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ABSTRACT

DESIGN OF A BRAIN COMPUTER INTERFACE (BCI)
SYSTEM BASED ON ELECTROENCEPHALOGRAM (EEG)

A Brain Computer Interface (BCI), sometimes called a Brain Machine Interface

(BMI) is a communication device between the brain and an external device, usually a

computer. The main purpose of BCI systems is repairing or assisting human motor-

sensory functions by asking the brain to control synthetic devices, computer cursors or

robot arms. In order to extract information from the brain, physical source of informa-

tion must be selected �rst. Electroencephalography (EEG), Magnetoencephalography

(MEG) and Functional Magnetic Resonance Imaging (fMRI) could be the sources of

information.

In this thesis, both acquisition hardware and software of a two channel EEG

based brain computer interface was designed. EEG based BCI systems are usually

implemented by analysis and classi�cation of speci�c features or patterns in the spon-

taneous or event related EEG activity. After investigation of the components in EEG,

motor imagery related mu and beta rhythms were selected for the information sources

of the system.

In order to discriminate left and right hand movement imagery, three di�erent

feature extraction methods were developed using: Discrete wavelet transform, power

spectrum transform and band pass FIR �lters for Mu and Beta rhythms. These features

were used as inputs to a two layer feed forward back propagation neural network for

classi�cation. Designed system was trained and simulated with the data provided in

BCI Competition II. With the direction of the results, a low power system with the TI

MSP430 microcontroller using FIR �lters and a neural network was implemented.

Keywords:Brain Computer Interface,Motor Imagery,EEG Feature Classi�cation,BCI.
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ÖZET

ELEKTROENSEFALOGRAM (EEG) TABANLI B�R BEY�N
B�LG�SAYAR ARAYÜZ S�STEM� TASARIMI

Bazen Beyin Makina Arayüzü (BMI) olarak da an�lan bir Beyin Bilgisayar

Arayüzü (BCI), beyin ile genelde bilgisayar olmak üzere harici bir cihaz aras�ndaki

bir haberle³me arac�d�r. BCI sistemlerinin amac�; Beynin sentetik cihazlar�, imleç-

leri ya da robot kollar�n� kontrol etmesiyle insanlar�n motor-alg�lama fonksiyonlar�n�

onarmak veya desteklemektir. Beyinden bu sekilde bilgi ç�karabilmek için öncelikle

bilginin �ziksel kayna§� seçilmelidir. Bu uygulaman�n potansiyel bilgi kaynaklar� Elek-

troensefalogram (EEG), Magnetoensefalogram (MEG) ve Fonksiyonel Manyetik Rezo-

nans Görüntüleme (fMRI) olabilir.

Bu tezde, iki kanall� EEG tabanl� bir beyin bilgisayar arayüzünün hem enstrü-

mantasyon donan�m� hem de yaz�l�m� tasarlanm�st�r. EEG tabanl� BCI sistemleri

genelde olay ili³kili ya da spontane EEG aktivitesi içerisindeki belirli örüntü ya da

özelliklerin analizi ve s�n��and�r�lmas� ile gerçeklenir. EEG içerisindeki komponentlerin

incelenmesi sonucu tasarlanan sistemin bilgi kayna§� olarak hareket hayaline ba§l� olan

mu ve beta ritimleri seçilmi³tir.

Sol ve Sa§ el hareket ettirme hayalini ay�rabilmek için bu metodlar kullan�larak

üç ayr� özellik ç�karma yöntemi geli³tirildi: Ayr�k dalgac�k dönü³ümü, Güç spektrumu

dönü³ümü ve Mu ve Beta ritimleri için bant geçiren FIR �ltre. Bu özellikler s�n��and�rma

amac�yla iki katmanl� bir geriyay�l�m yapay sinir a§�na girdi olarak kullan�lm�³lard�r.

Geli³tirilen sistem 2. BCI yar�³mas�na ait veriler ile e§itilmi³ ve simüle edilmi³tir.

Sonuçlar�n �³�nda TI MSP430 mikrokontrolörü ile FIR �ltreler ve yapay sinir a§� kul-

lan�larak dü³ük güçlü bir sistem gerçeklenmi³tir.

Anahtar Sözcükler:Beyin Bilgisayar Arayüzü,Hareket Hayali,EEG s�n��and�rmas�.
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1. INTRODUCTION

1.1 General Background

Electroencephalography (EEG) is the recording of electrical activity along the

scalp produced by the �ring of neurons within the brain [1]. Detection of patterns in

spontaneous EEG is a complicated task. EEG signals are detected from the scalp and

contain noise as a result of electrical interference and movement of electrodes. Signal

can also be corrupted by eye blinks and other muscular activities [2].

The investigation of the brain's electrical activity started in 19th century and

�rst successful work by Caton was accomplished on animal subjects [3]. With contin-

ious work within the �eld, Berger was �rst who could be able to detect the electrical

activities of human brain above the scalp [4].

With the advances in monitoring techniques, new application areas has emerged.

One of these areas has been the detection and interpretation of brain's activities. These

interpretations introduced some attempts to establish communication between com-

puters and brain signals. From that point of view, a brain computer interface can be

de�ned as a kind of communication system. This communication system might pro-

vide a new non-muscular channel for sending messages and commands to the external

world [5]. EEG is the most common source used in BCI systems because of its low

cost, non-invasive nature, easy implementation and good time resolution.

According to the used EEG components, Brain Computer Interfaces can be

classi�ed as visual evoked potentials [6], slow cortical potentials [7], µ and β rhythms

[8], cortical neurons [9] and P300 potentials [10].

EEG based BCI systems are usually implemented by signal acquisition, �ltering,

analysis and classi�cation of speci�c features or patterns in the spontaneous or event
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related EEG activity. In this study, after the investigation of the components in EEG,

motor imagery related mu and beta rhythms were selected for the information sources of

the system. After the selection of information source; EEG hardware instrumentation

techniques, feature extraction and classi�cation methods were studied and the method

of implementation was determined. Finally, the designed classi�cation method was

tested and discussed with the data provided in BCI Competition II [11, 12]. With

the direction of the results a low power two channel brain computer interface was

implemented with TI MSP430 Microcontroller.

In order to extract di�erent frequency bands in EEG activity, spectral analysis

must be employed �rst. Conventionally, Fourier transform has been used for spectral

analysis of EEG signal. Since it does not have any time information, Fourier trans-

form is not suitable for non stationary signal analysis like EEG if time information is

also needed with frequency information. Both Fourier and Wavelet transforms were

evaluated as feature extraction methods in this study. With direction of the results a

low power system was implemented with FIR �lters as feature extractors to meet the

requirements with limited processing power and memory. Details of discrete wavelet

decomposition extracts the features in the mu and beta frequency bands which includes

information related to motor imagery tasks. These features were used as inputs to a two

layer feed forward backpropagation neural network for classi�cation of motor imagery

tasks like right or left hand movement imagery. These mu and beta frequency features

were obtained using FIR band pass �lters on the MSP430 microcontroller later.

1.2 Objective

The main objective of this thesis is to develop and implement a low power EEG

based brain computer interface consisting of acquisition hardware, feature extraction

and classi�cation of patterns of motor imagery tasks into one of two classes: Right hand

or left hand movement imagery. For this purpose, �rst an electronic circuit was imple-

mented in the lab that detects, ampli�es, �lters and digitizes brainwave signals. After

that, two di�erent feature extraction methods were implemented in Matlab applying
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db10 level 4 discrete Wavelet transform and FFT transform to the EEG trials. Two

di�erent results were obtained; One uses statistics of wavelet coe�cients in the mu and

beta frequency bands of this decomposition and other frequency spectrum variables

as features. These features were then applied as inputs to a two layer backpropaga-

tion feedforward neural network for classi�cation of mental tasks. With the direction of

these results a low power BCI system was implemented which uses FIR band pass �lters

as feature extractors instead of Wavelet Decomposition to meet resource requirements.

1.3 Outline of the Thesis

The remaining chapters are organized as follows. Chapter 2 introduces the

electrophysiology of the brain brie�y; EEG, mu rhythm and details of brain computer

interfaces are discussed here. Feature extraction and classi�cation methods; Wavelet

transform and Arti�cial Neural networks are discussed in Chapter 3.

Chapter 4 explains the feature extraction and classi�cation methodology used

in this study. It covers details of motor imagery trials, wavelet decomposition, arti�cial

neural network implementation and the designed method for the low power application.

Data acquisition and processing hardware design is presented in Chapter 5. Finally,

Chapter 6 includes conclusions on the results.
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2. EEG AND BRAIN COMPUTER INTERFACES

2.1 EEG

Electroencephalogram (EEG) is de�ned as the electrical potentials measured on

scalp and it re�ects the brain activity. This non invasive acquired signal has helped in

understanding the brain functions and is used widely in diagnosis and during therapy.

Recordings are made at sites distant from the source of the electrical activity. EEG,

like ECG, is based on the theory of volume conduction, which describes the �ow of the

ionic current generated by the nerve cells through the extracellular space. Whether

obtained from scalp, cortex or depths of the brain, the recorded potentials represent the

summed ionic currents of the many thousands of neurons located under the recording

electrode. The net ionic current is recorded as voltage across the resistance of the

extracellular space [13].

Many times a stimulus is used to trigger amplitude changes in the EEG which

are called Event Related Potentials (ERP). The human EEG can be decomposed into

5 di�erent bands: The delta (δ : 0-4Hz), theta (θ :4-8Hz), alpha (α : 8-13Hz), beta (β :

14-30Hz) and gamma (γ >30Hz) bands. When amplitude decrease of rhythmic activity

is short lasting it is called �Event Related Desynchronization� (ERD). Inversely, an

increase in rhythmic EEG activity is called �Event Related Synchronization� (ERS). It

is assumed that the ERD and ERS re�ect the activation of the underlying neural circuit

on the measurement space. When the neural circuit is activated then the synchrony

between neurons is decreased where it is re�ected as ERD. In the opposite case where

the neural circuit is deactivated the neurons start to have a coherent activity, which in

turn induces ERS [14].

Areas of Brain Cerebral Cortex are shown in Figure 2.1 [15].
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Figure 2.1 Cerebral Cortex Lobes [15].

2.2 Mu Rhythm

The mu rhythm is traditionally de�ned as an 8-12 Hz rhythm (in α range)

recorded over sensorimotor cortex that decreases, or desynchronizes, with movement

[16, 17, 18]. Chatrian noted that it also decreased during motor imagery [19]. While

the mu rhythm was initially thought to occur in only a minority of individuals [19, 20],

computer-based signal processing (e.g., spectral analysis) reveals that it occurs in most

normal adults [18, 21, 22]. Furthermore, it is now clear that the mu rhythm is not

a single EEG component, but rather a class of rhythms di�ering from each other in

topography, frequency, and/or precise relationship to movement [23, 24].

EEG patters for di�erent waveforms are shown in Figure 2.2.

2.3 Brain Computer Inferfaces

A brain computer interface can be de�ned as a kind of communication system.

This communication system might provide a new non-muscular channel for sending

messages and commands to the external world [5].
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Figure 2.2 EEG patters in di�erent frequency bands. Mu rhythm is in the Alpha frequency band.

Basic building blocks of brain computer interface systems can be de�ned as:

1. Signal Acquisition

2. Signal Processing : Feature Extraction

3. Signal Processing : Pattern Classi�cation

4. Output Application and Feedback

Block diagram of a typical BCI system is shown in Figure 2.3.
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Figure 2.3 A Typical Brain Computer Interface System. Cursor Control, BioFeedback or Control
of a Robot arm are examples of Output Applications.

2.3.1 Signal Acquisition

Electrical activity of the brain is measured by electrodes over the scalp. Elec-

trodes establish connections between the scalp and EEG recording device by converting

ionic current into electrical current. Electrolytic gel is applied between the scalp and

the electrodes to prevent attenuation of the signal. An electrode placement system

accepted as international standard called 10-20 System is used to be able to compare

the measurements taken [25]. Every electrode position has a letter and a second letter

or number to de�ne the hemisphere location in this system. Odd numbers indicate left

hemisphere, even ones indicate right and 'Z' letter indicates placement on the center

line. The letters F, T, C, P and O stand for Frontal, Temporal, Central, Parietal and

Occipital, respectively. The �10� and �20� refer to the fact that the actual distances

between adjacent electrodes are either %10 or %20 of the total frontback or right-left

distance of the skull. This placement system is shown in Figure 2.4 [26].

EEG measurement can be done in one of two ways:

1. Bipolar Recording: Each channel (i.e., waveform) represents the di�erence be-

tween two adjacent electrodes. The entire montage consists of a series of these

channels. For example, the channel �Fp1-F3� represents the di�erence in voltage

between the Fp1 electrode and the F3 electrode. The electrodes are connected

in series to an equal number of ampli�ers. For example, ampli�er 1 measures

the di�erence between electrodes A and B, ampli�er 2 measures the di�erence
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Figure 2.4 10-20 System for EEG Electrode Placement. C3-F3 and C4-F4 pairs are used as two
channels in this study [26].

between B and C, and so on. Bipolar recording is used in this study as shown in

Figure 2.4.

2. Referential Recording: Each channel represents the di�erence between a certain

electrode and a designated reference electrode. There is no standard position at

which this reference is always placed; It is, however, at a di�erent position than

the �recording� electrodes. Midline positions are often used because they do not

amplify the signal in one hemisphere vs. the other. Another popular reference is

�linked ears� which is a physical or mathematical average of electrodes attached

to both earlobes or mastoids.
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The electromagnetic waves generated by the brain are very small in magnitude

(µV range) at the scalp. This requires that a brainwave with a Vp−p amplitude of

100 µV be ampli�ed on the order of 80 dB before a useful signal can be seen. The

signal must also be �ltered of any unwanted frequencies. EEGs commonly use high

pass, low pass and notch �lters to remove noise generated from muscle movement

and other physiological factors, as well as the common electricity lines at 50 Hz [27].

The ampli�ers have to provide high common-mode rejection ratio, high gains with

very small power. After ampli�cation and �ltering of each channel used, the signal is

converted to a digital representation for signal processing and storage.

2.3.2 Signal Processing: Feature Extraction and Classi�cation

In nature the signals which we see such as images and hear such as sound and

voice as well as EEG, have high dimensionality and contain temporal information. Our

brain accomplishes structural information processing to extract characteristic proper-

ties of the observed system and maps them to pre-known categories where these steps

correspond to feature extraction and classi�cation. Therefore Pattern Recognition can

be seen as a combination of these two important steps [28].

Because of these high dimensions of original signals, instead of concentrating on

the details of the original space the signal is reduced to a small subset that represents

the vital information. This small subset is called the feature set or feature vectors.

After digitizing the signal, one or more EEG control channels are derived from a linear

combination of a selected set of the ear-referenced or bipolar channels provided by the

ampli�er. This process is known as Spatial Filtering. Most commonly, each of the

EEG control channel derived is EEG activity at a location over sensorimotor cortex.

Spectral analysis is the conventional way of feature extraction which includes

the frequency decomposition of the original signal. The voltages at these decomposed

frequencies come from signal extraction become the independent variables in the feature

space. In the case of the important features appearing as a transient phenomenon, one
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will face the inability to capture local information with any of the previous methods

like Fourier. In order to overcome this problem, it is a good choice to analyze the signal

in time-frequency plane (T-F) which have time localization of frequency components

like Wavelet Transform.

