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ABSTRACT

GUI DRIVEN SIGMA-DELTA MODULATOR DESIGN AND
MEASUREMENT TOOL WITH A VIEW OF MEDICAL

ULTRASOUND IMAGING IMPLEMENTATION

The widespread use of mixed-signal based systems in conjunction with the
various bene�ts provided by digital techniques have signi�cantly increased the need for
high resolution analog-to-digital (A/D) and digital-to-analog (D/A) converters. The
(A/D) converter based on the sigma-delta modulation Σ − ∆ is capable of providing
a very high resolution for low-to-medium signal bandwidth applications. It utilizes
oversampling and noise-shaping to trade-o� operation speed for amplitude resolution.

In this study the theory and advantages of sigma-delta converters are introduced.
Low-pass and narrow-band band-pass Σ −∆ modulators are designed, examined and
analyzed. A variety of Σ−∆ converter topologies are modeled in Simulink and MAT-
LAB routines are written. Various Butterworth and inverse Chebyshev based (Σ−∆)

modulators are designed and implemented at the behavioral-level to enhance SNRs.
The system performance analysis and tradeo�s are analyzed via various single-loop
and multi-stage low-pass and resonator-based band-pass sigma-delta modulator sim-
ulations. A user-friendly software tool is developed to speed up the design, analysis,
evaluation and measurement of single-loop and multistage Σ − ∆ modulators at the
system-level. Using second-order low-pass Σ − ∆ modulator built in the design tool
is used in the medical ultrasound beamforming implementation. For this aim, a com-
parison of ultrasound images constructed by beamformer architectures that use 10-bit
ADC's and single-bit Σ−∆ modulators are performed. The bene�ts and trade-o�s of
using 1-bit Σ−∆ modulators are examined.

Keywords: Sigma-delta modulator, A/D converter, low-pass and band-pass Σ − ∆

modulators design tool.



v

ÖZET

MED�KAL ULTRASON GÖRÜNTÜLEME UYGULAMASI
AMACIYLA GUI �LE YÜRÜTÜLEN SIGMA-DELTA

MODÜLATÖR TASARIM VE ÖLÇÜM ARACI

Karma i³aret tabanl� sistemlerin yayg�n kullan�lmas�, dijital teknolojinin sa§lad�§�
yararlarla birle³ince, analog-dijital ve dijital-analog yüksek çözünürlü çeviricilere olan
ihtiyaç dikkati çeker bir ³ekilde artm�³t�r. Sigma-delta modülasyon (Σ − ∆) tabanl�
analog-dijital çeviriciler dü³ük-orta sinyal bant geni³li§i uygulamalar� için çok yüksek
çözünürlük sa§lama kapasitesine sahiptirler. Bu çeviriciler yüksek h�zda örnekleme ve
gürültü ayarlama tekniklerini kullanarak genlik çözünürlü§ünü artt�r�rlar.

Bu çal�³mada Σ − ∆ modülatörlerin kuram� ve avantajlar� sunulmaktad�r. Bu
do§rultuda, alçak ve dar bantl� bant-geçiren çeviriciler tasarland�, incelendi ve analiz
edildi. Σ−∆ modülatör topolojileri Simulink kullan�larak modellendi ve MATLAB ta-
ban�nda yönlendirme kodlar� yaz�larak farkl� uygulamalar� yap�ld�. Çe³itli Butterworth
ve Ters Chehebyshev tabanl� Σ−∆ modülatörler, sinyal-gürültü oran�n� (SNR) artt�r-
mak için davran�³sal düzeyde tasarland� ve gerçekle³tirildi. Sistemin performans anal-
izleri ve zorluklar� çe³itli tek döngülü ve çok döngülü alçak-geçiren ve rezonans tabanl�
bant-geçiren sigma-delta modülatör simulasyonlar�yla analiz edildi. Sistem düzeyinde
tek döngülü ve çok döngülü Σ − ∆ modülatörlerin tasar�m�n� ve de§erlendirmesini
çabukla³t�rmak için bir tasar�m arac� geli³tirildi. Medikal ultason demetleme uygula-
mas� olarak tasar�m arac�nda geli³tirilmi³ ikinci derece alçak geçiren Σ−∆ modülatör
kullan�ld�. Bu amaçla, 10-bit analog-dijital çevirici ile elde edilmi³ imaj ile tek-bitlik
Σ − ∆ modulator ile elde edilmi³ imajlar kar³�la³t�r�ld�. 1-bitlik Σ − ∆ modulator
kullanman�n avantajlar� ve zorluklar� verildi.

Anahtar Sözcükler: Delta-sigma modülatör, analog-digital çevrici, alçak ve dar
bantl� bant-geçiren modülasyon, tasar�m arac�.
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1. INTRODUCTION

The signals in the real world are analogue in nature. However, for the e�cient
transmission, storage data and processing of signals, it is preferable to convert ana-
logue signals into digital signals using an Analogue-to-Digital (A/D) converter. As a
result of its many advantages, digital signal processing has been applied in practical
systems covering a broad range of disciplines. Signal processing in the digital domain
is also desirable in such areas as biomedical applications especially in ultrasound imag-
ing [1, 2], providing the needed accuracy for biomedical imaging [3]. There are two
main steps in A/D conversion: sampling and quantizing. Thus digital implementation
has its own limitations. Two practical limitations are the speed of A/D converters,
in other words how fast the converter discriminates the signal in time and the quan-
tization error which describes how accurate the converter discriminates the signal in
amplitude. To overcome the limitations, one modulation technique, Σ−∆ modulation
technique has been widely used to convert analogue signals to their digital equiva-
lents because they are capable of providing high resolution [4, 5]. Even though the
concepts of Σ − ∆ modulation were �rst presented in the middle of the last century,
they were not widely used until the last two decades due to improvements in silicon
technology. As a result of recent developments in digital VLSI technologies, there exist
various low-pass (LP) Σ−∆ architectures which have been used in applications such as
instrumentation, voice band data telecommunications high-�delity audio and speech,
metering applications, data-acquisition [4, 5, 6]. Also there are typical applications of
band-pass (BP) Σ−∆ data converters such as digital radio systems, [7, 8], receivers for
digital mobile cellular telephony [9], high-speed modems [10], satellite communication
services [11], in phased-array ultrasound imaging [2], and GNSS front-end applications
[12]. In addition, other applications for Σ − ∆ modulation are in sensor systems to
shape out the noise from the sensor itself and its environment [13]. Σ−∆ modulators
use oversampling and noise-shaping to achieve high resolution. Oversampling reduces
the amount of quantization noise power present in the signal band and noise-shaping
further attenuates the quantization noise in the signal band, thereby pushing most of
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the noise power to out-of-band frequencies [14]. The high frequency quantization noise
can be removed without a�ecting the signal itself by using a digital low-pass �lter op-
erating on the output of the sigma-delta modulator [15]. Therefore; ultra-low power
Σ −∆ modulators for are widely used in biomedical applications such as: electrocar-
diography (ECG), electroencephalography (EEG), Electrooculography (EOG) . On the
other hand, the non-linear quantizer in combination with the feedback loop employed
by the Σ − ∆ modulators, cause signi�cant stability and tonality problems. This is
especially true for single-loop Σ−∆ modulators whose orders are higher than two [14].
To overcome instability, various single-loop or multi-stage Σ−∆ modulator topologies
can be developed. Since there is not a unique methodology to guarantee the stability
and proper operation of high-order Σ −∆ modulators, the various design procedures
can be used based on performance analysis. Thus, several design automation tools
for LP, and BP Σ −∆ modulators at the system level were reported in the literature
[14, 16, 17]. The most common approach to automate the design procedure is based on
iterative performance optimization via a performance evaluation loop using statistical
methods or behavioral simulations for the desired modulator parameters [16, 18, 19].
The other common approach is the automation of the modulator coe�cients by opti-
mizing the Noise Transfer Functions (NTF) or Signal Transfer Functions (STF) for the
desired design speci�cations. Inverse Chebyshev or Butterworth �lters are used for the
NTF designs in order to obtain acceptable quantization noise reduction in the signal
band [14, 17, 20]. In this study, a user-friendly software tool to speed up the design,
analysis, and evaluation of LP and BP single-loop and multi-stage Σ−∆ modulators
applicable in many biomedical applications at the system-level is presented. This tool
gives designers the ability to use easy-to-implement Σ −∆ modulator topologies and
view their corresponding simulation results including the power spectral densities of the
modulator output and quantizer input signals as well as their SNR values. The MAT-
LAB routines embedded in the Graphical User Interface (GUI) simulate the desired
topologies according to the input parameters de�ned by the user.

In contrast to many Σ−∆ design tools in the literature, which mostly employ
speci�c design structures; this tool enables the user to design and analyze a variety
of LP and BP based Σ −∆ modulator topologies such as the single-loop, multi-stage
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(MASH), chain of accumulators with weighted feedforward summation and chain of
accumulators with feedforward summation with local resonator feedbacks. Moreover,
the tool allows the user to design the NTFs of Butterworth and Inverse Chebyshev �lters
based on input speci�cations such as the cut-o� frequency, bandwidth and modulator
order. At this point, the thesis is organized as follows: Chapter-2 describes conventional
A/D conversion with a conventional Nyquist sampling rate. This is followed in the
Chapter-3 by the basic principles of Σ − ∆ converters and how they combine the
advantages of oversampling techniques with the noise-shaping concepts. The Σ − ∆

data converters are discussed and contrasted with the Nyquist-rate converters. Low-
order Σ−∆ modulators and high-order LP Σ−∆ modulators are designed, examined
and analyzed, in Chapters 4 and 5 respectively. Next, in Chapter-6 Σ − ∆ converter
architectures for narrow-band BP signals are described. Various single-loop and multi-
stage LP and BP Σ−∆ modulator analysis and simulations are introduced. The noise
transfer functions of these designs have involved the use of di�erencers, Butterworth
and inverse Chebyshev �lters. The system performance analysis and tradeo�s are
introduced in Chapter-7. This chapter involves developing SNR routines to assess the
performance of these Σ − ∆ modulators. This work will form the foundation for the
proposed design methodology, which details the design tool created in the MATLAB
that will speed up the design, analysis, and evaluation of single-loop and multi-stage
Σ − ∆ modulators at the system-level. The proposed tool will allow researchers and
practitioners to design and verify the feasibility of the Σ−∆ modulator at a much earlier
stage of the design process thus saving considerable time, e�ort and cost. It can be
also used as a valuable teaching tool for advanced courses on data converters. Finally,
in Chapter-8 an ultrasound imaging application of a second order low-pass Σ − ∆

modulator is performed. Using the desired Σ−∆ modulator built in the design tool is
used in the medical ultrasound beamforming architecture. A comparison of ultrasound
images constructed by 10-bit ADC beamformer and single-bit Σ − ∆ modulators is
detailed. Besides the advantages of reduced size, cost and power consumption, the
artifacts in the images constructed using 1-bit Σ−∆ modulators are examined.
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2. NYQUIST RATE A/D CONVERTERS

Signals in the real world are continuous in time and amplitude. In order to
process these analogue signals using digital systems, they should be converted into the
digital domain using A/D converters, i.e. the signals have to be sampled in time and
quantized to discrete amplitudes. The conventional A/D conversion processes involves
converting an analogue input signal x(t) into a sequence of digital codes x[n] [21], as
shown in Figure 2.1.

 

   Discrete-time  

         Signal 

 
     Band-limiting 

Anti-Aliasing 

Filter 
S/H Circuit  Quantizer 

 

   Analogue Signal  

             x(t) 

 
  Digital Signal 
         x[n] 

Figure 2.1 Conventional analogue-to-digital conversion process.

First, an anti-aliasing �lter is used, which is an analogue LP �lter, to limit the
bandwidth of the input signal x(t) in order to eliminate distortion. Second, the �lter
output is sampled with a sample and hold (S/H) circuit at a sampling rate fs = 1/Ts,
where Ts denotes the sampling period. As a result of this process, a discrete-time signal
is produced. Next, the amplitude of this sampled signal is quantized and encoded by
an appropriate quantizer, so that a discrete-amplitude signal x[n] is generated.

2.1 Sampling

A sampler converts a continuous-time signal into a discrete-time signal obtained
by taking samples of the continuous-time signal at discrete time instants [21]. Ideally,
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a sampler yields a sequence of delta functions whose amplitude equals the signal at the
sampling times. For a uniform sampling with an interval of Ts, the output of a sampler
is given by [22]:

∞∑
n=−∞

x(t)δ(t− nT ). (2.1)

According to the Nyquist sampling theorem [21]; if the sampling frequency fs =

1/Ts is greater than the twice the highest input signal frequency fb, then the input
signal can be fully recovered from the output samples, where fs is denoted for Nyquist
frequency. As seen in Figure 2.2, in the frequency domain, the sampled signal is the
repeated version of the original signal spectrum at integer multiples of the sampling
frequency fs. As a result, the spectrum is periodic with period Ts [22].

 

0          fB           f s                                 2f s f 

Signal spectrum 

Sampled signal 

spectrum 

Anti-aliasing filter  

Figure 2.2 Nyquist rate sampling ( fs > 2fb ) with an anti-aliasing �lter response.

If the sampling frequency is less than twice the signal bandwidth, the repeated
versions of the signal will partially overlap and alter the signal spectrum so that the
spectrum cannot be properly reconstructed. This non-linear signal distortion is called
aliasing [22]. To overcome the aliasing phenomenon, pre-�ltering the input signal is
used. This LP �lter is called the anti-aliasing �lter, which has a �at response over the
frequency band of interest as shown in Figure 2.2 and attenuates the frequencies above
the signal-band [23]. In other words, the frequency response of the �lter passes the
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Figure 2.3 Quantizer with quantizing level Q = 5.

signal in the signal-band-region and rejects the out-of-band components. As a result,
the input signal is forced to be band-limited [21].

