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Abstract

DIELECTROPHORETIC FORCE STIMULATION FOR
BONE FRACTURE HEALING

On the average, a person has two bone fractures during a lifetime. The heal-

ing time depends on the age, the health of the patient, the type and the severity of

the fracture and can be quite long, especially if there is an infection. This is very

frustrating for patients during this time, since they require help and are unable to

work. Although a number of invasive and non-invasive techniques have been studied

for shortening fracture healing times, including the application of direct current, elec-

tromagnetic �elds, pulsed electromagnetic �elds, ultrasound and low-intensity x-ray.

However none of these techniques are entirely satisfactory. In the present thesis we

propose a novel technique based on the use of dielectrophoretic forces (DEPFs).

By applying a non-uniform electromagnetic �eld around a fracture site, red

blood cells within the blood will be polarized, creating electrical dipoles. Due to the

interaction of these dipoles and the electromagnetic �eld, the red blood cells will be

subjected to dielectrophoretic forces that will accelerate them and thus the blood �ow

will be increased. This will, in turn, increase vascularization, transmembrane signalling,

the supply of nutrients, necessary hormones and growth factors at the fracture site and

thus help bone healing.

For the generation of non-uniform �elds we considered three di�erent coil de-

signs (linear, parabolic and square root). Using Mathcad we numerically studied ex-

tensively, the dielectrophoretic forces for a long bone fracture where the main arteries

are vertically-oriented and the blood �ow is downward. The gravitational force and

the drag force on the red blood cells determine the steady state blood �ow. The di-

electrophoretic force added to the force balance is functional in increasing the blood

�ow.
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The ratio of the velocity in the presence of dielectrophoresis to the velocity

without dielectrophoresis (called here as the Dielectrophoretic Force Factor, κDEPF )

is a good measure of the performance of the dielectrophoresis, since it indicates the

increase in blood �ow. It was found that the dielectorophoretic force reaches the peak

levels at a frequency range between 5-15 Hz. At 5 Hz, the average value of κDEPF

is 1.90, 2.51 and 1.61 for the linear, parabolic and the square root coils, respectively.

Thus, the parabolic coil seems to be the best choice for bone healing.

Keywords: Bone fracture healing, dielectrophoretic force, red blood

cell.
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Özet

KEM�K KIRI�I �Y�LE�MES� �Ç�N D�ELEKTROFORET�K
KUVVET UYARIMI

Ortalama olarak, bir insan�n hayat� boyunca iki kez kemik k�r�§�na rastlanmak-

tad�r. �yile³me süresi hastan�n ya³�na, sa§l�§�na, k�r�§�n tipine, ³iddetine ve özellikle

bölgedeki enfeksiyona göre çok uzun olabilmektedir. Hasta çal�³amaz durumda ve

yard�ma ihtiyac� oldu§u için bu durum hasta için y�prat�c� olmaktad�r. K�r�k iyile³me

süresini azaltmak için invaziv ve noninvaziv yöntemler üzerinde çal�³�lmas�na ra§men,

do§ru ak�m, elektromanyetik alan, darbeli elektromanyetik alan, ultrason ve dü³ük

yo§unluklu x-�³�n� gibi, bu yöntemlerin hiçbiri tatmin edici olmam�³t�r. Bu tezde, yeni

bir yöntem olan dielektroforetik kuvveti anlatmaktay�z.

K�r�k bölgesine sabit olmayan elektromanyetik alan uygulanarak, k�rm�z� kan

hücreleri kutupla³t�r�labilir ve elektrik dipolleri olu³turulabilir. Bu dipollerin birbiriyle

etkile³imi ve elektrik alandan dolay� k�rm�z� kan hücreleri dielektroforetik kuvvete

maruz b�rak�lacakt�r ve h�zlanacaklard�r, böylece kan ak�³� h�zlanacakt�r. Ayr�ca, bu

h�zlanma sayesinde k�r�k bölgesinde damarlanma art�³�, transmembran sinyallenmesi,

besin maddeleri ve büyüme faktörlerinin art�³� olacak, böylece k�r�k iyile³mesine yard�mc�

olunacakt�r. K�rm�z� kan hücreleri üzerindeki yerçekimi ve sürtünme kuvveti kan

ak�³�n�n kararl� halde olmas�n� sa§lamaktad�r. Dielektroforetik kuvvet bu kuvvet den-

gesine eklenerek kan ak�³� h�zland�r�labilir.

Sabit olmayan elektromanyetik alan�n üretilmesi için üç farkl� bobin modeli

dü³ünülmü³tür (do§rusal, parabolik ve karekök). Mathcad kullan�larak numerik olarak

detayl� çal�³�lm�³t�r. Uzun kemik k�r�§� civar�nda ana arterler dikey odakl� ve dielektro-

foretik kuvvet kan ak�³� yönünde a³a§�ya do§rudur.
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Kan ak�³ h�z�n�n art�³�n� göstermek için dielektroforesiz (Dielektroforetik Kuvvet,

κDEPF ) varl�§�nda olan ak�³ h�z�n�n dielektroforesiz olmadanki ak�³ h�z�na oran� iyi bir

ölçü olmaktad�r. Dielektroforetik kuvvet 5-15 Hz aral�§�nda doruk noktas�na ula³mak-

tad�r. 5 Hz için ortalama κDEPF do§rusal, parabolik ve karekök bobinler için s�ras�yla

1.90, 2.51 ve 1.61 dir. Böylece parabolik bobin k�r�k iyile³mesi için en iyi seçenektir.

Keywords: Kemik k�r�§� iyile³mesi, dielektroforetik kuvvet, k�rm�z�

kan hücresi.
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1. INTRODUCTION

1.1 Motivation and Background

On the average, a person has two bone fractures during a lifetime [1]. They are

caused by a fall, blow, or other traumatic events in which the physical force exerted

on the bone is stronger than the bone itself.

The risk of fracture depends, in part, on age. Fractures are very common in

childhood. However children's fractures are, in general, less complicated than fractures

in adults. Elder people are more likely to su�er fractures from falls that would not occur

when the bones were young, because with age bones become more brittle. Osteoporosis,

a disorder in which the bones become thin and loose strength as they age, causes 1.5

million fractures each year in the U.S., especially in the hip, wrist, and the spine.

Besides osteoporosis, there are many other diseases (such as cancer) that weakens the

bones and cause pathologic fractures that can occur with little or no trauma [2].

The severity of a fracture depends upon its location and the damage done to the

bone and the tissue near it. Serious fractures can have dangerous complications if not

treated promptly. Possible complications include damage to the blood vessels or nerves

and infection of the bone (osteomyelitis) or the surrounding tissue. Recuperation time

varies depending on the age and health of the patient and the type of the fracture. A

moderate fracture in a child may heal within a few weeks whereas a similar fracture in

an older person may take months to heal. In some cases, to correct a limb deformity,

congenital or acquired shortened stature (due to accident, polio, wrongly united frac-

ture, crush injury, pus formation in bone or bone gap) the bone may be deliberately

fractured. By using a cage like frame around the limb and wires or needles passing

through the targeted bones, the bone may be elongated several centimeters. Known

as the Ilizarov Technique, a bone growth of 0.1cm/day can be achieved. The patient

has to be in the frame for months.
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These long healing times are very frustrating for patients. They usualy require

help and are unable to work. Scientists have therefore been studying techniques for

shortening fracture healing times using a variety of means including electromagnetic

�elds.

Bone healing creates a demand for blood �ow in tissues that are near the fracture

site. Development of the vascular tissue and the initiation and propagation of the

periosteal response are the prominent driving mechanism of bone regeneration. Vessel

formation depends on su�cient blood �ow. It has been well established that the

increase of blood �ow near the fracture site accelerates vessel formation and bone

regeneration; a fracture may heal faster if there is an increase in the blood �ow near

the fracture site.

A variety of techniques, including electrical stimulation, have been tried to facili-

tate fracture healing. For example, it has been shown that stimulation by direct current

or ac current have bene�cial e�ects. The exact mechanism by which electrical stimu-

lation improves bone repair is still not fully understood. It needs more investigation.

However, to date, direct current has been documented to work by an electrochemical

reaction at the cathode. Capacitive coupling and inductive coupling have shown to

work by alteration of growth factors and transmembrane signalling. Further studies

are needed to support and optimize electrical stimulation for bone healing [3].

Mankind's use of electromagnetic �elds for therapy may date back to the times

naturally magnetized pieces of the mineral magnetite (called lodestone) was �rst dis-

covered. In Middle English lodestone means 'course stone' or 'leading stone', showing

its importance to early navigation. In the 15th century, Swiss physician and alchemist

Paracelsus used lodestones to treat epilepsy, diarrhea, and hemorrhage. In the late

18th century, the Austrian physician Franz Anton Mesmer, who originated the idea of

"animal magnetism", described healing properties of passing magnets over the open

veins of patients [4]. In the mid-19th century, magnetic ointments produced in New

York were introduced as remedies for a whole spectrum of illnesses such as headaches,

in�ammation of the bowels, burns, fever sores, rheumatism, gout, and toothache. Al-
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though electricity's potential to aid bone healing was reported as early as 1841, it was

not until the mid-1950s that scientists seriously studied the subject.

In the past 25 years or so, many researchers have investigated techniques for

promoting the healing of bone defects in both human beings and animals. For example,

the application of direct current, in the order of 20 microamperes, at the site of a

fracture is known to promote bone growth and thus healing. The cathode is usually

applied at the site of the defect; the anode is placed somewhere in the adjacent tissue

or on the skin of the patient. While such arrangements are totally or partially invasive,

non-invasive techniques are also in use; an externally generated electromagnetic �eld

is caused to pass through the fracture site, thus inducing a current which promotes

healing. The �rst approach su�ers from the disadvantage of being at least partially

invasive, while the second su�ers from the disadvantage of requiring precise alignment

of coils relative to the area to be treated as well as constant attention of medical

personnel. Furthermore, many months are usually required to achieve healing when

using any of the prior methods.

Fukada's and Yasuda's discovery of the electric potential of bone provides ev-

idence of electricity's e�ect in promoting osteogenesis (bone growth), particularly in

long bone non-unions [5]. During the 1970s, Bassett and his team introduced a new

approach for the treatment of delayed fractures, a technique that employed a very spe-

ci�c biphasic low frequency signal to be applied for non-union and delayed fractures [6].

