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ABSTRACT

CLASSIFICATION OF ECG ARRYHTMIA BEATS WITH
ARTIFICAL NEURAL NETWORKS

Electrocardiography (ECG) is a very useful noninvasive imaging method of the
heart’s electrical activity. Based on these recordings, a wide range of heart conditions
can be diagnosed. These conditions may vary from minor to life threatening ones.
Therefore, the scientists started to work on automatic systems that would detect any
kind of abnormalities in the heart’s electrical activity. These automated systems are
expected to help patients monitor themselves or the clinicians monitor their patients
for any kind of abnormalities. With the help of these automated systems, there is a big
contribution to early, quick and efficient diagnose of the heart diseases. Based on this
need, this thesis presents an automated arrhythmia detection system. The classification
of beats is performed in a Graphical User Interface, namely Patient Monitoring GUI.
Based on the user’s selection, the GUI displays the type of beats that flow on the
screen. In the background, the GUI uses an Artificial Neural Network (ANN) trained
to classify the 7 different types of arrhythmias. During the training process of ANNs,
the ECG recordings from MIT BIH Arrhythmia database are used as references. The
arrhythmia samples are extracted from the database and preprocessed to create input
sets to train ANNs. The Fourier Transforms of a predefined window of signals were
taken as a feature extraction method. The training was performed in multiple steps in
order to obtain best performing ANN that will be finally used by the Patient Monitoring
GUI. The training of the ANNs was performed by using the Neural Network Toolbox
in Matlab 2008b and the results were recorded to track the difference between the
training attempts. The overall success rate of the best performing ANN was measured

as 80%.

Keywords: Artificial Neural Network, ECG, Classification, Neural Network Toolbox,

Fourier Transform, Arrhythmia



OZET

YAPAY SINIR AGLARIYLA EKG ARITMI
SINIFLANDIRMASI

EKG (Elektrokardiyografi) kalbin elektriksel aktivitelerinin goriintiilenmesini
saglayan ¢ok kullanigh noninvaziv bir goriintiilleme metodudur. EKG kayitlarina bakilarak
kalbin saghgiyla ilgili bir ¢ok bilgi edinilebilir. Bu bilgiler ise kii¢iik ¢apta veya hay-
ati 6nem tagiyan bilgiler olabilir. Bunun iizerine bilim adamlar1 kalbin elektriksel ak-
tivitesindeki anormallikleri taniyabilen otomatik sistemler {izerinde ¢alismaya baglamiglardir.
Bu sistemlerin gerek hastanin kendisini, gerek klinik ortamda hekimlerin hastalarini go-
zlemleyebilmelerine yardimci olmalar: beklenmektedir. Bu otomatik taniyici sistemler
kalp hastaliklarinin erken ve efektif teshisine biiyiik katkida bulunmaktadir. Buna
dayanarak bu tezde otomatik aritmi taniyici bir system one siiriillmektedir. Aritmilerin
taninmasi bir kullanici arayiizii icinde gerceklestirilmektedir. Hasta gozlem arayiiziinde
kullanicinin secimine gore, ekranda akan sinyalde hangi aritmi cesidinin oldugu gos-
terilmektedir. Arka planda ise kullanici arayiizii 7 farkli aritmi cesidini birbirinden
ayirt edebilmek icin daha 6nceden egitilmis bir yapay sinir agim1 kullanmaktadir. Ya-
pay sinir aglarinin egitilmesi sirasinda MIT BIH Aritmi veritabaninda bulunan EKG
kayitlar: kullanilmigtir. Aritmi 6rnekleri YSA’'n1 egitirken kullanilacak egitim kiimesi
olugturacak gekilde iglemden gegirilmigtir. Bu islemler sirasinda 6nceden belirlenmig bir
uzunlukta ana kayittan ¢ikarilan sinyal Fourier transformundan gegirilmigtir. YSA'nin
egitilmesi arayiizde kullanilacak olan en iyi YSA’nin iiretilmesi amaclanarak birden
cok adimda gercgeklegirilmigtir. YSA’'nin egitilmesi MATLAB 2008b programinin Neu-
ral Network Toolbox u kullanilarak gerceklegtirilmigtir. Bu egitimler sirasindaki ¢iktilar
tiim egitim denemelerinin kargilagtirilmas: amaciyla kaydedilmistir. Bu caligsmada en

iyi YSA’'nin %80 performansla ¢alistigi gozlenmistir.

Anahtar So6zciikler: Yapay Sinir Agi, EKG, Simiflandirma, Neural Network Toolbox,

Fourier Doniigimii, Aritmi
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1. Introduction

The scope of this thesis is to make an automated system to detect heart abnor-

malities.

The most common symptoms for heart diseases are chest pain, dizziness, pain
in upper side of the body. A heart attack starts slowly with these symptoms. A
patient may listen himself for any kind of symptoms, however, the symptoms even
may come and go. Detecting heart diseases on time saves many lives and many times.
At this point, consider that a patient has a monitoring device where the heart beats
are monitored and the patient is warned in the presence of any kind of abnormalities.
Therefore, having automated systems which can detect heart abnormalities is getting

more and more important in today’s clinical environment.

Many researches have been performed previously to obtain successful ECG beat

classifiers with several feature extraction and classification methods and different beat

types.

S. Isaac Niwas et al. [1] Classified 9 different beat types from MIT BIH Ar-
rhythmia database which were Left Bundle Branch Block, Right Bundle Branch Block,
Atrial Premature Beat, Supraventricular Ectopic Premature Beat, Premature Ventric-
ular Contraction, Atrial Fibrillation, Ventricular Fibrillation, Sick Sinus Syndrome,

Fusion of Ventricular and Normal Beat.

The overall accuracy of their Neural Network which was using Backpropaga-
tion Algorithm was 99.02 %. In their study, baseline wandering due to power line
interference was removed by using 2 median filters to the signal. Feature sets were
based on heartbeat intervals, RR intervals and spectral entropy of the ECG signal.
RR sequences were detected by using a heartbeat detection algorithm. Tables which

summarize the overall performance of their work can be seen in Appendix A.



Tamer Olmez et al. [2] studied and compared different networks which includes
NetGA, MLP and Kohonen networks. MLP is based on a supervised learning and
Kohonen and GAL are based on competitive learning. They extracted 7 beats from
MIT BIH for classification which were as follows: Normal, Left Bundle Branch Block,
Premature Ventricular Contraction, Paced Beat, Aberrated Atrial Premature Beat,
Right Bundle Branch Block, Ventricular Escape Beat. In their study, after the R
peak was detected (by using an amplitude threshold method), the amplitudes were
normalized, a window (data length of 256) containing a period around the R peak was
formed. The frequency components of the signal in the window was used for feature
set. All possible noises like 50 Hz power line noise, muscle noise and base-line wander
were removed by applying a preprocessing stage. The summary of their comparison

can be found in Appendix A.

Another article from the same authors [3] also investigates two different feature
extraction methods, Fourier and Wavelet analysis comparatively with a hybrid neural

network.

Branko Celler classified 7 different beats by using power spectral density esti-
mate [4]. He used two discrete wavelets, Daubechies wavelet of order 10 and Symlet
wavelet of order 8. ECG recordings were bandpass filtered with a linear phase filter
with 3DB points at 0.5Hz and 40 Hz. The isopotential value was subtracted and the
beat was centered in a window of 125 samples using calculated QRS onset and offset
information. The data window was multiplied with a Hanning window of the same
length to remove edge effects. Power spectral density estimates were obtained for each
X Y and Z beats using standard FFT. The overall classification accuracy in his work

was 68%.

Murale Kanapathipillai et al. [5] used Morlet Wavelet transform to extract fea-
tures from MIT BIH Arrythmia Database and the overall accuracy of the classification
with Neural Network was 70%. In this study the author only classified the signals as

normal and abnormal.



In their study, Ming-Yao Yang et al. [6] achieved 97.77% accuracy in classifying
7 different types of arrythmias extracted from MIT BIH Arrthmia database. The beats
included Left Bundle Branch Block, Right Bundle Branch Block, Premature Ventricular
Contraction, Wolff-Parkinson-White Syndrome, Myocardial Ischemia and Myocardial
Injury. 520 ECG feature patterns were collected and 160 of these data were used
in training. The author first performed a baseline correction by using discrete least
squares. Then the feature extraction method was performed with Wavelet transform
(Dyadic wavelet). After the ECG features have been extracted by WT, following
12 features were collected to be used in training the ANN: P duration, PR interval,
QRS duration, S duration, T duration, QT interval, P amplitude, R amplitude T
amplitude ST segment level and QT interval area. Two types of learning, supervised

and unsupervised learning methods were studied by these authors.

Susan Ciarroca Lee |7] used a translation invariant method to create a feature set
for the Backpropagation Neural Network input set. Short pieces from the original ECG
rhythm segment were extracted. These pieces were repeated to produce a facsimile of
the original signal. The window is guaranteed to have at least one QRS complex. With
translation invariance method, the features of 50 points for each window are extracted.
Translation invariance is introduces by constraining the weights on the first order inputs
to be independent of input position and the second order weights to depend only on
the difference between indices. She classified 3 beat types : Normal Beat, Ventricular
Tachicardia, Ventricular Fibrillation. The summary of the results of this study can be

seen in Appendix A.

Victor-Emil Neagoe et al. used The Principle Component Analysis and Discrete
Cosine Transform in their study as a feature extraction method [8|. Again Wei Jiang,

used principle component analysis to establish his work on classifying the ECG signals

[9].

By looking at the previous studies, one can see that the R peak detection method
is used in many studies as one of the first steps of the feature extraction method.

Detecting the R peak requires the beat of interest to be morphologically identifiable.



However, in detection of arrhythmia, the morphology of the heart beat is outside of
normal and makes the data unreliable. Therefore, to overcome this fact, a method

independent of the morphology should be investigated.

In this thesis, the arrhythmia beats are classified by using feedforward back
propagation neural network structure. The Fourier Transform of the arrhythmia beats
are used as the method of feature extraction. During the data extraction phase mor-

phological components were not detected.

The explanations for the key points of the study will be provided prior to

Methodology section as an introduction to the study, which are as follows:

1. ElectroCardiography;

[\

. Arrythmia;
3. Neural Networks;
4. Back Propagation Learning Algorithm;

5. MIT BIH Database.

1.1 Electrocardiography(ECG)

The Electrocardiography is a very important image of the electrical activity of
the heart. Many useful information are gathered from tracing the ECG signals. The
ECG records the electrical activity that results when the heart muscle cells in the atria
and ventricles contract. A normal sinus beat with PQRST peaks is shown in Figure

1.1.

"Atrial contractions (both right and left) show up as the P wave. Ventricular
contractions (both right and left) show as a series of 3 waves, Q-R-S, known as the QRS

complex. The third and last common wave in an ECG is the T wave. This reflects the
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Figure 1.1 Normal Sinus Beat With PQRST Peaks [10]

electrical activity produced when the ventricles are recharging for the next contraction
(repolarizing). Interestingly, the letters P, Q, R, S, and T are not abbreviations for any
actual words but were chosen many years ago for their position in the middle of the
alphabet. The electrical activity results in P, QRS, and T waves that have a myriad
of sizes and shapes. When viewed from multiple anatomic-electric perspectives (that
is, leads), these waves can show a wide range of abnormalities of both the electrical

conduction system and the muscle tissue of the heart’s 4 pumping chambers." [10]

The electrical activity produced by the contraction of the chambers are shown

in Figure 1.2.

