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ABSTRACT

IDENTIFYING GENE INTERACTIONS FOR TIME SERIES
MICROARRAY DATA USING DYNAMIC BAYESIAN

NETWORKS AND EXTERNAL BIOLOGICAL
KNOWLEDGE

DNA hybridization arrays measure the expression levels for thousands of genes.

These measurements provide us with a “snapshot” of transcription levels in the cell.

A major challenge in computational biology is to identify the gene-protein, gene-gene,

and protein-protein interactions using such measurements, as well as some biological

features of cellular systems. In our study we aimed at building up our framework on

the use of Bayesian networks. A Bayesian network is a graph-based model of joint mul-

tivariate probability distributions that captures properties of conditional independence

between variables. Such models are deemed attractive for their ability to describe

complex stochastic processes. They also provide a clear methodology for learning from

observations, even for noisy ones. However, Bayesian Networks work only for station-

ary data, require prior information in model selection, and applies to acyclic directed

graphs. Dynamic Bayesian network (DBN) is an improved model to overcome the

cyclicity and stationary limitations.

Keywords: Gene Regulatory Networks, Structure Learning, Bayesian Networks, Dy-

namic BN, Gene Expression Profiles.
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ÖZET

HARİCİ BİYOLOLOJİK BİLGİ VE DİNAMİK BAYES
AĞLARI KULLANARAK GENLER ARASI

ETKİLEŞİMLERİ TANIMLAMAK

DNA hybridlenme teknolojisi sayesinde DNA’yı ölçülebilir değerlere dönüştürülüp

genlerin sinyal değerlerini elde edebilmekteyiz. Bu sinyal değerleri kullanılarak gen-gen,

protein-gen ve protein-protein arasındaki etkileşimler çözülmeye çalışılmak, günümüz

biyolojisinde önem kazanmaktadır. Bu tezde bu problemi Bayes Ağları (BA) kulla-

narak çözebilecek bir yöntem takip ettik. BA değişkenler arasındaki şartlı bağımsı-

zlıkları kavrayabilen olasılık dağılımlarının modellenmesidir. BA ve benzeri modeller

olasılıksal olayları çok iyi açıklayabildikleri için gözlemsel verilerden öğrenme yapılırken

tercih edilirler. Veri gürültüye sahip olsa bile kullanabiliriz. BA modeli aynı zamanda

bazı dezavantajlara da sahiptir. BA modeli sadece değişmeyen veriler için kullanıla-

bilir ön bilgi gerektirir ve sadece döngü içermeyen yollar içerdiği için sınırlıdır. Bu gibi

kısıtlamaların üstesinden gelebilmek için Dinamik Bayes Ağları geliştirilmiştir.

Anahtar Sözcükler: Gen Düzenleyici Ağlar, Bayes Ağları, Dinamik Bayes Ağları,

Mikroerey, Yapı Öğrenme, Zaman Serisi Veriler.
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1. Introduction

1.1 Motivation

Signaling pathways are dynamic events that take place over a given period of

time, so expression data over time are required in order to identify them. Dynamic

Bayesian network (DBN) is an important approach for predicting the gene regulatory

networks as early as possible. However, two fundamental problems greatly reduce the

effectiveness of current DBN methods. The first is the lack of a systematic way to

determine a biologically relevant transcriptional time lag, which results in relatively

low accuracy of predicting gene regulatory networks. The second one is the excessive

computational cost of these analyses, which limits the applicability of current DBN

analyses to a large-scale microarray data. [1]

1.2 Aim

This project aims for configuring a plan to introduce a Time Variant DBN-based

analysis that can predict gene regulatory networks from time course expression data,

with significantly increased accuracy and reduced computational time. In doing so,

we will utilize external biological knowledge in our structure learning algorithms, a

strategy we have successfully applied for static Bayesian Networks [2]. In the proposed

framework, the network aimed to be calculated is called the transition network, which

defines the dependencies between adjacent time-slices. With the use of external bio-

logical knowledge in DBN learning algorithms, this study’s target is to impose a search

space constraint in identifying the transition network.
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1.3 Gene Regulation

Gene Regulation can be briefly described as the process of a gene transcribed

into mRNA and then translated into a protein product. Some specific proteins (tran-

scription factors) are responsible for regulating the expression of their target genes, by

increasing (activation) or decreasing (suppression) it. Gene networks can be seen as

ï¿1
2
projections of the whole biochemical network onto a space where the only observ-

ables are gene transcripts (mRNA)’.

Furthermore, a collection of DNA segments in a cell that interact with each other

and with other substances in the cell is called a gene regulatory network. It controls

the rates at which genes in the network are transcribed into mRNA [3]. The interac-

tion between genes is indirect through their RNA and protein expression products. If

microarray data is used for inference of the underlying network, then the regulatory

network is called a gene expression network.

1.4 Microarrays

In the late 1990’s microarray data started to be used in genomic studies using

oligonucleotide or cDNA probes. With DNA microarrays researchers were able to mea-

sure the abundance of thousands of mRNA targets simultaneously. Early microarray

experiments examined few samples and mainly focused on differential display across

tissues or conditions of interest. DNA microarray experiments were able to measure

all the genes of an organism, providing a “genomic” viewpoint on gene expression.

