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ABSTRACT

Time-Frequency and Time-Scale Analysis
of Non-Stationary Biomedical Signals

Fourier transform (FT), which assumes that the analyzed signal is stationary, is

not entirely appropriate to analyze biomedical signals since they are in non-stationary

nature. To overcome this drawback, FT can be applied over short-windows of time

within which the signal can be considered to be stationary. However, this short-time

Fourier transform is hampered with a serious time-frequency (TF) trade-o� dilemma.

Recently, a number of di�erent TF analysis techniques has been developed that provide

improved TF resolution. In this dissertation, we consider two strongly non-stationary

biomedical signals, lung sound and blood-�ow signals, and propose novel and e�ective

systems for the detection of crackles from the former and emboli from the latter. The

crackle detection system uses the dual tree complex wavelet transform (DTCWT) for

denoising and time-frequency/scale analysis with various windows/wavelets for feature

extraction. The emboli detection system processes forward and reverse �ow signals

using FT, discrete wavelet transform (DWT), and DTCWT. Dimensionality of the

extracted coe�cients is reduced using Principal Component Analysis, and the new fea-

tures are used for predicting whether a signal is emboli, speckle or artifact. Since the

dyadic TF tiling of classical DWT is not appropriate for processing embolic signals,

and since the discrete wavelet packet transform (DWPT) can adaptively decompose

the TF axis, we also propose a directional complex DWPT for mapping directional

information while processing quadrature signals (QSs). This method has signi�cantly

less computational complexity than the existing methods. To overcome the poor fre-

quency resolution, severe frequency aliasing and lack of shift-invariance drawbacks of

the DWT, we also propose a novel directional complex DWT. It consists of �lter-banks

with rational sampling factors and can be applied directly to QSs.

Keywords: Crackles, Emboli, Quadrature Signals, Ensemble Learning.



v

ÖZET

Dura§an-Olmayan Biyomedikal �³aretlerin
Zaman-S�kl�k ve Zaman-Ölçek Analizi

Fourier dönü³ümü (FD) çözümlenen i³aretin dura§an oldu§unu varsayar; bu

nedenle de genelde, dura§an-olmayan biyomedikal i³aretlerin çözümlenmesi için uy-

gun de§ildir. Bu eksikli§i a³mak için, FD'yi, i³aretin dura§an kabul edilebilece§i k�sa

zaman pencereleri içerisinde uygulayabiliriz. Fakat, bu K�sa Zamanl� FD ciddi bir

zaman-frekans de§i³-toku³ ikilemine yol açar. Son zamanlarda dura§an-olmayan i³aret-

lerin i³lenmesi için farkl� iyile³tirilmi³ zaman-s�kl�k (ZS) çözümleme teknikleri geli³tir-

ilmi³tir. Bu tezde, dura§an olmayan iki biyomedikal i³areti, akci§er-ses ve kan-ak�³

i³aretlerini ele ald�k ve birinciden ç�t�rt� ikinciden de emboli tespiti yapan yeni ve etkili

sistemler önerdik. Ç�t�rt� tespit sisteminde, gürültü-ar�nd�rmada çift a§aç karma³�k

dalgac�k dönü³ümü (ÇAKDD) ve öznitelik ç�kar�m�nda çe³itli pencereler/dalgac�klar

ile gerçekle³tirilmi³ zaman-s�kl�k/ölçek çözümlemesi kullan�lm�³t�r. Ultrason i³aret-

lerinden emboli tespit eden sistemde ise, ileri ve geri ak�³ i³aretleri FD, ayr�k dalgac�k

dönü³ümü (ADD) ve ÇAKDD kullan�larak i³lenmi³tir. Elde edilen katsay�lar�n boyutu

Temel Bile³en Analizi kullan�larak azalt�lm�³ ve bu yeni ileri ve geri yönlü öznitelik-

ler, i³aretin s�n�f�n�n emboli, benek veya artifakt olup olmad�§�n�n tahmininde kul-

lan�lm�³t�r. Geleneksel ADD'nin diyadik ZS dilimlenmesi embolik i³aretlerin i³lenmesi

için uygun de§ildir. Ayr�k dalgac�k paket dönü³ümü (ADPD) ile ZS düzlemi esnek

biçimde örneklenebilir. Bundan dolay�, quadrature i³aretleri (Q�) i³lerken ayn� za-

manda yön bilgisini elde etme yetisine sahip ve var olan yöntemlere göre daha az i³lem-

sel karma³�kl�§� olan yeni bir yönlü ADPD önerilmi³tir. Son olarak, diyadik-ADD'nin

yetersiz s�kl�k çözünürlü§ü, yo§un s�kl�k örtü³mesi ve zaman kaymalar�na a³�r� duyarl�l�k

gibi eksikliklerini gidermek için, oransal örnekleme faktörlerine sahip süzgeç-banklar�n�

kullanan ve do§rudan Q�'e uygulanabilen yeni bir yönlü ADD önerilmi³tir.

Anahtar Sözcükler: Ç�t�rt�, Emboli, Quadrature �³aretler, Topluluk Ö§renmesi
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1. INTRODUCTION

As a biological system, human body is made up of many complex systems, which

carry on many physiological processes. These physiological processes are accompanied

by or manifest themselves as biomedical signals that re�ect their nature and activities.

Due to the inherent time-varying characteristics of biological systems, most biomedical

signals are expected to have non-stationary character, independently of the time scale

over which they are analyzed. Frequently, they consist of, high-frequency components

closely spaced in time, accompanied by long-lasting, low-frequency components closely

spaced in frequency. Any appropriate analysis method for dealing with them should

therefore exhibit good frequency resolution along with �ne time resolution - the �rst

to localize the low-frequency components, and the second to resolve the high-frequency

components.

Classical Fourier transform (FT), which assumes that the analyzed signal is

stationary and does not give any time information, is not appropriate to analyze most

of the biomedical signals. Short time Fourier transform (STFT) is the mostly used

method in literature to describe how the spectral content of non-stationary signals

are changing in time. However, a drawback of this transform is that it has a �xed

time-frequency (TF) resolution. In contrast, the wavelet transform (WT) provides a

time-scale (TS) representation of signals, which has good frequency resolution at low

frequencies and good time resolution at high frequencies, resulting in an optimised

TF resolution. Therefore, the WT plays a key role in the process of non-stationary

biomedical signals.

1.1 Motivation Background and Objectives

Automatic computerized analysis of non-stationary biomedical signals has be-

come an active research area due to the improvements in digital acquisition systems,
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computer technology, and signal processing techniques in the last three decades. In

this respect, in Chapters 2 and 3, wavelet based biomedical signal detection techniques,

which can be used in automatic real-time diagnosis systems, are proposed. As biomed-

ical signals, acoustic lung signals and blood �ow signals are used. Certainly, detection

of some anomalies in these two types of signals and understanding the TF behavior of

them would critically impact the success of biomedical systems which use these signals.

In acoustic lung signals part, to detect pulmonary crackles; which are the in-

dicators of airways diseases such as pneumonia, bronchiectasis, asthma or chronic ob-

structive pulmonary disease, an automated system, that is using time-frequency/scale

based feature extraction and ensemble learning, is proposed.

In blood �ow signals part, to detect asymptomatic embolic waveforms; which

can be utilized in the diagnosis of stroke, an important illness that can cause paral-

ysis or death, an automated system, that is using dual tree complex wavelet trans-

form (DTCWT) as a feature extraction method and stacking as an ensemble learning

method, is proposed.

The dyadic discrete wavelet transform (DWT), which provides an octave-band

frequency decomposition, is a very e�ective tool for processing piecewise smooth sig-

nals. However, due to its poor frequency resolution and severe frequency aliasing

drawbacks, the dyadic DWT is less e�ective in processing signals having more oscilla-

tory behavior such as speech, biomedical signals like EEG, audio signals and etc. The

embolic signals (ESs) have also oscillatory behavior. These signals are superimposed

on normal directional blood �ow, which must be obtained from quadrature format

outputs of the Doppler ultrasound systems by using decoding techniques. To process

ESs more e�ciently, WTs that have better frequency resolution are needed. Discrete

wavelet packet transform (DWPT) avoids this problem by iterating on the high-pass

�lters as well which results a full tree. However, neither the DWT nor the DWPT has

shift-invariance property which is very important in processing ESs. Additionally, to

process ESs with the DWT or DWPT, the forward and reverse blood �ow signals must

be obtained �rst. Only then these transforms can be applied. However, this increases
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the computational complexity of whole process.

Therefore, in Chapters 4 and 5, with the aim of processing quadrature Doppler

signals, in which the directional blood �ow signals are encoded, a novel directional

complex discrete wavelet packet transform and a novel directional complex rational di-

lation wavelet transform are proposed. In contrast to existing wavelet based methods,

these proposed transforms can be directly applied to quadrature format signals and

have the capability of extracting direction information during analysis. Hereby, the

directional signal extraction stage is no more needed and the computational complex-

ity of whole process is dramatically reduced. Besides, these proposed transforms are

approximately shift-invariant, which is crucial in processing quadrature signals due to

the phase relationship of their in-phase and quadrature-phase components. As a last

advantage, these proposed transforms have adjustable TF resolution and this allows us

to obtain optimum representation of ESs in scale domain.

1.2 Organization of the Thesis and Publications

Chapter 1 is an introduction with the description of the central theme of this

research. A systematic organisation of thesis is also presented.

In Chapter 2, an automated detection algorithm for pulmonary crackles, which

are used as indicators for the diagnosis of di�erent pulmonary disorders in ausculta-

tion, is proposed. Crackles are very common adventitious transient sounds. From the

characteristics of crackles such as timing and number of occurrences, the type and the

severity of the pulmonary diseases may be assessed. In the proposed crackle detection

algorithm, various feature sets are extracted from pulmonary signals using TF and

TS analysis. In order to understand the e�ect of using di�erent window and wavelet

types in TF and TS analysis in detecting crackles, di�erent windows such as Gaussian,

Blackman, Hanning, Hamming, Bartlett, Triangular, Rectangular and wavelets such

as Morlet, Mexican Hat, Paul are tested. The extracted feature sets, both individually

and as an ensemble of networks, are fed into three di�erent machine learning algo-
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rithms: Support Vector Machines (SVMs), k -Nearest Neighbor (k -NN) and Multilayer

Perceptron (MLP). Moreover, in order to improve the success of the model, prior to the

TF and TS analysis, frequency bands containing no-crackle information are removed

using DTCWT, which is a shift-invariant transform with limited redundancy compared

to the conventional DWT. The comparative results of individual feature sets and en-

semble of sets, which are extracted using di�erent window and wavelet types, for both

the pre-processed and the raw data with di�erent machine learning algorithms, are

extensively evaluated and compared. Some parts of this chapter have been published

by the authors in [1, 2, 3, 4].

In Chapter 3, with the aim of building an accurate and robust automated emboli

detection system, Doppler ultrasound signals including both forward and reverse blood

�ow information have been processed using Fast Fourier Transform (FFT), DWT, and

DTCWT. After obtaining the coe�cients, dimensionality of the extracted features from

both the forward and the reverse blood �ows are reduced using Principal Component

Analysis, and then these features are fed to k -NN and SVMs classi�ers. Unlike the

artifacts, ESs are unidirectional. Therefore, we train the classi�ers using the forward

�ow signals for predicting whether a signal is emboli, artifact or speckle, whereas we

build up a model from the reverse signal for predicting whether a signal is an artifact

or not. Considering that combination of these di�erent representations belonging to

the blood �ow that carry di�erent characteristics can explicitly results in a better

identi�cation and classi�cation of emboli, artifact or speckle, we constitute an ensemble

model with stacking. For this purpose, the probability estimates of the three-class

forward signal SVMs are combined with those of the two-class reverse signal SVMs.

We show that the features extracted using the DTCWT gives the highest accuracy and

the highest emboli detection rates. It is also observed that combining forward SVMs

with reverse SVMs using stacking ensemble method increases the emboli and artifact

detection rates, and the general accuracy. Some of the methods presented in Chapter

3 have been published by the authors in [5], and have been submitted to [6].

Doppler ultrasound is a widely used non invasive diagnostic technique to eval-

uate cardiovascular disorders. The outputs of most Doppler ultrasound systems are in
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quadrature format. In order to obtain directional blood �ow information, the quadra-

ture outputs have to be pre-processed using methods such as asymmetrical and sym-

metrical phasing �lter techniques. These resultant directional signals can be employed

to detect asymptomatic ESs caused by small emboli, which are indicators of possible

future stroke in the cerebral circulation. ESs can be considered as narrow-band (or

band-limited) signals. Therefore, various frequency based methods such as Fourier

and wavelet transforms were frequently used for denoising and feature extraction in

processing ESs. Unfortunately, most of the times the dyadic time-frequency tiling

of DWT is not appropriate for the analysis of ESs due to their non-stationary TF

behavior. Alternatively, DWPT, which is a generalization of the ordinary DWT allow-

ing subband analysis without the constraint of dyadic decomposition, can be used to

perform an adaptive decomposition of the TF axis. Hence, in Chapter 4, directional

discrete wavelet packet transforms are introduced. They have the ability of map-

ping directional information while processing quadrature signals. Moreover they have

less computational complexity than the existing wavelet packet based methods. The

performances of the proposed methods are examined in detail using single frequency

quadrature signal, synthetic narrow-band quadrature signal, and real quadrature em-

bolic signals. Some parts of Chapter 4 have been published by the authors in [7, 8],

and have been submitted to [9, 10].

In Chapter 5, we introduce a directional rational dilation wavelet transform

which can be directly performed on quadrature signals. This transform's frequency

resolution can be changed by tuning the Q-factor of its wavelets according to the

behavior of the analyzed signal and an optimum representation of ESs can be achieved

in the scale domain. Additionally, it is also a near shift-invariant transform which is

very important in processing quadrature Doppler signals due to the phase relationship

between their in-phase and the quadrature-phase components. A part of this chapter

has been submitted to [11].

A summary of the main contributions and the main conclusions of this thesis

have been presented in Chapter 6. Possible future works related to the proposed

methods are also discussed in this chapter.
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2. PULMONARY CRACKLE DETECTION USING

TIME-FREQUENCY AND TIME-SCALE ANALYSIS

2.1 Introduction

Chest auscultation of pulmonary sounds by using a stethoscope is a commonly

used, economic and noninvasive method for the evaluation of the respiratory disorders.

However, due its inherent subjectivity and limited frequency response (the stethoscope

attenuates frequencies above 120 Hz), the stethoscope is considered to be an inadequate

diagnostic method for respiratory disorders. Over the last three decades, the analysis of

pulmonary sound signals with computers has become an established research area with

the improvements in digital acquisition systems and advanced digital signal processing

techniques [12, 13, 14].

Although the exact mechanism is still a mystery, the pulmonary sounds are

assumed to be produced in the lungs due to the air turbulence produced in their

airways. Pulmonary sounds can be divided into two classes, vesicular sounds and

adventitious sounds. Vesicular sounds are the normal respiratory sounds which can be

heard over the chest wall. Vesicular sounds are synchronous with the air �ow occurring

in the airways. Adventitious sounds, on the other hand, are additional sounds which

usually occur because of respiratory disorders [15].

Crackles are discontinuous, adventitious non-musical respiratory sounds, which

are attributed to sudden bursts of air within bronchioles. Their duration is less than 20

ms and their frequency range is between 150 to 2000 Hz. Crackles frequently occur in

pathological conditions and are superimposed on vesicular sounds. Their morphologic

character is explosive and transient, and they occur frequently in respiratory diseases.

The inherent properties of pulmonary crackles such as timing, epochs of occurrence,

and pitch can be used in the diagnosis for various types of pulmonary diseases such as

pneumonia, bronchiectasis, �brosing alveolitis, and asbestosis [16, 17, 18, 19].
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For an automatic computerized analysis of pulmonary diseases, proper detec-

tion of crackles is very important. In this chapter, a novel method is proposed for

pulmonary crackle detection. For the analysis, a pulmonary dataset consisting of 3000

512-point crackle signals and 3000 512-point non-crackle signals are used. In order to

facilitate detecting crackle signals, various feature sets, which contain frequency and

scale information are extracted by using TF and TS analysis. With the aim of obtain-

ing the best crackle detection performance, di�erent window and wavelet types such

as Gaussian, Blackman, Hanning, Hamming, Bartlett, Triangular and Rectangular for

TF analysis and Morlet, Mexican Hat and Paul for TS analysis are tested for these

6000 signals. Eventually, as an end-product of these trials 20 di�erent feature subsets

are obtained.

In order to improve the generalization and crackle detection capability of the

model, as a pre-processing stage, frequency components of processed signals containing

no-information (below 150 Hz and above 2400 Hz) are removed using DTCWT, which is

an improved version of DWT with better shift-invariance property. Then, the extracted

feature subsets are fed into SVMs, k -NN and MLP classi�ers as inputs both individually

and as an ensemble of networks. Comparative results of the individual and the ensemble

feature sets with pre-processed and raw data are presented and analyzed. An overall

block diagram of the proposed method can be seen in Figure 2.1.

The remainder of the chapter is organized as follows: Section 2.2 describes

the materials and the methods. Section 2.3 presents the experimental results on the

pulmonary dataset. Section 2.4 provides the discussions and the conclusions.

2.2 Materials and Methods

2.2.1 Data Acquisition System

In the data acquisition system fourteen air-coupled electret microphones (Sony-

ECM 44) are placed on the posterior chest, and air�ow is recorded using Fleisch-
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Figure 2.1 Overall block diagram of proposed method for one machine learning algorithm. (BOSUT
is the abbreviation of �behavior of signals upon time�, BOSUF and BOSUS are the abbreviations
for �behavior of signals upon frequency� and �behavior of signals upon scale� respectively. A more
detailed explanation of the abbreviations can be found in Section 2.2.2).

type �owmeter (Validyne CD379) to synchronize on the inspiration-expiration phases.

A low-noise preampli�er, 8th order Butterworth low-pass �lters with 4 kHz cut-o�

frequency and 6th order Bessel high-pass �lters with 80 Hz cut-o� frequency are used

for minimizing frictional noise and heart sound interference. The low-pass �lter also

acts as an anti-aliasing �lter. The ampli�ed signals are digitized by a 12-bit ADC Card

(NIDAQ500) at a sampling rate of 9.6 kHz and stored [20]. The details of the system

are described in [21]. Figure 2.2 illustrates an example consisting of two 512-point

crackle signals and two healthy signals.

2.2.2 Feature Extraction Using Time-Frequency and Time-Scale Analysis

The spectral characteristics of lung sounds show di�erent behaviors according

to the state and pathology of the lung. The pathological sounds appear in higher

frequency bands, i.e. as crackles which are explosive and transient in time. For feature

extraction, we use the frequency characteristics of crackles using TF and TS analysis

for both the non-pre-processed and pre-processed signals. For pre-processing, we apply

DTCWT with the aim of removing the frequency bands, which do not contain crackle
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Figure 2.2 Examples of 512-point signals containing crackles (upper two) and healthy signals (lower
two).

information.

The dataset consists of 6000 samples collected from 26 subjects (13 healthy, 13

pathological) are divided into two subsets; a crackle dataset containing 3000 crackle

samples and a healthy dataset containing 3000 healthy samples, each consisting of

512 points. In the preparation of crackle dataset, 3000 crackles which were identi�ed

previously by physicians are randomly placed into 512-point frames. The frame size is

chosen as 512 points because the duration of crackles is less than 20 ms and due to the

sampling frequency of the data acquisition system, which is 9600 Hz, 512 points of the

signal is equal to 53.34 ms which guarantees that one or more crackles are located in

a frame. In the preparation of healthy dataset, 3000 512-point frames were randomly

created from healthy subjects data.

To underscore frequency characteristics of crackles, TF and TS analysis are

applied to both crackle signals and healthy signals with di�erent windows in TF anal-

ysis and with di�erent wavelets in TS analysis. In order to obtain the optimum fre-

quency/scale resolution in the TF and TS analyses, 64-point FT with Gaussian, Black-

man, Hanning, Hamming, Bartlett, Triangular and Rectangular windows and 64 scales
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WT with Morlet, Paul and Mexican Hat wavelets are used, respectively.

