

f(xi, β + σ) ≈ f(xi, β) + Jiσ, (A.2)
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where;

Ji =
∂f(xi, β)

∂β
, (A.3)

is the gradient of f with respect to β.

At a minimum of sum of the squares, called S, the gradient of S with respect
to β is 0. Di�erentiating the the squares in the de�nation of S, using the �rst-order
approximation in Eq. A.2 and setting the result to zero leads to;

(JT Jσ) = JT [y − f(β)], (A.4)

where J is the Jacobian matrix whose ith row equal Ji, and where y and f are
vectors with ith component yi and f(xi, β), respectively. This is a linear set of equations
which can be solved for σ.

Levenberg's contribution is the replacement of this equation by a damped ver-
sion;

(JT J + λI)σ = JT [y − f(β)], (A.5)

where I is the identity matrix. The damping factor λ is adjusted in each itera-
tion.

"Levenberg's algorithm has the disadvantage that if the value of the damping
factor is large, inverting (JT J + λI) is not used at all. Marquardt provided the insight
that we can scale each component of the gradient according to the curvature so that
there is larger movement along the directions where the gradient is smaller. This avoids
slow convergence in the direction of small gradient. Therefore Marquardt replaced the
identity matrix with the diagonal of the Hessian matrix, JT J , resulting the Levenberg
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- Marquardt algorithm [20]."

(JT J + λdiag(JT J))σ = JT [y − f(β)]. (A.6)
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APPENDIX B. OTSU THRESHOLDING

An image is a 2D grayscale intensity function and contains N pixels with gray
levels from 1 to L. The number of pixels with gray level i is denoted fi, giving a
probability of gray level i in an image of

pi = fi/N. (B.1)

In the case of bi-level thresholding of an image, the pixels are divided into two
classes, C1 with gray levels [1, 2, ...., t] and C2 with gray levels [t+1, t+2, ...., L]. Then,
the gray level probability distributions for the two classes are;

C1 : p1/ω1(t), ...., pt/ω1(t), (B.2)

C2 : pt+1/ω2(t), ...., pL/ω2(t),

where ω1(t) =
t∑

i=1

pi and ω2(t) =
L∑

i=t+1

pi.

Also the means for classes C1 and C2 are;

µ1 =
t∑

i=1

ipi/ω1(t), (B.3)

µ2 =
L∑

i=t+1

ipi/ω2(t).

Let µT be the mean intensity for the whole image. It is easy to show that;

ω1µ1 + ω2µ2 = µT , (B.4)

ω1 + ω2 = 1.
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Using discriminant analysis, Otsu de�ned the between-class variance of the
thresholded image as;

σ2
B = ω1(µ1 − µT )2 + ω2(µ2 − µT )2. (B.5)

For bi-level thresholding, Otsu veri�ed that the optimal threshold t∗ is chosen
so that the between-class variance σ2

B is maximized; that is,

t∗ = arg max
t

σ2
B(t), 1 ≤ t < L. (B.6)

The formula Eq. B.6 can be easly extended to multilevel thresholding of an
image [19]. Assuming that there are M − 1 thresholds, {t1, t2, ...., tM−1}, which divide
the original image into M classes: C1 for [1, ...., t1], C2 for [t + 1, ...., t2], ...., Ci for
[ti−1+1, ...., ti], ...., and CM for [tM−1+1, ...., L], the optimal thresholds {t∗1, t∗2, ...., t∗M−1}
are chosen by maximizing σ2

B as follows;

{t∗1, t∗2, ...., t∗M−1} = arg max{σ2
B(t1, t2, ...., tM−1)}, 1 ≤ t1 < .... < tM−1 < L, (B.7)

where;

σ2
B =

M∑

k=1

ωk(µk − µT )2, (B.8)

ωk =
∑
i∈Ck

pi,

µk =
∑
i∈Ck

ipi/ω(k).
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