The use of electrical stimulation in the lumbosacral region was �rst attempted by Alan

Dwyer of Australia [7]. In 1974, he reported successful initiation of graft incorpora-

tion in 11 of 12 fusion patients. Electrical stimulation has been shown to signi�cantly

increase the probability of bony arthrodesis in spinal fusions [8]. In 1979 FDA ap-

proved non-invasive devices using pulsed electromagnetic �elds designed to stimulate

bone growth. In 2004, a pulsed electromagnetic �eld therapy (PEMFT) system was

approved by FDA as an adjunct to cervical fusion surgery in patients at high risk for

non-fusion [9]. The use of PEMFT has been found to be safe. It has also been proven

safe and e�ective in treatment of delayed union in long bone fractures and patients at

risk of non-union following spinal fusion surgeries [10].
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Pulsed electromagnetic �eld therapy, also called pulsed magnetic therapy, pulse

magnetotherapy, is a reparative technique most commonly used in the �eld of ortho-

pedics. In the case of bone healing, PEMF uses electrical energy to direct a series

of magnetic pulses through injured tissue whereby each magnetic pulse induces a tiny

electrical signal that stimulates cellular repair. Many studies have also demonstrated

the e�ectiveness of PEMF in healing soft-tissue wounds; suppressing in�ammatory re-

sponses at the cell membrane level to alleviate pain, and increasing range of motion.

The value of pulsed electromagnetic �eld therapy has been shown to cover a wide range

of conditions, with well documented trials carried out by hospitals, rheumatologists,

physiotherapists and neurologists. There are several electrical stimulation therapy de-

vices, approved by the FDA, that are widely available to patients for use. These devices

provide an additive solution that aid in bone growth repair and depression [11].

The techniques described above are not entirely satisfactory and there is a great

need for the development of better techniques. In the present thesis we introduce a

new technique based on the use of dielectrophoretic forces. This explained in the next

sections.

1.2 Objectives

Adequate blood �ow is vital for bone fracture healing, since blood carries nec-

essary hormones and growth factors to the fracture site. Clearly, fracture healing can

be accelarated by increasing the blood �ow. In this thesis, we investigate how this can

be achieved using dielectrophoretic forces.

If we can generate a non-uniform electric �eld around the fracture site, red

blood cells within the blood can be polarized, creating electrical dipoles. Due to these

dipoles the red blood cells will be subjected to (dielectrophoretic) forces that will

accelerate them and thus increase blood �ow. The objective of this thesis is to study

how these non-uniform �elds can be generated and how dielectrophoresis may help

fracture healing. For the creation of the required non-uniform �elds, we considered
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three di�erent coil models, namely, the linear, the parabolic and the square root coils.

Using Mathcad we studied the dielectrophoretic forces extensively. An outline of this

work is given in the following section.

1.3 Outline of The Thesis

The remaining chapters are organized as follows. Chapter 2 introduces brie�y,

the physiology of bone fracture healing. Types of fractures and bone formation mech-

anisms are discussed here. Dielectrophoresis is discussed in Chapter 3. Chapter 4

covers numerical analysis of dielectrophoresis for linear, parabolic and square root coil

models. Chapter 4 ends with a discussion. Appendix A explains the derivation of

dielectrophoretic force. Appendix B gives numerical calculations of dielectrophoretic

forces.
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2. BONE FRACTURE HEALING

2.1 Introduction

Bone is a sti� composite material and consists of �brous protein collagen. It is

absorbed with rich calcium phosphate. Also, the bone is covered by living cells and

blood vessels within it. Inside the bone, there are hematopoietic cells known as bone

marrow [12].

Bones consist of two structures as cortical bone and cancellous bone. The Corti-

cal bone is the outer layer of the bone. It resists bending. Haversian system (osteon) is

the fundamental functional unit of compact bone. In the middle of the osteon there is

a Haversian canal that has blood vessels, loose connective tissue and nerves. Also, each

osteon is connected with each other by Volkmann's canals. In addition, in the osteon

there are osteocytes which are present in the lacunae and interconnected by canaliculi.

Haversian canals are the nutrient supplier of the bones and through the Volkmann's

canals, the system is connected through all around the bone.

Cancellous bone consists of trabeculae and collagen �bers which are present in

trabeculae. The collagen �bers are located as parallel lamellae. The outer layer of

trabeculae consists of �attened cells and inside trabeculae there are osteoblasts [13].

Periosteum is the outer layer of the bone and it consists of collagen �bers,

�broblasts and osteoprogenitor cells that can make mitotic divisions to di�erentiate

into osteoblasts. They are necessary for the healing and the growth of the bone.

They are known as bone forming cells. Because of this osteoblasts synthesize organic

components of the bone matrix. When it is active it shows alkaline phosphate activity

[13].
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2.2 Bone Formation Mechanism

There are �ve stages of bone remodeling:

• Quiescence

• Activation

• Resorption

• Reversal

• Formation

The resting state of a bone surface is known as the quiescence stage. In this stage,

all of the bone surface is in the resting state. Later, activation stage starts in which,

osteoclasts are recruited to the surface of the bone. The osteoclasts regulate coupling

to osteoblasts by reducing the bone formation activity during the bone remodeling.

The third stage of the bone formation is resorption; it is the removal of the bone

by the osteoclasts. After this stage, the osteoclasts stop removing the bone and the

osteoblasts �ll the defect. Finally, in the formation phase the bone is layed down by

the osteoblasts [14].

Figure 2.1 shows the bone lining cells and the endosteal membrane (quiescent

phase), retraction of the cells and the membrane resorption (activation phase), activity

of the osteoclasts (resorption phase), matrix of the osteoblasts and osteoid (formation

phase), mineralization of the bone tissue and �nally the bone structure unit (quiescent

phase).
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Figure 2.1 Bone formation mechanism [15].

2.2.1 Periosteal Bone Formation

In the periosteal bone formation, tissue vascularizition is increased, mesenchy-

mal stem cells are proliferated to di�erentiate into osteoblasts, osteoblasts start to lie

down into the osteoid which is the organic part of the bone. In the osteoids, osteoblasts

turn into osteocytes. The osteoids are calci�ed to form the cancellous bone. The pe-

riosteum and the compact bone are formed [16]. Figure 2.2 shows the outer and inner

structure of a bone.
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Figure 2.2 Periosteal bone formation [17].

2.2.2 Endochondral Bone Formation

Endochondral bone formation is an essential process during the healing of the

bone fractures. There are two stages of process in endochondral bone formation. In the

primary center of ossi�cation, perichondrium becomes periosteum which contains os-

teopregenitor cells that later become osteoblasts. Then, the osteoblasts secrete osteoid

against the shaft of the cartilage model which serves as support for the new bone. Also,

chondrocytes begin to grow in this stage that is known as hypertrophy. They stop se-

creting collagen and other proteoglycans and begin secreting alkaline phosphatase that

is needed for mineral deposition. Besides, calci�cation of the matrix occurs and apop-

tosis of the hypertrophic chondrocytes takes place. This creates cavities in the bone.

The hypertrophic chondrocytes secrete vascular endothelial cell growth factor that in-

duces growth of the new blood vessels from the perichondrium. The blood vessels from

the periosteal bud invade the cavity left by chondrocytes and branch in the opposite

directions along the length of the shaft. The blood vessels carry hemopoietic cells,

osteoprogenitor cells and the other cells inside the cavity. Hemopoietic cells will later

form the bone marrow. Then, osteoblasts that are di�erentiated from the osteoprogen-

itor cells enter the cavity by means of the periosteal bud. Besides, it secretes osteoid

which then creates trabecula of the bone. In addition, osteoclasts break down the
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cancellous bone to form the bone marrow cavity [18]. In the secondary center of ossi-

�cation, the cartilage between the primary and secondary ossi�cation centers is called

the epiphyseal plate and it continues to form the new cartilage which is replaced by

the bone. It results in an increase in the length of the bone [19].

2.3 Blood Supply of Long Bone

Long bones have three blood supplies. These blood vessels carry the necessary

nutrients to the bone. The nutrient artery is the main blood supply of the bone. It

enters the long bone to form the medullary arteries up and down. The periosteal

arteries arise to from the capillary rich periosteum. In case of injury, it is capable

of supplying a much greater proportion of the cortex to the medullary blood supply.

Lastly, the metaphyseal arteries arise from the periarticular vessels. It penetrates the

thin cortex in the metaphyseal region and anastomose with the medullary blood supply

[13].

Bone healing creates a demand for blood �ow in tissues that are near the fracture

site. Therefore, the bone regeneration occurs. Development of the vascular tissue and

the initiation and propagation of the periosteal response are the prominent driving

mechanism of the bone regeneration. The e�ect of the vessel formation depends on the

su�cient blood �ow. In fracture healing, it has been well established. So, increase in

blood �ow near fracture site accelerates the vessel formation and the bone regeneration.

Growth factors play an important role in the bone formation. The member of the

transforming growth factor beta (TGFβ), bone morphogenic proteins (BMPs), insulin

like growth factors (IGFs), platelet derived growth factors (PDGFs) and �broblast

growth factors (FGFs) make an osteoinductive e�ect. After haematoma is formed,

resulting from injury to the periosteum, platelets aggregate on the fracture site and

start stimulating the release of growth factors. In the bloodstream there are growth

factors and hormones like parathyroid hormone, calcitonin, insulin, growth hormone,

glucocoticoids, sex steroids and thyroid hormone. These hormones are signi�cant in

the bone formation [16]. Figure 2.3 shows the healing process of a bone fracture.
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Figure 2.3 a Blood clot formation b Substitution of blood cells by a matrix rich repair tissue c
Invasion of blood vessels d Organization of predetermined osseous tissue e Trabaculae formed by
osteoblasts f Final repair tissue [16].

2.4 Mesenchymal Stem Cell in Bone Development and Repair

Mesenchymal stem cells form the stroma component of bone marrow. It sup-

ports hematopoiesis and bone formation [20]. As hematopoetic cells, mesenchymal

stem cells (MSCs) are multipotent and they are derived from the bone marrow. They

have the capability to develop into many cells such as bone, cartilage, tendon, muscle,

marrow, fat and dermis. During embriyogenesis MSCs condensate and di�erentiate to

form cartilaginous that is the anatomical model of the future bones. There are several

phases for MSCs to develop into other kinds of cells. MSCs are the continious supply of

the osteogenic cells that are required for the fracture healing [21]. Systemic hormones

and growth factors regulate the bone physiology and their e�ect is transduced by cellu-

lar transcription machinery to regulate the di�erentiation process [22, 23]. Figure 2.4

shows the pluripotent behaviour of MSCs.
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Figure 2.4 Mesengenic process [24].

2.5 Function of The Sex Hormone Binding Globulin

It was proven that the stromal cells isolated from bone marrow can be stim-

ulated by glucocorticoids to di�erentiate into the mature preosteoblastic cells [25].

