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ABSTRACT

DIFFUSION TENSOR FIBER TRACKING WITH
SELF-ORGANIZING FEATURE MAPS

The di�usion tensor imaging (DTI) is unique in its ability to estimate the

white matter (WM) �ber tracts in vivo noninvasively. The post-processing of DT

images needs proper image analysis and visualization tools. However, accurate WM

anatomical maps should be provided to clarify the multiple orientational �ber paths

within uncertainty regions. These regions with intersecting trajectories generate a

critical tractography issue in DTI literature. WM �ber tractography needs a standard-

ization, a generally accepted �ber tract atlas which is the main concern of the various

research groups in the �eld. In this thesis, the special class of arti�cial neural networks

(ANN) namely Kohonen's self organizing feature maps (SOFMs) is proposed for the

analysis of DT images. This SOM based tractography approach called SOFMAT (Self-

Organizing Feature Mapping Tractography) relies on unsupervised learning method for

the mapping of high dimensional data into a 1D, 2D, or higher dimensional data space

depending on the topological ordering constraint. The unsupervised approach enables

SOFMAT to order the principal di�usivity of the �bers in the DTI into neural pathways.

A major advantage of the topological maps produced by SOFMAT is that it retains

the underlying structure of the input space, while the dimensionality of the input space

is reduced. As a result, an arti�cial neuronal map is obtained with weights encoding

the stationary probability density function of the input pattern vectors. Building �ber

tracking maps based on the di�usion tensor information which learn through self or-

ganization in a neurobiologically aspect is the aim of the study. SOFMAT has been

tested to reveal uncertainties in �ber tracking. A well known arti�cial dataset called

PISTE was used to access the capabilities of SOFMAT. After identifying an a�ective

con�guration, SOFMAT was employed for human tractography.

Keywords: DTI, Tensor, Anisotropy, Fiber Tractography, Self-Organizing Maps.
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ÖZET

ÖZDÜZENLEY�C� HAR�TALAR �LE D�FÜZYON TENSÖR
YOLAK TAK�B�

Difüzyon tensör görüntüleme, in vivo ak madde yolaklar�n� noninvasif olarak

tahmin edebilme özelli§i ile tektir. DT imgelerinin i³lenmesi için uygun imge i³leme

ve görselle³tirme araçlar�na gerek duyulmaktad�r. Ancak, belirsizlik bölgelerindeki

çoklu yön içeren yolaklar�n saptanabilmesi için uygun ak madde anatomik harita-

lar� gerekmektedir. Kesi³en yolak geometrileri içeren bu bölgeler DTG literatüründe

kritik bir traktogra� sorunu yaratmaktad�r. Ak madde traktogra�si standartla³may�

ve genel olarak bu alanda çal�³an pek çok ara³t�rma grubunun ana ilgi alan� olan,

kabul edilmi³ yolak takip atlas� saptanmas�n� gerektirmektedir. Bu tezde, yapay sinir

a§lar�n�n özel bir biçimi olan Kohonen özdüzenleyici haritalar�, DT imgelerini analiz

etmek amaçl� önerilmi³tir. Özdüzenleyici haritalar� tabanl� traktogra� yakla³�m� SOF-

MAT (Özdüzenleyici Haritalama Traktogra�si) gözetimsiz ö§renmeye dayal�d�r ve yük-

sek boyutlu verinin topolojik s�ralama k�s�t�na ba§l� olarak 1B, 2B veya daha yüksek

boyutta veri uzay�na haritalanmas�d�r. Gözetimsiz yakla³�m, SOFMAT'�n DTG'de

yolaklara ait birincil difüzivitenin nöral yollar ³eklinde düzenlemesine imkan sa§lar.

SOFMAT' �n sonucu topolojik haritalar�n önemli bir avantaj�, girdi uzay�n�n boyutu

azalt�l�rken, girdi uzay�n�n alt�nda kalan yap�ya sad�k kalmas� ve korumas�d�r. Sonuç

olarak, girdi vektör desenini yans�tan olas�l�k yo§unlu§u fonksiyonunu ifade eden a§�r-

l�klarla bir yapay nöron haritas� elde edilmektedir. Nörobiyolojik yakla³�mla, özdüzen-

leyici haritalarla ö§renen DT bilgisine dayal� yolak takip haritalar� olu³turulmas� çal�³-

man�n amac�n� olu³turmaktad�r. Yapay sinir a§lar� mant�§�na dayal� bu yakla³�m yolak

traktogra�sindeki belirsizlikleri çözümlemek için denenmi³tir. PISTE isimli yapay veri

seti SOFMAT'�n kapasitesini ölçmek için kullan�lm�³t�r. Etkili bir kon�gürasyon sap-

tanmas� sonras�nda, SOFMAT insan beyin traktogra�sine uygulanm�³t�r.

Anahtar Sözcükler: DTG, Tensör, Anizotropi, Traktogra�, Özdüzenleyici haritalar.
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1. INTRODUCTION

Di�usion tensor imaging (DTI) is a unique modality providing invasive �ber

track pathway information non-invasively [1�3]. The brain tracts' orientation and

quantity estimation is of great importance in de�ning the architecture and pathol-

ogy of myelinated axonal white matter �bers. The accuracy of white matter (WM)

anatomical maps obtained by DTI is uncertain [4, 5], an inherent problem in di�usion

tensor �ber tractography. There is still a need for improved image analysis, standard-

ized �ber tractography and visualization tools [4�6]. Accurate WM anatomical maps

should be provided to clarify the multiple orientational �ber paths within uncertainty

regions. Intersecting trajectories like crossing, kissing, branching �bers create the un-

certainty regions within a voxel, and generate a critical tracking problem in DTI litera-

ture and further research is required. To overcome the critical tracking problem in the

uncertainty regions, arti�cial neural network class namely Kohonen's Self-Organizing

Feature Mapping (SOFM, SOM) is proposed in this thesis. The proposed SOM based

tractography approach, called SOFMAT (Self Organizing Feature Mapping Tractogra-

phy) relies on unsupervised learning for the mapping of six dimensional DT data into

a 3D connectivity map based on the topological ordering constraint [7]. The unsuper-

vised approach identi�es a likely output corresponding to the input data. Self learning

process takes place through weight update in each iteration, and the output units self-

organize by competing to represent the input data pattern [8]. This assumption enables

SOFMAT to connect input vectors de�ning the principal di�usivity of the �bers in the

DTI into strings. As a result, a neuron map is obtained with weights encoding the

stationary probability density function of the input pattern vectors [7]. Creating �ber

tractography maps upon di�usion tensor images based on the neurobiological aspect

of learning through self organization is an inspiration of the proposed study.
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1.1 Motivation

Tractography is an user dependent technique, where the user should possess

great knowledge about neuroanatomy. There isn't any gold standard and any general-

ized �ber tract atlas, yet. The details and the limitations of di�usion tensor imaging

and tractography are given in detail in Chapter 2.1.6. The information about the white

matter (WM) anatomical maps derived by di�usion tensor tractography (DTT) need

validation. The drawback here is the general inability of the di�usion tensor analyzing

methods in describing branching axonal structures and crossing �bers. These multi-

ple orientational maxima within a single voxel lead to the uncertainty problem in DT

literature [4, 6]. Our proposed tool aims to tackle the uncertainty problem bene�ting

from the complimentary probabilities of the neurons forming a string.

1.2 Organization of this Manuscript

The sections of this dissertation are organized as follows:

The �rst Chapter is the Introduction, and presents the motivation and original

contributions of the study.

Chapter 2 provides background information: the mathematics of tensor valued

data, the basic physics of di�usion and di�usion imaging, and most importantly, a

through description of tensor shape. The classical Kohonen's SOM is introduced in

Background. Also the common di�usion tensor resource named PISTE (Phantom Im-

ages for Simulating Tractography Errors) which is used for benchmarking the accuracy

and acceptability of the proposed approach is given in detail in Chapter 2.

The methodology is explained in Chapter 3. This chapter ties the mathematical

description of tensor shape with the biological and anatomical signi�cance of shape in

DTI scans together, and presents the two novel di�usion tensor tracking methodology,
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which are the main focus of this dissertation. The methodology chapter is followed

by Chapter 4, the Results. The Results are discussed in two subsections namely the

Experimental Scenarios and Targets, and the Human Data.

The Results are discussed in Chapter 5. Finally, the dissertation is concluded

with Conclusion and Future Work in Chapter 6.

1.3 Original Contributions

The most signi�cant original contribution of this thesis is the development of

a white matter �ber tracking method based on arti�cial neural networks. Arti�cial

neural nets' learning algorithms are already accepted in the literature in brain and

neuroscienti�c researches. Relying on the citation reports, unsupervised learning algo-

rithm is proposed in order to analyze di�usion tensor eigensystem and to handle the

�ber tracking problem for the �rst time. Another contribution is the ability of the

method to provide more info in the selected region of interest and to resolve multiple

�ber tracks within uncertainty regions, curved trajectories and de�ne a weighted �ber

path (Chapter 3.3-3.6).

The proposed method and its implementation presented in this thesis were col-

lected in a framework named SOFMAT. The algorithms developed in Matlab environ-

ment contributed to this framework unifying a of state-of-the-art algorithm dedicated

to di�usion tensor image processing. The possible applications of di�usion tensor imag-

ing are growing, and analysis of tensor data is an active area of recent research.

In my research, I focused on the development of a new di�usion tensor �ber

tracking algorithm. My main research area concentrates on �ber tracking algorithm

based on arti�cial neural networks speci�cally self organizing feature maps. As a side

research, while researching the correct implementation of SOM into DTI analysis, a

routine computer vision method namely stack linked list methodology is also imple-

mented on di�usion tensor eigenvectors. The SOFMAT technique consists of three
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major steps:

• The simulation of the algorithm on arti�cial data to test, verify and evaluate the

SOFMAT routine.

• The construction of the SOFMAT maps from the simulation data.

• And �nally, the actual tract reconstruction on real data.

SOFMAT is able to continue tracking in regions of �ber crossing such as cross-

ing, kissing, and spiral which contain more than one �ber direction. The commonly

used streamline tracking methods are not e�cient to track these regions as will be ex-

plained in detail in Chapter 4 and 5, and result false reconstructions or aborted tracts.

SOFMAT is also able to reconstruct curving tracts that cannot be reconstructed by

the streamline techniques. A comparison of the results of SOFMAT algorithm with

streamline reconstructions is given in Chapter 4 to illustrate the advantages of the

proposed tracking method presented in this study.
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2. Background

2.1 Di�usion Tensor Imaging

2.1.1 From Di�usion Coe�cient to Di�usion Tensor

Di�usion is also called random motion, Brownian motion or intra-voxel incoher-

ent motion. It is the random motion of molecules due to thermal energy. Hänggi and

Marchesoni give a nice introduction to the history of Brownian motion in [9]. Brown-

ian motion was �rst observed by Robert Brown in 1828 when he monitored the pollen

grains moving randomly suspended in water. The theoretical framework that could

explain the experimentally observed phenomenon of di�usion was set up by Einstein

in 1905. If there is no barrier in the medium the water molecules move according

to Gaussian distribution. From the time of Robert Brown in 1810 when he recorded

the oscillatory motion of pollen grains suspended in water, until the time Albert Ein-

stein modelled kinetic-molecular theory in 1905, this random motion remained mystery.

Einstein's theory states that each molecule is moved by thermodynamic e�ects, and

follows a random path. Einstein modelled a relationship from microscopic scale to the

macroscopic by introducing the di�usion coe�cient D :

6τD = [x (t+ τ)− x (t)]2 (2.1)

where in one dimension, the water molecule is initially positioned at x(t) at the time

t and moves to the position x(t + τ) at the time t + τ due to di�usion. In the case

of three dimensional displacement for many molecules, the relative displacement of a

molecule at a position ~x is indicated by the vector ~u(τ) = ~x(t + τ) − ~x(t), which is

a function of time τ . ~u is a displacement vector indicating both the magnitude and

direction of Brownian motion. Therefore the di�usion coe�cient is the dot product of

the position vectors:

6τD = u (τ) · u (τ) (2.2)
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Figure 2.1 Gaussian di�usion in three dimension. The isoprobability surface is spheric with a radius
of
√
6Dτ centered at the origin.

