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ABSTRACT

GRAPH THEORETICAL ANALYSIS OF FUNCTIONAL
HUMAN BRAIN NETWORK

Recent studies suggest that, human brain has a small-world behavior which

is reflected by locally and globally efficient processing. To investigate this behavior

a short term/working memory experiment was designed which had manipulation and

retention conditions. Our goal was to be able to explore the differences between the

organizations of the brain during the execution of these tasks within a graph theoretical

context. The retention condition required the subject only to remember a visually ap-

plied stimulus whereas the manipulation condition to visually manipulate the stimulus

before keeping it in mind. Brain activity information was recorded through the elec-

troencephalography (EEG) device. After preprocessing, the collected EEG data was

decomposed into classical frequency bands and phase locking values (PLV) between

each pair of electrodes were computed with the help of the Hilbert Transform. After

applying thresold to PLV matrices to build binary unweighted networks, the graph

theoretical analysis was applied to determine and compare the main dynamics of func-

tional coupling during manipulation and retention. This analysis was carried out in

a time dependent manner to better monitor the variations of these dynamics. It was

found that the brain exhibited a highly efficient behavior in the local and global sense

both during manipulation and retention; and thus the brain had a small-world charac-

teristic during the execution of these tasks. The statistical analysis revealed significant

differences between the efficiency values of retention and manipulation. The analysis

of node and edge centrality values of different frequency bands showed prominent ef-

fects in the upper alpha gamma bands. The finding of this thesis study supports the

feasibility of the graph theoretical analysis for analyzing complex brain networks.

Keywords: Synchronization, Betweenness Centrality, EEG, Working Memory, Global

Efficiency, Local Efficiency, Small-World, Graph Theory
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ÖZET

İŞLEVSEL İNSAN BEYİN AĞLARININ ÇİZGE KURAMI
İLE İNCELENMESİ

Son çalışmalar, insan beyninin küçük dünya davranışı sergilediğini ve bunun

yerel ve bütüncül açıdan verimli bilgi işleme süreci yansıttığını ortaya koymaktadır.

Bu davranışı incelemek için hileli akılda tutma ve doğrudan akılda tutma durumlarının

bulunduğu, kısa süreli/işlek bellek deneyi tasarlanmıştır. Hedefimiz beynin düzeninin

farklılıklarını görevler yerine getirilirken çizge kuramı bağlamında incelemektir. Denek,

akılda tutma durumunu sadece görsel uyaranı hatırlayarak; hileli akılda tutma duru-

munu ise görsel uyaranı değiştirdikten sonra akılda tutarak gerçekleştirecektir. Beyin

faaliyet bilgisi elektroensepalogram (EEG) cihazı ile kaydedilmiştir. Toplanan EEG

verisi önişledikten sonra tipik frekans bantlarına ayrılmış ve her çift elektrod için Hilbert

dönüşümü sayesinde faz kilit değerleri (FKD) hesaplanmıştır. Çift değerli ağırlıksız

ağ oluşturmak için FKD matrisleri eşiklendikten sonra, akılda tutma ve hileli akılda

tutma durumları sırasındaki işlevsel bağlantı ana dinamiklerini belirlemek ve kıyasla-

mak için çizge kuramı analizi uygulanmıştır. Dinamiklerin değişimlerini gözlemlemek

için zamana bağımlı bir tutumda bu analiz hayata geçirilmiştir. Akılda tutma ve

hileli akılda tutma durumlarında beynin yüksek seviyede yerel ve bütüncül anlamda

verimlilik sergilediği; böylece beynin bu durumları yürütürken ’küçük dünya’ karak-

terine sahip olduğu bulunmuştur. İstatistiksel analiz, akılda tutma ve hileli akılda

tutma durumları için verimlilik değerlerindeki kayda değer farklılıkları ortaya çıkar-

mıştır. Değişik frekans bantlarındaki uç ve kenar merkeziyetçilik değerleri, alfa ve

gama bandında göze çarpan etkileri göstermiştir. Bu tez çalışmasındaki bulgular, çizge

kuramı analyizinin karmaşık beyin ağlarında uygulanabiliriğini desteklemektedir.

Keywords: Eşzamanlama, Ara Merkeziyetçilik, EEG,İşlek Bellek, Bütüncül Ver-

imlilik, Yerel Verimlilik, Küçük Dünya, Çizge Kuramı
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1. INTRODUCTION

1.1 General Background

Electroencephalography (EEG) is the measurement of electrical activity on scalp

that generated from the neurons in the brain [1]. Hans Berger first discovered electrical

activity on the scalp was alpha rhythm (8-12 Hz) in 1875 and then Caton advanced

his discovery on animal subjects in 19th century [2, 3]. Electrical activity patterns of

brain obtained from the EEG are described with the help of the electrodes in millivolts

degree in the form of oscillating signals.

Significant EEG oscillations are decomposed not only by their frequency also

by their phases. For a working memory (WM) task, presentation of stimuli forms the

initialization of the phase of theta band (4-7 Hz) in the hippocampus (Figure 1.1)

[4, 5]. Therefore, besides frequency components, phase information is significant [6].

By using EEG oscillations; connectivity of brain can be determined in terms of phase

and frequency.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Theta Activity
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Figure 1.1 Theta Activity of human brain (4-7 Hz).
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Figure 1.2 Graph Example

Brain connectivity is defined in terms of structural, effective and functional

connectivities. Structural connectivity refers to network of anatomical links which are

the layout of axons and synaptic connections. Structural connection investigates the

neuronal neighborhood relationships within a predetermined region of interest. Effec-

tive connectivity denotes directed or causal relations of system elements in the brain.

