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ABSTRACT

BAYESIAN MODELING AND INFERENCE FOR
FUNCTIONAL MAGNETIC RESONANCE IMAGING OF

THE VISUAL CORTEX

For the most e�ective use of functional magnetic resonance imaging (fMRI),

mapping the brain signals to a statistically valid map is crucial. The common approach

to create a statistic at each voxel is applying the frequentist or the classical statistics.

However, there are many challenges raised by the use of classical statistics to test the

functional data such as the multiple comparison problem, and the limitation in the

interpretation of the parameters. As an alternative, a Bayesian approach can be used

to assess the data based on the posterior probability distributions of the parameters. In

this study, the power of Bayesian inference was compared against classical inference in

random e�ect analyses: A group data collected from visually stimulated volunteers was

assessed following a simulation study. In order to assess the results of the statistical

inference for the group level, the variation of the e�ect sizes with respect to stimulus

frequency was used. A comparison was performed between the change in the e�ect

sizes of lateral geniculate nuclei (LGN) and primary visual area (V1) during graded

visual stimulation by using the posteror probability maps (PPMs) with an e�ect size

threshold of zero. This comparison became possible with the fact that once we had

the posterior probabilities the activity in LGN was able to be visualized by changing

the e�ect size threshold and without decreasing the signi�cancy threshold, which is

not possible to achieve with classical inference where the data is tested against the

null hypothesis. Despite of the small magnitude of activation in LGN we could show

the connectivity between V1 and LGN and the di�erences in response characteristics

during graded visual stimulation.

Keywords: fMRI, Bayesian inference, visual cortex, LGN, PPMs.
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ÖZET

GÖRSEL KORTEKS�N FONKS�YONEL MANYET�K
REZONANS GÖRÜNTÜLEMES� �Ç�N BAYES

MODELLEME VE ÇIKARIMI

Fonksiyonel manyetik görüntülemenin en etkin kullan�m� aç�s�ndan beyin sinyal-

lerinin istatistiki bir haritayla gösterimi büyük önem ta³�r. Her bir vokselde bir istatis-

tik olu³turmak için kullan�lan genel yakla³�m klasik istatistiktir. Ancak, klasik istatis-

ti§in kullan�m�nda bir çok zorluk mevcuttur, örne§in, çoklu kar³�la³t�rma problemi veya

parametrelerin yorumlanmas�ndaki s�n�rlar gibi. Bir alternatif olarak, parametrelerin

³artl� olas�l�k da§�l�mlar�na dayanan Bayesçi yakla³�m verilerin de§erlendirmesinde kul-

lan�labilir. Bu çal�³mada Bayes ç�kar�m�n�n gücü klasik ç�kar�mla rasgele etki analizi

üzerinden k�yasland�: Bir simülasyon çal�³mas�n�n ard�ndan, görsel olarak uyar�lm�³

deneklerden toplanan grup datas� de§erlendirildi. Grup seviyesindeki istatistiksel ç�kar�-

m�n sonuçlar�n� de§erlendirmek için etki büyüklü§ünün uyaran frekans�yla de§i³imi

kullan�ld�. Etki büyüklü§ü e³i§i s�f�r olan ³artl� olas�l�k haritalar� kullan�larak lat-

eral genikülat çekirdeklerin (LGÇ) ve birincil görme korteksinin etki büyüklüklerindeki

de§i³im kar³�la³t�r�ld�. Bu kar³�la³t�rman�n yap�labilmesi ³artl� olas�l�klar bilindi§inde

anlaml�l�k seviyesini dü³ürmeden etki büyüklü§ü e³i§inin de§i³tirilerek LGÇ'deki ak-

tivitenin görüntülenebilmesi ile mümkün hale geldi; bu durumu verinin bo³ hipoteze

kar³� test edildi§i klasik istatistikle yapabilmek mümkün de§ildir. LGÇ'deki aktivite

de§erinin küçük olmas�na kar³�n birincil görme korteksi ile aras�ndaki `ba§lan�rl�§�' ve

artan görsel uyaranlar s�ras�nda bu iki bölge aras�ndaki cevap karakteristi§inin fark-

lar�n� gösterebildik.

Anahtar Sözcükler: fMRG, Bayesçi ç�kar�m, görsel korteks, LGÇ, PPM.
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1. Introduction

1.1 Motivation and Objectives

Understanding the human brain function is possible with di�erent functional

brain imaging technics. While the methods such as single unit, patch clamp, light mi-

croscopy can provide information about neuronal dynamics directly from neurons and

dendrites, it is possible to map the brain function in terms of larger functional units. For

example, electrical potentials and magnetic �elds in the brain can be recorded with elec-

troencephalography (EEG) and magnetoencephalography (MEG), respectively. They

have good temporal resolution but poor spatial resolution. There are optical imaging

technics such as near infrared spectroscopy (NIRS) having a limited spatial resolution

because of the light scattering by the skull. In contrast, images acquired with func-

tional magnetic resonance imaging (fMRI) and positron emission tomography (PET)

have higher spatial resolution.

While structural MRI is used to distinguish di�erent types of tissue, the goal of

the functional MRI is relating the neuronal activity to a certain type of experimental

stimuli via the so called blood oxygen level dependent(BOLD) signal. Today, fMRI is

widely used in many clinical applications, e.g. in neurology, psychiatry, pharmacology,

study of emotion, and also in many research applications of sensorimotor, auditory,

language systems, short-term and long-term memory, etc. The data hierarchy of an

fMRI experiment is as follows: Subjects, sessions, runs, single run, volume, slices, voxel.

Each run has a collection of data as a time series of a volume.

For the most e�ective use of fMRI, mapping the brain signals to a statistically

valid map is crucial. The common approach to create a statistic at each voxel is the

frequentist or the classical statistics. However, there are many challenges raised by the

use of classical statistics to test the functional data such as the multiple comparison

problem, and the limitation in the interpretation of the parameters. As an alternative,
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a Bayesian approach can be used to assess the data based on the posterior probability

distributions of the activations.