Assuming that some water molecules are initially positioned at the origin and that

they are followed in a time window of τ , then the molecules are expected to spread

homogeneously around a circle of radius l(τ). This characteristic parameter l equals

to l(τ )=
√

6Dτ (Figure 2.1). It de�nes the intrinsic expansion of water molecules in

a time period τ in case of isotropic di�usion. In biological tissues, the di�usion is not

identical in all directions. The microstructure of the investigated tissue is aligned in one

direction in �brous tissues. Water moves more easily in the direction of this alignment

than in the perpendicular direction [10]. Di�usion in such media di�ers from intrinsic

di�usion, because it is dependent on the physical structure of the media. Therefore

this kind of di�usion is called apparent or restricted di�usion. The name of Apparent

Di�usion Coe�cient (ADC) in the DTI literature comes from this fact. The di�usion

tensor D where only one direction is promoted at each position is expressed as the

tensor product of the displacement vectors:

6τD = u⊗ uT (2.3)

D is a tensor of rank two and is represented by a symetric 3× 3 positive semi-de�nite

matrix by its de�nition in Eq. 2.3. The tensor D in the generalized form of Einstein's

relation is known as di�usion tensor. If anisotropic di�usion is in the media, Einstein's

relation must be generalized to allow for directional dependence [11]. This matrix
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represents a di�erent shape rather then the spherical shaped expansion of isotropic

di�usion, and it de�nes the ellipsoidal shaped expansion of the anistropic di�usion. The

ellipsoid has three main axes which de�ne the directions of the di�usion ellipsoid (Figure

2.3). These axes are determined by eigenvalue decomposition. The diagonalization of

the D gives the in demand eigenvectors and eigenvalues e1, e2, e3 and λ1, λ2 and λ3

respectively (Figure 2.3). The �rst direction is the elongated part of the ellipsoid at

a distance λ1 of the origin and in the direction e1, where e1 is a unit vector. This

dominant vector representing the largest displacement of the water molecules is named

as the Principal Di�usivity Direction (PDD). Regarding the eigenvalues the di�usivity

is de�ned by λ1 > λ2 > λ3.

This thesis focuses on the molecular di�usion of water in the human brain. The

tissue of the human brain can be divided into three classes, white matter, grey matter

and cerebrospinal �uid. In brain regions except white matter water, molecules can

di�use more or less freely in all directions, which results in isotropic di�usion (Figure

2.2). However, in white matter, restricted di�usion is observed (Figure 2.2). WM

has longitudinally oriented structure, and its shape is de�ned through densely packed

axons. The membranes of axon bundles are widely assumed to be the main barrier for

water di�usion in tissue, hinder di�usion perpendicular to the �bers [12, 13]. In that

case, the molecular di�usion is called anisotropic. The di�usion carries information

about the underlying anatomical architecture of living tissues. This is exactly what

di�usion imaging tries to study.

2.1.2 Di�usion in Magnetic Resonance Imaging Aspect

In 1956, H.C. Torrey mathematically showed how di�usion application changed

the Bloch equations for magnetization [14]. Torrey modi�ed the original Bloch's equa-

tion of transverse magnetization M+, and included di�usion terms. Recalling that

Bloch equations are equations of motion of nuclear magnetization, one can calculate

the nuclear magnetization M+ = (Mx,My,Mz) in MRI as a function of time when re-

laxation times T1 and T2 are present. In a typical T1-weighted image, water molecules
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Figure 2.2 Relationship between anisotropic di�usion, di�usion ellipsoids, and di�usion tensor. The
di�usion ellipsoid on the upper row shows unrestricted di�usion, or isotropic di�usion, where the
di�usion is more or less equal in all directions: (λ1 = λ2 = λ3). Di�usion can be characterized
by diagonal elements (Dxx, Dyy, Dzz) all of which have the same average value D. The di�usion
ellipsoid on the lower rows show a restriction of di�usion resulting from the surrounding tissue, in
this case a myelin sheet, which restricts the movement of di�usion to directions parallel to the axons:
(λ1 > λ2 > λ3): Di�usion is mainly in the direction of the largest eigenvalue (i.e., prolateness). In
anisotropic di�usion, the di�usion tensor is geometrically equivalent to an ellipsoid, with the three
eigenvectors of the tensor matrix set as the minor and major axis of the ellipsoid.
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Figure 2.3 The di�usion tensor ellipsoid, the local tissue and physical gradient coordinate sys-
tems. The diagonalization of the positive de�nite and symmetric di�usion tensor results into three
eigenvalues and three eigenvectors.

in a sample are excited with the imposition of a strong magnetic �eld. This causes a

simultaneous precession of many of the protons in water molecules, producing signals

in MR. In T2-weighted images, the loss of coherence or synchrony between the water

protons are measured and as result contrast is produced. In an environment, where

water can freely move, the relaxation tends to take longer. In certain clinical situations,

this fact is used to generate contrast between an area of pathology and the surrounding

healthy tissue. MRI can be made sensitive to the Brownian motion of molecules. The

1H atoms which are especially abundant in water, so in biological tissue too, have a

nuclear spin angular momentum. These can be visualized as spinning charged spheres

that give rise to a small magnetic moment. When a magnetic �eld ~B is applied to these

spins, the magnetic moment vector tends to align along the direction of the �eld. The

spins are seperated from the huge magnetic �eld ~B0 which varies between 1− 11T via

radiofrequency (RF) pulse ~B1. By that way, the spins are excited out of the equilibrium

state, and become more aligned. The dephasing is achieved by applying a magnetic

gradient ~G in the spatial direction during the reading process. Afterwards, the acquisi-

tion is performed. Finally, the spin signal coming from the component situated in the

normal plane of ~B0 is acquired. The in terms of di�usion modi�ed Bloch equation as
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mentioned the Bloch-Torrey equation [14] is given by Eq. 2.4:

M+ (r, t) = M × γB − Mxe1 +Mye2

T2

− M z −M z
0

T1

e3 +∇ · (D∇M) (2.4)

By varying the homogeneity linearly by a pulsed �eld gradient makes the MRI sensitive

to di�usion. Torrey implemented the application of a spatially varying gradient to MR.

Spin precession is proportionally dependent to the strength of the magnet. This causes

the protons to precess at di�erent rates. As a result, phase dispersion is generated

and signal loss is achieved. A gradient pulse with opposite magnitude is used for

rephasing the spins. Because of the signal loss, the refocusing will not be perfect.

The pulse sequence resulting this reduced signal was initially invented by Stejskal and

Tanner [15] 2.5:

Si = S0e
−bĝTi Dĝi (2.5)

where Si is the signal received with the ith di�usion gradient pulse (for i equals 1 to N,

(N=6 typically), S0 is the signal received without the di�usion gradient pulse [16,17], b

is the di�usion weighting factor, |ĝi| is the strength of the ith di�usion gradient pulse,

and ĝi is ith di�usion gradient vector. The 3x3 di�usion tensor D is calculated from a

set of di�usion weighted images for each pixel as in Eq. 2.5.

2.1.3 Pulsed Gradient Spin Echo Experiment

The pixel intensity in MRI is dominated by water concentration (proton den-

sity), whereas the signal relaxation times T1 and T2 also in�uence. In di�usion imaging

pulsed magnetic �eld gradients are used to sense the signal intensity to the amount

of water di�usion namely the di�usion constant de�ned in Eq. 2.5. The magnetic

�eld B0 points toward the magnet bore z axis, where the right-left orientation is x

axis, and the up-down is y axis. The pulsed �eld gradient is generated by turning on

the gradients for 1 − 100ms [18, 19]. The magnetic �eld ~B0 is homogenous, therefore

water molecules have the same frequency until a �eld gradient is applied. Depending

on their position the protons rotate slower with weaker ~B0 and faster with stronger ~B0
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�eld, which causes a loss of the overall signal. After this dephasing period there is a

time interval before the rephasing gradient. Dephasing and rephasing gradients have

opposite polarity, identical strength and length. Therefore such a rephasing gradient

causes the previously faster spins to resonate slowly in this rephasing period and the

slower spins in dephasing move faster. This way the spins regain their phases. Ap-

plying identical opposite phase gradients causes the signal to be sensitive to molecular

motions. This generates di�usion weighted signal. The explanation of this generation

is that the perfect refocusing happens only when water molecules keep their locations

while the pulsed �eld application [20]. The signal loss causes the imperfection where

it enables the detection of di�usion motion. MR is not able to measure the phase of

individual protons but it detects the failure in rephasing. It should be mentioned that

the di�usion and the �ow motions lead di�erent outcomes. Flow or bulk motions (i.e.

brain pulsation) of the subject are coherent motions, which result in perfect rephasing

without signal loss and shift of signal phase. In principle, one can discriminate the

incoherent motion and and the coherent motion, respectively the signal loss and the

phase shift [20]. In practice, the �ow might follow multiorientational path in a pixel.

Small blood vessels are an example of this situation. Bulk motion is not rigid and

uniform as in synthetic examples. So the coherent motion often leads to signal loss and

interferes with the di�usion weighted signal [20].

Typical molecular displacement in a di�usion measurement is 1− 20µm [20]. A

unipolar gradient pair and spin-echo sequence is mostly used for di�usion weighting.

The gradient application will be discussed in the next chapter in detail. Both unipolar

and bipolar gradient applications make the measurement sensitive to di�usion motion.

Some parameters in�uence the signal loss. The time interval between the two gradients

e�ect the signal loss. The longer it is, the more the signal is lost. The higher the

di�usion constant D, the chance of the water molecules is greater to move in a �xed

time interval [20]. The amount of initial dephasing calculated by multiplying the

strength G and the length δ of gradients is another constraint in the signal loss. The

resulting di�usion weighting can be changed vice versa by controlling the G, δ and ∆.
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2.1.4 Di�usion Tensor Imaging

In previous sections, it's been highlighted that molecular di�usion is anisotropic

in living tissue due to biological barriers, and that it tends to follow the path along the

dominant direction rather than others. The anisotropic di�usion enables estimation of

the underlying anatomical architecture of investigated living tissues.

Recently, DTI has emerged as a candidate method for the rapid, nondestructive

reconstruction of brain anatomy. The principle of DTI relies in the signal attenuation

caused by water di�usion in the presence of a magnetic �eld gradient (Eq. 2.5) [15,16].

The hypothesis tells that the rate of water di�usion is greatest in the direction of the

�ber orientation, and therefore �ber direction may be determined by using DTI to

estimate the primary eigenvector of the local di�usion tensor.

Di�usion Tensor Imaging has shown promise as a non-invasive tool for estimat-

ing the orientation and quantity of WM tracts in vivo. The process of using DTI

data to estimate white matter structures is commonly known as tractography. DTI

tractography is a unique imaging modality in that it o�ers the only clinically appli-

cable means of non-invasively imaging the myelinated axonal structure of the human

brain [2, 6, 21�24]. The accuracy of white matter anatomical maps obtained by DTI

is more unclear due to the general inability of the di�usion tensor model to describe

multiple orientational maxima within a single voxel.

If the di�usion is isotropic the water movement in all directions has the same

amount building a spherical path. In such a case the di�usion is de�ned with only

one constant namely the di�usion constant D. D is related with the diameter of the

sphere. If water di�uses with varying amounts in di�erent directions, then this is

called anisotropic di�usion. Instead of a sphere in isotropic case, the movement of water

molecules becomes oval shape in 2D and ellipsoid in 3D. This is called di�usion ellipsoid.

In biological tissues mostly anisotropic di�usion happens. The anisotropic di�usion

cannot be de�ned by a single di�usion measurement and by a single di�usion constant.

The importance of the anisotropic di�usion is that it represents information about the
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underlying anatomical architecture. In ordered structures such as axonal tracts, white

matter �bers, the water molecules di�use along these structures. This underlies behind

di�usion tensor imaging. The determination of water molecules' pathways provides

knowledge about the investigated tissue.

2.1.5 Mathematics of Di�usion Measurement

Vectors and tensors are independent of any particular coordinate frame, but they

have a unique matrix representation in a given ordered basis. All bases in this work are

orthonormal bases: the basis vectors are all unit length and mutually orthogonal. As a

consequence, the otherwise important distinction between covariant and contravariant

indices of the tensor may be ignored. Tensors that are represented only in orthonormal

bases are called Cartesian tensors. This dissertation is only concerned with Cartesian

tensors. A second-order tensor can be thought of as a linear transformation between

vector spaces. A tensor D is symmetric if Dt = D. The orthonormality condition of

a basis B = [b1, b2, b3] means that bi · bj results the Kronecker delta δij as in Eq. 2.6.