Di�erentiation of mesenchymal stem cells to osteoblasts appears in the following order:

accumulation of the collagenous matrix, expression of the alkaline phosphatase, secre-

tion of the osteocalcin and �nally mineralization of the bone [26]. It has been suggested

that the steroids such as estrogen may play a key role in the di�erentiation mechanism

of mesenchymal stem cells [27]. Many studies suggest that estrogen hormone can di-

rectly improve the osteoblastic activity and the bone formation [28, 29, 30]. The e�ect

of estrogen on proliferation and di�erentiation of osteoblastic cells in the bone marrow

cultures has been investigated. During the �rst six days of the culture the e�ect of

estrogen has been under survey. The number of cells grown in the presence of estrogen

was signi�cantly higher on day six when compared with control cultures that are grown

during the absence of estrogen hormone [31].

In the blood circulation, the steroids bound to the plasma proteins, yet only

the unbound steroids are able to enter the cell. Target cells respond speci�cally to
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physiological levels of the steroid. They di�er from the non-target cells that are able to

synthesize a receptor proteins that are responsible for the uptake of the steroid. Besides,

the steroid protein complex is then transferred into the nucleus, then the process causes

some alterations in the complex. Inside the nucleus, the complex is bound to a speci�c

part of the nucleus chromatin at the acceptor sites. RNA polymerase takes action to

start transcription of the speci�c part of DNA, thus protein synthesis in the ribosomes

occurs [32].
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3. METHODS

3.1 Dielectrophoretic Force for Spherical Particles

Dielectrophoresis describes forces exerted on a particle when it is placed in a

non-uniform electric �eld and the particle and the surrounding medium have di�erent

polarizabilities such as di�erent dielectric permittivity, conductivity, relaxation time,

etc. A charged particle placed in a uniform electric �eld will be subjected to a force. A

neutral particle in the same uniform �eld will not be e�ected because each half of the

induced dipole in this particle will be subjected to opposite and equal forces which can-

cel each other out. However, in a non-uniform electric �eld a neutral particle polarizes

and the two halves of the induced dipole are subjected to di�erent force magnitudes

which altogether is known as the dielectrophoretic force (DEPF). It is important to

emphasize that the electrophoretic force can be applied to charged particles, yet the

DEPF does not require charged particles in order to manipulate it. The particle has to

only di�er electrically from the medium. In addition, AC excitation reduces membrane

polarizability [33]. Spherical like structure of hemoglobin allows to use the DEPF [34].

Dielectrophoretic force equation for spherical particles is:

F = 2πr3pε0εm< [K (ω)]∇
(
E2
)

(3.1)

where εm and ε0 are the permittivity of the surrounding medium and air respectively,

rp is the radius of the particle that is aimed to manipulate, ω is the radian frequency

of the �eld, E is the electric �eld and K (ω) is the clausius-mossotti factor [35].
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Figure 3.1 a Uniform electric �eld for charged and neutral body b Non-uniform electric �eld for
neutral body [35].

In Part a of Figure 3.1, a uniform electric �eld is applied to the charged and

neutral bodies. Charged body moves in the opposite direction of the electric �eld, yet

the neutral body does not move because opposite forces cancel each other.

In Part b, a non-uniform electric �eld is applied to the neutral body and a net

force is created. The particle moves in the direction of the dielectrophoretic force.



16

3.1.1 The Clausius-Mossotti Factor

The Clausius-Mossotti factor gives the frequency dependence of the DEPF. The

negative Clausius-Mossotti factor means the negative dielectrophoretic force (n-DEPF)

and a positive Clausius-Mossotti factor refers to the positive dielectrophoretic force (p-

DEPF) [35].

The Clausius Mossotti factor is:

K (ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

(3.2)

where, ε∗m and ε∗p are the complex permittivity of the surrounding medium and the

particle, respectively. The sign of the Clausius Mossotti factor determines the direction

of the dielectrophoretic force [35].

ε (ω)i = εi∞ +
∑ 4εin

1 + (jwnτin)
αin

where n = 1, 2, 3, 4 (3.3)

ε∗i(i=p,m) = ε (ω)i − j
σi
ε0ω

(3.4)

where, σ denotes the conductivity, τ is the relaxation time, ω is the radian frequency,

4εn is the relative dielectric permittivity between the low and the high frequencies in

the n− th dispersion region and j =
√
−1 [35].
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4. RESULTS

4.1 Introduction

An adequate blood �ow is vital for bone healing [16]. DEPF might be used

to step up the velocity of blood �ow near the fracture site and thus enhance healing.

In order to create the DEPF there must be a su�ciently large non-uniform electric

�eld. To generate this non-uniform �eld, in the present thesis, we have considered

three di�erent coil models; namely, the linear, the parabolic and the square root coil

models as shown in Figure 4.1.

4.2 The Coil Model

The coil model considered in this thesis is shown in Figure 4.1. The height, the

interwinding distance and the diameter of each turn of the coil are chosen as 28 cm

and 0.5 cm and 0.25 cm respectively, after some trial-and-error process. The radius of

each turn is di�erent in order to acquire a non-uniform electric �eld inside the coil. In

the center of the coil, the radius of the turn is r1 and at the top, the radius of the turn

is r20. The values of the radii are in the increasing order from the center to the top.

As seen from Figure 4.1, the coil is symmetric in the z axis so that the lower part of

the coil has the same parameters as the upper part.

The derivation of the dielectrophoretic forces are given in Appendix A. The

dielectrophoresis has a dispersive behaviour, i.e., it has frequency dependence. Figures

4.2-4.9 show that frequency versus the DEPF/rp graphs for linear, parabolic and square

root coils, where rp represents the red blood cell radius. As in Figure 4.2, between 5

Hz and 15 Hz, the DEPF/rp value peaks. In the next sections, the details of the coil

models are explained.
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Figure 4.1 Coil model
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Figure 4.2 The DEPF/rp (N/m) vs frequency (Hz) (0-50 Hz)

Figure 4.4 The DEPF/rp (N/m) vs frequency (Hz) (50 Hz-500 Hz)
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Figure 4.3 The DEPF/rp (N/m) vs frequency (Hz) (500 Hz-1 kHz)

Figure 4.5 The DEPF/rp (N/m) vs frequency (Hz) (1 kHz-10 kHz)
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Figure 4.6 The DEPF/rp (N/m) vs frequency (Hz) (10 kHz-100 kHz)

Figure 4.7 The DEPF/rp (N/m) vs frequency (Hz) (100 kHz-1 MHz)



22

Figure 4.8 The DEPF/rp (N/m) vs frequency (Hz) (10 MHz-100 MHz)

Figure 4.9 The DEPF/rp (N/m) vs frequency (Hz) (100 MHz-1 GHz)
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4.3 The Linear, The Parabolic and The Square Root Coils with

Distinct Radiuses

In this section, vectorel simulation of dielectrophoretic force and magnetic �eld

intensity for the linear, the parabolic and the square root coil models with di�erent

radii are summarized.

4.3.1 The Linear Coil

The equations for the linear coil are z = x+ r1 cm (r1 = 10, 15, 20 cm). In this

model, the coil height is 28 cm, the interwinding distance is 0.5 cm. The radii of each

turn are calculated for each of the linear coil equation and shown in Tables 4.1-4.3.

The DEPF can be calculated for each turn and using superposition the total DEPF

can be obtained. The results, for 5 Hz, 10 Hz, 15 Hz are summarized in Tables 4.1-4.3.

For all frequencies, the peak value of the DEPF occurs at the center of the coil. When

r1=15 cm, for 5 Hz it is 9.73× 10−8 N/m, for 10 Hz it is 7.43× 10−8 N/m, for 15 Hz it

is 2.55× 10−8 N/m. These values show that at 5 Hz the DEPF peaks. Tables 4.1-4.3

show that the blood �ow rate increases as the center of the coil is approached and in

the center the �ow peaks.

Since the main arteries follow paths parallel to the tibia and �bula [36], the

DEPF is roughly in the same direction as the arteries. In Figure 4.10, a vectorel plot

of the DEPF/rp are given along the z and the r axes in cylindrical coordinates. It

can be seen that the magnitute of the DEPF/rp diminishes along the z axis. This

demonstrates the gradient nature of the linear coil. At the center (z=0) the magnitute

peaks as desired. A plot of the magnetic �ux intensity versus z is presented in Figure

4.11. The total MFI reaches a peak value of 3.94× 10−6 T at z=0 in the center of the

coil.
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Figure 4.10 The direction of the DEPF/rp inside the linear coil

Figure 4.11 Magnetic �ux intensity when r1=15 cm
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Table 4.1

DEPF/rp Table for The Linear Coil of z = x+ 10 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 10 2.17× 10−7 1.66× 10−7 5.70× 10−8

0.50 10.50 1.96× 10−7 1.50× 10−7 5.15× 10−8

1.25 11.25 1.64× 10−7 1.25× 10−7 4.32× 10−8

2.00 12.00 1.39× 10−7 1.07× 10−7 3.67× 10−8

2.75 12.75 1.16× 10−7 8.87× 10−8 3.06× 10−8

3.50 13.50 9.90× 10−8 7.57× 10−8 2.61× 10−8

4.25 14.25 8.29× 10−8 6.63× 10−8 2.18× 10−8

5.00 15.00 7.13× 10−8 5.45× 10−8 1.88× 10−8

5.75 15.75 6.05× 10−8 4.41× 10−8 1.59× 10−8

6.50 16.50 5.26× 10−8 4.02× 10−8 1.38× 10−8

7.25 17.25 4.52× 10−8 3.45× 10−8 1.19× 10−8

8.00 18.00 3.96× 10−8 3.03× 10−8 1.05× 10−8

8.75 18.75 3.46× 10−8 2.64× 10−8 9.09× 10−9

9.50 19.50 3.07× 10−8 2.35× 10−8 8.08× 10−9

10.25 20.25 2.70× 10−8 2.06× 10−8 7.11× 10−9

11.00 21.00 2.43× 10−8 1.85× 10−8 6.39× 10−9

11.75 21.75 2.16× 10−8 1.65× 10−8 5.67× 10−9

12.50 22.50 1.96× 10−8 1.49× 10−8 5.14× 10−9

13.25 23.25 1.75× 10−8 1.34× 10−8 4.61× 10−9

14.00 24.00 1.60× 10−8 1.22× 10−8 4.21× 10−9
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Table 4.2

DEPF/rp Table for The Linear Coil of z = x+ 15 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 15 9.73× 10−8 7.43× 10−8 2.55× 10−8