First of all, we may ask questions about the absolute values of the parameters

with Bayesian inference. It is available to infer about the probability that a parameter

lies in a speci�ed interval [1]. This is an obvious advantage over classical inference

where the data can be tested only under the null hypothesis that the value of the

parameter is zero. Therefore, the frequentist approach is limited to the rejection of

the null hypothesis making it impossible to ask questions about the values of the

parameters.

Secondly, the multiple comparison problem associated with classical inference

can be overcome with Bayesian inference. The correction for the P-values with a

Bonferroni correction will be too conservative because of the spatial correlation in the

functional images where the number of independent observations is not equal to the

number of voxels. Therefore, the random �eld theory is used to solve this problem.

However, the underlying assumption of RFT is that the residual errors in the general

linear model are continuous multivariate Gaussian distributions, which is not in real life,

where the voxels might have di�erent noise properties due to the brain anatomy (refer

to section 3.3 for a detailed explanation). Hence, a Bayesian inference will circumvent

such corrections by using directly the probability that a voxel is activated.

In this study, we aim to use a Bayesian approach to assess group data collected

from 40 visually stimulated subjects, following a simulation study. Then we will com-

pare and discuss the power of Bayesian inference against classical inference in random

e�ect analyses. Statistical parametric mapping (SPM) is based on classical inference,

hence it is a limited tool. We will use posterior probability maps (PPMs) to visualize

the results from the Bayesian inference based on the posterior probability of activations.
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1.2 Outline of the Thesis

The next chapter gives a brief overview about the physiological basis of fMRI,

the so called BOLD e�ect, image acquisition with fMRI and also types of experimental

paradigms. Because this thesis aims to compare di�erent statistical methods to assess

fMRI data, Chapter 3 gives an introduction about common statistical approaches used

in fMRI data analysis and discusses many problems associated with the classical infer-

ence. Then, Chapter 4 introduces the Bayesian approach as an alternative statistical

tool which is further explained with a simulation study. In Chapter 5, the methods

used in the two-level analysis of a real large dataset are described. The results are vi-

sualized with posterior probability maps compared to statistical parametric maps, and

also quanti�ed with e�ect sizes for the whole brain as well as some speci�c regions in

Chapter 6. Finally, the results are further discussed and compared with similar studies

in Chapter 7.
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2. Principles of MRI

2.1 The BOLD Signal

Blood has a high concentration of deoxyhemoglobin, and a low oxyhemoglobin

concentration during the resting state. In contrast, brain has a high concentration

of oxyhemoglobin, which reduces static magnetic �eld. Because deoxyhemoglobin is

paramagnetic and oxyhemoglobin is diamagnetic, at the intersection of brain and blood

is static magnetic �eld inhomogeneities, shortening T2*, which in turn reduces the

signal intensity.

Cerebral blood �ow (CBF) is a measure of oxygen delivery to the brain tissue.

After a neuronal activation, there is an increase in the oxygen consumption so that

increased CBF will increase the oxyhemoglobin concentration and reduce the deoxyhe-

moglobin concentration. Therefore, local magnetic �eld di�erences at the intersection

of brain and blood will be less than the case of the resting state. It has been observed

that reduced inhomogeneity provides enhanced local image intensity in the regions of

neuronal activation [2]. This is the so called BOLD e�ect, which in real life is more

complicated.

In an fMRI experiment the correlation between the stimulus and the stimulus-

induced BOLD response is measured. It has been shown that the neural activity can

be expressed in terms of a linear transform of fMRI response. Figure 2.1 shows the

linear transform model for the Retinal-V1 pathway [3]. The fMRI signal is given with

a linear transform of the neural response which is a nonlinear function of the stimulus.

The fMRI signal can be modeled with the convolution of the stimulus S(t) and the

hemodynamic response function (HRF):

BOLD(t) = HRF · S(t) =

∫
h(t− u)S(u) du. (2.1)



5

Figure 2.1 fMRI linear transform model for the Retinal-V1 pathway [3].

A typical hemodynamic response begins with a signal decrease, which was ob-

served at high-�eld strengths [4]. This initial-dip is originated from the higher cerebral

metabolic rate of oxygen consumption (CMRO2). Following this signal decrease, both

the CBF and the CBV increases (Figure 2.2). CBF transports more oxygen to the

activation site so that positive BOLD response is observed during 5-10 s. Afterwards,

CBF and CMRO2 turn to their baseline levels faster than CBV which transports more

deoxyhemoglobin resulting in the signal undershoot up to 30 s after the onset of the

stimulus. There are many techniques used to model the HRF in the literature such

as using the temporal basis functions [5], inverse logistic functions [6], smooth �nite

impulse response (FIR) �lter [7], canonical HRF with time and dispersion derivatives

[8], and the canonical SPM HRF [9]. Hemodynamic response varies between subjects

and in di�erent brain regions [10]. It is important to remember that using a wrong

shape will reduce the sensitivity of the model and inference.

2.2 Echo-Planar Imaging

MR scanners use a series of radio frequency pulses, gradient waveforms, and data

acquisition to manipulate the magnetization in order to produce the desired signal. The

series of these events is called pulse sequence [11]. The common pulse sequence used

for fMRI is echo-planar imaging (EPI). Basic EPI pulse sequences are gradient-echo

EPI, spin-echo EPI, inversion-recovery EPI, single-shot EPI, and multishot EPI. A
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Figure 2.2 Haemodynamic response function has an negative initial dip, a positive BOLD response,
and a negative undershoot [2].

representation of gradient-echo EPI sequence, which was used in this thesis as well,

is shown in Figure 2.3. A selective excitation pulse produces an FID signal. The �ip

angle of the excitation pulse is set to 90o. Because each k-space line is acquired at

di�erent TE, the amplitude of the gradient echo signal is a function of TE in that echo

train, n:

S(n) = S0 exp(−TE(n)/T2∗). (2.2)
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Figure 2.3 An example of a gradient-echo EPI pulse sequence [11].