The Kronecker delta δij is useful in transforming tensor expressions, where it helps for

simpli�ed expressions for components of vectors and tensors.

δij =

 1 if i = j

0 if i 6= j
(2.6)

A vector v can be expressed in basis B as:

[v]B =


υ1

υ2

υ3

 (2.7)

υi = bi · v (2.8)

[Dv]B = [D]B[v]B (2.9)
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The matrix representation of tensor D in basis B is the matrix [D]B (2.9). Setting

v = bi into this de�nition D is determined as in 2.10 and de�ned as in 2.11:
b1 ·Dv

b2 ·Dv

b3 ·Dv

 = [D]B


b1 · v

b2 · v

b3 · v

 (2.10)

D =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 (2.11)

Six parameters are needed to uniquely de�ne the anisotropic di�usion ellipsoid

2.3. These parameters de�ne the lengths of the principle axes of the di�usion ellipsoid,

and called eigenvalues λ1, λ2, λ3. The orientations of the eigenvalues of the di�usion

ellipsoid are the eigenvectors e1, e2, e3. These six parameters to de�ne the di�usion

ellipsoid are measured at least by six measurements at noncollinear / independent

directions. These parameters are calculated by using 3x3 tensor namely the di�usion

tensor, and the imaging is the di�usion tensor imaging. The di�usion tensor calculation

and analysis will be discussed in the next chapter in detail.

The di�usion anisotropy measurement along independent orientations resulting

at least six di�usion constants to characterize the shape and orientation of the di�usion

ellipsoid is the most popular way in di�usion tensor imaging (DTI) (Figure 2.7). A

base image S0 with b = 0 is used in the DT calculation (Figure 2.4 and Figure 2.5).

Figure 2.4 represents the Stejskal-Tanner formula labeled as Eq. 2.5 in Chapter

2.1.2. Practical application of the equation usually means taking its natural logarithm

(Figure 2.4, Eq. 2.12). Di�usion constant D is extracted either directly from two ex-

periments performed with and without the di�usion gradients or preferably by linear

�tting of a series of signals acquired with di�erent b-values. The Stejskal-Tanner for-
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Figure 2.4 Calculation of the apparent di�usion coe�cient Eq. 2.12: The natural logarithm of each
exponential di�usion gradient applied image Sn is divided by the T2 weighted image, and multiplied
by the inverse of the di�usion weighting b.

mula can be derived using a very simple 1D di�usion model, it is valid more generally

and correctly, and describes nuclear magnetic resonance (NMR) di�usion experiment in

a homogeneous 3D environment as long as the di�usion behavior is Gaussian. Because

this is not always the case, it is prudent to refer to the di�usion coe�cient obtained

from the Stejskal-Tanner formula as 'apparent di�usion coe�cient '.

In a 3D case, it is the di�usion gradient vector G = (Gx, Gy, Gz) that deter-

mines the direction along which di�usion is measured. Di�usion perpendicular to the

gradient vector does not alter the phase of magnetization in any way, therefore it is in-

visible. Essentially then, NMR experiments measure a 1D di�usion along the di�usion

gradient vector. In an isotropic environment, application of a di�usion gradient along

an arbitrary direction leads to the same signal attenuation predicted by the Stejskal-

Tanner formula (Eq. 2.5). In an anisotropic environment, at least six independent 1D

di�usion measurements are required to fully assess the six independent components of

the di�usion tensor (Figure 2.2). Each of these measurements still obeys the Stejskal-

Tanner formula except that the di�usion coe�cient D must be replaced by a scalar

quantity.

In DTI literature, the di�usion tensor (Figure 2.5) is commonly identi�ed with

the matrix representation in the coordinate frame determined by the MRI scanner
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namely the laboratory frame, where the subscripts are x, y, and z as in Eq. 2.13:



x2
1 y

2
1 z

2
1 2x1y1 2y1z1 2x1z1

x2
2 y

2
2 z

2
2 2x2y2 2y2z2 2x2z2

...

x2
n y

2
n z

2
n 2xnyn 2ynzn 2xnzn





Dxx

Dyy

Dzz

Dyy

Dzz

Dxy

Dyz

Dxz



=



−1
b
lnS1

S0

−1
b
lnS2

S0

...

−1
b
lnSn

S0


(2.12)

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.13)

The calculation of distribution of signal phases by molecular motion is needed.

The phase distribution in space is expressed as:

(x) = eiGx (2.14)

where x is the distance from the reference point (x=0), γ is the gyromagnetic ratio

(2.675x108rad/s/T or 42.58MHz/T ), G is the gradient pulse strength, and ∆ is the du-

ration of the pulsed gradient. The di�usion constant of water inside the brain is about

1.0x10−3mm2/s and the time interval namely the di�usion time is 30 ms. Einstein's

equation de�nes the average di�usion distance in three dimension as in 2.15:

σ =
√

6Dt (2.15)

The symmetric di�usion tensor has nine images representing the tensor elements

(Eq. 2.13). The sample di�usion tensor elements are given in Figure 2.6 for a sin-

gle slice in the data set. The o�-diagonal images are mirrored on the diagonal images

Dxx, Dyy, Dzz, which means there are only six di�erent images corresponding to inde-
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Figure 2.5 The symmetric di�usion tensor is presented with its actual tensor components arranged
according to their position in the di�usion tensor in Eq. 2.13. Each of the nine images gives the tensor
elements, of a single axial slice in the data set. The o�-diagonal images are mirrored on the diagonal
images Dxx, Dyy, Dzz, which means there are only six di�erent images corresponding to independent
tensor elements. The signal in the diagonal tensor elements is stronger and less noisy than in the
o�-diagonal images.

pendent tensor elements. The signal in the diagonal tensor elements is stronger and

less noisy than in the o�-diagonal images.

The approximate water movement is 8µm [20]. In the assumption of free di�u-

sion, the water molecules motion is de�ned by Gaussian distribution [12,20]:

1/σ
√

2π · e
−x2
2σ2 (2.16)

The Gaussian distribution imply the population of water spins at location x. sigma

de�nes the width of the distribution's curve, which means how far the molecules can

move on average. Substituting the Einstein's equation in Eq. 2.16 following probability

distribution is get:

P (x, t) =
1√

4πDt
· e

−x2
4Dt (2.17)

Here P (x, t) gives the population of water at a location x at a time point t (where

t = ∆). The total signal S is the sum of the product of population and signal phase
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Figure 2.6 Example for di�usion weighted data for a single slice with 30 di�usion directions and
a T2 image is presented. Di�usion weighted images are used to solve Eq. 2.12, and to calculate the
di�usion tensor as in Eq. 2.13.

along location x [20]:

S =
∑
x

P (x, t)φ(x) (2.18)

where φ(x) is the phase distribution in space (Eq. 2.19). It is introduced by a

gradient pulse with a strength of G, a duration δ and the gyromagnetic ratio γ.

φ(x) = eiγGδx (2.19)

The amount of signal attenuation can be calculated by adding all the signal

phases at each location (Eq. 2.20):
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S =
∫
x
P (x, t)φ(x)dx =

1√
4πD∆

·
∫
x
e−x

2/4D∆eiγGδxdx (2.20)

If no gradient is applied, G = 0, this normalized signal phase (Eq. 2.19) becomes

1. So Eq. 2.20 becomes:

S =
∫
x
P (x, t)dx =

1√
4πD∆

·
∫
x
e−x

2/4D∆dx (2.21)

The phase term is always less than 1. This generates a signal less than 1 in the presence

of pulsed gradients (G 6= 0). In practice, there are number of signal intensities read from

MR scanner [20]. Assigning the signal intensities with and without di�usion weighted

gradients applied as S and S0 respectively, the resulting signal equation corresponds to

the well known Stejskal-Tanner equation, which leads to the calculation of the di�usion

tensor D. The exponential decay can be rewritten in many forms, which gives the signal

loss by di�usion weighting.

S = S0e
−γ2G2δ2D∆ (2.22)

The di�usion constant can be calculated from the amount of signal loss, but not

from the signal intensity.

2.1.6 Di�usion Tensor Tractography

The white matter architecture is reconstructed non-invasively by pixel-by-pixel

�ber orientation knowledge revealed from DTI data. The computer-aided 3D �ber

tract reconstruction techniques are called di�usion tensor tractography (DTT ). The 3D

tractography elucidates the anatomic brain structure and in some cases the pathology

of the investigated brain tissue.

Tractography techniques rely in following the principle di�usivity of water cal-
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Figure 2.7 A representative cross section of the DTI's primary eigenvector direction which is overlaid
on its corresponding intensity image.

culated from the di�usion tensor in each image voxel. Starting at a seed region, trac-

tography provides the possibility to tract the white matter and its connectivity in living

human brains. There are many prominent tracts in human brain that are large enough

to detect visually. These major tracts can be clearly de�ned by DTI with 23 mm image

resolution using the DTT.

The observation that the apparent di�usivity of water is greatest along the

dominant orientation of white matter tracts within an image voxel has led to a variety

of methods for displaying �ber orientation, ranging from simple techniques based on

apparent di�usion coe�cients measured in two orthogonal directions [25], to methods

based on information contained within the full di�usion tensor [3, 26�28]. This orien-

tational information has been further utilized in attempts to infer axonal connectivity

in the brain [29�35]. In the majority of these methods, at each step in the reconstruc-

tion of a �ber trajectory a single estimate of �ber orientation is used to determine the

direction of propagation. In tractography, accumulated uncertainties in �ber orienta-

tion have clear potential for leading to erroneous reconstructions of pathways. Some

approaches have attempted to allow for the uncertainty in �ber orientation [33�37],



21

or have attempted to reduce the uncertainty in �ber orientation either through reg-

ularization approaches [32�35, 38] or through generating continuous approximations

to the sampled tensor �eld and applying smoothing factors [36, 39]. Wittenbrink et

al. [40] discussed this issue in some depth and described various glyphs for visualizing

uncertainty in vector �elds. Basser [41] later described an approach for constructing

such a glyph or a "cone of uncertainty" in the estimate of eigenvectors obtained from

DTI, i.e., a cone whose cone angle is equal to the uncertainty (i.e., a given con�dence

interval) in the estimate of the orientation of the principal eigenvector. However, this

method was based on matrix perturbation analysis of synthetic data. No attempts

to determine the uncertainty of estimates of �ber orientation in vivo from real data

have yet been reported. The bootstrap method [42] is a nonparametric procedure that

enables one to estimate the uncertainty of a given statistic, or its probability density

function (PDF). Recently, Pajevic and Basser [43] proposed a nonparametric method

for statistical analysis of DTI data based on the bootstrap method. This application

of the bootstrap procedure has also been used by other groups to compare the perfor-

mance of DTI acquisition schemes [44] and tractography algorithms [45] and is clearly

a useful tool in terms of characterization of noise in DTI data.

The DTT literature can be covered on two general class of tractography ap-

proaches, i. deterministic and ii. probabilistic tractography. Tract reconstruction is

based on tract propagation and energy minimization. Brie�y, in the deterministic ap-

proach, a seed point is selected and a tractography results only one best-�t solution,

where the probabilistic approach relies in de�ning the most probable connection path.