"A typical ECG tracing of a normal heartbeat (or cardiac cycle) consists of a
P wave, a QRS complex and a T wave. A small U wave may be visible in 50 to 75%
of ECGs. The baseline voltage of the electrocardiogram is known as the isoelectric
line. Typically the isoelectric line is measured as the portion of the tracing following

the T wave and preceding the next P wave." [11]
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Figure 1.2 Electrical Activity of the Chambers [10]

1.2 Arrythmia

Arrhythmia is a term that is used to describe an abnormal electrical pattern

within the heart

"The heart is divided into two upper chambers (atria) and two lower chambers
(ventricles) as shown in Figure 1.2. Before the chambers can contract, they must
receive an electrical signal, the same way that you must plug in an electrical appliance
before the motor will work. The electrical signal is picked up by electrodes on the
chest and displayed as a waveform call an Electrocardiogram or ECG, as shown in
Figure 1.1. Normally, the electrical signal takes on a very predictable pattern. The
upper chambers send the first electrical signal, followed by a signal from the lower
chambers. The electrical signal begins in the right atrium in a special area called the
"sinoatrial node". When the electrical pattern of the heart takes on a normal sequence,
the sinoatrial node (or sinus node) produces the first wave. This wave is followed by a
signal from the lower chambers. The term "normal rhythm" or "normal sinus rhythm"
is used to describe the normal electrical waveform pattern. Normal sinus rhythms are

regular. A normal heart rate is 60-100 beats per minute. For many reasons, different



areas of the heart can initiate the electrical message. Beats that start from a location
other than the sinus node are called "ectopic beats" (outside the normal). They are
easy to recognize because the ECG pattern looks different. An ectopic beat is also

called an "arrhythmia" [12].

1.3 Artificial Neural Networks

The scientists have inspired by the method that the brain learns, remembers and
decides so that they invented a mathematical model which has synaptic information
storage system in artificial neurons which are called weights. An artificial neural net-
work system is a biologically inspired system consisting of artificial neurons connected
to each other with weights. Many researches have been made to improve this highly
interconnected neuron system in order to solve specific problems. These problems may

be pattern recognition, classification or estimation.

The most significant feature of the artificial neural networks is the ability of
being trained. The training inputs are presented to the ANN iteratively and the weights
between the neurons are updated accordingly until the ANN starts to produce the best
expected results. The procedure used during training is the learning algorithm. The
method of updating the weights highly depend on the learning algorithm. The ANNs

are beneficial to work with as they are able to provide following features [13]:

1. Nonlinearity: ANNs can be both linear or nonlinear. Nonlinearity is highly

important where the input signals are nonlinear.

2. Input Output mapping: By using the supervised learning method, the weights
of the ANN are updated by computing the error between the output calculated
during the feedforward calculation and the desired output of the ANN at time
t. The training of the ANN is repeated for many examples in the set of training
until the network reaches a steady state where there are no further significant

changes in the synaptic weights. Therefore, the ANN would learn by constructing



an input output mapping in the end.

3. Adaptivity: Neural networks have the ability to adapt their synaptic weights to
the changes in their surround environment. The ANN can be developed to adapt

itself in real time if it is operating in a non stationary environment.

4. Evidential response: The neural network can also provide information about

the confidence level of the decision it make.

5. Contextual information: Every neuron in the network is potentially affected

by the activity of all other neurons in the network.

6. Fault tolerance: The ANNs has the ability of robust computation, however in
order to be assured that the network is fault tolerant, it is useful to take corrective

measures while designing the algorithm that would train the network.

Artificial neural networks consist of neurons in their architectures. A neuron is
the simplest information processing unit of an artificial neural network which has three

basic components described below:

1. A set of synaptic weights. Specifically, a signal z; at the input of synapse j

connected to the neuron k is multiplied by the synaptic weight wy;.
2. An adder that performs the summation of the inputs calculated by the weights.

3. An activation function for limiting the amplitude of the output of a neuron

Figure 1.3 shows a nonlinear model of a neuron, S represents the number of

neurons in the layer whereas R represents the number of elements in the input vector.

Eq. 1.1 and Eq. 1.2 describe the activity on one neuron:

v;(n) = fzowji<n>yi<n>; (1.1)
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Figure 1.3 Single Layer Neuron Structure
yi(n) = ¢;(v;(n)); (1.2)

where y; is the input signals, w;; is the synaptic weights of neuron i, v; is the linear

combiner output, ¢ is the activation function.

1.4 Backpropagation Learning Algorithm

In this thesis, the Artificial Neural Networks were trained by using Backpropa-
gation Learning Algorithm.

In the application of Backpropagation algorithm, there are two main calculation
processes [13]. First is a feedforward process where all the inputs and the weights
are calculated, the sum of this calculation is presented to activation functions and
finally the output of the entire network is found for the presented input example and
the set of synaptic weights. The backward process starts from the output neuron by
calculating the error by comparing the output calculated with the desired network

response and passes this error information backwards to the inner layers by a layer by
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layer computation. The error is propagated backward with the local gradients.

The Backpropagation algorithm is explained step by step with the equations
from Eq. 1.3 to Eq. 1.15 [13].

The error calculated in the output neuron 3 at iteration n is defined as follows:

¢j(n) = d;(n) —y;(n). (1.3)

Instantenous sum of output errors is calculated by using this error:

e(n) ==Y €e(n). (1.4)

The net input of the activation function of neuron 7 is calculated as:

v;(n) = fzowji<n>yi<n>; (15)

where m is the total number of inputs applied to neuron j.

The output of neuron 3 is calculated as:

y;(n) = @i(v;(n)). (1.6)
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The partial derivative 0¢(n)/0w;;(n) is calculated with the chain rule, as follows:

de(n) _ de(n) dej(n) dy;(n) Ovj(n)
dw;i(n)  0ej(n) dy;(n) dv;(n) dw;i(n)’

Differentiating Eq. 1.4 with respect to e;(n), we get:

Oe(n)
9e;(n)

= ¢;(n).

Differentiating Eq. 1.3 with respect to y;(n), we get:

dej(n) B
By (m)

Differentiating Eq. 1.6 with respect to v;(n), we get:

Finally, differentiating Eq. 1.5 with respect to w;;(n), we get:

dv;(n)
6wji (n)

= yi(n)).

(1.7)

(1.9)

(1.10)

(1.11)
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Therefore, we can define de(n)/0w;;(n) as follows:

B=(n)
8wj,~ (TL)

= —¢;(n)#(v;(n))yi(n). (1.12)

Updates to the weightsw;;(n), which is defined as Awj;(n) is defined by the delta

rule:

de(n)
Awji(n) = — : 1.13
Accordingly, the use of Eq. 1.12 in Eq. 1.13 yields:
Awji(n) = nd;(n)y:(n); (1.14)

where the local gradient of neuron j 0,(n) is defined by:

Depending on where in the network neuron j is located, there are two distinct
cases. In case 1, neuron 7 is an output node, where it is supplied with a desired response
of its own. In case 2, neuron 7 is a hidden node. Even though hidden nodes are not
visible and can not be directly measured, they are affected by any error made at the

output of the network.
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Case 1 Neuron j is an output node: The error signal in the output node

can be calculated as:

¢j(n) = d;(n) —y;(n). (1.16)

Therefore, the local gradient of output neuron j is calculated as:

0j(n) = €j(n)@;(v;(n)). (1.17)

Figure 1.4 explains the signal flow of the backpropagation algorithm with 2

neurons.

bias

bias

(1)

yiln) i L Filn)  win) .

Figure 1.4 Signal Flow of Back Propagation Algorithm
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Case 2 Neuron j is a hidden node: When neuron j is located in a hidden
layer of the network, there is no specified desired response for that neuron. Therefore,
the error signal of a hidden node neuron should be defined in terms of the error signals
of 32 to which that hidden neuron is directly connected [13]. Therefore we may redefine

the local gradient J;(n) for hidden neuron j as:

() — _ 92(n) 9y,(n) _ de(n) orn
) =) By )~ gy ) (19)

To calculate the partial derivative de(n) / 0y;(n), we may proceed as follows:

o) = 5 3 ) (119)

keC

where neuron k is an output node. Differentiating Eq. 1.19 with respect to

yj(n), we get:

Oe(n) dex(n)
= e (1.20)
dy;(n) 2,; dy;(n)
Next we use the chain rule for the partial derivative giﬁ—ggg and rewrite Eq. 1.20
in the equivalent form:
Oe(n) _3 ekf)ek(n) Jvg(n) (1.21)
dy;(n) v Ouk(n) dy;(n)
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The error in the output node is:

ex(n) = dp(n) — yr(n) = dr(n) — @r(vi(n)). (1.22)
Therefore;
T — i (). (1.23)

The net input for neuron k is:

() = 3y )y ). (124)

Differentiating Eq. 1.24 with respect to y;(n), we get:

= wyj(n). (1.25)
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Finally, using Eq. 1.26 in Eq. 1.14, we get the back-propagation formula for the
local gradient d;(n) as described:

d;(n) = (v (n)) Y dx(n)wg;(n). (1.27)

The correction Aw;;(n) applied to the synaptic weight connecting neuron z to

neuron j is defined as follows:

Weight learning— local mputsignal
correction | = | rateparameter | .| gradient |.| ofneuronj
Awi(n) U 6;(n) yi(n)

In this thesis, the sigmoid function is used as the activation function.

1
1+ exp(—z)

f(x) ). (1.28)

Activation function must be a continuous function so that its derivative can be
used during weight adaptation process. The derivative of the sigmoid function is given

in Eq. 1.29:

oy - (=)

(1 exp(—2) 2 (1.29)
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Figure 1.5 Sigmoid Function

1.5 MIT-BIH ECG Arrythmia Database

The data set that is used both in training the network and test is extracted from

the recordings of MIT BIH Arrythmia database [14].

"This database consists of 48 annotated records obtained from 47 studied by
the Arrythmia Laboratuary of Beth Israel Hospital in Boston between 1975-1979. The
database contains 23 records (the 100 series) chosen at random from a set of over
4000 24 hours Holter tapes and 25 records (the 200’ series) selected from the same
set to include a variety of rare but clinically important phenomena which wouldn’t be

well-represented by a small random sample.

The first group is intended to serve as a representative sample of the variety of
waveforms and artifact that an arrhythmia detector might encounter in routine clinical
use. Records in the second group were chosen to include complex ventricular, junc-
tional, and supraventricular arrhythmias and conduction abnormalities The subjects

were 25 men aged 32 to 89 years, and 22 women aged 23 to 89 years.
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In most records, the upper signal is a modified limb lead IT (MLII), obtained
by placing the electrodes on the chest. The lower signal is usually a modified lead V1
(occasionally V2 or V5, and in one instance V4); as for the upper signal, the electrodes

are also placed on the chest.

Each record in the MIT-BIH Arrythmia database is slightly over 30 minutes in
length. Each signal file contains two signals sampled at 360 Hz. "Header’ files include
information about the leads used, the patient’s age, sex and medications used. The
reference annotation files include beat, rhythm and signal quality annotations. Each of
the beats was manually annotated by at least two cardiologists working independently;
their annotations were compared; consensus on disagreements was obtained; and the
reference annotations files were prepared. The database is delivered via a CD ROM

and it is also available online." [14]

An example recording output from one of the 100 series can be seen in Figure

1.6. The first 20 seconds of the recording is shown.

ECG signal 100.dat
T T T T T T

04 —

RS I N AN SRR AR

| | | | | | 1 | | |
2 4 8 3 10 12 14 16 18 20
Time /s

oltage / my

Figure 1.6 Recording Output Example

The details of the recordings, the types of arrhythmias and the types of anno-
tations can be found in the tables in the Appendix B. The statistical summary of the
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recordings can also be seen in the Appendix section.