The output of TF analysis gives information about the behavior of analyzed

signals with respect to both time and frequency for each type of window. In order

to obtain the behavior of signals with respect to time and frequency separately, for

each window type, the outputs of TF analysis are integrated over frequency and the

behavior of signals upon time (BOSUT) is obtained [22]. Similarly for each window

type, the outputs of TF analysis are integrated over time, and the behavior of signals

upon frequency (BOSUF) is obtained. This procedure is also carried out for TS analysis

[23]. For forming feature sets with related wavelet type, the outputs of TS analysis

are integrated over scale and time, and the behaviors of signal upon time and scale

(BOSUS), respectively, are obtained. At the end of these integration operations, for

each di�erent TF analysis window and TS analysis wavelet type, two new feature

subsets are obtained (for TF analysis BOSUT and BOSUF, for TS analysis BOSUT

and BOSUS) from an original crackle/healthy signal. As a result, from a single crackle

or healthy signal analysis, using 7 TF windows and 3 TS wavelets, 2 × 10 = 20 new

feature subsets are obtained.

2.2.2.1 Time-Frequency Analysis. The FT expands a time-domain signal into

sines and cosines, which are completely unlocalized in time. That is, the spectrum gives

us information on the frequencies contained in the signal as well as their amplitudes

and phases, but does not give any information at which times these frequencies occur.

Thus, FT processes signals assuming that they are stationary. In reality, however,

most natural signals, including pulmonary signals, are non-stationary. In order to

characterize a non-stationary signal properly, it is necessary to observe the changes in

the signal both in time and in frequency. The windowed Fourier transform (WFT)

has been used widely in this regard as it partially ful�lls these requirements. The

WFT introduces time dependency in the FT by pre-windowing the signal s(t) around

a particular time t, and calculating its FFT, which is repeated for each time instant t.
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The WFT of s(t) is given by

Fs(t, f) =

+∞∫
−∞

s(τ)g(τ − t)e−2jπτ dτ (2.1)

where g(t) is a short time analysis window function. As multiplication by a relatively

short window suppresses the signal outside a neighborhood around analysis time point

τ = t, the WFT is a local spectrum of the signal s(t) around a particular t.

An important FFT parameter which may in�uence the crackle detection perfor-

mance is window type of WFT. Multiplying the signal with a suitable window function

highlights the information near the middle of the window and suppresses the informa-

tion near the ends of the window. Many window functions have been proposed in the

literature [24, 25].

In this study for the TF analyses, 64-point WFT with Gaussian, Blackman,

Hanning, Hamming, Bartlett, Triangular and Rectangular windows are used. In WFT,

shifting the analysis window by less than the window length results in an overlapped

FFT of the analyzed signals [26]. Conventionally, the signals are processed sequentially

by sliding the window less than the window size at each processing stage, most of the

times sliding by 1 point. Consequently, overlapping FFT windows produces higher-

dimensional WFTs. Some of the information in an overlapped WFT is redundant, and

some of it is novel. In this study 15 points of window-sliding is used in the TF analyses

for crackle detection which gives us a reduced computational complexity rather than

conventional sliding factor 1 with approximately same detection performance. Then,

the three dimensional outputs of TF analyses are integrated over frequency and over

time in order to obtain the behavior of signals upon time and frequency separately.

2.2.2.2 Time-Scale Analysis. The WT decomposes a time dependent signal into

TS space and allows exact localization of any abrupt change, or an exact time and du-

ration to be attributed to a short signal, which may not be evidenced by conventional

signal processing techniques. A complete WT analysis creates a two-dimensional de-
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composition of a one-dimensional signal, typically with the horizontal axis as time and

vertical axis corresponding to the wavelet scale. The third dimension is the amplitude

of the WT coe�cients. It is performed by projecting a signal s(t) onto a family of

zero-mean functions deduced from an elementary function ψ(t) by translations and

dilations, and given by

Ws(a, b) =
1√
|a|

+∞∫
−∞

s(t)ψ
(t− b

a

)
dt (2.2)

where ψ(t) is the analyzing wavelet.

In the TS analysis, in which the wavelet can be de�ned as a complex function, the

variable a( 6= 0) controls the scale of the wavelet. The variable b is the time translation

and controls the position of the wavelet. The basic di�erence between the WT and

the WFT is that when the scale factor a is changed, the duration and the bandwidth

of the wavelet are both changed but its shape remains the same. The WT uses short

windows at high frequencies and long windows at low frequencies in contrast to the

FFT, which uses a single analysis window. This partially overcomes the TF resolution

limitation of the WFT. In this study 64 scales of wavelet transform with Morlet, Paul

and Mexican Hat wavelets are used in order to obtain new feature sets from original

crackle and healthy datasets. Three-dimensional output of TS analysis for each wavelet

type was integrated over scale and time, and the behaviors of signal upon time and

scale, separately, are obtained. In Figure 2.3, a crackle signal (a) and a healthy signal

(b) WFT analysis results with Gaussian window are depicted. The behavior of crackle

upon time (c) and upon frequency (e) is distinctively di�erent than the behavior of

healthy signal upon time (d) and upon frequency (f).

2.2.3 Denoising Using Dual Tree Complex Wavelet Transform

Vesicular sounds mainly have frequency components between 0-200 Hz, rarely

extending up to 600 Hz whereas the frequency components of crackles extend between

150-2000 Hz. In order to improve the performance of the proposed method, a pre-
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Figure 2.3 For the WFT analysis using Gaussian window. (a) Original crackle signal, (b) original
healthy signal, (c) BOSUT for crackle sample, (d) BOSUT for healthy sample, (e) BOSUF for crackle
sample, (f) BOSUF for healthy sample.

processing step which removes the frequency components with no-crackle information,

is applied to the dataset before extracting the feature sets. For this task, a �ve-level

DTCWT is applied on both crackle and healthy signals. The DTCWT is developed

to overcome the lack of shift-invariance property of ordinary DWT. Moreover it has

limited redundancy (2m : 1 for m-dimensional signals, which is a very good ratio as

compared with undecimated DWT). In the analysis of nonstationary crackles, which

are transient signals, DTCWT removes undesirable signal components more success-

fully than DWT because of its shift-invariance property [27, 28]. With DTCWT, for

each crackle and healthy sample in the dataset, the frequency bands below 150 Hz

and above 2400 Hz are replaced with null vectors and then the processed signals are

reconstructed. The details of DTCWT are given in [29, 30], whereas a block diagram of

a two-level DTCWT which demonstrates both analysis and synthesis parts is depicted

in Figure 2.4.

In order to visualize the e�ect of feature extraction and denoising, we reduce the

dimensions of the original signal feature set and extracted feature sets, which are ob-

tained at the end of WFT analysis with Gaussian window, using Principal Component

Analysis (PCA). The projections of the original signal feature sets into two-dimensional
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Figure 2.4 Block diagram for a 2-level DTCWT which demonstrates both analysis and synthesis
parts. X(n) is the input signal and Y (n) is the processed signal.

space before and after denoising are shown in Figure 2.5(a) and (b). Additionally, the

projections of the extracted feature sets, the output of time-frequency analysis upon

time (TFAUT) and time-frequency analysis upon frequency (TFAUF), into two dimen-

sional space before denoising and after denoising are shown in Figure 2.5(c)-(e) and (f).

It is seen that extracting new features by WFT and denoising by DTCWT improves

the discriminative capability of the crackle detection algorithm.

Figure 2.5 Projections of the original feature sets before (a), and after denoising (b). Projections
of the outputs of time-frequency analysis upon time before (c), and after denoising (d) with Gaussian
window. Projections of the outputs of time-frequency analysis upon frequency before (e), and after
denoising (f) with Gaussian window (`x' represents crackle, and `o' represents healthy signals).
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2.2.4 Individual Learning with Feature Sets

In crackle detection method, the original crackle-healthy signals and extracted

feature sets obtained by TF and TS analysis are fed individually into three classi�ers:

SVMs, MLP, and k -NN. The aim is to measure and compare the predictive power of

the feature sets with various classi�ers. The e�ect of denoising with DTCWT on the

classi�ers is also tested. The aim of each of the classi�ers is to build a predictive model

capable of distinguishing between the crackle and non-crackle signals. For this purpose,

we divide the dataset into three groups with equal number of samples: 2000 samples

for the training, 2000 for the validation, and 2000 for the test. The distribution of the

samples to the datasets has been done such that each set contains 1000 samples from

each class type.

SVMs is a very popular machine learning algorithm which aims to �nd the

optimally placed hyperplanes to discriminate the classes from each other [31]. The

closest samples to these hyperplanes are called support vectors, and the solution is

de�ned in terms of this subset of samples which limits the complexity of the problem.

Because the optimization problem has a unique solution, any iterative optimization

procedure is not needed for convergence [32]. We use LIBSVM [33] implementation of

SVMs. We train each feature subset using training set and test on validation set in

order to �nd the most suitable kernel type among linear, polynomial and Gaussian.

The parameter values of the SVMs, C (cost) and g (the spread parameter), are also

optimized for each of the feature sets. The complexity of the solution is controlled by

parameter C. Higher values of C may result in over�tting to the training set. After

tuning the parameters on validation set, the optimized models are �nally tested on the

yet unseen test sets, and the unbiased success of each feature set is proposed.

We also use MLP to classify the pulmonary sounds which is the mostly used

Arti�cial Neural Network (ANN) model for nonlinear modeling. MLP is a feed-forward

ANN model consisting of an input layer, an output layer, and at least one hidden layer.

MLP is included in this study for comparison purposes because it is capable of modeling

complex non-linear problems with many interactions among the input variables [34].
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The elements of the hidden and output layers are called neurons. Each neuron is a

processing element with a non-linear activation function. Our MLP model is composed

of an input, an output, and a hidden layer. The same training, validation, and test

sets of SVMs model are used for MLP model. The parameters of the MLP model of

each feature set such as number of neurons in the hidden layer (in the analysis hidden

layer neuron number is chosen as 10), number of iterations and learning rate are �ne

tuned on the validation set, and the most suitable model is applied to the test set to

propose the unbiased success of each feature set.

The third classi�er we use for comparison purposes is k -NN classi�er, which is

based on non-parametric density estimation. The k -NN method requires an integer k,

a set of labeled examples and a measure of �closeness�, and assigns the input to the

class having most examples among the k neighbors of the input [32]. Small values of

k result in more sensitive classi�ers to the undenoised observations. The k parameter

is optimized on the validation set (in the analysis k parameter is chosen as 3 or 5

depending on the feature subset) and the accuracy of the optimized model on the

unseen test set for each feature set is proposed. Type of closeness measure has big

impact on determining which set of learning examples is closest to the new example.

In our study, we use City-block distance as the k -NN closeness metric which is a special

case of the Minkowski metric,

d(xs, xt) =
p

√√√√ n∑
i=1

|xis − xit|
p (2.3)

where p = 1, d(xs, xt) is the distance between samples xs and xt, and n is the dimension

of the feature space.

2.2.5 Ensemble Learning

We use the ensemble of feature subsets in order to improve the overall accuracy

and generalization capability of the constructed model based on the proof of Hansen

and Salamon [35]: if each member of the ensemble, i.e. feature subset, can get the right



17

answer more than half the time, and if the responses of members are independent,

the likelihood of an error by a majority voting strategy will monotonically decrease

with the increasing number of members. Learning from multiple sets of features, called

ensemble learning, is based on employing separate classi�ers on each feature subset and

combining the predictions of the views using techniques such as voting and stacking

[32, 36]. The �nal prediction, y, of an ensemble network is given by

y =
M∑
i=1

widi (2.4)

satisfying

wi ≥ 0, ∀i and
M∑
i=1

wi = 1 (2.5)

where wi is the weight of the prediction of ith network member, di is the prediction

of ith network member, and M is the total number of network members. The weight

of the vote of each network member, i.e. wi , is equal in the simple voting scheme

(wi = 1/M). The class with the maximum number of votes is the �nal prediction of

the network. This voting strategy is called majority voting for two class classi�cation

problems. Besides, the information of how much con�dent the network member is for

its prediction can be used to specify the �nal prediction. We use the class posterior

probability estimates as the votes of the network members for SVMs case.

We train each of the 20 extracted feature sets and also the original signals

individually on the training set. Then the individual predictions of the obtained models

are used as a member of an ensemble network. Each ensemble network consists of three

members: the two feature subsets which were obtained by the TF and TS analysis

of each window/wavelet type resulting behavior of signals upon time/frequency and

time/scale, respectively, and the original signals as themselves. For the SVMs case, the

class posterior probability estimates of the network members are combined using simple

voting. For the MLP and k -NN case, the hard label predictions of each individual subset

are combined using simple voting, and the ensemble learning results are obtained for

each undenoised and denoised case. The SVMs ensemble learning architecture with
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Gaussian window type is depicted in Figure 2.6.

 

Figure 2.6 SVM ensemble learning architecture for Gaussian window type.

2.3 Experimental Results

The overall accuracy error rates for SVM, MLP and k -NN learning algorithms

of 20 extracted feature subsets and the original signal subset individually can be seen in

Figure 2.7. In this �gure, the leftmost column set results belong to the original signal

subset calculations. The following 14 column sets belong to the TF feature subset

calculations. Final 6 column sets belong to the TS feature subset calculations. The

feature set order is the same as the order in Table 1, column 1. From the �gure it can

be seen that MLP gives the worst performance for most of the feature subsets in both

before denoising (16 of 21) and after denoising (18 of 21) cases. SVM gives the best

performance for more than half of the feature subsets, both in undenoised (11 of 21)

and after denoised (11 of 21) cases.
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Figure 2.7 Overall accuracy error rate of individual feature sets with undenoised and denoised case
for three learning algorithms. (The leftmost column set results belong to the original signal subset
calculations. The following 14 column sets belong to the TF feature subset calculations. Final 6
column sets belong to the TS feature subset calculations.)

Figure 2.8 depicts the true positive error rates for the SVMs, MLP and k -NN

learning algorithms of 20 extracted feature subsets and the original signal subset (fea-

ture set order is the same as Figure 2.7) individually. SVMs gives the best performance

for more than half of the feature subsets, in both undenoised (13 of 21) and denoised

(17 of 21) cases. MLP gives the worst performance for most of the feature subsets in

both undenoised (15 of 21) and denoised (18 of 21) cases.

Figure 2.9 shows how denoising with DTCWT a�ects TP error rate of all feature

subsets for SVM, MLP and k -NN learning algorithms individually. It can be seen from

the �gure that for all three methods, the TP error rate is decreased by denoising

with the DTCWT. This indicates that denoising improves the success of the proposed

method in detecting the crackle signals.

All individual and ensemble learning results for SVMs, MLP, and k -NN classi-

�ers are listed in Tables 2.1, 2.2 and 2.3, respectively. It is seen that the highest overall

accuracy (97.50) is obtained with our proposed method when a Gaussian window is

used and DTCWT is applied as a pre-processing step, and the resulting feature sets are

used as an ensemble of networks. Also the highest TP rate with 97.30 is obtained with
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Figure 2.8 True positive error rate of individual feature sets with undenoised and denoised case
for three learning algorithms. (The leftmost column set results belong to the original signal subset
calculations. The following 14 column sets belong to the TF feature subset calculations. Final 6
column sets belong to the TS feature subset calculations.)

Figure 2.9 True positive error rate of three learning methods sets for undenoised and denoised case.
(The leftmost column set results belong to the original signal subset calculations. The following 14
column sets belong to the TF feature subset calculations. Final 6 column sets belong to the TS feature
subset calculations.)

the same procedure (with Gaussian window, DTCWT pre-processing, and ensemble of

networks).
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Table 2.1
Overall accuracies, true positive (TP), and true negative (TN) rates of the individual feature sets
and their ensembles for SVMs case. (TFAUT and TFAUF indicate the feature subsets obtained by

time-frequency analysis upon time and time-frequency analysis upon frequency respectively.
Similarly, TSAUT and TSAUS indicate the feature subsets obtained by time-scale analysis upon

time and by time-scale analysis upon scale respectively.)

Denoised Undenoised

Overall TP TN Ensemble Overall TP TN Ensemble

Original Signals 81.10 70.70 91.50 Overall TP TN 64.40 66.20 63.00 Overall TP TN

TFAUT-Gaussian 95.80 96.30 95.30
97.50 97.30 97.70

89.45 80.80 98.10
91.55 84.00 99.10

TFAUF-Gaussian 94.35 95.10 93.60 91.80 88.60 95.00

TFAUT-Blackman 95.85 96.00 95.70
97.40 97.10 97.70

89.05 80.10 98.00
91.50 83.90 99.10

TFAUF-Blackman 94.35 95.40 93.30 91.95 89.00 94.90

TFAUT-Hanning 95.45 96.10 94.80
97.30 96.90 97.70

88.80 79.10 98.30
91.05 83.00 99.10

TFAUF-Hanning 94.35 94.90 93.80 92.05 89.60 94.50

TFAUT-Hamming 95.80 96.10 95.50
97.20 96.80 97.60

88.55 79.40 97.70
90.70 82.20 99.20

TFAUF-Hamming 94.10 94.60 93.60 91.50 88.80 94.20

TFAUT-Bartlett 96.00 96.30 95.70
97.15 96.80 97.50

88.25 78.70 97.80
91.05 82.90 99.20

TFAUF-Bartlett 94.00 94.30 93.70 92.00 89.60 94.40

TFAUT-Triang 96.05 96.30 95.80
97.15 96.80 97.50

88.25 78.70 97.80
90.70 82.30 99.10

TFAUF-Triang 94.05 94.40 93.70 91.50 88.50 94.50

TFAUT-Rectang 95.80 96.10 95.50
97.05 96.10 98.00

88.55 79.70 97.70
90.55 82.40 98.70

TFAUF-Rectang 92.00 92.80 91.20 92.60 89.40 95.80

TSAUT-Morlet 94.30 93.20 95.40
96.70 95.50 97.90

88.55 81.00 96.10
90.90 86.10 95.70

TSAUS-Morlet 92.00 92.80 91.20 92.60 89.40 95.80

TSAUT-Paul 93.20 92.40 94.00
96.25 94.80 97.70

76.95 70.90 83.00
87.35 81.20 93.50

TSAUS-Paul 95.65 94.90 96.40 90.25 90.00 90.50

TSAUT-Mexican 92.50 91.80 93.20
96.25 94.90 97.60

74.50 68.00 81.00
87.85 80.80 94.20

TSAUS-Mexican 94.40 94.60 94.20 90.85 91.10 90.60

2.4 Discussion and Conclusions

The computerized analysis of pulmonary sound signals is a recent research area

due to the improvements in digital recording systems and advanced digital signal pro-

cessing techniques. In this chapter, a crackle detection method in which the DTCWT

is used as a pre-processing step for removing the frequency bands containing no-crackle

information, is proposed. In this method, various feature sets using TF and TS analysis

are extracted and fed to the SVMs, MLP, and k -NN classi�ers.

It is observed that the overall accuracy performances of the SVMs and the k -

NN classi�ers are very close to each other for both undenoised and denoised signals.

However, the SVMs appears to be superior over the k -NN in detecting the crackle

signals on both undenoised and denoised data observations. It must be noted that
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Table 2.2
Overall accuracies, true positive (TP), and true negative (TN) rates of the individual feature sets
and their ensembles for MLP case. (TFAUT and TFAUF indicate the feature subsets obtained by

time-frequency analysis upon time and time-frequency analysis upon frequency respectively.
Similarly, TSAUT and TSAUS indicate the feature subsets obtained by time-scale analysis upon

time and by time-scale analysis upon scale respectively.)