After the feature extraction phase, a classi�cation must be done based on these

features to discriminate between mental tasks. In brain computer interfaces, learning

for classi�cation comes in one of two ways or combination of them:

1. Subject Learning : Subjects learn to control their brain activity in a prede-

termined fashion that can be robustly detected and converted into a computer

command. They require subject training through biofeedback and they display

a low bandwidth for e�ective communication. In that approach a formulation is

generated to map the weights of the features channels into control commands.

2. Machine Learning : Computer algorithms are needed to train the system for signal

classi�cation. Arti�cial Neural networks are an example of classi�cation based

of feature channels. Output classes are the representations of the corresponding

mental tasks in the system. That approach requires minimum subject training

but neural network training.

In this study, machine learning approach is used, since it does not require ex-

tensive subject training. A feed forward arti�cial neural network will be used for

classi�cation of patterns. Network will be trained with the features extracted from

the motor imagery trials taken from subjects. A series of methods will be applied for

local feature extraction, dimension reduction and classi�cation to be able to use the

oscillatory activities of a motor imagery EEG activity for a BCI task.
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2.3.3 Output Application And Feedback

Output application of the system is usually a control task such as computer

cursor control, biofeedback or robot arm control. Biofeedback is an important factor

for subject training. Output of the low power system in this study is classi�cation

result displayed on a segmented LCD.

2.3.4 BCI Literature Survey

This part provides an insight into a representative variety of BCI systems that

are currently being pursued in research labs. A distinctive feature in BCI studies is the

paradigm used for the interaction between user and computer. On one hand there are

systems that require an active and voluntary strategy for generating a speci�c regula-

tion of an EEG parameter such as the motor-related mu-rhythm or the self-regulation

of slow cortical potentials (SCP). On the other hand there are passive paradigms, where

participants only have to passively view an item for selection. Those systems detect

the evoked responses such as P300 as presented in subsection 2.3.4.1 or make use of

steady-state evoked potentials (SSVEP) as presented in subsection 2.3.4.3.

Finally, one distinction between BCI labs is based on the realization of the

system. Most groups, as introduced in subsections 2.3.4.1,2 and 6, use extensive subject

training. So, users have to adapt their brain signals to a �xed decoding algorithm, that

is, the learning is on the subject side. Over the past �ve years, the Berlin group has

established a paradigm change, where learning is now done by the computer, following

the motto "let the machines learn". Now several groups have adopted this principle.

Examples for this approach are discussed in subsections 2.3.4.3,4 and 5. Note that

even if a pure machine learning approach was intended, the subject will inevitably

learn once feedback has started, so in principle BCI systems will always have both

aspects: subject and machine training[29]. But this may be omitted for only two class

control applications as in this study which only uses machine learning.
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In this section six major BCI labs are introduced. Subsection 1 outlines the

Albany BCI, where a user is trained to manipulate his mu and B rhythms to control

a cursor in 1- or 2D. Furthermore, BCI control based on the P300 paradigm is shown.

Similar to Albany, the Tübingen BCI, outlined in subsection 2, train their subjects to

adapt to the system using slow cortical potentials. The group uses BCI as a means

for communication of ALS patients with the outside world and as the design of this

interaction. Further BCI systems discussed in the section are P300 and mu rhythm

based BCIs, and interesting new BCI paradigm based on auditory stimulation and the

use of invasive techniques like ECoG for BCI.

In subsection 3 the main research directions of the Graz BCI are depicted. This

is the lab which provided the EEG measurements of BCI Competition II used in this

study. The group is broadly exploring the whole BCI �eld from sensors, feedback

strategies, and cognitive aspects to novel signal processing methods, with excellent

results. The Graz BCI is shown to be not only of use for patients but also it contributes

to general man-machine interaction as demonstrated for a moving in a VR environment.

Typically, only a few electrodes and machine learning techniques combined with user

adaptation are employed to achieve BCI control[29].

Subsection 4 introduces the Berlin BCI. Compared to training times of weeks or

even months in other BCIs, the BBCI allows for subject control after 30 minutes. This

drastic decrease in training time became possible by virtue of advanced machine learn-

ing and signal processing technology. The subsection presents online feedback studies

based on the physiological signals' preparatory potential and mu rhythm modulation.

The study shows that after less than one hour, �ve of six untrained subjects were able

to achieve high performances when operating a variety of di�erent feedbacks[29].

Similar to Berlin approach, the Martigny BCI introduced in subsection 5 tries to

relocate the e�ort from the subject training to the machine by using machine learning

techniques and online adaptation to realize a BCI. In particular, online adaptation is

an important direction to compensate for the intrinsic nonstationarities found in EEG

signals[29].
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Finally, the ideas of the Vancouver BCI are introduced in subsection 6. The

main focus here is to establish an asynchronous BCI for patients, that is, a system that

detects whether a user is intending something or not. To achieve this goal, the authors

also use machine learning techniques that adapt the machine to the user.

2.3.4.1 Noninvasive BCI Research at the Wadsworth Center. The primary

goal of the Wadsworth Center brain-computer interface program is to develop electroen-

cephalographic (EEG) BCI systems that can provide severely disabled individuals with

an alternative means of communication and/or control. They have shown that people

with or without motor disabilities can learn to control sensorimotor rhythms recorded

from the scalp to move a computer cursor in one or two dimensions and have also used

the P300 event related potential as a control signal to make discrete selections[29].

They are now evaluating the practicality and e�ectiveness of a BCI communication

system for daily use by such individuals in their homes. With Sensorimotor Rhythm

Based Cursor Control approach users learn during a series of training sessions to use

SMR rhythm amplitudes in mu and/or B frequency bands over left and/or right cortex

to move a cursor on a video screen in one or two dimensions. This is not a normal

function of this brain signal, but rather the result of training. One example of SMR

application at Wadsworth can be seen in Figure 2.5 [30, 31].

Figure 2.5 a) One Dimensional four target SMR control task [30]. B) Two dimensional eight target
SMR control task [31].
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In addition to re�ning and improving SMR and P300BCI performance , Wasd-

worth is also focused on developing clinically practical BCI systems. The most pressing

needs for a successfull home BCI system are developing a more compact system, mak-

ing the system easy to operate for a caregiver, and providing the user with e�ective and

reliable communcation applications. Their current system includes a laptop computer,

a �at panel display, an eight channel electrode cap, and an ampli�er with a built in

A/D board. Regression analysis is used with the SMR system and classi�cation for the

P300 system. The regression approach is well suited to the SMR cursor application

since it provides continuous control in one or more dimensions and generalizes well to

novel target confs.In contrast, the classi�cation approach is well suited to the P300

where the target is treated as one class and all others are treated as the other class[29].

2.3.4.2 Tubingen BCI Research Group. An important clinical application of

BCIs is to enable communication or environmental control in severely paralyzed pa-

tients. The BCI �Thought-Translation Device (TTD)� allows verbal communication

through the voluntary self-regulation of brain signals (e.g. slow cortical potentials

(SCPs)), which is achieved by operant feedback training. Humans' ability to self-

regulate their SCPs is used to move a cursor toward a target that contains a selectable

letter set. Two di�erent approaches were followed to develop Web browsers that could

be controlled with binary brain responses. Implementing more powerful classi�cation

methods including di�erent signal parameters such as oscillatory features improved

their BCI considerably. It was also tested on signals with implanted electrodes.

Most BCIs provide the user with a visual feedback interface. Visually impaired

patients require an auditory feedback mode. A procedure using auditory feedback

of multiple EEG parameters was evaluated. Properties of the auditory systems are

reported and the results of two experiments with auditory feedback are presented.

Clinical data of eight ALS patients demonstrated that all patients were able to acquire

e�cient brain control as one of the three available BCI systems (SCP,µ rhythm and

P300), most of them used the SCP-BCI[29].
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Figure 2.6 Schematic structure of the language support program of Tubingen group. Boxes show
letter sets o�ered during one trial; solid arrows show the subsequent presentation when a select
response is produced; dotted arrows show the presentation following a reject response. When the level
of single letters is reached, selection leads to the presentation of this letter at the top of the screen.
Texts can thus be generated by adding letter to letter. At all except the uppermost level, failure to
select one of the two choices results in the presentation of a �go back� option taking the user back to
the previous level. At the top level, double rejection and selection of the delete function results in the
deletion of the last written letter [29].

2.3.4.3 Graz Brain Computer Interface. The Graz-BCI system uses EEG sig-

nals associated with motor imagery, such as oscillations of beta ormu rhythms or visual

and somatosensory steady-state evoked potentials as input signal. Special e�ort is di-

rected to the type of motor imagery, the use of complex band power features, the

selection of important features, and the use of phase-coupling and adaptive autoregres-

sive parameter estimation to improve single-trial classi�cation. A new approach is also

the use of steady-state somatosensory evoked potentials to establish a communication

with the help of the tactile stimuli. In addition, di�erent Graz-BCI applications are re-

ported: control of neuroprostheses, control of a spelling system, and �rst steps toward

an asynchronous (uncued) BCI for navigation in a virtual enviroment [29].
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2.3.4.4 Berlin BCI:Machine Learning Based Detection. The Berlin Brain-

Computer Interface (BBCI) project develops an EEG-based BCI system uses machine

learning techniques to adapt to the speci�c brain signatures of each user. This concept

allows to achieve high quality feedback already in the very �rst session without subject

training. The �rst kind of experiments analyzes the predictability of performing limbs

from the premovement (readiness) potentials including successful feedback experiments.

The limits with respect to the spatial resolution of the somatotopy are explored by

contrasting brain patterns of movements of (1) left vs. right foot, (2) index vs. little

�nger within one hand, and (3) �nger vs. wrist vs. elbow vs. shoulder within one arm.

A study of phantom movements of patients with traumatic amputations shows the

potential applicability of this BCI approach. In a complementary approach, voluntary

modulations of sensorimotor rhythms caused by motor imagery ( left hand vs. right

hand vs. foot) are translated into a proportional feedback signal. They report results

of a recent feedback study with six healthy subjects with no or very little experience

with BCI control: Half of the subjects achieved an information transfer rate above 35

bits per minute (bpm). Furthermore, one subject used the BBCI to operate a mental

typewriter in free spelling mode. The overall spelling speed was 4.5 letters per minute

including the time needed for the correction of errors. These results are encouraging

for an EEG based BCI system in untrained subjects that is independent of peripheral

nervous system activity and does not rely on evoked potentials [29].

2.3.4.5 The IDIAP BCI:Asynchronous Multiclass Approach. Their work

is on a self-paced asynchronous BCI that responds every 0.5 seconds. A statistical

Gaussian classi�er tries to recognize three di�erent mental task; it may also respond

�unknown� for uncertain samples as the classi�er incorporates statistical rejection cri-

teria. They report experience with di�erent subjects. They also describe three-brain

actuated applications: a virtual keyboard, a brain game, and a mobile robot. The are

focused on real-time control of brain actuated robots [29].



17

Figure 2.7 This example of BerlinBCI shows the feature calculation in one channel of a premovement
trial [-1400 - 120] ms with keypress at t = 0 ms. The pass-band for the FT �ltering is 0.4-3.5Hz and the
subsampling rate is 20 Hz. Features are extracted only from the last 200 ms where most information
on the upcoming movement is expected[29].

2.3.4.6 Canada British Columbia University BCI. The concept of self-paced

control has recently emerged from within the general �eld of BCI research. The use

of assistive devices in real-world environments is best served by inferfaces operated in

an asynchronous manner. This self-paced or asynchronous mode of device control is

more natural than the more commonly studied synchronized control mode whereby the

system dictates the control of the user. The Neil Squire Society develops asynchronous

direct brain switches for self-paced control applications [29].

Their latest switch design operated with a mean activation rate of 73 percent

and false positive error rates of 2 percent.

2.3.4.7 Commercial Translation of BCI Systems. The extent to which in-

dustry in Europe and Japan has embraced BCI-related research goals and the devel-

opment of requisite technologies for BCIs is impressive. This high degree of industry
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commitment was perhaps most evidenced in Germany by institutional entities having

the speci�c missions of actively promoting academic-industrial research interactions,

garnering support for BCI research from industry sources, and transitioning the re-

sulting BCI and BCI-related systems to industry for commercialization. Such entities

house advanced technologies and equipment made available to startups with limited

resources; research collaborations and partnerships could result in spin o�s that accel-

erate the entry of new BCIs and BCI technologies into the marketplace. The EU 6th

Framework research programs strongly encourage and to some degree require indus-

trial involvement. Corporations involved in commercialization of BCI systems and/or

BCI-related products are essentially able to participate in EU-sponsored research (with

some restrictions) as a collaborator along with any other university or institute unit

and are eligible to receive funds to conduct their respective component of the overall re-

search project. Equally impressive was the degree to which BCI-related research issues

were integrated into the agendas of major Japanese research institutes and corporations

and the extent of government support of those private, and sometimes pro�t-making,

entities. In general, the panel saw creative and highly �exible academic-industry collab-

orations that promoted the transition from laboratory based to commercialized BCIs

[32].

BCI research and BCI technologies had reached the stage of translation to in-

dustry and commercialization. In the United States, commercialization of BCIs is just

beginning to occur, e.g., Cyberkinetics Figure 2.8, which combines technology from

Brown University and the University of Utah, for a BCI system that allows the user

to move cursors on a computer screen using 2-D kinematic information extracted from

motor cortical population single-unit recordings.

In Europe, the WTEC panel found speci�c mechanisms for joint academic /

scienti�c and industrial collaborations leading to the translation of BCI research, in-

corporation of BCI technology into small companies, and the creation of spin-o�s from

research e�orts. For example, industrial entities can participate in EU-sponsored re-

search as just another project that receives part of the research budget, i.e., a company

can propose to partner with research members of an EU project to develop and shape
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Figure 2.8 Cyberkinetics, a BCI company in the United States (courtesy John Donoghue, Brown
University)[32].

a given technology to �t the research requirements of the global project. The only re-

quirement is that each commercial entity provide 50 percent of the costs of its project.

Researchers bene�t when industry is an integrated member of a large project because

it maximizes research needs and available technology. It also bene�ts the company

because it essentially guarantees a customer base; often, industry-related projects are

producing technologies ultimately sold to other research-related projects. Scienti�c

progress is achieved through a closer relationship between researchers and the sources

of their technology, which allows a faster evolution of next-generation technology. EU

projects can require industrial involvement, so relevant businesses often are actively

pursued. Example outcomes of the EU encouragement of industry participation in-

clude (1) Multi Channel Systems GmbH (MCS), a leading worldwide supplier of multi

site electrodes and multichannel recording/stimulation systems for brain slices/cultures

and a partner in many EU projects; and (2) g.tec, a worldwide supplier of multichannel

EEG ampli�ers that grew out of activities of the University of Graz BCI Laboratory

and is also now a partner in many EU projects. A g.tec ampli�er can be seen in Figure

2.9.
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Figure 2.9 G.tec Company EEG Ampli�er: For a variety of BCI technologies, g.tec is a source of
one of the best head caps used in the �eld involving wet electrode recordings[32].