2.3 Experimental Design

In order to test a research question an experiment must be set up properly. In

an experimental design, there are independent and dependent variables. In an fMRI

experiment BOLD signal change is used as the dependent variable. The hypothesis

is tested by manipulating the independent variables and checking whether the BOLD

signal is changed as well. This hypothesis testing enables the researcher to ask questions

about heamodynamic activity, neuronal activity, or the psychological processes. First

type of hypothesis is about heamodynamic activity which can be measured directly

from the BOLD change such as the nonlinearity of the hemodynamic response [12, 13].

Secondly, neuronal activity might be the research question in an fMRI experiment.

Biophysical modeling studies for integration of EEG and fMRI [14], or spontaneous

�uctuations in neuronal activities can be questioned by transforming the BOLD signal.

The third type of hypothesis address the psychological processes such as attention [15],

memory [16], perception [17].

2.3.1 Blocked Designs

In a blocked design experiment an experimental condition is compared to a

control condition so that the dependent measure is compared in each block condition.
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These conditions might consist of two di�erent tasks, or a series of on periods of

activation followed by o� periods, which are known as null-task blocks. The former

design is called as alternating design. Simply, a block is a presentation of similar

stimuli together. Duration of the blocks is very important and depends on the research

question. For example, in a sustained attention experiment, a task may be composed

of 90-sec blocks of continuous stimuli presentation [18]. Further, if the block length is

very short (less than about 10 s) then the hemodynamic response cannot return to its

baseline during the o� period, so the BOLD signal amplitude will decrease [19].

2.3.2 Event-Related (Trial-Based) Designs

A block design would not be a proper design in a recognition experiment where

the presentation of the familiar stimuli together would be meaningless. With an event-

related design, it is possible to randomize the presentation of familiar and novel stimuli.

It is assumed that the neural activity occurs for short and discrete intervals in an

event-related designed experiment. No assumptions are made about the shape of the

hemodynamic response. Trials are separated with an interstimulus interval.

Figure 2.4 A study on block-design and event-related design shows that there are slightly more
active voxels observed in the block-design [20].
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2.3.3 Mixed Designs

In event-related designs, each trial produces a neural activity as a transient

time course. The neural activity is sustained throughout the performance of a task,

so event-related designs ignore the âsustainedâ activity. On the other hand, blocked

designs would confound the sustained activity and trial-related activity [21]. Embed-

ding the trials in a task block and using the control block alternately form the mixed

design (Figure 2.5) allows examining the sustained processes in the brain by separating

transient activity from sustained activity.

Figure 2.5 (A) Mixed design. (B) Trials with di�erent intervals are embedded in a task block. (C)
In the combined condition, sustained activity and transient activity are superimposed [21].
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3. fMRI Data Analysis

The purpose of fMRI data analysis is to identify the voxels which show higher

intensity during the period where stimulation was applied. An active voxel shows an

intensity level signi�cantly higher than the noise level. Preprocessing steps reduce

unwanted noise and prepare the data for further statistics. Finally, the signi�cantly

active voxels are displayed on statistical maps with a color scale indicating the degree

of signi�cance.

3.1 Preprocessing

Realignment: During an fMRI session, subjects move their heads causing

variations in the time series of a voxel to refer to another point in the brain over time.

A realignment routine is applied using a least squares approach and a rigid body spatial

transformation with 6 parameters (three parameters for translation, three parameters

for rotation). Commonly the �rst image is selected as the reference scan, and the rest

is realigned accordingly.

Registration: Functional data have low-resolution and little anatomical con-

trast but anatomical image has a higher resolution with many details. To answer how

the functional data correspond to the underlying anatomy, functional-structural coreg-

istration is applied by minimizing the cost function with a rigid body transformation

[22]. Echo planar images might have distortions along a certain axis. Then a nine-

parameter rigid-body transformation is used. If further distortions exist, some warping

algorithms can be applied.

Segmentation: MR images of the brain can be segmented into three tissue

types: white matter (WM), grey matter (GM) and cerebrospinal �uid (CSF). These

tissues are classi�ed by using the probability of each voxel belonging to WM, GM,
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or CSF based on the image intensity ranges [23]. These probability images, which

are obtained from 250 young normal subjects, are provided by Montreal Neurological

Institute [24].

Normalization: In group studies there are many di�erences across subjects in

shape, size, orientation, and gyral anatomy. In order to compensate the variabilites

of individuals, brain of each subject must be transformed into a common space for

multisubject comparisons. For this reason, data must be represented in a common

coordinate space, the stereotaxic space. There are two spaces used in neuroimaging:

Talairach space which was derived from the brain of an elderly woman, and the second

template was created by Montreal Neurological Institute (MNI) consisting of an average

of 152 T1-weighted brain images.

Smoothing: Noise is an unavoidable random variable in image intensity. In an

fMRI experiment, the change in intensity due to stimulation is between 0.5 per cent

and 5 per cent of the average, whereas the noise level is between 0.5 per cent and 1

per cent [25]. Time series of each voxel should be �ltered to reduce the low and high

frequency noise. This is achieved by adjusting the overall intensity level by convolving

each volume with a Gaussian pro�le �lter. Typically, a width of between 3 and 10

mm full-width-half-maximum (FWHM) is used. Spatial smoothing is also necessary

for further statistical analysis [26] unless a variational Bayes approach is applied.

Temporal Filtering: High-pass �ltering is applied to time series of each voxel

in order to get rid of low frequency components caused by scanner drift or physiological

e�ects such as breathing or heartbeat.