Denoised Undenoised

Overall TP TN Ensemble Overall TP TN Ensemble

Original Signals 71.55 47.90 95.20 Overall TP TN 71.20 45.40 97.00 Overall TP TN

TFAUT-Gaussian 87.70 81.60 93.80
91.65 84.80 98.50

74.95 61.90 88.00
81.10 62.80 99.40

TFAUF-Gaussian 92.80 90.10 95.50 84.95 75.30 94.60

TFAUT-Blackman 87.60 81.40 93.80
91.70 84.90 98.50

74.65 61.50 87.80
82.10 64.90 99.30

TFAUF-Blackman 92.90 91.40 94.40 84.45 79.10 89.80

TFAUT-Hanning 85.60 80.20 91.00
91.50 84.90 98.10

72.95 66.20 79.70
83.95 68.80 99.10

TFAUF-Hanning 91.85 91.60 92.10 85.30 82.60 88.00

TFAUT-Hamming 84.70 77.20 72.20
91.20 84.30 98.10

73.25 59.60 86.90
80.90 62.30 99.50

TFAUF-Hamming 91.25 91.50 91.00 84.90 75.90 93.90

TFAUT-Bartlett 84.05 81.50 86.60
91.80 86.60 97.00

73.35 56.00 90.70
80.00 60.20 99.80

TFAUF-Bartlett 90.40 92.70 88.10 84.40 72.70 96.10

TFAUT-Triang 84.05 81.10 87.00
91.80 86.20 97.40

73.70 54.00 93.40
75.00 50.00 100

TFAUF-Triang 91.50 91.90 91.10 73.85 51.90 99.80

TFAUT-Rectang 81.45 70.10 92.80
87.45 76.20 98.70

75.50 64.50 86.50
81.20 63.00 99.40

TFAUF-Rectang 89.25 85.90 92.60 85.25 75.30 95.20

TSAUT-Morlet 89.75 85.50 94.00
93.70 89.60 97.80

83.80 70.80 96.80
85.35 71.20 99.50

TSAUS-Morlet 92.05 92.00 92.10 87.40 80.90 93.90

TSAUT-Paul 93.60 92.30 94.90
95.40 93.00 97.80

74.50 58.30 90.70
85.05 71.40 98.70

TSAUS-Paul 93.95 93.00 94.90 85.65 89.40 81.90

TSAUT-Mexican 92.90 93.00 92.80
95.20 93.20 97.20

67.85 84.50 51.20
86.70 77.70 95.70

TSAUS-Mexican 93.60 93.60 93.60 85.50 83.30 87.70

SVMs is successful at separating the class partitions when there are enough number of

data observations as is the case with our dataset to determine the optimal value of cost

parameter, C, which controls the complexity of the SVMs model. One of the advantages

of SVMs is that the solution is de�ned in terms of support vectors consisting of a small

subset of the data observations, which limits the complexity of the problem. On the

other hand, k -NN does not have an explicit model training, so the computational load

of the testing step is very high in contrast to SVMs since we need to compute the

distance of the test instance to all training instances. Besides, k -NN is very sensitive

to outliers and undenoised features because the algorithm does not reduce the e�ect of

irrelevant features unless a feature selection as a pre-processing step is applied.

According to our results, it is concluded that ensemble of networks increases the

overall and TP accuracy performances of SVMs classi�er for all 10 ensemble results. In
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Table 2.3
Overall accuracies, true positive (TP), and true negative (TN) rates of the individual feature sets
and their ensembles for k -NN case. (TFAUT and TFAUF indicate the feature subsets obtained by

time-frequency analysis upon time and time-frequency analysis upon frequency respectively.
Similarly, TSAUT and TSAUS indicate the feature subsets obtained by time-scale analysis upon

time and by time-scale analysis upon scale respectively.)

Denoised Undenoised

Overall TP TN Ensemble Overall TP TN Ensemble

Original Signals 78.50 58.00 99.00 Overall TP TN 67.80 36.30 99.30 Overall TP TN

TFAUT-Gaussian 93.80 91.50 96.10
95.70 93.10 98.30

86.80 76.10 97.50
87.85 76.10 99.60

TFAUF-Gaussian 95.50 95.00 96.00 93.40 90.70 96.10

TFAUT-Blackman 95.45 94.10 96.80
96.10 94.00 98.20

85.05 72.10 98.00
86.15 72.40 99.90

TFAUF-Blackman 95.40 94.40 96.40 94.65 91.50 97.80

TFAUT-Hanning 94.80 92.40 97.20
95.20 92.40 98.00

84.45 70.90 98.00
85.65 71.80 99.50

TFAUF-Hanning 95.15 93.90 96.40 95.40 92.80 98

TFAUT-Hamming 94.30 91.40 97.20
95.05 91.60 98.50

84.55 71.70 97.70
85.80 72.00 99.60

TFAUF-Hamming 94.90 93.80 96.00 94.75 92.60 96.90

TFAUT-Bartlett 94.55 91.90 97.20
95.00 91.70 98.30

84.65 71.50 97.80
85.65 71.70 99.60

TFAUF-Bartlett 90.40 92.70 88.10 84.40 72.70 96.10

TFAUT-Triang 94.65 92.00 97.30
95.00 91.60 98.40

84.65 71.30 98.00
85.55 71.50 99.60

TFAUF-Triang 94.80 93.60 96.00 95.10 92.30 97.90

TFAUT-Rectang 94.30 91.40 97.20
94.95 91.60 98.30

84.55 71.40 97.70
85.80 72.00 99.60

TFAUF-Rectang 94.20 94.30 94.10 94.80 92.00 97.60

TSAUT-Morlet 92.75 87.40 98.10
93.50 88.50 98.50

78.65 61.60 95.70
79.40 60.60 98.20

TSAUS-Morlet 91.40 90.90 91.90 79.45 74.90 84.00

TSAUT-Paul 95.30 94.50 96.10
96.15 94.50 97.80

77.05 59.50 94.60
79.55 60.70 98.40

TSAUS-Paul 94.95 94.20 95.70 85.35 80.00 90.70

TSAUT-Mexican 91.30 96.00 86.60
96.00 95.70 96.30

76.95 67.90 86.00
82.00 67.10 96.90

TSAUS-Mexican 94.90 94.60 95.20 85.35 79.80 90.90

contrast, for k -NN and MLP classi�ers ensemble of networks is not as e�cient as SVMs

case, which originates from the fact that the individual learning accuracy of original

signals with SVMs (overall accuracy rate = 81.10, TP rate = 70.70 in denoised case)

is higher than MLP (overall accuracy rate = 71.55, TP rate = 47.90 in denoised case)

and k -NN (overall accuracy rate = 78.50, TP rate = 58.00 in denoised case) cases.

The MLP classi�er provided the worst performance for most of the feature sets.

There are two main reasons for this. First, neural networks are prone to over�tting

unless some build-in mechanisms like weight decay are applied. We observed that in

contrast to test set accuracies, best performance on training set is obtained with MLP.

Second, neural networks require a very careful pre-processing step. The signal-to-noise

ratio must be increased by eliminating the undenoised or irrelevant features in the

dataset by applying feature selection methods.
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As a conclusion we can say that using DTCWT as a preprocessing step, extract-

ing features instead of using the original signals and combining the feature sets as an

ensemble of networks improve the crackle detection capability of the proposed model.

It should also be noted that combining the SVMs models with di�erent feature sets as

an ensemble improves the overall accuracy and TP rate of the proposed method more

than k -NN and MLP classi�ers. In the future, it will be a challenge to implement the

proposed method in real time as an online crackle detection system.
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3. AN EMBOLI DETECTION SYSTEM BASED ON THE

DUAL TREE COMPLEX WAVELET TRANSFORM AND

ENSEMBLE LEARNING

3.1 Introduction

The transcranial Doppler ultrasound, which enables monitoring the middle cere-

bral artery, is a commonly used method to detect asymptomatic embolic signals (ESs)

in the cerebral circulation [37]. In certain conditions, such as carotid artery steno-

sis, cardiac valvular disease and atrial �brillation, asymptomatic ESs are used for the

identi�cation of active embolic sources in stroke-prone individuals and the selection of

high-risk patients for appropriate treatment [38]. Therefore, for these patients, accurate

detection of asymptomatic ESs has a signi�cant clinical importance.

Traditionally, for detecting ESs, visual detection by using individual spectral

recordings and acoustic detection by hearing the Doppler shift sound by human experts

are the gold standards. These types of detection are time consuming (recordings of

the patients may last for one hour or more) and subject to observer's experience. As

a consequence of these drawbacks, an automated system is required for a reliable and

clinically useful emboli detection technique.

A Doppler ultrasound signal detected by the transcranial Doppler ultrasound

system contains two more signal types other than the ESs. These signals are the

Doppler speckle (DS) (signals caused by red blood cell aggregates) and the artifacts

(signals caused by tissue movement, probe tapping, speaking, and any other environ-

mental e�ects). ESs are the results of the re�ection of transmitted Doppler ultrasound

signals from emboli, which are bigger than red blood cells. Therefore, ESs have some

distinctive characteristics when compared to DS and artifacts. ESs appear as increas-

ing and then decreasing in intensity for a short duration, usually less than 300 ms

and their bandwidth is usually much narrower than that of DS. Therefore, ESs can be
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considered as narrow-band signals relative to DS [39].

The outputs of a Doppler ultrasound system employing quadrature detection

are in-phase and quadrature-phase components. The information concerning blood

�ow direction is encoded in the phase relationship between these two components and

forward and reverse blood �ow signals are obtained by using various methods [40, 41].

Unlike the artifacts, ESs and DS are unidirectional.

Generally, the aim of automated emboli detection systems is to distinguish ESs

from artifacts and DS using Doppler ultrasound. For this purpose, an automated sys-

tem is aimed to be built up by extracting features from these signals using various meth-

ods followed with classi�cation. After the feature extraction step, any dimensionality

reduction method such as principal component analysis (PCA) or linear discrimination

analysis (LDA) can be applied to deal with the curse of dimensionality problem [42].

A preferred method is to obtain the spectra of audio recordings via complex discrete

Fourier transform (FT) and use PCA to make it easy for a classi�er such as support

vector machines (SVMs) to identify whether the signal contains ES or not [43].

Considering the narrow-band assumption, frequency analysis based methods are

frequently used as feature extraction step in ES detection systems [44]. In [45] a spec-

trogram analysis based detection method is proposed. Along with these techniques,

fast Fourier transform (FFT) is also commonly used in feature extraction. However,

continuous wavelet transform (CWT) based methods perform better than FFT in de-

scribing ESs [46]. In [47], an automated system using DWT to derive several parameters

for detecting ESs was proposed. In [47], Doppler ultrasound signals were decomposed

into an optimum number of frequency bands and then these bands were reconstructed.

From these reconstructed bands several parameters were obtained and used in detection

algorithm.

Dual tree complex wavelet transform (DTCWT), which is an improved ver-

sion of ordinary DWT with limited redundancy, can also be used in the analysis of

ESs. The DTCWT was developed to overcome the lack of shift-invariance property
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of ordinary DWT [29, 30]. This property of DTCWT can be very important when

the wavelet coe�cients are used as features in machine learning algorithms to detect

emboli, because the emboli information is encoded in the phase relationship of the in-

phase and quadrature-phase components and any phase-distortion during the analysis

steps can reduce the discriminative power of wavelet features. In literature, the success

of DTCWT in the analysis of nonstationary signals was proved in [1].

In our study, a Doppler ultrasound dataset consisting of 100 samples from each

embolic, DS and artifact 1024-point signal pairs - forward and reverse direction - is used.

Exemplary time-domain representations of ESs, artifact and DS in both forward and

reverse directions can be seen in Figure 3.1. FFT, DWT and DTCWT are applied to

these 300 signal pairs in order to extract features. Thereafter, the dimensionality (1024

in this case) of resulted coe�cients is reduced with a dimensionality reduction method

for removing signal components that do not carry useful information. Dimensionality

reduction is a critical pre-processing step in machine learning problems especially when

the dimensionality of the dataset is high when compared with the number of samples

such as the Doppler ultrasound dataset dealt with in this paper [48]. The dimensionality

reduction techniques can be categorized into two groups: (1) unsupervised techniques

that do not utilize the class labels (PCA), (2) supervised techniques (linear discriminant

analysis - LDA) that incorporate the class labels into their frameworks [49]. Even

though mainly the PCA is used in this work, the LDA is also used to visualize the

samples according to their classes.

Ensuing the feature extraction and dimensionality reduction phases, the features

acquired from forward �ow direction of the blood are fed into k -NN and SVMs. Addi-

tionally, in order to increase the classi�cation accuracy, the information extracted from

the features acquired from reverse �ow direction of the blood are also used. However,

these features are not combined in a conventional way. First, the features from forward

and reverse directional signals are fed to classi�ers separately since forward signals are

suitable for three-class classi�cation whereas the reverse signals are for two-class clas-

si�cation. Then, the outputs of these two classi�ers are combined using the stacking

ensemble combination technique. The obtained individual and combined results are



28

Figure 3.1 Time domain representation of an ES, an artifact and a DS.

presented and compared for each feature extraction method in detail.

The remaining of the chapter is organized as follows: Section 3.2 gives the de-

scription of the Doppler ultrasound dataset, presents the theory of signal processing

methods used, and declares brief information about feature extraction and dimension-

ality reduction methods. Additionally, in section 3.2 proposed individual and combined

emboli detection systems are explained. Section 3.3 provides the experimental results

on the Doppler ultrasound dataset. Lastly, section 3.4 is the discussions and conclu-

sions.
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3.2 Materials and Methods

3.2.1 Doppler Ultrasound Dataset Description

Doppler ultrasound signals were recorded using a transcranial Doppler system

(EME Pioneer TC4040 which is manufactured by Nicolet Biomedical, Madison, USA)

with the sampling frequency of 7150 Hz and the data length of 1024 points. Patients

with symptomatic carotid stenosis were the subjects and the recordings were taken

from ipsilateral middle cerebral artery. 100 embolic, 100 Doppler speckles and 100

artifact signal pairs were created to constitute a Doppler ultrasound dataset. Tapping

the probe, speech or coughing created the artifacts arti�cially during patient recordings

and natural artifacts occurred during patient movement, speech, or coughing during

routine patient recordings [47].

3.2.2 Signal Processing Methods

The normal Doppler ultrasound blood �ow signals are formed by the signals

scattered from red blood aggregate and usually assumed as a random distribution [50].

However, the Doppler ultrasound signal produced by an embolus has more certain

characteristics because of two following reasons. Firstly, since an embolus can be

assumed as a single scatterer, the velocity of an embolus is relatively stationary and

this results a more located signal in the frequency spectrum. Secondly, in Doppler

ultrasound the scattered power from a point scatterer is related to its sectional area

[51]. The embolus has a much bigger volume than an ordinary red blood cell and

this usually causes the ESs to be more powerful than the signal of the normal blood

�ow. So, when the frequency characteristics of the ESs are considered, they can be

accepted as more located signals in frequency spectrum with high power compared to

Doppler speckle and artifacts. Therefore, to make use of these characteristics of the

blood �owing normally and with emboli for ES detection, frequency based features are

extracted by using FFT, DWT, and DTCWT.
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3.2.2.1 Fourier Transform. In the separation process of the ESs from the speck-

les and the artifacts, to reveal and enhance the narrowband frequency characteristics

of ESs, Doppler ultrasound signals can be analyzed (decomposed) with classical FT,

which is extensively used in many signal processing applications. It expands a time-

domain signal onto orthogonal basis functions (sine and cosine waves) to reveal the

frequency contents of the signal. But the classical FT cannot localize the frequency

components in time and it assumes that the analyzed signal is stationary. However,

due to the inherent time-varying characteristics of cardiovascular system, Doppler ul-

trasound signals are expected to have non-stationary character, independent of the

time scale over which they are analyzed. In this study, the FFT, which is a fast al-

gorithm to implement classical FT in real time, is used for extracting FT coe�cients

that used in detection algorithm.

3.2.2.2 Discrete Wavelet Transform. Doppler ultrasound signals obtained from

blood �ow have highly complex time-frequency characteristics (non-stationary charac-

teristics). Therefore, any appropriate analysis method which deals with them should

have adjustable time-frequency resolution. Wavelet transform [52, 53] (WT) is known

as a good tool for the analysis of non-stationary signals having transient behavior such

as embolic signals. The WT can be thought as an extended version of the classic FT.

Unlike FT, WT works on a multi-scale basis.

In the WT, a signal can be represented in terms of simple building blocks, named

as wavelets. These building blocks are actually a family of functions which are derived

from a single generating function called the mother wavelet by translation (shifting)

and dilation (scaling) operations. The WT can be categorized into continuous and

discrete. Continuous wavelet transform (CWT) of a signal s(t) is de�ned by

Ws(a, b) =
1√
|a|

+∞∫
−∞

s(t)ψ
(t− b

a

)
dt (3.1)

where a is the scale, b is the translation, and ψa,b is the mother wavelet. Scaling

either dilates (expands) or compresses a signal. Large scales (low frequencies) expand
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the signal and provide global information about the signal, while small scales (high

frequencies) compress the signal and provide the detailed information hidden in the

signal.

In the CWT, the scale and translation parameters change continuously, and

this results in a huge computation complexity and a vast amount of data. Therefore,

in real-time applications, in order to reduce memory requirements and increase the

computation speed of the analysis, discrete wavelet transform (DWT), in which the

scale and translation parameters are discretized, is commonly used.

In the DWT, a countable set of coe�cients are obtained at the end of the

transform and these coe�cients correspond to the points on a two-dimensional grid of

discrete points in the time-scale domain. The formula of the DWT can be de�ned as

Ws(m,n) =
1√
|am0 |

+∞∫
−∞

s(t)ψ
(t− nb0am0

am0

)
dt (3.2)

where m and n are discrete scale and translation steps. When compared with CWT,

a and b are replaced by am0 and nb0am0 respectively, where a0 and b0 are discrete scale

and translation step sizes.

In practice, the DWT can be implemented by using multi-resolution analy-

sis (MRA) approach [54, 55], which is computationally more e�cient. In MRA, the

dyadic DWT employs two set of functions named as scaling functions and wavelet

functions, which are associated with the low-pass �lters and high-pass �lters (a pair of

quadrature mirror �lters) respectively. To decompose a time-domain signal into di�er-

ent frequency bands, these high-pass and low-pass �lters must be applied to that signal

and the resultant signal of each �lter must be down-sampled by a factor of two. At

the end of these processes, the time-domain signal is split into two components, and

each of these two components has half-size of the original signal length. One of these

components contains the low-frequency (coarse) information and the other one contains

high-frequency (detail) information. If these computations are performed for one level

of decomposition, for the �rst level, the decomposition is expressed mathematically as
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follows

D1[k] = yhigh[k] =
∑

x[n]h[2k − n] (3.3)

A1[k] = ylow[k] =
∑

x[n]g[2k − n] (3.4)

where h[n] and g[n] are the high-pass and low-pass �lters, yhigh[k] and ylow[k] are the

resultant coe�cients of high-pass and low-pass �lters respectively. High-pass and low-

pass coe�cients are also named as detail (D1[k]) and approximation (A1[k]) coe�cients

of the �rst level. This procedure, which can be applied with a binary tree, is usually

performed for the second level of analyses using the coarse part of the �rst level as a

new input to the second one, and this process can be iterated up to a certain number of

levels for further decomposition (ultimately until a single sample is left). The structure

of the DWT can be seen in Figure 3.2.a. At the end of all levels, the dyadic DWT

consists of the set of detail coe�cients generated at each level of the transform, together

with the approximation coe�cients generated at the last level of the transform.

3.2.2.3 Dual Tree Complex Wavelet Transform. In literature, the DWT has

been widely used in various medical application areas such as denoising, feature ex-

traction, etc. [56, 57, 58]. Despite of all its useful time-frequency resolution and fast

computation advantages, the DWT has some very important drawbacks such as alising,

lack of directionality, and shift-variance [29]. In processing ES, due to the transient

time behavior of ES, shift-variance problem of the DWT arising from the use of down-

sampling operator becomes crucial. As a consequence of this shift-variance limitation,

which means that any small shift in the input sequence greatly distorts the wavelet

coe�cients and changes their energy in each sub-band, the DWT based features that

are fed into a machine learning algorithm to detect emboli, are badly a�ected. There-

fore, in order to obtain more robust wavelet based features, the DTCWT having near

shift-invariant property is more appropriate than the ordinary DWT.