1.6 How the Data is read

The ECG signals were in a 2-1-2 bit format and there are 3 files associated
with the same recording. First file is the .dat file which contains the signal itself, the
second file is the .hea header file which contains many information like leads used in
the recording, and the last .atr file contains the annotations used in plotting which
marked the beats one by one according to the beat types. The matlab program to read

the ECG recordings is provided at [14].

The ECG read program uses the header, annotation and the dat file to read
the two lead ECG recording with the annotations. In this thesis study, this program
delivered by [14] was used to view the ECG recordings.

Recording 100 was plotted and shown in Figure 1.7.

ECG signal 100.dat

“oltage / my

o 200 400 BO00 800 1000 1200 1400 1600 1800
Time / s

Figure 1.7 ECG Signal View of Patient #100

Figure 1.8 an example normal sinus rhythm with annotations. The zoomed view
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of the following signal part belongs to Recording 100.

ECG signal 100.dat
I I I I I

0s
o0&

0.4
1 represents
Normal beat
/

<
NGk b =

02

Waltage / mY

06

08

456.5 487 457.5 456 458.5 489 4595 460
Time / s

Figure 1.8 Normal Sinus Rhythm with Annotations

In addition to this Matlab program, the ECG recordings can also be viewed
online at [14].

In this Web page, from the input drop down menu at the top, users can select
the MIT BIH Arrythmia database and select the recording to be viewed. Both leads
with annotations can be viewed by navigating through the signal by using the control

buttons in the web page. Please see the example screenshot of the signal as shown in

Figure 1.9.
ML Sl SRS oS NS LJML“MJL«M ISR (PSR UG B Y7
0: . CD . . . . - 0:10
v “"*‘“‘I%\’”“"‘"‘ — ' L~ *'JWJF—MIF«MMN‘«U- vs
Normal beat starts Normal beats Atrial
Premature
Cantraction Grid intervals: 0.2 sec, 0.5 mV

Figure 1.9 Sample View From MIT BIH Web Site [14].
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The data used for this study is taken from the recordings by using the matlab
program and the sample annotated beats were extracted carefully by comparing both

sources.

To see how the ECG data was extracted, please see the methodology section.
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2. Methodology

To accomplish the classification aimed in this study, first, the ECG arrhythmia
signals were extracted from the MIT BIH Arrhythmia database which can be found
online at [14].

Secondly, using these extracted samples, feedforward neural networks with dif-
ferent architectures has been trained to classify the ECG Arrhythmia types. Multiple
network training steps were performed by changing several parameters explained in
later sections . All the networks were tested both with a test set which was different
from the training set and extracted again from the same MIT BIH database, and, the
training set itself. The network that classified the best was chosen to be the final
network to classify the beat types.

Lastly, a simple patient monitoring GUI with basic control functions was de-
signed in matlab. With this GUI users are able to select an ECG signal and view the

arrhythmic signals if there are any while the GUI runs.

2.1 Data Used in the Study

In this study, MIT BIH Arrhythmia database was used to extract all the data
to train the ANN. This database contains many different types of Arrhythmias. For
classification purposes during this study,the following types of arrhythmias were chosen
to train the ANN: Normal, Atrial Fibrillation, Ventricular Tachycardia, Right Branch
Block, Left Branch Block.
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Figure 2.1 shows the processes followed in order to get the final training data in

block diagrams.

Window FFT and FFT Tralning Sef
Patient selection selection from shift of the Resampling to 60%
from MIT BIH #  the patients = window .| create training
database selected in extracted in 7|l  and test sat
Step 1 Step 2 Step 3 Step 4 Step 5

Figure 2.1 Process Flow

2.1.1 Patient Selection

5 types of beats were chosen to be used as the ECG data in this study. They were
placed in a predefined sized window and extracted from the predetermined recordings.
The normal beats were extracted from the recordings: 100, 108, 205, 121, 222, 209,
201, 101, 103, 105, 113, 200, 210, 203, 213 and 212. The ventricular tachycardia beats
were extracted from the recordings 210, 213, 106 and 200 The Right Branch Block
beats were extracted from the recordings 212, 231 and 232. The Left Branch Block
betas were extracted from recordings 109,111, 201, 207 and 214. The atrial fibrillation
beats were extracted from the recordings 201, 202, 203, 219, 221 and 222. Table 2.1
shows which recordings were used to extract the example beat types as a summary.
The beats in Table 2.1 are as follows:

N: Normal beat;

VT: Ventricular Tachicardia;

VT+N: Ventricular Tachycardia and Normal beats in the same window;

R: Right Branch Block;

R+N: Right Branch Block and Normal beat in the same window;

L: Left Branch Block;

AFIB: Atrial Fibrillation.

The ECG data extraction was performed by placing the ECG beat of interest into a
certain predefined window and extracting the entire window. The entire extractions

were performed from one single lead MLII.



Table 2.1
Recordings Used to Extract Beat Types

Normal | VT | VIT+N R R+N L AFIB
100 210 210 212 212 109 201
108 213 213 231 231 111 202
205 106 106 232 232 201 203
121 200 200 207 219
222 203 203 214 221
209 214 214 222
201 215 215
101 217 217
103 221 221
105 223 223
113 233 233
200
210
203
213
212
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An example window extracted from recording 100 which contains the Normal

beats is shown in Figure 2.2.
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Figure 2.2 Normal Beat Extracted From Patient #100
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All the windows extracted from the recordings are kept in the same size in order

to handle the data easily. The window contains 1270 data points.
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The data to be used for training and testing the neural network is extracted from
these fixed window pre-extracted signals. The Fourier transform of these extracted
beats were taken and the transformed signals were processed to create the training
and test sets. The Fourier transform shows the frequency components of a signal and
the time component would no longer be available. Therefore the time dependent heart
rate information that would differ from patient to patient is an important point for

this study.

2.1.2 Window Selection
The recordings in the MIT BIH database were fully investigated by cardiologists
and all the beat types in all the recordings were fully annotated. By using these anno-

tations, the exact times of the beat types of interest were detected in the recordings.

The number of annotated beats and the points of interest were given in [14].

The beats of interest were viewed again by using [14].

Figure 2.3 shows an example for Ventricular Tachicardia in recording 210.

\ a
MLIF "l‘ l‘«-x_/"‘\ |/\"| rf\"“l |/ | f/\\'*, fﬂ\\ f "'mJl A /f\“wlwlkﬁ,/wl\_/ﬁ—w’ et | o] Wlx.mﬂ

T:00 - . V|V ¥V .V V|V . \Y - - . - . . - +7:10
vr (AFIB
fl f ‘\ J‘l | |
VI . k»_/ ™ ] | Ay kv/“"wﬂmlmwwwrwm.iww-r VI
Ventricular Grid intervals: 0.2 sec, 0.5 mV

Tachicardia beats

Figure 2.3 Sample Ventricular Tachicardia from Patient #210 [14].

Since there can be Normal beats before and after the Ventricular Tachycardia

beats, several windows were extracted from this type of beat sequences.
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One window, is extracted to have Ventricular Tachycardia beats after the Nor-

mal beats which can be seen in Figure 2.4.

T
Normal beats

Ventricular tachicardia beats

1 | | 1 1 |
0 200 400 BOO 800 1000 1200 1400

Figure 2.4 Ventricular Tachicardia Beats After Normal Ones

Another type of window like in the example in Figure 2.5 from recording 214,

is extracted to have only Ventricular tachycardia beats:

T
Ventricular

q//—\u Tachicardia beats
18-

-05 —

15 ! ! ! | !
0 200 400 T e &0 1000 1200 1400

Figure 2.5 Ventricular Tachicardia Beats

Another type of window is set to contain Normal beats and Ventricular Tachy-
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cardia beats and then Normal beats again together like in Figure 2.6.

T T
Normal Normal

Ventricular Tachicardia

o 200 400 600 800 1000 1200 1400

Figure 2.6 Ventricular Tachicardia Between Normal Beats

Or Normal-Ventricular Tachycardia-Normal-Ventricular Tachycardia like in Fig-

ure 2.7.
2 T T
15 W N
VT
1 —
0s , N
= |
05 ]
K- -
15 .
L Normal VT Normal .
a5 ! . ! ! |
i 200 400 500 00 1000 12— 1400

Figure 2.7 Subsequent Normal and Ventricular Tachicardia Beats

The reason for selecting this kind of mixed beat windows is in the context of

the aim of this study.
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It is aimed to classify the signals according to their frequency components that
distinguishes them from each other. It is also aimed to perform the classification via a
graphical user interface where the floating ECG signals were preprocessed before they

were given to the classifier as inputs.

During this preprocessing step of the final classifier GUI, the same window size
with the training data is used to preprocess the ECG wave from the patient. It wouldn’t
be unexpected to see several beat types appearing in the same window , therefore the
classifier should be able to classify beat types regardless of the presence of different

beat types in a window.

At that point it is necessary to configure the training inputs such that some sets

have at least normal signals in their window.

Accordingly, it is aimed to train the network which will classify the ECG beats
such that it will classify both Normal and Ventricular Tachicardia at the same time

when they appear in the window.

The final extracted data for input set is separated according to the beat types:

1. Normal beat data;

2. Ventricular Tachycardia data;

3. Ventricular Tachycardia + Normal beat data;
4. Right Branch Block data;

5. Right Branch Block + Normal beat data;

6. Left Branch Block data;

7. Atrial Fibrillation data.
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The reason that there is no combination for "Left Branch Block 4+ Normal Beat"
and "Atrial Fibrillation + Normal Beat" is that the recordings for LBB and AFIB did

not have normal beats following or preceding these arrhythmic beats.

2.1.3 Feature extraction

The Fourier Transform would be a preferred method to represent the data in
the frequency domain as the beats are placed in a window regardless of the time of

their existence and morphology.

By doing so, if there is a beat of interest in this predefined window, the frequency
components of the entire window would change and the classifier would warn the users
as long as that beat stays in the window. In addition to that, since there is no time

domain, the beat will be classified wherever it is placed in the window.

2.1.3.1 FFT. After gathering all the windows for different types of beats that

contain both the arrhythmic beat solely or the beat with Normal signals, the windows

were placed into matrices for easy handling of data.

The Fourier Transforms of these window matrices were taken and saved to other

matrices of Fourier Transforms.

The Fourier Transform converts a signal in time domain to a signal in frequency
domain. So by taking the Fourier Transform of the ECG windows extracted like ex-
plained above, the time domain information is no longer available and the signals are

now distinguished according to their frequency components.

The Fourier transform of a Normal beat window is given in Figure 2.8.
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Figure 2.8 Fourier Transform of a Normal Beat

2.1.3.2 FFTSHIFT. The Fourier Transform of the windows extracted for differ-

ent types of beats from the 30 minutes recordings were then subjected to the fftshift
command. The fftshift command shifts the zero frequency components of the signal to
the center of the spectrum. The shifted transform of the Normal beat window can be

seen in the Figure 2.9.
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Figure 2.9 Shifted Fourier Transform of a Normal Beat
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Second half of the shift
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Figure 2.10 Second Half of the Shift

2.1.4 Resampling

The shifted windows will be the data that would be given to the neural network
for training and testing inputs. However, there is too many data in the shifted signal,
therefore, one last step is taken to minimize the number of input data that will be
presented to the network. That is, since the shifted signal is a symmetric signal, taking

the second half of the shift and getting average values at certain intervals.

Figures through 2.10 to 2.13 give a summary for the resampling process.