2.1.6.1 Deterministic Tractography. Tractography algorithms mostly rely on

line propagation techniques to determine white matter tracts [46]. This �rst class

of DTT is called deterministic streamline �ber tractography. Deterministic DTT al-

gorithms mainly rely on seed based approach. The identi�cation of a suitable seed

(starting) region leads to initiate the algorithm. The next application step is the prop-

agation of the track along the estimated �ber orientation. Finally, the termination

of the tract is achieved when appropriate similarity criteria are met. Tractography
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algorithms rely on the availability of estimates of the orientation of the white matter

�bers at any location within the ROI. The principal di�usivity is typically assumed

to provide a knowledge to estimate the �ber tract within each imaging voxel. The

simplest method to obtain a deterministic tractography estimate is to use nearest-

neighbor interpolation. The desired tract orientation is approximated as that of the

nearest voxel [47]. The algorithm proceeds by stepping out from the seed position along

the orientation estimated at that point, by a �xed user-speci�ed step-size. As the ori-

entation at the new pixel is determined, the algorithm follows along that direction until

the tract is terminated. The �xed step-size tracking combined with nearest-neighbor

interpolation is the idea of the original �ber assignment by continuous tracking (FACT)

algorithm [29]. FACT algorithm is actually a �rst-order Euler integration procedure,

and this is known as an approach that fails in highly curved regions due to the �nite

step size [48]. The implementations of deterministic tractography di�er mainly in the

choice of interpolation method. Other deterministic DTT methods have been proposed

to allow �ber tractography to proceed through crossing �ber regions by "de�ecting"

the direction of tracking according to the di�usion tensor, rather than strictly following

the principal di�usivity [49]. However, this de�ection based approach has been shown

an increase in the amount of overshoot in highly curved regions [50]. The applied

arbitrary thresholds will force early termination of the reconstructed pathway. Here

the arbitrary thresholds are anisotropy and angular thresholds. Mainly, there are two

main reasons for the choice of similarity criterion. In low anisotropy regions, the major

eigenvector of the di�usion tensor is poorly estimated and also noise sensitive. And as

anisotropy tends to be high in white matter and low in gray matter, a sudden drop in

anisotropy is assumed to be the gray/white matter boundary. And tracts are generally

assumed to start and end at these boundaries. Angular threshold as another common

criterion for termination, is based on the local curvature of the track. For DTT con-

cerns, the angle between the directions of two subsequent steps should be in a certain

prede�ned threshold. This constraint similar to the anisotropy threshold forces the

propagation within the prede�ned similarity criteria, and the tract is not allowed to

propagate any further like in the basic streamline tractography [1]. The motivation for

angular threshold criterion is that a sudden change in direction of the local curvature

of the tract is likely to be caused by artifacts in the data like noise. As a result of the
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combination of these contraints, the stopping criteria in DTT include intersection with

voxels characterized by low anisotropy values or large local curvature of the trajectory.

These issues have limited the usefulness of deterministic approaches in de�ning certain

�ber tracts especially in uncertainty regions where the anisotropy is low and the local

curvature of the tract is crossing and curving.

2.1.6.2 Probabilistic Tractography. Noise is an important issue in the DTI.

The noisy data introduces uncertainty in the estimation of �ber orientations. Conse-

quently, the determined �ber tracts include errors [51,52]. These errors might mislead

the tractography and cause to detect completely di�erent connections rather than the

underlying white matter anatomy. Deterministic tractography algorithms provide a

single unique estimate of the white matter tract from each supplied seed point, and

a con�dence interval is not considered around this estimate, which leads to a single

best match estimate. Probabilistic algorithms, however, try to address this limitation,

where their results are in the form of a probability distribution. Probabilistic algorithms

have been proposed to characterize the uncertainty in �ber tract estimation. For each

starting point, a set of possible trajectories is obtained for a given voxel. Here, each

trajectory is generated in a streamline fashion. Therefore each propagation direction at

each step which is being chosen at random from the distribution of directions available

at the steps corresponding voxel, are guiding the algorithm to tractography [43�45].

Model-based probabilistic algorithms, model-free probabilistic approaches, boot-

strap tractography and global optimization algorithms are di�erent types of proba-

bilistic DTT algorithms [53, 54]. In this study, the SOFMAT algorithm reconstructs

the most probable paths in the brain space by unsupervised learning, such that path

con�gurations are consistent with the underlying di�usion tensor knowledge and sat-

isfy speci�ed constraints. Compared with deterministic approaches, probabilistic ap-

proaches have the additional advantage in not restricting one tract per seed. SOFMAT

approach allows the user to select various arbitrary brain regions at random as start-

ing regions, and tries to estimate �ber tracts at each of these investigated regions. If

the neighborhood function of SOFMAT and the prede�ned similarity constraints are
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reached, the tractography results are identi�ed. These results regarding to the selected

starting regions, might be individual tracts or connections between these regions might

be estimated. The the algorithm de�nes according to the applied criteria.

Probabilistic methods rely on the same underlying model as the deterministic

methods, and many of them are based on deterministic techniques [48]. Most of the

probabilistic methods are derivations or extensions of deterministic streamlines tech-

niques. Therefore it should be emphasized that probabilistic tractography methods

are not more accurate than the deterministic methods [48]. They also have the same

limitations such as manual guidance and ROI-based editing. Probabilistic tractogra-

phy's bene�t is that results can provide an estimate of the precision with which a tract

pathway has been reconstructed [48].

2.1.6.3 Limitations of Tractography. Tractography follows the principal di�u-

sivity of the di�usion tensor. Typical resolution of the MRI signal in a voxel is limited,

and this clearly re�ects the signi�cant di�erence between the scale of the axonal di-

ameter and the imaging voxel size. Another limitation is the noise and artefacts in

the di�usion data. DTT relies in the assumption, that the �bers visualised in each

voxel are well described by a single orientation estimate. This assumption is not af-

fective in uncertainty regions where there are more than one population of �bers with

crossing, kissing or diverging. These pitfalls might lead to poor tracking of �ber tracts

or even to determine �bers which do not exist. It should be emphasized, that the

interpretation of tractography requires good neuroanatomy experience and a priori

knowledge [4�6, 16, 48, 55]. There are several tractography algorithms represented in

DTT literature. However, there isn't any gold standard which determines one as the

most e�ective algorithm [48,55]. This gap is because of the lack of an objective way for

assessment of the performances of the tractography algorithms against each other. This

assesment also demands a knowledge of the precise anatomy of human brain tracts.

Obviously this makes the problem very di�cult.
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2.1.7 Di�usion Tensor Analysis

The di�usion tensor D is a real, symmetric second order tensor, represented in

matrix form as a real, symmetric, positive semi-de�nite 3x3 matrix. Diagonalization

of the di�usion tensor (Eq. 2.23) results in a set of three eigenvalues λ1, λ2, λ3 listed

in decreasing order. The eigensystem of the di�usion tensor may be interpreted graph-

ically as an ellipsoidal surface with semi-major axis oriented in the e1 direction and

semi-minor axis oriented in the e2 and e3 directions [1]. The lengths of the axes in

this ellipsoidal interpretation are given by the corresponding eigenvalues of each eigen-

vector, with semi-major axis length proportional to λ1 and semi-minor axes lengths

proportional to λ2 and λ3 [56]. In cases of purely isotropic di�usion, the di�usion ellip-

soid takes a spherical shape, as λ1 = λ2 = λ3. There are two extreme cases of physically

realizable anisotropic di�usion [56]. For purely linear anisotropic di�usion, λ1 = c, and

λ2 = λ3 = 0, the di�usion ellipsoid degenerates into a line pointing in the e1 direction.

In the case of purely planar anisotropic di�usion, the di�usion ellipsoid becomes oblate,

meaning that λ1 = λ2, λ3 = 0, and by means of the principal di�usivities, the di�usion

is restricted to a plane spanned by e1 and e2.

2.1.7.1 Principal Component Analysis. Principal component analysis (PCA)

is a classical statistical method widely used in data analysis and compression. PCA is

based on the statistical representation of a random variable. The method reduces data

dimensionality by performing a covariance analysis between factors. PCA method

is based on linear transformations; however, nonlinear extensions exist. PCA is a

technique for reducing second-order dependencies in the data by rotating the axes to

correspond to orthogonal directions of maximum covariance (decorrelation). From a

symmetric matrix such as the covariance matrix, an orthogonal basis by �nding its

eigenvalues and eigenvectors can be calculated. The diagonalization of the D results

in three eigenvalues λ1, λ2, λ3 (2.23). The eigenvectors ei and the corresponding

eigenvalues λi are the solutions of the equation (2.24), where the eigenvectors ei are
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the principal di�usion directions ei (i = 1, 2, 3).

D ~ei = λi ~ei (2.23)

|D − I| = 0 (2.24)

One way to solve the eigenvalue problem is to use a neural solution to the problem. The

data is fed as the input, and the network converges to the wanted solution which is not

applied in our present work. By ordering the eigenvectors in the order of descending

eigenvalues, one can create an ordered orthogonal basis with the �rst eigenvector hav-

ing the direction of largest variance of the data, which gives in our case the principal

di�usivity. In this way, the most appropriate di�usivity directions can be determined.

PCA is applied on the signal matrix to yield three uncorrelated (orthogonal) linear

combinations λ1, λ2, λ3 of the signal Sx, Sy, Sz. The �rst principal component λ1

has maximum variance, and thus its weighting coe�cients will give the direction of

the maximum di�usion weighted signal, or largest principal di�usivity. The weight-

ing coe�cients of the second and third principal components λ2 and λ3 will give the

directions of the intermediate and smallest principal di�usivity respectively.

The eigensystem calculation (2.23) for the analyzed image data provides infor-

mation about the di�usion distribution throughout the investigated image. In di�usion

tensor literature, tracking methods rely mainly on the dominant principal di�usivity

λ1, the dominant di�usion direction e1. The assumption is that the �bers' orientation

is along the principal di�usivity [29, 57�59]. An important element of di�usion tensor

calculations is the sum of squares of the di�usivity di�erences (2.25). The square root

of the sum of squares of eigenvalues is used to gain a weighted average, where the

principal eigenvalue is the largest and therefore the dominant component. The result

leads to well-known fractional anisotropy (FA) (Eq. 2.25) in di�usion tensor analysis.

FA is used in DTI literature for thresholding the di�usion data (Figure 2.8). In our

study, the FA map is used to minimize the input space. To compare the results, the

algorithm is implemented without any FA selection where the whole input data was

used in computation. The principle di�usion direction with thresholded FA map is
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Figure 2.8 Left: Thresholded FA map superimposed on the T2 weighted image. Right: Thresholded
FA map of the same image slice.

interpreted graphically in Figure 2.8.

FA =

√
3

2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

√
λ1 + λ2 + λ3

(2.25)

2.2 SOM: Self-Organizing Maps

The feature mapping model focused here described by Kohonen is arranged in

a 1D lattice. In this topology, each neuron has a set of neighbors. The Kohonen

model captures the essential features of computational maps in the brain and remains

computationally tractable [7, 60]. Self-organizing maps are a special class of arti�cial

neural networks based on competitive learning. Neurons are generating a lattice in

one or two dimension. The neurons are selectively on while the competitive learning

process according to the input pattern actually the stimuli. This process allows the

winning neurons generate an ordered fashion with respect to each other for di�erent

input features [61]. The created meaningful coordinate system forms a topographic map

of the input pattern. The coordinates of the input pattern are self organizing itself.

In other words the coordinates of the neurons indicating intrinsic statistical features of

the input pattern. A self organizing map can be seen as a nonlinear generalization of

principal component analysis [7, 62].
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2.3 PISTE: Arti�cial DTI Data

In an attempt to identify nerve �ber trajectories, several DTI based tractog-

raphy techniques have been proposed to propagate di�usion tensor �elds. Since it is

di�cult to validate the �ndings of a tractography method on brain images, arti�cially

produced validated phantom images are used for benchmarking. One such commonly

utilized dataset in DTI tractography method is called "Phantom Images for Simulating

Tractography Errors" (PISTE). PISTE comprises a set of simulated �ber trajectories

designed for testing, validating and comparing tractography algorithms allowing for

the investigation of various geometries like linear, linear break, orthogonal crossing,

and spiral [63]. Here, the linear trajectory is de�ned as a straight-forward linear tract,

where the so called linear break trajectory of PISTE has a complete break at the

tract [63]. As will be explained in detail in Section 4.1 , orthogonal crossing is an

example of intersecting �ber structures. This PISTE trajectory is a crossing sample of

two �bers intersecting each other at a right angle. Each of these trajectory sets con-

tains a T2 weighted image, an image with 6 elements of the di�usion tensor achieved

by application of 30 di�erent di�usion directions [31, 57], and an image of the corre-

sponding eigensystem [63]. The tensor images of di�erent geometries were fed into

the proposed tractography system testing for varying SNR levels of 5, 15 and 30 as

well as the noise-free condition. The PISTE images used in this study correspond to

MR images acquired with TE = 90 ms, di�usion tract having a T2 of 65 ms, and the

background with a T2 of 95 ms. 30 di�usion directions were represented in 16 slices of

150 x 150 images. The di�usion directions are obtained using an algorithm analog to

electrostatic repulsion [31, 57]. Although the eigenvectors of the dataset are given on

PISTE site, a di�usion tensor analysis is also done, so the raw di�usion weighted im-

ages were also used to compute our own di�usion tensor images with the corresponding

eigensystem. The analysis for every trajectory is done for varying SNR levels, such as

5, 15 and 30, and also noise-free. A detailed chart about the acquisition parameters is

given in Table 2.1 [63].