Functional connectivity is the statistical dependency or association between elements

of a system using the time series measured from these regions [7, 8]. Focusing on neu-

rophysiological modalities, fMRI (Functional Magnetic Resonance Imaging) has high

spatial resolution then that of EEG. However, EEG has more detailed temporal reso-

lution than fMRI. When we study functional connectivity, statistical metrics between

time series collected from interrelated regions give us valuable information about the

degree of connectivity [9]. Because brain has a complex structure, graph theoretical

approaches are suitable for representation of such a complex network [8].

Graph theory was first pioneered by Amaral and Ottino [10] and the first work

was demonstrated with the nervous system of a nematode with 282 neurons [11]. Func-

tional connectivity of brain was represented by graph theoretical model in some brain

studies [7]. By using this model, various brain analyses have been done with healthy

and/or diseased brains [12, 13, 14].

Sprons has investigated the neural structure in terms of functional and anatom-

ical connectivity using graph theoretic approaches [15, 16]. The dynamical modeling



3

of the brain using graph theoretic approaches allow us investigating higher brain pro-

cesses such as memory, planning, visual or sensual response and various types of brain

pathophysiology by using different decompositions.

1.2 Motivation

The electrical activity of brain has been studying for decades with invasive and

non-invasive imaging modalities. Usage of invasive imaging modalities are hard to

implement to subjects, whereas non-invasive modalities are easier than invasive ones.

Investigation or diagnosis of healthy or diseased brain is more practical with non-

invasive modalities. Importance of these modalities are also changing by their area of

usage.

While investigating functional connectivity of the brain, modalities such as

fMRI, EEG, MEG, PET modalities can be used. Connectivity can be analyzed with

different methods. When dealing with functional connectivity which changes over time,

better time resolution is needed. In terms of complexity and cost EEG can be the most

suitable modality for investigation of functional connectivity.

Many methods and techniques have been used for investigation of functional

connectivity. In recent years, graph theoretical approach is getting more popular be-

cause brain has a network structure like other complex networks in nature.

However, many problems occur on examination of functional brain networks.

Every researcher generates a certain graph and there is no transition among different

graph structures. Moreover, the choices of parameters in the models have a great effect

on results [17, 18] such as threshold or graph construction. Clusters of these experiment

groups can be different.

The motivation of this thesis study is defined as to understand, compare and

facilitate different network structures that yield easily computable measures which
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characterize the functional brain network topology. New methods on different networks

studied. Different threshold levels investigated that are subjected to a cognitive task.

Synchrony of oscillations among different bands investigated with respect to frequency

dependent time windows.

1.3 Objectives

In this study, we investigate the graph theoretical analysis of functional human

brain networks. For this purpose, manipulation and retention tasks implemented to

the subjects to examine the EEG synchrony measures. After that, Hilbert transform

used for generating complex components of the various EEG bands in MATLAB en-

vironment. Phase information calculated from the trigonometric measures of real and

imaginary parts of the signal. Phase Locking Values (PLV) obtained with the help of

the phase differences of all pairwise EEG electrodes with respect to the time series of

specific frequency bands. By using a frequency dependent time-window method used

that is based on slowest oscillation limit of each frequency band. Adjacency matrices

obtained with PLV measures. Specific threshold levels used for determining binary ma-

trices from weighted ones. Graph theory metrics are calculated and statistical analyses

are done.

Efficiencies of the graphs will be calculated and changes over time windows

with different thresholds are revealed. Significant nodes and edges will be visualized

over a head model of centrality measures (p < 0.05). Significant manipulation and

retention efficiency values of subjects will be statistically analyzed. Determination of

false detection rate masks computation will be done to statistical evidences to gather

more accurate results.
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1.4 Outline of this thesis

The remaining chapters are organized as follows. Chapter 2 gives a brief outline

of EEG and their oscillations. Interactions between psychological tasks and functional

connectivity of brain is discussed, thus electrical activity on graph theory is explained

in detail. Creating a graph by use of a Phase Locking Value (PLV) is explained and

the chapter concludes with a brief background on how functional connectivity can be

estimated via graph theory. A detailed explanation of the methods is given in Chapter

3 where preprocessing operations such as filtering, artifact removals and analyses of

EEG data to obtain a graph are discussed. In Chapters 4,5 and 6; results, discussion

and conclusion are defined respectively.
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2. Electro-physiological Oscillations of Functional

Connectivity via Graph Theory

2.1 Graph Theory

Up to the mid-eighteenth century, people believed that it was impossible to

cross over the bridges of the river Pregel at once and returning to the start point in the

city of Königsberg (Figure 2.1). But in 1736, Euler suggests a mathematical method

to traverse these seven bridges where located on the river Pregel and he represented

this method with a graph and it was called as graph theory [19]. After this problem

Fancis Guthrie comes up with a problem which is called the four color problem. This

problem suggest that making a world map where all countries are colored with one

of four colors and neighbor countries must not have same colors. Surprisingly, this

problem took 124 years to solve, from 1852 to 1976 with the invention of computers

and their improvements [20]. Also in 1959, Erdős and Rényi suggested the random

graph model which has the same node and degree distribution of that of regular graph.

Random graphs allow modeling of complex graphs with newly graph metrics [21].The

most complex networks are modeled with the "small-world phenomenon". This phe-

nomenon was first introduced as "The Small World Problem" for social networks with

Stanley Milgram in 1967 [22]. All nodes of small-world networks are not neighbors to

each other yet it is possible to travel one to another node by visiting the other nodes

[23]. The most remarkable property of these networks is that the clustering coefficient

is high as regular networks and path length are low as random networks. This type of

networks can be a bridge between random and regular networks. Watts and Strogatz

also mentioned that in nature most of the networks showed small-world property such

as genetic networks, spatial games, excitable media, social issues and neural networks.