The second half of the shift to be extracted is determined to have 135 data
points. This 135 point is selected so that by taking 135 data, one could cover entire
information for this second half of the fftshift.

Since 135 is quite high number to use as training example, it is determined to
take the average of the signal to represent this 135 data points. Therefore the 135 data

points were divided into 27 intervals where there will be 5 data points in each interval.
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. The signal is divided into 27
i intervals which contain 5
{ points in each interval.

Figure 2.11 Signal Divided Into Intervals

The average
of the 5
points in
each interval
is taken

Figure 2.12 Average of Each Interval
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Figure 2.13 Input Ready to be Presented to the Network

The average of 5 data points in each interval is taken so that the input size is

reduced to a reasonable value and there will be no data lost.

The final averaged data is the final input data that is used as one training

example. One example input data consists of 27 data points.

2.1.4.1 Number of Examples. There are totally 233 beat examples and these

233 examples consist of maximum 50, minimum 12 examples per beats. The number

of examples extracted for different beats is shown in Table 2.2.

Table 2.2
Number of Examples

N|VT | VIN|R |RN| L | AFIB
48 | 12 35 39 | 12 | 50 45

The average of examples per beat types can be seen in Figure 2.14 .
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The average of the entire set for different beats
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Ventricular Tachicardia
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Figure 2.14 The average of the set for different beats

2.2 Data Noise Specification

30
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The recordings taken from MIT BIH database have the frequency artifacts shown

in Table 2.3.

Table 2.3
Frequencies and Sources

Frequency (Hz) Source
0.042 Recorder pressure wheel
0.083 Playback unit capstan (for twice real-time playback)
0.090 Recorder capstan
0.167 Playback unit capstan (for real-time playback)
0.18-0.10 Takeup reel (frequency decreases over time)
0.20-0.36 Supply reel (frequency increases over time)

The details of the artifacts are given at [14].

"The most significant of these artifacts by far is the 0.167 Hz artifact on record-

ings that were played back at real time. The next largest is the 0.090 Hz artifact; the

0.083 Hz artifact on recordings that were played back at twice real-time is of roughly
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the same magnitude as the 0.090 Hz artifact. The 0.042 Hz artifact is of much lower
magnitude. Other frequencies related to the drive train (at 0.42 Hz, 1.96 Hz, 9.1 Hz,
and 42 Hz) do not appear as noticeable artifacts. The frequencies of the last two
artifacts listed in the table depend on how much tape is on the supply and takeup
reels; the supply reel causes a much more noticeable artifact than does the takeup reel.
Other frequency-domain artifacts generated by the supply reel appear in the 0.10-0.18
Hz and 0.30-0.54 Hz bands. Four of the 48 records (102, 104, 107, and 217) include
paced beats. The original analog recordings do not represent the pacemaker artifacts
with sufficient fidelity to permit them to be recognized by pulse amplitude (or slew
rate) and duration alone, the method commonly used for real-time processing. The
database records reproduce the analog recordings with sufficient fidelity to permit use

of pacemaker artifact detectors designed for tape analysis, however" [14].

2.3 Training and Test Set

As per the previous studies, many researchers used a test set of approx 30-50%
of the entire set to test the system after training. Therefore, the separation in Table

2.4 was performed in the data extracted for this thesis.

Table 2.4
Training and Test Set Percentages

Training | Test
N 30 18
VT 8 6
VTN 20 15
R 18 11
RN 8 4
L 30 20
AFIB 25 20
Total 139 94

As the Table 2.4 shows, 60% of the data extracted is selected to be the training
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set and remaining 40% of the data is selected to be the test set.

2.3.1 Training Input Design

Each averaged signal for each beat type is placed into one single matrix of inputs

like in the example in Table 2.5.

Table 2.5
Matrix of Inputs for one beat type

T1,1 Z1,2 z1,3 cee | e | T1,26 T1,27
T21 €22 T23 T2,26 €227
Tm,1 Tm,2 Tm,3 Tm,26 T, 27

Each row in Table 2.5 show one example of one beat type X, e.g. Normal.

Table 2.6
Matrix of Inputs for another beat type

Y11 Y12 Y1,3 Y1,26 Y1,27
Y21 Y2,2 Y2,3 | oo | o | Y2,26 Y2,27
ym,, 1 ym,,Q ym,,S - . ym,,26 ym,,27

Likewise, each row in Table 2.6 show one example of one beat type Y, e.g. Atrial

Fibrillation.

In the end, all the input matrices are cascaded to have one final input matrix

like in the example in Table 2.7. The final INPUT matrix has a dimension of 139x27.



Table 2.7
Final Input Matrix

Z1,1 x1,2 x1,3 x1,26 x1,27

T21 €22 T23 T2,26 €227

Tm,1 Tm,2 Tm,3 Tm, 26 T, 27

Y11 Y1,2 Y1,3 Y1,26 Y1,27

Y21 Y2,2 Y2,3 Y2,26 Y2,27

Ym ,1 Ym ,2 Ym ,3 Ym ,26 Ym ,27

2.3.2 Target Output Design
The target outputs is determined as in Table 2.8.
Table 2.8
Target Output Design
N | N+VT | VT | RB+N | RB | LB | AFIB

N 1 0 0 0 0 0 0
VT 0 1 1 0 0 0 0
RB 0 0 0 1 1 0 0
LB 0 0 0 0 0 1 0
AFIB | 0 0 0 0 0 0 1

37
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Each column in the table shows the target output values for a given input.
When, for example, a normal beat is presented to the ANN, it is expected to produce

the following output.

Output |—

OO OOk

Figure 2.15 Expected Output of Normal Beat

The expected output for both the Ventricular Tachycardia (VT) and the Ven-

tricular Tachycardia + Normal beat (VT+N) are the same as shown in Figure 2.16.

Output |—

[eNeNol o]

Figure 2.16 Expected Output of VT and VT+N Beats

The target set for VT and the VT+N beat is the same whereas the input set
created for both sets are separated in order to make it easy to follow up during tests.
In other words, if we assume that there are 5 leds at the output, and if the VT beat
is presented, the led for VT will be lit at the output which is the second led from top
and the row corresponding to VT in Table 2.8.

2.4 Neural Network Structure

In this study, the Feedforward Backpropagation network is used. The training
attempts were performed with 1 hidden layered and 2 hidden layered architectures

respectively.

During the training and test of each ANN architecture, the number of neurons



39

in the layers and the learning rate parameters were changed. All the architectures
were formed with feedforward backpropagation and the sigmoid function is used as the

activation function.

In each attempt of the training for both 1 hidden layered networks and the 2

hidden layered networks,

1. the number of neurons were increased in the hidden layers;
2. 2 different learning rate values were assigned to the networks;

3. networks were trained with brand new initial weights.

The neural network toolbox training tool automatically stops training when one

of the following criteria is met:

1. the desired network error is reached (0);
2. the desired minimum gradient reached (lxexp(—10));

3. maximum fail for validation checks is reached (100).

If the desired network error reaches the desired value which is zero, this means
the network calculates the exact expected outputs during training. If the network
reaches the preset minimum gradient value, this means the network started to use very
little amount of delta to update its weights. If the validation checks fail continuously,

this means the network is not performing any better.

Figures 2.17 and 2.18 show the architectures in block diagram.
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Figure 2.17 ANN Architecture with One Hidden Layer
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Figure 2.18 ANN Architecture with Two Hidden Layers
2.5 Experimental Design of the Network
Since one example data is represented with 27 points, the network is designed

to have 27 inputs nodes in the input layer. The same logic applies to the output unit,

since there are 5 classes, it is designed to have 5 output nodes in the output layer.

Xi 0
" — 1
INPUT | = ANN o OUTPUT — O
- I 0
-] —
Xi27 L

Figure 2.19 Experimental Design of the Network

The trained networks were tested both with the test set created at the beginning
and back with the training set used during training and the results were recorded into

a confusion matrix as in the example in Table 2.9.

The confusion matrix show that 66% of the test signals for Normal beats were
classified correctly however 11% were classified as RBB, 11% was classified as AFIB

and 11% was classified as LBB. The remaining 11% was not recognized at all.



Table 2.9
Confusion Matrix Example

N | VT | R | AFIB | L | NON
N 66 | 0 | 11 11 11 11
VT 0] 77 |0 0 0 21
R 0 | 10 | 90 0 0 0
AFIB | 14| 0 0 72 0 14
L 0 0 0 0 90 10
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The VT test inputs were classified 79% correctly. The remaining of the test

signals were not classified at all. The network classified the RBB test inputs 90%

correctly . The remaining 10% of the RBB was misclassified as VT. The percentage of

correctly classified AFIB test inputs are 72% in the matrix, the 14% of the test signal

was not classified at all. Last but not least,the LBB test inputs were 90% correctly

classified whereas the network couldn’t classify the remaining 10%.

2.6 Patient Monitoring GUI

In order to perform a user friendly interface for clinical use of the ANN trained

to classify the ECG Arrhythmia types, a Graphical User Interface with basic controls

was designed.

The final GUI is designed to have only following components :

1. Drop down menu for recording selection at the top left of the GUI window;

2. "Run" and "Pause" push buttons at the top right of the GUI window;

3. An axis which shows a window of 4 seconds out of the entire recording in the

middle of the GUI window;

4. A static text bar which shows the classification result for the specified window
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at the bottom middle of the GUI window.

However, one additional drop down menu was also included in order to perform

observations on different types of networks during this study.

In Figure 2.20 a screenshot of the designed GUI is shown and the main compo-

nents are circled:

B ecG (=)0

File:

Please select patient M |Please select Metwoark

BEAT TYPE

Figure 2.20 Patient Monitoring GUI

The user needs to select a patient and then a network. See Figures 2.21 and

2.22
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Figure 2.21 Select Patient
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Figure 2.22 Select Network
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When the user selects both patient and the network, the GUI is ready to start
the simulation. When the user clicks on the RUN button shown in Figure 2.23, the

ECG recording will start to flow on the screen.

B ecG BE <)
File: £
[Ece_ ™ [hart ™ FAUSE
Button clicked
1 T T T T T T T
0 - -
L -
oL -
| | | | 1 | 1
%] 5 1 15 2 25 3 35 4 45

RIGHT BRANCH BLOCK

Figure 2.23 RUN button clicked on the GUI

In the background, here is what the GUI performs in order to classify the beats
and display the results:

First, a window of 1270 data points were selected from the window displayed as
shown in Figure 2.24. This 1270 data point is the same size with the data extracted
from the ECG recording for training at the first place.
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Figure 2.24 Classification Area

The rest of the processing of the window selected in Figure 2.24 is the same

with the process during the data extraction for training.

Fourier Transform of the window extracted above is taken and then with the
fftshift command, the zero frequency components of the signal were shifted to the center
of the spectrum. The second half of the shifted signal is extracted and average of 5

data points at 27 intervals were taken as explained in the Feature extraction section.

After this preprocessing process, the final extracted data from the flowing ECG
recording has the proper size in order to be given to the pretrained ANN as test inputs.
The ANN is tested with the newly extracted data out of the window and the results

are saved in a simple matrix of results.

The test results matrix created with the GUI code is monitored in order to make
a decision on the classification. Two different methods were used at the output matrix.
First, a threshold method is used where the absolute value of the error matrix of the

output layer with respect to the desired output matrix is calculated. If this calculation
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was less than 0.5, therefore the classification was announced to be correct and displayed
in the static text panel as shown in Figure 2.25. If the absolute value of the error was

more than 0.5, then the classification was not displayed at all.