DTCWT [29, 30], which utilizes two real DWTs operating in parallel on an input
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Figure 3.2 a) A 3 level binary tree implementation, only the analysis part, of the DWT. D1, D2 and
D3 are the detail coe�cients and A3 is the approximation coe�cients. b) Structure of the analysis

part of the DTCWT for 3 levels. h
(1)
0 (n) is the low-pass �lter of real tree and g

(1)
0 (n) is the low-pass

�lter of imaginary tree in the �rst band. h0(n) and h1(n) are the low-pass and high-pass �lters of the
real tree for following bands. g0(n) and g1(n) are the low-pass and high-pass �lters of the imaginary
tree for following bands.

signal, is a recent enhancement to the ordinary dyadic DWT and it is approximately

shift-invariant. In the DTCWT, the �rst DWT stands for the real part of the transform

while the second DWT stands for the imaginary part. The analysis part of the DTCWT

for 3 levels can be seen in Figure 3.2.b.

In order to attain perfect shift-invariance property in the DTCWT, the second

tree's (imaginary tree) wavelet function (ψ′(t)) must be the Hilbert transformed version
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of the �rst DWT's wavelet function (ψ(t)) as shown below,

ψ′(t) = H[ψ(t)] (3.5)

where H[ ] stands for the Hilbert transform (HT) and this relation is named as HT

pair condition.

In [59, 60], it is stated that if the low-pass �lter of second tree (g0(n)) is equal

to the half sample delayed version of the low-pass �lter of �rst tree (h0(n)), then the

wavelet functions of DTCWT satisfy HT pair condition and this condition can be

shown as below in time domain.

g0(n) ≈ h0(n− 0.5)⇒ ψg(t) ≈ H[ψh(t)] (3.6)

In frequency domain, this can be interpreted as

G0(ω) = e−j0.5ωH0(ω) for |ω| < π (3.7)

Finite impulse response (FIR) �lters can never satisfy half sample delay con-

dition and hence the resulting wavelet function pairs can never be perfectly analytic.

Therefore, it is necessary to make an approximation [59]. To overcome this condition,

instead of using a half sample delay system, in the �rst stage di�erent �lters from

the following stages can be employed. For the �rst stage any orthonormal perfect

reconstruction �lter pair which satis�es the following equation can be used

g
(1)
0 (n) = h

(1)
0 (n− 1) (3.8)

where h(1)0 (n) is the low-pass �lter of real tree and g(1)0 (n) is the low-pass �lter of imag-

inary tree in the �rst band. If these conditions can be satis�ed, then an approximately

analytic DTCWT at every stage excluding the �rst can be obtained. For the inverse

DTCWT case, to invert the transform the real tree and the imaginary tree should be

inverted separately and then the outputs should be summed.
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3.2.3 Feature Extraction and Dimensionality Reduction Methods

3.2.3.1 Feature Extraction. Features are extracted from the forward and re-

verse directional signals in three di�erent ways. First one is the FFT. The absolute

values of the FFT coe�cients are found and used as features. Secondly, forward and

reverse directional Doppler ultrasound signals are decomposed into 5 scales in DWT

and DTCWT feature extraction phase. In the DWT, the �lter coe�cients given in [61]

and for the DTCWT the �lter coe�cients given in [30] are used. As the FFT, also

for both the DWT and the DTCWT absolute values of coe�cients are given to the

dimensionality reduction algorithm. Usually, an ES exists only in the forward direction

[47]. In FFT features emboli shows itself as a narrow-band signal pattern [44]. In DWT

and DTCWT features emboli patterns are seen in second and third scales [47].

3.2.3.2 Dimensionality Reduction. Large input dimensionalities make a clas-

si�cation model more complex and more samples should be fed to the classi�ers to deal

with the curse of dimensionality problem [62]. Dimensionality reduction is a stage of

machine learning to avoid high dimensionality small sample size problem which is very

common especially in the �eld of biomedical applications [63]. Therefore, in order to

reduce the dimension of the feature set obtained by FFT, DWT, and DTCWT, the

PCA, which is an unsupervised dimensionality reduction technique, is used with dif-

ferent proportions of variance [64] since not all eigenvalues contribute to the variance

substantially [65]. Dimensionality of the forward directional signal dataset is reduced

by preserving the 90% of the data variance. Similarly 90% of the data variance is kept

for the ensemble method initially, then 95% and 99% of the data variance are used to

observe the change in accuracy of the classi�ers.

Additionally, for visualization and comparison of feature extraction methods,

LDA is employed as a supervised dimensionality reduction technique. As known, LDA

has the limitation of less than number of classes' orthogonal projective directions due

to the rank de�ciency of the between-class scatter matrix [32]. Therefore, as the emboli

dataset includes three classes, the dimension of the datasets is reduced to two by using
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LDA.

3.2.4 Overall Structure of the Emboli Detection System

The collected Doppler ultrasound signals are transformed with FFT, DWT, and

DTCWT methods to obtain transform coe�cients. The obtained datasets consists of

1024 features (transform coe�cients) and 300 samples. In order to overcome the curse

of dimensionality problem, before feeding the features to the classi�ers, the dimension

of the datasets are reduced by applying linear dimensionality reduction techniques.

Also the number of samples in the training set (90 or 150 samples) and the proportion

of variance values of the dimensionality reduction method is changed to view if there

is a signi�cant di�erence in accuracy when the number of training instances or the

proportion of variance varies. Finally, the obtained reduced dimensionality feature sets

are fed to SVMs with linear kernel and k -NN classi�ers. The classi�cation process

consists of two phases: using forward directional signals separately and the ensemble

of forward - reverse directional signals as the inputs.

3.2.4.1 Individual Emboli Detection System. The features extracted from the

forward directional signals (according to the blood �ow) are used to make predictions

to estimate emboli, artifact or speckle. For the individual emboli detection system,

primarily the features obtained from forward directional signals are used. Considering

that a signal can be identi�ed as emboli, artifact or speckle from the forward directional

signals, the next stage is a three-class classi�cation with the preferred classi�ers. The

�ow chart of the proposed individual method can be seen in Figure 3.3.

3.2.4.2 Ensemble of Forward and Reverse Directional Signals. Using dif-

ferent representations of the same input or object can end up with an explicit iden-

ti�cation [32]. Consequently, features extracted from the reverse directional signals,

which can estimate if there is an artifact or not, are also used for prediction. Then
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Figure 3.3 Proposed Individual Emboli Detection System.

these predictions are combined to come up with our �nal ensemble model. In this

way, we utilize the information contained in both forward and reverse �ow directional

signals to discriminate the emboli signals from artifacts and speckles.

In our ensemble emboli detection system, �rstly only the features from the

forward directional signals, which can set o� a three class problem to discriminate ESs,

DS and artifacts, are fed into SVMs. Secondly, a two class classi�cation problem to

identify if a signal is artifact or not using the features from the reverse directional

signals is solved with SVMs. As a result of these processes two sets of probability

estimates are obtained: the �rst set has the information extracted from the forward

directional signals and the second has the reverse. Lastly, these two sets are merged

into a �nal dataset consisting of probability estimates of the individual forward and

reverse SVMs models. This dataset is used to build a �nal model, which is a three class

problem to classify ESs, DS and artifacts. In this model, the three resultant probability

estimate values of forward model and two probability estimate values of reverse model

are combined into a row vector and constituted a dataset with �ve features. Later, this

dataset consisting of �ve element row vectors is fed to the �nal SVMs. The �ow chart

of the proposed ensemble method is illustrated in Figure 3.4.
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Figure 3.4 Proposed Ensemble Emboli Detection System.
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3.3 Experimental Results

Features extracted by FFT, DWT, and DTCWT using the forward directional

signals are fed to SVMs and k -NN classi�ers with training sets including 150 and 90

samples and di�erent PCA variance proportions. As mentioned before, dataset includes

100 samples from each of the speckle, artifact and emboli classes. First, the half of

the forward direction samples (50 samples) from each class is selected randomly for

the training set and the left samples are used for the test set. The train-test splits

are repeated 10 times for statistical signi�cance and the average accuracies along with

class detection rates are reported. For k -NN classi�er, Euclidean distance metric and

k parameter of 3 are used. For SVMs application, LIBSVM [33] package is used with

a linear kernel along with cost value (C ) parameter of one.

The overall SVM and k -NN general accuracy and detection rates of emboli, arti-

fact, and speckle classes with half of the samples selected as the training instances after

dimensionality reduction with PCA alongside 90% of variance kept of are presented in

Table 3.1. As seen in Table 3.1, the highest general accuracy with the highest detection

rates of emboli, artifact, and speckle classes is obtained with DTCWT features for both

SVMs and k -NN classi�ers. Additionally, higher accuracies are obtained with DWT

than FFT. As to compare the classi�ers, SVMs performed much better than k -NN

since SVMs is more robust to both noise and irrelevant features.

Subsequently, to observe the change in accuracy with the variation in the number

of the training instances, the training set size is decreased. For this purpose, 30 samples

from each class are used to constitute the training set, and the others are used for

test phase. The reason to decrease the number of training samples is to observe the

behaviors of the feature extraction methods, classi�ers, and ensemble model with small

training sample size. In other words, we aim to examine if our method still learns a

generalizable model with less number of training samples or over�ts to the noisy samples

and outliers. Once again the data splitting for the training and test sets are repeated

for 10 times. The results attained by the small size training set are also shown in Table

3.1. Parallel to the results of 150 training samples, the highest accuracies are produced
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Table 3.1
General accuracy (%) and detection rates (%) of each class obtained with SVMs and k -NN using 150

and 90 training samples.

150 Training Samples

Feature Extraction DTCWT DWT FFT

Classi�er k-NN SVM k-NN SVM k-NN SVM

General Accuracy 75.73 92.47 69.73 89.20 71.20 80.53

Emboli Detection Rate 90.40 88.20 89.00 80.40 80.80 71.20

Artifact Detection Rate 93.80 94.80 93.80 92.80 89.40 90.40

Speckle Detection Rate 43.00 94.40 26.40 94.40 43.40 80.00

90 Training Samples

Feature Extraction DTCWT DWT FFT

Classi�er k-NN SVM k-NN SVM k-NN SVM

General Accuracy 76.71 89.86 69.76 87.76 73.10 80.33

Emboli Detection Rate 93.29 85.86 93.43 83.14 81.00 72.14

Artifact Detection Rate 90.29 91.86 90.43 90.14 89.14 89.00

Speckle Detection Rate 46.57 91.86 25.43 90.00 49.14 79.86

by the DTCWT features fed to SVMs classi�ers.

Thereafter gathering the results with forward directional signals, additionally

reverse directional signals are used to build up the ensemble model. For the proposed

ensemble model, SVMs is used as the classi�er since it yielded higher accuracies and

90 training samples are used since the accuracy is not signi�cantly a�ected from the

decrease of the number of the training samples. The information acquired from the

reverse directional signals cannot be used to classify the signal as emboli, artifact or

speckle but only as artifact or not. Even so it is still important to take this information

into account. Accordingly, �rst the forward and reverse directional signals are fed to

the SVMs classi�ers individually and the resultant probability estimates are combined

and fed to another SVMs classi�er as an input. In other words, with this technique

called the stacked generalization, the outputs of the classi�ers (SVMs) used with the

individual forward and reverse directional signals are fed to a combiner learner, which
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is also SVMs. The results obtained with the forward directional signal individually and

the ensemble of forward and reverse directional signals (combined signals) are given

in Table 3.2 for comparison. As shown, using stacking to combine the forward and

reverse directional signal estimates increases the accuracy approximately 1.5% by using

all the feature extraction methods. This ratio might seem low but such low accuracy

di�erences are vital in biomedical decision support systems. Yet, the highest accuracy

is again reached by DTCWT features. Likewise the emboli and artifact detection

are also better discriminated and the speckle detection rate is nearly the same. The

DTCWT features are once more superior to the DWT and the FFT.

Table 3.2
General accuracy (%) and detection rates (%) of each class with SVMs using the forward directional

signal individually and the combined signals.

Feature Extraction DTCWT DWT FFT

Model Type Forward Combined Forward Combined Forward Combined

General Accuracy 89.86 91.38 87.76 88.14 80.33 82.81

Emboli Detection Rate 85.86 88.14 83.14 85.00 72.14 74.14

Artifact Detection Rate 91.86 94.29 90.14 92.29 89.00 93.71

Speckle Detection Rate 91.86 91.71 90.00 87.14 79.86 80.57

Last but not least, the SVMs classi�cation using DTCWT features is done again

with repeating the PCA dimensionality reduction with di�erent proportion of variance.

Even though all eigenvalues might be greater than 0, not all of them contribute to

the variance substantially. Hence usually di�erent percentages of the eigenvalues are

selected after sorting them in descending order. Selected percentage will be smaller if

the dimensions are more correlated.

In our case, 90%, 95% and 99% of the variance are selected to inspect whether

there is a signi�cant di�erence in the general accuracy and emboli, artifact and speckle

detection rates. 90%, 95% and 99% of the variance does not change the classi�cation

rates much (91.38%, 90.90% and 92.38% respectively) as shown in Table 3.3. Once more

the combined system yields better results. Although increasing the proportion of the

variance increases the general accuracy slightly and artifact detection rate signi�cantly,
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it is better to use less proportion of the variance, because there is no gain in using PCA

as the proportion of the variance increases.
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Figure 3.5 Projections on the LDA components extracted from (left) FFT and (right) DTCWT
data of forward �ow view.

Table 3.3
General accuracy (%) and detection rates (%) of each class with SVMs using the DTCWT features
forward directional signal individually and the combined signals with di�erent proportion of PCA

variance.

DTCWT

PCA 0.90 PCA 0.95 PCA 0.99

Model Type Forward Combined Forward Combined Forward Combined

General Accuracy 89.86 91.38 89.81 90.90 91.38 92.38

Emboli Detection Rate 85.86 88.14 89.14 90.71 87.00 87.43

Artifact Detection Rate 91.86 94.29 91.57 94.14 95.14 98.14

Speckle Detection Rate 91.86 91.71 88.71 87.86 92.00 91.57

As seen from the results, using DTCWT features increases the classi�cation

accuracy notably. To visualize this di�erence, the projections of the FFT and the

DTCWT feature sets on the LDA components of the forward view are shown in Figure

3.5. The reason to choose LDA for this visualization is the usage of class labels in LDA.

Artifact samples are well discriminated from the other two classes using both FFT and

DTCWT features. Some emboli samples are intermixed with artifact samples with FFT

features but not with DTCWT. Besides emboli and speckle samples are discriminated

better by DTCWT features.
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3.4 Discussion and Conclusions

As analysis and detection of ESs visually by experts are very time-consuming

and also subjective to observer's experience, development of computer-based decision

support systems that aim to discriminate ESs from artifacts and noisy samples is very

important and also popular in the �eld of biomedical engineering. In this chapter, an

ensemble emboli detection system is proposed. Within this system, �rst forward and

reverse signals obtained by Doppler ultrasound are transformed by using FFT, DWT

and DTCWT. Then PCA is applied to both signals to reduce the dimensionality and

the resultant features of the forward directional signal are fed to SVMs and k -NN clas-

si�ers with di�erent training set sizes and proportion of variance values. After proving

that the best results are yielded by SVMs, the probability distributions obtained by

running distinct SVMs on forward and reverse directional signals separately are con-

catenated and used as a single input to the ensemble system. The success of DTCWT

features are compared with those of FFT and DWT by stacking. First of all, we must

note that SVMs based detection methods are superior to k -NN based methods for all

the dimensionality reduction methods due to the known generalization and sensitiv-

ity to noisy samples and irrelevant feature problems of k -NN classi�er especially on

high-dimensional datasets. The DTCWT is superior to the other coe�cient transfor-

mation techniques due to its shift-invariance property. Also, changing the proportion

of variance in PCA does not a�ect the classi�cation accuracy much, showing that us-

ing all eigenvalues obtained from PCA is not necessary. Using stacking as an ensemble

method to take di�erent representations of the data into consideration, namely forward

and reverse directional signals, boosts the accuracy rate of the classi�cation.

Therefore, we can conclude that in the ensemble emboli detection using the

reverse directional signals increases the classi�cation accuracy since they also include

signi�cant discriminative information. Additionally, wavelet transform based extracted

features give higher overall classi�cation and emboli detection accuracies than the FFT

based features in individual and ensemble SVMs based classi�cation systems due to

their well localization property in both time and frequency. The results show that a

better time-scale representation of Doppler ultrasound signals having good frequency
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resolution at low frequencies, and also good time resolution at high frequencies can

be provided by the DTCWT. In the future, it will be a challenge to implement the

proposed method in real time as an online emboli detection system.
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4. DIRECTIONAL DUAL TREE COMPLEX WAVELET

PACKET TRANSFORMS FOR PROCESSING

QUADRATURE SIGNALS

4.1 Introduction

Quadrature signals containing in-phase and quadrature-phase components are

used in many signal processing applications in every �eld of science and engineering,

such as communication, radar, sonar, diagnostic ultrasound, and MR imaging [66].

As an example, Doppler ultrasound systems used in blood �ow analysis also result in

quadrature format signals. In most of the Doppler ultrasound systems, the Doppler

frequency shifted signals, which are generated in the transducer by the returning ul-

trasonic signals, are demodulated by using quadrature phase detection (QPD) method

[67]. At the end of QPD, the in-phase and the quadrature-phase components, which

are within the audio frequency range and have 90 degrees phase di�erence between,

are obtained. In order to derive directional information from these two signals, the in-

phase and the quadrature-phase signals must be decoded into the forward and reverse

direction components of �ow [40].

A number of techniques in literature are described to obtain totally separated

directional signals from the quadrature Doppler signals such as phasing �lter technique

(PFT), extended weaver receiver technique, complex fast Fourier transform method,

frequency domain Hilbert transform method and spectral translocation method [41].

The PFT, which has symmetrical and asymmetrical implementations, is the most

widely used method in literature [68]. Traditionally, after obtaining directional sig-

nals, Fourier domain and wavelet domain processing methods are applied to these

directional signals for extracting further information.

In the scale domain, a complex continuous wavelet transform algorithm which

maps the directional information, while performing the analysis, was introduced in
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[69]. However, for the discrete wavelet transform (DWT) case, an algorithm, which

can be applied directly to the in-phase and the quadrature-phase components and has

the capability of mapping directional signals in the scale domain during analysis does

not exist.

Traditional DWT represents discrete-time signals in dyadic subband decompo-

sition but for speci�c discrete-time signals such as non-stationary biomedical signals,

the frequency decomposition provided by the DWT might not be optimal. General-

ization of the DWT in the discrete wavelet packet transform (DWPT) allows subband

analysis without the constraint of dyadic decomposition. The DWPT can perform

an adaptive decomposition, which �ts the varying signal statistics, of the frequency

axis. The DWPT represents a signal in many possible bases and a best decomposi-

tion (pruned wavelet packet tree) can be selected from this dictionary according to an

optimization criterion [70]. At the end of these procedures, analyzed signals can be

represented by as few and large coe�cients as possible [71, 72]. This adaptive and

sparse decomposition was used previously in a wide range of problems such as signal

analysis, �ltering or compression [70, 73, 74, 75].

In contrast to the wide application areas, the DWT lacks of being shift-invariant

and does not provide a geometrically oriented decomposition in multiple dimensions.

These drawbacks are also valid for the DWPT because it uses same high-pass/low-pass

�lter pair in the analysis and synthesis part of the transform. In the full DWPT, in

addition to DWT both low-pass and high-pass outputs are iterated.