2.2 Quantizing

The sampled signal is quantized in amplitude by transforming the sample se-
quence into a �nite set of prede�ned values. The quantized output amplitudes are
rounded to the nearest of this �nite set of values, which are usually digitally coded
with �xed word length, n. The quantizing levels Q and the digital word length n, i.e.
number of bits, can be expressed by the following relationship:

Q = 2n. (2.2)

In order to be resolved to di�erent output levels, the step size (∆ of the quantizer
would be written as:

∆ =
2V

Q− 1
=

2V

2n − 1
. (2.3)

The relation described in Eq. 2.3 can be seen in Figure 2.3.
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quantizer

Quantizer
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Output Signal
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Input signal

X

Input Signal
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Figure 2.4 Quantizer errors as additive noise model.

2.2.1 Quantization Error

From Figure 2.3, it can be easily seen that the quantized signal is not exactly
equal to the actual signal, due to the approximation of the sampled signal to the nearest
code word. Therefore the error of the quantizer added to the system can be modeled
as shown in Figure 2.4, where the error term e[n] is the di�erence between the output
sequence y[n] and the input sequence x[n]:

e[n] = y[n]− x[n], (2.4)

e[n] is a random quantity in the interval (−∆/2, ∆/2) with equal probability. The
quantization error can be considered as an independent additive white noise source
[24]. By doing so, the quantization error signal is assumed to be:

• A white random signal,

• Independent of the quantizer input signal,

• Uniformly distributed within the interval [−∆/2, ∆/2].
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For zero mean e[n] the noise power can be written as [25];

σ2
e = E[e2] =

1

∆

∫ ∆/2

−∆/2

e2de =
∆2

12
. (2.5)

Consider a n-bit A/D converter with Q = 2n quantization levels, i.e. substitute ∆ with
∆ = 2V/(2n − 1), so that Eq. 2.5 yields;

∆2

12
=

(
2V

2n − 1

)2

/12 ∼=
(

2V

22

)
/12. (2.6)

2.3 Performance De�nitions

As a result of the conversion processes, the original signal is distorted; therefore
the major aim of the e�cient conversion is to reduce the error caused by the sampling
and quantization processes. The performance of the A/D converters is mostly analyzed
by several parameters.

1. Signal-to-noise ratio (SNR):

The SNR is the ratio of the input signal power to the noise power of the converter.
It is expressed in decibels [26].

SNR = 10 log10

(
Psignal

Pnoise

)
= 10 log10

(
σ2

x

σ2
e

)
. (2.7)

Using Eq. 2.7 for σ2
e so that Eq. 2.9 can be rewritten as;

SNR = 10 log10(σ
2
x) + 10 log10

(
12 · 22n

22V 2

)
. (2.8)

Then the signal to quantization noise ratio becomes;

SNR = 10 log10

(
σ2

x

V 2

)
+ 4.77 + 6.02n (dB). (2.9)

Note that there is an SNR improvement of 6.02 dB for every increment of the
extra bit of resolution in the A/D converter.
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2. Resolution: The resolution is the number of bits, n, that an A/D converter uses
to represent its analogue input as digital output.

3. Dynamic Range (DR): The DR is the ratio of the maximum signal amplitude to
the noise level, expressed in dB. It is the value of the input signal at which the
SNR is 0 dB. Considering the input is sinusoidal, the dynamic range of an A/D
converter is expressed as the ratio of the signal power of a sinusoidal input signal
to the signal power of a small sinusoidal input that results in a SNR of 0 dB [26]
The average power of a sinusoidal signal is V 2/2. The SNR of a sinusoid with
signal power equal to the noise power; σ2

x = σ2
e = ∆2/12 will be 1 i.e. 0 dB [26].

Thus, the dynamic range can be calculated by combining the de�nition function
with Eq. 2.6:

(
V 2

2
/
∆2

12

)
∼= V 2

2
/
(2V/2n)2

12
, (2.10)

where ∆ = 2V/(2n − 1).

This expression reduces to a dynamic range value given by:

DR (dB) = 1.76 + 6.02n (2.11)
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3. PRINCIPLES OF SIGMA-DELTA A/D CONVERTERS

Di�erent from the Nyquist rate A/D converters, Σ − ∆ modulators are based
on two major concepts: oversampling and noise-shaping [27].

3.1 Oversampling

Oversampling techniques reduce the speci�cations of the anti-aliasing �lter and
also improve the resolution obtained from Nyquist rate converters [26]. This improve-
ment is achieved by oversampling, i.e. sampling the signal considerably larger than
the Nyquist sampling rate fs > 2fb. Since the input signal has equal probability to
have any value between the step sizes ∆, the total power of the sampled signal and the
total power of the original signal are exactly the same. In oversampling method, the
frequency resolution is exchanged for amplitude resolution, so that the area under the
power spectrum remains the same [22]. On the other hand; the noise power produced
is the same as produced by a Nyquist rate converter, but its frequency distribution
is di�erent because of the oversampling ratio, OSR. The quantization noise is desig-
nated as white noise [28] with zero mean uniformly distributed between −fs/2 and
fs/2, and independent from the input signal, as discussed in Chapter-2. Therefore; the
probability density function for the quantization noise is uniform as shown in Figure
3.1.

Figure 3.1 shows the power spectral density, Pe(f), of the quantization noise for
Nyquist-rate sampling and oversampling. For Nyquist-rate sampling, all the quantiza-
tion noise power occurs across the signal bandwidth fB (un-shaded rectangle). In the
oversampling case, the same noise power (shaded rectangle) is spread over a bandwidth
fs which is much greater than the signal bandwidth, fB. Therefore, a considerably
smaller part of this total noise power falls in the signal-band [−fB, fB]. As a result,
the quantization-noise power has been reduced by the factor of the oversampled ratio,
OSR, where OSR = fs/2fB. This OSR de�nes how much faster the signal is sampled
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Figure 3.1 Power of the quantization noise for Nyquist-rate and oversampled modulators.

in the oversampled modulator than in a Nyquist-rate converter. The assumed white
noise concept states that Pe(f) = σ2

e/fs [22]. The in-band noise power σ2
ey, at the

output of the A/D yields then [26];

σ2
ey =

∫ fB

−fB

Pey(f) df = 2

∫ fB

0

Pey(f) df =

∫ fB

0

2σ2
e

fs

df,

σ2
ey = σ2

e (2fB/fs)︸ ︷︷ ︸
OSR

. (3.1)

The quantization noise power is σ2
e = ∆2/12, where ∆2 = (2V/22)

2 as discussed in
Chapter-2. The in-band noise power is reduced by the OSR to;

σ2
ey =

V 2

12· 22n
· 2fB

fs

, (3.2)

where V is the reference voltage and n is the number of bits of the quantizer. As
seen from Eq. 3.1, the in-band power σ2

ey is less than σ2
e obtained by the conventional

Nyquist rate sampling, as much as the OSR. The Σ − ∆ modulator output can then
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be low-pass �ltered in order to attenuate the out-of-band quantization noise. Since
the signal power at the output σ2

xy, remains the same as the input signal power σ2
x

described in Chapter-2, the SNR improves as much as the additional OSR terms [26].
The SNR in dB is de�ned as;

SNR = 10 log10

(
σ2

xy

σ2
ey

)
,

SNR = 10 log10

σ2
x

σ2
e︸ ︷︷ ︸

SNR−Nyquist

+10 log10

fs

2fB︸︷︷︸
OSR

(dB). (3.3)

Note that when fs = 2fB, which is the case of Nyquist-rate sampling (OSR = fs/2fB =

1), Eq. 3.3 reduces to the SNR formula for Nyquist-rate converters described in
Chapter-2. Compared to an A/D converter sampled at Nyquist rate ( Eq. 2.10 ),
the SNR is improved as much as 10 log10(OSR), i.e. Every doubling of the OSR val-
ues potentially improves the SNR by 3.01 dB. Consequently, the overall SNR value
is greatly improved by this oversampling process by spreading the quantization noise
power from the signal bandwidth to a larger bandwidth without changing the input
signal power.

3.2 Noise-Shaping

The oversampling technique becomes more e�ective if the noise-shaping concept
is also used i.e. the noise spectrum in the signal band is further reduced. As discussed
in Section-3.1 the power of the noise spectrum is constant over the entire frequency
band. Noise-shaping is a technique which alters this noise spectrum so that it is no
longer uniform, but rather, is shaped such that most of the noise power is shifted to
higher frequencies. A Σ − ∆ modulator consists of a feedforward �lter ( integrator )
and a coarse quantizer ( ADC ) enclosed in a feedback loop, as shown in Figure 3.2 [29].
Σ −∆ modulators combine sampling rates well above the Nyquist-rate with negative
feedback structures. The feedback loop of an oversampling Σ−∆ modulator allows the
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Figure 3.2 Block diagram of the Σ−∆ modulator.

input signal to pass essentially un�ltered through the converter but high-pass �lters
the quantization noise [26, 27].

The block diagram represents the general operation of noise-shaping by the Σ−∆

modulator. The oversampled input signal �ltered through an accumulator, i.e loop-
�lter H(z). The output is the sum of the output of this discrete time integrator. The
digital output is then subtracted as feedback from the input signal so that the noise
is shifted to higher frequencies as a result of the introduced delay by this feedback
[30]. The quantizer in the feedback loop together with the loop-�lter, gives rise to the
desired in-band noise suppression and emphasizes the high frequency noise components.
Pushing the quantization noise towards high frequencies out of the signal band is
referred to as noise-shaping. Since the signal is oversampled, the high frequency noise
terms can be removed without a�ecting the input signal by means of a digital low
pass �lter at the output [29]. In fact a non-linear system is highly di�cult to analyse,
therefore a linear model equivalent of the system is used. By the linear model of the
system, the quantization noise is assumed to be an additive white noise as discussed
in the previous Chapter-2. Consequently, the quantizer is replaced with a noise source
e[n], and also the DAC is assumed to be ideal, as shown in Figure 3.3.

The output of a Σ−∆ modulator can be written in the z-domain as follows;

Y (z) = X(z)Hx(z) + E(z)He(z). (3.4)

Y (z), X(z) and E(z) are the output signal, input signal and quantization error in
the z-domain, respectively. However, unlike the Nyqusit-rate modulators, for Σ − ∆
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Figure 3.3 Linearized model of the Σ−∆ modulator block diagram.

modulators, Hx(z) is di�erent from He(z), where Hx(z) is the Signal Transfer Function
(STF) and He(z) is the Noise Transfer Function (NTF). As seen in Eq. 3.4 the output
of the modulator is the superposition of the input signal �ltered by an appropriate
STF, and the added noise component shaped by the NTF.

Hx = STF =
Y (z)

X(z)

∣∣∣∣
E(z)=0

and He = NTF =
Y (z)

E(z)

∣∣∣∣
X(z)=0

.

The general structure of a Σ−∆ modulator is represented in Figure 3.3. The system
can be analyzed as follows;

[X(z)− Y (z)]H(z) + E(z) = Y (z)

X(z)H(z) + E(z) = Y (z)[1 + H(z)].

So the loop-�lter can be expressed in terms of the STF and NTF;

Y (z) = X(z)
H(z)

H(z) + 1︸ ︷︷ ︸
STF

+ E(z)
1

H(z) + 1︸ ︷︷ ︸
NTF

. (3.5)

The STF is designed to be di�erent from the NTF such that the STF usually leaves
the signal undisturbed but the NTF shapes the noise to allow a high resolution output
[14, 27]. The gain of the STF is close to one in the signal bandwidth and close to zero
outside the band. On the other hand, the gain of the NTF is close to zero in the signal
band and close to one outside the signal-band.
As seen in Figure 3.4, Σ − ∆ modulators use oversampling to reduce the in-band
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Figure 3.4 Power spectrum of quantized signal.

noise power by spreading a �xed amount of noise power over a bandwidth much larger
than the signal bandwidth. To emphasize the result of oversampling, noise-shaping is
used to provide further attenuation of the in-band noise by pushing much of the noise
components out-of-band.
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4. LOW-PASS SIGMA-DELTA MODULATORS

For a LP Σ − ∆ data converter the STF should be a low-pass �lter and the
NTF a high-pass �lter in order to satisfy a large attenuation at lower frequencies
and ampli�cation at higher frequencies, by leaving the input signal unchanged. The
general structure of a Σ − ∆ modulator is shown in Figure 4.1. The system consists
of a discrete time integrator, usually called feedforward �lter, a quantizer ( ADC )
and D/A converter ( DAC ) in the feedback loop. The output signal is a bit stream
of 1's and 0's. Therefore the output signal y[n] is converted to its predicted analogue
value by the DAC before it is subtracted from the input signal x[n]. The input of the
integrator is the di�erence between the input signal x[n] and the analogue prediction
of the quantized modulator output y[n].
The DAC is considered to operate perfectly, so that it is replaced by a unity gain
transfer function [4]. The di�erence between the input signal x[n] and the analogue
conversion of the output signal y[n] gives the quantization error, which is then summed
up by the integrator, and quantized again by the quantizer. As the system continues,
because of the nature of the 1-bit quantizer, it generates +1 and −1. These bit streams
can be averaged over many input sample periods to give a very precise result. As a
result, a very high SNR can be achieved [30].

Feedback

Quantizer Output signal

y[n]

Loop Filter

H(z)

DAC

Input Signal

x[n]

 

Figure 4.1 Block diagram of a �rst order Σ−∆ modulator.
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Figure 4.2 The linearized model of the �rst order Σ−∆ modulator.