Secondly, the maximum of the results matrix were found and a Winner Take
All algorithm is used in order to decide on the classification. The maximum output of
the results of the test is the output that wins, and therefore the led that corresponds
to the predefined outputs are said to be classified and the beat type is displayed on the

static text panel window at the bottom accordingly.

B ecGt =
File o
[Ec_1 [ [raat v BeLEE
1 T T T T T T T
U L —
1k >
2k _
_3 1 1 1 1 | 1 |
0 05 1 15 z 25 3 35 4
Classification
result

RIGHT BRANCH BLOCK

Figure 2.25 Classification Result
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3. Results

Figures from 3.1 to 3.7 show the entire examples extracted for 5 different beat
types. Remember that the total number of data extracted for 5 different beat types is

233 and the training set consists of 139 example and the test set consists of 94 example.

400 —
Extracted set for Normal beat
350
300 —
250 —
200 —
180 —

100 —

50 —

Figure 3.1 Extracted Set for Normal Beat



Extracted set for Ventricular Tachicardia

Figure 3.2 Extracted Set for Ventricular Tachicardia

Extracted set for Ventricular Tachicardia + Normal Beats

Figure 3.3 Extracted Set for Ventricular Tachicardia and Normal Beats
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Extracted set for Right Branch Block

Figure 3.4 Extracted Set for Right Branch Block

Extracted set for Right Branch Block + Normal Beats

Figure 3.5 Extracted Set for Right Branch Block and Normal Beats
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Figure 3.6 Extracted Set for Left Branch Block

Extracted set for Atrial Fibrillation

Figure 3.7 Extracted Set for Atrial Fibrillation
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The entire data was separated into two sections for training and testing. 60%
of the data was selected to be the traning set. Figure 3.8 shows all beat types in the

training set together.

500 —

D Training set consisting of all beat sets

400 —

350 Normal

Ventricular Tachicardia
300

s Y Right Branch Block
Right Branch Block + Normal Beat
Left Brach Block

200 —

150 —

100 —

50—

Figure 3.8 Training Set Consisting of All Beat Sets
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The remaining 40% of the data, selected as the test set is shown in Figure 3.9.

w0l Test set consisting of all beats

30 Normal

Ventricular Tachicardia

280 —

Right Branch Block
Right Branch Block + Normal Beat
Left Brach Block

200 —

i
00— \ X

50—

Figure 3.9 Test Set Consisting of All Beats

The data shown in the figures above are the input sets used in training the
ANN. In the ANN architecture, the number of neurons were changed from 10 to 50
and during the training, the learning rate parameter was changed. Therefore, 10 dif-
ferent experiments have been performed in total. The Table 3.1 shows the experiments

performed with 1 hidden layered networks.

Table 3.1
1 Hidden Layered Experiments

#neurons | Learning Rate

10 0.01 | 0.001
20 0.01 | 0.001
30 0.01 | 0.001
40 0.01 | 0.001
50 0.01 | 0.001

The same experiments were performed with the 2 hidden layered networks as

well. In Table 3.2, the experiment architectures are shown.
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Table 3.2
2 Hidden Layered Experiments

#neurons | Learning Rate

10-10 0.01 | 0.001
20-20 0.01 | 0.001
30-30 0.01 | 0.001
40-40 0.01 | 0.001
50-50 0.01 | 0.001

At the end of each experiment the confusion matrices and the performance

graphics were recorded.

3.1 1 Hidden Layered Architectures

Tables through 3.3 to 3.22 show the results for experiments for networks with 1
hidden layer. Both training set and the test set are given to the network as inputs at
the end of the training. Training inputs were used during training, whereas test inputs

were never introduced to the network during training.

Tables on the top give the results with the test inputs given to the network
The 0.5 threshold method is used to identify the correct classification. When the
network produced its results for the inputs, the results were saved and compared with
the desired outputs. The absolute value of the error at the output layer is calculated.
The node which had an absolute value less than 0.5 was counted as correctly classified
Second tables give results with the training inputs given back to the network to find
out how good the network learned the training data. The 0.5 threshold method is used
again to gather the results. Third tables give the results of test inputs without the
threshold method. This time the maximum output is queried and the corresponding
beat is the winner beat and declared to be correctly classified. Fourth table likewise

gives the results of training inputs without the threshold method.



Network with 10 Neurons Test Inputs

Table 3.3

Learning Rate=0.001 Learning Rate=0.01
N |VIT| R |AFIB| L | NON | N | VT | R | AFIB | L | NON
N 33 11 6 17 6 27 33 0 17 22 6 22
VT 5 7 0 0 5 13 0 67 0 0 10 23
R 12 0 76 4 0 8 0 0 76 4 0 20
AFIB | 20 0 0 45 0 35 35 0 0 53 0 12
L 0 5 0 0 85 10 0 10 5 0 70 15
Table 3.4
Network with 10 Neurons Training Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 87 0 0 0 0 7 0 0 0 0
vT 0 54 0 0 0 0 64 0 0 0
R 0 0 50 0 0 0 0 43 0 0
AFIB 0 0 0 84 0 0 0 0 100 0
L 0 0 0 0 96 0 0 0 0 87
Table 3.5

Network with 10 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001

Learning Rate=0.01

N | VT | R | AFIB | L N | VI' | R | AFIB | L
N 33 0 0 0 0 39 0 0 0 0
vT 0 54 0 0 0 0 58 0 0 0
R 0 0 32 0 0 0 0 36 0 0
AFIB 0 0 0 60 0 0 0 0 55 0
L 0 0 0 0 85 0 0 0 0 80
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Table 3.6
Network with 10 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N | VI' | R | AFIB | L
N 87 0 0 0 0 80 0 0 0 0
vT 0 59 0 0 0 0 69 0 0 0
R 0 0 50 0 0 0 0 50 0 0
AFIB | 0 0 0 96 0 0 0 0 100 0
L 0 0 0 0 100 0 0 0 0 90
Table 3.7
Network with 20 Neurons Test Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L NON N VT | R | AFIB L NON
N 44 0 11 6 6 33 44 0 7 0 11 38
vT 5 7 0 0 0 18 4 83 0 3 10
R 8 0 81 8 0 3 8 0 88 4 0
AFIB | 15 0 0 45 5 35 30 0 0 40 20 10
L 0 0 0 0 75 25 10 5 0 0 75 10
Table 3.8

Network with 20 Neurons Training Inputs

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 87 0 0 0 0 80 0 0 0 0
vT 0 65 0 0 0 0 50 0 0 0
R 0 0 50 0 0 0 0 45 0 0
AFIB | 0 0 0 92 0 0 0 0 84 0
L 0 0 0 0 80 || O 0 0 0 80




Table 3.9
Network with 20 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01

N | V| R | AFIB | L N | VI' | R | AFIB | L
N 56 0 0 0 0 50 0 0 0 0
VT 0 68 0 0 0 0 58 0 0 0
R 0 0 31 0 0 0 0 33 0 0
AFIB | 0 0 0 65 0 0 0 0 60 0
L 0 0 0 0 95 0 0 0 0 90

Table 3.10

Network with 20 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 87 0 0 0 0 83 0 0 0 0
vT 0 72 0 0 0 0 59 0 0 0
R 0 0 50 0 0 0 0 50 0 0
AFIB 0 0 0 96 0 0 0 0 96 0
L 0 0 0 0 87 0 0 0 0 94
Table 3.11
Network with 30 Neurons Test Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VT R AFIB L NON N VT | R | AFIB L NON
N 67 0 0 0 11 22 44 0 0 0 0 56
vT 0 83 5 4 4 4 0 90 0 4 0 6
R 0 0 100 0 0 12 0 88 0 0
AFIB 5 0 0 55 0 40 30 0 0 50 10 10
L 0 15 0 0 65 20 15 0 0 10 65 10




Table 3.12
Network with 30 Neurons Training Inputs

Learning Rate=0.001 Learning Rate=0.01

N | V| R | AFIB | L N | VI' | R | AFIB | L
N e 0 0 0 0 67 0 0 0 0
VT 0 68 0 0 0 0 72 0 0 0
R 0 0 51 0 0 0 0 37 0 0
AFIB | 0 0 0 84 0 0 0 0 92 0
L 0 0 0 0 67 0 0 0 0 74

Table 3.13

Network with 30 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01

N | VT | R | AFIB | L N | VI' | R | AFIB | L
N 78 0 0 0 0 56 0 0 0 0
vT 0 63 0 0 0 0 72 0 0 0
R 0 0 37 0 0 0 0 34 0 0
AFIB | 0 0 0 80 0 0 0 0 75 0
L 0 0 0 0 7|0 0 0 0 75

Table 3.14

Network with 30 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 84 0 0 0 0 74 0 0 0 0
vT 0 72 0 0 0 0 76 0 0 0
R 0 0 51 0 0 0 0 43 0 0
AFIB | 0 0 0 85 0 0 0 0 96 0
L 0 0 0 0 70 || O 0 0 0 7




Network with 40 Neurons Test Inputs

Table 3.15

28

Learning Rate=0.001 Learning Rate=0.01
N|VIT| R |AFIB| L | NON | N | VT | R | AFIB | L | NON
N 56 0 11 0 0 33 61 6 11 0 6 16
vT 0 64 0 0 9 28 0 62 0 0 10 28
R 0 0 96 0 0 4 12 0 72 0 0 16
AFIB | 10 0 0 45 0 45 20 0 0 30 0 50
L 5 0 0 5 65 25 0 0 0 0 90 10
Table 3.16
Network with 40 Neurons Training Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 61 0 0 0 0 55 0 0 0 0
VT 0 73 0 0 0 0 73 0 0 0
R 0 0 83 0 0 0 0 97 0 0
AFIB 0 0 0 30 0 0 0 0 45 0
L 0 0 0 0 90 0 0 0 0 65
Table 3.17

Network with 40 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001

Learning Rate=0.01

N | VT | R | AFIB | L N | VI' | R | AFIB | L
N 72 0 0 0 0 72 0 0 0 0
vT 0 53 0 0 0 0 54 0 0 0
R 0 0 34 0 0 0 0 34 0 0
AFIB 0 0 0 55 0 0 0 0 55 0
L 0 0 0 0 95 0 0 0 0 95




Table 3.18
Network with 40 Neurons Training Inputs - Threshold Removed
Learning Rate=0.001 Learning Rate=0.01
N vT R | AFIB L N vT R | AFIB L
N 94 0 0 0 0 97 0 0 0 0
vT 0 59 0 0 0 0 62 0 0 0
R 0 0 51 0 0 0 0 51 0 0
AFIB 0 0 0 73 0 0 0 0 85 0
L 0 0 0 0 100 0 0 0 0 94
Table 3.19
Network with 50 Neurons Test Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L NON N VT | R | AFIB L NON
N 66 0 0 6 28 50 0 6 0 6 38
vT 0 67 0 14 10 24 0 79 0 0 7 14
R 0 0 98 0 0 2 0 0 84 0 0 16
AFIB | 10 0 0 40 0 30 20 0 0 60 0 20
L 5 0 0 0 75 20 0 0 0 0 95 5
Table 3.20
Network with 50 Neurons Training Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 96 0 0 0 0 80 0 0 0 0
vT 0 55 0 0 0 0 58 0 0 0
R 0 0 47 0 0 0 0 47 0 0
AFIB 0 0 0 76 0 0 0 0 88 0
L 0 0 0 0 90 0 0 0 0 90
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Table 3.21
Network with 50 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01