The DT images are generated on the investigated trajectory with a decreasing

anisotropy along the length of the tract, which is overlaid on a homogeneous anisotropic
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background. The data used in this study is available as 32 bit �oat binary �les at [63].

Table 2.1

Parameters of the simulated trajectories in PISTE.

Matrix Size 150 x 150 x 16

Di�usion Directions applied 30

b Value 1000 s/mm2

Echo Time, TE 90 ms

T2 of Background 95 ms

2.4 Visualization Tool

After implementation and evaluation of SOFMAT results on PISTE, the algo-

rithm SOFMAT is implemented on real human data. The SOFMAT results represent-

ing the WM �ber tracts are visualized using TrackVis program version 0.5.2.2 [64,65].

TrackVis is a 3-dimensional visualization program that allows real-time visualization

of the �ber track data that was created by SOFMAT.
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3. Methodology

3.1 Novel DTT Methods

DTI is a fundamental technique that allows in vivo structural brain imaging

by white matter estimation [1, 17, 26]. Di�ering from the weighted MR images, DTI

provides directional information that could be used to compute nerve pathways [10,

39, 66]. The modality is unique in its ability to provide in vivo anatomical �ber tract

information non-invasively [46]. However, the accurate estimation of white matter

�bers is highly dependent on the tractography algorithm used. It is advantageous in

clinical neuroscience, for quantitative comparison of speci�c white matter pathways

in disease, in guided interventions, for the exploration of the normal brain anatomy.

Tractography however, should be used with care because of the limitations of the

technique [4,5,55]. A complete and validated neural �ber map of the brain is still not

available in the literature, which makes the adequate veri�cation of the post processing

a challenging and a critical task.

3.2 Fiber Tracking: A Recursive Stack Algorithmic Approach

Here we propose a tool which aims to track the WM �bers according to stack

data structure algorithm non-iteratively, depending on the structural information of

the underlying tissue. Recursive stack algorithmic approach is proposed as a base

to the developed SOFMAT. This approach allows to scan an ROI with respect of a

prede�ned angular contraint, where the so called neighbor of the investigated node

is checked whether it carries similar information with the starting node. The aim is

to gain a proper linked list identifying the underlying structure. The stack is a data

structure where data-item insertions and retrievals/deletions are made at one end,

which is known as the top of the stack. Storing (inserting) a data item in a stack

is called pushing it onto the stack, where removing (retrieving/deleting) a value from
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a stack is called popping the stack. A stack behaves like a linked list in which all

insertions and deletions are performed at the list head. The last node in the list is

called "top", where the �rst node is called "bottom". Because the last inserted data

item is the �rst retrieved/deleted data item, developers commonly refer to stacks as

LIFO (last-in, �rst-out) data structures [67]. As seen in Figure 3.1, the stack builds

down in memory. For each data-item push, the previous top data item and all lower

data items move farther down. When the time arrives to pop a data item from the

stack, the top data item (which in the �owchart in Figure 3.1 and Figure 3.3 reveals

as "[3,2]") is retrieved and deleted from the stack.

The linear data structure used here helps to create a list of investigated region of

interest of eigenvectors. The input eigenvectors serve as data-item, and the insertions

and retrievals/deletions made at the top of the list leads to estimate the tract. The

created list can be called a linked list in which all insertions and deletions are performed

at the list head (top) [67]. For each data-item push, which means adding another

eigenvector from the input space into the search, the previous top data item and all

lower data items move farther down. When an eigenvector does not �t the similarity

measure, which is an angular deviation allowance here, then the time arrives to pop

this data item from the list, and the top data item is retrieved and deleted from the list.

To clarify the implementation routine, application steps are summarized in a �owchart

in Figure 3.1 and explained on the synthetic data as shown in Figure 3.2.

The starting point is selected as x=1 and y=1 as shown in Figure 3.2 as (1,1).

This selected coordinate having the eigenvector [1,0] is the bottom of the stack.

The stack is a data structure where data-item insertions and retrievals/deletions

are made at one end, which is known as the top of the stack. Storing (inserting) a data

item in a stack is called pushing it onto the stack, where removing (retrieving/deleting)

a value from a stack is called popping the stack. Now the implementation routine can

be interpreted as follows:
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Figure 3.1 Flowchart of the stack linked list application.
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1. Coordinate (1,1) having the eigenvector [1,0] stored in the stack as a starting

point.

2. Pixel (1,2) is not within the limits of similarity measure.

3. Pixel (2,1) is stored in the stack on the top again in compliance with similarity.

Top is now assigned to the new node.

4. Next, pixel (2,2) ful�lling the similarity measure is stored on the top the stack.

5. Pop pixel (2,2). Compare its eigenvector [0.7 .07] with its neighboring pixels'

eigenvectors for similarity.

6. Eliminated neighbors: (1,3) and (3,3) with both having the eigenvector [-0.7 -0.7].

7. Push (2,3) and (3,2).

8. Pop pixel (3,2). Check its neighbors.

9. Pixels (2,3), (2,1), (2,2) satisfy the prede�ned similarity rule. But they are al-

ready in the stack, and they are already in the track matrix. Therefore these

points are not pushed into the stack.

10. Neighbor pixels (3,1), (4,1), (4,2), (3,3) of (3,2) are not ful�ling the similarity

criteria.

11. Pixel (4,3) satis�es the criteria. It is pushed on the top of the stack.

12. Similarly the next pixel to be pushed into the stack is (4,4).

13. As the search reaches to the boundary of the ROI with no further need for push

search process of the network in the selected limits is completed.

The implementation results a stack which behaves like a linked list. Our ap-

proach relies in the assumption that the axon follows a unique path. Each element in

the stack linked list implementation represents a voxel in the ROI, and each voxel is

related with its neighboring voxels. The implementation steps of the list stack (Figure

3.2 and Figure 3.3) are as follows:
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Figure 3.2 Sample synthetic eigenvector pattern. (a) (1, 1) is the starting node, where green checks
represent the neighbors within the similarity measure.

The starting point is selected as x = 1 and y = 1 as shown in Figure 3.2a. This

selected coordinate having the eigenvector [1, 0] is the bottom of the linked list. The

prede�ned similarity measure is a set of angular thresholds π/j(j = 4, 6, 12, 18, 20).

Pixel (1, 2) is not within the limits of similarity measure π/4 (Figure 3.2 a). Pixel

(2, 1) is stored in the stack on the top again in compliance with similarity. Top is now

assigned to the new node. Next, pixel (2, 2) ful�lling the selected similarity measure

is stored on the top of the list. The eigenvector [0.7, 0.7] with its neighboring pixels'

eigenvectors are being compared for similarity. As a result, neighbors with coordinates

(1,3) and (3,3) with both having the eigenvector [−0.7− 0.7] are eliminated (as seen in

Figure 3.2 b). The implementation follows by pushing the coordinates (2,3) and (3,2)

to the list. Pixel (3,2) is popped. Then its neighbors are examined as in Figure 3.3 a.

The routine follows by determining pixels matching with the prede�ned similarity rule

π/4. The synthetic �ber path (represented in blue) is de�ned as a result as in 3.3 b.

Selecting the similarity measure as π/4, allows the pixel (2,2) to be on the list

as described above. But examining the pattern by a di�erent iteration for a varying

angular threshold such as π/6 or π/12, this pixel is not being assigned for the neigh-

boring pixel list. As a result the track represented in red on Figure 3.3b is the outcome

of the computational routine. The decision making here about to select a track follows

regarding to the underlying tissue's structural information.
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Figure 3.3 Listed data structure analysis results shown on sample pattern with its principal eigen-
vectors. Two possible resulting �ber paths are represented.

Tracking process is completed by popping the stack one by one each time search-

ing for similarity of unattended pixels. Pop operation continues until stack is cleared

based on LIFO. Read out results are displayed as �ber tracking paths.

The application follows with the investigation of the neighbors of the examined

node within one pixel neighborhood. If one neighbor of the bottom point has an

eigenvector in the prede�ned similarity measure then this point will be pushed/added

to the stack. If one investigation node with the proper limits, added into the stack

is being encountered several times, than no action is taken in case of the repetitions,

because this node has already been pushed into the stack. When a pixel is pushed

into the stack, its eigenvector is kept in track matrix even if the pixel is popped later

in the process. The similarity measure resulted in a push action for a pixel in the

neighborhood of the top of the stack is de�ned as an angular di�erence. We tried a

number of angular thresholds for similarity, such as π/4, π/12, π/20.

The proposed approach relies in the assumption of the unique path description

of an axon. Each element in the implementation represents a voxel in the ROI, and

each voxel is related with its neighboring voxels. Regarding the neighboring voxel

knowledge, the computation sorts the elements in the list for tracking, where the ele-

ments which do not ful�ll the criteria are kept in a secondary matrix. While examining
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the investigated pattern pixelwise, the elements in the secondary matrix come up as

potential neighboring pixels in question. The repeated check for if they are within the

similarity criteria and if they belong to the �ber track gives the chance of a double

check in the system. By that way, the neighboring is updated and a more secure result-

ing track is being de�ned and followed. The routine updates itself so that for the one

selected starting node the �rst and second neighboring pixels are investigated and the

computational routine is stretched to a wide range via this increased neighborhood.

3.2.1 Results

The proposed method is implemented on simulated �ber eigensystem to deter-

mine the prede�ned synthetic trajectories (Figure 3.3). The output of the algorithm

is in agreement with the visual inspection results as shown in Figure 3.4. Variation of

the similarity measure causes major di�erences in the calculated neural path. Small

values of the similarity measure decreases the number of voxels in the solution which

are de�ned by the decision making as neighboring voxels while increased similarity

measure selections generate more well de�ned and close results to the underlying tis-

sue structure. Following the promising results of the synthetic data implementations,

the method is applied on real DT brain images. As explained in detail in Section 2.1

(Eq. 2.23 and 2.24), the eigensystem of D is determined by PCA, and interpreted

graphically as seen in Figure 3.4.

3.3 Self Organizing Nerve Fiber Tractography in DTI

Adequate veri�cation of the post processing of DT analysis is challenging and

critical task. An important drawback in the determination of the �ber paths for trac-

tography purposes occurs in uncertainty regions where at least two �ber paths intersect.

This study proposes an arti�cial neural network approach named SOFMAT based on

Self-Organizing Feature Mapping (SOFM or SOM) to de�ne the �ber tracts based on

their di�usivity and to clarify, especially the �ber tracts in these uncertainty regions.
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Figure 3.4 Fiber tracking results traced on axial slice with a similarity measure of π/20. Calculated
neighboring pixels (red) with related di�usivity mapped on entire eigenvector map.

The locally computed di�usion tensors shape the randomly distributed arti�cial neu-

ronal topology. The developed novel SOM based tractography approach SOFMAT

(Self Organizing Feature Mapping Tractography) is based on unsupervised learning

method, which is used in the training of Arti�cial Neural Networks (ANNs). Unsuper-

vised learning is preferred for the fact that we do not have a reliable training set either

for the pathological or for the normal human brain. SOM as a classi�er demonstrated

successful identi�cation of structured topologies in various domains [7,60]. Represent-

ing a sub-set of ANNs, SOM is particularly useful in investigating multi dimensional

topologies. In this study, the topology sought is actually the tracts of localized dif-

fusion eigenvectors, which de�ne the principal di�usivity of the �bers in the DTMR

images. The available anatomical atlases depicting nerve tracts have poor resolution

capable of distinguishing millions of axons contained in unit imaging voxel. Clinical

validation data is hard to come by for the intended clinical utilization. Instead, it is

a common practice to employ arti�cially produced data to evaluate proposed tractog-

raphy algorithms. Therefore, in this study, a common di�usion tensor resource named

PISTE (Phantom Images for Simulating Tractography Errors) is used for benchmark-

ing the accuracy and acceptability of the proposed approach. The idea of SOFMAT is

to accomplish the �ber pathways by considering each individual voxel's contribution

taking into account the neighboring voxels' behavior in the topology. This is achieved

by both competing and cooperating behavior of SOM nodes (neurons) in forming the

topology. The proposed method has been tested on four Phantom Images from PISTE



38

with various signal to noise (SNR) values. The images represent various levels of

complexities involving, cross-overs, kisses, direction changes. The results were than

compared against well accepted tractography algorithms reported in the literature (i.e.