In Germany, the panel was introduced to institutional infrastructures that ac-

tively promote interactions between academia and industry. For example, the Fraun-

hofer Institute (Berlin) for Computer Architecture and Software Technology pursues

the development of BCI research and BCI technology both for medical and commercial

applications (e.g., gaming, auto industry). The Fraunhofer Institute in Berlin is one

of four throughout Germany. The director of a given research group in the Fraunhofer

FIRST Berlin holds an 80-percent appointment in Potsdam University (Berlin) and a

20-percent position in the Fraunhofer Institute. Support is derived from any source,

but the university pathway allows funding for basic research, whereas the institute

pathway provides an avenue for industrial support. At least 30 percent of the funding

through the Fraunhofer Institute must be provided by industrial sources. So for exam-

ple, the Intelligent Data Analysis Group (IDA) directed by Prof. Dr. Klaus- Robert

Müller engages in a wide range of theoretical research in machine learning and signal

processing and develops new algorithms for real-world data analysis. The group also

receives funding from the automobile industry to develop pop-up displays for the driver

when periods of cognitive overload or high-attention demand occura form of nonmedical

BCI. It also receives support from the gaming industry to develop brain-driven video

games. Through active collaborations with the Charité University of Medicine Berlin,

one of the premiere medical universities in Germany, the group is able to conduct ex-

periments for clinical applications of BCIs. Through additional fundamental work on

the neurophysiological underpinnings of BCI signals, the Charité group develops new

experimental paradigms to point the IDA team to new directions of analytical devel-
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opment. This is an exciting state- and local-sanctioned infrastructure to support the

highly interdisciplinary interactions at the fundamental, clinical, and industrial levels

necessary for the development of BCIs [32].

2.3.5 Summary of the Existing Work on the Subject

Summary of the used signals, techniques and methods in BCI studies are listed

below.

1. Number of channels used: 2 - 128.

2. Applications: Robot Arm Control, Cursor Control, Virtual Keyboard, Neural

Prosthesis, Gaming, Virtual Reality.

3. Feature Signals: EEG: Mu and Beta Rhythms, Slow Cortical Potentials (SCP),

Evoked Potentials, P300 Potentials; EcOG (Electrocorticogram); Magnetoen-

cephalography (MEG); Functional Magnetic Resonance Imaging (fMRI); Func-

tional Near Infrared Spectroscopy (fNIRS).

4. Feature Extraction Methods: Fourier Transform, Wavelet Transform, FIR and

IIR �lter features, Local Field Potentials, Principal Component Analysis (PCA).

5. Classi�cation Methods: Local Discriminant Analysis (LDA), Regression Analysis,

Neural Networks, Least Square Regression.

6. Achievements: BCI applications are commercially available from companies such

as Cyberkinetics and G.tec applications with keyboard control or gaming. There

are many application implementations taking place in academic environments.

For example, robot arm control is implemented successfully. Two dimensional

cursor control with subject training is an another example from Academic work.

7. Databases: Four BCI competitions have been organized until now. Databases

are available on the Web: http://www.bbci.de/competition/.



22

3. FEATURE EXTRACTION AND CLASSIFICATION

METHODS

In the �rst phase of this study, two di�erent feature extraction methods were

evaluated in Matlab applying db10 level 4 discrete Wavelet transform and FFT trans-

form for feature extraction. After getting the results, as the second phase, for imple-

mentation with a microcontroller a resource e�cient method was developed which FIR

band pass �lters utilized instead of Wavelet transform to extract sub band information.

Through wavelet transform, the EEG signal were decomposed into the frequency

sub bands using Discrete wavelet transform and a set for statistical features was ex-

tracted from the sub-bands to represent the distribution of wavelet coe�cients ac-

cording to the characteristics of motor imagery EEG signals. With Fourier transform

approach, trials were transformed into frequency domain to extract features. Finally

an Arti�cial neural network was utilized to classify computed features into di�erent

categories that represent the left or right hand movement imagery. Same classi�ca-

tion method was used with extracting features by FIR band pass �lters in the low

power system implementation. In this chapter, theory of FIR �lters, discrete wavelet

transform and arti�cial neural networks will be discussed.

Figure 3.1 The Processing stages of Classi�cation
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3.1 Filtering Basics

A �lter is a system that performs mathematical operations on a signal to reduce

or enhance certain aspects of that signal. To reduce or extract some of the properties

of the real world signals, calculating and classi�cation of frequency components in that

signal is common. To calculate and process that frequency based information, �lters

are used. Filters can be implemented as analog �lters by electronic circuits or digital

�lters implemented in digital domain. Broad classi�cation of �lters can be seen in

Figure 3.2 [33].

Figure 3.2 Classi�cation Of Filters[33]

Speci�cation and di�erences of analog and digital �lters are summarized below[33].

Analog Filters:

1. Mature and well developed design methodologies available

2. Accuracy limited, use components that are subjected to changes over temperature

3. Small change in �lter speci�cations leads to complete change in hardware

4. Testing and veri�cations are time consuming

5. Storage and portability a cause for concern

6. Inherently expensive to improve accuracy
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Digital Filters:

1. Design is simple, borrows all concepts from its analog counterpart

2. Modifying characteristics requires small change in software with no hardware

changes necessary

3. Interface to digital microcomputers is extremely simple

4. Extremely accurate. At least a 1000 times better accuracy than its analog coun-

terpart

5. 6dB increase in gain with every bit of increase in resolution on �xed point ma-

chines such as MSP430

6. Inherently expensive to improve accuracy

Considering only this comparison digital �lters can be seen the only choice

because of their advantages and easy to use. But analog electronic �lters are still needed

in signal processing before analog digital conversion. The real world signals have a lot

of noise components with di�erent frequency and amplitude levels. At the same time

the real world signals are usually very small in amplitude which can change from 1 µV

to hundreds of mVs. Since analog signals are very small in amplitude and contain too

much noise, they must be ampli�ed and �ltered before analog to digital conversion to

reach a ADC detectable amplitude level and to prevent anti aliasing. A �ltering stage

is also needed before the �rst ampli�cation stage to reject DC components and not to

amplify these components. Analog �lters are used to meet these requirements in signal

processing.

Characteristics of �lters are summarized in Figure 3.3 [33].
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Figure 3.3 Characteristics Of Filters

3.2 Digital Filters

3.2.1 Digital Filter Basics

Figure 3.4 Digital Filter

1. Input sample x(n) operated by �lter h=[h(0), h(1).h(M)] to give output sample

y(n), every sampling instant, de�ned by sampling frequency

2. Mathematically a convolution of input vector x and �lter vector h of order M

y = x⊗ h =
M−1∑
i=0

h(i) · x(n− i) (3.1)
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3. Current output sample depends on present and previous samples of input and/or

output samples

4. Filter h is almost always a real number, and is usually converted into the nearest

integer on �xed-point numbers such as microcontrollers

3.2.2 Digital FIR Filters

Figure 3.5 Digital FIR Filter

y(n) =
M−1∑
i=0

b(i) · x(n− i) (3.2)

1. Impulse Response is �nite Time domain representation of the �lter b has �nite

length and equal to the length of vector h

2. Inherently stable Output depends only on the present and previous samples of

the input Output always bounded by input, if input stops, output immediately

follows

3. Can exhibit linear phase across all frequencies Linear phase property induces

symmetry for coe�cients b, thus reducing CPU overhead Does not introduce

phase distortion

Digital �nite impulse response (FIR) �lters form the basis for numerous digital

signal processing applications. The basic operation needed to implement a FIR �lter is

the signed multiply-and-accumulate (MACS), which is traditionally performed using a
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hardware multiplier peripheral in any DSP device. Some of the MSP430 devices have

an integrated hardware multiplier that can perform this MACS operation allowing

these devices to run the FIR �lter algorithm more e�ciently than devices without a

built-in hardware multiplier.

In addition to the MACS operation the processor handles the task of moving the

digital samples and �lter coe�cients from memory to the MAC hardware, retrieving

the results and storing them into memory. In a real-time digital �lter algorithm, the

computation and memory-move operations have to be completed within one sample pe-

riod. The number of computations to be performed within one sample period depends

on the number of taps of the �lter, i.e, the order of the �lter. The order of the �lter

is determined by the required �lter performance characteristics. When higher order

�lters are combined with faster sampling rates, the demand on the processor becomes

very high. This limits typical MCUs to handle a real-time FIR �lter algorithm only

at low sample rates and with a reduced number of �lter taps [34]. Because of these

limitations sampling rate was limited at 128 Hz in the MCU implementation in parallel

with 3.5 seconds recording time to stay in the limits of the on chip memory in this

study.

3.3 Discrete Wavelet Transform Analysis

The earliest form of function representation using orthogonal basis functions is

undoubtedly the Fourier series for continuous and periodic signals:

x(t) =
∞∑
−∞

cke
jk(2π/T )t (3.3)
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ck =
1

T

∫
T
x(t)e−jk(2π/T )t (3.4)

where x(t) is the signal to be analyzed, T is the period of the signal, and ck 's

are the Fourier coe�cients, representing the spectral components of x(t). The complex

exponential functions at di�erent discrete frequencies of 2πjk/T are not compactly

supported in time since they extend to in�nity. As noted above, this makes the Fourier

representation inadequate in analyzing non stationary signals. Fourier representation

can not provide any information regarding the time localization of these spectral com-

ponents. This is not a problem for analyzing stationary signals, since all spectral

components exist at all times. But for non stationary signals, whose spectral content

change in time, Fourier representation is not appropriate. Unfortunately, most signals

encountered in practice, regardless of their source, are non stationary in nature.

STFT allows analysis of non stationary signals by segmenting them into sta-

tionary short pieces, and computing the Fourier representation of each piece:

S(τ, f) =
∫
x(t)ω∗(t− τ)e−2jπftdt (3.5)

x(t) =
∫
τ

∫
f
S(τ, f)ω∗(t− τ)e2jπftdτdt (3.6)

where ω(t) is the windowing function, f and t are frequency and translation

(time) parameters respectively, * is the complex conjugate operator, and S(τ, f) is

STFT of x(t) at frequency f and translation t. For each frequency f, time localization

is obtained through segmenting x(t) by ω(t− τ) , the windowing function centered at

t = τ [35].
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The time - frequency resolution depends entirely upon the choice of the window-

ing function ω(t) which gives ∆t and ∆f values. It is important to consider the bounds

on temporal resolution ∆t and frequency resolution ∆f of STFT. The resolution in

time and in frequency can not be arbitrarily small; their product is lower bounded by

the time - bandwidth uncertainty principle or the Heisenberg inequality [36]:

∆t ·∆f ≥ 1

4π
(3.7)

This means that one must trade time resolution for frequency resolution, or vice

versa.

STFT uses the same window for the analysis of the entire signal. The problem

with STFT is that it provides constant resolution for all frequencies. If the signal

has high frequency components for a short time, a narrow window would be suitable

for good time resolution. However, a narrow window means wider frequency bands,

resulting in poor frequency resolution. If the signal also features low frequency com-

ponents of longer time interval, then a wider window must be used to obtain good

frequency resolution [37]. This is the existence reason of WT. It provides varying time

and frequency resolutions by using windows of di�erent lenghts:

W (a, b) =
1√
a

∫
x(t)Ψ∗(

t− b
a

)dt (3.8)

x(t) =
CΨ

a2

∫
a>0

∫
b
W (a, b)Ψ∗(

t− b
a

)da · db (3.9)

where a > 0 and b are scale and translation parameters, respectively, Ψ is the
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mother wavelet, CΨ is a constant that depends on Ψ, and W(a,b) is the continuous

wavelet transform of x(t). We can interpret Eq. 3.8 as an inner product of x(t) with

the scaled and translated versions of the basis functions Ψ :

W (a, b) =
∫
x(t)Ψ∗(a,b)(t)dt (3.10)

Ψa,b(t) =
1√
a

Ψ(
t− b
a

), a > 0, b ∈ < (3.11)

Scaled and translated versions of the basis functions are obtained from one

prototype function, the mother wavelet. In principle, the CWT produces an in�nite

number of coe�cients, thus it provides a redundant representation of the signal.

The DWT provides a highly e�cient wavelet representation that can be imple-

mented with a simple recursive �lter scheme and the original signal reconstruction can

be obtained by an inverse �lter [38]. The procedure of multi-resolution decomposition

of a signal x[n] is schematically shown in Figure 3.3.

Figure 3.6 Decomposition of DWT; h[n] is the high pass �lter, g[n] is the low pass �lter.

The number of levels of decomposition is chosen on the basis of the dominant

frequency components of the signal. According to the motor imagery EEG signals
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itself, level 4 and the wavelet of Daubechies order 10 was selected to extract µ and β

rhytms as features [38]. As a result, the EEG signal is decomposed into the details

D1-D3 and approximation A3. The ranges of di�erent frequency bands for a 128 Hz

sampled signal are shown in Table 3.1.

Table 3.1

Frequencies correspond to di�erent levels of decomposition for Daubechies order 10 wavelet with a
sample rate 128 Hz

Decomposed Signal Frequency range Hz Level

D1 32-64 1

D2 16-32 2

D3 8-16 3

A3 0-8 3

The extracted wavelet coe�cients show the distribution of the motor imagery

signal in time and frequency. It can be seen from the table that the component D3

decomposition is within the µ rhythm. Statistics over the set of wavelet coe�cients

were computed so as to reduce the total dimensions of the feature vectors. Statistical

features of each sub band can be a combination of the following:

1. Mean of the coe�cients of sub band

2. Median of the coe�cients of sub band

3. Maximum value of the coe�cients of sub band

4. Minimum value of the coe�cients of sub band

5. Standard deviation of the coe�cients of sub band

6. Mean absolute deviation of the coe�cients of sub band

7. Mean of the absolute values of the coe�cients of sub band
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3.4 Classi�cation with Arti�cial Neural Networks

3.4.1 Threshold Logical Unit

According to a simpli�ed account, the human brain consists of about ten billion

neurons, and a neuron is, on average, connected to several thousand other neurons.

Through these connections, neurons both send and receive varying quantities of energy.

One very important feature of neurons is that they do not react immediately to the

reception of energy. Instead, they sum their received energies, and they send their

own quantities of energy to other neurons only when this sum has reached a certain

critical threshold. The brain learns by adjusting the number and strength of these

connections. Even though this picture is a simpli�cation of the biological facts, it is

su�ciently powerful to serve as a model for the neural net [39].

The �rst step toward understanding neural networks is to abstract from the

biological neuron, and to focus on its character as a threshold logic unit (TLU). A

TLU is an object that inputs an array of weighted quantities, sums them, and if this

sum meets or surpasses some threshold, outputs a quantity. Let's label these features.

First, there are the inputs and their weights: X1,X2, ..., Xn and W1, W2, ...,Wn.

Then, there are the Xi*Wi that are summed, which yields the activation level a, which

can been seen in Eq. 3.12.

a = (X1×W1) + (X2×W2) + ...+ (Xi×Wi) + ...+ (Xn×Wn) (3.12)

The threshold is called λ . Lastly, there is the output: y. When a >= λ , y=1,

else y=0. Notice that the output does not need to be discontinuous, since it could also

be determined by a squashing function, s (or sigma), whose argument is a, and whose

value is between 0 and 1. Then, y=s(a). A Threshold logical unit can be seen in Figure

3.7 [39].
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Figure 3.7 Threshold logic unit, with sigma function (top) and cuto�-step function (bottom).