0.50 15.50 9.09× 10−8 6.94× 10−8 2.39× 10−8

1.25 16.25 8.10× 10−8 6.19× 10−8 2.13× 10−8

2.00 17.00 7.29× 10−8 5.67× 10−8 1.92× 10−8

2.75 17.75 6.65× 10−8 4.92× 10−8 1.70× 10−8

3.50 18.50 5.78× 10−8 4.42× 10−8 1.52× 10−8

4.25 19.25 5.11× 10−8 3.91× 10−8 1.34× 10−8

5.00 20.00 4.59× 10−8 3.50× 10−8 1.21× 10−8

5.75 20.75 4.07× 10−8 3.11× 10−8 1.07× 10−8

6.50 21.50 3.67× 10−8 2.81× 10−8 9.66× 10−9

7.25 22.25 3.27× 10−8 2.50× 10−8 8.61× 10−9

8.00 23.00 2.97× 10−8 2.16× 10−8 7.80× 10−9

8.75 23.75 2.66× 10−8 2.03× 10−8 6.99× 10−9

9.50 24.50 2.42× 10−8 1.85× 10−8 6.36× 10−9

10.25 25.25 2.18× 10−8 1.67× 10−8 5.74× 10−9

11.00 26.00 1.99× 10−8 1.53× 10−8 5.26× 10−9

11.75 26.75 1.81× 10−8 1.38× 10−8 4.76× 10−9

12.50 25.50 1.66× 10−8 1.27× 10−8 4.38× 10−9

13.25 28.25 1.52× 10−8 1.16× 10−8 4.00× 10−9

14.00 29.00 1.41× 10−8 1.07× 10−8 3.69× 10−9



27

Table 4.3

DEPF/rp Table for The Linear Coil of z = x+ 20 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 20 5.49× 10−8 4.19× 10−8 1.44× 10−8

0.50 20.50 5.22× 10−8 2.29× 10−8 1.37× 10−8

1.25 21.25 4.79× 10−8 1.70× 10−8 1.26× 10−8

2.00 22.00 1.88× 10−8 1.43× 10−8 1.16× 10−8

2.75 22.75 1.61× 10−8 1.23× 10−8 1.06× 10−8

3.50 23.50 1.44× 10−8 1.10× 10−8 9.82× 10−9

4.25 24.25 1.29× 10−8 9.85× 10−9 8.96× 10−9

5.00 25.00 1.18× 10−8 9.00× 10−9 8.26× 10−9

5.75 25.75 1.08× 10−8 8.26× 10−9 7.52× 10−9

6.50 26.50 1.00× 10−8 7.69× 10−9 6.94× 10−9

7.25 27.25 9.33× 10−9 7.12× 10−9 6.33× 10−9

8.00 28.00 8.76× 10−9 6.69× 10−9 5.86× 10−9

8.75 28.75 8.18× 10−9 6.25× 10−9 5.37× 10−9

9.50 29.50 7.74× 10−9 5.91× 10−9 4.97× 10−9

10.25 30.25 7.28× 10−9 5.56× 10−9 4.56× 10−9

11.00 31.00 6.91× 10−9 5.28× 10−9 4.25× 10−9

11.75 31.75 6.53× 10−9 4.99× 10−9 3.91× 10−9

12.50 32.50 6.23× 10−9 4.76× 10−9 3.64× 10−9

13.25 33.25 5.91× 10−9 4.52× 10−9 3.37× 10−9

14.00 34.00 5.65× 10−9 4.32× 10−9 3.15× 10−9
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4.3.2 The Parabolic Coil

The equations for the parabolic coil are z = 0.1x2 + r1 cm (r1 = 10, 15, 20 cm).

In this model, the coil height is 28 cm, the interwinding distance is 0.5 cm. The radii

of each turn are calculated for each of the parabolic coil equation and shown in Tables

4.4-4.6. The DEPF can be calculated for each turn and using superposition the total

DEPF can be obtained. The results, for 5 Hz, 10 Hz, 15 Hz are summarized in Tables

4.4-4.6. For all frequencies, the peak value of the DEPF occurs at the center of the coil.

When r1=10 cm, for 5 Hz it is 2.17× 10−7 N/m, for 10 Hz it is 1.66× 10−7 N/m, for

15 Hz it is 5.70× 10−8 N/m. These values show that at 5 Hz the DEPF peaks. Tables

4.4-4.6 show that the blood �ow rate increases as the center of the coil is approached

and in the center the �ow peaks.

Since the main arteries follow paths parallel to the tibia and �bula [36], the

DEPF is roughly in the same direction as the arteries. In Figure 4.12, a vectorel plot

of the DEPF/rp are given along the z and the r axes in cylindrical coordinates. It can be

seen that the magnitute of the DEPF/rp diminishes along the z axis. This demonstrates

the gradient nature of the parabolic coil. At the center (z=0) the magnitute peaks as

desired. A plot of the magnetic �ux intensity versus z is presented in Figure 4.13. The

total MFI reaches a peak value of 6.13× 10−6 T at z=0 in the center of the coil.
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Figure 4.12 The direction of the DEPF/rp inside the parabolic coil

Figure 4.13 Magnetic �ux intensity when r1=10 cm
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Table 4.4

DEPF/rp Table for The Parabolic Coil of z = 0.1x2 + 10 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 10 2.17× 10−7 1.66× 10−7 5.70× 10−8

0.50 10.03 2.15× 10−7 1.63× 10−7 5.66× 10−8

1.25 10.16 2.06× 10−7 1.57× 10−7 5.42× 10−8

2.00 10.40 1.92× 10−7 1.46× 10−7 5.06× 10−8

2.75 10.76 1.72× 10−7 1.31× 10−7 4.53× 10−8

3.50 11.22 1.53× 10−7 1.16× 10−7 4.01× 10−8

4.25 11.81 1.29× 10−7 9.90× 10−8 3.41× 10−8

5.00 12.50 1.10× 10−7 8.46× 10−8 2.91× 10−8

5.75 13.31 9.12× 10−8 6.90× 10−8 2.39× 10−8

6.50 14.22 7.63× 10−8 5.82× 10−8 2.00× 10−8

7.25 15.26 6.19× 10−8 4.72× 10−8 1.62× 10−8

8.00 16.40 5.14× 10−8 3.92× 10−8 1.35× 10−8

8.75 17.66 4.56× 10−8 3.17× 10−8 1.09× 10−8

9.50 19.03 3.46× 10−8 2.64× 10−8 9.09× 10−9

10.25 20.50 2.82× 10−8 2.15× 10−8 7.40× 10−9

11.00 22.10 2.36× 10−8 1.80× 10−8 6.21× 10−9

11.75 23.81 1.94× 10−8 1.49× 10−8 5.11× 10−9

12.50 25.63 1.64× 10−8 1.31× 10−8 4.33× 10−9

13.25 27.56 1.37× 10−8 1.05× 10−8 3.62× 10−9

14.00 29.60 1.18× 10−8 9.03× 10−9 3.11× 10−9
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Table 4.5

DEPF/rp Table for The Parabolic Coil of z = 0.1x2 + 15 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 15 9.73× 10−8 7.43× 10−8 2.55× 10−8

0.50 15.03 9.69× 10−8 7.40× 10−8 2.50× 10−8

1.25 15.16 9.50× 10−8 7.25× 10−8 2.43× 10−8

2.00 15.40 9.19× 10−8 7.02× 10−8 2.40× 10−8

2.75 15.76 8.72× 10−8 6.65× 10−8 2.29× 10−8

3.50 16.22 8.21× 10−8 6.27× 10−8 2.16× 10−8

4.25 16.81 7.57× 10−8 5.78× 10−8 1.99× 10−8

5.00 17.50 6.97× 10−8 5.32× 10−8 1.83× 10−8

5.75 18.31 6.27× 10−8 4.78× 10−8 1.65× 10−8

6.50 19.22 5.69× 10−8 4.34× 10−8 1.49× 10−8

7.25 20.26 5.04× 10−8 3.84× 10−8 1.32× 10−8

8.00 21.40 4.50× 10−8 3.44× 10−8 1.18× 10−8

8.75 22.66 3.95× 10−8 3.02× 10−8 1.03× 10−8

9.50 24.03 3.50× 10−8 2.68× 10−8 9.20× 10−9

10.25 25.50 3.06× 10−8 2.34× 10−8 8.05× 10−9

11.00 27.10 2.71× 10−8 2.07× 10−8 7.05× 10−9

11.75 28.81 2.36× 10−8 1.81× 10−8 6.22× 10−9

12.50 30.63 2.10× 10−8 1.60× 10−8 5.52× 10−9

13.25 32.56 1.83× 10−8 1.40× 10−8 4.82× 10−9

14.00 34.60 1.63× 10−8 1.25× 10−8 4.29× 10−9
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Table 4.6

DEPF/rp Table for The Parabolic Coil of z = 0.1x2 + 20 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 20 5.49× 10−8 4.19× 10−8 1.44× 10−8

0.50 20.03 5.48× 10−8 4.18× 10−8 1.42× 10−8

1.25 20.16 5.42× 10−8 4.13× 10−8 1.41× 10−8

2.00 20.40 5.31× 10−8 4.06× 10−8 1.39× 10−8

2.75 20.76 5.15× 10−8 3.93× 10−8 1.35× 10−8

3.50 21.22 4.97× 10−8 3.79× 10−8 1.32× 10−8

4.25 21.81 4.73× 10−8 3.61× 10−9 1.26× 10−8

5.00 23.50 4.50× 10−8 3.44× 10−8 1.20× 10−8

5.75 24.31 4.21× 10−8 3.22× 10−8 1.13× 10−8

6.50 24.22 3.96× 10−8 3.02× 10−8 1.07× 10−8

7.25 25.26 3.66× 10−8 2.80× 10−8 9.94× 10−9

8.00 26.40 3.41× 10−8 2.60× 10−8 9.27× 10−9

8.75 27.66 3.12× 10−8 2.38× 10−8 8.52× 10−9

9.50 29.03 2.89× 10−8 2.20× 10−8 7.87× 10−9

10.25 30.50 2.63× 10−8 2.00× 10−8 7.16× 10−9

11.00 32.10 2.41× 10−8 1.84× 10−8 6.57× 10−9

11.75 33.81 2.19× 10−8 1.66× 10−8 5.93× 10−9

12.50 35.63 2.00× 10−8 1.54× 10−8 5.41× 10−9

13.25 37.56 1.80× 10−8 1.38× 10−8 4.86× 10−9

14.00 39.60 1.65× 10−8 1.26× 10−8 4.41× 10−9

.
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4.3.3 The Square Root Coil

The equations for the square root coil are z =
√
x+ r1 cm (r1 = 10, 15, 20 cm).

In this model, the coil height is 28 cm, the interwinding distance is 0.5 cm. The radii of

each turn are calculated for each of the square root coil equation and shown in Tables

4.7-4.9. The DEPF can be calculated for each turn and using superposition the total

DEPF can be obtained. The results, for 5 Hz, 10 Hz, 15 Hz are summarized in Tables

4.7-4.9. For all frequencies, the peak value of the DEPF occurs at the center of the coil.