4.1 First Order Sigma-Delta Modulators

The number of the integrators used around the loop gives actually the order
of the modulator. In the �rst order Σ −∆ modulator, there is only one accumulator
operating, as shown in Figure 4.1. With the linear model of the system, the quantiza-
tion noise source is assumed to be an additive white noise as discussed in Chapter-3.
Consequently, the quantizer is replaced with a noise source e[n], as shown in Figure 4.2
and the DAC is assumed to be ideal. The standard system analysis in the z-domain
gives the modulator output Y (z) as follows;

Y (z) = [X(z)− Y (z)z−1]I(z) + E(z),

Y (z) = X(z)
I(z)

1 + I(z)z−1
+ E(z)

1

1 + I(z)z−1
· (4.1)

An ideal integrator is expressed as [23];

I(z) =
1

1− z−1
=

z

z − 1
· (4.2)
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Finally Eq. 4.1 becomes;

Y (z) = X(z) + E(z) (1− z−1)︸ ︷︷ ︸
NTF

. (4.3)

As seen in Eq. 4.3, the input signal remains unchanged while the quantization noise
is shaped by the NTF = 1− z−1. Note that the NTF is a high pass �lter with a zero
at dc, so that it reduces noise components at around dc. Due to the high gain of the
loop-�lter in the signal band, the in-band quantization noise is strongly attenuated.
The corresponding output in the time-domain is;

y[n] = x[n] + e[n] + e[n− 1].

Here the �rst order di�erentiation e[n] − e[n − 1] of the error e[n], suppresses the
error at low frequencies compared to the error terms resulted by the conventional A/D
converters.
Using the de�nition of the z-domain on the unit circle: z → ejωT , the NTF can be
rewritten in the frequency-domain as;

NTF = 1− e−j2πfT = 2je−j2πfT sin(πfT ). (4.4)

The squared magnitude of the NTF results in ampli�cation of the quantization noise
by 4, but due to the term sin2(πfT ) it has huge attenuation at low-frequencies in the
spectrum. As a result, the in-band noise power can be computed by the same procedure
used in oversampling in Chapter-3;

σ2
ey =

∫ fB

−fB

Pey(f)df = 2

∫ fB

0

Pey(f)df,

σ2
ey = 2

∫ fB

0

(2 sin(πfT ))2 Pe(f)df.
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Using the approximation sin(x) ∼= x, for πfBT << π/2 [31] and Pe(f) = σ2
e/fs [22],

and Ts = 1/fs, then the above equation yields;

σ2
ey = 2

σ2
e

fs

∫ fB

0

4π2 1

f 2
s

f 2(df) = σ2
e8

π2

3

(
fB

fs

)3

,

σ2
ey = σ2

e

π2

3

(
2fB

fs

)3

. (4.5)

Then the SNR can be computed as follows;

SNR = 10 log

(
σ2

xy

σ2
ey

)
,

SNR = 10 log

(
σ2

x

σ2
e

)
− 5.17 + 30 log

(
fs

2fB

)
(dB). (4.6)

As seen in Eq. 4.6, the in-band noise power σ2
e is decreasing with increasing oversam-

pling ratio (OSR = fs/2fB). Thus for every doubling of OSR, the SNR improves by
9.03 dB, or accordingly, the resolution improves by 1.5 bits. In order to provide high
resolution, it is required to use a large enough OSR. A �rst order Σ − ∆ modulator
is simulated for an input amplitude of 0.5, a normalized frequency of 0.01. The FFT
of the PSD of the output signal is plotted in Figure 4.3. Note that the vertical peaks
represent the FFT of the input signal of the normalized frequency, ν = fB/fs, where
fB = 0.01fs. The simulation result shows the expected noise-shaping around dc and
shows that the quantization noise has a signi�cantly large attenuation in the signal-
band i.e. in the frequency range of [−fB, fB], and relative ampli�cation at higher
frequency, i.e. in the out-of-band region. The power of the input signal ( σ2

x ) and
quantization noise ( σ2

e ) can be calculated numerically as discussed in Chapter-2. The
input sine wave of 0.5 amplitude has a signal power 0.25, −0.6 dB. For the noise of
a single bit quantizer, the relationship such as ∆ = V/2n = V/2 can be used, so that
the noise power is σ2

e = ∆2/12 = (V 2/22) · (1/12) = 0.02. For an FFT of 32768 point
sequence used in the simulation, the noise power is 1.2 · 10−6 in each of the 16384

samples. Since the NTF at Nyquist corresponds to ampli�cation by 4 in power [32],
the expected power in bins (samples) around Nyquist is 5.08 · 10−6, −59.2 dB. The
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Figure 4.3 Output spectrum of a �rst order Σ−∆ modulator for a 0.5 input sine wave amplitude.

simulation results in Figure 4.3 are consistent with the calculations such that the level
near Nyquist ranges between −55 and −65 dB.

4.2 Second Order Sigma-Delta Modulators

Considerable important improvements in terms of resolution and the in-band
SNR values were achieved with the development of second order Σ − ∆ modulators
[29]. A standard second order Σ − ∆ converter is constructed by adding another
integrator to the �rst-order modulator structure as shown in Figure 4.4, which consists
of two integrators ( loop-�lters ), a quantizer and a feedback loop feeding the input.
The system can be analyzed as;

Y (z) = X(z) + E(z) (1− z−1)2

︸ ︷︷ ︸
NTF

. (4.7)
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Figure 4.4 Block diagram of a second order Σ−∆ modulator.

This gives the NTF as (1 − z−1)2. Note that, the past two sequences are cancelled in
the NTF, which results in more attenuation at the low frequencies. The NTF can be
rewritten in the frequency domain by replacing z by ejωT as;

NTF = (1− e−jωT )2 = 4je−jωT sin2(ωT/2). (4.8)

As seen in Eq. 4.8, the output noise spectrum is shaped by the term sin4(ωT/2), which
causes a signi�cant attenuation of the noise components in the signal-band. The power
of the output noise power can be computed using the squared magnitude of the NTF
as a function of frequency.

σ2
ey =

∫ fB

−fB

Pey(f)df = 2

∫ fB

0

(
4 sin2(πfT )

)2
Pe(f)df,

σ2
ey = 2

σ2
e

fs

∫ fB

0

16π4 1

f 4
s

f 4(df) = σ2
e32

π4

5

(
fB

fs

)5

,

σ2
ey = σ2

e

π4

5

(
2fB

fs

)5

, (4.9)

SNR = 10 log(
σ2

x

σ2
e

)− 10 log(
π4

5
)− 50 log

(
2fB

fs

)
(dB),

SNR = 10 log(
σ2

x

σ2
e

)− 1.29 + 50 log

(
fs

2fB

)
(dB). (4.10)
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Figure 4.5 Output spectrum of a second order Σ−∆ modulator.

Thus, for every doubling of the oversampling ratio, OSR = fs/2fB, the SNR improves
by 15.05 dB, or the resolution by 2.5 bits, which is 1 bit better than the improvement
achieved by a �rst order Σ−∆ modulator.
The FFT of the output spectrum of a second order Σ − ∆ modulator simulated for
a sinusoidal input signal of an amplitude of 0.5, a normalized frequency of 0.01 and
dither amplitude signal of 0.03 is plotted in Figure 4.5.
Note that, compared with the output spectrum of a �rst order Σ − ∆ modulator, a
second order Σ−∆ modulator provides more attenuation of the quantization noise at
low frequencies, and more ampli�cation outside the signal-band. Furthermore, simu-
lations show that, the output spectrum of the �rst order Σ − ∆ modulator is poorly
noise-shaped and has more tones in the signal band, compared to the performance
results of the second order Σ−∆ modulator.
Using such an output spectrum, the in-band SNR value of a modulator can be cal-
culated numerically. Figure 4.6 shows the corresponding SNR values of the �rst and
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Figure 4.6 In-band SNR vs amplitude of input sinusoid for �rst order and second order Σ − ∆
modulators.

second order Σ−∆ modulators for di�erent input amplitudes varying between 0.1−0.8

for the OSR of 128.
As expected from Eq. 4.6 and Eq. 4.10, the in-band SNR values of a second order
modulator are on the average 20 dB higher than the SNR values obtained from a �rst
order Σ−∆ modulator.

4.3 Tonality

In practice there are discrete tones appearing in the output spectrum because of
the non-linearity of the negative feedback which can distort the signal by coupling to
the baseband region [33]. The periodic components and repetitive patterns in the sys-
tem like sinusoidal input signals cause harmonic tones. These tones can cause serious
problems if they occur in the signal-band. Since the human eye and ear are sensitive
to these repetitive signals, tones can be distinguished by humans as audio or visual.
Moreover, the pattern noise in the signal band degrades the SNR values by means of
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Figure 4.7 Block diagram of a �rst order Σ−∆ modulator structure with dither.

bumps and slope changes [34]. Several methods are introduced in the literature to
reduce these harmonic tones, and the most commonly used technique is dithering [14].
In the dithering method, white noise i.e. random numbers are generated and added
to the system in order to make the quantization noise more random and minimized in
the signal-band, so that the correlation of the input signal with the quantizer output
due to the feedback is reduced [35]. This pseudo-random signal is added to the input
of the quantizer as shown in Figure 4.7.
On the other hand, besides the complexity of the dither circuitry, adding white noise
into the spectrum reduces the SNR of the modulator; therefore the amplitude of the
dither should be adjusted according to the optimum condition investigations [36].
Moreover, perfect elimination of the tones of the system requires the dither ampli-
tude to be large, which is also a trade o� for the stability of the system. Therefore, the
optimum condition is hard to predict thus it should be checked by extensive simulations
[30].
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5. HIGH-ORDER SIGMA-DELTA MODULATORS

5.1 Single Loop Structure

High order Σ − ∆ modulator is a straightforward extension of the �rst order
Σ−∆ modulator with additional accumulators added in the feedforward loop. Single-
loop modulators have only one quantizer, or comparator, as shown in Figure 5.1.
The output sequence y[n] can be written as;

Y (z) = X(z) + E(z) (1− z−1)N

︸ ︷︷ ︸
NTF

. (5.1)

Due to Eq. 5.1, as the order (N) of the modulator increases, the attenuation of the
quantization noise in lower frequencies becomes higher by pushing more noise power
out of the signal band as shown in Figure 5.2. Using the NTF = (1 − z−1)N , the in-
band SNR value can be computed in the same manner as in the case of the low-order
Σ−∆ modulators.

SNR = 10 log10(
σ2

x

σ2
e

)− 10 log10

(
π2N

2L + 1

)
+ 10(2N + 1) log10

(
fs

2fB

)
(dB). (5.2)

As seen in Eq. 5.2 for every doubling of the OSR, SNR improves as much as (6N + 3)

dB, or the resolution gains extra (N + 0.5) bits. Note that Figure 5.2 and the Eq. 5.2

Figure 5.1 Block diagram of a N th order Σ−∆ modulator.
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Figure 5.2 The magnitude spectra of NTFs of Σ−∆ modulators.

are true for the ideal case. In practice, they are not achievable because of the stability
problem of the 1-bit quantizer [14]. According to the general form given in Eq. 5.1,
the third order (N = 3) NTF is (1 − z−1)3. For the comparison of the NTFs, the
magnitude output spectra of 1st, 2nd and 3rd order Σ − ∆ modulators for the same
sinusoidal input signal of an amplitude of 0.5 and a normalized frequency of 0.01 and
the dither amplitude of 0.3 are plotted in Figure 5.3.
As seen the simulation results in Figure 5.3 and the corresponding SNR values increase
as the order of the modulator increases. Moreover, the 3rd order NTF secures a sig-
ni�cant decrease of the quantization noise in the signal band, and ampli�cation at the
higher frequencies compared to the 1st and 2nd order NTFs. The NTF of the 1st order
modulator is more tonal, i.e. it has more unwanted harmonics interfaced with the
signal. Even though high-order Σ −∆ modulators have been designed and simulated
[37, 38, 39], the SNR performance in Eq. 5.2 is not achievable in practice because
the NTF given in Eq. 5.1 is not stable with a 1-bit ADC for orders higher than 2

[40]. It is di�cult to maintain the stability when a 1-bit quantizer is used, because of
its variable gain depending on the input signal. The smaller the input amplitude is,
the larger is the gain of the quantizer, which makes the linear analyses more di�cult
[26]. The instability of the system can be de�ned as the condition in which the signal
levels in the modulator grow inde�nitely. This inde�nite growth causes the quantizer
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Figure 5.3 The NTF's of the (a) 1st, (b) 2nd, (c) 3rd order Σ−∆ modulators.
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to overload and produce an output of alternating long strings of 1's and 0's. In that
condition the system have poor SNR compared with that expected by linear models
[14]. Therefore, as the order of the modulator increases the modulator will become
more unstable depending on the feedback coe�cients, the gain of the loop-�lter, non-
ideality of the integrator in the feedback loop, and the amplitude of the input signal
[41, 42]. Because of the non-linear nature of the quantizer, for higher order modula-
tion, adding a quantizer especially one with a small number of bits, makes the stable
linear architecture unstable [32]. According to the stability theory, the system is not
stable if the gain of the loop is not adequate i.e. if the poles of the STF are outside
the unit circle, which can occur if the gain of the quantizer is so large that the system
have uncontrolled transients [14]. Therefore, for higher order Σ − ∆ modulators, the
coe�cients are adjusted until the gain of the loop �lter is appropriate to secure the
stability of the system [43, 44]. When designing the NTF, their gains have to be less
than 2 dB [45].