Nowadays, social networks is the significant example for this theory which are proving

that even very large networks can be traversed. These improvements in the technology

are now resulting with the implementation of the graph theory in biology and neuro-

science. Neural systems are good examples which have long been described as sets of
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Figure 2.1 Bridges of Könisberg

discrete elements linked by connections. [8]. As a neural system, human brain is taken

into account as a complex network [24]. Functional [11] and structural [23] connectivity

are represented by the graph theory in many studies in humans [25, 26] and in animals

[23, 27].

Major brain imaging modalities such as fMRI, EEG and MEG (Magnetoen-

cephalography) have been used for analyzing the connectivity of brain. Graph theo-

retical implementation of brain via fMRI was first measured in human brain at resting

state [28]. Metrics of networks approximated from voxel based graphs. Many studies

ensued after this study in [29, 30, 31]. When we focus on electrophysiological imag-

ing modalities, we have a higher temporal resolution than that of MRI. However, using

MRI, we can get more detailed spatial resolution compared with that of the EEG/MEG.

fMRI based networks are derived from anatomically localized regions of the image.

Furthermore, functional connectivity is better approximated by electrophysi-

ological modalities such as EEG, MEG with generalized synchronization [8]. Mea-

surements of functional connectivity are studied in healthy [32] and diseased subjects

[12, 13, 14]. Diseases such as Alzheimer’s, schizophrenia or epilepsy caused disconnec-

tivity between regions.

In recent years, challenging cognitive processes topics are also studied with graph

theory via synchronization, correlation and coherence over neuronal oscillations.
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Figure 2.2 fMRI and EEG recordings.

2.2 EEG

Brain has a complex structure where nerve and glial cells are in interaction.

Human central nervous system (CNS) contains 1011 neurons. Number of glial cells is

approximately 10-50 times more than nerve cells. CNS collects the data from various

sense organs and yields for necessary response [33, 34]. This neuronal activity, the

simplest evolution level to most complex human cerebral cortex level stands for elec-

trochemical activity. Monitoring chemical activity of neurons is not an easy task, but

electrical potential changes can be easily monitored by electroencephalogram. EEG

signal that is generated from the synchronized post-synaptic potentials in cerebral cor-

tex; can be monitored and recorded through the electrical potential differences from

the scalp [35]. Electrodes which are placed on the scalp, record the EEG data. Because

of the volumetric conduction, neurons under the scalp and far located neurons are gen-

erates the EEG signal. Postsynaptic potentials are more dominant to EEG oscillations

[36, 37, 38].
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2.2.1 EEG Oscillations

Neural brain signals oscillate across a range of frequencies with respect to their

frequency spectrum. Firstly, band alpha which oscillates between 8-12 Hz, was first

discovered in late nineteenth century [2]. Ever since that time, other frequency bands

became clearer. Based on the brain functions, five more major frequency waves are

discovered, delta wave (0-4 Hz), theta wave (4-8 Hz), alpha wave (8-12 Hz), beta wave

(14-30Hz), gamma wave (>30Hz)(Figure 2.3) [39]. Brain oscillations are observed by

using electrophysiological modalities such as EEG or MEG which records synchronous

activity of various neurons except invasive imaging modalities. Neural activity analysis

can be done by using amplitude, frequency and phase measures.
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Figure 2.3 EEG bands.

A time-frequency analysis can be done for extracting necessary frequency specific

information. Variations in frequency bands indicate various brain functions in humans.

When a person is relaxed and drowsy alpha wave becomes more dominant. Beta waves

are observed if a person is fully awake and alert. Creative thinking and mediation is

correlated with theta waves. For deep and dreamless sleeping delta waves become more
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dominant with their highest amplitude when comparing with other bands. Besides

these permanent waves, there are transient waves are occuring on an EEG signal such

as spikes, vertex waves, sleep spindles and sharp waves. Their identification is much

more difficult than permanent waves because they come and go [39]. Transient waves

are using for diagnosis of a specific brain disorder. For example, spikes and sharp

waves can arise from epileptic seizures. Clinics are recording these brain data to predict

epileptic regions of the brain. Because EEG is not as expensive as invasive imaging

modalities, it is also used for monitoring anesthesia level, sleeping stage, strokes, comas

or deathly brain disorders.

Changes in synchronization within a neural ensemble are resulted from ampli-

tude changes of oscillatory signals. Synchronization is mostly related to the cognitive

functions of the brain such as memory, attention or perception. Furthermore, synchro-

nization metrics can be indicator of information transfer between neurons.

2.2.2 Graph Theory via EEG

For understanding the characteristics of a functional network of human brain,

it is known that cognitive process such as memory and abstract reasoning is performed

not only on a specific area but also by the interaction of numerous areas [40]. However,

with the new studies due to the functional anatomy, the WM activity information can

be observed in the medial temporal lobe and prefrontal cortex in a widespread manner.

In addition, novelty detection related tasks, such as manipulation can be observed as

a contribution of the hippocampal region to generate ERP (Event Related Potential)

on scalp. In the light of this complexity in terms of EEG processing, graph theoretical

approach should have a great role for describing functional network information of

human brain.

Various metrics have been used in graph theoretical approached networks that

should help to describe information flow of electrical activity of the brain in an ef-

ficient manner. Most of the frequently used metrics of graph theory are clustering
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coefficient and path length. Clustering coefficient of the functional network should

give contraction information of task related synchronized activation in different brain

regions. In addition, the information flow on the functional network topology can be

described with the help of path length measures. According to the previous studies

brain networks have small-world characteristic similar to the other networks in nature

[41, 24]. Due to the small-world property, brain networks have high clustering co-

efficients and low path length which correspond modular and integrated information

processing respectively [41]. If the path between two nodes does not exist, the length

is considered to be infinite. This indicates the efficiency of those pairwise nodes is zero.