Dual tree complex wavelet transform (DTCWT) was proposed as an alternative

for the DWT. When compared with DWT, the DTCWT has better shift-invariance

property and provides better directional selectivity in M dimensions (M ≥ 2) [30, 76].

The DTCWT employs two real DWTs; the �rst DWT can be thought as the real part

of the transform while the second DWT as the imaginary part of the transform. In

DTCWT, wavelet �lter banks (FBs) used in the second tree are designed according

to a certain criterion in order to provide near shift-invariance property. Speci�cally,

wavelet FBs in the imaginary tree are designed so that their impulse responses are
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approximately the discrete Hilbert transforms (HTs) of wavelet FBs in the real tree.

In [77], a dual tree complex wavelet packet transform (analytic DT-CWPT) having the

same shift-invariance and good directional selectivity properties was described.

In order to use DWPT or DT-CWPT in the analysis of quadrature Doppler sig-

nals, �rst directional signals (forward and reverse signals) must be obtained by using the

PFT (symmetrical or asymmetrical implementation) and then DWPT or DT-CWPT

is applied to those signals as illustrated in Figure 4.1. This procedure increases the

computational cost of the processing system. However, it is possible to reduce the

computational cost of the processing system by utilizing the HT property of the anal-

ysis and synthesis �lters of analytic DT-CWPT. In this study, two novel directional

complex wavelet packet methods, which can be applied directly to quadrature Doppler

signals and have the capability of extracting directional information during analysis,

are proposed. These methods are named as symmetrical directional dual tree com-

plex wavelet packet transform (SDDT-CWPT) and asymmetrical directional dual tree

complex wavelet packet transform (ADDT-CWPT).

With SDDT-CWPT and ADDT-CWPT, the HT �ltering steps of symmetrical

PFT (Sym-PFT) and asymmetrical PFT (Asym-PFT) are eliminated. 90 degrees

phase shift normally provided by HT �lter in the PFT is now performed by the wavelet

FBs of imaginary tree of analytic DT-CWPT. With the proposed methods, obtained

 

Figure 4.1 Process of quadrature signals with traditional methods. D(n) is the in-phase component
and Q(n) is the quadrature component. Sf (n) is the forward �ow signal and Sr(n) is the reverse �ow
signal.
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directional coe�cients during the analysis part of wavelet packet transform and also

directional signals at the end of the synthesis part are almost identical to the outputs

of analyzing the same signals with asymmetrical and symmetrical versions of the PFT

followed by two DWPTs or DT-CWPTs.

In order to prove the proposed methods, three di�erent sets of signals in quadra-

ture format are used. In the �rst set, synthetic single frequency quadrature signals sim-

ulated as sines and cosines, are employed. In the second set, a band-limited quadrature

signal created by using white Gaussian noise is utilized. Lastly for a real life application,

quadrature signals obtained from a Doppler ultrasound system are used. For all the

sets, signal-di�erence-ratios between the reference methods and the proposed methods

are calculated in detail. For the real signals, the coe�cients obtained with proposed

methods at the end of analysis part are compared with the coe�cients obtained by

traditional methods and the shift-invariance properties of the proposed methods are

demonstrated. Additionally, for the real signals case, a detailed time comparison of the

proposed methods with traditional methods is given.

The remaining of the chapter is organized as follows: Section 4.2 gives the de-

scription of the quadrature signals and the classical PFT methods for directional infor-

mation extraction. Section 4.3 explains existing wavelet based techniques for quadra-

ture signal processing. Section 4.4 presents the proposed directional wavelet packet

transforms and declares their properties. Section 4.5 provides the experimental results

using synthetic and real quadrature signals. Lastly, the discussions and conclusions are

given in section 4.6.

4.2 Quadrature Signals

In order to understand the proposed methods precisely, the nature of the quadra-

ture Doppler ultrasound signals must be examined in detail. A quadrature Doppler

signal can mathematically be assumed as a complex signal, in which the real and imag-

inary parts can be represented as the HT of each other. The HT is a widely used linear
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frequency-domain operator that shifts the phase of positive frequency components of a

signal by -90◦ and negative frequency components by +90◦. Mathematically, a discrete

quadrature Doppler signal can be modelled as

s(n) = Q(n) + jD(n) (4.1)

where D(n) is in-phase and Q(n) is quadrature-phase components of the signal.

In quadrature Doppler signals the directional information is encoded in the phase

relationship between D(n) and Q(n) components. In this respect, D(n) and Q(n) can

also be represented in terms of the directional signals as

D(n) = sf (n) +H[sr(n)] (4.2)

Q(n) = H[sf (n)] + sr(n) (4.3)

where sf (n) and sr(n) represent the forward and reverse �ow components respectively

and H[ ] stands for the HT.

4.2.1 Phasing Filter Techniques

The PFT, which is based on HT, is the most widely used method in real-time

applications for extracting directional signals from the quadrature signals. The reason

of using PFT is that it is more suitable for �xed point processors since it employs �nite

impulse response (FIR) type �lters. It also requires less memory to record quadrature

Doppler signals [41].

4.2.1.1 Asymmetrical Implementation of the Phasing Filter Technique.

In the Asym-PFT, which is seen in Figure 4.2, two types of �lters are used. The �rst

�lter is the HT �lter and the second one is delay �lter (DF) introducing a time delay

that equals to the time delay introduced by the FIR type HT �lter.
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Figure 4.2 Asymmetrical implementation of the PFT.

If theD(n) andQ(n) components are fed into Asym-PFT as inputs, the following

results are obtained as the output of the algorithm:

Ignoring the time delays introduced by the digital �lters, the HT of D(n) is

H[D(n)] = H
[
sf (n) +H[sr(n)]

]
= H[sf (n)] +H

[
H[sr(n)]

]
= H[sf (n)]− sr(n) (4.4)

According to the algorithm in Figure 4.2, the separated outputs (forward and

reverse channel signals) can be obtained by addition and subtraction of equations (4.3)

and (4.4) respectively:

yf (n) = Q(n) +H[D(n)] = H[sf (n)] + sr(n) +H[sf (n)]− sr(n) = 2H[sf (n)] (4.5)

where the output contains only the 90 degrees phase shifted forward signal.

yr(n) = Q(n)−H[D(n)] = H[sf (n)] + sr(n)−H[sf (n)] + sr(n) = 2sr(n) (4.6)

where the output contains only the reverse signal.
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Figure 4.3 Symmetrical implementation of the PFT.

4.2.1.2 Symmetrical Implementation of the Phasing Filter Technique.

In the Sym-PFT, which is illustrated in Figure 4.3, the HT is applied to both D(n)

and Q(n) components. In practical implementation, two delay �lters must also be used

to compensate the time delays introduced by the HT �lters. The outputs of the HT

and delay �lters constitute a Hilbert pair for each channel [41]. If the D(n) and Q(n)

components are fed into Sym-PFT as inputs, the following results are obtained as the

output of the algorithm:

Ignoring the time delays introduced by the digital �lters, the HT of D(n) is

H[D(n)] = H
[
sf (n) +H[sr(n)]

]
= H[sf (n)] +H

[
H[sr(n)]

]
= H[sf (n)]− sr(n) (4.7)
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HT of Q(n) is

H[Q(n)] = H
[
H[sf (n)]+sr(n)

]
= H

[
H[sf (n)]

]
+H[sr(n)] = −sf (n)+H[sr(n)] (4.8)

Adding D(n) and H[Q(n)], and Q(n) and H[D(n)] yield

yf (n) = Q(n) +H[D(n)] = H[sf (n)] + sr(n) +H[sf (n)]− sr(n) = 2H[sf (n)] (4.9)

yr(n) = D(n) +H[Q(n)] = sf (n) +H[sr(n)]− sf (n) +H[sr(n)] = 2H[sr(n)] (4.10)

By implementing subtraction instead of addition, the unshifted separated time

domain outputs can be obtained.

yf (n) = D(n)−H[Q(n)] = sf (n) +H[sr(n)] + sf (n)−H[sr(n)] = 2sf (n) (4.11)

yr(n) = Q(n)−H[D(n)] = H[sf (n)] + sr(n)−H[sf (n)] + sr(n) = 2sr(n) (4.12)

It is obvious that the fundamental concept in the PFT is to shift the phase of

in-phase and/or quadrature components by 90 degrees. The phase shifting operation

is performed by the HT �lter. In the proposed methods (ADDT-CWPT and SDDT-

CWPT) the phase shifting operation is attained by the wavelet �lters utilised in the

imaginary tree in analytic DT-CWPT. This eliminates the HT and delay �lter stages

in the PFT and reduces the computational complexity of analyzing quadrature signals

with complex wavelet packet transform.
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4.3 Complex Wavelet Transforms

4.3.1 Dual Tree Complex Wavelet Transform

DTCWT illustrated in Figure 4.4 is a modi�ed version of ordinary DWT. It

employs two real DWTs operating in parallel on an input signal [30]. The �rst DWT

represents the real part of the transform and the second DWT represents the imaginary

part of the transform, resulting a complex transform in total.

 

Figure 4.4 Analysis part of Dual Tree Complex Wavelet Transform.

The DTCWT comes up with solutions to: �lack of being shift-invariant� and

�lack of being directionally selective in two and higher dimensions� drawbacks of ordi-

nary DWT [76]. In order to posses its desirable properties, the DTCWT bene�ts from

a second DWT tree (imaginary tree), designed according to a certain criterion. For

the ideal DTCWT, if ψ(t) is de�ned as the wavelet function of real part, the wavelet

function of imaginary part (ψ′(t)) must be the HT of ψ(t). This condition can be

shown as,

ψ′(t) = H[ψ(t)] (4.13)
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The wavelet function of real tree can be de�ned as

ψ(t) =
√
2
∑
n

h1(n)φ(2t− n) (4.14)

where φ(t) is the scaling function and de�ned as

φ(t) =
√
2
∑
n

h0(n)φ(2t− n) (4.15)

In (4.14) and (4.15), h1(n) and h0(n) are the high-pass and low-pass FIR conju-

gate quadrature �lters (CQFs) respectively. In the imaginary tree, the second wavelet,

ψ′(t), is de�ned similarly in terms of a di�erent set of �lters (g1(n) and g0(n)). As

it can be seen from the equations (4.14) and (4.15), wavelet functions depend on the

scaling functions and scaling functions depend on the �lters. Therefore, the design

of wavelet function satisfying desired properties de�ned by (4.13) is equivalent to the

design of �lters satisfying speci�c properties [30]. In [59, 60, 78], it is stated that if

the low-pass �lter g0(n) is equal to the half sample delayed version of h0(n), then the

wavelet functions of DTCWT will satisfy (4.13) and this condition can be shown as

below in time domain.

g0(n) ≈ h0(n− 0.5)⇒ ψg(t) ≈ H[ψh(t)] (4.16)

In frequency domain, this can be interpreted as

G0(ω) = e−j0.5ωH0(ω) for |ω| < π (4.17)

For CQF we know that low-pass and high-pass �lters have the following relation

h1(n) = (−1)nh0(d− n) where 'd' is an odd integer (4.18)
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So, for an ideal DTCWT, the high pass �lters must satisfy

G1(ω) = −jsgn(ω)ej0.5ωH1(ω) for |ω| < π (4.19)

where �sgn� is the signum function.

This half sample delay property was proved by using the in�nite product formula

[59], which calculates the scaling function from an in�nite number of �lter stages.

However, in real case there will be �nite number of stages, so FIR �lters can never

satisfy half sample delay condition (half-sample delay condition requires an in�nite

impulse response system) and hence the resulting wavelet function pairs can never be

perfectly analytic. Therefore it is necessary to make an approximation.

In order to overcome the constrain of the situation mentioned above, instead

of using a half sample delay system, the �rst stage �lters of the transform must be

allowed to be di�erent from the following stages. For the �rst stage, any orthonormal

perfect reconstruction �lter pair, which satis�es following equation for low pass �lters

of real tree and imaginary tree of the transform, can be used.

g
(1)
0 (n) = h

(1)
0 (n− 1) (4.20)

where h(1)0 (n) is the low pass �lter of real tree and g
(1)
0 (n) is the low pass �lter of

imaginary tree in the �rst stage.

If the �rst stage of the DTCWT is chosen in this way and the remaining stages

satisfy (4.17) approximately, then the DTCWT will be approximately analytic at every

stage except the �rst stage. The detailed prove of these conditions can be found in

[77].

For the inverse DTCWT case, in order to invert the transform, the real tree

and the imaginary tree should be inverted separately and then the outputs should be

summed. If the coe�cients are not altered during the analysis part, the outputs of

both real and imaginary trees will be approximately same with original signal at the
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end of the synthesis stage.

4.3.2 Dual Tree Complex Wavelet Packet Transform

In order to extend the DTCWT into DT-CWPT, the most straight-forward way

is to iterate both its low-pass and high-pass PR FBs' outputs using the same set of

�lters. This approach is proposed previously in [79, 80, 81, 82]. However, the resulting

basis functions are far from being analytic and there are signi�cant energy leakages into

their negative frequency bands. Therefore this approach does not fully show desired

HT property in PR �lters. In order to overcome the shortfall of the straightforward

construction, in [77] a new analytic DT-CWPT, which has better analytic subband re-

sponses, was developed. Similar to DTCWT, this analytic DT-CWPT is approximately

shift-invariant and directionally selective in two and higher dimensions.

In this new analytic DT-CWPT, each of the subbands of DTCWT should be

iteratively decomposed using low-pass and high-pass PR FBs. The PR FBs should be

chosen so that the response of each branch of the imaginary tree FB is the discrete HT

of the corresponding branch of the real tree FB. If this requirement is satis�ed, then

each subband of the analytic DT-CWPT will be analytic and this requirement can be

ful�lled by using the simple rule of HT.

If a given �lter x(n) is the discrete Hilbert transform of some other �lter h(n),

then

X(ω) = jsgn(ω)H(ω) for |ω| < π (4.21)

When x(n) is convolved with an another sequence y(n), we obtain,

X(ω)Y (ω) = jsgn(ω)H(ω)Y (ω) for |ω| < π (4.22)
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As it can be seen from this equation, if x(n) and h(n) is a discrete HT pair,

then x(n) ∗ y(n) and h(n) ∗ y(n) must also be a discrete HT pair because of the linear

time-invariance property of discrete HT [83].

Assuming that speci�c �lters fi(n) for real tree and f ′i(n) for imaginary tree

are needed, resulting DT-CWPT using these �lters in the kth (k > 2) level shall be

analytic. It was proved in [77] that to hold this property, it is necessary and su�cient

that

fi(n) = f ′i(n) (4.23)

As it was proved in (4.21) and (4.22), if the subbands before fi(n) and f ′i(n) are

HT pairs then the convolution with fi(n) and f ′i(n) will not violate HT pair property.

Hence, if we decompose the kth (where k > 2) stage high pass subband of the DT-CWT

using some 2-channel PR FBs and the HT pair property has already been satis�ed by

previous bands, then the following �lters for real tree and for imaginary tree must be

equal for protecting HT pair property of related subbands. This procedure produces an

analytic DT-CWPT consisting of two wavelet packet FBs operating in parallel, where

some �lters in the second wavelet packet FB are the same as those in the �rst wavelet

packet FB. Details of the new DT-CWPT can be found in [77] and the structure can

be seen in Figure 4.5.

As a result, in new analytic DT-CWPT, three types of �lters are used. In the

�rst level, for imaginary tree both low pass and high pass �lters are one sample delayed

version of the corresponding �lters in the real tree and satis�es the following equations

g
(1)
0 (n) = h

(1)
0 (n− 1) (4.24)

and

g
(1)
1 (n) = h

(1)
1 (n− 1) (4.25)

where g(1)0 (n) and h(1)0 (n) represents the low pass �lters of imaginary tree and real tree
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Figure 4.5 Real tree of four levels DT-CWPT. For the imaginary tree, the �lters h
(1)
i (n) must be

replaced by h
(1)
i (n− 1) and hi(n) �lters must be replaced by gi(n). In both real and imaginary trees,

same fi(n) �lters are used for i ∈ 0, 1.

respectively, and g(1)1 (n) and h(1)1 (n) represents the high pass �lters of imaginary tree

and real tree respectively. For the second type �lters, hi(n) and gi(n) for i ∈ 0, 1,

which approximately satisfy (4.17) and (4.19), are used. Finally, for the third type,

fi(n) and f ′i(n) extension �lters satisfying (4.23) are used for both real and imaginary

trees. In the selection of extension �lters, fi(n), there is no restriction as long as same
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�lter pairs in both FBs of real tree and imaginary tree are used in order to preserve

the HT property which is obtained before. Hence, the same criteria for the selection

of a CQF pair to extend a regular DWT can be used for the selection of fi(n) [54].

4.4 Directional Dual Tree Complex Wavelet Packet Transforms

Doppler ultrasound is an important technique for detecting and measuring the

velocity of moving structures. In medicine it is mostly used as a non-invasive method

for measuring the velocity of blood. The output of a Doppler system is in quadrature

format and in order to extract directional signals from this quadrature signals PFT is

the most widely used method. As mentioned in section 4.2, in a real-time application

of PFT while extracting �ow signals from quadrature signals, HT �lters and delay

�lters must be employed. Then, these obtained directional signals can be processed

with various digital signal processing techniques for further applications. For example

in blood �ow detection systems, the DWT is used for emboli detection [47, 84]. But as

mentioned before, DWT does not map directional signals in the scale domain during

wavelet analysis. DTCWT can be thought as a solution to this problem but it does

not provide directional signal decoding during analysis because of its unwanted energy

leaks into the opposite frequency bands (the positive frequency band leaks into the

negative one, the negative frequency band leaks into the positive one). To overcome

this drawback a modi�ed DTCWT was proposed, but it still uses HT �lters and delay

�lters [85, 86, 87, 88, 89, 90, 91].

The main motivation of this study is to develope discrete wavelet packet trans-

forms, which eliminates the use of the asymmetrical and symmetrical PFT steps during

analysis and also provides an optimum frequency band representation of a signal of in-

terest. Hence, symmetrical and asymmetrical Directional Dual Tree Complex Wavelet

Packet Transforms, which use the HT pair property between real tree and imaginary

tree of DT-CWPT, are proposed.
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4.4.1 Asymmetrical Implementation of the Directional Dual Tree Complex

Wavelet Packet Transform

As explained in section 4.3, speci�cally, �lters of DT-CWPT's imaginary wavelet

tree that their impulse responses are approximately the discrete HTs of those of the

real wavelet tree's �lters are designed. This property is the starting point of proposed

method. If the imaginary tree's �lters' impulse responses are approximately the discrete

HTs of those of the real wavelet tree's �lters, then we can derive the following equations.

In the frequency domain, for the DT-CWPT if we suppose Gl
k(ω) is the fre-

quency response of the imaginary tree's kth subband in the lth level, where the HT pair

property has already been satis�ed (except the �rst and last subbands) and H l
k(ω) is

the frequency response of real tree in the same subband, then we know that

Gl
k(ω) = H

[
H l
k(ω)

]
(4.26)

where H[ ] represents the HT.

As mentioned in section 4.3, in frequency domain, this is equal to

Gl
k(ω) = jsgn(ω)H l

k(ω) for |ω| < π (4.27)

If a real signal x(n) is applied to the both trees as an input, we obtain

Gl
k(ω)X(ω) = H

[
H l
k(ω)X(ω)

]
(4.28)

By using linearity property of the HT, it is possible to restate (4.28) as follows

Gl
k(ω)X(ω) = jsgn(ω)H l

k(ω)X(ω) for |ω| < π (4.29)

Gl
k(ω)X(ω) = H l

k(ω)
[
jsgn(ω)X(ω)

]
for |ω| < π (4.30)
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Gl
k(ω)X(ω) = H l

k(ω)H
[
X(ω)

]
(4.31)

(4.31) shows that if we use the FB pairs in decomposition, the process done in

the imaginary tree is the same as decomposing by the same �lter in real tree plus taking

the HT of input signal. Hence, the Hilbert Transformed coe�cients are obtained in

the output of imaginary tree FBs.