When r1=20 cm, for 5 Hz it is 5.49× 10−8 N/m, for 10 Hz it is 4.19× 10−8 N/m, for

15 Hz it is 1.44× 10−8 N/m. These values show that at 5 Hz the DEPF peaks. Tables

4.7-4.9 show that the blood �ow rate increases as the center of the coil is approached

and in the center the �ow peaks.

Since the main arteries follow paths parallel to the tibia and �bula [36], the

DEPF is roughly in the same direction as the arteries. In Figure 4.14, a vectorel plot

of the DEPF/rp are given along the z and the r axes in cylindrical coordinates. It

can be seen that the magnitute of the DEPF/rp diminishes along the z axis. This

demonstrates the gradient nature of the square root coil. At the center (z=0) the

magnitute peaks as desired. A plot of the magnetic �ux intensity versus z is presented

in Figure 4.15. The total MFI reaches a peak value of 2.91 × 10−6 T at z=0 in the

center of the coil.
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Figure 4.14 The direction of the DEPF/rp inside the square root coil

Figure 4.15 Magnetic �ux intensity when r1=20 cm
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Table 4.7

DEPF/rp Table for The Square Root Coil. z =
√
x+ 10 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 10 2.17× 10−7 1.66× 10−7 5.70× 10−8

0.50 10.71 7.51× 10−8 5.73× 10−8 4.98× 10−8

1.25 11.12 4.75× 10−8 3.63× 10−8 4.02× 10−8

2.00 11.41 3.70× 10−8 2.82× 10−8 3.54× 10−8

2.75 11.66 2.99× 10−8 2.28× 10−8 2.97× 10−8

3.50 11.87 2.56× 10−8 1.96× 10−8 2.50× 10−8

4.25 12.06 2.21× 10−8 1.69× 10−8 2.11× 10−8

5.00 12.24 1.97× 10−8 1.50× 10−8 1.81× 10−8

5.75 12.40 1.75× 10−8 1.33× 10−8 1.60× 10−8

6.50 12.55 1.59× 10−8 1.21× 10−8 1.23× 10−8

7.25 12.70 1.44× 10−8 1.10× 10−8 1.13× 10−8

8.00 12.83 1.32× 10−8 1.00× 10−8 8.91× 10−9

8.75 12.96 1.22× 10−8 9.30× 10−9 7.64× 10−9

9.50 13.08 1.13× 10−8 8.66× 10−9 6.50× 10−9

10.25 13.20 1.05× 10−8 8.01× 10−9 5.40× 10−9

11.00 13.32 9.80× 10−9 7.51× 10−9 4.53× 10−9

11.75 13.43 9.18× 10−9 7.00× 10−9 3.79× 10−9

12.50 13.54 8.65× 10−9 6.60× 10−9 3.14× 10−9

13.25 13.64 8.10× 10−9 6.19× 10−9 2.58× 10−9

14.00 13.74 7.67× 10−9 5.86× 10−9 1.99× 10−9
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Table 4.8

DEPF/rp Table for The Square Root Coil of z =
√
x+ 15 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 15 9.73× 10−8 7.43× 10−8 2.55× 10−8

0.50 15.71 4.50× 10−8 3.44× 10−8 1.19× 10−8

1.25 16.12 3.14× 10−8 2.39× 10−8 8.25× 10−9

2.00 16.41 2.56× 10−8 1.96× 10−8 6.74× 10−9

2.75 16.66 2.14× 10−8 1.64× 10−8 5.56× 10−9

3.50 16.87 1.88× 10−8 1.44× 10−8 4.95× 10−9

4.25 17.06 1.65× 10−8 1.27× 10−8 4.36× 10−9

5.00 17.24 1.50× 10−8 1.14× 10−8 3.95× 10−9

5.75 17.40 1.36× 10−8 1.03× 10−8 3.57× 10−9

6.50 17.55 1.25× 10−8 9.55× 10−9 3.29× 10−9

7.25 17.70 1.15× 10−8 8.76× 10−9 3.01× 10−9

8.00 17.83 1.07× 10−8 8.16× 10−9 2.81× 10−9

8.75 17.96 9.98× 10−9 7.56× 10−9 2.60× 10−9

9.50 18.08 9.30× 10−9 7.10× 10−9 2.45× 10−9

10.25 18.20 8.69× 10−9 6.63× 10−9 2.28× 10−9

11.00 18.32 8.27× 10−9 6.26× 10−9 2.15× 10−9

11.75 18.43 7.70× 10−9 5.88× 10−9 2.03× 10−9

12.50 18.54 7.31× 10−9 5.58× 10−9 1.92× 10−9

13.25 18.64 6.89× 10−9 5.26× 10−9 1.81× 10−9

14.00 18.74 6.56× 10−9 5.01× 10−9 1.72× 10−9
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Table 4.9

DEPF/rp Table for The Square Root Coil of z =
√
x+ 20 (cm)

z-axis (cm) Radius (cm) DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

0 20 5.49× 10−8 4.19× 10−8 1.44× 10−8

0.50 20.71 3.00× 10−8 2.29× 10−8 7.90× 10−9

1.25 21.12 2.22× 10−8 1.70× 10−8 5.86× 10−9

2.00 21.41 1.88× 10−8 1.43× 10−8 4.93× 10−9

2.75 21.66 1.61× 10−8 1.23× 10−8 4.24× 10−9

3.50 21.87 1.44× 10−8 1.10× 10−8 3.79× 10−9

4.25 22.06 1.29× 10−8 9.85× 10−9 3.39× 10−9

5.00 22.24 1.18× 10−8 9.00× 10−9 3.11× 10−9

5.75 22.40 1.08× 10−8 8.26× 10−9 2.84× 10−9

6.50 22.55 1.00× 10−8 7.69× 10−9 2.64× 10−9

7.25 22.70 9.33× 10−9 7.12× 10−9 2.45× 10−9

8.00 22.83 8.76× 10−9 6.69× 10−9 2.30× 10−9

8.75 22.96 8.18× 10−9 6.25× 10−9 2.15× 10−9

9.50 23.08 7.74× 10−9 5.91× 10−9 2.03× 10−9

10.25 23.20 7.28× 10−9 5.56× 10−9 1.91× 10−9

11.00 23.32 6.91× 10−9 5.28× 10−9 1.82× 10−9

11.75 23.43 6.53× 10−9 4.99× 10−9 1.72× 10−9

12.50 23.54 6.23× 10−9 4.76× 10−9 1.64× 10−9

13.25 23.64 5.91× 10−9 4.52× 10−9 1.56× 10−9

14.00 23.74 5.65× 10−9 4.32× 10−9 1.49× 10−9
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4.3.4 The E�ect of The Dielectrophoretic Forces on Blood Flow

In this section the e�ect of the dielectrophoretic forces on blood �ow will be

discussed. It is assumed that the long bone fracture under consideration have vertical

orientations and the blood �ow is downward. Figure 4.16 shows that the gravitational

force and the drag force on red blood cells determine the steady state blood �ow. The

dielectrophoretic force, added to the force balance is functional in increasing the blood

�ow as shown in Figure 4.17.

The gravitational force on red blood cells are given by (after correcting for the

plasma buoyancy);

Figure 4.16 Force balance
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Fgrav =
4

3
πrp

3 (ρrbc − ρplasma) g (4.1)

where, rp is the radius of the red blood cell, ρrbc and ρplasma are the density of the red

blood cell and the blood plasma respectively and g is the acceleration constant [34].

The drag force on the red blood cells are given by:

Fdrag = 6πηrpν0 (4.2)

where, η is the viscosity of the blood, rp is the radius of the red blood cell and ν0 is

the velocity (without DEPF) [34]. In the steady state, the force balance equation is:

Fdrag = Fgrav (4.3)

This gives

ν0 =
2

9

(ρrbc − ρplasma)
η

gr2p (4.4)

For the red blood cell and the plasma:

η = 0.001 kg/s, ρrbc = 1100 kg/m3 ρplasma = 1000 kg/m3 g = 9.81 m/s2, rp =

3.84× 10−6 m [34].
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Figure 4.17 New force balance

When there is, in addition, a dielectrophoretic force the above equations will be

modi�ed as:

Fdrag = Fgrav + FDEP (4.5)

and the new force balance equation becomes:

νDEPF =
2

9

(ρrbc − ρplasma)
η

gr2p +
FDEP
6πηrp

(4.6)
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κDEPF =
νDEPF
ν0

κDEPF , the ratio of the velocity in the presence of DEPF to the velocity without

DEPF is a good measure of the performance of the DEPF and indicates the increase

of blood �ow. It will therefore be called the DEPF factor.

Figures 4.18-4.26, give a summary of the comparisons of the DEPF/rp vs z

values for the linear, the parabolic and the square root coils. As seen from these

�gures, the peak values of the DEPF/rp are the same for all the coil models. However,

the average values are di�erent. Tables 4.10-4.15 show average value of the DEPF/rp

and the DEPF factors. Tables 4.16 and 4.17 is a summary of the calculated peak values

of the DEPF/rp and the DEPF for the three coil models considered.
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Figure 4.18 Comparison of the linear, the parabolic and the square root coil models (r1=10 cm and
f=5 Hz)

Figure 4.19 Comparison of the linear, the parabolic and the square root coil models (r1=10 cm and
f=10 Hz)
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Figure 4.20 Comparison of the linear, the parabolic and the square root coil models (r1=10 cm and
f=15 Hz)

Table 4.10

Average Values of The DEPF/rp Inside The Linear, Parabolic and The Square Root Coils (r1=10
cm)

Coil Models DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

z = 0.1x2 + 10 (cm) 9.13× 10−8 7.02× 10−8 2.24× 10−8

z = x+ 10 (cm) 7.37× 10−8 5.63× 10−8 1.91× 10−8

z =
√
x+ 10 (cm) 3.06× 10−8 2.22× 10−8 1.80× 10−8

Table 4.11

Average Values of The DEPF Factor Inside The Linear, Parabolic and The Square Root Coils
(r1=10 cm)

Coil Models κDEPF (5Hz) κDEPF (10Hz) κDEPF (15Hz)

z = 0.1x2 + 10 (cm) 2.51 2.16 1.37

z = x+ 10 (cm) 2.20 1.92 1.31

z =
√
x+ 10 (cm) 1.50 1.36 1.29
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Figure 4.21 Comparison of the linear, the parabolic and the square root coil models (r1=15 cm and
f=5 Hz)

Figure 4.22 Comparison of the linear, the parabolic and the square root coil models (r1=15 cm and
f=10 Hz)
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Figure 4.23 Comparison of the linear, the parabolic and the square root coil models (r1=15 cm and
f=15 Hz)

Table 4.12

The Average Values of The DEPF/rp Inside The Linear, Parabolic and The Square Root Coils
(r1=15 cm)