5.2 Multi-stage (Cascaded) Sigma-Delta Modulators

The cascaded structure is used to design high-order Σ−∆ modulators to over-
come the stability problems of the single-loop structure and provide high resolution [46].
The MASH ( Multi-stAge noise-SHaping) architecture consists of cascaded low-order
( �rst or second ) single-loop modulators with their own quantizers. Each modulator
in the loop converts the quantization error from the previous modulator, which are
then digitally canceled [26, 46]. Figure 5.4 gives the general structure of two cascaded
modulators.
As seen in Figure 5.4, the quantization error of the 1st modulator e1[n] is the input of
the 2nd modulator while the output of the second modulator y2[n] is combined with
the output of the �rst modulator y1[n] via a noise cancelation circuit. As a result, the
�rst stage quantization noise is canceled digitally. The system can be analyzed in the
z-domain as follows;

Y1 = X · STF1 + E1 ·NTF1, (5.3)
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Figure 5.4 Block diagram of a cascaded Σ−∆ modulator.

Y2 = E1 · STF2 + E2 ·NTF2, (5.4)

where NTF1 = (1− z−1)n , NTF2 = (1− z−1)m are the noise transfer functions of the
�rst and second modulators. The corresponding STF's are; STF1 = z−k1 , STF2 = z−k2

for the 1st and 2nd modulator respectively. Then the outputs of the modulators become;

Y1 = X · z−k1 + E1 · (1− z−1)m, (5.5)

Y2 = E1 · z−k2 + E2 · (1− z−1)n. (5.6)

The noise cancellation circuit cancels the quantization error of the �rst modulator, E1,
by the following process in the digital domain;

Y = Y1 · STF2 − Y2 ·NTF1. (5.7)

Using the explicit forms of the transfer function given in Eq. 5.5 and Eq. 5.6 so that
the output becomes;

Y = X · z−(k1+k2) + E2 · (1− z−1)m+n. (5.8)

As seen in Eq. 5.8, the �rst stage error is canceled digitally by the signal process of
the cancelation circuit. Moreover, the signal is just delayed at the output while the
quantization error contributed from the second modulator is shaped by the NTF of
order m + n.
The overall system is still stable because the structure contains only feedforward paths
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and no feedbacks between the single-loop modulators [14]. Using this advantage of the
inherent stability of low-order Σ−∆ modulators, high order modulators of any order
can be constructed. Beside the improvements in stability, the cascaded modulators
have fewer tones compared to a �rst or second order Σ−∆ modulators [47].
On the other hand, in reality the error contribution from the �rst modulator, E1, does
not completely cancel out because the NTF of the �rst modulator may not be exactly
equal to (1 − z−1)m. The mismatch of the components and the non-idealities of the
op-amps cause residual noise at the output. The noise leakage is [32]:

E1,out = (NTFexpected −NTFideal)E1. (5.9)

The non-idealities cause a shift in the NTF as much as the δ so that the zero of the
NTF is moved from z = 1 to z = 1− δ. When the case of the �rst order modulator is
considered, then the residual noise term yields to;

E1,out = [(1− z−1)− (1− (1− δ)z−1)] · E1 = δ · z−1 · E1. (5.10)

The quantization noise of the second modulator, E2, is attenuated by an order (m+n)

as seen in Eq. 5.8 and the in-band power of the residual noise E1,out is shaped by δ2,
which is lower than the power of E2.

log(
δ2

OSR
) < log

(
π2N

2N + 1
· 1

OSR2N+1

)
. (5.11)

Therefore the overall in-band SNR value given in Eq. 5.2 does not become worse, so
that the general structure given in Figure 5.4 can be extended to any stages for the
desired order of the modulator. However, these mismatches between the actual NTF
and the ideal NTF restrict the maximum number of the stages used in the MASH
structure, to be limited to three [32]. For the case of the 1-1-1 cascaded third order
modulator, another single-loop modulator will be added to the diagram Figure 5.4.
Figure 5.5 gives the block diagram of a 1-1-1 cascaded third order Σ − ∆ modulator
with the analyzed noise cancelation circuitry. As seen in Figure 5.5, the modulators use
the quantization error of the preceding modulators as the input and �nally the outputs
of all the modulators are added and manipulated through the signal processing via
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Figure 5.5 1-1-1 cascade: a 3rd order Σ−∆ modulator by cascading three 1st order Σ−∆ modulators.
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some noise cancelation circuits. Y1, Y2, Y3 are the outputs of the �rst, second and third
modulators, respectively.

Y1 = X(z−1) + E1(1− z−1),

Y2 = E1(z
−1) + E2(1− z−1),

Y3 = E2(z
−1) + E3(1− z−1).

To eliminate the quantization error terms of the second modulator, E2;

Y
′
=

[
Y2 · (z−1)

]− [
Y3 · (1− z−1)

]
= E1(z

−1)2 − E3(1− z−1)2.

The output Y [z] is obtained in the same manner by canceling the quantization error
contributed from the �rst modulator E1.

Y [z] =
[
Y1 · (z−1)2

]− [
Y ′ · (1− z−1)

]
= X · (z−1)3 − E3 · (1− z−1)3. (5.12)

As obtained in Eq. 5.3, the input sequence is delayed by the STF = (z−1)3 and the
error term is shaped by NTF = (1− z−1)3.
Figure 5.6 gives the output spectrums of 3rd-order Σ−∆ modulators using single-loop
structure and 1-1-1 cascaded structure for the same input signal of the input amplitude
of 0.5 and normalized frequency of 0.01. Note that, the output power spectrum of the
MASH structure has fewer tones and higher attenuation of the noise components in
the signal-band, compared to the single-loop structure.
As a result of the MASH structure, a higher order Σ−∆ modulator is obtained whose
overall system stability is guaranteed by the unconditional stable low-order Σ − ∆

modulators. Higher order structures can be designed only from 1st order modulators
[46] or also using 2nd order modulators [48, 49]. However, more than three cascaded
stages introduce quantization error leakage to the output and reduce the performance
of the modulator.
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Figure 5.6 3rd order Σ−∆ modulator using the structure of (a) single loop, (b) MASH structure.

5.3 Butterworth High-Pass Response

Using the nth order pure di�erentiator H(z) = (1 − z−1)n as the NTF causes
instability for higher number of n, as discussed before. One approach to this problem
is to introduce poles into the H(z) to �atten the response at higher frequencies [45].

H(z) =
(z − 1)n

D(z)
. (5.13)

As seen in Figure 5.7, the H(z) has a �at response in the out-of band region due to
the D(z) in the denominator.
The poles can be chosen according to a Butterworth alignment so that the 3 dB-gain
rules as well as the causality rules are satis�ed [14].

5.4 Inverse Chebyshev Complex Response

The Butterworth response can be modi�ed so that the zeros are moved to other
frequencies from dc i.e. to the complex locations on the unit circle in the vicinity of dc (
zero splitting ). As a result of these complex alignments, compared to the Butterworth
alignment, SNR improvements and more attenuation of the noise contribution in the
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Figure 5.7 The comparison of the frequency responses of the H(z) after modi�cation.

in-band region are achieved [14]. In order to have complex zeros besides the real zeros,
one should use inverse Chebyshev �lters instead of Butterworth �lters [45, 50]. The
lower and upper frequencies of the NTF are selected so as to ensure that the input
signal is positioned at the centre of the signal bandwidth.

5.5 Loop Filter Topologies

There are many structures and circuit topologies to design LP modulators based
on the same universal single-loop structure as given in Figure 4.1 [14].The signal is
�ltered by the STF and the noise is shaped by the NTF, which are de�ned by the
loop-�lter H(z) as;

STF =
H(z)

1 + H(z)

and

NTF =
1

1 + H(z)
·
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Figure 5.8 Chain of accumulators with weighted feedforward summation.

The circuit topologies of the single-loop structure modulators can be modi�ed with
adding extra feedback paths. There are many possible design implementations, how-
ever the most frequently used structures are: chain of accumulators with weighted
feedforward summation [51, 37] and chain of accumulators with feedforward summa-
tion with local resonator feedbacks [52, 53].

5.5.1 Weighted Feedforward Summation

The design topology consists of cascaded integrators with the transfer functions
H(z) = z−1/(1− z−1), whose outputs are weighted and summed up to form the overall
loop-�lter transfer function, L(z). The summation output is used as the input of the
quantizer generating the feedback signal y[n] [14]. The structure should have a delay
of at least one sample period to maintain the causality of the system [54], as shown in
Figure 5.8.
The linear system analysis gives the transfer function of the loop-�lter, L(z);

L(z) =
1

(z − 1)
· a1 +

1

(z − 1)2
· a2 +

1

(z − 1)3
· a3 + ..... +

1

(z − 1)n
· an. (5.14)
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Figure 5.9 5th order Σ−∆ modulator using the chain of accumulators structure with local feedbacks.

In which, n is the order of the loop-�lter, ai, for i = 0, 1, ...., n , are the feedforward
coe�cients to determine the poles of the loop-�lter or NTF zeros. As seen in Eq. 5.14
all the poles of L(z) are at dc, i.e. at z = 1. Therefore, a Butterworth high-pass
�lter can be used to obtain adequate coe�cients that make the system stable. Once
the NTF is obtained from the linear system analysis, the corresponding L(z) can be
computed from the relationship that NTF = 1/(1 + L(z)), it is then equated to the
Butterworth NTF to solve for the desired feedforward coe�cients.

5.5.2 Feedforward summation with Local Feedbacks

For relatively large signals bands, the zeros of the NTF do not need to be at a
certain frequency to reduce the noise at certain points. Instead it is necessary to have
a low noise level over the entire signal band [32]. The distribution of the NTF zeros
across the signal band will cause moderate attenuation, when compared with having
all zeros concentrated at a single frequency. The corresponding structure is shown in
the Figure 5.9, which is achieved by adding a small negative feedback around pairs of
integrators, so that the zeros of the loop-�lter are shifted away from z = 1 [14]. As
seen in the diagram, the second integrators of the pairs are without delay.
In which, ai, for i = 0, 1, ..., 5, are the feedforward coe�cients and b1, b2 are the gains
of the negative feedbacks around the integrator pairs. For the case of one pair of the
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integrators, the loop transfer function yields:

L(z) =
z(a1 + a2)− a1

z2 + z(b1 − 2) + 1
· (5.15)

As seen in Eq. 5.15, the poles of the L(z) are moved away from the real axis to complex
points on the unit circle, therefore the inverse Chebyshev �lter can be used to obtain
the desired coe�cients. The coe�cients can be solved by equating L(z) obtained from
the system analysis ; to the transfer function obtained from the NTF of the Chebyshev
�lter [45].
Note that the poles of the transfer function of the loop-�lter become zeros of the corre-
sponding NTF, therefore the local feedbacks determine actually the shift of zeros away
from z = 1. These zeros can be used to have a �at transfer function in the signal band
and prevent a high STF gain at higher frequencies so that the overall performance of
the modulator is improved. The signal band may be extended but this will be at the
cost of a lower SNR value [32, 50].
Using MATLAB, the Butterworth and Inverse Chebyshev �lters can be designed ac-
cording to the implementation speci�cations. The feedforward coe�cients for a third-
order Butterworth �lter are calculated as a1 = 0.3138, a2 = 0.0473, a3 = 0.0033. For
a third order inverse Chebyshev �lter, the feedforward coe�cients are: a1 = 0.3648,
a2 = 0.0573, a3 = 0.0012512 and the feedback coe�cient: b1 = 0.0185. The correspond-
ing modulator is simulated for a dither signal of amplitude 0.3. Figure 5.10 compares
the simulation results of the NTF's of third order modulators with (a) weighted feed-
back summation structure, that has all the zeros at z = 1, (b) weighted feedback
summation with local resonators, that has one zero at z = 1 and others moved to
complex conjugates on the unit circle.
At low frequencies, there is higher noise suppression when all the zeros of the NTF are
at z = 1, as shown in Figure 5.10. As a comparison; in (a) all the zeros are located at
dc ( z = 1 ) and in (b) there are complex conjugate zeros. However for a signal-band
at the frequencies around ν = 0.02, the second modulator with complex zeros becomes
more e�ective by means of noise-shaping.
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Figure 5.10 NTF's of a third order Σ − ∆ modulator using the chain of integrators (a) weighted
feedforward summation, (b) weighted feedforward summation and local feedbacks.
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6. BAND-PASS SIGMA-DELTA MODULATORS

Band-pass Σ−∆ modulators with high resolution performance [55] have typical
applications in many diverse areas especially in modern receiver systems to convert
high frequency narrow-band signals [30], AM digital radios [55], digital radio systems
[7], cellular mobile radios [56], cellular telephony [9], phased-array ultrasound imaging
[2], RF communication receivers [57] and satellite communication services [11]. Low-
pass Σ − ∆ modulators use a sampling frequency, fs, that is much greater than the
highest frequency of the input signal, which is also the bandwidth of the signal, fB.
However, the highest frequency component of a band-pass signal is shifted to a much
higher frequency as much as the center frequency of the signal, fo, i.e. it is located at
fo + fB/2. Therefore, for band-pass signals with very large fo, as IF signals, choosing
the sampling rate much greater than the highest frequency will be unreasonably large to
achieve [26]. Thus, according to the band-pass sampling theorem, BP Σ−∆ modulators
have a sampling rate much greater than the signal bandwidth instead of the highest
frequency in the input signal, fs >> fB [57]. The loop-�lter used in the BP Σ − ∆

modulators have very high gain in the signal band centred at fo in order to give a
big attenuation of the in-band noise while the input signal remains unchanged [55].
The corresponding block diagram and the behavior of the NTF and the STF are given
below in Figure 6.1. Σ−∆ modulators, LP or BP, have a small amount of noise in the
narrow band around the zeros of the loop-�lter. However, unlike the high-pass NTFs
of the LP Σ −∆ modulators, that have zeros at around z = 1, the NTFs realized by
the BP Σ − ∆ modulators have zeros in the signal band around fo, which cause the
NTF to be band-stop and the loop-�lter to have an in�nite gain in the signal band
region [fo ± fB/2] [58].