On the other hand, if the input is a quadrature signal pair and D(n) is applied

to the imaginary tree and Q(n) to the real tree, for the imaginary tree the following

derivations can be made

H
[
H l
k(ω)

]
Dl
k(ω) = jsgn(ω)H l

k(ω)D
l
k(ω) for |ω| < π (4.32)

H l
k(ω)

[
jsgn(ω)Dl

k(ω)
]
= H l

k(ω)H
[
Dl
k(ω)

]
(4.33)

whereDl
k(ω) is the frequency response of the decomposed D(n) for the related subband.

According to (4.32) and (4.33), if the frequency response of a real tree �lter for

the kth subband in the lth level (where the HT pair has already been obtained) is H l
k(ω),

then the frequency response of the imaginary-tree �lter for the same subband will be

equivalent to decomposing and taking the HT of the D(n) for the kth subband in the

lth level.

On the other hand, for the same subband, the frequency response of the real

tree will be

H l
k(ω)Q

l
k(ω) (4.34)

It is possible to demonstrate that the concepts mentioned above can also be

used to obtain directional information encoded in quadrature signals. Assuming that

the quadrature signal given in (4.1) is decomposed by using the proposed transform.
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HT of s(n) in frequency domain can be given as

H
[
S(ω)

]
= −jS(ω) for 0 ≤ ω ≤ π (4.35)

H
[
S(ω)

]
= +jS(ω) for − π ≤ ω < 0 (4.36)

It is known that the Fourier transform (FT) of a quadrature signal maps direc-

tional information in the frequency domain [41]. Assuming that the positive frequencies

represent forward �ow signal sf (n) and the negative frequencies represent the reverse

�ow signal sr(n), the following frequency domain de�nitions can be made.

F
[
sf (n)

]
= S+(ω) for 0 ≤ ω ≤ π (4.37)

F
[
sr(n)

]
= S−(ω) for − π ≤ ω < 0 (4.38)

Taking the HT of sf (n) and sr(n) results in

H

[
F
[
sf (n)

]]
= −jS+(ω) for 0 ≤ ω ≤ π (4.39)

H

[
F
[
sr(n)

]]
= +jS−(ω) for − π ≤ ω < 0 (4.40)

where F[ ] stands for the Fourier transform.

If we take FT of equations (4.2) and (4.3), we obtain

F
[
D(n)

]
= +S+(ω) + jS−(ω) = D(ω) (4.41)

F
[
Q(n)

]
= −jS+(ω) + S−(ω) = Q(ω) (4.42)
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Applying HT to (4.41) results in

H
[
D(ω)

]
= −jS+(ω)− S−(ω) (4.43)

Combining equations (4.33) and (4.43) for a certain subband (for the kth subband

in the lth level) in the imaginary tree results in

H l
k(ω)H

[
Dl
k(ω)

]
= H l

k(ω)
[
− jSl

+

k (ω)− Sl
−
k (ω)

]
= −jH l

k(ω)S
l+

k (ω)−H l
k(ω)S

l−
k (ω) (4.44)

where H l
k(ω) is the frequency response of the �lter, Sl

+

k (ω) is the forward signal com-

ponent in the frequency domain, and Sl
−

k (ω) is the reverse signal component in the

frequency domain.

For the real tree, combining equations (4.34) and (4.42) results in

H l
k(ω)Q

l
k(ω) = H l

k(ω)
[
− jSl+k (ω) + Sl

−

k (ω)
]
= −jH l

k(ω)S
l+

k (ω) +H l
k(ω)S

l−

k (ω) (4.45)

(4.44) and (4.45) are the frequency responses of subbands in DT-CWPT.

Adding/subtracting (4.44) and (4.45) yields the following frequency response of the

forward/reverse signal.

H l
k(ω)H

[
Dl

k(ω)
]
+H l

k(ω)Q
l
k(ω) = −jH l

k(ω)S
l+

k (ω)−H l
k(ω)S

l−

k (ω)− jH l
k(ω)S

l+

k (ω) (4.46)

+H l
k(ω)S

l−

k (ω) = −2jH l
k(ω)S

l+

k (ω)

H l
k(ω)Q

l
k(ω)−H l

k(ω)H
[
Dl

k(ω)
]
= −jH l

k(ω)S
l+

k (ω) +H l
k(ω)S

l−

k (ω) + jH l
k(ω)S

l+

k (ω) (4.47)

+H l
k(ω)S

l−

k (ω) = 2H l
k(ω)S

l−

k (ω)

At the end of these calculations the frequency response of negative frequencies

(reverse signal coe�cients) and 90 degree phase shifted version of the frequency re-

sponse of positive frequencies (forward signal coe�cients) are obtained for the related

subband. It must be emphasized that the addition/subtraction procedure must be

performed at the end of the analysis stage for all subbands for obtaining all direc-

tional coe�cients (except the lowest and highest subbands, as they have no analyticity

property).
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Figure 4.6 Asymmetrical Implementation of DDT-CWPT.

In the synthesis part of DT-CWPT, inverse FBs of analysis part are used. It

should be noted that the inverse FBs in imaginary tree also exhibit HT property.

Therefore, unlike Asym-PFT, instead of H[sf (n)], sf (n) is obtained at the end of

synthesis part of ADDT-CWPT. The structure of the ADDT-CWPT is illustrated in

Figure 4.6.

4.4.2 Symmetrical Implementation of the Directional Dual Tree Complex

Wavelet Packet Transform

In symmetrical implementation of the DDT-CWPT (SDDT-CWPT) illustrated

in Figure 4.7, two DT-CWPTs must be used. Q(n) and D(n) are applied to the each

DT-CWPTs respectively. Consequently, the coe�cients and their Hilbert transformed

versions for a speci�c subband (except the �rst and last subbands) are obtained for each

DT-CWPT channels. The frequency responses of these Hilbert pairs for the related

subbands can be seen below when the same approach is used as in section 4.4.1.

In the �rst DT-CWPT, when D(n) is given as input, for the kth subband in

the lth level, equations (4.48) and (4.49) are obtained for the real and imaginary trees
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Figure 4.7 Symmetrical Implementation of DDT-CWPT. CQ and CD are the coe�cients of Q(n)
and D(n) in the related subband respectively, CF and CR are the coe�cients of forward and reverse
directional signals in the related subband respectively. H[ ] stands for the HT.

respectively.

H l
k(ω)D

l
k(ω) = H l

k(ω)S
l+

k (ω) + jH l
k(ω)S

l−

k (ω) (4.48)

H l
k(ω)H

[
Dl
k(ω)

]
= −jH l

k(ω)S
l+

k (ω)−H l
k(ω)S

l−

k (ω) (4.49)

In the second DT-CWPT, for the same subband, when Q(n) is given as input,

equations (4.50) and (4.51) are obtained for the real and imaginary trees respectively.

H l
k(ω)Q

l
k(ω) = −jH l

k(ω)S
l+

k (ω) +H l
k(ω)S

l−

k (ω) (4.50)

H l
k(ω)H

[
Ql
k(ω)

]
= −H l

k(ω)S
l+

k (ω) + jH l
k(ω)S

l−

k (ω) (4.51)
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These are the frequency responses of each analytic subband at the end of analysis

part (except the �rst and last).

If the �rst DT-CWPT's real tree coe�cients for each subband and the imagi-

nary tree coe�cients of the second DT-CWPT are added, the phase shifted frequency

response of negative frequencies (reverse directional coe�cients)

H l
k(ω)D

l
k(ω) +H l

k(ω)H
[
Ql

k(ω)
]
= H l

k(ω)S
l+

k (ω) + jH l
k(ω)S

l−

k (ω)−H l
k(ω)S

l+

k (ω) (4.52)

+jH l
k(ω)S

l−

k (ω) = 2jH l
k(ω)S

l−

k (ω)

If the �rst DT-CWPT's imaginary tree coe�cients for each subband and the

real tree coe�cients of the second DT-CWPT are added, the phase shifted frequency

response of positive frequencies (forward directional coe�cients) are obtained.

H l
k(ω)Q

l
k(ω) +H l

k(ω)H
[
Dl

k(ω)
]
= −jH l

k(ω)S
l+

k (ω) +H l
k(ω)S

l−

k (ω)− jH l
k(ω)S

l+

k (ω) (4.53)

−H l
k(ω)S

l−

k (ω) = −2jH l
k(ω)S

l+

k (ω)

If the �rst DT-CWPT's imaginary tree coe�cients for each subband are sub-

tracted from the real tree coe�cients of the second DT-CWPT, the frequency response

of negative frequencies (reverse directional coe�cients) are obtained.

H l
k(ω)Q

l
k(ω)−H l

k(ω)H
[
Dl

k(ω)
]
= −jH l

k(ω)S
l+

k (ω) +H l
k(ω)S

l−

k (ω) + jH l
k(ω)S

l+

k (ω) (4.54)

+H l
k(ω)S

l−

k (ω) = 2H l
k(ω)S

l−

k (ω)

If the second DT-CWPT's imaginary tree coe�cients for each subband are sub-

tracted from the real tree coe�cients of the �rst DT-CWPT, the frequency response

of positive frequencies (forward directional coe�cients) are obtained.

H l
k(ω)D

l
k(ω)−H l

k(ω)H
[
Ql

k(ω)
]
= H l

k(ω)S
l+

k (ω) + jH l
k(ω)S

l−

k (ω) +H l
k(ω)S

l+

k (ω) (4.55)

−jH l
k(ω)S

l−

k (ω) = 2H l
k(ω)S

l+

k (ω)

4.4.3 Shift-Invariance Property of the Proposed Methods

Shift-invariance is an important property that any transform should posses.

However, the DWT and the DWPT do not posses this property [28]. In DWT and
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DWPT, when the input signal is shifted by an arbitrary number of samples, the energy

in each subband of transform is not preserved. The lack of shift-invariance property

is a result of the aliasing caused by the down-sampling employed in the DWT and

DWPT. DTCWT and DT-CWPT algorithms both have approximately analytic sub-

bands due to usage of real and imaginary trees [28]. In these transforms, complex FB

pairs are used. Therefore, the frequency response of each subband in the transform

is approximately one sided. The near shift-invariance property of DT-CWPT comes

from the reduction in aliasing, and is achieved by the approximately analytic band-pass

response characteristics of each branch [76].

When the proposed symmetrical and asymmetrical implementations of DDT-

CWPT are considered, in order to posses near shift-invariance property, a HT pair of

forward and reverse coe�cients at the end of decomposition stage has to be obtained.

Necessary HT pair conditions can be given as FC l
k−H[FC l

k] and RC
l
k−H[RC l

k], where

FC l
k represents the forward signal coe�cients of the kth subband in the lth level and

RC l
k represents the reverse signal coe�cients of the same analytic subband and H[ ]

is the HT operator.

By using proposed ADDT-CWPT, it is not possible to obtain a HT pair of

forward and reverse coe�cients at the end of decomposition stage. For ADDT-CWPT,

the relation between the forward and reverse direction coe�cients can be given as

below,

For the kth subband in the lth level, at the end of decomposition stage, we obtain

QC l
k = H[FC l

k] +RC l
k (4.56)

H[DC l
k] = H[FC l

k]−RC l
k (4.57)

Where QC l
k is the quadrature phase signal coe�cients of the kth subband in the lth level,

and H[DC l
k] is the Hilbert transformed in-phase signal coe�cients of same subband.
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When we add and subtract these coe�cients, we obtain

H[FC l
k] +RC l

k +H[FC l
k]−RC l

k = 2H[FC l
k] (4.58)

H[FC l
k] +RC l

k −H[FC l
k] +RC l

k = 2RC l
k (4.59)

Only, the Hilbert transformed forward coe�cients and reverse coe�cients can

be obtained for the related subbands. Therefore, for the ADDT-CWPT, near shift-

invariance property can not be achieved.

However, in the SDDT-CWPT, two DT-CWPTs are employed and therefore

near shift-invariance property can be achieved. By using SDDT-CWPT, for the kth

subband in the lth level, at the end of decomposition stage, we obtain

QC l
k = H[FC l

k] +RC l
k and H[QC l

k] = −FC l
k +H[RC l

k] (4.60)

DC l
k = FC l

k +H[RC l
k] and H[DC l

k] = H[FC l
k]−RC l

k (4.61)

Where, H[QC l
k] is the Hilbert transformed quadrature phase signal coe�cients of kth

subband in the lth level, and DC l
k is the in-phase signal coe�cients of same subband.

When QC l
k is added to H[DC l

k], we obtain

H[FC l
k] +RC l

k +H[FC l
k]−RC l

k = 2H[FC l
k] (4.62)

When H[QC l
k] is added to DC l

k, we obtain

−FC l
k +H[RC l

k] + FC l
k +H[RC l

k] = 2H[RC l
k] (4.63)
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When H[DC l
k] is subtracted from QC l

k, we obtain

H[FC l
k] +RC l

k −H[FC l
k] +RC l

k = 2RC l
k (4.64)

When H[QC l
k] is subtracted from DC l

k, we obtain

FC l
k +H[RC l

k] + FC l
k −H[RC l

k] = 2FC l
k (4.65)

Hence, it can be seen that by using above addition/subtraction operations,

2
(
FC l

k −H[FC l
k]
)
and 2

(
RC l

k −H[RC l
k]
)
HT pairs of both forward and reverse coef-

�cients can be obtained. This shows us that the proposed SDDT-CWPT has the near

shift-invariance property.

4.4.4 The E�ect of Non-Analytic Subbands and Energy Leakages in Op-

posite Frequencies

In theory, both with symmetrical and asymmetrical implementations of DDT-

CWPT, at the end of synthesis, directional signals must be reconstructed perfectly. In

reality, an ideal HT pair property between the frequency responses of real and imaginary

tree FBs cannot be achieved because of the energy leakages in opposite frequency bands

of DT-CWPT. However, the e�ect of these energy leakages in the ADDT-CWPT and

the SDDT-CWPT is very small.

Additionally, for an analysis with DT-CWPT for l levels, we know that the

lowest and highest subbands have no analyticity property [28, 92]. This is due to the

fact that they are processed by low-pass �lters and high-pass �lters only. But low-pass

�lters or high-pass �lters alone can never achieve a �at phase response di�erence which

is necessary for approximating the HT phase response.

Due to the two main reasons mentioned above ADDT-CWPT and SDDT-
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CWPT have no perfect reconstruction property, but the di�erences between the ideal

cases and proposed methods outputs are very small and have a very limited e�ect on

the whole transform. Therefore, in the real signal case, as an additional study, pass-

band performances of proposed methods were also compared with the PFT+DWPT

and the PFT+DT-CWPT when the non-analytic �rst and last subband coe�cents are

removed while processing quadrature signals. By doing so, the amount of the distortion

caused by the �rst and the last subbands, which is insigni�cant in processing embolic

signals, can be accurately quanti�ed.

4.5 Simulations and Results

Doppler devices function by transmitting a beam of ultrasound into a medium

(in a cardiovascular system, the middle cerebral artery for example), and collecting and

analyzing the returning signals re�ected by the object. Main concern in Doppler devices

is the frequency of the returning echoes and whether there has been a Doppler shift as

a result of interaction with a moving target (for example red blood cells and embolic

particles can be thought as moving particles for the detection of embolic signals). The

Doppler shift signal is obtained by quadrature demodulation resulting in a band-pass

signal in kHz range, such as narrow-band embolic signals [44]. Therefore, in the �rst

two parts of our simulations, synthetic signals in kHz ranges are used. In the �rst

part, a single frequency quadrature signal constructed by using sines and cosines is

employed. In the second part, two synthetic quadrature signals in di�erent frequency

bands were created by using white Gaussian noise. In the last part, 100 quadrature

embolic Doppler ultrasound signals recorded from patients [47] are employed.

4.5.1 Single Frequency Quadrature Signal Simulations

Quadrature signals can be simulated by using sines and cosines. In this section,

as a substitute of the sf (n) and sr(n) signals (directional signals), we use cosines and
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sines respectively in the following manner.

D(n) = A cos(2× π × n× fA
fs

) +B sin(2× π × n× fB
fs

) (4.66)

Q(n) = A sin(2× π × n× fA
fs

) +B cos(2× π × n× fB
fs

) (4.67)

For the synthetic signal, A is chosen to be equal to B, fA and fB are chosen to

be 400 and 1200 Hz respectively, the sampling frequency is chosen to be 10kHz. Both

D(n) and Q(n) sizes are 4096 samples. Assuming the signal is discrete, n is the sample

index.

In order to evaluate proposed method's reconstruction performance and also

the ability to extract directional information, synthetic quadrature signal in the above

format is analyzed and then synthesized with both symmetrical and asymmetrical

implementations of DDT-CWPT without doing any alteration on coe�cients. The ob-

tained directional signals by using ADDT-CWPT and the directional signals obtained

by Asym-PFT when the signal is decomposed and reconstructed for 6 levels can be

seen in Figure 4.8. For the sake of clarity only the �rst 256 samples are shown.

As it can be seen from the �gure, by using the ADDT-CWPT, directional sig-

nals can be obtained accurately at the end of the transform. But still three are small

di�erences due to the non-analytic subbands and energy leakages in opposite frequen-

cies. In order to quantify amount of the di�erence between the output of the proposed

methods and the conventional ones, �rst, the absolute value of di�erence and abso-

lute value of directional signals, and then the di�erence-ratio are found. In order to

point out the performance of ADDT-CWPT and SDDT-CWPT, algorithm is tested

for various decomposition levels (5, 6, 7, 8) and for each di�erent level, forward and

reverse signal di�erence-ratios between proposed method's outputs and PFT's outputs

are calculated. The following formula is used for calculating di�erence-ratio and the
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Figure 4.8 The �rst 256 points of reconstructed signals with ADDD-CWPT and Asym-PFT.

results are denoted in Table 4.1.

Di�erence Ratio =

∑
|XPFT −XDDT−CWPT |∑

|XPFT |
× 100 (4.68)

XPFT is the directional signal obtained with PFT versions and XDDT−CWPT is the

directional signal obtained with proposed methods.

As it can be seen from the table, with proposed methods for the levels 5, 6,

7 and 8 the signal di�erence-ratio for both reverse and forward signals is very small.

However, because the e�ect of non-analytic subbands is more signi�cant, di�erence-

ratio for levels 3 and 4 is higher. The e�ect of non-analyticity depends on the number

of levels. If a small number of levels are utilised, the band-width of the lowest and

highest subbands become relatively larger, resulting in more distortion.
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Table 4.1
Di�erence-Ratios of Forward and Reverse Signals for decomposition with di�erent levels.

ADDT-CWPT SDDT-CWPT

Level number:

Forward Signal

Di�erence-Ratio

Reverse Signal

Di�erence-Ratio

Forward Signal

Di�erence-Ratio

Reverse Signal

Di�erence-Ratio

3 %27.701 %27.579 %27.701 %27.690

4 %5.445 %5.368 %5.450 %5.456

5 %1.633 %1.667 %1.634 %1.640

6 %1.571 %1.602 %1.572 %1.575

7 %1.561 %1.603 %1.561 %1.564

8 %1.560 %1.602 %1.560 %1.563

4.5.2 Band-Limited Quadrature Signal Simulations

In this section, a synthetic quadrature signal is constructed by using band-

limited synthetic directional signals. Band-limited directional signals are created by

using �wgn� function of MatLab software. Firstly, by using this function 4096 samples

long white Gaussian noise (WGN) is created. WGN is a special noise type which has

all the frequency components in its spectrum and all samples of it are statistically

independent. Later this WGN signal is �ltered by two elliptic band-pass �lters for

obtaining synthetic directional signals with di�erent cut-o� frequencies. For the �rst

�lter, pass-band and stop-band cut-o� frequencies are chosen as 1000 Hz and 2000

Hz respectively. For the second �lter, pass-band and stop-band cut-o� frequencies are

chosen as 3000 Hz and 4000 Hz respectively. The pass-band ripple and stop-band

attenuation values are chosen as 1 dB and 150 dB respectively. The �ltered signals

resulting synthetic forward and reverse signals can be seen in Figure 4.9.