By definition microarrays contain grids of up to tens of thousands of array ele-

ments presented in miniaturized format. A way to measure the amount of homologous

sequences in the sample is through the intensity of the hybridization over individual

spots [4]. Microarrays come in two forms: robotically spotted and oligonucleotides.
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The most widely used are oligonucleotide microarrays, and big providers, such

as Affymetrix, develop and put them on the market. For example, in the technology

utilized by Affymetrix, millions of oligonucleotides of length 25 base pairs each are

placed on an array. These oligochips (oligonecleotide chips) are constructed using a

photolithographic masking technique similar to the process that is used in microelec-

tronics and integrated circuits fabrication, first described by Stephen Fodor et al. in

1991 [5].

Figure 1.1 (A) Image of a microarray (B) Microarray signal matrix

In a standard microarray experiment, by using fluorescent (generally Cy3-dNTP

or Cy5-dNTP) or radiolabeled deoxynucleotides ([33P]- or [32P]-α-dCTP), the isolated

RNA is transcribed reversely into target cDNA. The labeled targets are then purified,
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denaturized, and hybridized to the microarrays at a temperature determined by the

hybridization buffer used. After hybridization, the arrays are washed in order to clean

up nonspecific target binding and are air-dried.

The next step is microarray image processing. In order to obtain a scan of

the array for each emission wavelength, such as two 16-bit grayscale TIFF images,

differential excitation and emission wavelengths of the atoms are used. An analysis of

these images enables the identification of the spots, their associated signal intensities

calculation, as well as the assessment of local background noise. Spot-flagging can

be managed by using basic filtering tools, usually found in image acquisition software

packages; in this manner spots such as extremely low-intensity spots, ghosts spots

(where background is higher than spot intensity), or damaged spots (e.g., dust artifacts)

can be flagged. After this process an initial ratio of the evaluated channel/reference

channel intensity can be calculated for every spot on the chip [3]. These ratios are

translated into signal values for each gene and are tabulated as shown in Figure 1.1.

Microarrays have been used in biological and clinical studies to study various

phenotypes in health and disease [1]. They have been widely applied to cancer, heart

disease, diabetes, stem cells, and neurological disorders, studies analyzing drug re-

sponse, dosage, and effect. In these studies, microarrays are primarily used to find

differentially expressed genes between two different states, such as cancer and normal

tissue samples. These genes can further be analyzed to identify their functional roles

and be used to develop biological and clinical hypothesis that warrant deeper studies.

Microarrays can also be used as a tool for biomarker discovery [2]. In these stud-

ies, a signature set of genes predict a certain biological or clinical phenotype, such as

predicting which primary tumor samples are most likely to metastasize based on the

transcriptional profile of the tumors at the baseline. The PubMed scientific literature

database lists 54,780 papers that involve microarrays.
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1.5 Bayesian Network

Bayesian Network (BN) is a graphical model for reasoning in a domain where

the nodes X = X1, ..., Xn represent random variables and arcs Xi → Xj represent

direct connections/dependencies between them. BNs also provide information about

the strength of these connections. We score the strength of these dependencies with

CPD (conditional probability distribution) values.

In other words, a BN is a compact representation of the joint probability dis-

tribution of random variables. BNs do not allow cycles in a graph, indeed must be

a directed acyclic graph (DAG), according to the first order Markov assumption. In

short, if we start from a node, we would not be able to reach the same node following

any path in the graph. In BNs, if there is a link between a pair of nodes, the node

where the link starts from is called the parent node and the other is called the daugh-

ter. Another condition for a BN is that a node should be conditionally independent of

its non-descendants given its parents. Bayesian Networks have been used in a diverse

list of fields ranging from finance, economics to physics and biology [6]. These appli-

cations mainly deal with understanding the interdependence relation between random

variables based on observed data and use of this relation to make predictions about

outcomes given new data.

1.6 Dynamic Bayesian Networks

Dynamic Bayesian Networks unlike Bayesian Networks, use time series data for

constructing causal relationships among random variables. In addition, as the BN rule

says, a node is assumed to be independent of its non-descendants given its parents

in the immediate previous time point. Therefore, in order to overcome cycles in a

network, a DBN can duplicate the number of nodes per lag applied to the times series.

This means that a DBN, assuming inter relations between following time lags, will

remove cyclicity duplicating its node elements [7] in the next time lag and giving arcs
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only Xt → Xt+1. In the end, the graphical structure of DBNs only represents direct

associations between random variables.

Current methods for learning of DBNs can be categorized into two major groups:

constraint based methods and score based methods [8, 9, 10]. Constraint based methods

are shown to create satisfactory results with sparse networks but are not suitable for

large datasets and dense networks [11]. The other, score based methods, consider

learning of DBN as an optimization problem. These methods devise a scoring function

for a candidate network structure based on the probability of the structure given the

input data. They search through the space of possible network structures that minimize

the scoring function.