A TLU can classify. For example, If a TLU that has two inputs, whose weights

equal 1, and whose λ equals 1.5. When this TLU inputs <0,0>, <0,1>, <1,0>, and

<1,1>, it outputs 0, 0, 0, and 1 respectively. This TLU classi�es these inputs into

two groups: the 1 group and the 0 group. In so far as a human brain that knows

about logical conjunction (Boolean AND) would similarly classify logically conjoined

sentences, this TLU knows something like logical conjunction [39].

This TLU has a geometric interpretation that clari�es the classi�cation. Its

four possible inputs correspond to four points on a Cartesian graph. From X1*W1+

X2*W2 = λ, in other words, the point at which the TLU switches its classi�catory

behavior, it follows that X2 = -X1 + 1.5. The graph of this equation cuts the four

possible inputs into two spaces that correspond to the TLU's classi�cations. This is

an instance of a more general principle about TLUs. In the case of a TLU with an

arbitrary number of inputs, N, the set of possible inputs corresponds to a set of points

in N-dimensional space. If these points can be cut by a hyperplane, in other words, an

N-dimensional geometric �gure corresponding to the line in the above example, then

there is a set of weights and a threshold that de�ne a TLU whose classi�cations match

this cut [39]. N dimensional classi�cation problem can be seen in Figure 3.8.
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Figure 3.8 Pattern Classi�cation Problem in n-dimensional space[39].

3.4.2 Perceptron

Since TLUs can classify, they have a memory. Neural nets are also supposed to

learn. Their learning mechanism is modeled on the brain's adjustments of its neural

connections. A TLU learns by changing its weights and threshold. Actually, the weight-

threshold distinction is somewhat arbitrary from a mathematical point of view. Recall

that the critical point at which a TLU outputs 1 instead of 0 is when the SUM (Xi *

Wi) >= λ. This is equivalent to saying that the critical point is when the SUM (Xi *

Wi) + (-1 * λ) >= 0. So, it is possible to treat -1 as a constant input whose weight, λ,

is adjusted in learning, or, to use the technical term, training. In this case, y=1 when

SUM(Xi * Wi)+ (-1 * λ) >= 0, else y=0. [39].
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During training, a neural net inputs:

1. A series of examples of the items to be classi�ed

2. Their proper classi�cations or targets

Such input can be viewed as a vector: <X1, X2, ...,Xn, λ, t>, where t is the

target or true classi�cation. The neural net uses these to modify its weights, and it

aims to match its classi�cations with the targets in the training set. More precisely,

this is supervised training, as opposed to unsupervised training. The former is based

on examples accompanied by targets, whereas the latter is based on statistical analysis.

Weight modi�cation follows a learning rule. One idealized learning algorithm can be

seen below [39].

fully_trained = FALSE

DO UNTIL (fully_trained):

fully_trained = TRUE

FOR EACH training_vector = <X1, X2, ..., Xn, theta, target>::

# Weights compared to theta

a = (X1 * W1)+(X2 * W2)+...+(Xn * Wn) - theta

y = sigma(a)

IF y != target:

fully_trained = FALSE

FOR EACH Wi:

MODIFY_WEIGHT(Wi) # According to the training rule

IF (fully_trained):

BREAK
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There are many training rules. One possible rule is based on the idea that

weight and threshold modi�cation should be determined by a fraction of (t - y). This

is accomplished by introducing σ (0 < σ < 1), which is called the learning rate. The

change in Wi equals (σ * (t - y) * Xi). When alpha is close to 0, the neural net will

engage in more conservative weight modi�cations, and when it is close to 1, it will

make more radical weight modi�cations. A neural net that uses this rule is known as

a perceptron, and this rule is called the perceptron learning rule [39].

3.4.3 Activation Function

A biological neuron initiates an action potential whenever it is stimulated be-

yond a threshold level. As in its biological model, the unit in an arti�cial neural network

also produces activity level if the �total input� received from other units is greater than

or equal to a threshold. The total input of a unit is a scalar quantity, and is usually

taken to be a linear function of the activity level of the units that provide input to this

unit. If x is being the total input of a unit, and λ is the threshold for activation of the

unit, then the output y of the unit is y = 1 if x >= λ else y = 0 where x =
∑
yiwi and

yi are the activation level of units giving their output as input to this unit [40].

The activation function, as given in the equations above, is the step function.

The step function has two discrete states: 0 or 1. However, in most of the neural

network applications, the sigmoid function is used rather than the step function. The

sigmoid function is a smoothed version of the step function. The reasons of use of

sigmoid function are that it is continuous and thus di�erentiable [40]. Sigmoid function

can be seen in Figure 3.9.

3.4.4 Backpropagation

Backpropagation is one of the most popular and successful learning methods

for multilayer feed forward networks. There are two distinct phases of the operation
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Figure 3.9 Sigmoid Activation Function, gives the nonlinear processing capability to the neuron.

of backpropagation learning: the forward and the backward phase. In the forward

phase, the input signal propagates through the network layer from the input layer to

the output layer, eventually producing some response at the output of the network.

The actual response produced is compared with a desired response, generating error

signals that are then propagated in the backward direction through the network. In

this backward phase of operation, the free parameters of the network are adjusted so

as to minimize the sum of squared errors. Backpropagation learning has been applied

successfully to some di�cult problems such as speech recognition [41].

Backpropagation is supervised learning since during training, correct output is

provided to the network. It uses gradient descent on the error and it modi�es the

weights so that the error gets smaller and smaller. The activation function of the

neurons is usually sigmoidal, a sort of threshold function, but di�erentiable [40].

Many researchers believe that backpropagation can be an explanation how bi-

ological neuron learns. The most important contradiction to this assumption is that

synaptic connections in biological neurons transmit information (signal) in one di-

rection only while during learning in backpropagation reverse propagation of error is

needed from the output layer to the input layer [42].
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4. CLASSIFICATION IMPLEMENTATION AND RESULTS

In this BCI study sensorimotor Rhythms of the EEG is needed for motor im-

agery BCI operation. First a signal acquisition system was developed in the laboratory

with the use of ICs from Texas Instruments. During hardware design, Texas Instru-

ments documentation and Modular EEG design of OpenEEG Project was used [43, 44].

Hardware design and a low power implementation is explained in the next chapter.

In this chapter, designed and evaluated feature extraction and classi�cation

methods is discussed with the results. Feature channels for BCI control was extracted

from the SMR rhythms with two distinct methods, discrete wavelet transform and fast

Fourier transform, respectively. The statistics of these decompositions were used as

inputs to a two layer feedforward backpropagation neural network for classi�cation of

motor imagery tasks. These designs were developed and implemented in Matlab which

was tested with data from BCI Competition II [12]. With direction of the results an

e�cient algorithm for low power microcontroller application was designed based on

FIR band pass �lters instead of wavelet transform to extract the sub band features.

The block diagram of the designed processing solution for BCI motor imagery

classi�cation is displayed in Figure 4.1.

The remaining sections are organized as follows. First data set provided by BCI

Competition is explained. Then, dimensionality reduction and feature extraction of

motor imagery trials with Wavelet transform and FFT are explained. Neural network

and classi�cation implementation comes ofter that. In the last section designed system

for low power embedded application is described.
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Figure 4.1 Block Diagram Of the BCI processing system

4.1 Motor Imagery Trials And Data Set Description

The design, training and test of the feature extraction and classi�cation system

was done with the measurements taken for BCI Competition II. This chapter explains

the methodology of the experiment.

This data set is provided by the Department of Medical Informatics, Institute

for Biomedical Engineering, University of Technology, Graz, Austria. This data set

was recorded from a healthy subject (female, 25 yrs) during a feedback session. The

subject sat in a comfortable chair with armrests. The task was to control a feedback

bar in one dimension by imagination of left- or right-hand movements. The order of left

and right cues was random. The experiment included seven runs with 40 trials each.

All runs were conducted on the same day with breaks of several minutes in between.

The data set consists of 280 trials of 9-s length. The �rst 2 s were quiet. At t = 2 s, an

acoustic stimulus indicated the beginning of the trial, and a cross ( +) was displayed

for 1 s. Then, at t = 3 s, an arrow (left or right) was displayed as a cue stimulus. The

subject was asked to use imagination as described above to move the feedback bar into

the direction of the cue. The feedback was based on AAR parameters calculated from
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channels C3 and C4. The AAR parameters were combined with a discriminant analysis

into one output parameter (similar to [45] and [46]). The recording was made using

a g.tec ampli�er and AgAgCl electrodes. Three bipolar EEG channels were measured

over C3, Cz, and C4. EEG was sampled with 128 Hz and was �ltered between 0.5

and 30 Hz. Similar experiments are described in [45] [47]. The trials for training and

testing were randomly selected to prevent any systematic e�ect due to the feedback

[12]. Electrode positions and timing scheme of the experiment can be seen in Figure

4.2.

Figure 4.2 The Competition Data Set Electrode positions (left) and timing scheme (right)[12].

Central brain oscillations in the mu rhythm in the range of 7-12Hz and beta

above 13Hz bands are strongly related to sensorimotor tasks. Sensory stimulation,

motor behavior, mental imagery can change the functional connectivity cortex which

results in an amplitude suppression or in an amplitude enhancement .This phenomenon

was also called event related desynchronization (ERD) and event-related synchroniza-

tion (ERS). Left and right hand movement imagery is typically accompanied with ERD

in the mu and beta rhythms and has the characteristic of contralateral dominance [38].
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The power spectrum on C3 and C4 of the training set are shown in Figure 4.3.

It indicates that the power spectrum mainly distribute in the range of 8 - 13 Hz and

19 - 24 Hz. In addition, the power of mu and beta rhythms evoked by right hand

movement imagery is lower than that of left hand movement imagery for channel C3,

and it is contrary for channel C4 which is consistent with the principle of contralateral

dominance. This led us to use wavelet decomposition to extract the di�erences between

the two motor imagery tasks [38].

Figure 4.3 Average power spectrums on Channel C3 and C4[38].

4.2 Feature Extraction with Discrete Wavelet Transform

As seen in Table 3.1, frequency components of D2 and D3 detail levels of the

wavelet decomposition are in the beta and mu bands, respectively. Daubechies order

10 wavelet with 4 decomposition levels were used to decompose all of the 280 trials into

the three frequency bands. The extracted wavelet coe�cients show the distribution of
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the motor imagery signal in time and frequency. The original signal is sampled with

128 Hz rate and longs 9 seconds. It is down sampled by 2 in each decomposition level,

so D2 level contains 288 and D3 contains 144 coe�cients since the complete single trial

composes of 1152 coe�cients (128 Hz * 9 seconds).

Statistics over the set of wavelet coe�cients of sub bands D2 and D3 where

computed for each trial so as to reduce the total dimension of the feature vectors. The

statistical features of each sub band are selected from the explained ones as follows:

1. Standard deviation of coe�cients in the sub band

2. Mean of the absolute values of the coe�cients in the sub band

3. Maximum values of the coe�cients in the sub band

4. Mean absolute deviation of the coe�cients in the sub band

These features represent the frequency distribution and the amount of changes in

frequency distribution. Thus 16 statistical features of wavelet coe�cients are obtained

for two channels of C3 and C4 for each trial ( 4 statistical features of coe�cients listed

above for D2 level and same 4 again for D3 level for each two channels).

Example decompositions of one right hand movement imagery and one left hand

movement imagery task are given in Figures 4.4 to 4.11. Figures 4.4 to 4.7 represent

right hand movement imagery, 4.8 to 4.11 represent left hand movement imagery.
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Figure 4.4 db10 level 4 decomposition of trial over channel C3 during a right hand movement
imagery task. D3 represents mu, D2 represents beta rhythms. Beginning of the motor imagery is time
point 400 (after t=3 in 9 second trial).
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Figure 4.5 Statistics of wavelet coe�cients of sub band D3 of channel C3 for right hand motor
imagery task. All available statistics values are shown but only 4 of them were used as listed in
Section 4.2.
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Figure 4.6 db10 level 4 decomposition of trial over channel C4 during a right hand movement
imagery task. D3 represents mu, D2 represents beta rhythms. Beginning of the motor imagery is
time point 400 (after t=3 in 9 second trial). Desynchronization of mu rhythm during imagery task is
apparent in detail 3.
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Figure 4.7 Statistics of wavelet coe�cients of sub band D3 of channel C4 for right hand motor
imagery task. All available statistics values are shown but only 4 of them were used as listed in
Section 4.2.
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Figure 4.8 db10 level 4 decomposition of trial over channel C3 during a left hand movement imagery
task. D3 represents mu, D2 represents beta rhythms. Beginning of the motor imagery is time point
400 (after t=3 in 9 second trial). Desynchronization of mu rhythm during imagery task is apparent
in detail 3.



48

Figure 4.9 Statistics of wavelet coe�cients of sub band D3 of channel C3 for left hand motor imagery
task. All available statistics values are shown but only 4 of them were used as listed in Section 4.2.
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Figure 4.10 db10 level 4 decomposition of trial over channel C4 during a left hand movement imagery
task. D3 represents mu, D2 represents beta rhythms. Beginning of the motor imagery is time point
400 (after t=3 in 9 second trial).
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Figure 4.11 Statistics of wavelet coe�cients of sub band D3 of channel C4 for left hand motor
imagery task. All available statistics values are shown but only 4 of them were used as listed in
Section 4.2.
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4.3 Classi�cation

4.3.1 Classi�cation based on Wavelet features

A two layer feed forward backpropagation neural network was used for classi�-

cation of the trials. Extracted 16 statistical features of wavelet coe�cients for each trial

were used as inputs to the neural network. The structure of the �nal designed arti�cial

neural network is shown in Figure 4.12. The network has 20 neurons in the hidden layer

with tanh activation function. The �nal layer has two neurons with logistic activation.

Figure 4.12 Two layer Feed Forward Arti�cal Neural Network used for classi�cation. First layer
uses the tanh activation function, the second a normal logistic activation.

The network was trained with 140 trials of training data set and tested against

140 trials of the testing data set to discriminate between right and left hand movement

imagery tasks. Di�erent numbers of hidden neurons and di�erent feature vectors were

used for classi�cation. The results are displayed in Table 4.1. All of the trials of

the data set correspond to one of the two classes. Because of that all of the false

classi�cations are false positives.

Best classi�cation result was taken from the Network2 and absoluted statistics

of feature coe�cients of wavelet transform.
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Table 4.1

Properties of Neural Networks and Classi�cation Results based on DWT features

Output Layer Hidden Layer Inputs Train Function Hidden Units Vector Coe�. True Classi�cation Per.

Network1 Logistic Tanh 16 Trainscg 4 absoluted 75

Network1 Logistic Tanh 16 Trainscg 4 squared 68

Network2 Logistic Tanh 16 Trainlm 20 absoluted 89

Network2 Logistic Tanh 16 Trainlm 20 squared 74

4.3.2 Classi�cation based on Power Spectrum features

To classify based on power spectrum features of C3 and C4 channels, FFT of

each train and test trails was computed. The average of power spectrum of all trials

was shown in Figure 4.3. The features used for FFT based classi�cation are as follows:

1. Mean of the power in µ band ( 8 - 12 Hz)

2. Mean of the power in β band ( 19 - 24 Hz)

3. Maximum value in µ band ( 8 - 12 Hz)

4. Maximum value in β band ( 19 - 24 Hz)

The results are displayed in Table 4.2. All of the trials of the data set correspond

to one of the two classes. Because of that all of the false classi�cations are false positives.