3.2 The General Linear Model

Suppose the response variable in a voxel is expressed with a random variable,

yj, where j = 1, . . . , J is the number of observation. Also, for each observation there

is a set of L explanatory variable, xjl, where l = 1, . . . , L. The general linear model



12

explains the response variable yj in terms of a linear combination of the explanatory

variables plus an error term [23].

yj =
L∑
l=1

xjlβl + εj (3.1)

Here the βi are parameters to be estimated, and εj are independent and identically

distributed normal random variables with zero mean and variance σ2, εj ∼ N(0, σ2). It

is very common and useful to express the general linear model with matrix formulation.

Writing the above equation for each observation gives a set of equations which is given

with a matrix form:

y1
...

yj
...

yJ


=



x1,1 · · · x1,l · · · x1,L
...

xj,1 · · · xj,l · · · xj,L
...

xJ,1 · · · xJ,l · · · xJ,L





β1
...

βl
...

βL


+



ε1
...

εj
...

εJ


(3.2)

and is written in matrix notation as:

Y = Xβ + ε (3.3)

While modeling fMRI data, Y is the time series of each voxel, X is the design matrix

with a size of J x L, and β is the column vector of parameters. Design matrix X includes

every assumption made in modeling the data, and the rest is encoded in the error term

for each observation. Therefore, all the factors that e�ect the measurements should be

included in the model. Statistical Parametric Mapping is a mass-univariate approach,

so that the same model is applied at each voxel. Ordinary least square (OLS) is a

common method to solve the general linear model. It �nds the parameter estimates so

that sum of squared errors becomes minimum:

||ε||2 = ||Y −Xβ̂||2 (3.4)

In this case the parameters β are estimated by using:

β̂ = (XTX)−XTY (3.5)
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where X− denotes the pseudo inverse of X.

3.3 Classical Inference

Once the parameter estimation is made, and the errors are calculated, speci�c

questions can be asked about the e�ects by using contrasts. Statistical inference is

performed through t-contrasts or F-contrasts. The form of a t-contrast is a linear com-

bination of parameter estimates. For example, if we have three parameter estimates,

β1, β2, β3 and we want to test the �rst parameter β1, then the contrast vector should

be cT = [1, 0, 0]. Also, a negative relation could be tested with cT = [−1, 0, 0]. After

the contrasts are speci�ed t-statistics are performed given by [5, 27].

t = λT β̂/SD(λT β̂) (3.6)

Each and every voxel is analysed with t-test and the resulting parameters are combined

in a statistical parametric map (SPM). The values in SPMs may be distributed accord-

ing to a known probability density function, usually the Studentâs t or F-distributions.

These are also named as t- or F-maps.

In the statistical inference we search for the activation in the whole brain (or a

part of it) although we ask questions about regionally speci�c e�ects. Because we are

looking for the activation at unknown locations the voxels with the larger test statistic

Z should be chosen. Therefore, the image is thresholded at the height z excluding the

false positives with a probability of say 0.95, which means the chance that we take

when we reject the null hypothesis or the probability of falsely assigning a voxel as

activated is �ve per cent. Then we can raise the threshold to make the probability of

�nding activation in these parts 0.05. This is problematic because of testing the null

hypothesis at a very large number of voxels and related with the multiple comparison

problem in classical statistics.

Instead of referring to the whole brain we can restrict the analysis to a family
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of voxel statistics. In this case the error rate will be the family wise error. One

of the ways for performing a family-wise null hypothesis test is height thresholding

which accounts for the number of tests. The Bonferroni correction is a simple way

for adjusting the height threshold. Given a family-wise error rate P FWE and a brain

volume of n t-statistics the height threshold will be

α = P FWE/n. (3.7)

Data from a voxel is not independent from its neighboring voxels in most functional

images. This spatial correlation is based on three factors: Firstly, during the ac-

quisition and reconstruction the signal from a voxel will also produce some signal

change in nearby voxels because of the noise sources and the BOLD activity that spans

large regions. Secondly, the preprocessing steps such as normalization and realign-

ment performed prior to statistical analysis contain resampling that require averaging

over neighboring voxels. The �nal factor causing the correlation is spatial smoothing.

Although the noise is uncorrelated throughout the image, the signal is not indepen-

dent. Smoothing also requires averaging of neighboring voxels to increase the signal to

noise ratio according to the matched �lter theorem [28], so it will increase the spatial

correlation.

The Bonferroni correction de�ned in equation 3.7 relies on the assumption that

the family-wise probability of each voxel is independent, with n is the number of inde-

pendent voxels. In fact, the number of independent observations will be much smaller

than the number of voxels due to the spatial correlation in the functional images as

explained above. Hence, the Bonferroni correction will overestimate the number of

independent observations. Simply putting the number of independent observations, ni

instead of n will hold for the right correction. However, after the spatial smoothing

that blurs the image, there is not a simple way of calculating the number of indepen-

dent values. And the Bonferroni correction will be too conservative and cannot be used

anymore. This problem can be solved with random �eld theory (RFT).

Before an introduction to the random �eld theory, the concept of resolution
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element (resel) should be introduced. A resel can be de�ned as the volume of voxels

that has the same dimensions as the FWHM of the smoothed image [29]. For example,

if a 2D image has a 8 pixels by 8 pixels of smoothness, then the resel is a block of

64 pixels. Having 128 x 128 pixels in the image, the number of resels is 128 x 128

/64 = 256. For a 3D dataset consisting x x y x z voxels and a smoothness with

FWHM of V voxels, we can formulate the number of resells as

R = (x x y x z) / V 3 (3.8)

According to the RFT, the appropriate height threshold can be found in a few steps.

First, the spatial correlation of the image is estimated. Then this smoothness value is

substituted in the RFT equation to compute the corresponding expected Euler char-

acteristic at di�erent thresholds. Euler characteristic (EC) can be thought of as the

number of active clusters after thresholding, so the expected EC, E[EC], will be the

probability of �nding a cluster that is above threshold in the image. In this case, the

E[EC] can be treated as our family wise error rate, P FWE ≈ E[EC].