In order to construct the quadrature signal, HT of both synthetic directional

signals is taken and later HT of reverse signal is added to forward signal resulting

D(n). Besides the HT of forward signal is added to reverse signal resulting Q(n). The

simulated band-limited in-phase and quadrature-phase signals can be seen in Figure

4.10.

Later, this simulated quadrature signal is decomposed using both symmetrical
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Figure 4.9 Time domain and frequency domain representations of �ltered signals.

and asymmetrical DDT-CWPTs for six levels and then reconstructed without any

alteration to the coe�cients. As a consequence of this process the directional signals

are obtained as an output. For the sake of clarity, the �rst 256 samples of the outputs

with Asym-PFT and ADDT-CWPT can be seen in the Figure 4.11. As one can see

from the �gure, output of the ADDT-CWPT is almost the same as the asymmetrical

PFT output.

However, still there is a small di�erence between the methods due to the non-

analytic subbands and energy leakages in the opposite frequencies. In order to quan-

tify the di�erence, the signal-di�erence ratio were calculated for various analysis levels

(3,4,5,6,7,8) for both the ADDT-CWPT and the SDDT-CWPT. The results are re-

ported in the Table 4.2, in which the signal-di�erence ratio is very low for all levels.

Unlike the Table 4.1, the signal-di�erence ratio in the Table 4.2 is very low for the

levels 3 and 4. This is due to use of a band-limited directional signal, in which there is
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Figure 4.10 D(n) and Q(n) in time domain.

no signal component at the non-analytic frequency bands covering the levels 3 and 4.

This proves that the proposed methods work well for band-limited directional signals.

Table 4.2
Signal-Di�erence Ratios of Forward and Reverse Signals for decomposition with di�erent levels.

ADDT-CWPT SDDT-CWPT

Level number:

Forward Signal

Di�erence-Ratio

Reverse Signal

Di�erence-Ratio

Forward Signal

Di�erence-Ratio

Reverse Signal

Di�erence-Ratio

3 %1.806 %1.792 %1.807 %1.790

4 %1.551 %1.546 %1.551 %1.567

5 %1.315 %1.301 %1.315 %1.316

6 %1.284 %1.265 %1.284 %1.287

7 %1.282 %1.262 %1.282 %1.285

8 %1.281 %1.262 %1.281 %1.283
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Figure 4.11 Output of ADDT-CWPT and Asym-PFT for synthetic quadrature signal.

4.5.3 Processing Real Quadrature Blood Flow Signals

In this part, as a real life application, embolic quadrature Doppler signals, which

are used in detection of asymptomatic circulating cerebral emboli, are examined. The

ESs used for this study were recorded using a commercially available transcranial

Doppler system (EME Pioneer TC4040) with a 2-MHz transducer. The recordings

were made from the ipsilateral middle cerebral artery of a patient with symptomatic

carotid stenosis [47].

In order to show the performance of the proposed methods for real signals, �rst

a quadrature embolic signal is decomposed by using ADDT-CWPT for 6 levels, and

then the subbands are reconstructed without altering its coe�cients. At the end of

this process, directional signals almost the same as the ones obtained by the classical

Asym-PFT are obtained. The resultant signals for both the Asym-PFT and the ADDT-
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CWPT are illustrated in Fig 4.12.

Figure 4.12 Output of ADDT-CWPT and Asym-PFT for quadrature embolic signal.

Additionally to compare the resulted coe�cients of classical (Asym-PFT +

DWPT) and proposed ADDT-CWPT and see the non-analytic subbands' e�ect, co-

e�cients of 4 randomly chosen subbands and the coe�cients of the �rst (lowest) and

the last (highest) subbands in forward and reverse direction, are presented in Figure

4.13 and Figure 4.14. For comparison, as the DWPT, the real part of DT-CWPT

is used. As it can be seen from the �gures, the �rst and last subbands' coe�cients

obtained with ADDT-CWPT are di�erent from the result of traditional method due

to the non-analyticity drawback of DT-CWPT, on the other hand in the remaining

subbands the resulted coe�cients are very similar. As mentioned before, ESs have

band-limited frequency character, that's why in the analysis of these signals, subband

coe�cients except the �rst and last can be trustfully used.
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Figure 4.13 Coe�cients of a forward emboli signal obtained with ADDT-CWPT and traditional
method.

Time-frequency (TF) representations of Doppler ultrasound signals are used for

emboli detection [93]. In TF based detection systems, �rst DWT or DWPT are used for

de-noising as pre-processing stage. Therefore, in order to understand behavior of non-

analytic subbands, the e�ect of proposed methods on the TF representations must be

investigated in detail. In Figure 4.15, a TF representation of an embolic signal obtained

by using the Asym-PFT and a TF representation of the same signal decomposed and

reconstructed by using the ADDT-CWPT are illustrated. In the wavelet analysis part,

forward and reverse signals are decomposed for 6 levels (decomposed into 26 subbands)

and the resultant coe�cients are reconstructed without any processing. In the forward

direction, in both the Asym-PFT and the ADDT-CWPT cases, embolic signal can

easily be identi�ed. This shows us that using proposed methods in processing Doppler

ultrasound signals has no negative e�ect on the frequency bands, in which the embolic

signal exists. This result also veri�es that ESs can be assumed as narrow band signals
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Figure 4.14 Coe�cients of a reverse emboli signal obtained with ADDT-CWPT and traditional
method.

[44]. Since the validity of the SDDT-CWPT has already been proven by using the

simulated signals above, the study of the SDDT-CWPT for the real signal case was

omitted for the brevity.

4.5.4 Shift-Invariance Property of Proposed Symmetrical Implementation

In part 4.4.3, it is proven that to have the near shift-invariance property, at the

end of analysis part of wavelet packet transform, HT pairs of both forward and reverse

coe�cients have to be obtained. This situation can only be satis�ed in symmetrical

implementation of DDT-CWPT.

In order to prove this property, �rstly, a real quadrature Doppler ultrasound

signal is processed with classical Sym-PFT and the directional signals are obtained.
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Figure 4.15 Spectrogram of an embolic signal in both directions.

Later the forward and reverse directional signals are decomposed with two analytic DT-

CWPTs [77] for 6 levels. As an output of these two DT-CWPTs' real and imaginary tree

analysis FBs, the coe�cients of forward and reverse directional signals are obtained as

illustrated in Figure 4.16. Secondly, same quadrature signal is given directly to SDDT-

CWPT and at the end of analysis stage, the directional coe�cients are obtained. In

Figures 4.17, 4.18, 4.19, 4.20, in order to present the near shift-invariance property

of proposed SDDT-CWPT, for both classical processing method and SDDT-CWPT,

coe�cients of 4 randomly chosen subbands plus the coe�cients of the �rst (lowest) and

the last (highest) subbands are presented. The obtained coe�cients of forward signal in

real tree and imaginary tree (Hilbert transformed coe�cients) by using both traditional

method and proposed SDDT-CWPT can be seen for 6 subbands including the �rst and

last subband in Figures 4.17 and 4.18 respectively. Likewise, the obtained coe�cients

of reverse signal in real tree and imaginary tree (Hilbert transformed coe�cients) by

using both traditional method and proposed SDDT-CWPT can be seen in Figures 4.19
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and 4.20 respectively. As expected for the �rst and last subband, the coe�cients are

di�erent. But for the remaining subbands, the obtained coe�cients by using SDDT-

CWPT are approximately same with the coe�cients obtained with traditional method.

This proves us that in processing quadrature signals, for the subbands except the �rst

and last, the proposed SDDT-CWPT has the same near shift-invariance property of

DT-CWPT.

Figure 4.16 Traditional quadrature signal processing system with DT-CWPT.

4.5.5 The E�ect of Non-Analytic Bands

In this section, in order to see the e�ect of non-analytic subbands of DT-CWPT,

100 Embolic Doppler ultrasound signals (4096 sample points each, with a sampling fre-

quency of 7150 Hz) were used. First, the quadrature signals are processed by using

classical Asym-PFT and the forward and reverse signals are obtained. Then, the same

quadrature signals are decomposed and reconstructed by using the ADDT-CWPT re-

sulting in the directional signals. Due to the non analytical �rst and last subbands and

energy leakages in opposite frequencies, a little di�erence between the PFT outputs and

the ADDT-CWPT outputs occurs. These di�erences are calculated for each forward

and reverse directional signal and a signal-di�erence ratio is obtained. The average

and standard deviation of these di�erence-ratios can be seen in Table 4.3 (left side,

when all the bands are used). Later, in order to investigate the weight of non-analytic

subbands in this di�erence, same 100 Asym-PFT outputs are �rstly decomposed by

using only the real part of DT-CWPT (as a DWPT) and coe�cients of the �rst and
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Figure 4.17 Coe�cients of a forward emboli signal obtained with proposed SDDT-CWPT and
traditional method.

last subbands are set to zero, then the subbands are reconstructed resulting the 100

quadrature signals whose �rst and last subbands are removed. Secondly, the same 100

quadrature signals decomposed by using ADDT-CWPT and coe�cients of the �rst

and the last subbands are set to zero. Then the subbands are reconstructed. At the

end of these steps, the signal-di�erence-ratio is calculated when the non-analytic bands

are removed. The results can be seen in Table 4.3 (right side, when the non-analytic

bands are omitted). By doing this, the weight of non-analytic bands (�rst and last

subbands) in the di�erence-ratio is quanti�ed. From the table, it is possible to see that

most of the di�erence is occurred because of the �rst and last subbands. When these

subbands are removed, the di�erence-ratio caused by the energy leakages of opposite

frequencies in mid-subbands are much lower. For the forward signals, the mean and

standard deviation of di�erence-ratios are even smaller because the band-limited ESs

are unidirectional. These results validate that the proposed methods work well for ESs.
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Figure 4.18 Hilbert transformed coe�cients of a forward emboli signal obtained with proposed
SDDT-CWPT and traditional method.

Table 4.3
Average/Std Signal-Di�erence Ratios of Forward and Reverse Signals when the non-analytic band

are used and not used.

When All the
Bands are Used

When the Non-Analytic

Bands are removed

Average Di�erence

Ratio
Std of Di�erence

Ratio

Average Di�erence

Ratio
Std of Di�erence

Ratio

Forward
Signal %5.801 %4.448 %1.422 %0.294

Reverse
Signal %11.856 %9.156 %3.412 %1.283

The signal-di�erence ratio with and without the �rst and the last subbands for

100 ESs are illustrated in the Figure 4.21. For all signals the signal-di�erence ratio

is smaller when the non-analytical bands are removed. This shows that the proposed

methods work well for all subbands except the �rst and the last. For some signals
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Figure 4.19 Coe�cients of a reverse emboli signal obtained with proposed SDDT-CWPT and
traditional method.

(for example signals 11, 12, 17, and 18) the signal-di�erence ratio is much higher. The

reason for this is that embolic signal intensity in those signals are relatively smaller and

usually some artifacts (some low frequency signals caused by tissue movement, probe

tapping, speaking, and any other environmental e�ects) exist. As an example, in the

Figure 4.22, a signal containing a low intensity embolic signal and a large low frequency

artifact decomposed and reconstructed by using ADDT-CWPT was compared with

the output of traditional Asym-PFT. When the �gure is examined, it is possible to see

that the di�erence between the signals is insigni�cant during the embolic signal, but

signi�cant at the other times. This also proves that the proposed methods perform

well and can be used for analysis and detection of ESs.
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Figure 4.20 Hilbert transformed coe�cients of a reverse emboli signal obtained with proposed
SDDT-CWPT and traditional method.

4.5.6 Computational Costs of the Proposed Algorithms

In real life implementation of Asym-PFT, a FIR HT �lter and a delay �lter

compensating the time delay caused by the HT �lter must be employed. Moreover, in

Sym-PFT, two HT �lters and two delay �lters are needed. In real life applications,

usually HT �lters comprising considerable numbers of coe�cients are employed for ob-

taining a decent 90 degrees phase shift e�ect. In order to evaluate the computational

e�ciency of the proposed methods, HT �lters and delay �lters having various �lter co-

e�cient lengths have been utilized. Time comparisons are done between Asym-PFT +

DWPT and ADDT-CWPT, and between Sym-PFT + DT-CWPT and SDDT-CWPT.

Two time comparisons are performed. While the �rst comparison involves the compu-

tational complexity of the analysis part (decomposition only), the second comparison

includes both the analysis and the synthesis parts (decomposition + reconstruction).
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Figure 4.21 The signal-di�erence ratios of 100 embolic signals when the non-analytic bands are
removed and not removed.

For the simulations, in order to minimize background program activity of the com-

puter, a real quadrature embolic signal is chosen and an average result of 10000 time

measurements is presented. Evaluations are done on a desktop computer with Intel(R)

Core(TM) i3-2120, 3.30 GHz processor and 4 GB RAM.

The di�erences are quanti�ed by using following formula for both the full tree

version and for the only analysis part version,

Time enhancement ratio =

∣∣∣∣ time of traditional method− time of proposed method

time of traditional method

∣∣∣∣× 100 (4.69)

In Tables 4.4 and 4.5, the time comparison results of traditional methods and

proposed methods are presented. In the Table 4.4, it can be seen that the ADDT-

CWPT speeds up the process up to 4.6 percent for the full tree. Moreover this time

enhancement can reach up to 34.2 percent in SDDT-CWPT. This is due to the use of

only two trees in the SDDT-CWPT during reconstruction, rather than four trees used

in the traditional method (Figure 4.7). In the Table 4.5, the results for only analysis
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Figure 4.22 A low intensity embolic signal superimposed on a large low frequency artifact.

part are presented. As it can be seen from the table, for both proposed methods, a

signi�cant time enhancement up to 11 percent is achieved.

Table 4.4
Time enhancement ratios for full tree.

with Asymmetrical DDT-CWPT with Symmetrical DDT-CWPT

coe�cient number

101 %2.255 %32.916

151 %2.884 %33.280

201 %3.743 %33.757

251 %4.595 %34.223
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Table 4.5
Time enhancement ratios for only analysis part.

with Asymmetrical DDT-CWPT with Symmetrical DDT-CWPT

coe�cient number

101 %5.555 %4.580

151 %7.385 %7.322

201 %9.135 %8.496

251 %11.083 %10.277

4.6 Discussion and Conclusions

In this chapter, asymmetrical and symmetrical directional complex discrete

wavelet packet transforms, which can be applied directly to quadrature signals and

have the ability of extracting directional information during analysis, are introduced.

With these proposed directional transforms, the traditional PFT steps, which are used

for extracting directional signals prior to wavelet analysis, are eliminated, resulting in

a signi�cant reduction in overall computational costs of the analysis system.

In order to measure the performance of proposed methods, synthetic single fre-

quency and narrow-band quadrature signals are constructed. Additionally, a database

consisting of 100 real quadrature embolic signals are employed. First, in order to

show the e�ect of non-analytic subbands for both ADDT-CWPT and SDDT-CWPT,

a number of decomposition levels are tested by using synthetic single frequency and

narrow-band signals and resultant signal-di�erence-ratios are presented. As it can be

seen from the results, the proposed methods work well for signals having narrow-band

characteristics.

In real signals case, again both the qualitative and quantitative results of the

reconstruction performance are presented. It is possible to see that the proposed meth-

ods work well for all subbands except the lowest and highest subbands. Additionally,

e�ect of the proposed method on time-frequency representation of an embolic signal

is investigated using short time Fourier transform (STFT). It is seen from the STFT

outputs (Figure 4.15) that the position, duration, and intensity of the embolic signal
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in the time-frequency plane are almost the same for both the conventional and the

proposed methods.

In 4.5.4, by using resulted coe�cients the shift-invariance property of proposed

SDDT-CWPT is proved. In section 4.5.5, for the embolic signal dataset, the e�ect

of the last and the �rst subbands on the signal-di�erence-ratio is calculated and it is

shown that the most of the distortion is caused by these non-analytic subbands. It

is known that in the ESs, the information carrying parts have band-limited (narrow-

band) characteristics. Therefore, in real-world applications, the distorting e�ect of

the energy leakages in the subbands consisting of the embolic signal is negligible and

does not corrupt the relevant information. Lastly, in section 4.5.6, a detailed time

comparison between the proposed methods and traditional methods is done. From the

results of this comparison it is seen that signi�cant computational complexity reduction

is achieved with proposed methods.

From the results presented in above sections, it can be concluded that, the

proposed directional complex wavelet packet transforms can be con�dently used in

the quadrature signal processing applications such as noise reduction in blood �ow

signals, with reduced computational complexity. Additionally, in the future, it will

be a challenge to implement these proposed transforms in a real-time asymptomatic

embolic signal detection and classi�cation system.
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5. DIRECTIONAL DUAL TREE RATIONAL-DILATION

COMPLEX WAVELET TRANSFORM

5.1 Introduction

Dyadic discrete wavelet transform (dyadic-DWT), in which the resolution is dou-

bled from each scale to the next scale, is a very e�ective tool for processing piecewise

smooth signals and used as a popular transform in various signal and image processing

applications [94, 95]. However, due to its poor frequency resolution and severe fre-

quency aliasing drawbacks, the dyadic-DWT is less e�ective in the process of signals

having more oscillatory behaviour such as speech, biomedical signals like EEG, audio

signals and etc. These types of signals are quasi-periodic over short-time intervals. In

analyzing these signals, a wavelet transform having better frequency resolution than

the dyadic-DWT is needed. Additionally, the dyadic-DWT lacks of shift-invariance

property causing considerable distortions in the coe�cients resulting in at the end of

decomposition stage of wavelet analysis when the input signal is time-shifted.

In order to overcome the drawbacks of the dyadic-DWT in processing oscillatory

signals, various overcomplete WTs such as the undecimated WT, the dual tree complex

WT and the double density WT have been proposed [30, 96, 97]. Many of these

WTs have the capability of increasing only the temporal resolution with limited range

of redundancy factors. However in [98], an overcomplete wavelet transform, which

is based on rational (non-dyadic) dilation factors, are proposed. This transform is

based on a frequency domain design and the implementation is based on fast Fourier

transform. Additionally, the transform is appropriate for the discrete-time signals,

approximately shift-invariant, and easily invertible. In this transform, various Q-factors

and redundancy factors can be attained by changing the dilation factor. Due to its

being overcomplete and rational dilation property, this transform is called overcomplete

rational dilation wavelet transform (RADWT).
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Quadrature signals, which are composed of the in-phase and the quadrature-

phase components, are obtained at the detection stage of the systems employing

quadrature demodulation technique. In biomedical engineering, Doppler ultrasound

systems that are used in blood �ow analysis have also quadrature format outputs and

the outputs of these systems are frequently used in embolic signal detection. Emboli

are small travelling clots which can originate in an artery of the body, traveling up the

arterial tree to the brain until it lodges in a blood vessel. The presence of emboli in

blood circulation can be the main factor of stroke, which may cause permanent damage

or even death. In order to prevent stroke, asymptomatic circulating cerebral emboli

can be detected by analyzing quadrature Doppler ultrasound signals.

However, to process quadrature Doppler ultrasound signals, �rstly the in-phase

and the quadrature-phase components must be decoded into the forward and reverse

direction components of blood �ow. In literature, the phasing �lter technique (PFT) is

the most widely used method to obtain directional signals. In the PFT, Hilbert trans-

form (HT) of one of the in-phase and the quadrature-phase components must be taken

to introduce 90 degrees phase shift [40, 41]. After obtaining directional signals, Fourier

transform and wavelet transform based algorithms are applied for further analysis.

In literature, a complex continuous wavelet transform algorithm which is applied

to directly quadrature signals and maps the directional information, while doing the

analysis, was introduced in [69]. In the DWT case, a transform which can be applied

directly to the in-phase and the quadrature-phase components and has the capability

of mapping directional signals in the scale domain during analysis does not exist. To

achieve such a property, the DWT must be a complex transform with only one-side

frequency spectrum.