1.7 Learning in Bayesian Networks

1.7.1 Inference

Bayesian inference is basically to obtain probability values of every node using

the data and then applying the Bayesian rules. Indeed, Bayesian inference contributes

to learn a prior distribution from the data. Bayesian learning can be described in to

groups, which are objective (non-informative) and subjective (informative) and might

carry Gaussian or Normal distribution. For an objective learning with a normal dis-

tribution data, we follow the process of Bayesian learning like following. First, from

observations we estimate the joint probabilities of the nodes in the network, which

are referred to as: X1, X2, ..., Xn .The data is represented by D = (X1, X2, ..., Xn).

Assume we model the data with normal distribution with all data parameters being

independent, so the node i refers to Xi ∼ N(θ, 1) for θ = true value of the parameter.

Most common methods to calculate it are Maximum Likelihood Estimations (MLE)

and MAP methods.

Maximum Likelihood Estimations, where n is the number of the nodes in the

graph, are computed as:
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θMLE =
1

n

n∑
i=1

Xi (1.1)

Until this the calculation is non-informative (objective). Indeed we did not use

any prior information. In such case a prior information can be a belief and implemented

in to the inference, which refers to P (θ). We call this type of process ”informative

(subjective)” learning. This calculation is different from the previous one is with that

we also add the prior information as n+ 1th node. If we assume they are independent

and not weighted, which means all nodes are the same strength, we can compute the

posterior probability as:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.2)

P (θ|D) is the posterior probability of a graph for given data. Indeed, D is data

and θ is graph and P (θ) is the prior information.

1.7.2 Parameter Learning

In a Bayesian network, the DAG is called the structure and the values in the

conditional probability distributions are called parameters. These parameters represent

nodes in the graph, and what this study is trying to do is to address the problem

of learning these parameters for a given structure. This process is called Parameter

Learning, and by running it we aim at assigning the probability distribution to each

node. As such, we assume that each node has a space of size 2. This means that each

node demonstrates 2 probability (relative frequency) values, one for “presence” and one

for “absence”.
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In order to explain how parameter learning works we can take a look at Beta

distribution functions [12, 13]. The function which gives the value of each node is the

beta density function, as can be seen in the Equations 1.3, 1.4, and 1.5.

Within the classical Bayesian framework, learning parameters in BNs is based

on priors; a prior distribution of the parameter is chosen and a posterior distribution

is then derived given the data and priors. An important issue in parameter learning

in BNs is that the learning datasets are mostly incomplete and we have to deal with

missing observations. Inference with missing data is an old problem in statistics and

several solutions have been proposed in the last three decades [14]. For example; the

Expectation-Maximization (or EM) algorithm is a routine technique for parameter

estimation in statistical models with missing data. Mostly, the Maximum Likelihood

(ML) method is used in EM [14].

1.7.3 Beta Functions

We obtain relative frequency values and develop density functions; a set of

density functions are put together and thus form a Beta function. Beta functions

provide quantifying prior beliefs with relative frequencies and updating these beliefs

regarding new evidences. In order to understand Beta Density functions we need to

consider Gamma functions, which are the fundamentals of Beta Density functions and

refer to Γ(x):

Γ(x) =
∫ ∞
0

tx−1e−t dt (1.3)

Gamma functions are generalization of factorial functions and established on 2

rules:
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Γ(x+ 1)

Γ(x)
= x; (1.4)

for a, b, andN , where N = a+ b and 0 ≤ f ≥ 1; and

p(f) =
Γ(N)

Γ(a)Γ(b)
fa−1(1− f)b−1 (1.5)

Any random variable F that has the density function given in the equation

above, is said to have a beta distribution.

In short, parameter learning is to learn CPTs for a given or candidate graph,

different from inference, because in inference, the network structure is unknown and is

expected from data, as explained in the previous subsection. Then posterior probability

is calculated with Equation 1.2.

1.7.4 Structure Learning

Learning the structure G of the Bayesian network from data is a very challeng-

ing problem. The most common approach to discovering the structure of Bayesian

networks from data is to define a graph model to consider, and then practice a scoring

function that evaluates how well the model explains the available data. After that, an

optimization algorithm is used to find the highest-scoring model.

The scoring function in the logarithm form of the posterior probability of the

network structure given the data is in equation 1.6:
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Score(G;D) = logP (G|D) = logP (D|G) + logP (G)− logP (D) (1.6)

where,

P (D|G) =
∫
θ
P (D|G, θ)P (θ|G)dθ (1.7)

We average over all parameters θ associated with a graph structure G. The

likelihood of the data D given parameter vector θ for a known structure G is:

L(θ;D) = P (D|θ) =
m∏
i=1

P (X1(1), ........., Xn(i)|θ) (1.8)

Bayesian methods reduce overfitting by representing and using available knowl-

edge about the parameters in the form of a prior distribution P (θ). The data D then

serves to update the prior P (θ) to yield the posterior probability distribution P (θ|D).