Streamline (STL) [1] method and Guided Tensor Restore Anatomical Connectivity

Tractography (GTRACT) algorithm [47]. Preliminary studies indicate that SOFMAT

method gives promising and relatively superior results compared to the traditionally

implemented and well-accepted tractography algorithms mentioned above.

This section of the thesis is organized as follows: In the next Section, a brief

background work related to the proposed method is introduced including the synthetic

data resource utilized for evaluation. Section 3 describes the method of the presented

work in detail addressing how SOM is implemented to detect nerve tracts, and how the

results have been validated. The related Results Section presents quantitative compar-

ison of the proposed method against the commonly used algorithms. The discussions

are given in the last Section.

3.4 SOFMAT: Self-Organizing Feature Mapping Tractography

SOFMAT (Self-Organizing Feature Mapping Tractography) is proposed as a

tractography algorithm in this study. It is based on Self Organizing feature Maps

(SOMs), a family in arti�cial neural networks. The advantage of SOM lies in its

ability of mapping high dimensional data into a 1D, 2D, or 3D data space, subject

to a topological ordering constraint [7, 60]. SOM is able to learn an input pattern in

terms of the patterns' regularities and correlations. As will be explained in Section

3.4, the network adapts the output pattern according to its input. One important

feature of SOM is that it is able to process noisy data. This makes the learning rule

applicable in di�usion tensor �ber tract analysis. Based on this special class of ANN,

the proposed algorithm SOFMAT aims to map the brain's di�usion tensor data into

�ber tract paths using an unsupervised learning method. Unsupervised nature of the

learning is essential, since the ultimate challenge is to identify the tractography of brain

nerve pathways with no apriori anatomical or pathological information.



39

SOM orders the data into meaningful topologies corresponding to the given

input data. SOFMAT uses this ability in terms of retaining the underlying structure

of the input space and enabling a mapped match of the investigated imaging space

resulting in nerve �ber tracts as an output. The �nal tractography is the converged

state of an arti�cial neuronal map obtained by the iterative synaptic weight update

process [7, 60].

SOFMAT, in an attempt to discover nerve �ber tracts utilizes an arti�cial neural

network learning scheme inspired by the self organization in a neurobiological system

[6]. This is achieved by implementing the characteristics and basics of SOM unsu-

pervised learning methodology onto the DT eigensystem. Here, each neuron's spatial

location in the resulting feature map corresponds to a particular topology of the input

data. Di�ering from a classical SOM application, SOFMAT utilizes the orientation

information (λ1, λ2, λ3, e1, e2, e3) inherent in the DT images, along with the positional

dependency. In other words, SOFMAT enables the analysis of correlated neighboring

nodes with respect to both their spatial locations, and the direction of their di�u-

sivities. The "di�usivity informed" SOFMAT uses this information as a topological

ordering constraint.

The feature mapping model which SOFMAT implements in this study is ar-

ranged in a number of 1D lattices, as described by Kohonen [60]. In this topology, each

neuron has a set of neighbors which are in�uenced by the motion of a target neuron

de�ned by a weighted Gaussian distance function, as explained in detail in Section 3.3.

The lattices formed as a result can take any arbitrary shape in the n-dimensional input

space, even though they are nothing more than strings, as is also the case for axons

forming a nerve tract. The proposed method bene�ts from this feature in detecting

the topological nerve �ber map.
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3.4.1 Competitive process in SOFMAT

SOFMAT inherits unsupervised competitive learning from SOM with the fol-

lowing principles [7, 60]:

- The output neurons of the network compete among themselves to be �red, for

a given input pattern.

- Only one output neuron is activated at any one time, called the winning neuron.

- The winning output node is processed by the self-organization progressing

towards the input pattern I, while dragging its neighbors.

- As an outcome of this self-organized competition and cooperation the topo-

logical connectivity in I is maintained and re�ected in the output.

- The input pattern I selected randomly is represented as in Eq. 3.1:

I = [x, y, z, λ1, λ2, λ3]T (3.1)

where x, y, and z correspond to the three position coordinates, and λ1, λ2, λ3 are the

three eigenvectors of the di�usion tensors computed for the related di�usion tensor

images.

- The input space pattern I and an output node similarity, or distance is deter-

mined in relation to the associated synaptic weight vector of each output neuron (node)

expressed as [7] in Eq. 3.2. Here similarity match is reached by identifying the node

that best matches the input I, and this winning neuron P(I) is found at a time step

t by using the minimum-distance Euclidean criterion [7], where n is the total number

of neurons in the network. As the network learns the mappings desired, weights are

adjusted among the inputs to minimize error.

P (I) = argminj ‖I (t− wj)‖ , j = 1, 2, . . . , n (3.2)
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Figure 3.5 Illustration of the training process. (a) Initial random state of the lattice. The input data
vector is displayed here as I(t). Randomly initialized network after a learning step; intermediate stage
of self-organization. Best match is assigned as winning node. Updating the weight allows the network
to �nd its best matching nodes in the discrete output space (3.2). The nodes within the neighborhood
hj learn from the winning node. (b) Fully trained network after n iterations: Structured input space.

where wj is the weight vector for the j th node as:

~wj = [wj1, wj2, . . . , wjm]T (3.3)

In SOFMAT, m is de�ned as 6 corresponding to the number of di�usion gradient pulses

(2.5). The �rst three elements of wj describe the position of j th node, and the last

three correspond to the orientation of the vector connecting the j th node to the j+1 st

node.

SOFMAT identi�es the winning neuron by computing a distance function com-

paring an input pattern I with the synaptic weight vectors, wj for each node (3.2).

The training process is illustrated in Figure 3.5. First, the weight vectors are mapped

randomly onto a two-dimensional lattice. Figure 3.5a represents this initial random

state of the lattice. Training of the network gives the closest match to the input data

vector I(t) in the node (Figure 3.5b). The nodes within the neighborhood h learn from

the winning node (Figure 3.5c). The weight vectors within the neighborhood h learn

from the input data vector and get updated. In Figure 3.5d, the �nal, fully trained

network is displayed.
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3.4.2 Cooperative process in SOFMAT

Cooperation in SOM algorithm is also inherited in SOFMAT. The level of co-

operation of the neighborhood neurons is decided by the winning neuron (Eq. 3.2).

- The topological neighborhood hji (Eq. 3.4) is typically chosen as a Gaussian

function [4]:

hj,i(x)(t) = e

(
d2
j,i

2σ2(t)

)
(3.4)

σ (t) = σ0e

(
−t
τ1

)
(3.5)

where r is the sequential distance and dij is the Euclidean distance between the winning

neuron P(I) and the other neurons (j) in the string, and calculated by the sequential

distance r of I and j as given in Eq. 3.6:

d2
j,i = ‖r (j)− r (I)‖)2 (3.6)

The width, σ(n), of the Gaussian neighborhood function decreases for facilitating con-

vergence at an exponential rate, and the neighborhood shrinks in each iteration. The

dependence of σ in discrete time t (t=0,1,2,) in Eq. 3.5, contributes to the convergence

of SOM learning algorithm by excluding more nodes from the neighborhood iteratively.

σ0 is the initial value of σ, and τ1 is the time constant, which are determined by ad-hoc

methods in�uenced by the size of the input space and the number of output nodes as

described in [60].

3.4.3 Adaptive process in SOFMAT

For a given input pattern I, all the neurons in the vicinity of the winning neuron

P(I) are updated by a distance coe�cient decreasing with the neighboring function,

hj, i. It should be noticed, that hj, i is 1 for the winning neuron, and decreases ex-
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ponentially as the nodes gets away from the winning neuron. The iterative learning

process is actually representing the adaptation of the weight vectors towards an input

pattern I and given as (Eq. 3.7):

~wj (t+ 1) = ~wj (t) + η (t)hj,i(I) (t) (I − ~wj (t)) (3.7)

Eq. 3.7 gives the computation of the updated weight vector wj(t + 1) at time

t+1, with a time varying learning rate η(t), where wj(t) is the synaptic weight vector

of neuron j at time t [7, 60]. As introduced in Eq. 3.1, our input space I consists

of the positional elements x, y, and z, and directional elements λ1, λ2, λ3 for each

voxel. The SOFMAT is shaped by comparing each input vector I, to every node, in the

neighborhood (Figure 3.5). The comparison is based on both position and orientation

according to Eq. 3.2. Once the winning neuron is determined, the positions of the

nodes are updated according to Eq. 3.7. The directional vectors of the SOFMAT

nodes are updated according to the newly formed neuronal topology as in Figure 3.6.

Assuming that nerve tracts are formed from multiple axons, we provided multiple

strings with an expectation to detect the underlying neuronal pathways. Multiple

strings implementation methodology is summarized as follows:

SOFMAT with multiple strings:

• Initially there are Ny strings each of which is made of Nx nodes.

• Initial position and orientation of each node w are randomly initialized.

• For each node of the input pattern, I,the winning neuron is computed based on

the minimization of the cost function as given in Eq. 3.2. The winning node also

determines the winning string.

• Once the winning neuron and its string are determined,

a) a weight update matrix wj(t) is computed for that string using the position

information according to Eq. 3.4, 3.5 and 3.7.
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Figure 3.6 The pixel with the weight wj at time t, nearest to the input pixel is winning, and is
moving towards this input pixelaccording to Eq. 3.7 as shown with an arrow in the Figure. Its
neighbors wj−1 and wj+1 at time t on the string are also moving to a lesser extent. The update in the
orientation can be recognized through initial weight vector v[t] and updated resulting vector v[t+1].
Units close to the winner as well as the winner itself, have their weights updated signi�cantly. Weights
associated with far away output pixels do not change signi�cantly. The update continues until the
sought topology is found and the feature map is consistent.

b) the weight update matrix is computed for that string for updating the

orientation information according to the new position as in Figure 3.6.

• This procedure is repeated from step iii until the maximum number of prede�ned

iteration or convergence is reached.

• The converging weight matrix that includes the position and orientation infor-

mation of the multiple strings is the resulting topology of SOFMAT.

The aim of the implementation is to map the underlying topology of a discrete

input space. Initially, the weights are assigned randomly and the SOM pattern is

arbitrarily positioned. A starting input node is randomly picked among the inputs for

training (Figure 3.6). The node with the closest reference vector represents the winning

neuron wj(t). At the iteration at discrete time t, the winning neuron wj moves towards

the input pattern (Figure 3.6), and the two neighboring neurons wj−1 and wj+1 in its

Gaussian neighborhood move in smaller steps. The goal is to train the net until the

topology is stable.

For each position update of a node the directional convergence of orientation

vector is also achieved.



45

SOFMAT Algorithm Summary

• Input: A set of nodes Ny strings each of which is made of Nx nodes, iteration

number and similarity matrix.

• Initialization of weight vector by 3.3

• Compute the quantity by Eq. 3.2 :

→ winning neuron P (I)

• Compute the quantity by 3.7 using 3.4, 3.5 3.6:

→ weight update matrix wj(t)

⇒ update is achieved for position and for orientation.

• Compute cost function for position and orientation respectively:

∀i, j ∈ ROI :

C(i, j) = (wij(n, 1)− wij(n− 1, 1))2 + (wij(n, 2)− wij(n− 1, 2))2

C = C./max(C(:))

∀i, j ∈ ROI :

A(i, j) = 1− (wij(n, 3) ×wij(n− 1, 3) + wij(n, 4) ×wij (n− 1, 4))

A = A./max(A(:))

• Terminate the iterations if convergence is reached;

• Store next winning neuron into SOFMAT,

• Otherwise, increase the iteration and repeat steps 1 through 4.

• Output: The resulting topology ↔ The converging weight matrix that includes

both the position and orientation information.