N | VI' | R | AFIB L N VT | R | AFIB L
N 67 0 0 0 0 72 0 0 0 0
VT 0 58 0 0 0 0 39 0 0 0
R 0 0 37 0 0 0 0 36 0 0
AFIB | 0 0 0 75 0 0 0 0 80 0
L 0 0 0 0 100 || O 0 0 0 95

Table 3.22

Network with 50 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01

N | VI | R | AFIB L N | VI' | R | AFIB | L
N 97 0 0 0 0 87 0 0 0 0
vT 0 66 0 0 0 0 62 0 0 0
R 0 0 51 0 0 0 0 51 0 0
AFIB | 0 0 0 92 0 0 0 0 96 0
L 0 0 0 0 100 || O 0 0 0 90

3.2 2 Hidden Layered Architectures

Below are the results for experiments for networks with 2 hidden layers:

Table 3.23
Network with 10 - 10 Neurons Test Inputs

Learning Rate=0.001 Learning Rate=0.01
N |VIT| R |AFIB| L | NON | N | VT | R | AFIB | L | NON
N 45 0 33 6 0 16 45 0 11 22 0 22
vT 0 76 0 0 0 28 4 70 0 8 14 4
R 4 0 72 4 8 12 12 0 84 0 0 4

AFIB | 10 5 0 30 15 40 0 0 0 70 0 30
L 5 0 0 5 70 20 10 0 0 0 70 20




Table 3.24
Network with 10 - 10 Neurons Training Inputs

Learning Rate=0.001 Learning Rate=0.01

N | V| R | AFIB | L N | VI' | R | AFIB | L
N 80 0 0 0 0 70 0 0 0 0
VT 0 69 0 0 0 0 72 0 0 0
R 0 0 44 0 0 0 0 51 0 0
AFIB | 0 0 0 73 0 0 0 0 92 0
L 0 0 0 0 e 0 0 0 0 80

Table 3.25

Network with 10 - 10 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01

N | VT | R | AFIB | L N | VI' | R | AFIB | L
N 50 0 0 0 0 50 0 0 0 0
vT 0 58 0 0 0 0 44 0 0 0
R 0 0 27 0 0 0 0 34 0 0
AFIB | 0 0 0 40 0 0 0 0 80 0
L 0 0 0 0 85 || 0 0 0 0 75

Table 3.26

Network with 10 - 10 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 81 0 0 0 0 81 0 0 0 0
vT 0 72 0 0 0 0 72 0 0 0
R 0 0 48 0 0 0 0 51 0 0
AFIB | 0 0 0 85 0 0 0 0 100 0
L 0 0 0 0 87 || 0 0 0 0 97




Table 3.27
Network with 20 - 20 Neurons Test Inputs

Learning Rate=0.001

Learning Rate=0.01

N | VT | R | AFIB L NON N VT | R | AFIB L NON
N 72 0 6 11 0 11 56 0 11 0 0 33
vT 4 73 0 0 9 14 0 7 0 0 9 14
R 0 0 80 0 0 20 0 0 76 4 0 20
AFIB | 10 0 5 75 0 10 10 0 0 65 0 25
L 0 0 0 0 100 0 5 10 0 10 65 10
Table 3.28
Network with 20 - 20 Neurons Training Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VT | R | AFIB L N VT | R | AFIB | L
N 90 0 0 0 0 83 0 0 0 0
vT 0 84 0 0 0 0 64 0 0 0
R 0 0 82 0 0 0 0 51 0 0
AFIB 0 0 0 92 0 0 0 0 92 0
L 0 0 0 0 100 0 0 0 0 77
Table 3.29

Network with 20 - 20 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001

Learning Rate=0.01

N | VT | R | AFIB L N | VI' | R | AFIB | L
N 74 0 0 0 0 67 0 0 0 0
vT 0 60 0 0 0 0 63 0 0 0
R 0 0 e 0 0 0 0 32 0 0
AFIB 0 0 0 85 0 0 0 0 75 0
L 0 0 0 0 100 0 0 0 0 75
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Table 3.30
Network with 20 - 20 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VT | R | AFIB L N VT | R | AFIB | L
N 96 0 0 0 0 84 0 0 0 0
vT 0 87 0 0 0 0 72 0 0 0
R 0 0 83 0 0 0 0 51 0 0
AFIB 0 0 0 100 0 0 0 0 100 0
L 0 0 0 0 100 0 0 0 0 87
Table 3.31
Network with 30 - 30 Neurons Test Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L NON N VT | R | AFIB L NON
N 46 0 11 16 0 27 46 0 11 5 5 33
vT 0 82 0 0 9 9 0 80 0 0 0 20
R 8 0 84 0 0 8 4 0 72 0 0 24
AFIB | 20 0 0 45 0 35 15 10 0 55 0 20
L 5 0 0 5 50 40 0 10 0 0 75 15
Table 3.32
Network with 30 - 30 Neurons Training Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 75 0 0 0 0 83 0 0 0 0
vT 0 64 0 0 0 0 71 0 0 0
R 0 0 48 0 0 0 0 51 0 0
AFIB 0 0 0 73 0 0 0 0 88 0
L 0 0 0 0 83 0 0 0 0 67
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Table 3.33
Network with 30 - 30 Neurons Test Inputs - Threshold Removed
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 50 0 0 0 0 56 0 0 0 0
vT 0 63 0 0 0 0 63 0 0 0
R 0 0 34 0 0 0 0 35 0 0
AFIB 0 0 0 70 0 0 0 0 60 0
L 0 0 0 0 85 0 0 0 0 70
Table 3.34

Network with 30 - 30 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 81 0 0 0 0 84 0 0 0 0
vT 0 66 0 0 0 0 72 0 0 0
R 0 0 49 0 0 0 0 51 0 0
AFIB 0 0 0 85 0 0 0 0 96 0
L 0 0 0 0 87 0 0 0 0 87
Table 3.35
Network with 40 - 40 Neurons Test Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L NON N VT | R | AFIB L NON
N 46 0 16 11 11 16 46 0 11 16 5 22
vT 5 81 0 0 9 5 0 73 0 4 9 14
R 8 0 80 0 0 12 0 0 92 0 0 8
AFIB | 20 0 5 50 0 25 10 0 0 55 10 25
L 0 5 5 0 70 20 0 10 0 0 70 20
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Table 3.36
Network with 40 - 40 Neurons Training Inputs

Learning Rate=0.001 Learning Rate=0.01

N | V| R | AFIB | L N | VI' | R | AFIB | L
N 93 0 0 0 0 87 0 0 0 0
VT 0 62 0 0 0 0 65 0 0 0
R 0 0 50 0 0 0 0 50 0 0
AFIB | 0 0 0 92 0 0 0 0 84 0
L 0 0 0 0 93 0 0 0 0 93

Table 3.37

Network with 40 - 40 Neurons Test Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01

N | VT | R | AFIB | L N | VI' | R | AFIB | L
N 61 0 0 0 0 44 0 0 0 0
vT 0 54 0 0 0 0 63 0 0 0
R 0 0 35 0 0 0 0 34 0 0
AFIB | 0 0 0 70 0 0 0 0 55 0
L 0 0 0 0 80 || O 0 0 0 85

Table 3.38

Network with 40 - 40 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 94 0 0 0 0 90 0 0 0 0
vT 0 62 0 0 0 0 66 0 0 0
R 0 0 50 0 0 0 0 50 0 0
AFIB | 0 0 0 100 0 0 0 0 92 0
L 0 0 0 0 97 || O 0 0 0 94




Table 3.39
Network with 50 - 50 Neurons Test Inputs
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Learning Rate=0.001 Learning Rate=0.01
N | VT | R | AFIB | L | NON N VT | R | AFIB | L | NON
N 46 0 5 16 11 12 46 0 5 5 5 39
vT 4 58 0 0 14 24 0 68 4 4 0 24
R 0 0 96 0 0 4 0 0 76 0 0 24
AFIB 0 0 0 75 0 25 5 0 0 55 0 40
L 0 0 0 0 95 5 0 0 0 0 60 40
Table 3.40
Network with 50 - 50 Neurons Training Inputs
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 61 0 0 0 0 83 0 0 0 0
vT 0 69 0 0 0 0 59 0 0 0
R 0 0 48 0 0 0 0 51 0 0
AFIB 0 0 0 84 0 0 0 0 88 0
L 0 0 0 0 61 0 0 0 0 100
Table 3.41
Network with 50 - 50 Neurons Test Inputs - Threshold Removed
Learning Rate=0.001 Learning Rate=0.01
N | VI' | R | AFIB L N VT | R | AFIB L
N 61 0 0 0 0 61 0 0 0 0
VT 0 68 0 0 0 0 57 0 0 0
R 0 0 34 0 0 0 0 37 0 0
AFIB 0 0 0 70 0 0 0 0 75 0
L 0 0 0 0 70 0 0 0 0 100




Table 3.42
Network with 50 - 50 Neurons Training Inputs - Threshold Removed

Learning Rate=0.001 Learning Rate=0.01
N | VI | R | AFIB L N VT | R | AFIB L
N 81 0 0 0 0 87 0 0 0 0
VT 0 69 0 0 0 0 61 0 0 0
R 0 0 50 0 0 0 0 51 0 0
AFIB | 0 0 0 92 0 0 0 0 92 0
L 0 0 0 0 67 || O 0 0 0 100
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4. Discussions

The results are evaluated for the following points:

1. Overall success for the test results with both training input and test input;
2. Most successful network;
3. The success rate per beats in the networks;

4. Failed classifications.

4.1 Overall Success for the Test Results

When we compare the results from the tests, we can summarize the successful

classification results with Table 4.1.

Table 4.1
Percentages of overall test results with 0.5 threshold method

#Neurons

10

20

30

40

50

Averaged Total

Learning Rate

0.01

0.001

0.01

0.001

0.01

0.001

0.01

0.001

0.01

0.001

1HL

59

63

66

64

67

74

76

63

69

73

67

2HL

68

59

68

80

61

66

65

67

74

61

67

The Table 4.1 shows the percentage of overall success rate for testing in both 1

hidden layered and 2 hidden layered networks. The overall success rate is calculated

by taking the percentage of the total successfully classified beats over total test inputs.

The example in Table 4.2 for 1 hidden layered network with 10 neurons and

learning rate as 0.01 shows this calculation.



69

Table 4.2
Diagonals of the confusion matrix

N | VT | R | AFIB| L | NON
N 33| 11 | 6 17 6 27
VT 5 | 77 | 0 0 5 13
R 12 0 | 76 4 0 8
AFIB | 20 | O 0 45 0 35
L 0 5 0 0 85 10

All the numbers in the diagonals in bold which show the successful classifications
are added. In this example this sum is 316. This number is divided into the number

of classes which is 5 and therefore the final overall success rate is obtained as 63%.

According to Table 4.1, it can be concluded that the most successful network is
the 2 hidden layered network with 20-20 architecture, Ir= 0.001 learning rate with 80%
success. The least successful network is the 1 hidden layered network with 10 neurons,

Ir=0.01 with 59% success rate.

In overall, the average success rate of the studies performed with 1 hidden layered
networks were equal to the average success rate of the 2 hidden layered networks, which

is 67%.

Accordingly, by using the same method, the overall success rates were also

calculated for the following three conditions
1. Training data is given back to the network with the presence of 0.5 threshold

comparison check. The results for this test is given in Table 4.3

2. Test data is given to the network with winner takes all comparison method

at the output layer. The results for this test is given in Table 4.4.