We know by Bayes Rule, seen in equation 1.2, an equivalent expression. However, the

effect of P (θ) is generally neglected because of the difficulty of calculating this prob-

ability. Therefore, P (θ) is omitted and since the data is given, the P (D) is constant,

hence, P (θ|D) ∼= P (D|θ) = BayesianScoringBDe(D, θ) could be accepted as equal:

BayesianScoringBDe(D, θ) =
N∏
i=1

qi∏
j=1

Γ(Nij)

Γ(Nij +Mij)

ri∏
k=1

Γ(aijk + sijk)

Γ(aijk)
(1.9)

where N = number of nodes, q = number of different states of a node’s parents,
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ri = set of values a node can take on, Nij = the sum of corresponding Dirichlet

distribution hyper-parameters aijk, Mij = number of times parents of node i take on

configuration j in the dataset, and Sink = the total number of times (of these Mij

cases) that node i is observed to have value k when its parents take on configuration j.
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2. Graphical Model Applications

The utilization of microarray gene expression data seems promising to create

gene interaction networks to uncover biochemical pathways. Several approaches have

been proposed for inferring gene networks from experimental data [15]. In particular,

Bayesian Network models have gained popularity for the task of learning biological

pathways from microarray gene expression data [16]. In gene network modeling stud-

ies using BNs, Xi generally represents expression level of a gene and edges represent

relationship between genes.

If we observe the random variables (RVs) at different time points, static BNs

do not represent how a RV is related to its and other RVs values in successive times.

However, DBNs are able to model this phenomenon in the time-series context [12]. Let

X[t] denote a column vector of RVsX1, ..., Xn at time t. In the DBN framework, at each

time point t, we have a DAG, Gt, representing the dependency structure between the

RVs at time t. Gt is referred to as the intra network for each time point. In addition to

the intra networks, if the data set consists of k time points, the DBN structure models

k − 1 inter networks that represent the transition probability distributions between

the RVs in successive time points. The inter network, Gt ← t + 1, represents the

dependency structure between X[t] and X[t + 1]. Biological events are dynamic in

nature and take place over a time period. Therefore, it is often desirable to come up

with a time series experimental design that can monitor the biological sample at a

series of time points. When gene interaction networks are studied in this setting, use

of Dynamic BNs (DBN) is preferred over static BNs as the underlying mechanisms are

not static and change over time.

Earlier work applying the DBN framework has mainly focused on non-stationary

models with fixed structure. The time varying autoregression (TVAR) model [17],

which describes non-stationary linear dynamic systems with continuously changing

linear coefficients and noise variances, is one such popular model. The TVAR model



13

has been further developed with non-Gaussian autoregression models [18] and been

applied to gene expression data [13, 19, 20]. Another class of non-stationary models,

which has been widely studied, is the switching linear dynamic system (SLDS), which

uses latent Markov chains to describe the piecewise changes in the linear systems [12].

Recently, graphical models that change dynamically in both parameter and structure

have received more attention. With the assumption that the data sequence is partially

stationary in time, non-stationary models are constructed as a cascade of stationary

models. Each of these models is learnt from pre-segmented stationary subintervals

and a number of methods have been proposed to find these subintervals using Gaus-

sian graphical models [21] or Markov chain Monte Carlo (MCMC) sampling methods

[22, 23]. In most such approaches, the network learning phase uses some variant of

the Greedy Hill Climbing method [12, 24]. In this thesis, we focus on the REVEAL

algorithm [25], which, for a given fully observable discrete time series data, learns an

inter-slice adjacency matrix. The parent set for each node in slice (time) t is computed

by evaluating all subsets of nodes in slice t− 1, and picking the largest scoring one.

Most of the BN structures learning techniques employ the likelihood model

when finding the best graph that explains the observed data. The likelihood measure

is a suboptimal objective function and does not incorporate the probability of the

candidate graph in its scoring. In addition to using the optimal model (by use of an

appropriate scoring function), incorporation of existing external biological information

can also be employed to improve BN learning from experimental data. There are large

numbers of biological databases storing vast amounts of data that can be used to infer

the interaction probability of two genes. In this thesis, we combine these two areas

that could be improved in a novel framework, where external biological knowledge is

incorporated in BN learning through calculation of the probability of a candidate graph

[26, 27, 28]. This way, the true model is optimized in the structure learning phase and

the resulting networks are more reliable as they are partially based on evidence collated

from external sources.
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3. Use of External Knowledge

3.1 Bayesian Network Prior

Bayesian Network Prior (BNP) predicts if two genes interact based on the expert

advised external biological knowledge and given experimental data [29]. In order to

establish it, we first gather information from specific external biological sources as

described in the next section and BNP is purposed to provide evidence about the

interaction of any two given genes. A Gene Interaction (GI) variable was evaluated

as “TRUE” or “FALSE” regarding the number of evidence from the external biological

knowledge. If there are two or more evidence for the questioned interaction it is marked

as TRUE, which means there is an interaction between the pair of genes. This results

in an evidence matrix, where rows represent pairs of genes and columns represent

evidence types with GI being the last column. A small sample evidence matrix is

shown in Table 3.1 with a small subset of external information. BNP was learnt over

this data matrix and therefore represented the interrelation between different evidence

types and the event of GI. In total, we had 19 evidence types such as “Microarray”,

“Pathway”, “Two-Hybrid”, and “Western”. There were over 60,000 gene pairs used in

building BNP.