Furthermore, network information flow of the brain can be regarded as bilateral, global

efficiency of the network is an easier tool for estimating parallel information transfer.

The average efficiencies of whole pair wise nodes, gives us the global efficiency metric

of the network. Thereby observing specific brain areas, they can be considered as sub

graphs. Dealing with sub graphs, average efficiency of those is called average local

efficiency of a network. To provide information for handling disconnected nodes, the

efficiency metrics contain the information to solve a graph better than with clustering

coefficients or path lengths [42].

Besides disconnected nodes, a graph can contain a node which can be described

as a hub. Hubs have high degree or centrality. The centrality measures how many

nodes are connected to a node. Because of this, high centrality provides efficient

communication [43]. So, centrality determines notational importance of a nod in a

graph. Therefore, node betweenness centrality is a measure of a node in terms of

centrality. If a node has a high degree and is located on shortest paths of various

nodes, it will have high node betweenness centrality measure. If a group is loosely

connected by a few edges, shortest paths between different groups go through one of

these few edges. The edges connecting groups will have high edge betweenness centrality

value [44].

Application of graph theoretical approach to functional human brain network

with EEG, an undirected binary graph must be derived from data by applying a thresh-

old value to constructed graphs [45]. Recording the electrical oscillations from brain,



12

functional connectivity can be estimated between a pair of regions in terms of syn-

chrony. Oscillations can be filtered to classical EEG bands to observe different char-

acteristics of that time series and band definitions. According to Jacobs et al., theta

oscillations are relevant to memory load, task difficulty and error processing. Also alpha

power increases with memory load in simple WM tasks. In addition previous studies

show that gamma power was correlated with memory load, attention and reaction time

[18].

Consequently, brain is a complex network and supports compatible with mod-

ular or integrated processing since network character is based on senorimotor and

cognitive processes. Brain network has the ability of minimum cost of information pro-

cessing, maximum efficiency of parallel data processing and there are rare connectivity

between regions with low wiring costs. Network is operating with gathered neuronal

activity with variations of cognitive states [41].
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3. METHODS

3.1 Experimental Procedure and Subjects

19 healthy right-handed subjects participated in this experiment (5 female, 14

male, mean age: 25.4±1.9). All of the participants volunteered and signed an informed

consent about the experimental protocol. At the beginning of this visuospatial experi-

ment, one minute baseline recording done at eyes open state. At this baseline recording,

a plus signed (’+’) cursor was shown. For the rest of the experiment; subjects were

asked to perform a visuospatial WM task. Three targets were shown on a four by

four matrix for 500 milliseconds. If the targets were green which is a retention task,

subjects had to keep in memory the position of targets for 2500 milliseconds. If the

targets were red, which is a manipulation task; subjects had to keep in memory the

mirror image positions of the targets along to horizontal axis. At the end of the 2500

milliseconds time interval, three gray targets appeared on the screen and subjects had

to report whether the targets were wrong or right with the help of right or left mouse

buttons respectively in 1000 milliseconds.

Figure 3.1 Experimental scheme.

Segmentations of 4500 milliseconds periods were done with 500 milliseconds

before the first target was shown and 500 milliseconds after the gray targets were

shown. Every stimuli and reaction events were recorded. Also, a log file was recorded

which collects false and correct answers, stimuli time and type, average reaction time of

correct answers, and minimum reaction time of a correct answer for both manipulation
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and retention WM task for each subject [46, 47].

For the timing problem between presentation computer and recording computer,

2 milliseconds synchronization pulse was sent from presentation computer. After 4

stimuli, computers are synchronized at once.

There were 40 retention and 40 manipulation tasks. Equal number of false and

correct trials were given for each task. Sequences of the trials were chosen randomly.

All of the presentation trials were done by using the Psyctoolbox for Matlab.

3.2 Data Collecting

Recordings of the data were done with a EGI HydroCel 64 channel EEG in-

strument. Sampling frequency of recordings was 1KHz. Sponge electrodes were used.

Chemical components of the conductive solution are water, potassium chloride (dry)

and baby shampoo (non-alcoholic compound). At the preprocessing stage; raw data

was filtered and removed from unwanted components. NetStation program was used

at the preprocessing stage on a Macintosh computer.

3.3 Preprocessing

At the first stage of the preprocessing operation a first order FIR high-pass filter

was used with 0.1 Hz cut-off frequency. After high-pass operation; filtered signal was

passed through a 100 Hz low-pass FIR filter and then 50 Hz notch filter is used for

getting rid of power line noise. With respect to the events which are marked on the

raw data, segmentation was done for collecting correct manipulation and correcting

retention data.

Artifact removal operation was applied for bad channels, eye blinks and eye
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Figure 3.2 64 channel EEG cap with sponge electrodes.

movements over the entire time segment. Electrical potentials of channels which do not

fall between ±200 µV with 80 milliseconds of duration are marked as Bad Channels.

Eye Blink detection is done with ±140 µV boundaries for 640 milliseconds with a

moving average window of 80 milliseconds duration. Signals which are not between

±55 µV for 80 milliseconds duration, are marked as Eye Movement artifacts. Artifact

removal operations are done for any eye blink, eye movement and for more than 10

bad channels with a % 20 exception. NetStation’s Ocular Artifact Removal (OAR)

tool is used for to flatten eye blinked channels. Therefore, we can use more segments

to have better results. Artifact Detection tool contains Eye Blink, Eye Movement and

Bad Channel properties. Artifact detection and Bad Channel Replacement operations

are done before and after OAR.