Once we know the number of resels in a 2D image, the E[EC] can be estimated

with the equation given by Worsley et al. [29]:

E[EC] = R(4loge2)(2π)−3/2Zt exp (Zt
2/2) (3.9)

See Figure 3.1 for a comparison of uncorrected and a family wise error (FWE) corrected

statistical maps. One can conclude that a voxel statistic of the magnitude 4.61 has a 5

per cent chance of arising anywhere in the whole brain drawn from the null distribution.

A comparison for RFT and Bonferroni correction can be made for a dataset

conta ining 100 resels, there is a 0.05 probability of seeing a cluster of activation at

threshold Z of 3.8, whereas in the Bonferroni correction the threshold will be a Z-

threshold of 3.3, giving a less conservative test of signi�cance (0.05/100).

The underlying assumption of RFT is that error �elds are continuous multivari-

ate Gaussian distributions. This is provided only in case of su�ciently smoothing the
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Figure 3.1 The p-value is corrected using the random �eld theory.

data and correctly specifying the general linear model so that the residual errors are

Gaussian. In real life, not all the voxels would have similar noise properties. One voxel

may contain a major blood vessel or it can be on the edge of the brain.

The proposed method is the Bayesian inference where instead of referencing to

a null hypothesis, inferences are based on the posterior distributions. Chapter 4 will

describes the Bayesian approach.

3.4 Intersubject Analyses

A single result for a group of subjects can be created with statistical methods

including `�xed-e�ects' and `random-e�ects' analyses.

3.4.1 Fixed-e�ects analyses

This method includes comparing the data points for all subjects. It is assumed

that experimental e�ect is constant across subjects and the stimulus has the same

e�ect upon BOLD signal in every subject. Because this method involves averaging the

conditions across the subjects, the inference will have a high sensitivity to the extreme

results form individual subjects. This allows making inference about the subjects who

were run in that particular study.
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3.4.2 Random-e�ects analyses

Unlike �xed-e�ects analyses, random-e�ects analyses take into account between-

session errors, and the inference tells us about the population from which the group

of subjects was drawn. Subjects might have BOLD responses with large di�erences in

amplitude, so at �rst level activations for each subject are calculated independently.

At the second level within a classical approach a t-test is used to evaluate whether

�rst-level parameters of each subject are drawn from a distribution with zero mean. If

the test is signi�cant then experimental manipulation has an e�ect which is valid for

the population.

Figure 3.2 Generative model of random e�ects analysis [23].
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4. Bayesian Advances in Neuroimaging

4.1 Bayes' Theorem

Figure 4.1 The posterior probability can be derived from the joint probability of two events.

Given probabilities p(θ), p(y), and the joint probability p(θ, y), we can write the

conditional probabilities

p(y|θ) =
p(θ, y)

p(θ)

p(θ|y) =
p(θ, y)

p(y)
(4.1)

Eliminating p(θ, y) gives Bayes rule

p(y|θ) =
p(θ|y)p(y)

p(θ)
(4.2)

Given some observed data y, and the probability distribution of the model parameter

p(θ), the posterior or conditional probability distribution of the parameter p(θ|y) can

be calculated with equation 4.2. p(θ) is called as prior and it expresses our initial belief

about the parameter. p(θ|y) is called as the posterior and it expresses our belief about

the parameter in the presence of data. p(y|θ) is called the likelihood function of θ for

given data y. p(y) is constant with respect to parameter θ [30].

For any voxel, under Gaussian assumptions, one can calculate the posterior den-

sity using Bayes rule, with the speci�cation of the appropriate priors for the parameters
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and the likelihood function (Figure 4.2)

p(θ|y) ≈ p(y|θ)p(θ) (4.3)

These distributions can be speci�ed in terms of their means and variances in a

fully Bayesian approach. In this scheme, the mean and the precision of the posterior

distribution m and d, can be computed by the mean and precision of the prior (mo

and po) and the likelihood (mD and pD) with the formulae below. Precision is de�ned

as the inverse of the variance.

p = po + pD

m =
po
p
mo +

pD
p
mD (4.4)

Instead of using a fully Bayesian approach we will use the empirical Bayes which was

Figure 4.2 According to Bayes rule, the posterior distribution is closer to the likelihood because the
likelihood has lower variance.

de�ned by Friston et al., [31, 32]. In this approach variances of the prior distributions

are estimated from the data. This is why it is called empirical Bayes.



20

4.2 Parametric Empirical Bayes (PEB)

Almost all the models used in neuroimaging have a hierarchical structure. Em-

pirical Bayes is the approach for the treatment of hierarchical models in a Bayesian

framework. In hierarchical models, equation 4.3 can be written in terms of a factor-

ization of intermediate terms, p(θ|y1, y2). These terms are called empirical priors and

play an important role between the likelihood and priors. There are many examples

of this type of models where the parameters at one level control the distribution of

parameters at lower levels, eg. Markov models of hidden states or mixture models.

Estimating the variance components in fMRI time-series induced by multisub-

ject studies is performed through the Expectation-Maximization (EM) algorithm. The

covariance component estimation is also the connection between classical inference and

empirical Bayesian inference [32]. PEB is a special case of an EM algorithm for linear

Gaussian models (Figure 4.3). The goal of PEB is to estimate the intermediate level

parameters.

Figure 4.3 Parametric Empiric Bayes is a special case of an Expectation-Maximizastion Algorithm
to estimate posterior distirubutions for parameters in E-step and to update hyperparameters in M-step
[33].

The PEB algorithm used in the next chapter returns the moments of the poste-

rior probability distribution functions of a hierarchical linear observation model under
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Gaussian assumptions.

y = X1θ1 + ε1

θ1 = X2θ2 + ε2
...