Following the three processes of the unsupervised learning method, taking into

account both the position and the direction of a candidate node, SOFMAT enables the

determination of neural �ber tracts having similar di�usivity. The updated neighbor-

hood helps to compute the proper neighbor of each winning neuron, which enables the

algorithm to calculate the neural paths with respect to the underlying di�usivity.
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3.5 Experimental Methods

The number of inputs is determined by the image dimensions, which is 150x150

pixels in PISTE. The number of strings and the number of nodes in each string have

been changed between 2 − 80, and 50 − 3200 respectively for experimenting the con-

vergence behavior of di�erent PISTE topologies. The learning rate in Eq. 3.7 was set

as 0.1, a typical rate for safe and stable convergence in the expense of slow learning

and increased risk of local minima. Each individual PISTE pattern is examined for a

number of iterations. For linear and linear break PISTE patterns, 500 iterations were

su�cient. For the spiral trajectory the number of iterations were 6000 as expected.

By varying iterations, the best match and the determination of the most reliable track

is aimed. The more complex the investigated pattern becomes, the more iterations

are needed. This is a natural characteristic of a self-organizing network. The main

constraint here is the convergence. In each experiment the convergence is checked

upon both the position and orientational training results. More detailed explanations

and their discussions on experiments and their results are presented in Sections 4 and

5. The tracking results for SOFMAT are shown on four exemplary synthetic data

sets. The PISTE trajectories described in Section 2.2 were selected for the evaluation

and comparison purposes when GTRACT and SLT methods were employed in the

literature [47]. Both GTRACT and SLT are di�usion tensor �ber tracking suites like

SOFMAT. The main di�erence is that these suites include streamline tracking tools.

These �ber tracking methods include a guided tracking tool that integrates apriori in-

formation into a streamline algorithm. SOFMAT in contrast enables the tracking by

detecting and following the orientation of the weighted neighbors. Especially the spiral

trajectory which is known to be problematic for �ber tracking methods is also ana-

lyzed with SOFMAT. The reconstructed tracts are represented in the Results section,

overlaid on the T2 weighted MR images or FA maps of the reconstructed tract.
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4. Results

4.1 Experimental Scenarios and Targets

In this study, the linear, linear break, orthogonal crossing, and spiral PISTE

data sets each of them with individual FA were examined with SOFMAT. Varying FA

values give information about the anisotropy and as a result about the anatomy of

the tissue investigated. A change in the FA map shows clues about the investigated

trajectory. In PISTE, images are created on homogeneous anisotropic background, and

decreasing anisotropy along tracts is applied. Therefore, the FA maps serve as �lters

where the routinely applied homogeneous anisotropic background can be extracted

from the image. This process also acts as a noise removal highlighting the di�usion

pattern. The eigensystem of D (Eq. 2.23) is determined by principal component

analysis (PCA) [1,58,68], the principle di�usion direction is interpreted graphically in

Figure 4.1. The entire DT resource is investigated with the proposed SOFMATmethod.

The search process of the pattern in the selected limits is completed in examining the

eigenvectors of each pixel based on the prede�ned similarity measure. This examined

data set sample might be a whole image data or a single ROI. In this study the

trajectories are not separated into ROIs, they are examined on whole. The details

of the investigated geometries are:

4.1.1 Linear Trajectory with and without Break

The linear trajectory is a straight-forward linear tract (Figure 4.1a). Its back-

ground is homogenously anisotropic. One has a complete break at the tract (Figure

4.2). Along the length of the tract, its FA is linearly decreasing. The reconstructed

tracts are plotted over the FA map of the investigated linear �ber trajectory (Figure

4.1). SOFMAT resolves the break on the linear break trajectory (Figure 4.2-4.3), and

it successfully calculates and reconstructs the tracts on the investigated �ber and not
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Figure 4.1 Linear PISTE trajectory. a) T2 weighted image; b) Input corresponding to the computed
eigenvectors (blue). Initial weights wj0 are seen in red. c) Pink tracts on the T2 weighted image are
SOFMAT's implementation results.

on the break (Figure 4.3).

4.1.2 Orthogonal Crossing Trajectory

This PISTE trajectory is a crossing sample of two �bers intersecting each other

at a right angle. The FA values of each of these two orthogonal linear tracts have a

slight di�erence as represented in the orthogonal elements in di�usion tensor image

(Figure 4.4). The di�erence observed here is �bers with higher and lower FA values.

SOFMAT reconstruction is displayed in Figure 4.5. Here, the network has converged

with 40x20 nodes in 500 iterations.

4.1.3 Spiral Trajectory

The spiral trajectory of PISTE is an in-plane spiral tract overlaid on a homoge-

nous isotropic background. It has a high FA value. Here, not only the noise-free sample

is investigated by SOFMAT but also the curvy trajectory is examined for SNR values of

30 and 15. Spiral tracts are especially problematic for streamline tractography [1, 29],

because curvy trajectory cannot be reconstructed accurately by this method. So it is

not able to follow the relatively high curvature of the �ber. SOFMAT, however, has
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Figure 4.2 Linear Break Trajectory. Eigenvectors representing the di�usivity are superimposed on
T2 image in blue. SOFMAT results with single string trial are seen in green (right). The gap in the
middle of the tract is zoomed to give idea about the implementation result of the algorithm.

Figure 4.3 Linear Break Trajectory with multiple strings. SOFMAT results are seen in blue. The
trajectory and the gap in the middle of it is determined by SOFMAT as represented.
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Figure 4.4 Di�usion tensor representation of the Orthogonal PISTE Trajectory. The di�erent
di�usivities for this geometry are seen on the diagonal images: Upper left : Dxx -the anisotropy of D
in x direction and in the middle : Dyy -the anisotropy of D in y direction.

Figure 4.5 The SOFMAT result superimposed on T2 images for orthogonal crossing trajectory.
The tracts are de�ned along the paths through the total trajectory. Both of the orthogonal tracts
are reconstructed completely. SOFMAT determines the proper path and the expected di�usivity in
horizontal tract and vertical tract as seen in Figure 4.4 respectively in Dxx and Dyy.
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Figure 4.6 The SOFMAT results are investigated, and the determined neighborhood's coordinates
and their related calculated eigenvectors are evaluated. The histogram shows the similarity of the
original input and the SOFMAT's reconstructed tract for orthocrossing trajectory: noise free (left)
and SNR=5 (right). The angular cost function results inform that the input and the output are
nearly the same. Here, the input pattern is 150x150, where in both cases noise free and SNR=5, the
parameters Nx and Ny are 80 and 40 respectively.

Figure 4.7 Cost function representations of SOFMAT implementation at the end of 1200 iterations.
Both the the spatial (blue) and the angular (green) cost functions are calculated, and observed. The
network is converged.
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the ability to follow the curvature. The reconstruction results are presented in Figure

4.8.

Table 4.1

The mean tracking errors (in mm) of SOFMAT reconstruction of spiral trajectory in Figure 4.8.

SOFMAT

Spatial Angular

Noise free 0.699 0.1151

SNR = 30 0.743 0.1127

SNR = 15 1.611 0.3416

SNR = 5 6.298 0.5087

4.1.4 Crossing Trajectory: Curve Crossing vs. Kissing Trajectory

The curve crossing and kissing trajectories of PISTE are in-plane crossing tracts

overlaid on a homogenous isotropic background. They both are crossing trajectories

in general. The PISTE trajectories di�er in their type of crossing: Curve crossing

trajectory is a PISTE sample with two �bers intersecting each other building a local

curve crossing trajectory. Kissing trajectory on the other hand is a PISTE sample with

two �bers kissing each other building a local crossing curvature.

The kissing trajectory is comprised of two elliptical tracts overlayed on an

isotropic, homogeneous background.The FA values of each of these two �ber tracts

in each crossing PISTE sample have a slight di�erence. The di�erence observed in

Figure 4.9.a and in Figure 4.10.a re�ects �bers with higher and lower FA values in each

of these samples. The presented curve crossing �ber tract sample is visually identical

to the kissing tract. The T2 values for the tract and background for the curve crossing

and kissing trajectories of PISTE are assumed to be the same as white matter (65 ms)

and grey matter (95 ms) at 1.5T , respectively [63]. Three datasets are available with

varying levels of added noise.
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Figure 4.8 The spiral trajectory results are represented. a) Upper row: T2 weighted images; from left
to right: Noise free T2, SNR=30; SNR=15. b) FA images of each input data. c) Third row: SOFMAT
results superimposed on respective T2 weighted images. d) SOFMAT reconstructions exclusively. In
all examinations, the input pattern is the T2 weighted image of spiral trajectory with input matrix
size of 150x150. In order to compare SOFMAT's results, the network in all of the three cases has 50
strings, where number of iterations is 6000, and unique in all three exams.
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Figure 4.9 The curve crossing trajectory results are represented for each of the two elliptical tracts
with di�erent FA values. a) FA map representation, b) and c) SOFMAT results superimposed on
T2 weighted image. The tracts intersecting each other resulting a local curve crossing trajectory is
identi�ed by SOFMAT.

Figure 4.10 The kissing trajectory result of SOFMAT is represented. Unlike the curve crossing
sample the elliptical tracts have a di�erent propagation here. a) FA map representation, b) and c)
SOFMAT reconstructions of the tracts with higher and lower FA values respectively. The SOFMAT
results are superimposed on T2 weighted image.

SOFMAT tracking results for both curve crossing trajectory (Figure 4.9) and the

kissing trajectory are represented (Figure 4.10). SOFMAT identi�es the two elliptical

tracts as intersecting in the curve crossing and as slightly touching each other in the

kissing trajectory sample.

4.1.5 General Aspects of Phantom Implementation Results

The proposed SOFMAT algorithm is compared with the two well-known �ber

tracking suits, GTRACT [47] and SLT [1] using PISTE data set as a benchmark. The
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tracking results for the three algorithms were compared qualitatively and quantita-

tively. As indicated in the reference papers Lori et al. (2002) [51] and Lazar et al.

(2003) [49], the error in �ber tracking is proportional to the square root of the dis-

tance along the track. The evaluation of GTRACT algorithm has been performed

regarding the prede�ned error de�nition as in Lori et al. (2002) [51] and Lazar et al.

(2003) [49] [47]. Also in this work, the error is computed based on distance measure as

in the de�nition in the literature. In GTRACT [47], the tracking error was accessed on

the linear trajectory, and the orthogonal crossing trajectory. For that reason, error of

SOFMAT is computed for the two phantom trajectories, the linear and the orthogonal

crossing and computation results are presented in Table 4.2 and 4.3. Aside from the

linear, linear break, orthocrossing trajectories mentioned in [47] spiral trajectory is also

investigated in this study.

The results for all the three tracking tools are represented in Tables 4.2 and 4.3

for all the existing linear and orthogonal PISTE trajectories respectively. The mean

tracking errors in STL, GTRACT and SOFMAT for linear PISTE trajectory with an

SNR of 30 are 0.63 mm, 0.60 mm and 0.46 mm respectively (Table 4.2). With an

SNR of 5, again for the linear trajectory, the tracking errors for STL, GTRACT and

SOFMAT are 1.40 mm, 0.70 mm, and 0.56 mm respectively (Table 4.2). The mean

tracking errors in STL, GTRACT and SOFMAT for orthogonal crossing phantom with

an SNR of 30 are 0.675 mm, 0.65 mm and 0.46 mm respectively (Table 4.3). The mean

tracking error in STL and GTRACT for orthogonal crossing phantom (SNR=5) are

1.45 and 0.7 mm respectively. SOFMAT's tracking error for SNR=5 for ortho-crossing

phantom is 0.65 mm (Table 4.3). Here, the SOFMAT parameters Nx and Ny are in

each experiment 80 and 40 respectively. The parameters are assigned based on the

network's convergence status. The updated network parameters are given in detail in

Table 4.6.

To observe the e�ectiveness of the ANN based algorithm, the cost function

convergence is detected as SOFMAT weights are stabilized (Figure 4.7). The SOFMAT

tracking results of an uncertainty region namely an orthocrossing trajectory is also

presented in Figure 4.5.
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Table 4.2

The tracking errors (in mm) of the three tracking tools for linear trajectory.

STL GTRACT SOFMAT

SNR = 30 0.63 0.60 0.46

SNR = 15 0.90 0.65 0.48

SNR = 5 1.40 0.70 0.56

Table 4.3

The tracking errors (in mm) of the three tracking tools for orthogonal crossing trajectory.