Table 4.2

Classi�cation Results based on FFT features

Feature Vector True Classi�cation Percent

Ratio of mean values between two bands 75

Only Max value in µ band 72

Only Max value in β band 63
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4.4 Developed Method for An Embedded Low Power Applica-

tion

Fast and e�cient algorithms are needed for embedded and low power applica-

tions because of the limitations listed below:

1. Multiplication is the core operation for �ltering

2. Microcontrollers are �xed-point devices, simple in architecture and have limited

CPU cycles and memory

3. Real-time signal processing broadens the application space

4. Less CPU cycles implies lower current consumption with increased battery life,

especially for hand-held devices

5. Reduced CPU utilization increases usability and accommodates better and ad-

vanced features

Because of these limitations a resource e�cient model was developed using the

results from Wavelet and FFT features classi�cation. In this approach, band pass FIR

�lters were used instead of Wavelet Decomposition for feature extraction.

Since multiplication is the core operation of �ltering, it must be done in an

e�cient way to save time and power. Hardware multiplier and multichannel Direct

Memory Access (DMA) features are the main di�erences between a Digital Signal

Processor (DSP) and a microcontroller (MCU).

Features of a typical Hardware Multiplier:

1. Simple to use

2. HW multiplier includes a multiply and accumulate (MAC) function for �ltering



54

3. ADC samples are integers, coe�cients need to be converted from real numbers

to integers, via scaling

For this implementation FG4618 was selected from MSP430 MCU family which

includes a hardware multiplier with low power features. Since it has a hardware mul-

tiplier, a FIR �lter can be implemented in software easily. The designed solution has

following key functions:

1. Two FIR band pass �lters, one for µ band and one for β band to extract the

features like wavelet sub band decomposition

2. Designed �lter coe�cients are scaled to integers to multiply with ADC samples

e�ciently.

3. Absolute values of �ltered sample arrays are computed

4. Mean values of absoluted arrays are computed as features

5. These features are feeded to a trained MLP neural network with prede�ned

weights for classi�cation

Designed �lter speci�cations are given in subsection.

4.4.1 Designed FIR Filters

4.4.1.1 Band Pass FIR Filter 1. Filter speci�cations:

1. Filter length = 23

2. Sampling frequency = 128 Hz

3. Lower Cut-o� frequency = 7 Hz

4. Upper Cut-o� frequency = 12 Hz
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Figure 4.13 Frequency Response of Band Pass Filter 1 (BPF1)

4.4.1.2 Band Pass FIR Filter 2. Filter speci�cations:

1. Filter length = 27

2. Sampling frequency = 128 Hz

3. Lower Cut-o� frequency = 17 Hz

4. Upper Cut-o� frequency = 23 Hz
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Figure 4.14 Frequency Response of Band Pass Filter 2 (BPF2)

4.4.2 Results of Classi�cation

Samples of calculated features can be seen in the Table 4.3.

Classi�cation results displayed in Table 4.4.

Hardware implementation of this developed method in laboratory is discussed

in the next chapter.
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Table 4.3

First 30 features from training set as an example. Integer columns show means of the �ltered and
absoluted samples, �oating point colums show the scaled data between [-1,1] for neural network

input.

C3 BPF1 c3 BPF1 SCL C4 BPF1 C4 BPF1 SCL C3 BPF2 C3 BPF2 SCL C4 BPF2 C4 BPF2 SCL CLASS

t1 260 -0,57 225 -0,67 98 -0,75 142 -0,45 -1

t2 325 -0,4 320 -0,41 118 -0,61 183 -0,18 1

t3 593 0,31 258 -0,58 135 -0,5 152 -0,39 1

t4 175 -0,8 256 -0,58 136 -0,49 172 -0,25 1

t5 205 -0,72 279 -0,52 134 -0,51 206 -0,03 1

t6 518 0,12 346 -0,34 212 0,01 226 0,11 -1

t7 641 0,44 274 -0,54 185 -0,17 164 -0,31 -1

t8 345 -0,35 414 -0,16 181 -0,19 290 0,53 1

t9 576 0,27 325 -0,4 188 -0,15 184 -0,17 1

t10 733 0,69 305 -0,45 242 0,21 194 -0,11 -1

t11 621 0,39 422 -0,14 246 0,24 237 0,18 -1

t12 438 -0,1 334 -0,38 183 -0,18 229 0,13 1

t13 782 0,82 301 -0,46 219 0,06 148 -0,41 -1

t14 309 -0,44 404 -0,19 161 -0,33 315 0,7 1

t15 658 0,49 369 -0,28 229 0,13 219 0,06 1

t16 568 0,25 381 -0,25 194 -0,11 283 0,49 1

t17 491 0,04 370 -0,28 236 0,17 243 0,22 1

t18 423 -0,14 333 -0,38 199 -0,07 231 0,14 -1

t19 617 0,38 583 0,29 190 -0,13 208 -0,01 -1

t20 285 -0,51 244 -0,62 120 -0,6 152 -0,39 -1

t21 341 -0,36 284 -0,51 151 -0,39 177 -0,22 -1

t22 381 -0,25 348 -0,34 135 -0,5 191 -0,13 1

t23 203 -0,73 194 -0,75 120 -0,6 138 -0,48 -1

t24 142 -0,89 378 -0,26 109 -0,67 226 0,11 1

t25 312 -0,43 201 -0,73 175 -0,23 158 -0,35 -1

t26 473 -0,01 404 -0,19 219 0,06 291 0,54 1

t27 251 -0,6 229 -0,66 151 -0,39 188 -0,15 1

t28 514 0,1 394 -0,22 197 -0,09 191 -0,13 1

t29 773 0,79 518 0,11 263 0,35 252 0,28 1

t30 414 -0,16 390 -0,23 190 -0,13 274 0,43 -1

Table 4.4

Classi�cation Results based on developed FIR �lter based features to be implemented in embedded
hardware

Output Layer Hidden Layer Inputs Hidden Units True Classi�cation Percent

Network1 Linear Tanh 4 4 61

Network2 Linear Tanh 4 8 65

Network3 Linear Tanh 4 20 69

Network3 with puri�cation Linear Tanh 4 20 72
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5. HARDWARE IMPLEMENTATION AND RESULTS

As discussed in previous chapters, sensorimotor Rhythms of the EEG is needed

for motor imagery BCI operation. First a signal acquisition system was developed in

the laboratory with the use of ICs from Texas Instruments. During hardware design,

Texas Instruments documentation and Modular EEG design of OpenEEG Project was

used [43, 44]. Then the developed method which is presented in previous chapter was

implemented on this hardware. Hardware design and the low power implementation is

explained in this chapter.

5.1 Signal Acquisition

The device was implemented in the lab with the use of Texas Instruments ICs

and microcontrollers to create a circuit that ampli�es, �lters and digitizes brainwave

signals. The design includes 1 INA333 Instrumentation Ampli�er, 3 OPA333 Oper-

ational Ampli�ers for each channel and 1 MSP430 Microcontroller which is in the

experimenter board. Since low power and battery life are important considerations for

portable or medical equipment, low power devices were particularly preferred for the

design. Requirements of the acquisition system:

1. Detect brainwave signals greater than 10 µ V

2. Process signals, �lter frequencies between 0.16 and 30 Hz

3. Amplify signal to a ADC detectable level (volts)

4. Convert analog signal to digital (12 bit resolution, 128 Hz sampling rate)

5. Process the signal as described in the section 4.4 �Developed Method for An

Embedded Low Power Application�
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After analyzing the above requirements , the design was developed to detect,

amplify and �lter the brainwaves as shown in Figure 5.1.

Figure 5.1 Block Diagram Of the Acquisition System

Firstly, to detect the brainwaves, Ag-AgCL electrodes were used. Their outputs

were coupled into the input terminals of an instrumentation ampli�er. Two pairs of

electrodes were placed inside a bathing cap over C3 - F3 and C4 - F4 according to

10-20 system to have two EEG channels for SMR rhythms as displayed in Figure 2.4.

The di�erential ampli�er used is the INA333 Texas Instruments Instrumentation

Ampli�er. This device was chosen because of its high CMRR, low noise, low o�set

and low power characteristics. Internal structure of INA333 is shown in Appendix C.

Common mode rejection ratio versus Frequency characteristics is also shown in Figure

5.2.

OPA333 Texas Instruments operation ampli�er is used for further �ltering and

ampli�cation stages. OPA333 is a microPower operational ampli�er with low voltage,

low noise and single supply operation from ZeroDrift Series.

After the acquisition and �rst level ampli�cation of the signal, it must be �ltered

to attenuate unwanted frequency bands. This was done with a 4th order Butterworth

Sallen-Key low pass �lter with a cut-o� frequency at 30 Hz which was designed with

Texas Instruments FilterPro Analog design software. After �ltering and a �nal stage
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Figure 5.2 CMRR vs frequency, INA333 DataSheet.

ampli�cation, the signal is converted digital domain with an ADC embedded in MSP430

microcontroller. The microcontroller is responsible of both ADC conversion and signal

processing.

This analog circuit was �rstly simulated in TINA-TI software and then imple-

mented on breadboard.

5.1.1 Instrumentation Stage

INA333 Instrumentation ampli�er detects and ampli�es the di�erence between

two electrodes connected to its terminals. The electrode positions can be C3 and C4.

Since the o�set voltages put some DC content into the signal, the gain of the �rst

ampli�er is low (G=10) not to amplify the DC component. After INA stage, a �rst

order high pass �lter with a cut o� frequency of 0.16 Hz is included to reject the DC

component for AC coupling. Instrumentation ampli�er stage can be seen in Figure 5.3.
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Figure 5.3 First Stage : Instrumentation Ampli�er, INA333.

5.1.2 Filtering

For anti-aliasing and detecting a clean EEG signal, frequency components above

30 Hz must be �ltered. A fourth order Butterworth Sallen Key Active low pass �lter

was implemented for that purpose. The Butterworth �lter has a �at response in the

passband and fast and sharp attenuation in the stop band. In our case, the most

important unwanted frequency is 50 Hz mains signal, and the designed cuto� frequency

is 30 Hz with a gain of 40dB. Since the order of the Butterworth �lter determines the

sharpness of the stop band, the higher the order of the �lter, the steeper the slope of the

stop band. Fourth order is good enough to cancel the 50 Hz mains signal interference.

Filter was simulated with a Spice simulation tool (TINA-TI Spice Simulation Software)

[48]. The schematic of the �lter circuit can be seen in Figure 5.4.

Figure 5.4 Fourth Order Sallen Key Butterworth Filter with a �rst order high pass �lter before
input.

Bode Plot of the designed �lter can also be seen in Figure 5.5.
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Figure 5.5 Frequency vs Gain (Bode plot) curve of the designed Filter Butterworth Low pass �lter

The gain of the �nal ampli�cation stage was designed to increase the signal level

to volts for ADC. The gain of the �nal ampli�cation stage is 10.

Figure 5.6 Final Ampli�cation Stage

G = INAGain(10) ∗ ActiveF ilterGain(100) ∗ FinalStageGain(10) = 10000 = 80dB

(5.1)

After �ltering and a �nal stage ampli�cation, the signal is converted into digital

domain with an ADC embedded in MSP430 microcontroller. After the conversion,

the processing method described described in the section 4.4 is implemented on the

microcontroller. The complete schemantic of the analog circuit implemented can be

seen in Appendix A.
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Using a function generator, the input was varied between high and low frequen-

cies to determine if the circuit was only passing the required low frequencies. Using a

oscilloscope, the output of the circuit was measured. The Butterworh �lter successfully

�ltered out the signals above 30 Hz. Low noise and high precision properties of Texas

Instruments ICs helped the detection and ampli�cation.

5.2 Signal Processing Software

The block diagram of the used processor MSP430FG4618 is shown in Figure

5.7.

Figure 5.7 Block Diagram of The MSP430FG4618 microcontroller

After the ampli�cation stage outputs of two channels are used as inputs to ADC

inputs to the MCU. C3 channel is entered into A0 and C4 channel is entered into A1

analog input pins of the microcontroller. Since the supply voltages of the analog board

are (-1.5 V, 1.5V), with internal +1.5V reference voltage of the MCU, an external -1.5V

reference is used for conversion. The complete digital board of the system can be seen

in Appendix B.
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Texas Instruments MSP430FG461x/F20xx Experimenter's Board is used with

the system since it has many peripherals needed for this project. Board includes an

LCD display, two push buttons, 3 LEDs and headers / jumpers to access the pins of

the microcontroller. Picture of the board can be seen in Figure 5.8.

Figure 5.8 Picture of MSP430FG461x/F20xx Experimenter's Board

OPA333 and INA333 assembly packages were soldered onto small circuit boards

for insertion onto the breadboard. Picture of the complete circuit is presented in Figure

5.9.

5.2.1 Software Description

The �owchart of the developed software can be seen in Figure 5.10.

After Power on Reset, code initializes the peripherals; Main clock freq, ADC,

LCD registers and Digital I/O ports. Writes 'Hello' to LCD registers and enters low
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Figure 5.9 Picture of the complete circuit implemented in the lab.

power mode 3 (CPU O� / 32 kHz ACLK On, 1.3 µ A) waiting for interrupts. ADC

uses TimerA triggering, +1.5V internal, -1.5V external references which are the supply

ranges of instrumentation and operational ampli�ers in the same time. CPU operates

with 3V battery, so with a voltage divider, supply voltage and reference values are

generated. When Button 1 is pressed, Port1 Interrupt wakes up the CPU an in the

Port1 Interrupt Service Routine Basic timer is initialized to give about 1 second delay

while displaying 'Ready' on LCD. After servicing the ISR the cpu automatically enters

back to LPM3 awakened by Basic timer interrupt after 1 second. 'Start' is written to

the LCD in the Basic timer interrupt Routine and TimerA is initialized to start the

ADC sampling with 128Hz sampling rate. After 448 samples are stored (448 comes

from memory limitations and it means 3.5 seconds sampling) TimerA is stopped and

stored values are �ltered. 4 features are calculated and scaled for neural network input.

After neural net classi�cation results are displayed on LCD, then 'Hello' is displayed

again and system enters back to low power mode. The complete source code is provided

in Appendix D.
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Figure 5.10 The �owchart of the developed software

5.3 Measurements taken from the Developed Hardware

An EEG Simulator from Netech company [49] was used to test EEG acquisition

system. The compact, microcontroller based instrument has �ve separate �oating

outputs and simulates Alpha-Beta Rhythm ABR, Sine, Square and Triangle waveforms

with selectable frequencies and amplitudes. Outputs of the ampli�er channels were

measured via a digital storage oscilloscope and transferred to a PC for permanent

storage. The complete measurement system can be seen in Figure 5.11.
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Figure 5.11 Picture of the complete measurement system.

The developed system was tested with the EEG simulator by applying sine and

square waves with 2 mV, 500 µ V and 100 µ V amplitudes with 2 and 5 Hz frequencies

to prove the system is �ltering and amplifying the signal as needed. The outputs of the

Instrumentation ampli�er, the Butterworth �lter and the complete circuit are provided

for each EEG simulator input to see the �ltering and ampli�cation e�ects in Figures

between 5.12 and 5.47. After providing simulator responses, measurements taken from

human subjects are provided in Figures between 5.48 and 5.55. The classi�cation

output of the system is based on the method described in Section 4.4.
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Figure 5.12 Instrumentation Ampli�er output of the circuit. Input 2mV amplitude, 5Hz Sine wave.
Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc components
as noise.