Moving the poles of the loop-�lter, H(z), from dc to complex conjugates on the
unit circle cause H(z) to be in�nite around fo [55]. As discussed before, the poles of
H(z) become the zeros of the NTF and H(z) de�nes directly the NTF and STF of the
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Figure 6.1 (a) Block diagram of a BP Σ−∆ modulator (b) Typical NTF and STF.

modulator as shown below;

STF =
H(z)

1 + H(z)
and NTF =

1

1 + H(z)
. (6.1)

Therefore, the in�nite gain of the H(z) provides the NTF to go to zero and the STF
to become unity in the signal region, while away from the centre frequency, the NTF
gives rise to the quantization noise in the out-of band region, as illustrated in Figure
6.1.

6.1 Band-Pass Σ−∆ Modulator Loop-Filter Design

The simplest and the most common way to design the loop-�lter for a BP
Σ−∆ modulator is to derive it from a LP Σ−∆ modulator via simple mathematical
transformations in [55]. In this LP prototype method, a low-pass-to-band-pass ( LP
→ BP ) transformation is applied on a suitable LP modulator, so that from a LP
modulator of order n, a BP modulator of order 2n is obtained by maintaining the
stability of the system as well as the noise properties of the original case [14]. The
LP prototype can be a single-loop structure [59] as well as a MASH structure [60, 61].
The loop-�lter transfer function can be obtained by applying a low-pass-to-band-pass
transformation at the points z = ±ej2πν . By moving the zeros from z = 1 to complex
conjugates, The NTF yields;

NTF =
(z − ej2πν)(z − e−j2πν)

z2
. (6.2)
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Figure 6.2 A 4th-order band-pass Σ−∆ modulator obtained with z−1 → −z−2 transformation.

The Eq. 6.2 can be rewritten explicitly;

NTF =
z2 − zej2πν + ze−j2πν + 1

z2
+

z2 − z(ej2πν + e−j2πν) + 1

z2
. (6.3)

Using ej2πα+e−j2πα

2
= cos α [31], NTF yields;

NTF =
z2 − 2z cos 2πν + 1

z2
. (6.4)

The conventional form of Eq. 6.4 can be written as;

NTF = 1− (2 cos 2πν)z−1 + z−2. (6.5)

Since H(z) = (1−NTF )/NTF , the transfer function of the loop-�lter becomes;

H(z) =
(2 cos 2πν)z−1 − z−2

1− (2 cos 2πν)z−1 + z−2
. (6.6)

Note that the above generalized equation Eq. 6.4 is valid for all values of the normalized
frequency v. There are some special cases used in the literature due to the circuit
design simplicity [14]. For the case of ν = 0.25, which implies that 2πν = π/2 or
z = ±ej2πν = ±j , the loop-�lter yields;

H(z) =
−z−2

1 + z−2
. (6.7)

Note that, Eq. 6.5 is the mapping of z−1 → −z−2 applied to the LP prototype, which
is not complicated to design. As seen below, Figure 6.2 is a transformed BP version of
the second-order LP modulator given in Figure 4.4.

The transformation of z−1 → −z−2 in the LP loop-�lter transfer function, dou-
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Figure 6.3 The pole-zero alignments of the NTFs for (a)LP (b)BP Σ−∆ modulators.

bles the order of the LP NTF and shifts the zeros of the NTF from dc to ±π/2 i.e.
from z = 1 to z = ±j. The corresponding locations of the zeros of the LP and BP
NTFs are given in Figure 6.3. Note that ωB is the normalized bandwidth, which is a
narrow-band surrounding the zeros and ω0 = 2πfo [14].
Figure 6.4 shows the corresponding magnitude spectrum of the NTF of the fourth-order
BP Σ −∆ modulator, where the zeros of the NTF are moved from dc to ±π/2 or in
terms of the normalized frequency ν = 0.25.
As seen in Figure 6.4, the quantization noise is signi�cantly reduced in the narrow-band
around the normalized centre frequency 0.25 and pushed away from the signal band
region. This band-reject noise-shaping of the BP modulators provides high SNR values
while lowering the sampling rate used by LP Σ−∆ modulators [62]. Furthermore, as
expected the spectrum is exactly equivalent to two copies of the original LP proto-
type modulator, which are centered at ν = ±0.25. Therefore, the stability properties
are also the same as obtained by LP Σ − ∆ modulators [30]. Another special case is
ν = 0.125, that gives 2πν = π/4, so that the loop-�lter becomes;

H(z) =
z−1

√
2− z−2

1− z−1
√

2 + z−2
. (6.8)

The PSD of the output of a 4th order BP Σ−∆ modulator with a loop-�lter transfer
function de�ned in Eq. 6.6 is plotted in Figure 6.5. For the simulation, a sinusoidal
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Figure 6.4 The NTF of a 4th-order Σ−∆ modulator with resonant frequency ν = 0.25 .

input signal of the frequency of fo = π/4 and amplitude of 0.5, is used, which is
represented as the vertical peaks in the plot.
The simulation result shows the expected noise-shaping around ω0 = π/4 and relative
ampli�cation away from the center frequency, i.e. in the out-of-band region. On the
other hand, non-integer coe�cients in the loop transfer function given in Eq. 6.6 make
the circuit implementation di�cult, because of the problems faced by satisfying non-
integer capacitances. These possible inaccuracies in design alter the NTF so that the
zeros are shifted away from the unit-circle and the noise attenuation is degraded in the
signal band around the center frequency, fo [32].

6.2 Loop-Filter Topologies

BP Σ−∆ modulators preserve many advantages of the LP Σ−∆ modulators
and have the same structural variety as LP Σ−∆ modulators with all the trade-o�s, so
that the NTFs of BP modulators are faced with the same stability constraints as their
LP counterparts. The transformation methodology from LP to BP Σ−∆ modulators
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Figure 6.5 Output spectrum of a 4th order BP Σ − ∆ modulator with resonance frequency of
ν = 0.125.

can be realized with any structure discussed in the Chapter-5, by mapping each delay
component with two delay components [30]. Therefore, the same loop-�lter topologies,
given in the Chapter-5 for LP Σ−∆ modulator can be transformed simply for BP Σ−∆

modulators. There are many possible design implementations; however two of them are
analyzed here: the chain of accumulators with weighted feedforward summation and
the chain of accumulators with feedforward summation and local resonator feedbacks.

6.2.1 Chain of Resonators with Weighted Feedforward Summation

The structure shown in Figure 6.7 is a transformed version of the topology used
in Chapter-5 for LP Σ−∆ modulators, which consists of a chain of resonators whose
outputs are weighted and summed up and used as the input of the quantizer generating
the feedback signal y[n]. Note that the resonators are of the form z−2/(1 + z−2) to
have noise suppression at ν = 0.25 to form the loop-�lter of the system, L(z).
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Figure 6.6 Loop-�lter topology for a 4th order BP Σ−∆ modulator using cascaded integrators with
feedforward coe�cients.

The loop-�lter transfer function results by linear system analyses as;

L(z) =
1

z2 + 1
a1 +

1

(z2 + 1)2
a2 + ... +

1

(z2 + 1)n
an, (6.9)

where, n is the order of the loop-�lter, ai, for i = 0, 1, ..., n, are the feedforward
coe�cients to determine the poles of the loop-�lter or the zeros of the NTF. As seen in
Eq. 5.14 all the poles of L(z) are at ν = 0.25, i.e. at z = ±j. Therefore, a Butterworth
BP �lter can be used to obtain the adequate coe�cients that make the system stable by
reducing the magnitude of the NTF gain in order to provide maximally �at out-of-band
gain [63]. Once the NTF is obtained from the linear system analysis, the corresponding
L(z) can be computed from the relationship that NTF = 1/(1 + L(z)), it is the
equated to the Butterworth NTF to solve for the desired feedforward coe�cients. The
required Butterworth �lter can be designed using MATLAB. For a 4th order structure,
the feedforward coe�cients are calculated as a1 = −0.1773 and a2 = 0.0145. The
corresponding Σ−∆ modulator is simulated for an input sinusoid of amplitude of 0.5

and frequency of π/2 and a dither signal of amplitude of 0.05. The simulation result
is shown in Figure 6.8.
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Figure 6.7 The output power spectrum of a 4th order BP Σ − ∆ modulator employing weighted
feedforward summation structure.

As expected, there is a sharp attenuation of quantization noise in the signal
band around 0.254.

6.2.2 Chain of Accumulators with Feedforward Summation and Local Feed-
backs

The loop topology is derived from the LP modulator topology in Figure 5.8
by mapping z → −z2. The corresponding structure is shown in Figure 6.9, which is
composed of small negative feedbacks around pairs of integrators, which are summed
up prior to the quantizer input. As seen in the diagram, the second integrators of the
pairs are without delay. ai, for i = 0, 1, ..., 5 are the feedforward coe�cients and b1, b2

are the gains of the negative feedbacks around the integrator pairs.
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Figure 6.8 4th order BP Σ−∆ modulator designed with the topology of chain of accumulators with
feedforward summation and local feedbacks.
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Figure 6.9 The output power spectrum for the 4th order BP Σ−∆ modulator employing weighted
feedforward summation with local feedbacks architecture.

For the case of one pair of the integrators, the loop transfer function is obtained;

L(z) =
z2(a1 + a2) + a1

z4 + z2(b1 + 2) + 1
(6.10)

The inverse Chebyshev �lters can be implemented to obtain the coe�cients. The coef-
�cients can be solved by equating the loop-�lter transfer function, L(z) obtained from
the NTF to the transfer function obtained from Chebyshev NTF, which can be com-
puted using MATLAB.
For a fourth order modulator, the feedforward coe�cients are calculated as a1 =

−0.0899 and a2 = −0.0042 and feedback coe�cient is b1 = 0.0005. The corresponding
modulator is simulated for an input sinusoid of amplitude 0.5 and frequency π/2 and
a dither signal of amplitude 0.01. The simulation result is shown in Figure 6.9. Note
that there is a sharp attenuation of quantization noise in the signal-band around 0.25,
as expected.
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7. A DESIGN, EVALUATION AND MEASUREMENT
TOOL FOR Σ−∆ MODULATORS

To speed up the design, analysis, evaluation and measurement of single-loop
and multi-stage Σ−∆ modulators explained in the previous chapters, a user-friendly
design tool at the system level is developed. This tool allows users to specify the
desired parameters in the Graphical User Interface ( GUI ), simulate the corresponding
Σ − ∆ modulators for the speci�ed inputs. It then produces the resulting output
spectrums, the corresponding NTFs, the histograms of di�erent stage outputs as well
as the SNR values and optionally the corresponding modulator structure. The GUI
was created using MATLAB and the simulation models were designed in the Simulink
environment. The models can be easily developed in Simulink using block formats
which can be controlled by MATLAB routines so that it can be used in conjunction
with the GUI. The models are already created in the workspace of the MATLAB
according to the procedures explained for each type of the Σ − ∆ modulator in the
Chapters-1-6. The models are navigated by the parameters de�ned by the user through
the GUI and the simulation results are displayed again on the GUI panes. Since the
GUI secures the interaction between the user and the simulator, users do not work
directly with the Simulink models. Therefore this design tool enables the user easily
to edit the design speci�cations and view the simulation results without dealing with
the simulation models.

7.1 The Graphical User Interface

Users just run the lowband.m function and the GUI will start. GUI consists of
two parts. In the �rst part, the user can select either LP or BP Σ−∆ modulation. A
screenshot of this part can be seen in Figure 7.1.
In the second part of the GUI, for the chosen type of the modulator, the desired
speci�cations should be edited by the user.
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Figure 7.1 Screenshot of the GUI consisting of the options for the LP or BP Σ−∆ modulators.

7.1.1 Input Parameters

The input signal parameters are directly set in the Parameters section.
Number of samples: It de�nes the number of samples in that the program continues
simulation. 10000 points are assumed to be transients. Thus, the default value is set
to be 42468 which refer to 215 + 10000 so that the system becomes steady state.
Input amplitude: Since the amplitude is normalized to 1, the amplitude of the input
signal must be set to be less than 1.
Input frequency: The input frequency is normalized to a sampling frequency i.e. ν =

f/fs , where fs is the sampling frequency.
Dither amplitude: The amplitude of the dither can be adjusted for the desired system
performance. The default values are already set. However, the user can change the
parameters by typing in the edit boxes.

7.1.2 Modulator Speci�cations

One uses the pop-up menu to select the structure type and the order of the
modulator from among a variety of di�erent design architectures: For low-pass modu-
lation; single-loop, multi-stage ( MASH ), chain of resonators with weighted feedforward



51

summation, chain of accumulators with feedforward summation and local feedbacks,
Butterworth �lter response or inverse Chebyshev �lter response are the options for the
modulator design types. For band-pass modulation; single-loop, chain of resonators
with weighted feedforward summation, chain of accumulators with feedforward sum-
mation and local feedbacks, Butterworth �lter response or Inverse Chebyshev �lter
response are the selection options.