As parameters of the nodes in addition to the structure of the network are learnt

during the establishment of BNP, it can now be used as a decision support system

to predict if a given gene pair interacts. This is done by instantiating BNP with

experimental evidence and existing knowledge for a given gene pair and calculating the

probability of the GI node being “True”. In case of microarray data, the correlation

between the expression values of the two genes is used as the experimental data. When

this procedure is cycled through all pairs of genes that are part of the input data, we

obtain a prior interaction matrix B, where Bij represents the probability that gene i and

j interact based on external available evidence data and given observed experimental

data.
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Table 3.1
A short sample for representative knowledge types and gene interaction information for hypothetical
pair wise relations. For each knowledge type we indicate if a “relation” between the genes has been

established. 1: False, 2: True, NA: Not Available.

Gene Pair TF

Binding

Co-

localization

Affinity

Capture

Two-

Hybrid

Western Synthetic

Rescue

Gene

Interaction

A→ B 2 1 1 NA 1 2 2

A→ C 1 2 2 2 2 2 2

C → D 2 2 NA 1 2 1 2

C → E 2 1 2 1 2 1 1

E → G 1 1 1 2 NA 2 1

3.2 Sources of External Biological Knowledge

Molecular interactions would occur between molecules belonging to different

biochemical families (proteins, DNA, RNA, etc.) and also within a given family. There

are many experimental methods that reveal interactions for protein-protein, protein-

DNA, protein-RNA and such. In what follows, we list the experimental evidence type

used in the proposed BN model.

3.2.1 Physical Interactions

Affinity Capture-Luminescence An interaction is inferred when a bait protein,

tagged with luciferase, is enzymatically detected in immunoprecipitates of the

prey protein as light emission. The prey protein is affinity captured from cell

extracts by either polyclonal antibody or epitope tag.

Affinity Capture-MS An interaction is inferred when a “bait” protein is affinity cap-

tured from cell extracts by either polyclonal antibody or epitope tag and the

associated interaction partner is identified by mass spectrometric methods.

Affinity Capture-RNA An interaction is inferred when a bait protein is affinity
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captured from cell extracts by either polyclonal antibody or epitope tag and

associated RNA species identified by Northern blot, RT-PCR, affinity labeling,

sequencing, or microarray analysis.

Affinity Capture-Western An interaction is inferred when a bait protein affinity

captured from cell extracts by either polyclonal antibody or epitope tag and the

associated interaction partner identified byWestern blot with a specific polyclonal

antibody or second epitope tag. This category is also used if an interacting protein

is visualized directly by dye stain or radioactivity. Note that this differs from any

co-purification experiment involving affinity capture in that the co-purification

experiment involves at least one extra purification step to get rid of potential

contaminating proteins.

Biochemical Activity An interaction is inferred from the biochemical effect of one

protein upon another, for example, GTP-GDP exchange activity or phosphory-

lation of a substrate by a kinase. The “bait” protein executes the activity on the

substrate “hit” protein.

Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray

crystallography, also used for NMR or Electron Microscopy (EM) structures. If

a structure is demonstrated between 3 or more proteins, one is chosen as the bait

and binary interactions are recorded between that protein and the others.

Co-fractionation Interaction inferred from the presence of two or more protein sub-

units in a partially purified protein preparation. If co-fractionation is demon-

strated between 3 or more proteins, one is chosen as the bait and binary interac-

tions are recorded between that protein and the others.

Co-localization An interaction is inferred from co-localization of two proteins in the

cell, including co-dependent association of proteins with promoter DNA in chro-

matin immunoprecipitation experiments.

Co-purification An interaction is inferred from the identification of two or more pro-

tein subunits in a purified protein complex, as obtained by classical biochemical
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fractionation or affinity purification and one or more additional fractionation

steps.

Far Western An interaction is detected between a protein immobilized on a mem-

brane and a purified protein probe.

FRET An interaction is inferred when close proximity of interaction partners is de-

tected by fluorescence resonance energy transfer between pairs of fluorophore-

labeled molecules, such as occurs between CFP (donor) and YFP (acceptor)

fusion proteins.

PCA A protein-protein interaction assay in which a bait protein is expressed as fusion

to one of the either N- or C- terminal peptide fragments of a reporter protein

and prey protein is expressed as fusion to the complementary N- or C- terminal

fragment of the same reporter protein. Interaction of bait and prey proteins bring

together complementary fragments, which can then fold into an active reporter.

Protein-peptide An interaction is detected between a protein and a peptide derived

from an interaction partner. This includes phage display experiments.

Protein-RNA An interaction is detected between protein and an RNA.

Reconstituted Complex An interaction is detected between purified proteins in

vitro.

Two-hybrid / TF Binding Site Localization - Bait protein expressed as a DNA

binding domain (DBD) fusion and prey expressed as a transcriptional activation

domain (TAD) fusion and interaction measured by reporter gene activation.

3.2.2 Genetic Interactions

Dosage Growth Defect A genetic interaction is inferred when over expression or

increased dosage of one gene causes a growth defect in a strain that is mutated

or deleted for another gene.
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Dosage Lethality A genetic interaction is inferred when over expression or increased

dosage of one gene causes lethality in a strain that is mutated or deleted for

another gene.

Dosage Rescue A genetic interaction is inferred when over expression or increased

dosage of one gene rescues the lethality or growth defect of a strain that is mutated

or deleted for another gene.