Figure 5.13 Butterworth �lter output of the circuit. Input 2mV amplitude, 5Hz Sine wave. Vertical
divisions 500mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with rejected
high and low frequency noise components.

There are three measurements for each input. First one is the instrumentation

ampli�er output, second one is the Butterworth Filter output and the last one is the

output of the complete circuit. Figure 5.12 presents the instrumentation ampli�er

output of the circuit with 2mV 5Hz Sine wave input. Output includes both the input

signal with INA gain and dc components as noise. Figure 5.13 presents the Butterworth

Filter output of the circuit with 2mV 5Hz Sine wave input. The total gain of 1000 of

INA and Butterworth Filter stages can be seen with above 30Hz and below 0.16Hz

frequency components rejected.
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Figure 5.14 Output of the circuit. Input 2mV amp, 5Hz Sine wave. Vertical divisions 1V,horizontal
divisions 100ms.Total gain of 10000 can be seen with saturations because of 3V supply voltage.

Figure 5.15 Instrumentation Ampli�er output of the circuit. Input 2mV amplitude, 2Hz Sine wave.
Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc components
as noise.

Figure 5.14 presents the output of the complete circuit with 2mV 5Hz Sine wave

input. Total gain of 10000 (80dB) can be seen with saturations because of 3V supply

voltage. Figure 5.15 presents the instrumentation ampli�er output of the circuit with

2mV 2Hz Sine wave input. Output includes both the input signal with INA gain and

dc components as noise.



70

Figure 5.16 Butterworth �lter output of the circuit. Input 2mV amplitude, 2Hz Sine wave. Vertical
divisions 500mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with rejected
high and low frequency noise components.

Figure 5.17 Output of the circuit. Input 2mV amplitude, 2Hz Sine wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.16 presents the Butterworth Filter output of the circuit with 2mV 2Hz

Sine wave input. The total gain of 1000 of INA and Butterworth Filter stages can be

seen with above 30Hz and below 0.16Hz frequency components rejected. Figure 5.17

presents the output of the complete circuit with 2mV 2Hz Sine wave input. Total gain

of 10000 (80dB) can be seen with saturations because of 3V supply voltage.
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Figure 5.18 Instrumentation Ampli�er output of the circuit. Input 2mV amplitude, 5Hz Square
wave. Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc
components as noise.

Figure 5.19 Butterworth �lter output of the circuit. Input 2mV amplitude, 5Hz Square wave.
Vertical divisions 500mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with
rejected high and low frequency noise components.

Figure 5.18 presents the instrumentation ampli�er output of the circuit with

2mV 5Hz Square wave input. Output includes both the input signal with INA gain

and dc components as noise. Figure 5.19 presents the Butterworth Filter output of

the circuit with 2mV 5Hz Square wave input. The total gain of 1000 of INA and

Butterworth Filter stages can be seen with above 30Hz and below 0.16Hz frequency

components rejected.
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Figure 5.20 Output of the circuit. Input 2mV amplitude, 5Hz Square wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.21 Instrumentation Ampli�er output of the circuit. Input 2mV amplitude, 2Hz Square
wave. Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc
components as noise.

Figure 5.20 presents the output of the complete circuit with 2mV 5Hz Square

wave input. Total gain of 10000 (80dB) can be seen with saturations because of 3V

supply voltage. Figure 5.21 presents the instrumentation ampli�er output of the circuit

with 2mV 2Hz Square wave input. Output includes both the input signal with INA

gain and dc components as noise.
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Figure 5.22 Butterworth �lter output of the circuit. Input 2mV amplitude, 2Hz Square wave.
Vertical divisions 500mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with
rejected high and low frequency noise components.

Figure 5.23 Output of the circuit. Input 2mV amplitude, 2Hz Square wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.22 presents the Butterworth Filter output of the circuit with 2mV 2Hz

Square wave input. The total gain of 1000 of INA and Butterworth Filter stages can be

seen with above 30Hz and below 0.16Hz frequency components rejected. Figure 5.23

presents the output of the complete circuit with 2mV 2Hz Square wave input. Total

gain of 10000 (80dB) can be seen with saturations because of 3V supply voltage.
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Figure 5.24 Instrumentation Ampli�er output of the circuit. Input 500uV amplitude, 5Hz Sine wave.
Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc components
as noise.

Figure 5.25 Butterworth �lter output of the circuit. Input 500uV amplitude, 5Hz Sine wave. Vertical
divisions 100mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with rejected
high and low frequency noise components.

Figure 5.24 presents the instrumentation ampli�er output of the circuit with

500uV 5Hz Sine wave input. Output includes both the input signal with INA gain

and dc components as noise. Figure 5.25 presents the Butterworth Filter output of

the circuit with 500uV 5Hz Sine wave input. The total gain of 1000 of INA and

Butterworth Filter stages can be seen with above 30Hz and below 0.16Hz frequency

components rejected.
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Figure 5.26 Output of the circuit. Input 500uV amplitude, 5Hz Sine wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.27 Instrumentation Ampli�er output of the circuit. Input 500uV amplitude, 2Hz Sine wave.
Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc components
as noise.

Figure 5.26 presents the output of the complete circuit with 500uV 5Hz Sine

wave input. Total gain of 10000 (80dB) can be seen with saturations because of 3V

supply voltage. Figure 5.27 presents the instrumentation ampli�er output of the circuit

with 500uV 2Hz Sine wave input. Output includes both the input signal with INA gain

and dc components as noise.
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Figure 5.28 Butterworth �lter output of the circuit. Input 500uV amplitude, 2Hz Sine wave. Vertical
divisions 100mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with rejected
high and low frequency noise components.

Figure 5.29 Output of the circuit. Input 500uV amplitude, 2Hz Sine wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.28 presents the Butterworth Filter output of the circuit with 500uV

2Hz Sine wave input. The total gain of 1000 of INA and Butterworth Filter stages can

be seen with above 30Hz and below 0.16Hz frequency components rejected. Figure 5.29

presents the output of the complete circuit with 500uV 2Hz Sine wave input. Total

gain of 10000 (80dB) can be seen with saturations because of 3V supply voltage.
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Figure 5.30 Instrumentation Ampli�er output of the circuit. Input 500uV amplitude, 5Hz Square
wave. Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc
components as noise.

Figure 5.31 Butterworth �lter output of the circuit. Input 500uV amplitude, 5Hz Square wave.
Vertical divisions 200mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with
rejected high and low frequency noise components.

Figure 5.30 presents the instrumentation ampli�er output of the circuit with

500uV 5Hz Square wave input. Output includes both the input signal with INA gain

and dc components as noise. Figure 5.31 presents the Butterworth Filter output of

the circuit with 500uV 5Hz Square wave input. The total gain of 1000 of INA and

Butterworth Filter stages can be seen with above 30Hz and below 0.16Hz frequency

components rejected.
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Figure 5.32 Output of the circuit. Input 500uV amplitude, 5Hz Square wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.33 Instrumentation Ampli�er output of the circuit. Input 500uV amplitude, 2Hz Square
wave. Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc
components as noise.

Figure 5.32 presents the output of the complete circuit with 500uV 5Hz Square

wave input. Total gain of 10000 (80dB) can be seen with saturations because of 3V

supply voltage. Figure 5.33 presents the instrumentation ampli�er output of the circuit

with 500uV 2Hz Square wave input. Output includes both the input signal with INA

gain and dc components as noise.
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Figure 5.34 Butterworth �lter output of the circuit. Input 500uV amplitude, 2Hz Square wave.
Vertical divisions 200mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with
rejected high and low frequency noise components.

Figure 5.35 Output of the circuit. Input 500uV amplitude, 2Hz Square wave. Vertical divisions 1V,
horizontal divisions 100ms. Total gain of 10000 can be seen with saturations because of 3 V supply
voltage.

Figure 5.34 presents the Butterworth Filter output of the circuit with 500uV

2Hz Square wave input. The total gain of 1000 of INA and Butterworth Filter stages

can be seen with above 30Hz and below 0.16Hz frequency components rejected. Figure

5.35 presents the output of the complete circuit with 500uV 2Hz Square wave input.

Total gain of 10000 (80dB) can be seen with saturations because of 3V supply voltage.
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Figure 5.36 Instrumentation Ampli�er output of the circuit. Input 100uV amplitude, 5Hz Sine wave.
Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc components
as noise.

Figure 5.37 Butterworth �lter output of the circuit. Input 100uV amplitude, 5Hz Sine wave. Vertical
divisions 50mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with rejected
high and low frequency noise components.

Figure 5.36 presents the instrumentation ampli�er output of the circuit with

100uV 5Hz Sine wave input. Output includes both the input signal with INA gain

and dc components as noise. Figure 5.37 presents the Butterworth Filter output of

the circuit with 100uV 5Hz Sine wave input. The total gain of 1000 of INA and

Butterworth Filter stages can be seen with above 30Hz and below 0.16Hz frequency

components rejected.
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Figure 5.38 Output of the circuit. Input 100uV amplitude, 5Hz Sine wave. Vertical divisions 500mV,
horizontal divisions 100ms. Total gain of 10000 can be seen with a motion artifact in signal caused
by capturing from oscilloscope.

Figure 5.39 Instrumentation Ampli�er output of the circuit. Input 100uV amplitude, 2Hz Sine wave.
Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc components
as noise.

Figure 5.38 presents the output of the complete circuit with 100uV 5Hz Sine

wave input. Total gain of 10000 (80dB) can be seen with a motion artifact caused by

pressing a key to capture from oscilloscope can be seen in the waveform. Figure 5.39

presents the instrumentation ampli�er output of the circuit with 100uV 2Hz Sine wave

input. Output includes both the input signal with INA gain and dc components as

noise.
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Figure 5.40 Butterworth �lter output of the circuit. Input 100uV amplitude, 2Hz Sine wave. Vertical
divisions 50mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with rejected
high and low frequency noise components and a motion artifact caused by capturing from oscilloscope.

Figure 5.41 Output of the circuit. Input 100uV amplitude, 2Hz Sine wave. Vertical divisions 500mV,
horizontal divisions 100ms. Total gain of 10000 can be seen.

Figure 5.40 presents the Butterworth Filter output of the circuit with 100uV

2Hz Sine wave input. The total gain of 1000 of INA and Butterworth Filter stages can

be seen with above 30Hz and below 0.16Hz frequency components rejected. Figure 5.41

presents the output of the complete circuit with 100uV 2Hz Sine wave input. Total

gain of 10000 (80dB) can be seen in the waveform with no saturation because the input

signal is in the acceptable range.



83

Figure 5.42 Instrumentation Ampli�er output of the circuit. Input 100uV amplitude, 5Hz Square
wave. Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc
components as noise.

Figure 5.43 Butterworth �lter output of the circuit. Input 100uV amplitude, 5Hz Square wave.
Vertical divisions 50mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with
rejected high and low frequency noise components.

Figure 5.42 presents the instrumentation ampli�er output of the circuit with

100uV 5Hz Square wave input. Output includes both the input signal with INA gain

and dc components as noise. Figure 5.43 presents the Butterworth Filter output of

the circuit with 100uV 5Hz Square wave input. The total gain of 1000 of INA and

Butterworth Filter stages can be seen with above 30Hz and below 0.16Hz frequency

components rejected.
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Figure 5.44 Output of the circuit. Input 100uV amplitude, 5Hz Square wave. Vertical divisions
500mV, horizontal divisions 100ms. Total gain of 10000 can be seen.

Figure 5.45 Instrumentation Ampli�er output of the circuit. Input 100uV amplitude, 2Hz Square
wave. Vertical divisions 20mV, horizontal divisions 100ms. INA gain of 10 can be seen with dc
components as noise.

Figure 5.44 presents the output of the complete circuit with 100uV 5Hz Square

wave input. Total gain of 10000 (80dB) can be seen in the waveform. Figure 5.45

presents the instrumentation ampli�er output of the circuit with 100uV 2Hz Square

wave input. Output includes both the input signal with INA gain and dc components

as noise.
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Figure 5.46 Butterworth �lter output of the circuit. Input 100uV amplitude, 2Hz Square wave.
Vertical divisions 50mV, horizontal divisions 100ms. INA + But Filter gain of 1000 can be seen with
rejected high and low frequency noise components.

Figure 5.47 Output of the circuit. Input 100uV amplitude, 2Hz Square wave. Vertical divisions
500mV, horizontal divisions 100ms. Total gain of 10000 can be seen with a motion artifact caused by
capturing from oscilloscope.

Figure 5.46 presents the Butterworth Filter output of the circuit with 100uV

2Hz Square wave input. The total gain of 1000 of INA and Butterworth Filter stages

can be seen with above 30Hz and below 0.16Hz frequency components rejected. Figure

5.47 presents the output of the complete circuit with 100uV 2Hz Sqaure wave input.

Total gain of 10000 (80dB) can be seen with a motion artifact and no saturation because

the input signal is in the acceptable range.
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Figure 5.48 C3 channel measurement from a human subject. Eyes Open.

Figure 5.49 C3 channel measurement from a human subject. Eyes Open.

Following �gures present measurements taken from human subjects with the

developed hardware in the laboratory. Figure 5.48 and 5.49 represent C3 channel

measurements from a human subject with eyes open.
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Figure 5.50 C3 channel measurement from a human subject. Eyes Closed.

Figure 5.51 C4 channel measurement from a human subject. Eyes Open.

Figure 5.50 presents a waveform from a humen subject with eyes closed. And

Figure 5.51 represents C4 channel measurements from a human subject with eyes open.
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Figure 5.52 C3 channel measurement from a human subject during left hand movement imagery
task with a output classi�cation of left hand.

Figure 5.53 C3 channel measurement from a human subject during right hand movement imagery
task with a output classi�cation of right hand.

Figures 5.52 and 5.53 are recordings of left and right hand movement imagery

tasks.
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Figure 5.54 C3 channel recording FFT during a left hand movement imagery task with a true
classi�cation. Mu rhtyhm power can be seen as 8 - 9 Hz band.

Figure 5.55 C4 channel recording FFT during a left hand movement imagery task with a true
classi�cation.

FFTs of the C3 and C4 left hand movement imagery tasks are displayed in

Figures 5.54 and 5.55.
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5.4 Discussions And Suggestions for the Design

A comparison between the Competition Data set signal of right hand movement

imagery and the signal acquired with the developed hardware is provided in Figure

5.56.

Figure 5.56 Comparison between the Competition Data set signal and the signal measured with the
developed hardware of Right Hand movement imagery. Blue one represents the data set signal and
black one represents the signal measured in the lab.

The developed method presented in Section 4.4 is successfully implemented with

the developed hardware presented in this chapter. The system could be able to detect

two channel EEG and provide the classi�cation results as designed. As presented in the

results section of the previous chapter, best results were obtained using Wavelet based

features with an arti�cial neural network classi�cation. The classi�cation performance

of the FIR band pass �lter based approach used in this design can be increased to the

levels of Wavelet based approach by implementing the suggestions provided below.