θn−1 = Xnθn + εn (4.5)

At the �nal level θn is set to 1 and the known prior covariance is used. This

covariance comes from the variance in parameters over voxels: Because we are looking

for the same e�ect at each voxel there is a natural hierarchy in neuroimaging, where

the �rst level is the e�ect at any voxel, and the second is the e�ects over voxels [34].

Hence, the voxels are used as a second level providing the variances for any one voxel

in order to be used as the prior covariance. Then these priors are used to estimate the

error covariance hyperparameters at the higher levels.

The voxels which are going to be anaylsed with Bayesian inference, are iden-

ti�ed by maximum likelihood estimation at �rst. Conditional paremeter estimation

and ReML hyperparameter estimation are performed through Bayesian scheme. A hy-

perparameter is related to the probabilistic behaviour of a parameter. It is assumed

that on average over all voxel, the net experimental e�ect is zero but each voxel has

a variability determined by their prior variance. The prior variances of each voxel is

computed with empirical Bayes and used in the estimation of ReML hyperparameters.

To consider the ReML hyperparameter estimation as a variance component estimation,

covariance components which are induced by paremeter variations (Q), and which are

induced by error non-sphericity (V) are collapsed in a big covariance component struc-

ture.The estimated errors are given by

C = λ1Q1 + λ2Q2 (4.6)

where λ is the variance component or the hyperparameter. This estimation uses the

covariance over voxels given by Y Y T/n, with n is the number of voxels. The confounds

are treated as �xed with in�nite prior variance. The estimated errors which are going
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to be used for the estimation of conditional parameters can be written in the matrix

form:

Cθ =



∑
i=1 λiQi · · · 0
... ∞
...

. . .
...

. . .

0 ∞


(4.7)

This prior covariance is input for the next ReML which estimates the voxel-

speci�c error hyperparametersλε which in turn de�nes the error covariance Cε with the

appropriate correlation or nonsphericity of the errors V.

Once we estimate the prior covariance Cθ and the error covariance Cε, the pos-

terior moments of the parameters can be computed for each voxel. The posterior

covariance Cθ|y and the posterior mean µθ|y are given by [32].

Cθ|y = (XTC−1ε X + C−1θ )−1

µθ|y = Cθ|y(X
TC−1ε y + C−1θ µθ) (4.8)

Finally, in order to form a posterior probabilty map, the posterior moments are used

in the equation below for each voxel

p = 1− Φ(
γ − cTµθ|y√
cTCθ|yc

) (4.9)

where the Φ is the cumulative normal distribution and the c is the contrast vector which

is used to specify the corresponding e�ect (see section 3.3). This whole procedure to

construct a PPM is shown in Figure 4.4.
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Figure 4.4 Derivation of posterior probability maps with ReML algorithm for a hierarchical model
[34].

4.3 Simulation Study

Assume we have a dataset which was collected from 40 subjects. And the search

volume includes 100 voxels. We want to make a random-e�ect analysis and �nd the

maximum likelihood estimates and compare them with PEB estimates. This simulation

was adapted from [33] to mimic the real dataset used in the next section. The two-level

linear model is given by

y = Xθ + ε1

θ = µ+ ε2 (4.10)

We will use global shrinkage priors so that our prior belief is that across the whole brain

the average e�ect size is zero, µ = 0. Variability of the voxels will be determined by

their prior precision which is estimated by their prior precision. This prior precision can

be estimated from the data using Empirical Bayes. In this simulation we will simply
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take the variability of the voxels as normally distributed with the precision α = 1.

Also, the e�ect size across the subjects follow a normal distribution around the true

e�ect size with the precision λi, i = 1, .., 40 (Figure 4.5). In this case the covariance

components for the �rst and second level are given by

C1 =
∑
i=1

λiQi

C2 =
1

α
I100 (4.11)

The update equations for the hyperparameters λi and α are as follows

β(i) =
γi
N

N∑
n=1

yin

1

vi
=

1

N − γi

N∑
n=1

(yin − β(i))2

γi =
Nvi

Nvi + α

1

α
=

1∑
i γi

V∑
i=1

β(i)2 (4.12)

As one can see in Figure 4.9, for the gamma values which are de�ned as the ratio

of the data precision to the posterior precision for each voxel, PEB estimates are quite

accurate on average although it fails at a minority of the voxels with a high variability

between subjects. For example the gamma is extremely small for the voxel 29 which

has a large variance. For such voxels, Bayesian estimate of the population e�ect size

might be wrong. However, Figures 4.6-4.8 show that PEB estimates are more precise

than ML estimates for the majority.
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Figure 4.5 Data from 40 subjects (black dots) are normally distributed around the true e�ect size
with the precision λi. Blue crosses are the sample means.

Figure 4.6 Maximum Likelihood estimates (blue crosses) with an estimation error of 1.98. Red
circles are the real e�ect sizes for each voxel.
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Figure 4.7 After 5 PEB iteration.

Figure 4.8 After 10 PEB iteration. Estimation error is 0.70. True α = 1.00, Estimated α = 1.24.
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Figure 4.9 Ratio of the data precision to the posterior precision.
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5. Bayesian Estimation and Inference for the fMRI Data with

Steady State Visual Evoked Stimuli

5.1 Data Acquisition

fMRI was recorded from 40 volunteers (20 male, 20 female, mean age 25.8)

without any neurological disorder. The procedure was approved by the local ethics

committee of Istanbul University, Istanbul Faculty of Medicine.

Flashing light stimuli were presented at 6, 8, 10, 12, 14, 18, 22, 26, 30, 34, 38,

42 and 46 Hz. Each session (Figure 5.1) started with 29.8 s (10 TR) baseline recording

followed by three blocks each consisting of 44.7 s (15 TR) of stimulation and 44.7 s

baseline recording yielding a total period of 298 s, and 70 minutes for all sequences.