7.1.3 Display of Results

The plots of the Σ−∆ modulator output spectrums, the corresponding NTFs,
the histograms of di�erent stage outputs as well as the SNR values are computed, when
the modulator type and order are chosen.
The simulink models are created already in the MATLAB workspace and called via
the selection of the user. The MATLAB routines set the user-de�ned parameters to
Simulink models, run the simulation, analyze and give the simulation results.
The power spectral densities are computed using the FFT of the corresponding signals,
which are windowed with a Hanning window with the same length as the signal length.
The FFT sample number is speci�ed by the user in the parameter section, which is
de�ned as "number of samples". The SNR values are calculated for oversampling ra-
tios ( OSR ) of 32, 64, 128, and 256, as well as other user de�ned ones. Moreover, for
the power spectrum estimation the Welch's averaging method is used. The associated
overlap number is chosen as 2048. The MATLAB routines used to perform the outputs
are:
plot.output.m: to plot the output spectrum
snr.lopasshalf.m: to obtain the SNR values of LP Σ−∆ modulators for OSR 32, 64, 128, 256

snr.band.m: to obtain the SNR values of the BP Σ−∆ modulators for OSR 32, 64, 128, 256

snr.osr.m: to obtain the SNR value for the desired OSR value
snr.disp.m: to display the calculated SNR values for OSR 32, 64, 128, 256

snr.osr.disp.m: to display the calculated SNR values for desired OSR value
plot.inputquantizer.m: to plot the input of the quantizer
hist.m: to obtain the histograms for di�erent output stages
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plot.NTFlow.m: to plot the NTF for LP Σ−∆ modulators
plot.NTF2.m: to plot the NTF for BP Σ−∆ modulators
pwelch.m: to average the output PSD
bandbutter.cal.m: to calculate the coe�cients of the loop-�lter for Butterworth �lter
response for BP Σ−∆ modulators
bandcheby.cal.m: to calculate the coe�cients of the loop-�lter for Inverse Chebyshev
�lter response for BP Σ−∆ modulators
butterworth.cal.m: to calculate the coe�cients of the loop-�lter for Butterworth �lter
response for LP Σ−∆ modulators
cheby.cal.m: to calculate the coe�cients of the loop-�lter for Inverse Chebyshev �lter
response for LP Σ−∆ modulators
save.plot.m: to save the corresponding Figures

The tool can be explained easier through example cases.

7.2 The Graphical User Interface in Operation

7.2.1 Step-by-Step Example-1 ( Low-Pass Case )

In this section, the tool is explained through an example for a 3rd order low-pass
Σ−∆ modulator using a cascaded (MASH) structure. The speci�ed Σ−∆ modulator
is simulated for an input amplitude signal of 0.5, a normalized frequency of 0.01 and
a dither amplitude signal of 0.3. The mentioned parameters are directly set in the
text-boxes in the Parameters section. In the Structure & Order Selection Section, the
third-order cascaded ( MASH )-option is chosen.
When in the Structure & Order Selection section the 3rd order Multistage (MASH)
option is chosen as seen in Figure 7.3, the third-order cascaded LP Σ −∆ modulator
is called via MATLAB routines and the user-de�ned parameters are assigned to the
Simulink model parameters. The simulations of the histogram of the second-stage
output, the Σ−∆ modulator output spectrum and the corresponding SNR values are
all shown in Figure 7.3.
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Figure 7.2 The second part of the GUI to specify the input parameters.
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Figure 7.3 The second part of the GUI to specify the structure type and the order of the modulator.
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Figure 7.4 A 3rd order LP Σ−∆ modulator using cascaded (MASH) structure.

The output spectrum from Figure 7.3 shows the input signal at the correct frequency
( 0.01 ) as well as spectral tones at lower frequencies.
The Simulink model for the 3rd order modulator with variable parameters as shown
in Figure 7.4 is already created in the workspace, which is controlled by the GUI
speci�cations. Using the option Display model, the corresponding structure can be
seen, as given in Figure 7.4.
As explained in the example case, the user can select the speci�cations in order to
design a variety of single-loop or multi-stage Σ − ∆ modulators. In the parameter
selection section, default values are entered automatically to guide the user. Di�erent
from the single-loop and MASH structures, for Butterworth and Inverse Chebyshev
structures, the user can change the �lter cut-o� frequencies for desired modulator
performance. In these cases, the MATLAB routines do not call the speci�ed Simulink
models; rather they design automatically the speci�ed models according to the user-
de�ned cut-o� frequencies. The programs butterworth.cal.m and cheby.cal.m calculate
and design the Simulink model block parameters for the entered cut-o� frequencies for
the Butterworth �lter and inverse Chebyshev �lters. The default values for the cut-o�
frequencies are already set; however there is no restriction for the frequency ranges.
The �fth order low-pass delta sigma modulator using inverse Chebyshev �lter response
is shown in Figure 7.5. Moreover, using the �gure toolbar above the interface, the user
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Figure 7.5 Zoomed simulation results displayed in the GUI.

can zoom in the plots in order to analyse the signal band region in more detail.
GUI updates instantaneously the quantizer input and the output spectrum plots and
the SNR values for each parameter change that the users make to the input signal,
therefore the e�ects of small input changes can be easily observed in the output.

7.2.2 Step-by-Step Example-2 ( Band-Pass Case )

As soon as the user selects the band-pass modulation option in the main win-
dow (Figure 7.1), the parameter-speci�cation-window for BP Σ−∆ modulators will be
displayed. A 6th order mid-band band-pass Σ−∆ modulator using the chain of accu-
mulators structure with weighted feedforward summation was simulated for an input
amplitude of 0.5, a normalized input frequency of 0.25, and a dither amplitude signal
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Figure 7.6 Screenshot of the GUI consisting of the input parameters and simulation results for the
6th order BP Σ−∆ modulator.

of 0.1. The NTF and the output spectrum are plotted. The corresponding simulation
results are shown in Figure 7.6.
The output spectrum from Figure 7.6 shows the input signal at the correct frequency
(0.25) as well as the resulting SNR values for OSRs of 256 and 512 are 98 dB and
122 dB respectively, which shows a good agreement with the reported results in the
literature [64].
The corresponding structure of a 6th order BP Σ−∆ modulator is given in Figure 7.7
The coe�cients a1, a2 and a3 are calculated as −0.2512, 0.0306 and −0.0018 respec-
tively.
PSD of the output signal is averaged using the Welch's averaged modi�ed periodogram
method of spectral estimation with 2048 overlaps. By averaging the output spectrum,
the tones can be distinguished so that the Σ−∆ modulators performance can be ana-



58

y[n]

Output signal

Quantizer

Input signal

x[n] a3
a2

a1

1

z  +12

1

z  +12

1

z  +12

 

Figure 7.7 A 6th order BP Σ−∆ modulator using chain of accumulators with weighted feedforward
summation.

lyzed more e�ectively. The averaged PSD of the BP Σ−∆ modulator is plotted using
the "average" options in the GUI pane, as shown in Figure 7.4
Moreover, the tool allows the user to design the NTFs of Butterworth and Inverse
Chebyshev �lters based on input speci�cations such as the cut-o� frequency, bandwidth
and modulator order. The Butterworth �lter or inverse Chebyshev �lter responses can
be used to design higher order BP Σ−∆ modulators, by adjusting the bandwidth of the
�lter according to the desired input signal frequency. The lower and upper frequencies
of the NTF of the �lters are selected so as to ensure that the input signal is positioned
at the centre of the signal bandwidth.
Figure 7.9 gives the simulation results for 6th order BP Σ−∆ modulator designed using
the Butterworth �lter. Since the input normalized frequency is 0.3, the bandwidth is
chosen as [ 0.58− 0.62 ]. The center of the bandwidth is twice as the input frequency
( 0.6 ), because of the MATLABs routines for NTF calculations. Furthermore, the
upper and lower limits of the bandwidth should be chosen symmetric to the centre.
As seen in the examples, users can choose among di�erent modulator structures and
sinusoidal input signals. The GUI updates the frequency response of the output signal,
the NTF and the output responses of di�erent stages, as well as the SNR values for
each alteration that the user makes to the input parameters. Thus, the e�ects of small
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Figure 7.8 A 6th order BP Σ − ∆ modulator ( with normalized frequency of 0.125 ) simulation
results displayed in GUI.
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Figure 7.9 A 6th order BP Σ−∆ modulator ( with a normalized frequency of 0.3 ) simulation results
displayed in GUI.
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input changes can be easily observed in the output. As in the example above, the user
can de�ne the speci�cations in order to design a variety of single-loop or multi-stage
LP, and BP Σ−∆ modulators.
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8. ULTRASOUND BEAMFORMING IMPLEMENTATION

8.1 Background: Basic Principles of Medical Ultrasound Imag-
ing

Ultrasound imaging, also called ultrasonography is a versatile and widely used
medical imaging technique that uses high-frequency sound waves and the echoes, to
produce images of the exposed part of the body including the heart, vessels, kidney,
liver, developing fetuses and other soft tissues [65]. The performance of digital ultra-
sound imaging systems is strongly dependent on transducers, front-end components
and on how they receive and process the re�ected pulses. At this stage the precision
of analogue-to-digital conversion becomes critically important. The ultrasound waves
are generated by a transducer which is held against the body. The piezoelectric crystal
elements in the transducer start to vibrate and produce high-frequency sound waves
when a high voltage is applied across the transducer [66]. Ultrasound waves are simply
sound waves, which travel through a conducting medium ( e.g., body tissue ) as a lon-
gitudinal wave oscillating back and forth in the direction the sound wave travels, which
can be represented as a sinusoidal waveform. Diagnostic ultrasound is in the range of
1− 15 MHz, while human hearing is in the 20 Hz-20 KHz range. Di�erent from sound
waves, ultrasound waves with high frequencies tend to move more in straight lines, and
will be re�ected by much smaller objects like light beams and do not propagate easily
in gaseous media. The speed of sound varies for di�erent transmission media but the
average transmission velocity is assumed to be nearly uniform at 1, 540 m/sec for most
soft tissues [66]. Through their propagation, sound-waves are partially re�ected and
refracted depending on the tissue they are transmitted. When two mediums with di�er-
ent densities are located next to each other, an acoustic impedance mismatch is created
and sound waves are re�ected by this mismatch. The ultrasound imaging technique
is based on processing the received pulse, which is partly re�ected from the interfaces
between two tissues, and partially transmitted. The greater the acoustic mismatch,
the more pulses are re�ected and returned to the transducer. Thus, an echo, which is
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Figure 8.1 Simpli�ed block diagram of the front-end hardware of the ultrasound system.

re�ected by tissues with large tissue impedances di�erences, has large re�ection power
and generally seen as brighter areas on the image. The transducer is set to wait after
the pulse is emitted, in order to receive the re�ected pulses, i.e. echoes. The ampli-
tude of the received echo de�nes the tissue properties in terms of image brightness,
where the strong re�ections due to the high tissue impedance ( e.g. bone, gallstone )
are represented as white and no re�ections due to the weak tissue impedance ( blood,
urine ) as black. Also, the total time for awaiting the echo is determined by the depth
of the tissue. The system calculates how long it takes for the echo to return to the
transducer using the relation: Distance = V elocity ∗ Time/2. In B-mode imaging,
the amplitude is displayed as the brightness of the certain point which is representing
the target tissues, in which the image is constructed and displayed on the monitor as
a gray-scaled, 2D image. In this study, B-mode implementation is considered.

8.2 Front-end Components of the Digital Ultrasound System

The performance of the digital ultrasound system is critically dependent on
the front-end components in order to construct high resolution ultrasound image from
received echo signals. The front-end system is summarized in Figure 8.1 below.

The transmitter excites the transducer with a series of pulses. The transducer
converts electrical energy from the transmitter into ultrasound pulses sent to the target
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tissue. The re�ected echoes from tissue are converted back to the electrical signals by
the same transducer.

8.3 Beamforming

In order to scan su�ciently wide far �eld, the beams have to diverge from
virtually the same point. In other words, beams should be originated from the same
point ( focusing ). This can be achieved by a single transducer or a transducer array,
by focusing the beam patterns. Beam focusing can be performed mechanically by
placing acoustic lenses on the surface of the transducer. However the common process
is beam focusing electronically using phased arrays, as used in this study. Transducer
arrays can be explained as a single transducer element divided into N-elements, and
each element transmits and receives ultrasound pulses di�erently. The phased arrays
typically consist of more than 128 elements.

8.3.1 The Transmitter and Transmitted Beam Focusing

In transmit mode of operation, multiple piezo-electric elements are excited with
properly time-delayed pulses and then become sensors to record the re�ected sound
waves.

Figure 8.3 is used to explain how the time-delay values for each piezo-electric
element are calculated. The location of the focal point (P ) in this �gure is referenced
using polar coordinates (r − θ).

Each transducer element is driven with the same pulse waveform. The propa-
gation time, τ

′
n for the nth-element to the focal point (P ) can be approximated by the

geometry given in Figure 8.3;

τ
′
n = τ

′
(xn, r0, θ0) =

rn − r0

c
= −xn sin θ0

c
+

x2
n cos2 θ0

2cr0

, (8.1)
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Figure 8.2 Transmit mode array systems.

Figure 8.3 Focal point geometry in polar coordinates.
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where xn is the x coordinate of the nth-element, ( 0 is at the center of the array ), θ0

is the angle to the horizontal axis and r0 is the depth of the focal point to the center
of the array system. Note that, the beams always intersect the array at the center.
Usually, in transmit mode, �xed focusing is used. For �xed point focusing the above
term yields to ( θ0 = 0 );

τ
′
n = τ

′
(xn, r0, θ0) =

x2
n

2cr0

. (8.2)

To ensure that the sound waves from each element arrive at the focal point at the
same time, the pulse waveform to each element must be delayed by this amount to
compensate the delay times. This value is used to bias the time-delay values so that
the pulse start time for the element that is furthest away from the focal point is time
zero.

8.3.2 The Receiver and Beam Forming

Beamforming is de�ned as the summation of phase-shifted signals that are gen-
erated from a common source, but received at di�erent times. Beamformation can
performed in two parts: steering and focusing. As seen in Figure 8.4; to receive the
echoes with di�erent arriving times, beam is focused by delaying each array elements
so that the echoes from the same focal point reach the transducer at the same time.