Coil Models DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

z = 0.1x2 + 15 (cm) 5.50× 10−8 4.03× 10−8 1.41× 10−8

z = x+ 15 (cm) 9.73× 10−8 7.43× 10−8 2.55× 10−8

z =
√
x+ 15 (cm) 1.91× 10−8 1.39× 10−8 4.90× 10−9

Table 4.13

The Average Values of The DEPF Factor Inside The Linear, Parabolic and The Square Root Coils
(r1=15 cm)

Coil Models κDEPF (5Hz) κDEPF (10Hz) κDEPF (15Hz)

z = 0.1x2 + 15 (cm) 1.90 1.66 1.23

z = x+ 15 (cm) 1.70 1.53 1.18

z =
√
x+ 15 (cm) 1.31 1.23 1.08
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Figure 4.24 Comparison of the linear, the parabolic and the square root coil models (r1=20 cm and
f=5 Hz)

Figure 4.25 Comparison of the linear, the parabolic and the square root coil models (r1=20 cm and
f=10 Hz)
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Figure 4.26 Comparison of the linear, the parabolic and the square root coil models (r1=20 cm and
f=15 Hz)

Table 4.14

The Average Values of The DEPF/rp Inside The Linear, Parabolic and The Square Root Coils
(r1=20 cm)

Coil Models DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

z = 0.1x2 + 20 (cm) 3.75× 10−8 2.85× 10−8 9.93× 10−9

z = x+ 20 (cm) 1.16× 10−8 1.02× 10−8 7.35× 10−9

z =
√
x+ 20 (cm) 1.31× 10−8 1.04× 10−8 3.60× 10−9

Table 4.15

The Average Values of The DEPF Factor Inside The Linear, Parabolic and The Square Root Coils
(r1=20 cm)

Coil Models κDEPF (5Hz) κDEPF (10Hz) κDEPF (15Hz)

z = 0.1x2 + 20 (cm) 1.61 1.47 1.16

z = x+ 20 (cm) 1.26 1.17 1.12

z =
√
x+ 20 (cm) 1.21 1.17 1.06
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Table 4.16

The Peak Values of The DEPF/rp Inside The Linear, The Parabolic and The Square Root Coils

At z = 0 DEPF (5Hz)
rp

N
m

DEPF (10Hz)
rp

N
m

DEPF (15Hz)
rp

N
m

When r1 = 10 cm 2.17× 10−7 1.66× 10−7 5.70× 10−8

When r1 = 15 cm 9.73× 10−8 7.43× 10−8 2.55× 10−8

When r1 = 20 cm 5.49× 10−8 4.19× 10−8 1.44× 10−8

Table 4.17

The Peak Values of The DEPF Factor for The Linear, Parabolic and The Square Root Coils

At z = 0 κDEPF (5Hz) κDEPF (10Hz) κDEPF (15Hz)

When r1 = 10 cm 4.54 3.71 1.93

When r1 = 15 cm 2.59 2.21 1.42

When r1 = 20 cm 1.90 1.68 1.24
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5. DISCUSSION AND CONCLUSIONS

Bone healing creates a demand for blood �ow in tissues that are near the fracture

site. Development of the vascular tissue and the initiation and propagation of the

periosteal response are the prominent driving mechanism of bone regeneration. Vessel

formation depends on su�cient blood �ow. It has been well established that the

increase of blood �ow near the fracture site accelerates vessel formation and bone

regeneration; a fracture may heal faster if there is an increase in the blood �ow near

the fracture site. A variety of techniques, including electrical stimulation, have been

tried to facilitate fracture healing. For example, it has been shown that stimulation

by direct current or ac current have bene�cial e�ects. The exact mechanism by which

electrical stimulation improves bone repair is still not fully understood. It needs more

investigation. However, to date, direct current has been documented to work by an

electrochemical reaction at the cathode, and capacitive coupling and inductive coupling

have shown to work by alteration of growth factors and transmembrane signalling.

Further studies are needed to support and optimize electrical stimulation for bone

healing [3].

Since blood �ow is extremely important for fracture healing, methods that can

increase blood �ow should also facilitate fracture healing. In the present thesis we

studied how dielectrophoresis may help in this respect. The basic idea is to apply a

non-uniform electromagnetic �eld around a fracture site and create electrical dipoles

by the polarization of the red blood cells within the blood. Due to the interaction

of these dipoles and the electromagnetic �eld, the red blood cells will be subjected

to dielectrophoretic forces that will accelerate them and thus the blood �ow will be

increased. This will, in turn, increase vascularization, transmembrane signalling, the

supply of nutrients, necessary hormones and growth factors at the fracture site and

thus help bone fracture healing.
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For the generation of non-uniform �elds we considered three di�erent coil de-

signs (linear, parabolic and square root). Using Mathcad we numerically studied ex-

tensively, the dielectrophoretic forces for a long bone fracture where the main arteries

are vertically-oriented and the blood �ow is downward. The gravitational force and

the drag force on the red blood cells determine the steady state blood �ow. The di-

electrophoretic force, added to the force balance is functional in increasing the blood

�ow.

Since the dielectrophoretic force is frequency dependent, it is important to de-

termine the frequency range for which they are most e�ective. As seen in Figure 4.2,

the DEPF reaches its peak level at a frequency between 5-15 Hz. In Section 4.3.4, the

DEPF factor values for all the coil designs for 5 Hz, 10 Hz and 15 Hz are given. The

peak values of the DEPF are the same for the square root, the linear and the parabolic

coils. This is because the radii of the coils at the centers have same values. However,

the average DEPF are di�erent because the coils have di�erent equations and di�erent

dimensions. Tables 4.10-4.15 give the average values of the DEPF/rp and the average

values of the DEPF factor.

Figure 4.12 shows the DEPF vectors along the z and the r axes in cylindrical

coordinates for the parabolic coil. It can be seen that the magnitute of the DEPF dimin-

ishes along the z axis. This demonstrates the gradient nature of the dielectrophoretic

forces. Figure 4.13 shows a plot of the magnetic �ux intensity along the z-axis at the

center of the coils (r=0). When z=0, the magnitute peaks as desired.

The ratio of the velocity in the presence of dielectrophoresis to the velocity

without dielectrophoresis (called here as the Dielectrophoretic Force Factor, κDEPF )

is a good measure of the performance of the dielectrophoresis, since it indicates the

increase in blood �ow. It was found that the dielectorophoretic force reaches the peak

levels at a frequency range between 5-15 Hz. At 5 Hz, the average value of κDEPF

is 1.90, 2.51 and 1.61 for the linear, parabolic and the square root coils, respectively.

Thus, the parabolic coil seems to be the best choice for bone healing.
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5.1 Recommendations for Future Work

To use dielectrophoresis for bone healing, an adequate gradient electric �eld

must created along the fracture site. This can be generated using various coil designs.

In the present work, we have analyzed three coil designs (linear, parabolic and square

root). We have found the parabolic coil to be the best choice for bone healing. However,

di�erent coil designs might lead to better results; this needs to be further investigated.

Also, the e�ectiveness of the dielectrophoretic method must be tested experimentally

on laboratory animals and on voluntered humans.
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Appendix A. Derivation of Dielectrophoretic Force

In order to �nd the dielectrophoretic force, electric �eld inside the coil is cal-

culated. Figure A.1 shows that the circular wire loop is considered in cylindrical

coordinates. It is known the magnetic �eld inside the wire loop is:

~Br(R, rp, zp) =
µ0I

2π

zp

rp

√
(R + rp)

2 + z2p

[
−K (k) +

R2 + r2p + z2p

(R− rp)2 + z2p
E (k)

]
(A.1)

~Bz(R, rp, zp) =
µ0I

2π

1

rp

√
(R + rp)

2 + z2p

[
K (k) +

R2 − r2p − z2p
(R− rp)2 + z2p

E (k)

]
(A.2)

~Bφ(R, rp, zp) = 0 (A.3)

where K(k) and E(k) are elliptic integral of �rst and second kinds

K (k) =

∫ 1

0

1

(1− t2) (1− k2t2)
dt where k2 =

4Rrp

(R + rp)
2 + z2p

(A.4)

E(k) =

∫ 1

0

√
1− k2t2√
1− t2

dt where k2 =
4Rrp

(R + rp)
2 + z2p

(A.5)
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Figure A.1 Wire loop in the cylindrical coordinate system

∇× ~B =

(
1

r

∂Bz

∂φ
− ∂Bφ

∂zp

)
~r +

(
∂Br

∂zp
− ∂Bz

∂rp

)
~φ+

1

r

(
∂ (rBφ)

∂rp
− ∂Br

∂φ

)
~z (A.6)

after calculations:

∇× ~B =

(
∂Br

∂zp
− ∂Bz

∂rp

)
~φ (A.7)
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∂Bz

∂rp
=
µ0I

2π


− (R + rp)[

(R + rp)
2 + z2p

] 3
2



∫

1

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)dt
+
R2 − r2p − z2p
(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt


+


∫

4Rt2
[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

−
2rp
[
(R + rp)

2 + z2p
]
+ 2 (R− rp)

(
R2 − r2p − z2p

)[
(R + rp)

2 + z2p
]2 ∫ √

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2 × R2 − r2p − z2p

(R− rp)2 + z2p


× 1√

(R + rp)
2 + z2p



(A.8)

∂Br

∂zp
=
µ0I

2π

 (R + rp)
2

rp
[
(R + rp)

2 + z2p
] 3

2

−
∫

1

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)dt
+
R2 + r2p + z2p

(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt


+


∫

8Rrpzpt
2

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

+
2zp
[
(R− rp)2 −R2 − r2p

][
(R− rp)2 + z2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
4Rrpzpt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt

×
R2 + r2p + z2p

(R− rp)2 + z2p

}
zp

rp

√
(R + rp)

2 + z2p



(A.9)



55

∇× ~B =
µ0I

2π

 (R + rp)
2

rp
[
(R + rp)

2 + z2p
] 3

2

−
∫

1

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)dt
+
R2 + r2p + z2p

(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt


+


∫

8Rrpzpt
2

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

+
2zp
[
(R− rp)2 −R2 − r2p

][
(R− rp)2 + z2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
4Rrpzpt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt

×
R2 + r2p + z2p

(R− rp)2 + z2p

}
zp

rp

√
(R + rp)

2 + z2p


−µ0I

2π


− (R + rp)[

(R + rp)
2 + z2p

] 3
2



∫

1

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)dt
+
R2 − r2p − z2p
(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt


+


∫

4Rt2
[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

−
2rp
[
(R + rp)

2 + z2p
]
+ 2 (R− rp)

(
R2 − r2p − z2p

)[
(R + rp)

2 + z2p
]2 ∫ √

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2 × R2 − r2p − z2p

(R− rp)2 + z2p


× 1√

(R + rp)
2 + z2p

φ

(A.10)