Table 4.3

Percentages of overall test results with training inputs with 0.5 threshold method

10 20 30 40 50
0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || Total
1HL || 74.2 | 74.2 64.8 | 74.8 68.4 | 69.4 67 67.4 72.6 | 72.8 70.56
2HL || 73 68.6 73.4 | 89.6 72 68.6 75.8 | 78 76.2 | 64.6 67
Table 4.4
Percentages of overall test results with Winner Takes All method
10 20 30 40 50
0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || Total
1HL || 53.6 | 52.8 58.2 | 63 62.4 | 724 62 61.8 64.4 | 674 61.8
2HL || 56.6 | 52 62.4 | 82 56.8 | 49 56.2 | 60 66 54.6 59
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3. Training data is given back to the network with winner takes all comparison

method at the output layer. The results for this test is given in Table 4.5.

Table 4.5
Percentages of overall test results with training inputs with Winner Takes All method

10 20 30 40 50
0.01 | 0.001 {| 0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || 0.01 | 0.001 || Total
1HL || 77.8 | 78.4 76.4 | 78.4 73.2 | 724 77.8 | 754 77.2 | 81.2 76.83
2HL || 80.2 | 74.6 78.8 | 93.2 62.4 | 73.6 78.4 | 80.6 78.2 | 71.8 77.18

4.2 Most Successful Network

By looking at the confusion matrices, one can see that only 2 networks managed

to classify at east one beat type with 100% success rate. One of these networks is

the 1 hidden layered network with 30 neurons, Ir=0.001, which classified the Atrial

Firbrillation 100% correctly. The other one is the 2 hidden layered network with 20-20

architecture, Ir=0.001, which classified the Left Branch Block 100% correct.
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4.3 The success rate per beats in the networks

If one focuses on the beat types, it can be noticed that the Normal beats had

the least success rate in all training attempts.

Table 4.6 is a summary of all the tests performed with the networks. At the
right hand side of the table the average success rates of the 1 hidden layered and 2
hidden layered networks per beat types is shown separately.

Table 4.6
Test Summary

#Neurons 10 20 30 40 50
Learning Rate 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 AV-1H AV-2H

1HL 33 33 44 44 44 67 56 61 66 50 49.8
N 2HL 45 45 56 72 46 46 46 46 46 46 49.4

1HL 67 7 83 7 90 83 64 62 67 79 74.9
v 2HL 70 76 7 73 82 80 81 73 58 68 73.8

RBB 1HL 76 76 88 81 88 100 96 72 98 84 85.9
2HL 84 72 76 80 84 72 80 92 96 76 81.2

AFIB 1HL 53 45 40 45 50 55 45 30 40 60 46.3
2HL 70 30 65 75 45 55 50 55 75 55 57.5

LBB 1HL 70 85 75 75 65 65 65 90 75 95 76

2HL 70 70 65 100 50 75 70 70 95 60 72.5

It can be seen that the Normal beat is the least successfully classified beat

whereas the RBB is the most successfully classified one.

At this point the dataset created for the training should be reconsidered. Ac-
cording to Table 3.3, the Normal beats contain the highest number of patients which
is 16 whereas it has 30 examples for training. 18 examples were selected for testing the
network out of the entire Normal beat examples. Therefore, the examples form some
patients might not even be introduced to the network during training and that would
be one of the explanations for why the test results for Normal beats are worse than

other beat types.

Looking at the RBB dataset, the number of patients are the least among all
beat types which is only 3. Therefore all 26 examples for training were extracted from

these 3 patients as well as the 15 test examples.
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The success in RBB classification can be related to the fact that the network

has seen the examples from the same patients before.

It is a known fact that the higher number of training examples results in better
success for classification. Therefore one may conclude that the classification of the
beats would be even better if there was more data extracted for as many different

window combinations as possible.

4.4 Failed classifications

The successful classification percentages were shown in Table 4.6. The remaining

unsuccessful classifications are summarized in Table 4.7.
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The fields "NON" show the percentages of those beats, which were not classi-
fied into any classes, but remained unidentified. By looking at the table, the 2 hidden
layered network with 50-50 architecture, Ir=0.001 had the most unidentification per-
centage. However the most successful network which is the 2 hidden layered network

with 20-20 architecture, Ir=0.001, had the least number of unidentified beats.

The fields "OTR" shows the total percentage of the misclassification in the
network. Table clearly shows that the most successful network had very low amount
of misclassification as expected. However there was a better misclassification result in
the 1 hidden layered network with 40 neurons, Ir=0.01. The most misclassification was

performed in the network 2 hidden layered network with 30-30 architecture, Ir=0.001.

Tables through 4.8 to 4.12 go into further details about the misclassified beats.
The first table, Table 4.8 examines the Normal Beat inputs that are misclassified. If
we examine the first line of the table we see the 10 neuron Ir=0.01 architecture put 17
% of the N beat test inputs into the RBB class, 22% into the AFIB and 7 % into the
LBB class. On the other hand, again the 10 neuron but this time lr=0.001 architecture
put 11% of the Normal beat test inputs into the VT class, 6% into the RBB, 17% into
AFIB and 6% into the LBB class. In the overall, when we look at the averaged results
at the end of the table, the table tells that the N beat was put into the RBB class most
of the time with 9% average. The next misclassification was putting the N beat into
the AFIB class with 7.95%. The misclassification with AFIB is mostly observed in the

2 hidden layered architectures.

The second table, Table 4.9 shows the percentages of the VT beats that are
misclassified. According to the table, it is clear that the networks mostly put the VT
into the LBB class with 6%. The RBB beats were put into the N class in most cases
with 4% average as shown in Table 4.10. As per Table 4.11 the rate of misclassification
is very high in AFIB. The 99% of the network architectures put some of the AFIB
examples into the N class and for the LBB, shown in Table 4.12, it is observed that

mostly the networks put the LBB test examples into the N or VT class.
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Table 4.8
Misclassifications of the Normal beats

vT R AFIB L
10-0.01 0 17 22 6
10-0.001 11 6 17 6
20-0.01 0 7 0 11
20-0.001 0 11 6 6
30-0.01 0 0 0 0
30-0.001 0 0 0 11
40-0.01 0 11 0 0
40-0.001 6 11 0 6
50-0.01 0 0 6 6
50-0.001 0 6 0 6
10-10-0.01 0 11 22 0
10-10-0.001 0 33 6 0
20-20-0.01 0 11 0 0
20-20-0.001 0 6 11 0
30-30-0.01 0 11 16 0
30-30-0.001 0 11 5 5
40-40-0.01 0 16 11 11
40-40-0.001 0 11 16 5
50-50-0.01 0 5 16 11
50-50-0.001 0 5 5 5
AV 1 9 7.95 5

Table 4.9

Misclassifications of the VT beats

Architecture N R AFIB L
10-0.01 0 0 0 10
10-0.001 5 0 0 5
20-0.01 4 0 3 10
20-0.001 5 0 0 0
30-0.01 0 0 4 0
30-0.001 0 5 4 4
40-0.01 0 0 0 9
40-0.001 0 0 0 10
50-0.01 0 0 14 10
50-0.001 0 0 0 7
10-10-0.01 4 0 8 14
10-10-0.001 0 0 0 9
20-20-0.01 4 0 0 9
20-20-0.001 0 0 0 9
30-30-0.01 0 0 0 0
30-30-0.001 0 0 0 0
40-40-0.01 5 0 0 9
40-40-0.001 0 0 4 9
50-50-0.01 4 0 0 14
50-50-0.001 0 4 4 0
AV 2 0 2.05 6

According to the misclassification percentages shown in the Tables through 4.8
to 4.12, one example beat for the Normal beat is taken into account to find out why

the Normal beats are put into the RBB class mostly. The beat shown in Figure 4.1



Table 4.10
Misclassifications of the RBB beats
Architecture N VT AFIB L

10-0.01 0 0 4 0
10-0.001 12 0 4 0
20-0.01 8 0 4 0
20-0.001 8 0 8 0
30-0.01 12 0 0 0
30-0.001 0 0 0 0
40-0.01 0 0 0 0
40-0.001 12 0 0 0
50-0.01 0 0 0 0
50-0.001 0 0 0 0
10-10-0.01 12 0 0 0
10-10-0.001 4 0 4 8
20-20-0.01 0 0 4 0
20-20-0.001 0 0 0 0
30-30-0.01 8 0 0 0
30-30-0.001 4 0 0 0
40-40-0.01 8 0 0 0
40-40-0.001 0 0 0 0
50-50-0.01 0 0 0 0
50-50-0.001 0 0 0 0
AV 4 0 1.4 0

Table 4.11

Misclassifications of the AFIB beats

Architecture N vT R L
10-0.01 35 0 0 0
10-0.001 20 0 0 0
20-0.01 30 0 0 20
20-0.001 15 0 0 5
30-0.01 30 0 0 10
30-0.001 5 0 0 0
40-0.01 10 0 0 0
40-0.001 20 0 0 0
50-0.01 10 0 0 0
50-0.001 20 0 0 0
10-10-0.01 0 0 0 0
10-10-0.001 10 5 0 15
20-20-0.01 10 0 0 0
20-20-0.001 10 0 5 0
30-30-0.01 20 0 0 0
30-30-0.001 15 10 0 0
40-40-0.01 20 0 5 0
40-40-0.001 10 0 0 10
50-50-0.01 0 0 0 0
50-50-0.001 5 0 0 0
AV 15 1 0.5 3
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is one of the Normal test input that is tested and failed. The beat was put into the
RBB class. The beat belongs to the recording 222 in the MIT BIH database and the

recording contains noise in some areas as well as DC offset.
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Table 4.12
Misclassifications of the LBB beats
Architecture N VT R AFIB
10-0.01 0 10 5 0
10-0.001 0 5 0 0
20-0.01 10 5 0 0
20-0.001 0 0 0 0
30-0.01 15 0 0 0
30-0.001 0 15 0 0
40-0.01 5 0 0 5
40-0.001 5 0 0 0
50-0.01 0 10 5 0
50-0.001 0 0 0 0
10-10-0.01 10 0 0 0
10-10-0.001 5 0 0 5
20-20-0.01 5 10 0 10
20-20-0.001 0 0 0 0
30-30-0.01 5 0 0 5
30-30-0.001 0 10 0 0
40-40-0.01 0 5 5 0
40-40-0.001 0 10 0 0
50-50-0.01 0 0 0 0
50-50-0.001 0 0 0 0
AV 3 4 0.8 1.25
I I I
| | | | | |
200 400 GO0 600 1000 1200

Figure 4.1 Misclassified Normal Beat

1400

7
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The test input for the window shown in Figure 4.1 is displayed in Figure 4.2.

160 T T T

140 — .

100 — —

80— —

BO —

40 - .

A+ —

Figure 4.2 Misclassified Normal Beat Test Input

Comparing the average N input signal and the average RBB input signal, the

classification result is not surprising. In Figure 4.3 the average N input signal is shown.

The misclassified signal looks more like the average RBB signal shown in Figure

4.4 rather than the average N beat.

Furthermore, when looking at the misclassifications in the VT class, it was
noticed that all the failing signals were from the VI+N windows. The network was

not able to detect the VT beats with the presence of the N beats in the same window.

Figure 4.5 shows that the VIT+N beats have additional frequency components
which make them look more like the LBB signals.

Please see misclassified VT+N, average VT and average LBB beats in the Fig-
ures through 4.5 to 4.7.



Figure 4.3 Average Normal Input Signal

Figure 4.4 Average RBB Input Signal
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Figure 4.5 Misclassified VT+N Beat

Figure 4.6 Average VT Input
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Figure 4.7 Average LBB Input
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5. Conclusions

In this thesis study, an ANN based classifier which uses the Fourier Transform

of a predefined window which consists of at least 3 beats together is presented.