Since the echoes are re�ected from di�erent depth positions, beams should be
swept down through the depth range according to the desired position. Therefore,
beams have to be de�ected in di�erent angles to construct a sector image ( steering
). The transducer elements have the ability to be dynamically focused by stimulating
each element as shown in the Figure 8.5. The individual wave fronts sum up to a beam
of ultrasound energy according to the Huygens principle.

Therefore receive beamformers employ dynamically focused beam. This can be
changed electronically to focus pulses to give su�cient image detail at various depths
within the body rather than just one depth as with the �xed focus transducer. Figure
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Figure 8.4 Receive mode array system.

Figure 8.5 (a) Steering (b) Steering and focusing.
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Figure 8.6 Schematic diagram of ultrasound scanning format.

8.6 below, gives the scanning format of the ultrasound imaging system. The delays of
corresponding receive element is related to its position to the focus point.

Using the geometry, the general term given in Eq. 8.1 can be separated into
two parts as steering and focusing;

τ
′
n = τ

′
(xn, r0, θ0) = −xn sin θ0

c︸ ︷︷ ︸
steering−delay

+
x2

n cos2 θ0

2cr0︸ ︷︷ ︸
focusing−delay

. (8.3)

The �rst term focuses the beam to a particular angle and the second term is to focus
to a particular range. The di�erences in propagation delays from a focus point to
each receive element are compensated by time delays in order to maintain a coherent
summation. Therefore, the echo signals are delayed by an appropriate amount and
added together to form a receive beam. By adjusting the time delays across the array,
a region of interest can be scanned over predetermined directions and depth. The
echoes are processed by digital receive beamformer and brightness of each pixel in
image adjusted as a function of the amplitude of the re�ected signals.
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In this study, a sector of 90-degree is scanned by B-scan phased array system.
In other words, the received waves are steered and focused dynamically as a function of
direction and range, by adjusting element delays. To perform a 90-degree scan, there
is a angular sampling constraint; minimum spatial sampling frequency should be twice
the spatial frequency bandwidth [67]; ∆ sin θ ≤ λ/4a = 1/2NA, where 2a and NA are
the array size and numerical aperture, respectively. Since the sampling is uniform in
sin θ, the su�cient number of beams for a 90-degree scan should be prede�ned [67];

Number of beams =
max(sin θ)−min(sin θ)

∆ sin θ
. (8.4)

For a conventional 128-element transducer array, number of beams must be greater
than 182. In this study, a number of beams is chosen as 200; so that each beam is
steered in increments of ∆ sin θ ≈ 0.0071.

8.4 Digital Phased Array Beamforming Implementation

8.4.1 Experimental Data-set

In order to compare images obtained by Σ −∆ beamformer with conventional
10-bit �ash ADC beamformers; the experimental data from the Ultrasonic Research
Laboratory of the University of Michigan is used. The RF data set is phantom con-
taining six wire targets in a water tank. The experiment setup can be seen in Fig. 8.7,
8.8 The wires are placed slightly away from each other in order to prevent shadowing.

Signals are recorded using 128-element transducer array with an operating fre-
quency of 3.5-MHz. The RF data is sampled at 13.89 MHz over a 120-mm range and
digitized using a 10-bit A/D converter. The simulation parameters are given in the
Table 8.1.

The RF data-set is obtained as follows: the �rst transmitter element sends
pulse to the target and after a time-o�set all the receivers start to record the echo
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Figure 8.7 Schematic experimental setup.

Figure 8.8 Cross-section �eld of 6-wire phantom.
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Table 8.1
Simulation parameters.

Design Parameter Value
Transducer operating frequency fo 3.5 MHz

Sampling frequency fs 13.8889 MHz
Number of channels 128
Transducer spacing 0.22 mm

Image depth 120 mm
Transmit focusing Fixed focusing
Receive focusing Dynamic focusing
Image sector 90-degree

Number of beam lines 200
O�set time 29.448 µsec

Speed of sound 1.48 mm/µsec

signals re�ected from the targets. After the receive-mode, a second transmitter sends
ultrasound pulse and waits the receivers to record. And this procedure continues as the
last transmitter sends the pulse and all echoes are received. At the end a data set of a
size of [2048 × 128 × 128] is obtained. However, through transmission of waves, some
portions of the transmitted waves are re�ected back to the transducer element whereas
some portions continue traveling. To eliminate these echoes during the transmission,
a short o�set time for receive mode is driven.

Using these data sets, digital beamforming algorithms can be emulated in a
software environment. Two reconstruction methods are used: a traditional 10-bit
beamformer and a conventional one-bit Σ − ∆ beamformer. Fixed focus transmit
beamforming was used in both methods ( 60 mm ). After envelope detection and
scan conversion, the images are displayed over a 60-dB dynamic range. The image
reconstructions from RF data set are performed with MATLAB routines.
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Figure 8.9 RF signal of 2048 samples from 3.5 MHz transducer insonifying wire phantom.

8.4.2 Beamforming Using Conventional Multi-bit A/D Converters

The incoming RF signals are digitized using 10-bit �ash ADC's ( Figure 8.9 ),
delayed and summed to form the focus of interest as discussed before.

Because of the 1/r dependency of the delay term (Eq. 8.3), the delay accuracy
should be 1/32 of the wavelength for accurate focus point [68]. Since the sampling
rate is four times the operating frequency, the delay accuracy can not be maintained.
Therefore, the sampling frequency is increased by an amount of 16; therefore the in-
coming RF signals (Figure 8.9) are interpolated through zero padding and di�erent
interpolation �lters at each channel. The frequency-domain analyses for these steps
can be seen in Figures 8.10 - 8.12.

The digitized RF-signals are upsampled to 16 times the Nyquist-rate through
padding 15-zeros between each sample. The spectrum of the upsampled signal is shown
below.
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Figure 8.10 Frequency spectrum of the RF echo signal sampled at the Nyquist-rate.
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Figure 8.11 Sampling rate is increased to 16 times the Nyquist rate.
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Figure 8.12 Frequency spectrum of the signal after interpolation �lter.

Upsampled signals are then interpolated using sinc-interpolation �lters as seen
in the Figure 8.12. Almost −50 dB reduction of noise will provide an image with a
better resolution.

Time- domain representation of the signal can be seen in Figure 8.14. The
number of samples ( Figure 8.9 ) is increased by 16 times so that the sample num-
ber becomes 32768 before transmit focusing ( Figure 8.15 ). The 16 times-reduced
intersampling period provides the su�cient delay accuracy for focusing.

Before the receive beamforming part, transmit focusing is performed; i.e. echo
signals from 128-transmit elements have to be aligned by compensating the di�erences
in propagation times by means of sample delays. Transmit focus is chosen at the half
of the maximum image range, which is 60 mm [68]. Since the pulses from di�erent
transmitter elements do not arrive at the point of 60 mm at the same time; echo
signals should be delayed appropriately according to the time di�erences related to the
transmitter position. As a result; coherent interference occurs at a �xed distance from
the transducer. The amount of each transmit delay are calculated using the relation
given in the Eq. 8.1. The wave fronts for the 1st receive element before and after
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Figure 8.13 Wave-�eld of the 1st receivers data obtained from all 128 transmit elements.
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Figure 8.14 Signal received by the 64th element transmitted by 1st element, original signal and
delayed signal.

transmit focusing are shown in the Figure 8.13: The delay patterns can be seen in
the Figure 8.13(a). The e�ects of the transmit focusing can be seen in the Figure
8.13(b), after transmit focusing; the pattern are aligned so that their shape become
more horizontal instead of arc-shape, especially for the 3rd wire, which is near to the
transmit focus. In other words, during transmission, signals of each element in the
array are delayed so that a coherent interference occurs at the transmit focus. A signal
transmitted by the 1st element and received by the 64th element is delayed by as much
time as the time propagation di�erence of the �rst element at the focus.

After transmit focusing; aligned signals are summed so that most of the transmit
delay e�ects are eliminated and coherent summation occur at the �xed transmit focus
at 60 mm. Thus; after summation; the size of the data [2048 × 128 × 128] becomes
[32768 × 128] before receive beam-forming. The summed signals for the 1st, 64th and
128th elements are shown in Figure 8.15. The propagation time di�erences for each
element after transmit focusing, are compensated in the receive-focusing part.

The wavefronts of the RF signals received by the 1st and 64th elements before
transmit focusing and the resulting wavefronts after the coherent summation across the
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Figure 8.15 Echo signals of the 1st, 64th and 128th receive elements after transmit-delays.

array after the transmit focusing are given in the Figure 8.16 below. The corresponding
delay patterns in the wavefronts can be observed.

On the receive-focusing; dynamic ( changing ) delays to each element are ap-
plied so that coherent summation across the array produces a focus at many points
along a particular angle. In other words; each sample is delayed appropriately and
added to each other, to form the desired beam at a particular direction and produce
a signal localized to the focal point (r0, θ0). As a result, an image line is produced by
continuously focusing along that beam line [69].

υ(t) =
1∑

i=1

28υn(t + τ
′
n). (8.5)

Here, the receive signal at time t corresponds to depth r = tc/2. At each point t it is
needed a new focal depth, r. A di�erent set of delays for each depth ( time sample )
is applied; so that at each focus point the delay set is changed. Changing the delays
on receive allows the system to change the direction of the beam and scan a sector of
90-degree. When all 200 beams are completed, the image can be constructed. Since the
delayed and summed signals are at the sampling rate of 222.2224 MHz, the decimation
should be performed to downsample the signals to the Nyquist sampling rate. The
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Figure 8.16 First two: 1st and 64th receive elements unfocused, third: total echo signals after
transmit focusing.

envelope of the signal is obtained as the magnitude of the sum of its in-phase and
quadrature components. The envelope is then compressed logarithmically to 60 dB.
After the processes of envelope detection and logarithmic compression the image with
a dynamic range of 60 dB in polar coordinates is obtained.

The �nal process is the scan conversion to present the data as an image in
cartesian coordinates. This involves conversion from beam data in polar coordinates,
which exists in a domain that is equally spaced in sin θ and in r, to physical space,
which is a domain that is equally spaced in x and y. The constructed image after scan
conversion can be seen in the Figure 8.22(a).

8.4.3 Beamforming Using Single-Bit Σ−∆ A/D Converters

The complexity, size and power consumption of traditional beamformers can be
dramatically reduced by using single bit Σ −∆ beamformers [68]. In this part of the
study, digital beamforming with a low-pass second order Σ −∆ converters are imple-
mented, and their advantages and disadvantages are examined. The corresponding 2nd

order Σ−∆ modulator structure given in Figure 8.18 is used to digitize the incoming
RF signals. The system analysis gives that;
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Figure 8.17 Image in polar coordinates ( r − sintheta ).
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Figure 8.18 Block diagram of a 2nd order low-pass Σ−∆ modulator.

Y (Z) = X(z)z−1 + E(z)(1− z−1). (8.6)

Y (z), X(z) and E(z) are output signal, input signal and quantization noise signal,
respectively. Suppressed quantization noise due to the high-pass NTF is the most
important factor of the success of the Σ−∆ modulators. The reduced noise in the signal
band provides a high SNR value in the signal band compared to the traditional A/D
converters. As explained previously, the quantization noise power, e2

rms of a traditional
multi-bit A/D converters is assumed uniformly distributed white noise: σ2

e = ∆2/12,
where ∆ is the quantization noise interval.The noise-shaping with the e�ect of the
OSR, the quantization noise in the signal-band is reduced to approximately;

σ2
ey = σ2

e

π4

5

(
2fB

fs

)5

︸ ︷︷ ︸
OSR

. (8.7)

Suppressed noise in the signal band; cause the SNR value to increase [26];

SNR = 10 log10

(
σ2

x

σ2
e

)
− 1.29 + 50 log10

(
fs

2fB

)

︸ ︷︷ ︸
OSR

dB. (8.8)

That gives an extra 15.05 or 2.5 equivalent bits for every doubling of overdsampling
ratio ( OSR = oversampling frequency/Nyquist sampling frequency). Therefore, to
obtain a 10-bits equivalent resolution using a 1-bit second-order Σ − ∆ modulator
OSR should be 16. Thus, a oversampling frequency of 16 times the Nyquist sampling
frequency ( 13.8889 MHz ) is required. As a result the RF signals are modulated with
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Figure 8.19 Frequency spectrum of the signal modulated with 2nd order low-pass Σ−∆ modulator.

a sampling rate of 222.2224 MHz.

Since the modulator pushes the quantization noise to the higher frequencies and
suppresses the noise in the signal band, removing the out-of-band quantization noise
with a low-pass �lter is equivalent to increasing the e�ective resolution of the digital
output [26]. The 3rd-order comb �lter is equivalent to the moving average over the
digital data; so that the 10-bits equivalent output can be obtained [69].

Before the decimation process image in polar coordinates can be constructed as
shown in Figure 8.20. However the size of the data to be imaged is [32768×201], which
makes the scan conversion process di�cult and time consuming ( MATLAB processes
the data 28 hours for the scan conversion ). In addition, there isn't any signi�cant dif-
ference between the SNR values of the images before and after the decimation process.
( without decimation process 42 dB, after decimation process 41.8 dB)
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Figure 8.20 Image in polar coordinates before decimation process ( r − sintheta ).

In order to have a meaningful image, the high sampling rate should be down
sampled to the Nyquist-sampling rate. However, dynamic focusing in receive mode;
repeating/dropping samples degrade the synchronization between the modulator and
demodulator so that the noise-shaping disturbed and some parts of the quantization
noise folded to the signal band, which increases the background noise level and causes
artifacts in the image ( Figure 8.21 ). The delay calculations, the envelope detection and
logarithmic compression parts are the same as done in the conventional beamformers.
The constructed image compressed to 50 dB in polar coordinates is given in Figure
8.21.