From maxwell equations, it is known that:
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~E =
∇× ~B

µ0 (σ` + ωε0ε′r + ωε0ε′′r)
(A.11)

Thus, putting
(
∇× ~B

)
to the equation A.11 and taking the square of the �nal

result, it is found square of the electric �eld. In order to calculate the dielectrophoretic

force we must have the gradient of square of the electric �eld. After calculations, the

gradient of square of the electric �eld is:

∇E2 =
I2

2π

{
A×B × C2 + C ×D × A2 + E × F ×G2

+G×H × E2 +K × L×M2 +M ×N ×K2 +O × P ×Q2 −Q×K ×O2

+B × C × E ×G+ A×D × E ×G+ A× C × F ×G+ A× C × E ×H

+B × C ×K ×M + A×D ×K ×M + A× C × L×M + A× C ×K ×N

−B × C ×O ×Q− A×D ×O ×Q− A× C × P ×Q+ A× C ×O ×K

+F ×G×K ×M + E ×H ×K ×M + E ×G× L×M + E ×G×K ×N

−F ×G×O ×Q− E ×H ×O ×Q− E ×G× P ×Q− E ×G×O ×K

−L×M ×O ×Q−K ×N ×O ×Q−K ×M × P ×Q+K ×M ×O ×K

+A×R× C2 + C × S × A2 + E × T ×G2 + A×G× E2 +K × U ×M2

+M × V ×K2 +O ×W ×Q2 +Q×X ×O2 +R× C × E ×G

+A× S × E ×G+ A× C × T ×G+ A× C × E × A+R× C ×K ×M

+A× S ×K ×M + A× C × U ×M + A× C ×K × V −R× C ×O ×Q

−A× S ×O ×Q− A× C ×W ×Q− A× C ×O ×X + T ×G×K ×M

+E × A×K ×M + E ×G× U ×M + E ×G×K × V − T ×G×O ×Q

−E × A×O ×Q+ E ×G×W ×Q− E ×G×O ×X − U ×M ×O ×Q

−K × V ×O ×Q−K ×M ×W ×Q−K ×M ×O ×X} · · ·
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· · · ÷

σ2
` + 4π2f 2=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]2

−4π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]2

+4σ`πf=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]

+4σ`πf<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

+8π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

×=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]}

where,

A =
(R + rp)

2

rp
[
(R + rp)

2 + z2p
] 3

2

(A.12)

B =
2rp (R + rp)

[
(R + rp)

2 + z2p
] 3

2 − (R + rp)
2 [(R + rp)

2 + z2p
] 3

2

r2p
[
(R + rp)

2 + z2p
]3

−
3rp (R + rp)

3
√

(R + rp)
2 + z2p

r2p
[
(R + rp)

2 + z2p
]3

(A.13)

C =

∫
1

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)dt
+
R2 + r2p + z2p

(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

(A.14)
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D =

∫
4Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

+
2rp
[
(R− rp)2 + z2p

]
+ 2(R− rp)(R2 + r2p + z2p)[

(R− rp)2 + z2p
]2 ∫ √

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
∫

2Rt2
[
(R + rp)

2 + z2p − 2rp(R + rp)
]√

1− 4Rrpt2

(R+rp)
2+z2p

√
1− t2

[
(R + rp)

2 + z2p
]2dt R2 + r2p + z2p

(R− rp)2 + z2p

(A.15)

E =

∫
8Rrpzpt

2

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

+
2zp
[
(R− rp)2 −R2 − r2p

][
(R− rp)2 − z2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
4Rrpzpt

2[
(R + rp)

2 + z2p
]2√

1− 4Rrpt2

(R+rp)
2+z2p

√
1− t2

dt
R2 + r2p + z2p

(R− rp)2 + z2p

(A.16)
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F =

∫ 8Rzpt
2 (1− t2)

(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2

(1− t2)2
(
1− 4Rrpt2

(R+rp)
2+z2p

)4 [
(R + rp)

2 + z2p
]4 dt

+

∫
16Rrpzpt

2 (1− t2) (A1) (A2)

(1− t2)2
(
1− 4Rrpt2

(R+rp)
2+z2p

)4 [
(R + rp)

2 + z2p
]4dt

+

{
2zp [−2 (R− rp)− 2rp]

[
(R− rp)2 + z2p

]2[
(R− rp)2 + z2p

]4
+
8zp
[
(R− rp)2 + z2p

]
(R− rp)

[
(R− rp)2 −R2 − r2p

][
(R− rp)2 + z2p

]4
}

×
∫ √

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
∫

2Rt2
[
(R + rp)

2 + z2p − 2rp (R + rp)
]√

1− 4Rrpt2

(R+rp)
2+z2p

√
1− t2

[
(R + rp)

2 + z2p
]2dt2zp

[
(R− rp)2 −R2 − r2p

][
(R− rp)2 + z2p

]2
+

∫ 4Rzpt
2
[
(R + rp)

2 + z2p
]2√

1− t2
√

1− 4Rrpt2

(R+rp)
2+z2p[

(R + rp)
2 + z2p

]4
(1− t2)

(
1− 4Rrpt2

(R+rp)
2+z2p

) dt

−
∫ 16Rrpzpt

2 (R + rp)
[
(R + rp)

2 + z2p
]√

1− t2
√

1− 4Rrpt2

(R+rp)
2+z2p[

(R + rp)
2 + z2p

]4
(1− t2)

(
1− 4Rrpt2

(R+rp)
2+z2p

) dt

+

∫ 8R2rpzpt
4 (1− t2)

[(
R + r2p

)2
+ z2p − 2rp (R + rp)

] [
(R + rp)

2 + z2p
]2

[
(R + rp)

2 + z2p
]4
(1− t2)

(
1− 4Rrpt2

(R+rp)
2+z2p

) dt

×
R2 + r2p + z2p

(R− rp)2 + z2p

+
2rp
[
(R− rp)2 + z2p

]
+ 2 (R− rp)

(
R2 + r2p + z2p

)[
(R− rp)2 + z2p

]2
×
∫

4Rrpzpt
2[

(R− rp)2 + z2p
]2√

1− t2
√

1− 4Rrpt2

(R+rp)
2+z2p

dt

(A.17)

G =
zp

rp

√
(R + rp)

2 + z2p
(A.18)
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H = −
zp

√
(R + rp)

2 + z2p +
rp(R+rp)√
(R+rp)

2+z2p

r2p
[
(R + rp)

2 + z2p
] (A.19)

K =
R + rp[

(R + rp)
2 + z2p

] 3
2

(A.20)

L =

[
(R + rp)

2 + z2p
] 3

2 − 3 (R + rp)
√

(R + rp)
2 + z2p[

(R + rp)
2 + z2p

]3 (A.21)

M =

∫
1

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)dt
+
R2 − r2p − z2p
(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

(A.22)

N =

∫
4Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

−
2rp
[
(R− rp)2 + z2p

]
− 2 (R− rp)

(
R2 − r2p − z2p

)[
(R− rp)2 + z2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
2Rt2

[
(R + rp)

2 − z2p − 2rp (R + rp)
]

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt R2 − r2p − z2p

(R− rp)2 + z2p

(A.23)
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O =

∫
4Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

−
2rp
[
(R− rp)2 + z2p

]
+ 2 (R− rp)

(
R2 − r2p − z2p

)[
(R− rp)2 + z2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
] (
R2 − r2p − z2p

)
√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2 [

(R− rp)2 + z2p
]

(A.24)
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P =

∫ 4Rt2
[
2 (R + rp)− 2 (R + 2rp) (1− t2)

[
(R + rp)

2 + z2p
]2 (

1− 4Rrpt2

(R+rp)
2+z2p

)2]
(1− t2)2

(
1− 4Rrpt2

(R+rp)
2+z2p

)4 [
(R + rp)

2 + z2p
]4 dt

−
∫

4Rt2
[
(R + rp)

2 + z2p − 2rp (R + rp)
]
(1− t2) (A3− A4)

(1− t2)2
(
1− 4Rrpt2

(R+rp)
2+z2p

)4 [
(R + rp)

2 + z2p
]4 dt

−
2
{[

(R− rp)2 + z2p
]
− 4rp (R− rp)

} [
(R− rp)2 + z2p

]2[
(R− rp)2 + z2p

]4 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+
2
{
2(R2 − r2p − z2p) + 2rp (R− rp)

} [
(R− rp)2 + z2p

]2[
(R− rp)2 + z2p

]4 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
8rp (R− rp)

[
(R− rp)2 + z2p

]2[
(R− rp)2 + z2p

]4 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
8 (R− rp)2

[
(R− rp)2 + z2p

]
(R2 − r2p − z2p)[

(R− rp)2 + z2p
]4 ∫ √

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]√

1− 4Rrpt2

(R+rp)
2+z2p

√
1− t2

[
(R + rp)

2 + z2p
]2dt

×
2rp
[
(R− rp)2 + z2p

]
+ 2 (R− rp)

(
R2 − r2p − z2p

)[
(R− rp)2 + z2p

]2
−
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
](

1− 4Rrpt2

(R+rp)
2+z2p

) 3
2 [

(R + rp)
2 + z2p

]2
×
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
] (
R2 − r2p − z2p

)[
(R + rp)

2 + z2p
]2 [

(R− rp)2 + z2p
]√

1− t2

−
2Rt2 [2 (R + rp)− 2(R + 2rp)]

[
(R + rp)

2 + z2p
]2√

1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]4 × A5

+
8Rt2 (R + rp)

[
(R + rp)

2 + z2p
] [
(R + rp)

2 + z2p − 2rp(R + rp)
]√

1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]4 × A5

+
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
]√

1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2

×
2rp
[
(R− rp)2 + z2p

]
+ 2 (R− rp) (R2 − r2p − z2p)[

(R + rp)
2 + z2p

]2√
1− t2

(A.25)
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Q =
1√

(R + rp)
2 + z2p

(A.26)

R = −
3zp (R + rp)

2
√
(R + rp)

2 + z2p

rp
[
(R + rp)

2 + z2p
]3 (A.27)

S =

∫
8Rrpzpt

2

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

+
2zp
[
(R− rp)2 −R2 − r2p

][
(R + rp)

2 + z2p
]2 ∫ √

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
4Rrpzpt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt R2 + r2p + z2p

(R− rp)2 + z2p

(A.28)
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T =

∫
8Rrpt

2

(1− t2)
(
1− 4Rrpt2

(R+rp)
2+z2p

)2 [
(R + rp)

2 + z2p
]2dt

−
∫ 128R2r2pz

2
pt

4 + 32Rrpz
2
pt

2
[
(R + rp)

2 + z2p
] (

1− 4Rrpt2

(R+rp)
2+z2p

)
(1− t2)

(
1− 4Rrpt2

(R+rp)
2+z2p

)3 [
(R + rp)