Suggestions:

1. Source code generates 40KB program code and uses 5KB RAM which are not

available in many of the members of MSP430 family excluding MSP430X archi-

tecture and new MSP430x5xx series.
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2. Hardware multiplier and DMA gives DSP like capabilities to FG4618. But many

of the MSP430 devices lack MPY or DMA can be very slow on multiplication.

Because of that, if a low power system with a MCU is aimed, a device with a

MPU should be selected.

3. Di�erent feature extraction bands can be applied by only changing the �lter coef-

�cients. ScopeFIR [50] software can be used to design and scale �lter coe�cients.

4. New features can be extracted by adding new calculations from �ltered data such

as maximum, minimum or median values.

5. Neural network performance can be tested in a memory free environment. Neural

network architecture can be easily customized by changing hidden neuron and

learning rate variables.

6. Active electrodes can be used instead of passive Ag-AgCl electodes for permanent

usage without applying gel and easy hair penetration.

7. Sigma Delta ADC can be used instead of SAR ADC to reduce the analog board

size. Sigma Delta ADCs provide higher resolution with oversampling, hence only

an instrumentation ampli�er and a �rst order low pass �lter can be used before

input to the ADC for each channel. In addition, an analog front end IC may be

used instead of discrete components.
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6. CONCLUSIONS

Extraction and classi�cation of patterns from spontaneous EEG activity is a

complicated task. Since EEG signal contains a lot of noise components such as mains

interference, muscular and eye artifacts, �ltering of the raw EEG is an important

component of this process. Whether an electronic or digital �lter used, band pass

�ltering must be done very smoothly and the �lter must have sharp characteristics in

the pass band. For a brain computer interface based on motor imagery as in this study,

sensorimotor rhytms, especially the mu rhythm has very high importance. Since mu

rhythm desynchronizes with the motor imagery, using spatial �ltering and combining

di�erent channels like C3 and C4 in the analysis, discrimination between motor imagery

tasks can be done e�ciently.

The most important part of the design is feature extraction. In order to make

true classi�cations, the feature set must provide vital information. Time frequency

analysis methods provide decomposition of frequency bands of the signal with time

localization. This is very important for non stationary signals like EEG. With the help

of time frequency analysis methods like wavelet transform good features are obtained

in the desired frequency bands like beta and mu bands.

In this study, discrete wavelet transform was applied to the data set provided

for BCI Competition II to extract the features in beta and mu bands. After extracting

the features by means of wavelet coe�cients, there features were used as inputs to an

arti�cial neural network for motor imagery task classi�cation. After di�erent network

and feature combinations, %89 true classi�cation was achieved on test data set. Clas-

si�cation based on power spectrum has lower classi�cation rates. But more e�cient

features can be computed to increase the level of accuracy.

The most important part of this study is implementation of an e�cient algo-

rithm on a microncontroller to implement a low power embedded system. A System
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was designed uses e�cient FIR �lters instead of Wavelet sub band decomposition and

implemented on the MSP430 microcontroller. Classi�cation rates of this system can

be increased with optimized neural network implementations and features.

As future studies, following tasks may be considered:

1. Since the system is low power and embedded it can be assembled on the head of

a subject. The commands can be sent wireless.

2. A serial connection with a PC can be done to display a feedback and to implement

more powerful algorithms in real time.

3. Wireless module on the experimenter board can be used to transmit commands

wirelessly to a robot arm or another e�ector.

4. A more powerful DSP such as TMS or ARM can be use to use more channels

and higher sampling rates to have better resolution.



94

APPENDIX A. ANALOG BOARD SCHEMANTIC

Figure A.1 Analog Board
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APPENDIX B. DIGITAL BOARD SCHEMANTIC

The circuit schemantic of TI Experimenter board is presented in Figure B.1.
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Figure B.1 Digital Board
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APPENDIX C. INA333 Instrumentation Ampli�er

Figure C.1 INA333 Instrumentation Ampli�er
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APPENDIX D. SOURCE CODE LISTING

//*****************************************************************************

// MSP430FG4618 - Two Channel Low power EEG Mu & Beta Rhythm Classification

// (Texas Instruments MSP430FG461x/F20xx Experimenter's Board)

// main.c (requires TI freeware 16*16>32 multiply mul.s43 assembly code)

//

// Description; Uses analog board and INA333 instrumentation amplifiers to detect

// the brainwaves, after amplification & anti-aliasing filter and ADC, the code

// extracts mu and Beta Rhtym features of two channels using

// FIR band pass filters and classifies the motor imagery, right or left using

// A MLP backpropagation neural network, displays the result on LCD.

// Multiplication is implemented in assembly for FIR band pass filters

// to extract sub frequency band features.

//

// Operation: After Power on Reset, code inits the peripherals, main clock freq,

// ADC, LCD registers and digital I/O ports. Writes 'Hello' to LCD registers and

// enters low power mode 3 (CPU Off / 32 KHz ACLK On, 1.3 µA) waiting for interrupts.

// ADC uses TimerA triggering, +1.5V internal, -1.5V external references which

// are the supply ranges of instrumentation and operational amplifiers in the same time.

// CPU operates with 3V battery, so with a voltage divider, supply voltage and

// reference values are generated.

// When Button 1 is pressed, Port1 Interrupt wakes up the CPU an in the Port1

// Interrupt Service Routine Basic timer is initialized to give about 1 second delay

// While displaying 'Ready' on LCD. After servicing the ISR the cpu automatically

// enters back to LPM3 awakened by Basic timer interrupt after 1 second. 'Start'

// is written to the LCD in the Basic timer interrupt Routine and TimerA is initialized

// to start the ADC sampling with 128Hz sampling rate. After 448 samples are

// stored (448 comes from memory limitations and it means 3.5 seconds sampling)

// TimerA is stopped and stored values are filtered. 4 features are calculated

// and scaled for neural network input. After neural net classification results

// are displayed on LCD, then 'Hello' is displayed again and system enters back

// to the low power mode 3 waiting for button interrupt.

//

// Notes:

// -- Source generates about 40KB program code and uses about 5KB RAM, which

// are not available in many of the members of MSP430 family excluding MSP430X

// architecture and new MSP430x5xxx series.

// -- Hardware multiplier and DMA gives DSP like capabilities to FG4618.But

// many of the MSP430 devices lack MPY or DMA can be very slow on multiplication.

// -- Different feature extraction bands can be applied by only changing the

// filter coefficients. ScopeFIR program can be used to design and scale

// filter coefficients.

// -- Neural Network performance can be tested in a memory free environment.

// Neural network architecture can be easily customized by changing hidden neuron

// and learning rate variables.
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//

// Ozan Gunaydin

// Bo§aziçi University

// Istanbul; ozangunaydin@gmail.com

// 2010

//*****************************************************************************

//*****************************************************************************

//*****************************************************************************

#include <msp430xG46x.h> // Specidic Device Header file

#include <stdio.h>

#include <stdlib.h>

#include <intrinsics.h>// Intrinsic functions

#include <stdint.h> // Integers of defined sizes

#include <time.h>

#include <math.h>

// Data Dependent settings for Neural Network

#define numInputs 4 // Neural Network inputs

#define numPatterns 1 // Input pattern Number, if training utilized it is the number of input patterns

// User defineable Neural Network settings

#define numHidden 20 // Number of hidden neurons

// const int numEpochs = 10000; // To be used in training mode

const double LR_IH = 0.7; // input learning rate

const double LR_HO = 0.07; // output learning rate

// Band pass FIR filter coefficients for Beta Rhythm extraction , 19-24 Hz

static const int coeffsbp2[14] = {

334, 1153, 775, -2639, -6095, -3382, 7289, 15549, 8170,-12686,-25777, -13271,15302,15135};

// Band pass FIR filter coefficients for Mu Rhythm extraction , 8 - 12 Hz

static const int coeffsbp1[12] = {

9453, -1255, -3809, -7204,-10221, -11525, -10079, -5625, 1038,8175,13618, 7836};

#define LCDMEMS 11 // LCD memories used (3-13)

// Pointer to LCD memory used: allows use of array LCDMem[]

uint8_t * const LCDMem = (uint8_t *) &LCDM3;

// LCD segment definitions (SoftBaugh SBLCDA4)

#define SEG_A BIT0 // AAAA

#define SEG_B BIT1 // F B

#define SEG_C BIT2 // F B

#define SEG_D BIT3 // GGGG

#define SEG_E BIT6 // E C

#define SEG_F BIT4 // E C
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#define SEG_G BIT5 // DDDD

#define SEG_H BIT7 // colon, point

// Patterns for hexadecimal characters

const uint8_t LCDHexChar[] = {

SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F,// '0'

SEG_B | SEG_C,// '1'

SEG_C | SEG_F | SEG_E | SEG_G,// 'H'

SEG_F | SEG_E | SEG_D, // 'L'

SEG_A | SEG_B | SEG_F | SEG_G | SEG_E,// 'P'

SEG_G | SEG_E, // 'r'

SEG_F | SEG_B | SEG_C | SEG_D | SEG_G, // 'y'

SEG_F | SEG_G | SEG_E,// 't'

SEG_F | SEG_E | SEG_D | SEG_C | SEG_B, // 'U'

SEG_G | SEG_E | SEG_D | SEG_C, // 'o'

SEG_A | SEG_B | SEG_C | SEG_E | SEG_F | SEG_G,// 'A'

SEG_A | SEG_F | SEG_G | SEG_C | SEG_D, // 'S'

SEG_A | SEG_F | SEG_E | SEG_D | SEG_C, // 'g'

SEG_B | SEG_C | SEG_D | SEG_E | SEG_G,// 'd'

SEG_A | SEG_D | SEG_E | SEG_F | SEG_G,// 'E'

SEG_A | SEG_E | SEG_F | SEG_D,// 'C'

};

const uint8_t LCDBlankChar = 0;

// ADC variables declaration

//

int A0results[448]; // Data array for ADC samples CH0

int A1results[448]; // Data array for ADC samples CH1

int A0muResult[448]; // Data array for filtered signals

int A1muResult[448]; // Data array for filtered signals

// Neural Network variables

int patNum = 0; //Number of input pattern

double errThisPat = 0.0; //Neural network Error

double outPred = 0.0; // Neural network output

double RMSerror = 0.0; // Neural Network RMS error

// NN the outputs of the hidden neurons

double hiddenVal[numHidden];

// NN the weights

double weightsIH[numInputs][numHidden];

double weightsHO[numHidden];

//NN Input data

double trainInputs[numInputs];

//variables for calculations

unsigned int i,Index;
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int z,clas, sum1,sum2,output1,output2 =0;

float mean_mu_C3,mean_mu_C4,mean_B_C3,mean_B_C4; // feature variables

int compare(const void * a, const void * b) //compare function for sorting

{

return ( *(int*)a - *(int*)b );

}

// function prototypes

void Init(void); // Initializes the peripherals

void InitLCD(void); // Clears the LCD memory

int filterbp2(int); // Band Pass filter Beta Rhythm

int filterbp1(int); // Band Pass filter Mu Rhythm

// LCD writing functions

void DisplayHello(void);

void DisplayResult1(void);

void DisplayResult2(void);

void DisplayReady(void);

void DisplayGo(void);

void DisplayStop(void);

//Neural Net Functions

void initWeights();

void calcNet();

//void WeightChangesHO(); //Weight changes for training mode

//void WeightChangesIH(); //Weight changes for training mode

//void calcOverallError(); //Error Calculating for backpropagation

//void displayResults();

double getRand();

long mul16(register int x, register int y); // 16-bit signed multiplication

// main function

void main(void)

{ Init(); // Initialize device for the application

DisplayHello();

while(1) // loop forever

{ _BIS_SR(LPM3_bits + GIE); // Enter Low power mode 3, interrupts enable

if (Index == 448) // Stop and calculate class when 448 array filled

{
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DisplayStop();

TACTL = MC_0; // stop Timer A

BTCTL |= BIT6; // stop basic timer

for(i=0;i<60000;i++) // delay for Stop message

{;}

for (i=0;i<447;i++) //filtering to extract Mu Rhythm

{

output1, output2=0;

output1=filterbp1(A0results[i]);

output2=filterbp1(A1results[i]);

A0muResult[i]=output1;

A1muResult[i]=output2;

}

for(i=0;i<447;i++) // take absolute value

{

A0muResult[i] = abs(A0muResult[i]);

A1muResult[i] = abs(A1muResult[i]);

}

sum1=0;

sum2=0;

for (i=0;i<447;i++) // Calculate mean values of bands

{

// sum1 = sum1 + A0BResult[i];

sum1 = sum1 + A0muResult[i];

// sum2 = sum2 + A0results[i];

sum2 = sum2 + A1muResult[i];

}

mean_mu_C3 = sum1 / 448; // first two features: mean of absolute values

mean_mu_C4 = sum2 / 448;

for (i=0;i<447;i++) //filtering to extract Mu Rhythm

{

output1, output2=0;

output1=filterbp2(A0results[i]);

output2=filterbp2(A1results[i]);

A0muResult[i]=output1;
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A1muResult[i]=output2;

}

for(i=0;i<447;i++) // take absolute value

{

A0muResult[i] = abs(A0muResult[i]);

A1muResult[i] = abs(A1muResult[i]);

}

sum1=0;

sum2=0;

for (i=0;i<447;i++) // Calculate mean values of bands

{

// sum1 = sum1 + A0BResult[i];

sum1 = sum1 + A0muResult[i];

// sum2 = sum2 + A0results[i];

sum2 = sum2 + A1muResult[i];

}

mean_B_C3 = sum1 / 448; // last two features: mean of absolute values

mean_B_C4 = sum2 / 448;

// Scaling values for neural network input

// Scaling is done by calculating min and max values of the arrays and then

// scaling them to the [-1,1] range.

// Scaling formula: I = Imin + ((Imax - Imin)*(D-Dmin)/(Dmax -Dmin))

trainInputs[0] = (((mean_mu_C3 - 100)/ 900)*2)-1;

trainInputs[1] = (((mean_mu_C4 - 100)/ 900)*2)-1;

trainInputs[2] = (((mean_B_C3 - 50)/ 400)*2)-1;

trainInputs[3] = (((mean_B_C4 - 50)/ 400)*2)-1;

calcNet(); //calculating Neural network response

if (outPred < 0.0)

{ DisplayResult1();} // if output is negative,then result is left hand

else if (outPred > 0.0)

{ DisplayResult2();} // if output is positive,then result is right hand

else

{if(mean_mu_C3> mean_mu_C4){DisplayResult1();} //if output is zero then compare mu rhythm means

else{DisplayResult2();}}



104

for(i=60000;i>0;i--) // delay

{;}

// BTCTL |= BIT6; // stop basic timer

for(i=60000;i>0;i--) // delay

{;}

Index=0; // reset index counter

DisplayHello();

} // end of data processing, turn back to the infitine loop

} // infinite loop

}//main

// Initialization function

void Init(void)

{

initWeights(); // Init Neural Network Weights

FLL_CTL0 |= XCAP18PF; // Set load capacitance for xtal

WDTCTL = WDTPW | WDTHOLD; // Disable the Watchdog

while ( LFOF & FLL_CTL0); // wait for watch crystal to stabilize

SCFQCTL = 63; // 32 x 32768 x 2 = 2.097152MHz

InitLCD(); // Clear LCD memory

P1OUT = 0x00;

P1DIR = 0xfe; // Unused pins as outputs, button pins as inputs

P2OUT = 0x00; // Clear P2OUT register

P2DIR = 0xff; // Unused pins as outputs

P3OUT = 0x00; // Clear P3OUT register

P3DIR = 0xff; // Unused pins as outputs

P4OUT = 0x00; // Clear P4OUT register

P4DIR = 0xff; // Unused pins as outputs

P5OUT = 0x00; // Clear P5OUT register

// P5DIR = 0xff; // Unused pins as outputs

P5SEL = BIT4|BIT3|BIT2;

P6OUT = 0x00; // Clear P6OUT register

P6SEL = 0xff; // P6 = Analog selection for ADC input

P7OUT = 0x00;

P7DIR = 0xff;
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P1IE |= BIT0; //Enable button 1 interrupt

P1IES |= BIT0;

do { // Clear interrupts for Port1

P1IFG = 0; // Clear any pending interrupts ...