After scan conversion from polar coordinates to Cartesian coordinates, the �nal
image is constructed ( Figure 8.22(b) ).

8.4.4 Simulation Results and Discussion

The Σ−∆ beamformers o�er crucial bene�ts in system design over traditional
multi-bit A/D beamformers:

X The most important advantage of Σ−∆ beamformers is reducing the front-end
hardware complexity and the saving of cost, size and power consumption [68, 69].

X The delay accuracy can be maintained by the inherently high sampling rate of
Σ − ∆ modulators. Therefore, the complicated interpolation process used by
10-bit ADC to secure the delay accuracy is eliminated. The speed and size of the
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Figure 8.21 Image in polar coordinates ( r − sintheta ).
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hardware is reduced due to the simpli�ed signal processing and reduced number
of bits.

X The Σ−∆ modulator structures have several operational ampli�ers and one com-
parator; whereas 10-bit ADC converters have 10244 comparators. This simpli�es
ADC structure, reduces the size, interconnection resources and power usage. 10-
bit A/D converter e.g. Analog Devices AD9048, or Philips TDA8790 consumes
30 to several hundred milliwatts, whereas 1-bit Σ − ∆ modulator consumes 20

milliwatts with an circuit area of 0.24 mm2 [70].

X Conventional ADC's require analogue �lters and high precision analogue circuits
sensitive to noise. However, delta-sigma modulators have imprecise analogue
circuits operating at high speed to achieve high SNR values.

X The traditional A/D converters are packaged individually in multichip modules,
so interconnection with other circuitry requires space consuming. However, the
Σ − ∆ modulators can be integrated in large numbers on a chip. They can be
manufactured in low cost very large scale integration. The delays are performed
via CMOS FIFO's and the beam sum is done via standard adders across the
array.

Despite these bene�ts, Σ − ∆ beamformers have some trade-o�s such as an
elevated noise �oor. The comparison of images generated by multi-bit ADC and single-
bit Σ−∆ modulators are given in the following Figure 8.22:

Since the �xed transmit focus is chosen as 60 mm, the strongest re�ector is the
third wire. The elevated noise �oor by Σ−∆ beamformer is a direct result of the dy-
namic focusing. The repeated samples in the dynamic focusing causes the demodulator
�lter to interpret an extra sample di�erence which actually does not exist. This disturbs
the synchronization and increases the of noise �oor. This noise level can be compared
in terms of SNR values, which is calculated before logarithmic compression. The signal
power is calculated within a small kernel over the wire and the noise power calculated
within a larger kernel including the artefacts and re�ectors [68]. The SNR value for



85

Figure 8.22 (a) 10-bit A/D beamformer (b) 1-bit Σ−∆ beamformer.

conventional beamformer is calculated as 60.1 dB, whereas this amount reduced to
41.8 dB. As a result an approximately 18 dB di�erence in SNR values is obtained. The
reduced SNR value can be improved using several methods detailed in the literature.
One method recodes the samples so that for each delay increment a null sample is
inserted into the sample sequence [71], another method manipulates the samples by
an analogue feedback gain within the Σ −∆ modulator. The repeated/omitted sam-
ples are manipulated by an analogue feedback magnitude within the Σ −∆ structure
[69]. The third method uses non-uniform oversampling beamformer [68]. The typical
sampling rate of traditional 10-bit A/D converters is not su�cient for delay accuracy
to properly form a focus. Therefore, complicated processes such as sinc interpolation
�lters at each channel are required to increase the sampling rate up to 32 times the
ultrasound carrier frequency. The inherently high sampling rate of Σ−∆ modulators
secures the su�cient delay accuracy. As a result, the complicated interpolate circuitry
of traditional beamformer are replaced by simple shift registers. Furthermore, most
state-of-art ultrasound imaging systems have 128 to 256 channels beamformers that
produce 2-D images. These arrays require anywhere 512 to 16, 384 parallel processing
channels [69]. The major investigation in ultrasound imaging systems is to reduce this
channel count. Therefore, simplifying the front-end hardware of the ultrasound system
is the most important factor for economical scanners. In 1-bit sigma-delta converters,
components with much less than the resolution of the overall converter components are
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used instead of complicated and high resolution analogue components used by 10-bit
A/D converters. Therefore, Σ−∆ modulators can be easily manufactured in switched
capacitor circuits implemented in CMOS VLSI processes [70]. This means, modulators
can be integrated onto the same chip as thedigital processing circuits. As a result; one
can construct a beamformer-on-a-chip that takes inputs from an array of elements and
outputs a digital beamformed sample stream. The multi bit resolution is achieved using
single low-pass �lter and decimation process acting on the outputs of this beamformer.
Thus, complexity, size and power consumptions of traditional phased array front-end
processing using 10-bit A/D beamformers can be dramatically reduced by using single
bit Σ − ∆ beamformers [68]. The simplicity of the Σ − ∆ beamformers is suitable
for low-power 3-D scanners with large channel count beamformers and portable and
lightweight ultrasound scanners and intravascular imaging systems [70]. Despite these
bene�ts, Σ − ∆ beamformers produce signi�cant image artefacts due to the disturb
syschronization between the modulator and the demodulator because of the repeated
samples in dynamic focusing, which can be improved by several methods detailed in
the literature [68, 69, 71].



87

9. CONCLUSION

Σ−∆ modulators are based on oversampling and noise-shaping. Oversampling,
i.e. using a sampling rate much larger than the Nyquist rate, causes the quantiza-
tion noise to spread over the region much larger than the signal bandwidth. Noise-
shaping pushes most of the noise components to out of the signal band via error-
feedbacks and secures a signi�cant attenuation of the quantization noise in the signal
band. As discussed in this study, SNR values of sigma-delta modulators using the
oversampling and noise-shaping techniques are much higher compared to the conven-
tional Nyquist-rate converters. In addition to the basic principles and advantages of
Σ − ∆ converters, various design topologies for low-pass and band-pass Σ − ∆ mod-
ulators are discussed. The design topologies were developed from the general form
Y (z) = X(z)STF (z) + E(z)NTF (z). The output of the modulator is the superposi-
tion of the input signal and the quantization noise shaped by the NTF. The gain of
the NTF is close to zero in the signal band and close to unity outside the signal band,
which causes the noise components in the signal band to attenuate signi�cantly by
leaving the input signal unchanged. For a class of LP Σ−∆ modulators, the NTF has
zeros at dc, i.e. at z = 1. Thus, the NTF can be expressed in the form of (1 − z−1)N

which behaves as a high-pass �lter. This ensures large attenuation of the quantization
noise at the lower frequencies [26]. The NTFs realized by the BP Σ − ∆ modulators
have zeros in the signal band around the normalized center frequency ν, thus making
the NTF a band-stop �lter and the loop-�lter to have in�nite gain in the signal band
[34]. For this purpose, a low-pass-to-band-pass ( LP → BP ) transformation is applied
at the points z = ±ej2πν to a suitable LP Σ−∆ modulator; so that from a LP Σ−∆

modulator of order n, a BP Σ−∆ modulator of order 2n is obtained. By moving the
zeros from z = 1 to complex conjugates, the NTF yields 1 − (2 cos(2πν))z−1 + z−2

where ν refers to the normalized input frequency [14]. Since, high-order Σ−∆ modu-
lators with single-loop structures su�er from stability problems, the cascaded (MASH)
structure are widely used, which exploits the inherent stability of low-order Σ − ∆

modulators. Alternatively, the single-loop Σ − ∆ modulator topologies can be stabi-
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lized by adding feedforward or feedback paths with appropriately weighted coe�cients.
Butterworth and Inverse Chebyshev �lters can be used to compute the NTFs of higher-
order Σ − ∆ modulators. The lower and upper frequencies of the NTF are selected
so as to ensure that the input signal is positioned at the centre of the signal band-
width. According to the NTF design methodologies explained throughout the study,
the proposed Σ−∆ modulator structures are already modeled using Simulink blocks.
The MATLAB routines embedded in the GUI map the user-de�ned parameters into
the building block speci�cations and display the simulation results in terms of SNR
values, histograms and power spectral densities. The simulation results show that the
SNR values are increasing with the increasing order of the Σ − ∆ modulators. For a
low-pass 1st order single-loop Σ − ∆ modulator for an OSR of 128, the SNR is seen
to increase by 12 dB per modulator order. The simulation results prove that; as the
order of the modulator increases, the system performance is improved. However, the
results also show that there is a trade-o� between high order structures and system
stability. For higher orders, the over-loaded quantizer causes the system to become
unstable. Since the single-loop structures of orders higher than two su�er from stabil-
ity problems, multi-stage, structures are introduced. Although the system structure
becomes more complicated, cascading of low-order modulators guarantees the system
to be unconditionally stable. The SNR values of a 3rd order Σ − ∆ modulator with
multi-loop (MASH) structure is approximately 10 dB higher than a 3rd order modula-
tor with single-loop structure. On the other hand, as discussed previously, the periodic
components in the system like sinusoidal input signals cause tones. Therefore to make
the quantization noise more random dither is added to the system. The simulation
results show that, there is a trade-o� between the tonality of the system and the SNR
values. As the tonality in the signal-band is improved with increased dither amplitude,
however the SNR values are decreased. Furthermore, Butterworth �lters and Inverse
Chebyshev �lters are used to compute the NTFs of higher-order Σ − ∆ modulators.
The behavioral-level simulations using Simulink and MATLAB routines, proves the
theoretical background and provides the performance analysis and trade-o�s of the
design topologies. As the major aim of the study, a software design, evaluation and
measurement tool in a MATLAB environment in conjunction with Simulink is devel-
oped to speed up the design, analysis and evaluation at the system-level of various
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easy-to-implement LP and BP Σ−∆ modulators. This tool is user-friendly as it allows
designers and practitioners to perform detailed simulations very easily. The MATLAB
routines embedded in the GUI map the user-de�ned parameters into the building block
speci�cations and display the simulation results in terms of SNR values, histograms
and power spectral densities. The MATLAB routines embedded with the GUI, call
the corresponding Simulink models, assign the user-de�ned parameters to the model
blocks, simulate the system and display the simulation results. This software tool fa-
cilitates the development and analysis of various Σ−∆ modulator design topologies by
changing the system speci�cations without dealing directly with the Simulink models.
As a direct biomedical implementation of the designed structures via software tool, ul-
trasound beamforming using a low pass 2nd order Σ−∆ modulator is performed. The
resulting image is compared with the images constructed using 10-bit A/D converters.
The repeated/omitting samples during dynamic focusing degrade the image quality of
Σ−∆ beamformers. Image correction methods can be used to improve the resolution.
Although the elevated noise in the background, the simplicity, reduced cost and power
are the most important bene�ts of Σ−∆ modulators for especially low-power 3-D scan-
ners with large channel count beamformers and portable and lightweight ultrasound
scanners and intravascular imaging systems.
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APPENDIX A. LOOP FILTER TOPOLOGIES

The circuit topologies are based on the same universal relation between the
system loop-�lter L(z) and the NTF have the relation such as;

NTF =
1

1 + L(z)
.

The corresponding loop-�lters for di�erent modulator structures can be designed using
Butterworth and Inverse Chebyshev Filter approximations.

A.1 Weighted Feedforward Structure

The design topology consists of cascaded integrators with the transfer functions
H(z) = z−1/1− z−1, whose outputs are weighted and summed up to form the overall
loop-�lter transfer function, L(z). The linear system analysis gives the transfer function
of the loop-�lter, L(z) as given in Eq. 5.14. Since all the poles of L(z) are at z = 1 a
Butterworth high-pass �lter can be used to obtain adequate coe�cients that make the
system stable.
Such �lters are easily obtained using standard �lter design packages using MATLAB
command such as;

[A,B] = butter(N,Rs, fb,
′ high′),

which produces N th order high-pass Butterworth Filter with a cut-o� frequency of fb

( relative to half the sampling rate ) and stop-band attenuation of Rs ( in dB ). The
numerator polynomial A has to be scaled such that the �rst element A(1) is unity. The
NTF can be �nd using the coe�cients obtained from the Butterworth �lter response
such as;

NTF (z) =
A(z)

B(z)
.
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Once the NTF is obtained, the corresponding L(z) can be computed from the relation-
ship that;

L(z) =
B(z)− A(z)

A(z)
. (A.1)

To solve for the desired feedforward coe�cients; Butterworth L(z) (Eq. A.1 ) and
system L(z) ( Eq. 5.14 ) are equated.

A.2 Weighted Feedforward Summation with Local Feedbacks

For relatively large signals, the zeros of the NTF do not need to be at a certain
frequency. Therefore, adding a small negative feedbacks around pairs of integrators
cause the zeros of the loop �lter shifted away from z = 1 (Figure 5.9 ). The loop
transfer function can be obtained as given in Eq. 5.15. In order to solve the desired
coe�cients complex zeros besides the real zeros are needed. Thus, one should use
inverse Chebyshev Filters instead of Butterworth Filters.

[A,B] = cheby2(N, Rs, fb,
′ high′),

which produces N th order high-pass Inverse Chebyshev Filter with a cut-o� frequency
of fb and stop-band attenuation of Rs. The numerator polynomial A has to be scaled
to ensure that the �rst element A(1) is unity. Similar to Butterworth Filter's NTF,
the loop-�lter transfer function L(z) can be obtained from Eq. A.1. Again by equating
the L(z) obtained from system analysis given in Eq. 5.15 and Chebyshev's L(z) given
in Eq. A.1, the desired coe�cients can be calculated.
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