These segments are adjusted for suitable montage with montage operations and

then exported to Matlab environment as ’.mat’ files.
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3.4 Generating Functional Graphs

Once we discussed about the complexity of the human brain, graph theory is

the main intermediary tool for analysis of functional connectivity. Since the functional

brain network properties are estimated from electrophysiological imaging techniques,

this can be analyzed via graph theory [32].

Vertices and edges: In graph theory, a graph contains edges and vertices. Ver-

tices denote nodes and edges branches. An edge between two vertices is the sign of a

connection of these vertices. A graph is represented by;

G(E, V )

where G denotes graph, E denotes edges and V denotes vertices.

Figure 3.3 Graph with 5 vertices and 8 edges.

Adjacency matrix: Each edge value between two vertices is a connection indi-

cator and can be shown in an adjacency matrix. This matrix has the communication

information of all nodes (ai,j) with each other [42]. Information can also connect with

itself and a vertex can be connected to itself with an edge in classical graph theory.
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X =



1 0 1 0 0

1 0 1 1 0

0 0 1 0 1

0 0 1 1 0

1 0 1 1 0



Values of adjacency matrices can be binary (zeros or ones) and can be numerical

values. Therefore they are called binary (unweighted) or weighted graphs, respectively.

A weighted graph can be converted to a binary graph with a threshold value. Flowing

information is not always two-sided and adjacency matrices are not always symmetri-

cal. If the graph is not symmetrical, it can be called a directed graph. In a directed

graph, information can only flow from one direction. However in a undirected graph,

information flows in both directions.
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3.4.1 Band Specifications

At the analysis stage; there were only five frequency bands considered which

are theta (4-8Hz), beta (13-30Hz), gamma (30-45Hz), lower alpha (8-10Hz) and upper

alpha (10-12Hz). Least square FIR filters were used while decomposing the EEG data.

Filter lengths were calculated by three times of sampling frequency over lower boundary

frequency value of specific bands. Filters were linearly phased. Filtering operations

are done in MATLAB environment.
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Figure 3.5 Magnitude and phase response estimation of the filter.

3.4.2 Hilbert Transform

For the calculation of phase values we need to decompose the signal into imagi-

nary and real parts. Hilbert Transform is one of the specific transformation techniques

that enable us to obtain these parts.[48].

Hilbert Transform’s property is like Fourier Transform which provides relation-

ship over phase and amplitude spectrum with real and imaginary values.

s(t) = si(t) + sr(t) (3.1)

We can define our s(t) function with sr(t) and si(t) which are real and imaginary

respectively. If values of the functions are equal to zero for all t values, these functions

will be even and odd functions.

sr(t) = sr(−t) (3.2)
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si(t) = −si(t) (3.3)

With the constraints above;

s(t)r =
1

2
[s(t) + s(−t)] (3.4)

s(t)i =
1

2
[s(t)− s(−t)] (3.5)

these functions will be obtained. Frequency responses of these functions are defined

below.

Si(f) = −4
∫ ∞
0

cos (2πft)dt

∫ ∞
0

Sr(u) sin (2πut)du (3.6)

Sr(f) = −4
∫ ∞
0

sin (2πft)dt

∫ ∞
0

Si(u) cos (2πut)du (3.7)

Definition of Hilbert Transform defined as below;

SHi(t) =
1

π

∫ ∞
−∞

s(t′)dt′

t′ − t
(3.8)

or

SHi(t) = −
1

π
∗s(t) (3.9)

3.4.3 Connectivity Metrics

By using Hilbert transform complex and real values of time series are obtained.

These values were calculated with arctangent of fraction of the imaginary and real

values. The phase information for time series is obtained as:

φ(t) = arctan
si(t)

sr(t)
(3.10)
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Figure 3.6 Imaginary and real axis. Analytical calculation of phase information.

Since the least square FIR filter is used, phase sequences’ heads and tails are

cut (500ms each) and 2500 millisecond parts of signals are obtained. After this cutting

operation, a frequency dependent moving time-window is employed in a sliding mode.

Length of time window was dependent to the lowest frequency of the band. This

technique was first mentioned as "cycle-criterion" (CC) [49]. For calculation of window

and sliding interval length these equations are used:

WindowLength =
1

LowestF ilterFreq
∗ CC ∗ SamplingFrequency (3.11)

WindowSlide =
WindowLength

4
(3.12)

With the formulas above; for each time window, PLV values are calculated and the

graphs are obtained with the formula below:

PLVi,k(t, f) =
1

Ntrials

|
Ntrials∑
trial=1

expj(φ
trial
i (t,f)−φtrialk (t,f))| (3.13)

Graphs are calculated as weighted graphs. A threshold technique is used to
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convert weighted graph into a binary graph. All the phase values are arranged in a

descending order. Center of this time index is determined. Percent of this threshold

value is multiplied with center index and the value found from the arranged phase

values. Values below the threshold are equal to zero and those that are above the

threshold are equal to one.

3.5 Graph Parameters and Types

Clustering coefficient (C) and path length (L) metrics are commonly used for

characterizing structure of a graph. Clustering coefficient and path length values iden-

tify the network classification. In regular networks, a vertex is tied to almost all of the

resting vertices with certain strength. Graphs of these networks possess average clus-

tering coefficient and path length. Regular networks have high clustering coefficient

and low path length values which means high resistive wires and low communication

characteristics. In random networks, all edges are randomly obtained and have very

low C and L. Small-world networks are the fraction of regular and random networks.

Random networks have the same degree of probability distribution with that of regular

networks. Similar to regular networks; those networks have closer clustering coefficient

and small path length values. The networks which do not have the characteristics

above are called scale-free networks.