Phenotypic Enhancement A genetic interaction is inferred when mutation or over-

expression of one gene results in enhancement of any phenotype (other than

lethality/growth defect) associated with mutation or over expression of another

gene.

Phenotypic Suppression A genetic interaction is inferred when mutation or over

expression of one gene results in suppression of any phenotype (other than lethal-

ity/growth defect) associated with mutation or over expression of another gene.

Synthetic Growth Defect A genetic interaction is inferred when mutations in sepa-

rate genes, each of which alone causes a minimal phenotype, result in a significant

growth defect under a given condition when combined in the same cell.

Synthetic Haploin Sufficiency A genetic interaction is inferred when mutations or

deletions in separate genes, at least one of which is hemizygous, cause a minimal

phenotype alone but result in lethality when combined in the same cell under a

given condition.

Synthetic Lethality A genetic interaction is inferred when mutations or deletions

in separate genes, each of which alone causes a minimal phenotype, result in

lethality when combined in the same cell under a given condition.

Synthetic Rescue A genetic interaction is inferred when mutations or deletions of

one gene rescues the lethality or growth defect of a strain mutated or deleted for

another gene.
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The interaction evidence from experimental data are gathered from the following

databases: KEGG1 , NCI/Nature Pathway Interaction Database2 , Reactome3 , and

BioGrid4 .

3.3 Use of Prior Information

After we calculated a graph matrix using BNP as mentioned before, the can-

didate graph is scored in the structure learning phase, the probability of this graph,

P (G), is obtained using

P (G) = CeβE(G) (3.1)

Where β is the candidate graph and C is a scaling constant. The choice of C

does not affect the relative comparison during scoring of graphs in structure learning.

The hyperparameter β can be marginalized using

P (G) = C
1

βH − βL

∫ βH

βL
eβE(G)dβ (3.2)

In these calculations, E(G) is the energy function and denotes the degree of

agreement between the prior interaction matrix, β, and the candidate graph, G. Namely,

we define Uij = 1 if there does not exist any links between i and j in G and we set

Uij = 1−Bij, if there is a link between i and j in G. E(G) is then defined as
1Accessible at: http://tinyurl.com/kaalg2h
2Accessible at: http://tinyurl.com/63l8cx
3Accessible at: http://tinyurl.com/megepcp
4Accessible at: http://tinyurl.com/mescm8m
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E(G) =
∑
i,j

U(i, j)/N2 (3.3)

where N is the number of nodes in G. In the structure learning process for

BNs, the graph that maximizes the probability in equation 1.2 is to be found. Here, D

represents the observed data. However, in the standard search algorithms the likelihood

P (D|G), instead of the true model P (G|D) is used as the objective function. In the

proposed method, we are able to calculate the true model through incorporation of

P (G) as described.

Given time-series data, we learn the intra networks using the greedy search

algorithm both with incorporation of prior knowledge (proposed method) and with

flat/uniform priors (standard methods, likelihood approach). To this end, the data

observed at time t only is used to find the intra network at that time. The inter

networks are learned along the lines of the REVEAL algorithm as described in the

previous section. In applying the basic idea of the REVEAL method in the proposed

approach, we use the following modification. We append the data of a node at time

(slice) t to the entire data set in time t − 1 and apply structure learning on this

augmented data set to discover the parents of the appended node. The appended node

belongs to the tth slice while its parents come from the (t − 1)st slice. Going through

each node at time t with this procedure reveals the final inter network between times

t − 1 and t. In the inter-network calculation, we compare the results of the proposed

approach using prior information with that of the REVEAL method using flat/uniform

priors.
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4. Results and Discussion

4.1 Synthetic Data

In this chapter we practice synthetic simulations to realize the effect of imple-

menting prior knowledge in structure learning. We generate a synthetic time series

interaction network as seen in Figure 4.1. The total network consists of four time

points and five nodes at each time point. There are four intra and three inter networks

but for purposes of symmetry, we used the first three intra networks in our simulations.

For each intra and inter network, data that follow the network’s CPTs were generated

using the Bayes Net Toolbox (BNT) for Matlab5 . We generated data sets of length

200, 300, 400, and 500. When the proposed algorithm was used to infer the interaction

networks, we obtained the B matrix from the true adjacency matrix of the correspond-

ing DAG, AT , and introduced a distortion by adding Gaussian noise to each entry.

The distortion rate was calculated using d = Fro(AT − B)/Fro(AT ), where Fro(A)

represents the Frobenius norm of the matrix A [4]. The introduced distortion rates

were between 0.0 and 0.3 with 0.1 increments yielding similarities to the prior matrix

at the levels of 0.7, 0.8, 0.9, and 1.0.

To assess the performance of the proposed method, we used receiver operating

characteristic (ROC) curve analysis. The area under the curve (AUC) values for the

learnt DAGs were calculated both using posterior probability P (G|D) with informative

priors (proposed method) and marginal likelihood P (D|G) scores with uniform flat

priors. In total, there were 96 structure learning processes performed when inter and

intra networks are learned for four different distortion levels and four different data set

sizes. In 100% of the time for the inter and intra networks, in average of 10 run for

each, the interaction network learnt using the proposed method revealed a higher AUC

value than the standard methods. In Figures 4.2 and 4.3, we represent the mean AUC

values of ten runs with standard deviation as errors, for both methods.
5Accessible at: http://www.cs.ubc.ca/?murphyk/Software/BNT/bnt.html
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Figure 4.1 Topologies of the inter- and intra- networks used for synthetic data.