STL GTRACT SOFMAT

SNR = 30 0.675 0.65 0.46

SNR = 15 0.875 0.66 0.48

SNR = 5 1.45 0.70 0.65

For each of the investigated trajectory, the network's parameters are method-

ically and carefully determined. The determination of parameters e�ect the phases

of the network and its ability to converge safe and stably. As mentioned previously,

each individual PISTE pattern is examined for a number of iterations. The aim of

varying iterations is to �nd the best match and so to determine the most reliable tract.

The more the investigated pattern gets complex, iteration numberincreases. This also

explains why the spiral trajectory's iteration number (= 6000) was the highest among

all the trajectories. This is a natural characteristic of a self-organizing network.

In each experiment the convergence is checked upon both the position and orien-

tational training results. Here, the orthogonal crossing trajectory with 150x150 original

input size is selected as sample. In the Tables 4.4, 4.5, 4.6, various network parame-

ter selections and their results are represented. First, a network with 2 strings created

from 50 to 200 nodes is analyzed. The mean spatial distance between the known values

of the input pattern and those calculated with SOFMAT as output vary from 5.7429

to 1.819 pixels. In all of these cases the iteration number is kept constant with 500

steps. As expected, with increased number of strings the trajectory is more precisely



57

determined (Table 4.5, 4.6).

Table 4.4

The validation results of the SOFMAT implementation. The orthogonal crossing trajectory is
selected as sample. Here, analysis results for 2 strings case are shown.

Node x String
Mean Spatial Angular

Distance Norm

50 x 2 5.7429 0.1206

100 x 2 3.5785 0.0999

150 x 2 2.2843 0.1003

200 x 2 1.8195 0.0965

Table 4.5

The validation results of the SOFMAT implementation for orthogonal crossing. A wider network for
orthogonal crossing trajectory is investigated and represented.

Node x String
Mean Spatial Angular

Distance Norm

20 x 20 8.17 0.0923

25 x 20 3.3412 0.0943

30 x 20 2.8286 0.0883

40 x 20 2.1506 0.0910

60 x 20 1.7862 0.0917

4.2 Human Data

The real DTI images used in this study are scanned on Philips Scanner, Achieva

in Istanbul Medical School Department of Neurology. The voxel size of the MR images

is 1.75mm x 1.75mm. The number of di�usion volumes is 34, where the number of

slices is 60. The repetition time TR is 9615.95 ms, and echo time TE is 80.261 ms

with a �ip angle of 90 degrees. Slice thickness and spacing are both 2 mm. The image

size is 128 x 128. The tracking results of the proposed unsupervised learning tracking

SOFMAT algorithm is shown on a healthy human brain data. The reconstructed tracts
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Table 4.6

The validation results of the SOFMAT implementation for orthogonal crossing with updated
network parameters.

Node x String
Mean Spatial Angular

Distance Norm

20 x 40 1.49455 0.0996

40 x 40 1.1065 0.0971

60 x 40 1.0391 0.0969

80 x 40 0.8346 0.0885

100 x 40 0.6577 0.0330

150 x 40 0.8480 0.0890

200 x 40 0.4263 0.0415

250 x 40 0.3729 0.0436

300 x 40 0.3603 0.0504

are represented in Figure 4.11 and 4.12, superimposed on the T2 weighted MR images

or FA maps of the reconstructed tract.

4.2.1 General Aspects of Human Data Results

In this study, DTI images are investigated based on the proposed weight updated

unsupervised learning algorithm SOFMAT. Analysis is done on normal healthy tissue.

Varying FA values give information about the anisotropy and as a result about the

anatomy of the underlying tissue. A change in the FA map shows clues about the

investigated trajectory as seen in Figure 2.8. The eigensystem of D (2.23 and 2.24)

is determined by principal component analysis (PCA) [4, 68], the principle di�usion

direction with thresholded FA map is interpreted graphically in Figure 2.8. The search

process of the pattern in the selected limits is completed in examining the eigenvectors

of each pixel based on the prede�ned similarity measure. This examined dataset sample

might be a whole image data or a single ROI.
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Figure 4.11 Investigated healthy brain image. SOFMAT results visualized in TrackVis. Genu and
splenium of the corpus callosum are represented. SOFMAT parameters are Nx = 15 and Ny = 50.

Figure 4.12 Here the multi-string results are superimposed on T2-weighted image. SOFMAT multi-
string parameters are Nx = 50 and Ny = 50.



60

DTI tractography entails propagation of �bers along the path of greatest dif-

fusivity. TrackVis enables visualization of calculated SOFMAT results. Coloration

of �bers then allows the investigation of speci�c ROIs. SOFMAT enables to detect

tract distributions in real brain. According to the investigated ROI, the coloration by

visualization raise the anatomy like the genu and splenium seen in Figure 4.11 and

4.12.
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5. Discussion

Mapping the brain's white matter noninvasively is possible through proper anal-

ysis of DTMR images. The algorithms proposed for WM mapping and �ber tractogra-

phy are to be examined by synthetically simulated datasets for accurate validation. In

this study a common synthetic DT data set namely PISTE, which is specially generated

for veri�cation purposes of DT and tractography algorithms, is used for veri�cation and

validation. One of the main constraints in the accuracy of the mapping results is the

determination of intersecting �ber tracts in uncertainty regions. In DTI literature

these intersecting regions generate a critical tracking problem. Providing a solution

for identi�cation of the orientations of the brain �bers in these uncertainty regions in

di�usion tensor analysis is of great importance [4,16]. Methods and updates are to be

researched to de�ne these uncertainty regions. Streamline Tractography (SLT) is re-

called as an accepted basis method for di�usion tensor tractography (DTT). For that

reason, SLT is one of the algorithms selected for comparison with SOFMAT (Table

4.2, 4.3). Secondary DTT algorithm chosen for evaluation is the GTRACT software

implementation. The SLT uses the principle eigenvector, e1, to compute an Euler's

method approximation to the parameterized tract [1, 29].

In this study, we proposed a tracking tool for detect ingreal WM �bers later as

a future study according to unsupervised learning method SOFM. The main idea of

SOFMAT is to track the �bers according to unsupervised learning while keeping the

structural information of the underlying tissue. The methodology is applied and exam-

ined �rstly on computer simulated trajectories PISTE for veri�cation and validation

of the algorithm.

The proposed �ber reconstruction method SOFMAT clari�es the di�usivities in

the previously mentioned uncertainty regions (Figure 4.1, Figure 4.3 and Figure 4.8).

Quantitative results are listed in Table 4.2 and 4.3 with respect to well accepted trac-

tography techniques [1,29,47]. The Figures in Result Section are represented to give an



62

idea of how (well) the SOFMAT results match the input patterns.The method is tested

with varying SNR values and also in low anisotropy regions. Low anisotropy regions

are studied more intensely focusing on the problematic crossings on the phantoms. The

fractional anisotropy (max. FA=1) represents the degree of anisotropy, in other words

the deviation from isotropic di�usion (FA=0). The grey matter in the brain is nearly

isotropic (0.37>FA>0.15). In uncertainty regions, it is hard to de�ne the direction of

principal di�usivity. Therefore the detection of �bers in regions having low fractional

anisotropy is an advantage of the proposed method because aside from grey matter,

low anisotropy regions are uncertainty areas or injured regions. Optimizing the cost

function and neuron selection, the algorithm is able to detect small tract changes and

curvy trajectories.

Fiber tracking in SOFMAT begins by identifying seed voxels to be used as po-

tential starting positions for the reconstructed �bers. Based on the predetermined

eigensystem of the sample trajectories, �ber tract is estimated within each voxel re-

garding to the di�usivity de�ned by this eigensystem. Here, the knowledge in di�usion

literature suggests that the eigensystem de�nes the di�usivity [1,29]. Each node (neu-

ron) in the region of interest (ROI) is considered as part of a potential �ber tract.

The computed winning neurons de�ne the possible nervetract a �ber can follow with

respect to both the coordinate and the directional information the winning neurons.

In other words, a winning neuron determines the newly gained voxel to the tract in

terms of its coordinate and direction. The estimation follows by evaluating each node's

neighboring function in terms of the similarity criteria.

The novel algorithm SOFMAT is being evaluated throughout the study. The

validation study performed on PISTE gives promising results, and they have been

compared to the well-known SLT method and the GTRACT algorithm. In the litera-

ture, as it has been represented in Cheng et al. (2006) [47] by GTRACT evaluation,

the error is investigated along the resulting tract and quantitative results are given

in Table 4.2 and 4.3. SOFMAT is able to handle �ber crossings and also the spiral

trajectory. SOFMAT results to highlight to propagation of �bers through the inter-

secting and curvy regions are represented in Figures 4.1, 4.2, 4.3, 4.5, 4.8, and also in
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the spatial and angular cost functions (Figure 4.7). The minimization of the error is

successfully managed where the characteristics can be tracked in related cost function

of the network. The increasing number of neurons and iterations selected in the SOM

implementation result more reliable tractography outputs (Table 4.4, 4.5 and 4.6).

Investigating samples with both varying noise and di�erent geometry is impor-

tant for evaluation, because the deviation from the original �ber path is caused mainly

by the noise. The relationship between the tracking error to SNR is acceptable in all

examinations. Also dependency on the geometry is seen (Figure 4.1 and Figure 4.8).

Considering that every trajectory in PISTE has a di�erent di�usivity characteristics, it

is meaningful that the cost functions representing the �ber determination performance

for linear and orthocrossing geometries vary from each other. The SOFMAT algorithm

improves the performance of the �ber tracking even in the presence of noise discussed

in Tables 4.2 and 4.3. SOFMAT also allows tracking branching �bers. In conclusion,

SOFMAT is able to describe two or more �ber tracts simultaneously, and to recon-

struct tracts in uncertainty regions. While SNR decreases for an investigated pattern,

the spatial and angular cost function re�ects this change (Figure 4.7. SOFMAT, on

the other hand, does not lose the �ber tractography in relatively low SNRs.

The SOFMAT method gives promising results, compared to the traditionally

implemented and well accepted tractography algorithms mentioned above (Table 4.2

and 4.3). SOFMAT is applied to healthy human DT images. The SOFMAT application

parameters such as learning rate, neighborhood size are selected as the same values

which were optimized in the simulation studies. It has been observed that the well-

known �bers can be estimated by the use of the proposed method. The results of

SOFMAT are in agreement with the physiological �ber pathways. For instance, �bers

that are estimated in the white matter do not elongate to other tissue types such as

the CSF and grey matter (Figure 4.12).
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6. Conclusion and Future Work

In this thesis, the interest has been focused on generating an algorithm for �ber

tract determination. The study represents a novel approach namely SOFMAT for �ber

tracking purposes in di�usion tensor analysis. The algorithm is based on unsuper-

vised learning in arti�cial neural networks. As an alternative to the existing methods,

SOFMAT is also e�ective in low anisotropy regions. Also, unlike some DTT studies

established with PISTE [59, 69], the presented SOFMAT study provides performance

evaluation other than just visual inspection. The error analysis of the SOFMAT results

compared to the existing methods gives improved tract determination and follow-up. In

crossing regions with intersecting �ber distributions and varying SNR values, SOFMAT

is able to de�ne the predetermined �ber paths successfully with a standard deviation

of (0.8−1.9) mm depending on the trajectory and the SNR value selected. The results

illustrate the capability of SOFMAT to reconstruct complex �ber tract con�gurations.

Due to higher level connectivity concerns SOFMAT con�gurations could be modi�ed,

and the network might be forced to estimate any tracts in high noise level or extremely

curving trajectories, even in the presence of disconnected tracts.

As some of the white matter tracts elongate throughout the whole brain, the

SOFMAT algorithm can be implemented on the full DT images. The computational

demand of the full data implementation is higher than the need for ROI applications.

Thus, distributed computing based on parallel working central processing units (CPU)

should be used to estimate the relevant DTI tracts in reasonable time. The SOFMAT

algorithm can be modi�ed in such a way that the extraction of the �bers can be

performed by di�erent CPUs.

With the usage of multiprocessor computers, real-time full brain tractography

analysis can be performed even in the MR control room. The advancement in speed of

SOFMAT may enable radiologists, medical doctors, and experts in the �eld to visualize

and analyze the information content in the daily usage.
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The proposed algorithm can be implemented on neurological disorders for the

estimation of pathologies, detection of white matter alterations, and therapeutical plan-

ning of neurological disorders. Moreover, appropriate DTI tracking enables neurosur-

geons e�cient information about WM tracts for surgical planning.
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