} while (P1IFG != 0); // ... until none remain

// Initialize and enable ADC12

ADC12CTL0 = ADC12ON + SHT0_8 + REFON; // ADC12 ON, Reference = 1.5V internal, -1.5V ext

ADC12CTL1 = SHP + SHS_1 + CONSEQ_3; // Use sampling timer, TA1 trigger

ADC12MCTL0 = INCH_0 + SREF_5 ; // A0 goes to MEM0, Vref+, VeRef-

ADC12MCTL1 = EOS + INCH_1 + SREF_5 ; // A1 goes to MEM1,Vref+, VeRef-

ADC12IE = 0x02; // Enable ADC12IFG.1 for ADC12MEM1

ADC12CTL0 |= ENC; // Enable conversions

_EINT(); // Enable global Interrupts

} //init

void InitLCD(void)

{

int i;

for(i = 0; i < LCDMEMS; ++i) { // Clear LCD memories used

LCDMem[i] = 0;

}

P5SEL = BIT4|BIT3|BIT2; // Select COM[3:1] function

LCDAPCTL0 = LCDS4|LCDS8|LCDS12|LCDS16|LCDS20|LCDS24;

// Enable LCD segs 4-27 (4-25 used)

LCDAVCTL0 = 0; // No charge pump, everything internal

LCDACTL = LCDFREQ_128 | LCD4MUX | LCDSON | LCDON;

// ACLK/128, 4mux, segments on, LCD_A on

}

// Interrupt service routine for port 1 inputs

// Only one bit is active so no need to check which

// clear any pending interrupts

// Device returns to low power mode automatically after ISR

// ----------------------------------------------------------------------

#pragma vector = PORT1_VECTOR

__interrupt void PORT1_ISR (void)

{

DisplayReady();

do {

P1IFG = 0; // Clear any pending interrupts ...

} while (P1IFG != 0); // ... until none remain
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BTCTL &= ~BIT6;

BTCNT1 = 0x00;

BTCNT2 = 0x00;

BTCTL = BTDIV + BTIP0 + BTIP1 + BTIP2; // ACLK/(256*256) one second delay

IE2 |= BTIE; // Enable BT interrupt

}

// Interrupt service routine for port ADC12

// After conversion results are stored in data array

// Turn back to low power mode

// ----------------------------------------------------------------------

#pragma vector = ADC12_VECTOR // ADC12 ISR

__interrupt void ADC12ISR (void)

{

A0results[Index] = ADC12MEM0; // Move A0 results, IFG is cleared

A1results[Index] = ADC12MEM1; // Move A1 results, IFG is cleared

Index = (Index + 1); // Increment results index, modulo

__no_operation(); // breakpoint to see ADC results

__bic_SR_register_on_exit(LPM3_bits); // Exit LPM3 on return

}// ADC12ISR

// Interrupt service routine for Basic timer

// After button press Basic timer provides 1 sec delay for displaying Ready

// Then in ISR , timerA is initialized to start conversion

// ----------------------------------------------------------------------

// Basic Timer Interrupt Service Routine

#pragma vector=BASICTIMER_VECTOR

__interrupt void basic_timer_ISR(void)

{

DisplayGo();

IE2 &= ~BIT7;

TACTL = TASSEL_1 + MC_1 + TACLR; // ACLK, Clear TAR, Up Mode

TACCTL1 = OUTMOD_2; // Set / Reset

TACCR0 = 255; // 128 samples per second

TACCR1 = 15; //

}

int filterbp2(int sample) // Band Pass FIR filter for Beta Rhtym

{ static int buflp[32]; // Reserve 32 loactions for circular buffering

static int offsetlp = 0;

long z;
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int i;

buflp[offsetlp] = sample;

z = mul16(coeffsbp2[13], buflp[(offsetlp - 13) & 0x1F]); //multiplication

for (i = 0; i < 13; i++)

z += mul16(coeffsbp2[i], buflp[(offsetlp - i) & 0x1F] + buflp[(offsetlp - 26 + i) & 0x1F]);

offsetlp = (offsetlp + 1) & 0x1F;

return z >> 15; // Return filter output

}

int filterbp1(int sample) // Band Pass FIR filter for mu Rhtym

{ static int buflp[32]; // Reserve 32 loactions for circular buffering

static int offsetlp = 0;

long z;

int i;

buflp[offsetlp] = sample;

z = mul16(coeffsbp1[11], buflp[(offsetlp - 11) & 0x1F]);

for (i = 0; i < 11; i++)

z += mul16(coeffsbp1[i], buflp[(offsetlp - i) & 0x1F] + buflp[(offsetlp - 22 + i) & 0x1F]);

offsetlp = (offsetlp + 1) & 0x1F;

return z >> 15; // Return filter output

}

void calcNet(void) //Neural Network Calculation function

{

//calculate the outputs of the hidden neurons

//the hidden neurons are tanh

int i = 0;

for(i = 0;i<numHidden;i++)

{

hiddenVal[i] = 0.0;

for(int j = 0;j<numInputs;j++)

{

hiddenVal[i] = hiddenVal[i] + (trainInputs[j] * weightsIH[j][i]);

}

hiddenVal[i] = tanh(hiddenVal[i]);

}

//calculate the output of the network

//the output neuron is linear

outPred = 0.0;

for(i = 0;i<numHidden;i++)

{
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outPred = outPred + hiddenVal[i] * weightsHO[i];

}

//calculate the error

// errThisPat = outPred - trainOutput[patNum]; // for training

}

void initWeights(void) // Neural network weights

{

weightsIH[0][0] = -8.951717;

weightsIH[1][0] = 7.653355;

weightsIH[2][0] = 6.631219;

weightsIH[3][0] = 11.094660;

weightsIH[0][1] = 3.310763;

weightsIH[1][1] = 3.215580;

weightsIH[2][1] = -0.963815;

weightsIH[3][1] = 6.746135;

weightsIH[0][2] = 3.641091;

weightsIH[1][2] = -1.118857;

weightsIH[2][2] = -2.280876;

weightsIH[3][2] = -12.060060;

weightsIH[0][3] = 11.269429;

weightsIH[1][3] = 6.643443;

weightsIH[2][3] = -6.614878;

weightsIH[3][3] = 14.733462;

weightsIH[0][4] = 0.743146;

weightsIH[1][4] = 10.348796;

weightsIH[2][4] = -15.558205;

weightsIH[3][4] = 18.596556;

weightsIH[0][5] = -12.275212;

weightsIH[1][5] = -1.859199;

weightsIH[2][5] = -20.228093;

weightsIH[3][5] = -12.789903;

weightsIH[0][6] = -21.430971;

weightsIH[1][6] = -3.899026;

weightsIH[2][6] = -12.496226;

weightsIH[3][6] = 4.471426;

weightsIH[0][7] = 1.179519;

weightsIH[1][7] = 8.862174;

weightsIH[2][7] = 7.262130;

weightsIH[3][7] = 0.380516;

weightsIH[0][8] = -3.315827;

weightsIH[1][8] = 0.415380;

weightsIH[2][8] = -0.804302;

weightsIH[3][8] = -7.525758;

weightsIH[0][9] = 8.997232;

weightsIH[1][9] = 6.043105;
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weightsIH[2][9] = 4.525014;

weightsIH[3][9] = -4.655872;

weightsIH[0][10] = -2.567476;

weightsIH[1][10] = -1.001431;

weightsIH[2][10] = -5.790394;

weightsIH[3][10] = -12.538476;

weightsIH[0][11] = 0.964474;

weightsIH[1][11] = -6.690062;

weightsIH[2][11] = 5.976368;

weightsIH[3][11] = -26.924518;

weightsIH[0][12] = 6.004541;

weightsIH[1][12] = 5.625768;

weightsIH[2][12] = 10.801397;

weightsIH[3][12] = -0.778696;

weightsIH[0][13] = -2.619037;

weightsIH[1][13] = -11.472975;

weightsIH[2][13] = -9.598161;

weightsIH[3][13] = 0.805282;

weightsIH[0][14] = 2.341189;

weightsIH[1][14] = -7.747893;

weightsIH[2][14] = 0.036407;

weightsIH[3][14] = -11.517146;

weightsIH[0][15] = 2.618314;

weightsIH[1][15] = 2.424869;

weightsIH[2][15] = -7.886291;

weightsIH[3][15] = -12.294660;

weightsIH[0][16] = -1.006894;

weightsIH[1][16] = -3.148300;

weightsIH[2][16] = -10.965334;

weightsIH[3][16] = -2.622260;

weightsIH[0][17] = 1.943215;

weightsIH[1][17] = 9.396184;

weightsIH[2][17] = 8.086076;

weightsIH[3][17] = 0.148540;

weightsIH[0][18] = -7.163011;

weightsIH[1][18] = -5.225458;

weightsIH[2][18] = 15.685931;

weightsIH[3][18] = -16.417650;

weightsIH[0][19] = -11.894525;

weightsIH[1][19] = 18.598566;

weightsIH[2][19] = -1.046420;

weightsIH[3][19] = 14.616560;

weightsHO[0] = -1.369972;

weightsHO[1] = 0.576864;

weightsHO[2] = -0.742043;

weightsHO[3] = -0.751341;

weightsHO[4] = 0.608129;

weightsHO[5] = 1.522254;
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weightsHO[6] = -1.743967;

weightsHO[7] = 0.138998;

weightsHO[8] = -0.989855;

weightsHO[9] = -2.040964;

weightsHO[10] = 1.837575;

weightsHO[11] = 1.636948;

weightsHO[12] = 1.512855;

weightsHO[13] = 0.959156;

weightsHO[14] = -1.104560;

weightsHO[15] = -1.112830;

weightsHO[16] = -1.348077;

weightsHO[17] = -0.206748;

weightsHO[18] = -0.431466;

weightsHO[19] = 1.069858;

}

void DisplayHello(void){

LCDMem[1] = LCDHexChar[9]; //Display hello on LCD

LCDMem[2] = LCDHexChar[3];

LCDMem[3] = LCDHexChar[3];

LCDMem[4] = LCDHexChar[14];

LCDMem[5] = LCDHexChar[2];

}

void DisplayResult1(void){

LCDMem[1] = LCDHexChar[3]; //Display Clas: sol on LCd

LCDMem[2] = LCDHexChar[9];

LCDMem[3] = LCDHexChar[11];

LCDMem[4] = LCDBlankChar | SEG_H;

LCDMem[5] = LCDHexChar[15];

}

void DisplayResult2(void){

LCDMem[1] = LCDHexChar[12]; //Display Clas: sag on LCD

LCDMem[2] = LCDHexChar[10];

LCDMem[3] = LCDHexChar[11];

LCDMem[4] = LCDBlankChar | SEG_H;

LCDMem[5] = LCDHexChar[15];

}

void DisplayReady(void){

LCDMem[1] = LCDHexChar[6]; //Display ready on LCD

LCDMem[2] = LCDHexChar[13];

LCDMem[3] = LCDHexChar[10];

LCDMem[4] = LCDHexChar[14];

LCDMem[5] = LCDHexChar[5];

}
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void DisplayGo(void){

LCDMem[1] = LCDHexChar[7]; //Display start on LCD

LCDMem[2] = LCDHexChar[5];

LCDMem[3] = LCDHexChar[10];

LCDMem[4] = LCDHexChar[7];

LCDMem[5] = LCDHexChar[11];

}

void DisplayStop(void){

LCDMem[1] = LCDHexChar[4]; //Display stop on LCD

LCDMem[2] = LCDHexChar[9];

LCDMem[3] = LCDHexChar[7];

LCDMem[4] = LCDHexChar[11];

LCDMem[5] = LCDBlankChar;

}

//end of main.c

//

//16x16=>32 multiply

//long mul16(register int x, register int y)

//

// Edited by: M Morales, November 2008

// * Updated calling conventions in support of IAR compiler >= 4.x

//*****************************************************************************

// THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR

// REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,

// INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS

// FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR

// COMPLETENESS OF RESPONSES, RESULTS AND LACK OF NEGLIGENCE.

// TI DISCLAIMS ANY WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET

// POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY

// INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE PROGRAM OR

// YOUR USE OF THE PROGRAM.

//

// IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

// CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY

// THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED

// OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT

// OF THIS AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM.

// EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF

// REMOVAL OR REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS
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// OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, OR LOSS OF

// USE OR INTERRUPTION OF BUSINESS. IN NO EVENT WILL TI'S

// AGGREGATE LIABILITY UNDER THIS AGREEMENT OR ARISING OUT OF

// YOUR USE OF THE PROGRAM EXCEED FIVE HUNDRED DOLLARS

// (U.S.$500).

//

// Unless otherwise stated, the Program written and copyrighted

// by Texas Instruments is distributed as "freeware". You may,

// only under TI's copyright in the Program, use and modify the

// Program without any charge or restriction. You may

// distribute to third parties, provided that you transfer a

// copy of this license to the third party and the third party

// agrees to these terms by its first use of the Program. You

// must reproduce the copyright notice and any other legend of

// ownership on each copy or partial copy, of the Program.

//

// You acknowledge and agree that the Program contains

// copyrighted material, trade secrets and other TI proprietary

// information and is protected by copyright laws,

// international copyright treaties, and trade secret laws, as

// well as other intellectual property laws. To protect TI's

// rights in the Program, you agree not to decompile, reverse

// engineer, disassemble or otherwise translate any object code

// versions of the Program to a human-readable form. You agree

// that in no event will you alter, remove or destroy any

// copyright notice included in the Program. TI reserves all

// rights not specifically granted under this license. Except

// as specifically provided herein, nothing in this agreement

// shall be construed as conferring by implication, estoppel,

// or otherwise, upon you, any license or other right under any

// TI patents, copyrights or trade secrets.

//

// You may not use the Program in non-TI devices.

//*****************************************************************************

public mul16

RSEG CODE

mul16

#define x1 r9

#define z0 r14

#define z1 r15

#define x r12

#define y r13

push r9

clr z0
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mov z0,z1

mov z0,x1

tst x

jge xbooth_2

mov #-1,x1

jmp xbooth_2

xbooth_6

add x,z1

addc x1,z0

xbooth_1

rla x

rlc x1

xbooth_2

rra y

jc xbooth_5

jne xbooth_1

jmp xbooth_4

xbooth_5

sub x,z1

subc x1,z0

xbooth_3

rla x

rlc x1

rra y

jnc xbooth_6

cmp #0FFFFh,y

jne xbooth_3

xbooth_4

mov z1,r12

mov z0,r13

pop r9

reta

end

//end of mul.s43
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