Our results suggest that the proposed method greatly outperforms standard

methods and the proposed method is more successful in identifying the intra networks

than in identifying the inter networks. This is expected as the intra networks exhibit

the static structure inherent in the data and the challenging task in the time-series data

is in identifying the temporal, inter networks. For the inter networks, the average AUC

values for the proposed method when all distortion and data set sizes were considered

was about 70-90%. This value increased to 90-100% for the intra networks. On the

other hand, standard methods performed at around the 60-70% AUC level both for

the inter and intra networks.

The proposed system’s performance increased with data set size mainly because

the structure of the fitting DAG is more reliably found as more data are observed. For

the intra networks, when all distortion levels are combined, the average AUC values

were 92%, 88%, 93%, and 96%, respectively with data set sizes increasing from 200 to
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Figure 4.2 AUC values for the proposed (blue) and standard (red) DBN based algorithms for the
inter 1-2-3 networks for varying data sizes. The x-axis denote the similarity between the employed
prior matrix and the true network.
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Figure 4.3 AUC values for the BNP (blue) and GS (red) DBN based algorithms for the intra 1-2-3
networks for varying data sizes. The x-axis denote the similarity between the employed prior matrix
and the true network.

500. Similar results were observed for the inter networks where the AUC values were

increasing from 78% to 98%, respectively with increasing data set sizes. These results
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suggest that factors other than the data set size are limiting in learning inter networks

as the performance increase seems more dependent on the data set size for the case of

intra networks.

Although not very apparent, the proposed method resulted in higher AUC values

as the prior matrix, B, utilized in calculation of P (G), approached the true interaction

network. For example, for the case of the data set size of 500, the average AUC values

for the inter networks were 69%, 73%, 74%, and 76%, respectively as the similarity

between the prior matrix and the true DAG increased from 0.7 to 1.0. We believe that

lack of a structured dependence of the proposed methodï¿1
2
s performance to the dis-

tortion introduced in the prior matrix exhibits the robustness of the proposed method

to errors in the prior informative structure, B.

In Figure 4.4, we show an example instance of the identified inter networks using

the proposed method where data set size was 500 and the similarity rate was 0.7. We

omit the intra networks in this figure for the sake of visual simplicity. In this depiction,

green edges represent true positives (TP), i.e., the edges that were in the true inter

networks and were correctly found by the proposed method. Red edges represent false

positives (FP), i.e., the edges inserted by the proposed method that did not exist in

the true network. Yellow dashed edges represent false negatives (FN), i.e., the edges

that existed in the true network but were not found by the proposed method.

4.2 Simulated Gene Expression Data

4.2.1 Network Generator: Syntren

The use of simulated data is gaining an increased attention because of the lim-

itations of real experimental data for structure learning researches. The term network

generator is used to explain a system that generates synthetic networks and simu-

lates gene expressions derived from these networks. A synthetic network consists of a

topology. Different approaches have been used to create a network topology. In the
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Figure 4.4 The inter networks identified by the proposed method using a data set size of 400 and a
similarity of 0.9 between the prior matrix and the true network. Green: TP; Red: FP, Yellow: FN.

generation of small networks, handcrafted topologies might be used, but for producing

topologies of large networks, including big number of nodes, random graph models are

preferred. Using known regulatory network topologies increases the biological reality.

For simulation of the regulatory networks, the interactions between genes need to be

quantitatively modeled. Some models have been proposed for this purpose, including

Boolean [30], continuous [31] and probabilistic [32] approaches. What we use in our

synthetic data simulations is Syntren. SynTReN (Synthetic Transcriptional Regulatory

Networks), which is implemented in Java, generates topologies instead of using random

graph models, and is based on previously described source networks, providing better

approximation of the statistical properties of biological networks. The computational

performance of Syntren simulations is directly proportional with the number of genes

and significantly successful in simulations of large networks6 .

In our second half biological data simulations, we used the biological KEGG

pathway of “Phenylalanine metabolism” to generate our second Syntren data with the
6Accessible at http://homes.esat.kuleuven.be/ kmarchal/SynTReN/
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same number of samples and distortion rate. This network includes 17 genes and 93

edges.

4.2.2 Data Processing and Discretization

Most experimental designs consist of two groups of samples (e.g. cancer versus

normal). Fold change (FC) is a number describing how much a quantity changes going

from an initial to a final value and calculated by dividing the cancer type by the normal

type value. For a given biological pathway, we can obtain observed fold changes for

genes in this pathway by pairwise comparisons of samples in each group.

This approach provides a distribution of FC values and a reasonable dataset

size [31]. This approach provides a distribution of FC values and a reasonable dataset

size [40]. Briefly, for an example data set that consists of N normal and C cancer

samples, we obtain an observation matrix that is composed of NxC rows. Each column

represents a gene (a node on the BN) and the values in a given column represent the

FC for that gene due to each of the NxC pairwise Normal vs. Cancer comparison.