In [30] a dual tree complex wavelet transform (DTCWT) was proposed but

because of its energy leakages into its negative frequency bands, it cannot achieve

desired one-sided frequency spectrum property. In [85, 86, 88, 91] a modi�ed DTCWT

is proposed. However, in this transform still an additional HT �lter and a delay �lter

(used in digital circuits to compensate the time delay that occurred because of the
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digital HT �lter) must be used. Additionally it is still a dyadic-DWT.

Embolic signals (ESs) are usually described as amplitude-modulated sine waves

which have very short duration varying between 2 and 100 ms. An example is illustrated

in Figure 5.1. In frequency domain, ESs result in an increase in intensity that is

focused on a small band of frequencies (behave as a narrow-band signal) in the Doppler

spectrum, resulting in a bell-shaped distribution. In [47] the dyadic DWT was applied

to directional blood-�ow signals in order to detect embolies. However, in order to

achieve better detection accuracies for ESs, RADWT, whose Q-factor and redundancy

can be adjustable, can be utilized. By tuning the Q-factor (increasing the Q-factor) of

the RADWT in decomposition, an optimum oscillatory wavelet behaviour can be set

for an embolic signal and a more compact energy distribution of the coe�cients can be

obtained.

Figure 5.1 A forward blood �ow signal (above) and zoomed version of emboli part (below).
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In [99] a modi�ed version of RADWT, a dual-tree rational-dilation wavelet trans-

form (DT-RADWT) was introduced that inherits the good frequency resolution and

constant-Q property of the RADWT and whose atoms form quadrature pairs. DT-

RADWT is realized by two wavelet trees, one is the real tree and the other is imagi-

nary tree, operating in parallel on the same input. In DT-RADWT, the second wavelet

�lter-banks (FBs of imaginary tree) are designed so that their impulse responses are ap-

proximately the discrete HTs of those of the �rst wavelet FBs (FBs of real tree). Then,

to process quadrature signals, this capability of taking HT property of the imaginary

tree in DT-RADWT, can be used to obtain 90 degrees phase-shift e�ect of classical

PFT.

In this chapter, we introduce a directional DT-RADWT (DDT-RADWT) that

extends the classical DT-RADWT. DDT-RADWT is complex transform which can be

directly performed on quadrature signals. Its frequency resolution can be changed by

tuning the Q-factor of wavelets according to the behaviour of analyzed signal. Addi-

tionally, it is a near shift-invariant transform which is very important in processing

quadrature Doppler signals due to the phase relationship of in-phase and quadrature-

phase components.

5.2 Rational Dilation Wavelet Transform

In literature, the dyadic DWT and the DTCWT are used successfully in pro-

cessing signals having non-oscillatory, transient behaviour like pulmonary crackles and

brain spike signals [100, 101, 102]. Due to the low Q-factor property of their subbands

(low oscillatory nature of wavelet bases), dyadic wavelet transforms are less e�ective

in processing oscillatory signals such as ESs. In this respect, RADWT, which is a

fully discrete, easily invertible, energy preserving, approximately shift-invariant, can

be employed in the process of oscillatory signals. RADWT provides ability to the user

to adjust the Q-factor of wavelet bases. It can be used for high Q-factor analysis or the

same low Q-factor analysis as the widely used dyadic-WT. In RADWT, by changing

the transform parameters not only the frequency partition manner, but also the time
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domain oscillatory nature of the wavelet functions are controlled.

Figure 5.2 a) The analysis and synthesis �lter banks used in RADWT.b) The full structure of
RADWT including decomposition and reconstruction phases.

Similar to the classical DWT implemented using Mallat's tree-structure �lter-

bank, the RADWT is also implemented through an iterated two-channel FB as illus-

trated in Figure 5.2.a. The Q-factor of the wavelet transform depends on the param-

eters p, q and s. Instead of being based on integer dilations, the dilation factor of the

transform is q/p where the numbers q and p are co-prime and satisfy q > p. In order

to obtain higher frequency resolution, for q and p values, following conditions must be

satis�ed; 1 < q/p < 2, q/p ratio must be close to 1, and s > 1. When the s is set to 1,

classical dyadic DWT with low Q-factor is obtained. In Figure 5.3, in upper left and

right parts, the frequency decomposition of the RADWT with a low Q-factor (5 levels)

and high Q-factor (18 levels) can be seen. Additionally, in lower left and right parts,

associated wavelets from levels 3 to 10 with a low Q-factor and high Q-factor can be

seen respectively. As it can be seen, when the Q-factor is increased, in time domain,

the wavelets obtained in subbands become more similar to ESs and their frequency

responses become more frequency selective. The full structure of RADWT including

decomposition and reconstruction phases for two levels can be seen in Figure 5.2.b.
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Figure 5.3 Frequency response of decomposed subbands and associated wavelets with low Q-factor
(left) and high Q-factor (right).

5.3 Dual Tree Rational-Dilation Complex Wavelet Transform

In [99], the dual-tree rational-dilation complex wavelet transform (DT-RADWT),

which employs quadrature pairs of time-frequency atoms similar to the short time

Fourier transform (STFT) and the dyadic DTCWT for oscillatory signal processing

was introduced. DT-RADWT is a constant-Q transform, a property lacked by the

STFT, which in turn makes the introduced transform more suitable for models that

depend on scale. Additionally, In the DT-RADWT, the frequency resolution can be

adjusted and high Q-factor, a property lacked by the dyadic DTCWT, can be attained.

This property makes the DT-RADWT more suitable for processing oscillatory signals

such as ESs [99]. DT-RADWT is realized by using two wavelet trees, one is the real

tree and the other is imaginary tree, operating in parallel on the same input. In DT-

RADWT, the second wavelet FBs (FBs of imaginary tree) are designed so that their

impulse responses are approximately the discrete HTs of those of the �rst wavelet FBs
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(FBs of real tree). Then, to process quadrature signals, this capability of taking HT

property of the imaginary tree in DT-RADWT, can be used to obtain 90 degrees phase

shift e�ect of the classical PFT. The structure of DT-RADWT is illustrated in Figure

5.4. In the dashed box, real part of the DT-RADWT can be seen.

Figure 5.4 The decomposition stage of the DT-RADWT.

5.4 Directional Dual Tree Rational-Dilation Complex Wavelet

Transform

Conventionally, in order to utilize RADWT in the analysis of the quadrature

Doppler signals, �rstly, directional signals (forward signal and reverse signal) must be

obtained by using the PFT. Only then, the RADWT can be applied with the aim of

emboli detection. This procedure increases the computational cost of the processing

system. However, it is possible to reduce the computational cost of the processing

system by utilizing the HT property of the analysis and synthesis �lters in the imaginary

tree of the DT-RADWT. In the proposed method (Directional DT-RADWT), two

modi�cations are made to the conventional DT-RADWT, as illustrated in Figure 5.

At the decomposition stage, only the quadrature-phase part (Q(n)) is applied to the

real tree and only the in-phase part (D(n)) is applied to the imaginary tree. Eventually,

as an output of real tree, coe�cients of Q(n) and as an output of imaginary tree, HT'ed

coe�cients of D(n) are obtained. Later, the coe�cients of Q(n) are subtracted from

the HT'ed coe�cients of D(n) resulting in the coe�cients of reverse signal. Likewise,
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HT'ed coe�cients of D(n) are added to the coe�cients of Q(n) resulting in the HT'ed

coe�cients of forward signal. In the decomposition stage, the coe�cients of forward

and reverse signal are given to synthesis �lters of the real tree of DT-RADWT resulting

in the forward and reverse directional signals.

Figure 5.5 The structure of proposed directional DT-RADWT.

5.5 Experimental Results

In order to evaluate proposed method's reconstruction performance and also

the ability to extract directional information, a quadrature embolic signal is processed

with the traditional PFT and with the directional DT-RADWT (DDT-RADWT). In

the DDT-RADWT, the signal is decomposed and reconstructed for 20 levels without

any alterations on coe�cients. The full obtained forward signals by using the DDT-

RADWT and the PFT can be seen in the two upper rows of Figure 5.6. Additionally,

to see the reconstruction success on emboli parts, a zoomed version of ESs obtained

with the PFT and DDT-RADWT can be seen in the lower third row of Figure 5.6. As

it can be seen from the �gure, by using the DDT-RADWT, directional signals can be

obtained accurately at the end of the proposed transform.

Proposed DDT-RADWT has ability to tune the Q-factor of its wavelet atoms
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Figure 5.6 In the upper two rows, forward blood �ow signals obtained with the classical PFT
and proposed directional DT-RADWT are illustrated respectively. In the third row, zoomed embolic
signals obtained with the classical PFT and proposed directional DT-RADWT are illustrated.

and this makes the proposed transform more �exible than the traditional dyadic-DWT,

which employs low Q-factor wavelet atoms during wavelet analysis. By using DDT-

RADWT, wavelet atoms with high Q-factors can be attained resulting in improved

frequency resolution. ESs are usually described as amplitude-modulated sine waves and

have short time oscillatory time-domain behavior. Therefore, in the Doppler spectrum,

ESs behaves as a narrow-band signals that result in a bell-shaped distribution. To

obtain sparse representations of ESs in decomposed subbands, by using DDT-RADWT,

an adjustable frequency resolution, changing with analyzed emboli information, can be

set.

In order to show this property, an ES with an artifact (a low frequency signal

caused by tissue movement, probe tapping, speaking, and any other environmental

e�ects) is analyzed with DDT-RADWT. Firstly, we set p = 1, q = 2, s = 1. The
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Figure 5.7 Original signal (red, �rst row) and the normalized coe�cients of each subband (blue,
rows 2 to 7) by using low Q-factor wavelet analysis (equivalent to dyadic-DWT).

Figure 5.8 Original signal (red, �rst row) and the normalized coe�cients of each subband (blue,
rows 2 to 12) by using high Q-factor wavelet analysis.
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dilation factor is 2 and the redundancy is 2. When the parameters are chosen in this

way, the resultant transform employs low Q-factor wavelets and is equivalent to classic

dyadic-DWT. The analysis is done for 5 levels. Secondly, same signal is analyzed with

high Q-factor wavelets. We set p = 3, q = 4, s = 2. The dilation factor is 4/3 and the

redundancy is 2. The analysis is done for 10 levels. In Figure 5.7 and Figure 5.8, the

original forward signal and the normalized coe�cients of each subband, for both low

and high Q-factor wavelets, can be seen. The signal energy percents of each subband

are given on the right side of each subband.

As expected, in both situations, emboli waveform shows itself in the middle

subbands (in the second subband for low Q-factor case and in the second and third

subbands for high Q-factor case). In low Q-factor case, a clear emboli waveform rep-

resentation can not be achieved because of the noise components. On the other hand,

a clear representation of emboli information can be achieved when a high Q-factor is

employed. Additionally, in Figure 5.9 and Figure 5.10, reconstructed each subband,

with both low and high Q-factor wavelets, are given respectively. As it can be seen, in

high Q-factor case, a clearer emboli information is achieved and at the last subband

artifact waveform is also extracted.

5.6 Discussion and Conclusions

In this chapter, a directional DT-RADWT, which can be applied directly to

quadrature signals and have the ability of extracting directional information during

analysis, is introduced. With the proposed directional transform, the traditional PFT

step, which is used for extracting directional signals prior to wavelet analysis, is elim-

inated. In the DDT-RADWT, frequency resolution of wavelet atoms can be changed

by tuning their Q-factor according to the behavior of analyzed signal. Additionally,

the proposed transform has near shift-invariance property, which is very important

in processing quadrature Doppler signals due to the phase relationship between their

in-phase and quadrature-phase components. In order to measure the performance of

the proposed method, a quadrature Doppler signal is processed with both the classical
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Figure 5.9 Original signal (red, �rst row) and the recontructed subbands (blue, rows 2 to 7) by
using low Q-factor wavelet analysis (equivalent to dyadic-DWT).

 

Figure 5.10 Original signal (red, �rst row) and the recontructed subbands (blue, rows 2 to 12) by
using high Q-factor wavelet analysis.



102

PFT and DDT-RADWT. The results verify that with the DDT-RADWT, directional

information can be obtained accurately at the end of the transform without any dis-

tortion in the emboli information. Additionally, in order to test the ability of proposed

transform in representing emboli information in decomposed subbands, a quadrature

Doppler ultrasound signal is analyzed with DDT-RADWT with low and high Q-factors.

It is seen that with a high Q-factor analysis, a clear emboli information can be achieved.

In the future, proposed DDT-RADWT can be employed in a real-time embolic signal

detection algorithm in order to obtain sparse representations of emboli information in

decomposed subbands.
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6. CONCLUSIONS AND FUTURE WORKS

6.1 General Conclusions

Human body contains many complex systems which perform many physiological

processes. These physiological processes constantly produce information about our

body condition. This information can be observed through physiological instruments

that measure heart rate, blood �ow, oxygen saturation levels, blood glucose, lung

activity, brain activity and so forth. Traditionally, such measurements are captured at

speci�c points in time and physicians actually see less than one percent of these values,

and their treatment decisions are made based upon limited information. However,

biomedical signals constantly capture valuable information about these physiological

processes as an output of physiological instruments and using digital signal processing

techniques, useful supplementary information can be provided from these signals which

can improve the success of clinicians' decisions.

Most of the biomedical signals, due to the inherent time-varying character of

the underlying physiological processes, are non-stationary, which means their statistical

properties are changing with time. Wavelet transform provides a time-scale represen-

tation of signals which have good frequency resolution at low frequencies, but also have

good time resolution at high frequencies. Because of its adjustable time-frequency rep-

resentation capability, wavelet transform plays a key role in processing non-stationary

biomedical signals.

Automatic computerized analysis of non-stationary biomedical signals has be-

come an active �eld due to the improvements in digital acquisition systems, computer

technology and wavelet based processing techniques in the last three decades. In this

thesis, novel Fourier/wavelet transform based biomedical signal processing algorithms,

which can be used in automatic diagnosis systems, and novel complex wavelet trans-

forms for processing speci�c type of biomedical signals are proposed. As biomedical
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signals, acoustic lung signals and blood �ow signals in quadrature format are employed.

In the �rst part (Chapter 2) of this thesis, a pulmonary crackle detection method

in which the DTCWT is used as a pre-processing step for removing the frequency

bands containing no-crackle information is proposed. In this method, various feature

sets using TF and TS analysis are extracted and fed to the SVMs, MLP, and k -NN

classi�ers. It is observed that the overall accuracy and crackle detection performances

of the SVMs appear to be superior over the k -NN and MLP on both undenoised and

denoised data. Denoising by using DTCWT improves the success of the proposed

method in detecting the crackle signals for all classi�ers. It is also concluded that

ensemble of networks increases the overall and TP accuracy performances of SVMs

classi�er for all ensemble results.

In the second part (Chapter 3), an emboli detection system in which the forward

and reverse blood �ow signals are transformed by using FFT, DWT and DTCWT for

feature extraction is proposed. In order to get rid of the coe�cients which do not con-

tain relevant information, PCA is applied to these extracted features. The resultant

new features of the forward �ow are fed to SVMs and k -NN classi�ers with di�erent

training dataset sizes and proportion of variance values. The results show that SVMs

based detection methods are superior to k -NN based methods for all the feature ex-

traction methods and the DTCWT is superior to the other coe�cient transformation

techniques. After proving that the best classi�cation accuracies are yielded by SVMs,

the probability distributions obtained by running distinct SVMs on forward and reverse

directional signals separately are concatenated and used as a single input to the en-

semble system. Using stacking as an ensemble method to take di�erent representations

of the data into consideration, namely forward and reverse directional signals, boosts

the accuracy rate of the classi�cation.

In the third part (Chapter 4), novel asymmetrical and symmetrical directional

complex discrete wavelet packet transforms, which are specially designed for processing

quadrature signals, are introduced. They have the ability of extracting directional in-

formation during analysis. With these proposed directional transforms, the traditional
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PFT steps, which are used for extracting directional signals prior to wavelet analysis,

are eliminated, resulting in a signi�cant reduction in overall computational costs of the

analysis system. As it can be seen from the results, the proposed methods work well

for signals having narrow-band characteristics such as embolic signals.

Lastly in the fourth part (Chapter 5), a novel directional complex rational-

dilation wavelet transform, which can be applied directly to quadrature signals and have

the ability of extracting directional information during analysis, is introduced. In the

proposed transform, frequency resolution of wavelet atoms can be changed by tuning

their Q-factor according to the behavior of analyzed signal. Additionally, the proposed

transform has near shift-invariance property, which is very important in processing

quadrature Doppler signals due to the phase relationship between their in-phase and

quadrature-phase components. The results verify that with the proposed transform,

directional information can be obtained accurately at the end of the transform without

any distortion in the emboli information. It is also seen that by tuning a proper Q-

factor, clearer representations of emboli information (with less noise), when compared

with the traditional dyadic discrete wavelet transform, are achieved in decomposed

subbands with proposed method.

6.2 Future Works

Auscultation of pulmonary sounds via a stethoscope is a widely used, economic

and noninvasive diagnostic method for chest diseases. However, it is highly subjective

method that depends on the experience of the observer. Stethoscope has limited fre-

quency response resulting in loss of valuable crackle information that found in frequen-

cies above 120 Hz. Moreover, the information obtained with the stethoscope cannot be

recorded in computers and is not appropriate for long term monitoring. Therefore, in

Chapter 2 an automated crackle detection algorithm that can be reliably used in the

analysis of pulmonary signals is proposed. In the future, the proposed crackle detection

algorithm can be implemented in real-time as an online crackle detection system, which

can be used in the pre-diagnosis of airways diseases such as pneumonia, bronchiecta-
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sis, �brosing alveolitis and asbestosis. For implementation, digital signal processors

and �eld-programmable gate arrays can be employed and by this way portable multi-

channel pulmonary sound acquisition devices that are used for home-care patients can

be designed. Additionally, this real-time portable device can be used in the diagno-

sis and treatments of children and pregnant patients for whom radiography may be

harmful.

Stroke is a condition causing partial or total paralysis, or death. The most

common type of stroke occurs when a blood vessel in or around the brain becomes

plugged. The plug can originate in an artery of the brain or somewhere else in the body,

often the heart, where it breaks o� and travels up the arterial tree to the brain, until it

lodges in a blood vessel. These travelling clots, which are particles larger than red blood

cells, are called emboli. Traditionally, for detecting embolic signals, visual detection by

using individual spectral recordings and acoustic detection by hearing the Doppler shift

sound by human experts are the gold standards. However, these types of detection are

time consuming (recordings of the patients may last for one hour or more) and subject

to observer's experience. As a consequence of these drawbacks, an automated system

is required for a reliable and clinically useful emboli detection technique. Therefore, in

Chapter 3, an automated blood �ow analysis system is introduced, which can be used

for predicting whether a signal is emboli, artifact or speckle. As a future direction, the

introduced system can be implemented as a real-time application that can be utilized

in the asymptomatic circulating cerebral emboli detection, which allows the selection

of patients who are prone to stroke and would particularly bene�t from preventative

treatment.

In Chapters 4 and 5, special directional complex discrete wavelet packet and

directional complex rational-dilation wavelet transforms for processing quadrature for-

mat signals are proposed respectively. These transforms can be directly applied to

quadrature signals and this reduces the computational complexity of quadrature signal

processing procedure when compared with existing methods. Embolic signals, which

can be used in the diagnosis of stroke, are extracted from quadrature blood �ow sig-

nals. An important property of the proposed directional transforms is that they have
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adjustable time frequency resolution resulting in the ability of obtaining the optimum

representation of the analyzed signal. Therefore, in the future, the proposed directional

transforms can be applied to quadrature blood �ow signals as a denoising or feature

extraction operator with the aim of obtaining sparse representations of embolic signals

in the scale domain. Additionally, as another future direction, proposed directional

transforms can be applied to the other �elds of science such as communication, radar,

sonar, and MR imaging, where the quadrature format signals are used.
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