2 + z2p
]4 dt

+

(
2− 8z2p

) [
(R− rp)2 −R2 − r2p

] [
(R− rp)2 + z2p

]2[
(R− rp)2 + z2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
4Rrpzpt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt2zp

[
(R− rp)2 −R2 − r2p

][
(R− rp)2 − z2p

]2
+

4Rrpt
2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2 × R2 + r2p + z2p

(R− rp)2 + z2p

−
16Rrpz

2
pt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]3 × R2 + r2p + z2p

(R− rp)2 + z2p

−
16R2r2pz

2
pt

4

√
1− t2

(
1− 4Rrpt2

(R+rp)
2+z2p

) 3
2 [

(R + rp)
2 + z2p

]4 × R2 + r2p + z2p

(R− rp)2 + z2p

+
2zp
[
(R− rp)2 +R2 − r2p

][
(R− rp)2 + z2p

]2 ∫
4Rrpzpt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt

(A.29)

U = −
3zp (R + rp)

√
(R + rp)

2 + z2p[
(R− rp)2 − z2p

]3 (A.30)

V = −
∫

8Rrpzpt
2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt

−
2zp
[
(R− rp)2 − r2p

][
(R− rp)2 + r2p

]2 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+

∫
4Rrpzpt

2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt R2 − r2p − z2p

(R− rp)2 + z2p

(A.31)
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W =

∫
8Rzpt

2

(1− t2)
[
1− 4Rrpt2

(R+rp)
2+z2p

]2 [
(R + rp)

2 + z2p
]2dt

−
∫

16Rzpt
2
[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
[
1− 4Rrpt2

(R+rp)
2+z2p

]2 [
(R + rp)

2 + z2p
]3dt

−
∫

256R2rpz
2
pt

4
[
(R + rp)

2 + z2p − 2rp (R + rp)
]

(1− t2)
[
1− 4Rrpt2

(R+rp)
2+z2p

]2 [
(R + rp)

2 + z2p
]3 dt

− 4zp (2rp −R)[
(R− rp)2 + z2p

]2 ∫
√

1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+
8rpzp[

(R− rp)2 + z2p
]2 ∫

√
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

+
8zp (R− rp)

(
R2 − r2p − z2p

)[
(R− rp)2 + z2p

]3 ∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

−
∫

4Rrpzpt
2

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2dt

×
2rp
[
(R− rp)2 + z2p

]
+ 2 (R− rp)

(
R2 − r2p − z2p

)[
(R− rp)2 + z2p

]2
−
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
][

1− 4Rrpt2

(R+rp)
2+z2p

] 3
2 [

(R + rp)
2 + z2p

]2
×
2Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
] (
R2 − r2p − z2p

)
√
1− t2

[
(R + rp)

2 + z2p
]2 [

(R− rp)2 + z2p
]

−
4Rzpt

2
(
R2 − r2p − z2p

)
√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2 [

(R− rp)2 + z2p
]

+
8Rzpt

2
[
(R + rp)

2 + z2p − 2rp (R + rp)
] (
R2 − r2p − z2p

)
√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]3 [

(R− rp)2 + z2p
]

+
4Rzpt

2
[
(R + rp)

2 + z2p − 2rp (R + rp)
]

√
1− t2

√
1− 4Rrpt2

(R+rp)
2+z2p

[
(R + rp)

2 + z2p
]2 [

(R− rp)2 + z2p
]

(A.32)



66

X = − zp[
(R + rp)

2 + z2p
] 3

2

(A.33)

A1 =

(
1− 4Rrpt

2

(R + rp)
2 + z2p

)
4Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
][

(R + rp)
2 + z2p

]2 (A.34)

A2 =
[
(R + rp)

2 + z2p
]2

+ 4
[
(R + rp)

2 + z2p
]
(R + rp)

(
1− 4Rrpt

2

(R + rp)
2 + z2p

)2

(A.35)

A3 = 4 (R + rp)
[
(R + rp)

2 + z2p
](

1− 4Rrpt
2

(R + rp)
2 + z2p

)2

(A.36)

A4 = 2

(
1− 4Rrpt

2

(R + rp)
2 + z2p

)
4Rt2

[
(R + rp)

2 + z2p − 2rp (R + rp)
][

(R + rp)
2 + z2p

]2 [
(R + rp)

2 + z2p
]2

(A.37)

A5 =
R2 − r2p − z2p[

(R− rp)2 + z2p
]√

1− t2
(A.38)
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Appendix B. Numerical Analysis

The dielectrophoretic force for coil models are given by;

F = 2πr3pε0εm< [K (ω)]
I2

2π

{
A×B × C2 + C ×D × A2 + E × F ×G2

+G×H × E2 +K × L×M2 +M ×N ×K2 +O × P ×Q2 −Q×K ×O2

+B × C × E ×G+ A×D × E ×G+ A× C × F ×G+ A× C × E ×H

+B × C ×K ×M + A×D ×K ×M + A× C × L×M + A× C ×K ×N

−B × C ×O ×Q− A×D ×O ×Q− A× C × P ×Q+ A× C ×O ×K

+F ×G×K ×M + E ×H ×K ×M + E ×G× L×M + E ×G×K ×N

−F ×G×O ×Q− E ×H ×O ×Q− E ×G× P ×Q− E ×G×O ×K

−L×M ×O ×Q−K ×N ×O ×Q−K ×M × P ×Q+K ×M ×O ×K

+A×R× C2 + C × S × A2 + E × T ×G2 + A×G× E2 +K × U ×M2

+M × V ×K2 +O ×W ×Q2 +Q×X ×O2 +R× C × E ×G

+A× S × E ×G+ A× C × T ×G+ A× C × E × A+R× C ×K ×M

+A× S ×K ×M + A× C × U ×M + A× C ×K × V −R× C ×O ×Q

−A× S ×O ×Q− A× C ×W ×Q− A× C ×O ×X + T ×G×K ×M

+E × A×K ×M + E ×G× U ×M + E ×G×K × V − T ×G×O ×Q

−E × A×O ×Q+ E ×G×W ×Q− E ×G×O ×X − U ×M ×O ×Q

−K × V ×O ×Q−K ×M ×W ×Q−K ×M ×O ×X} · · ·
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· · · ÷

σ2
` + 4π2f 2=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]2

−4π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]2

+4σ`πf=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]

+4σ`πf<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

+8π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

×=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]}

The multipliers of the DEPF are from appendix A and the DEPF equation is derived

in order to simulate the DEPF/rp versus frequency graphs to observe its dispersive

characteristics.

~Br(r, zp) =
µ0I

2π

zp

rp

√
(zp2 + x+ rp)

2 + z2p

−
∫

1

(1− t2)
[
1− 4(z2p+x)rp

(zp2+x+rp)
2+z2p

t2
]

+
(zp2 + x)

2
+ r2p + z2p

(zp2 + x− rp)2 + z2p

∫ √
1− 4(zp2+x)rpt2

(zp2+x+rp)
2+z2p√

1− t2
dt

(B.1)
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~Bz(rp, zp) =
µ0I

2π

1

rp

√
(zp2 + x+ rp)

2 + z2p

+

∫
1

(1− t2)
[
1− 4(z2p+x)rp

(zp2+x+rp)
2+z2p

t2
]

+
(zp2 + x)

2 − r2p − z2p
(zp2 + x− rp)2 + z2p

∫ √
1− 4(zp2+x)rpt2

(zp2+x+rp)
2+z2p√

1− t2
dt

(B.2)

Br and Bz in the equations B.1 and B.2 are derived for the magnetic �ux intensity

graphs.

~Br(r, zp) =
µ0I

2π

zp

rp

√
(R + rp)

2 + z2p

−
∫

1

(1− t2)
[
1− 4Rrp

(R+rp)
2+z2p

t2
]

+
R2 + r2p + z2p

(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

(B.3)

~Bz(rp, zp) =
µ0I

2π

1

rp

√
(R + rp)

2 + z2p

+

∫
1

(1− t2)
[
1− 4Rrp

(R+rp)
2+z2p

t2
]

+
R2 − r2p − z2p
(R− rp)2 + z2p

∫ √
1− 4Rrpt2

(R+rp)
2+z2p√

1− t2
dt

(B.4)

−→
Fr and

−→
Fz are used to show the direction of the DEPF/rp inside the linear, the parabolic

and the square root coils. It is simulated the vector plot of the DEPF/rp for the r and

the z axes.
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−→
Fr = 2πr3pε0εm< [K (ω)]

I2

2π
× · · ·

· · ·
{
+A×R× C2 + C × S × A2 + E × T ×G2 + A×G× E2 +K × U ×M2

+M × V ×K2 +O ×W ×Q2 +Q×X ×O2 +R× C × E ×G

+A× S × E ×G+ A× C × T ×G+ A× C × E × A+R× C ×K ×M

+A× S ×K ×M + A× C × U ×M + A× C ×K × V −R× C ×O ×Q

−A× S ×O ×Q− A× C ×W ×Q− A× C ×O ×X + T ×G×K ×M

+E × A×K ×M + E ×G× U ×M + E ×G×K × V − T ×G×O ×Q

−E × A×O ×Q+ E ×G×W ×Q− E ×G×O ×X − U ×M ×O ×Q

−K × V ×O ×Q−K ×M ×W ×Q−K ×M ×O ×X}−→r · · ·

· · · ÷

σ2
` + 4π2f 2=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]2

−4π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]2

+4σ`πf=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]

+4σ`πf<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

+8π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

×=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]}
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−→
Fz = 2πr3pε0εm< [K (ω)]

I2

2π

{
A×B × C2 + C ×D × A2 + E × F ×G2

+G×H × E2 +K × L×M2 +M ×N ×K2 +O × P ×Q2 −Q×K ×O2

+B × C × E ×G+ A×D × E ×G+ A× C × F ×G+ A× C × E ×H

+B × C ×K ×M + A×D ×K ×M + A× C × L×M + A× C ×K ×N

−B × C ×O ×Q− A×D ×O ×Q− A× C × P ×Q+ A× C ×O ×K

+F ×G×K ×M + E ×H ×K ×M + E ×G× L×M + E ×G×K ×N

−F ×G×O ×Q− E ×H ×O ×Q− E ×G× P ×Q− E ×G×O ×K

−L×M ×O ×Q−K ×N ×O ×Q−K ×M × P ×Q+K ×M ×O ×K}−→z · · ·

· · · ÷

σ2
` + 4π2f 2=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]2

−4π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]2

+4σ`πf=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]

+4σ`πf<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

+8π2f 2<

[
εr∞ +

4∑
i=1

εri
1 + (2πfτi)

αi

]

×=

[
−εr∞ −

4∑
i=1

εri
1 + (2πfτi)

αi

]}
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