5 types of beats are used to train the ANN. These beat types include Normal
Beat, Right Branch Block, Left Branch Block, Ventricular Tachycardia and Atrial
Fibrillation. The ANN was trained using Back Propagation learning algorithm with 1
and 2 hidden layered architectures. The data set extracted from original database was
separated into two ; train and test set. The test set consisted of 40% of the extracted
data and was not introduced to the network until the training was completed. The
feature extraction was performed in 3 steps. First step was to extract windows from
the original signal to contain at least 3 beats in the same windows. In the second
step, the Fourier transforms of the windows were taken. The transformed signals were
then post processed to get the final data to be used in training. After the trainings
were completed, the ANN was tested with the test inputs created at the beginning.
To compare the network test results, confusion matrices were datafilled during testing.
According to the tests, the best performing network was able to classify with 80%
success rate. This success rate is in the classification on overall test inputs with the
presence of a threshold check at the output layer. In order to make a decision on
the classification a threshold value of 0.5 was chosen. When the network produced its
results for the inputs, the results were saved and compared with the desired outputs.
The absolute value of the error at the output layer is calculated. The node which had
an absolute value less than 0.5 was counted as correctly classified. In addition to the
test set, the network was tested with the training inputs that it was trained with once
more to find out how accurately it learned the training inputs. Results showed that the
best performing network showed 89.6% accuracy in the training inputs. Results also
showed that by removing the threshold and using a Winner Takes All method at the
output layer, the most successful network performed better and gave higher percentage

of correctly classified inputs.
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Table 5.1 summarizes the accuracy of the best performing network:

Table 5.1
Accuracy of the best performing network

Decision Method 0.5 threshold (%) | Winner Takes All (%)
ANN tested with training inputs | 89.6 93.2
ANN tested with test inputs 80 82

In addition to the classification decision method at the output layer, the study
showed that the more the examples in the training set of the ANN are, the more
successful the network is. It is assumed that if there are more examples for different
type of windows, the network will understand the difference better and it will do less
misclassification. Therefore with a sufficient amount of training input, this network

could perform better and the classification could be more reliable.

Considering all the confusion matrices created after each training attempt for
both 1 hidden layered networks or 2 hidden layered networks, it was noticed that the
network is sensitive to the noise and DC offset in the signal. In addition to these,
network is having difficulty in classifying the beats with the presence of other beats in

the window which cause a change in the frequency components of the input signal.

Further work may be performed by extracting more and more data and creating

larger input sets to overcome the adverse affects of these sensitivities in the network.

The Fourier Transform of a window would be a useful method in classifying

ECG arrhythmia beats whenever there is sufficient amount of training examples.
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APPENDIX A. Accuracy Tables for Previous Studies

Table A.1

Overall Performance of the Method Proposed [1]

ECG Signal Type | Number of Data | Number of Data | Training Ac- | Testing Ac-
Sets Used for Train- | Sets Used for Test- | curacy in % | curacy in %
ing ing

NB 25 20 100 98.90
LBBB 20 15 100 96.77
RBBB 30 25 100 96.27

AP 25 15 100 91.35

Sp 15 10 100 92
PVC 40 25 100 98.92

AF 20 15 100 95.96

VF 20 15 100 95.78

SSS 30 20 100 98.27
FVN 25 20 100 96.41
Total 250 180 100 99.02




Table A.2
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Comparison of Different ECG Classifiers [1]

Method Number Arrhythmia Types | Accuracy in %
Proposed Method 10 99.02
Mixture of Experts 4 94
Fuzzy Hybrid Neural Network 7 96.06
Discrete Wavelet Transform 13 97
Fourier Transform Neural Network 3 98
Discrete Fourier Transform 10 89.40

Table A.3

Performance Results of the ANN [2]

Test Results Kohonen | Grow  and | Multi Layer Per- | Neural Network Trained by Ge-
Learn ceptron netic Algorithms
N 45/50 | 47/50 46/50 49/50
L 43/50 | 45/50 45/50 48/50
A% 41/50 | 44/50 43/50 46/50
P 43/50 | 47/50 42/50 48/50
A 43/50 | 45/50 43/50 47/50
R 45/50 | 46/50 45/50 49/50
E 46/50 | 47/50 44/50 49/50
Training Time 15 sec. | 13 sec. 300 sec. 20 sec.
Number of Nodes 42 18 30/20/30/7 10
Table A.4
Results of the ANN Models [2]
Architecture N o Sum of Square Errors | Epochs | Training Sets | Testing Sets
12-30-12-7 | 0.995 | 0.995 <0.01 41278 100% 99.16%
12-12-12-7 | 0.995 | 0.995 <0.01 62183 100% 98.88%




Table A.5

Percentage of Correct Diagnosis [7]
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Patients Segments

100% Correct 29 163
99%-90% Correct 19 23
90%-80% Correct 3 6
80%-70% Correct 0 4

<70% Correct 0 1

Could not be trained 1 6

Total 52 203
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APPENDIX B. Matlab Code

Matlab code that is used to read the ECG recordings downloaded from MIT BIH
database [14].

clc; clear all;
% SPECIFY DATA
PATH= ’<write path>"; % path, where data are saved

HEADERFILE= "<ECG recording>214.hea’; % header-file in text format

ATRFILE= "<ECG recording.atr’; % attributes-file in binary format
DATAFILE="<ECG recording.dat’; % data-file
SAMPLES2READ=650000; % number of samples to be read

fprintf(1,> WORKING ON %s ..", HEADERFILE);
signalh= fullfile(PATH, HEADERFILE);
fidl=fopen(signalh,’r’);
z— fgetl(fidl);
A= sscanf(z, '%*s nosig= A(1); % number of signals
sfreq=A(2); % sample rate of data
clear A;
for k=1:nosig
z— fgetl(fidl);
A= sscanf(z, "%*s %d %d %d %d %d’,[1,5]);
dformat (k)= A(1); % format; here only 212 is allowed
gain(k)= A(2); % number of integers per mV
bitres(k)= A(3); % bitresolution
zerovalue(k)= A(4); % integer value of ECG zero point
firstvalue(k)= A(5); % first integer value of signal (to test for errors)
end;
fclose(fid1);

clear A;
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% LOAD BINARY DATA
if dformat = [212,212], error(’this script does not apply binary formats different to 212.%);
end;

signald= fullfile(PATH, DATAFILE); % data in format 212
fid2=fopen(signald,’r’);

A= fread(fid2, [3, SAMPLES2READ], 'uint8’)’; % matrix with 3 rows, each 8 bits long, =
2*12bit

fclose(fid2);

M2H= bitshift(A(:,2), -4);

M1H= bitand(A(:,2), 15);

PRL=bitshift(bitand(A(:,2),8),9); % sign-bit
PRR=Dbitshift(bitand(A(:,2),128),5); % sign-bit

M( : , 1)= bitshift(M1H,8)+ A(:;,1)-PRL;

M( : , 2)= bitshift(M2H,8)+ A(:,3)-PRR;

if M(1,:) = firstvalue, error(’inconsistency in the first bit values’); end;
switch nosig

case 2

M(:,1)= (M(:, 1)- zerovalue(1))/gain(1);

M(:, 2)= (M( :, 2)- zerovalue(2))/gain(2);
TIME—(0:(SAMPLES2READ-1)) /sfreq;

case 1

M(:, 1)= (M( :, 1)- zerovalue(1));

M(:, 2)= (M( :, 2)- zerovalue(1));

M=M’;

M(1)=[J;

sM=size(M);

sM=sM(2)+1,

M(sM)=0;

M=M’;

M=M/gain(1);

TIME=(0:2*(SAMPLES2READ)-1) /sfreq;

otherwise % this case did not appear up to now!



% here M has to be sorted!!!

disp(’Sorting algorithm for more than 2 signals not programmed yet!’);
end;

clear A M1H M2H PRR PRL;

fprintf(1,”> LOADING DATA FINISHED’);

% LOAD ATTRIBUTES DATA

atrd= fullfile(PATH, ATRFILE); % attribute file with annotation data
fid3=fopen(atrd,’r’);

A= fread(fid3, [2, inf], uint8’)’;

fclose(fid3);

ATRTIME=|);

ANNOT=[|

sa=size(A);

saa=sa(l);

i—1;

while i<=saa

annoth=Dbitshift(A(i,2),-2);

if annoth==>59
ANNOT—|ANNOT;bitshift(A (i+3,2),-2)];
ATRTIME=[ATRTIME;A (i+2,1)+ bitshift(A(i+2,2),8)+ ..
bitshift(A(i+1,1),16)+ bitshift(A(i+1,2),24)];
i=i+3;

elseif annoth==60

% nothing to do!

elseif annoth==61

% nothing to do!

elseif annoth==62

% nothing to do!

elseif annoth==63
hilfe=bitshift(bitand (A (i,2),3),8)+A(i,1);
hilfe=hilfe4+-mod(hilfe,2);

i=i+hilfe/2;



else
ATRTIME—[ATRTIME:bitshift (bitand (A (i,2),3),8) + A(i,1)];
ANNOT=[ANNOT;bitshift(A(i,2),-2)];

end;

=it 1;

end;

ANNOT (length(ANNOT))=|]; % last line = EOF (=0)
ATRTIME (length(ATRTIME))—[|; % last line — EOF
clear A;

ATRTIME= (cumsum(ATRTIME)) /sfreq;

ind= find(ATRTIME <= TIME(end));

ATRTIMED= ATRTIME(ind);
ANNOT=round(ANNOT);

ANNOTD= ANNOT (ind);

% DISPLAY DATA

figure(1); clf, box on, hold on

plot(TIME, M(:,1),’r");

if nosig==

plot(TIME, M(:,2),’b’);

end;

for k=1:length(ATRTIMED)

text(ATRTIMED (k),0,num2str(ANNOTD(k)));
end;

xlim([TIME(1), TIME(end)]);

xlabel("Time / §’); ylabel(’Voltage / mV’);
string=|'ECG signal ’,DATAFILE],
title(string);

fprintf(1,> DISPLAYING DATA FINISHED’);

%

fprintf(1,> ALL FINISHED');
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APPENDIX C. Statistical Summary of the Signals

The statistical summary of the records used in this study can be found online at [14].
One example for the record number 100 is shown in Table C.1. In this table, there are 367
annotated Normal beats in the first 5 minutes of the recording, and 1872 beats after the first
5 minutes. Likewise, there are 4 annotated Atrial Premature beats in the first 5 minutes and
29 during the rest of the recording. There are 2273 annotated beats in the recording #100 in

total. The details of the remaining recordings can be found online at [14].

Table C.1
Details of Record #100

Beats | Before 5:00 | After 5:00 | Total

Normal 367 1872 | 2239
APC 4 29 33
pPVC - 1 1

Total 371 1902 | 2273




C.1 Symbols Used in Annotation

An expanded and updated version of the table C.2 can be found online at [14].

Table C.2
Symbols Used in Annotation

Symbol | Meaning

.or N Normal beat

L Left bundle branch block beat

R Right bundle branch block beat

A Atrial premature beat

a Aberrated atrial premature beat

J Nodal (junctional) premature beat

S Supraventricular premature beat

\% Premature ventricular contraction

F Fusion of ventricular and normal beat
[ Start of ventricular flutter/fibrillation
! Ventricular flutter wave

| End of ventricular flutter/fibrillation
e Atrial escape beat

j Nodal (junctional) escape beat

E Ventricular escape beat

/ Paced beat

f Fusion of paced and normal beat

X Non-conducted P-wave (blocked APB)
Q Unclassifiable beat

| Isolated QRS-like artifact