A 1.5 T MR system (Achieva, Philips Healthcare, Best, The Netherlands) was used to

acquire T2∗-weighted images (TR/TE/FA = 2981 ms/50 ms/90◦, matrix size = 64 x

64, 32 axial slices, voxel size = 3.59 x 3.59 x 4) with a gradient echo EPI sequence.

More detailed information about the acquisition protocol for the experiment can be

found in [35].

Figure 5.1 Block design for the stimuli used in the acquisition.
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5.2 Data Analyses

5.2.1 Preprocessing

Preporocessing steps included realignment of functional images and creating the

mean image, coregistration of structural image to mean functional image, segmentation

of coregistered structural image, normalization of bias corrected structural image and

realigned functionals into a standard space (MNI152, 2mm) template. The code was

modi�ed from Rick Henson's script source available at [36]. Finally, spatial smoothing

with a Gaussian kernel of 8 mm FWHM and a high-pass temporal �ltering were applied.

5.2.2 First Level Analyses

For the general linear model being used at �rst level, the design matrix comprised

stimulus pattern convolved with the hemodynamic response function and its dispersion

and time derivatives as well as the motion parameters (Figure 5.2). The last column of

ones models the constant or mean signal. Baseline is used as a reference because even

without the stimuli the signal is never zero.

Scans from each subject were subjected to a similar analysis with a design

matrix which is speci�c to that subject. Parameters, which model the contribution of

each component in the design matrix, were estimated through classical esimation. The

reason for using the classical estimation procedure is because the Bayesian estimation

is computationally expensive. A variational Bayesian scheme was also performed but

it takes too many hours for a single subject. After parameter estimation, the contrast

vectors were de�ned for each column of design matrix except motion parameters. Then,

each contrast vector was estimated accordingly.
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Figure 5.2 Design matrix for the �rst level analysis.

5.2.3 Second Level Analysis

Parameters modeling the �rst column of the design matrix and being estimated

with corresponding contrast vector for each subject were used at the second level anal-

ysis to estimate group level parameters. The design matrix simply involves âonesâ to

estimate population e�ect for each stimulus frequency (Figure 5.3). Under Gaussian

assumptions, a parametric empirical Bayes approach, which is de�ned in Section 4.2,

was used to estimate population-wise parameters. The contrast vectors were de�ned

and estimated for each parameter. Whole inference was based on the posterior distribu-

tion of the parameters so that we used posterior probability of each voxel to construct

posterior probability maps. E�ect size thresholds are based on the estimate of the prior

variance. In order to compare PPMs with classical inference results, we also speci�ed

e�ect size thresholds as zero.

After constructing frequency wise PPMs, we grouped them according to alpha,

beta and gamma bands so as to make the random e�ect analysis and the Bayesian
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Figure 5.3 The design matrix for the second level analysis.

inference from a band-wise perspective: Contrasts were estimated through 6-8-10-12

Hz, 14-18-22-26 Hz, 30-34-38-42-46 Hz for alpha, beta and gamma bands, respectively.

Finally, we used the di�erences in e�ect sizes with respect to stimulus frequency

to assess results of Bayesian inference further. E�ect sizes were plotted for the whole

brain as well as some speci�c ROIs: The LGN sends most of its axons to primary visual

area (V1), so the information coming from the LGN is processed in V1, then passes to

the other visual areas V2, V3, V4, etc. (Figures 5.4, 5.5). Therefore, the activation of

LGN must be present during this information �ow.

Detecting the LGN activity is a challenge for most neuroimaging applications

because of its small size. fMRI is capable of detecting LGN activity [38]�[39]. It has

been shown that there is a linear correlation of activation sizes between LGN and V1

[40], where the activation size was de�ned in terms of the number of voxels. In this

study, we compared the change in the e�ect sizes of LGN and V1 during graded visual

stimulation by using PPMs with an e�ect size threshold of zero. In order to get e�ect

sizes in these speci�c regions, we masked the contrast images derived from group level

analysis with the probabilistic ROI images from Juelich Histological Atlas [41].
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Figure 5.4 Retinotopic mapping of the visual cortical areas V1-, V2-, V3-, and V3A, superior to the
calcarine sulcus, and areas V1+, V2+, VP+, and V4v+, inferior to the calcarine. 1 and 2 indicate
upper and lower visual �eld representations, respectively.adapted from [37].

Figure 5.5 LGN is the gateway for sensory information that reaches to visual cortex [42].
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6. RESULTS

Below are the second level group analysis results over 40 subjects. Maps were

constructed in two ways: (i) frequency and (ii) band-wise. In Figure 6.1, PPM for each

frequency is shown on the axial template slice where the global maximum of the e�ect

size is observed. Height threshold for signi�cancy is 0.95.

To assess the results of the statistical inference for the group level we used the

variation of the e�ect sizes with respect to stimulus frequency. As shown in Figure 6.2,

we found the global maximum response at 10 Hz. There is a general decline in e�ect

size as the stimulus frequency increases. Local maxima can also be observed at 10, 14

and 30 Hz for each band respectively.

Figure 6.3 shows the band wise PPMs for alpha, beta, and gamma bands (from

top to bottom) in left and right hemispheres on the in�ated template volume. Here

the signi�cancy threshold was speci�ed as 0.99. The extent of activation is largest in

alpha and smallest in gamma with a steady decrease as the frequency increases.

In Figure 6.1 the e�ect size thresholds are based on the estimate of the prior

variance. This type of thresholding is more meaningful because we are not interested

in e�ects of any size. For example, the evoked sensory responses are in the range of

1-2 % of global mean value, and some cognitive e�ects are about 0.5 %. On the other

hand, we speci�ed the thresholds as zero in the following Figures 6.4-6.16, so that the

e�ects of any size are shown with a colormap, if signi�cant. Hence, we could compare

the PPMs with corresponding SPMs.