Figure 3.7 Types of networks. Regular network (left). Small-world network (center). Random
network (right).
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3.5.1 Clustering Coefficient

To define a clustering coefficient Ci, degree distribution ki of a vertex i is the ra-

tio of the existing edges ei between its neighbors. So, degree is indicating the maximum

possible neighbors which belong to that vertex. To calculate the clustering coefficient

the following equation is used:

Ci =
2ei

ki(ki − 1)
=

∑
j,m ai,jaj,mam,i

(ki − 1)
(3.14)

Clustering coefficient varies between 0 and 1. To obtain a graph’s global clustering

structure, average clustering coefficient is calculated on N vertices. Average clustering

coefficient is calculated as follows:

C = 〈c〉 = 1

N

N∑
i=1

ci (3.15)

In this study, clustering coefficient of the graph was found with an algorithm was

discovered by Watts and Strogatz in 1998 [50].

3.5.2 Path Length

Second commonly used metric is the path length. The distance traveled be-

tween two vertices di,j with the minimum number of edges from vertex i to j is called

path length. Obtaining the integration of a graph in terms of easy communication is

calculated by the average of those path lengths.

L =
1

N(N − 1)

∑
i,jεN,i 6=j

di,j (3.16)

3.5.3 Global Efficiency

When dealing with binary networks, weights of the graphs are converted to

binary values by using specific threshold values. Values below the threshold are con-
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sidered zero and the rest of them are considered as one. If a path of a network does

not exist because of the threshold, L of this network is assumed to be infinite and

therefore the efficiency of the network is zero. The calculation of the global efficiency

of a network is as follows:

Eglobal =
1

N(N − 1)

∑
i,jεN,i 6=j

1

di,j
(3.17)

3.5.4 Local Efficiency

When we consider a graph with pair wise nodes; to calculate average efficiencies

of that local areas, local efficiency term is used:

Elocal =
1

N

∑
iεN

E(Gi) (3.18)

3.5.5 Edge and Node Betweenness Centrality

The number of shortest paths that runs through a vertex or edge has the cen-

trality propery. Centrality is calculated by the ratio of all shortest paths between j and

k that run through i (nj,k(i)) is divided by all shortest paths between j and k (nj,k).

Betweenness centrality is calculated with the equation below:

bi =
∑

j,kεN,j 6=i

nj,k(i)

nj,k
(3.19)

3.6 Random Matrices and Their Efficiencies

For random matrices, randomization model of Maslov and Sneppen is used. This

model satisfies the edge and vertex distribution of that created from the regular graph

[51]. Implementation of this model, every connected node position changed with an

unconnected node until it satisfies the requirements. Moreover, pair of connected nodes

are selected randomly and selected nodes are rewired such that one node of first group
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connected to another node of the second group. Only 100 node positions are changed,

and operation is repeated for 100 times. For every iteration, clustering coefficients,

path lengths and efficiencies are calculated to compute their averages.
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4. RESULTS

After every experiment, mean reaction time, percentage of correct answers,

fastest reaction time of correct answers, each trial status and it reaction times and

click responses are recorded to a ’.log’ file. Preprocessed and segmented EEG data of

subjects are imported into Matlab environment for further analysis. Only good seg-

ments for both manipulation and retention tasks are filtered by band pass filters with

respect to the specific EEG frequencies (Table 4.1). Then, the filter outputs which are

obtained from band pass filters, are decomposed into their imaginary and real samples

with Hilbert transform. Angles of these values are calculated and specific parts are

taken into account (Equation 3.10). Moving time windows were used for controlling

the slowest synchronizing oscillation in order to avoid low temporal resolution. By us-

ing equation 3.13 PLV matrices are calculated. Binary adjacency matrices are obtained

after threshold operation.

Table 4.1
Frequency bands and their lengths.

Band Frequency Length of the filter

Theta 4-8 Hz 749 Samples

Lower Alpha 8-10 Hz 375 Samples

Upper Alpha 10-13 Hz 299 Samples

Beta 13-30 Hz 229 Samples

Gamma 30-45 Hz 99 Samples

For each threshold value of each subject, local and global efficiencies are calcu-

lated with respect to the moving time windows and divided into equally distributed

random matrices for normalizing global and local measure values to obtain small-world

like characteristics. To determine significance meaning between manipulation and re-

tention task groups, paired t-test is applied to global and local efficiencies for each

threshold level. t-test decides whether difference for manipulation and retention group

is zero or not. Paired t-test is used for controlled experimental studies to indicate how
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they respond under various conditions. Manipulation and retention tasks provide the

states for paired t-test. For each paired t-test probability values, false discovery rate

(FDR) is calculated. FDR is a statistical tool which is used in multiple hypotheses

testing to correct the multiple comparisons. FDR controls the expected proportion of

incorrectly rejected null hypotheses. At the end of the paired t-test and FDR, most

significant time windows are obtained, and those with mean significant differences are

results of t-test.

Additionally, betweenness centrality is calculated for both edge and node cen-

trality. Moving windows are summed up and combined into two time periods. Paired

Wilcoxon sign rank test is applied for centrality metrics. This test checks wheather

two series are coming from same population or indipendent. FDR results of this test

are calculated and most significant nodes and edges are obtained. At the end, most

significant edges and nodes of FDR and mean differences of significant results that

come from paired Wilcoxon sign rank test are taken into account.

Mean values of local and global efficiency measures are plotted due to different

threshold levels. Test statistic values of manipulation and retention differences are

visualized over a rectangular scheme and most significant parts are marked with respect

to thresholds and moving time windows. Node betweenness centrality measures of

manipulation and retention tasks, and their differences are topologically plotted and

most significant nodes are marked. In addition, statistically most significant edge

centrality measures are placed on a brain electrode model, to show which parts of the

brain and which frequency bands are related within working memory tasks through

BrainNetVis software.