For the simulated gene expression data set, we used the Phenylalanine metabolism

(hsa00360) KEGG pathway [33], which consists of 17 genes and 93 edges. In Figure

4.5, we show the DAG obtained from this pathway. When modeling the pathway as

BN, we used our previously established framework [34]. Briefly, repeating entries in

the pathway were merged as a single node in the DAG while conserving edge relations.

Cyclic paths were eliminated using Spirtes’ method [35] such that the d-separations in

the collapsed graph entails the same independency relations defined by the pathway.

We constructed a four time point temporal scenario where at each time point,

a randomly chosen 20% of the genes in the network were deactivated. The DAG

obtained from the pathway minus the deactivated genes’ edges represented the true

intra network at each time point. For the inter networks, we expect the DBN based

learning algorithms to identify the links that exist in the pathway except for the ones
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Figure 4.5 The DAG obtained from the Phenylalanine metabolism (hsa00360) KEGG pathway.

that involved at least one deactivated gene in the two successive time points. The

gene expression data for each time point was generated using SynTReN v1.12 with

20 control and 20 test samples and 10% background noise. Observed data matrices

to be used in the structure learning phase were obtained as previously described [30].

The input matrix consisted of 400 observations (20 control x 20 test) and reflected the

distribution of fold change values between the two classes of samples. This matrix was

discretized into 3-levels using k-means clustering [32].

For each inter network, the inferred DAGs using prior knowledge (proposed

method) and uniform prior knowledge (flat prior, standard methods) were compared

to the original pathway structures using AUC values. In Figure 4.6, we show the AUC

values obtained by both methods. The proposed method outperforms the standard

approaches where the average AUC values obtained by the proposed method was 70%

and the average AUC values obtained by the standard approaches was 52%.
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Figure 4.6 AUC performance of the proposed (blue) and standard (red) approaches on the inter
networks for the Phenylalanine metabolism (hsa00360) KEGG pathway.
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5. Conclusion

In this thesis, we provide a framework that learns inter and intra networks for a

given time-series microarray experiment. Time-series experiments are frequently em-

ployed in various biological and clinical states. Examples of such applications include

growth of certain tissue or cell types over time or response of certain cell lines to drugs.

By applying microarrays, expression levels of tens of thousands of genes are measured

for the utilized biological samples under various conditions. This expression data that

represents the transcriptomics of the underlying samples and can be used to find dif-

ferentially expressed genes at different states. However, one of the major goals in

Bioinformatics, Computational Biology, and Systems Biology is to learn the topology

that represents the interaction network of genes and/or gene products. Bayesian Net-

works provide a suitable framework for this task. Alas, BNs are stationary in nature

and do not allow for cycles in its representation. These obstacles provide challenges in

applying the BN framework to the task of gene interaction network learning.

Dynamic Bayesian Networks can help us overcome the cyclicity and stationarity

problems, which are naturally observed in biological systems. The proposed system in

this thesis uses DBNs to learn gene interaction networks for given time series microar-

ray data. In the DBN system, the inter network that defines the links between genes

in successive time points enables us to link a gene to itself. At each time, we search,

for a given gene, its parents in the previous time point. In doing so, we utilize the

external biological knowledge in a framework called BNP. To this end, we constrain

our search space using our belief in certain links based on external knowledge and given

experimental data. BNP system is also used to calculate the probability of a candidate

graph, G, in the network learning process. This way, we not only utilize external knowl-

edge but also optimize the true parameter P (G|D) instead of the likelihood parameter,

P (D|G) in our structure learning phase.
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To demonstrate the utility of the proposed approach, we have applied it to

synthetic and simulated data sets and compared our results to the state-of-the-art

DBN workflow used to learn interaction networks from time series microarray data.

In the synthetic data sets, we generated data that follows a network structure that

spans three time slices. The four intra and the three inter networks were chosen to

mimic typical biological network topologies and the proposed method outperformed

the existing methods in all simulations with varying data size and distortion levels. In

the simulated microarray data set, we generated data that follows a known biological

pathway. To define inter networks, we deactivated a randomly chosen 20% of the genes

in the pathway at each of the three time points. We expected the algorithms to discover

links that did not involve the deactivated genes in the original pathway. Similar to the

synthetic data set results, the proposed workflow identified gene interaction networks

that are closer to the expected topology when compared with the existing methods.

We believe that the framework proposed in this thesis successfully identifies a

dynamic interaction network that spans over time for given microarray data. However,

in real life applications, the number of genes measured on the microarray platforms are

much larger than the number of nodes used in our simulations. Therefore, we expect

that the proposed approach should be augmented with a module that first identifies

the genes for which the dynamic network should be built. Nevertheless, the proposed

approach would still be applied to real life applications as in biological applications

there often lies a targeted set of genes. For example, if we were to assess the effect of

a drug on a certain pathway over time, we could design a time series experiment and

apply the proposed approach on the genes that are on our target pathway of interest.

Biological phenomena are dynamic and cyclic in nature. Therefore, though applicable

on a modest number of genes, the proposed algorithm is suitable to the biology under

investigation as the algorithm allows for cycles and changes the topology over time. Our

approach renders itself as a novel methodology as it incorporates external knowledge

and identifies the parents of the nodes at each time slice in newly described ways.
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