We could detect the activation in LGN by decreasing the e�ect size threshold

without decreasing the signi�cancy. PPMs with zero e�ect size threshold show that

the e�ect sizes in LGN are less than that in V1 during graded visual stimulation. The

threshold for signi�cancy is 0.95 (Figures 6.4-6.16, left). No activation was detected in
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right LGN at 26 Hz. ROI analyses yield that the normalized mean e�ect sizes in LGN

have a global maximum at 12 Hz with local maxima at 18 and 42 Hz, whereas V1 has

a maximum at 10 Hz (Figure 6.18).
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Figure 6.1 PPM for each frequency is shown on the axial template slice where the global maximum
is observed (Height threshold, P = 0.95).
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Figure 6.2 Mean e�ect sizes (red) of the frequency based PPMs. The maximum e�ect sizes and the
thresholds are also shown with green.

Figure 6.3 Band wise PPMs (P = 0.99) for alpha, beta, and gamma bands (from top to bottom) in
left and right hemispheres on the in�ated template volume.
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Figure 6.4 6 Hz.

Figure 6.5 8 Hz.

Figure 6.6 10 Hz.
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Figure 6.7 12 Hz.

Figure 6.8 14 Hz.

Figure 6.9 18 Hz.
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Figure 6.10 22 Hz.

Figure 6.11 26 Hz.

Figure 6.12 30 Hz.
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Figure 6.13 34 Hz.

Figure 6.14 38 Hz.

Figure 6.15 42 Hz.
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Figure 6.16 46 Hz.

Figure 6.17 Mean e�ect sizes of the right (red) and left (blue) LGN.
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Figure 6.18 Comparison of mean e�ect sizes wrt stimulus frequency of right V1 (magenta) and right
LGN (green).
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7. DISCUSSION

It was suggested by Friston et al. [32], having enough scans and subjects,

the potential of false positives is more likely with classical inference where a voxel

with a trivially small activation can be declared signi�cant due to the high degrees of

freedom. Although a small e�ect size could be interesting in any other statistical test,

in neuroimaging we are not interested in trivially small activations. Since we have a

large number of subjects, we propose that using a random e�ects analysis over a group

of 40 subjects with Bayesian inference enhanced the reliability of our results.

Simulation results also showed that PEB approach is a better estimator for

the majority of the voxels. The choice of the prior is an important issue in Bayesian

inference. For the real data, we used the subject-wise variation of e�ect sizes about

the mean e�ect size as prior to estimate posterior distribution of each voxel.

The frequentist approach is based on the rejection of the null hypothesis, whereas

the Bayesian inference is more �exible to ask question about the values of the parame-

ters from the posterior distiributions without reference to a null distribution. Because

SPM uses conventional testing methodology, we used PPMs to map the posterior prob-

ability of each voxel. The resulting PPMs showed a global maximum response at 10

Hz, that is in line with the previous studies [43]. They yield activations even at high

stimulation frequencies, despite being more limited in extent compared with those at

lower frequencies. Band-wise PPMs showed that the largest extent of activation is also

in the alpha band.

We speci�ed the e�ect size thresholds for the PPMs as zero (�gures 6.4-6.16,

left), so that the e�ects of any size are shown with a colormap, if signi�cant. This type

of thresholding was performed for several reasons: Firstly, because this is what one

does in classical statistics where each signi�cant e�ect is of interest, we could compare

the PPMs with SPMs. Secondly, decreasing the e�ect size threshold enabled us to infer
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about the activations in some speci�c regions.

In a visual motion processing study, it was reported that SPMs missed a critical

part of the V5 complex [34]. Similarly in our study, it is clearly seen that SPMs

identi�ed a smaller number of voxels than PPMs. This can be explained with the

multiple comparison problem that is induced by the classical approach: If one increases

the search volume, the threshold will rise that is adjusted by Gaussian �eld correction.

In contrast, we did not need to make a correction when we applied PPM so that the

inference in a region does not depend on the inspection of another region.

The visual information from the retina reaches the visual cortex (VC) through

the LGN. By decreasing the e�ect size threshold of the PPMs, we could make infer-

ence about the responses in LGN without lowering the signi�cancy. Having an e�ect

size threshold of zero, we could compare the e�ect sizes between LGN and V1. PPMs

showed that the e�ect sizes in LGN are less than that in V1 and the functional con-

nectivity between LGN and V1 is explicit during graded visual stimulation.

ROI analyses yield that the e�ect sizes in LGN have a global maximum at 12

Hz, whereas V1 has a maximum at 10 Hz. Although di�erent stimuli have been used,

studies in the macaque brain suggest that at low temporal frequencies, there is a little

contribution of magnocellular pathway to visual sensitivity [44]. For both hemisphere,

LGN has the local maximum at 18 Hz, which can be explained with the contribution

of magnocellular units being more sensitive to stimuli modulated at frequencies nearer

20 Hz [45].

Bayesian estimation also provides asking questions about the di�erences between

stimuli. Although F-contrasts can be used for a comparison between di�erent stimuli,

in fact it simply says whether there is a signi�cant di�erence between stimuli without

saying which one is di�erent [25]. To assess the monotonicity of parameter estimates,

the use of multiple t-tests for all pairs of stimuli would lead to a Bonferroni correction

for multiple comparisons. Instead, within a Bayesian context one can compute the

monotonicity, P (β1 < · · · < βn|y) directly [30].
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Similar inferences were performed for the �rst-level analyses. A Variational

Bayes algorithm was used to compute the posterior distributions of each voxel where

the autoregressive coe�cients and the precision of the error enter as the priors [46]�[47].

Hence, the LGN activation can be detected successfully for each subject. However, the

update equations of the posteriors make the algorithm computationally expensive so

that the parameter estimation took very long hours for a single subject. For this reason,

we preferred a classical estimation at the �rst level.
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