27

5 8 10 12 15 18 20
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Threshold

M
an

ip
ul

at
io

n 
G

lo
ba

l E
ffi

ci
en

cy

 

 
Beta
Gamma
Lower Alpha
Upper Alpha
Theta

5 8 10 12 15 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Threshold

M
an

ip
ul

at
io

n 
Lo

ca
l E

ffi
ci

en
cy

 

 
Beta
Gamma
Lower Alpha
Upper Alpha
Theta

5 8 10 12 15 18 20
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Threshold

R
et

en
tio

n 
G

lo
ba

l E
ffi

ci
en

cy

 

 
Beta
Gamma
Lower Alpha
Upper Alpha
Theta

5 8 10 12 15 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Threshold

R
et

en
tio

n 
Lo

ca
l E

ffi
ci

en
cy

 

 
Beta
Gamma
Lower Alpha
Upper Alpha
Theta

Figure 4.1 Average global and local efficiency variations over different thresholds for retention and
manipulation tasks.

When the threshold values start to increase, the number of connected nodes

decrease. Thus, the rise of normalized global efficiency values have proven the theory of

small-world phenomena whereas the curve of small-world efficiency values stay between

regular and random networks. In this sense, as the number of connected nodes in

network decreases, efficiency of network converges to one. (ESmall−World =
ERegular

ERandom
)
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Figure 4.2 Local efficiency differences for different thresholds and windows for theta band.
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Figure 4.3 Global efficiency differences for different thresholds and windows for theta band.

To find the relationship between frequency dependent time windows and global

efficiency for specific thresholds, mean differences between manipulation and retention

are visualized. Negative values of manipulation-retention difference are marked with

blue color for negative and red for positive.

Initially, local efficiency values are higher in retention task than manipulation.

For the mid term, efficiency values for manipulation becomes more dominant for higher

level of thresholds. Statistically, differences between manipulation and retention values

are getting smaller for the final time windows. Significant differences in efficiency values

are observed at lower threshold values (Figure 4.2).

A negative global efficiency difference in theta band is statistically singnificant

towards the end of the decoding process. (Figure 4.3).
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Figure 4.4 Local efficiency differences for different thresholds and windows for lower alpha band.
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Figure 4.5 Global efficiency differences for different thresholds and windows for lower alpha band.

Statistical differences at the middle of the first time period and beginning of

the second time period show significance retention dominance. When the number of

connected nodes decreases, the mean local efficiency values decreases (Figure 4.4).

Manipulation-retention difference values are negatively signed at lower threshold

levels (Figure 4.5).
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Figure 4.6 Local efficiency differences for different thresholds and windows for upper alpha band.
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Figure 4.7 Global efficiency differences for different thresholds and windows for upper alpha band.

When the network is more connected, local efficiency values of retention task is

getting more significant. Since the number of connected nodes decrease, manipulation

becomes more dominant than retention. However, statistically significant differences

are generally located at the first and the last time windows as threshold values are

lowered (Figure 4.6).

Retention dominance is observes in the eighth and tenth threshold windows

(Figure 4.7).
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Figure 4.8 Local efficiency differences for different thresholds and windows for beta band.
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Figure 4.9 Global efficiency differences for different thresholds and windows for beta band.

Manipulation is more dominant at higher threshold values of the mid time win-

dows whereas other parts indicate retention dominance. (Figure 4.8). Difference is

positively signed at higher threshold levels. Statistically significant regions are located

at lower threshold levels (Figure 4.9).
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Figure 4.10 Local efficiency differences for different thresholds and windows for gamma band.
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Figure 4.11 Global efficiency differences for different thresholds and windows for gamma band.

While the number of connected nodes decrease with higher level of thresholds,

the number of statistically significant regions decrease (Figure 4.10).

Significant global structure of gamma band takes part with the lowest threshold

level. Manipulation is more dominant with the increased number of disconnected nodes

and is not showing a significant behavior. However, the rest of window show that the

retention task is more dominant (Figure 4.11).
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Time windows are summed up to obtain only two time windows. First window

stands for first portion of manipulation/retention time and the second window stands

for second portion. Nodes on parietal lobe and occipital lobe exhibit hub property

for both manipulation and retention. Centrality values on left parietal lobe and left

occipital lobe with the retention task is higher. Significant nodes of manipulation and

retention difference is randomly distributed (Figure 4.12). At the second time period,

right parietal lobe shows node property whereas retention task shows left parietal lobe.

Left hemisphere indicates statistical significance (Figure 4.13).

For the first time period, all parietal and left hemisphere of frontal lobe show

hub property for both tasks. Significant nodes are distributed over frontal and parietal

lobe (Figure 4.14). Left parietal lobe centrality value on manipulation task is higher

than retention task. Significant nodes of difference are distributed over frontal lobe

(Figure 4.15).

Hub property is distributed over the scalp, not at occipital lobe but in parietal

lobe. Significant nodes are condensed on parietal and frontal lobes (Figure 4.16).

Centrality property is higher at retention task over the left parietal lobe. Significant

nodes are distributed all over the scalp especially on parietal lobe (Figure 4.17).

For retention task, nodes at right and left hemisphere of scalp are in the form of

a hub. However, lack of significant results show this hypothesis is not correct (Figure

4.18). Hub property of retention task is more advanced. Nodes at parietal and occipital

region show significance (Figure 4.19).

Parietal lobe shows node property on retention task. Most of the nodes at differ-

ence are statistically significant over frontal and occipital regions (Figure 4.20). Only a

small portion of parietal lobe shows hub property, especially on the right hemisphere.

Significant nodes are distributed over all regions (Figure 4.21).
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Figure 4.12 Theta band node betweenness centrality and their difference topology for manipulation
and retention tasks of first time period.

Figure 4.13 Theta band node betweenness centrality and their difference topology for manipulation
and retention tasks of second time period.
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Figure 4.14 Lower alpha band node betweenness centrality and their difference topology for manip-
ulation and retention tasks of first time period.

Figure 4.15 Lower alpha band node betweenness centrality and their difference topology for manip-
ulation and retention tasks of second time period.
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Figure 4.16 Upper alpha band node betweenness centrality and their difference topology for ma-
nipulation and retention tasks of first time period.

Figure 4.17 Upper alpha band node betweenness centrality and their difference topology for ma-
nipulation and retention tasks of second time period.
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Figure 4.18 Beta band node betweenness centrality and their difference topology for manipulation
and retention tasks of first time period.

Figure 4.19 Beta band node betweenness centrality and their difference topology for manipulation
and retention tasks of second time period.
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Figure 4.20 Gamma band node betweenness centrality and their difference topology for manipulation
and retention tasks of first time period.

Figure 4.21 Gamma band node betweenness centrality and their difference topology for manipulation
and retention tasks of second time period.



39

Figure 4.22 Theta edge betweenness centrality for time one.

Figure 4.23 Theta edge betweenness centrality for time two.

FDR of the edge centrality values is between neighbor nodes. There is no

intensive communication observed at the theta band.
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Figure 4.24 Lower Alpha edge betweenness centrality for time one.

Figure 4.25 Lower Alpha edge betweenness centrality for time two.

For the first time period, upper alpha activity is more complicated than the

second one. Information transfer flows from right parietal lobe to the left frontal lobes.

Working memory is the combination of retention and execution. These result imply

that, brain first executes at the frontal lobe then stores at the parietal lobe.
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Figure 4.26 Upper Alpha edge betweenness centrality for time one.

Figure 4.27 Upper Alpha edge betweenness centrality for time two.

At the upper alpha centrality relation, lower alpha like relation can be easily

observed. However, for the first time period left frontal right parietal relationship is

not explicable yet.
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Figure 4.28 Beta edge betweenness centrality for time one.

Figure 4.29 Beta edge betweenness centrality for time two.

In beta band, there is no observable evidence. Figure 4.28 and 4.29 show, the

local connections are observed.
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Figure 4.30 Gamma edge betweenness centrality for time one.

Figure 4.31 Gamma edge betweenness centrality for time two.

Local and global communication are shown in Figure 4.30 and 4.31. Like alpha

bands, gamma has the communication links from the left frontal lobe to the right

parietal lobe. Also small local connections at occipital lobe and left temporal lobe are

expressed.
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5. DISCUSSION

5.1 Global and Local Efficiency

Figure 4.1 shows the difference of random and regular efficiencies. Random

networks have higher global efficiency than the regular ones [52]. (ESmall−World =

ERegular

ERandom
)

Local efficiency of the regular graphs is higher than the random graphs (Figure

4.1). Brain had local efficiency greater than random networks. Achar et al. indicates

same results and brain networks are low cost to medium cost networks [52]. High

efficiency of parallel information is proportional transfer achieved with low cost of

wiring.

5.2 Statistical Analysis of Efficiencies Over Time Windows and

Thresholds

For all bands and time windows, statistical value of manipulation is greater

than retention in an efficient manner. A property observed at the significant regions

that manipulation-retention difference is maximum. Furthermore, significance of upper

alpha global efficiency and gamma local efficiency is slightly obvious. However, for

upper alpha local efficiency and gamma global efficiency is poor. Gamma has high

frequency and its wavelength can be considered low [53, 54].

5.3 Node Centrality

Alpha activity of brain is associated with visual attention [55, 56]. According

to our data, activity of alpha is travels through left frontal lobe to left parietal lobe.
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So that, attention is starts at parietal lobe and executed at frontal lobe.

Theta activity is related between long time memory and short term memory.

Less reflection is observed at theta band. Activity of theta started at occipital lobe to

right parietal lobe. Recent studies suggested that theta activity is correlates with cen-

tral executive functions such as working memory tasks [57]. Theta activity is correlated

with encoding new information.

5.4 Edge Centrality

At lower alpha frequency edge centrality is between left frontal and left pari-

etal. Attention starts at parietal lobe and executed at frontal lobe where this edge

is the bridge of these regions in terms of communication. Same edge connections are

transmitting routed information pathways. Short-range nodes are also communicating

at upper alpha band. Upper alpha hubs can be attributed to visual attention [56].

A complex communication structure is operating at gamma band. Rather than long

range connections short range connections are dense. However, Micheloyannis et al.

suggested that theta band hubs are located in prefrontal region and related to working

memory. Our data indicated nothing with the theta band [58].
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6. CONCLUSION AND FUTURE WORK

The graph theoretical approach is one of the efficient mathematical tools to solve

and analysis the various types of network. Whereas the brain is a complex structure,

graph theoretical method fits the requirement of analysis of these kind of networks.

In neuroscientific applications, graph theory has proven its success in previous studies

which pioneered us to use specific metrics of graph theory in our thesis study.

Also graph theory is a common tool which investigates various networks in

physics, social sciences and biology. In a neuroscientific point of view, graph was used

in both neural and brain networks. Since the graph theory has rich parameter content,

this study can be improved with the help of different metrics. Furthermore, most of

the networks in the nature carry the small-world characteristics; applications in other

sciences which have the same property can be applied to the brain networks. Moreover,

our data collecting points are over the scalp. For future works, rather than using scalp

data this study can be improved with source localization and clustering techniques.
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