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ABSTRACT

MODELING AND EVOLUTIONARY ANALYSIS OF GENE
REGULATORY NETWORKS

In Systems Biology and more recently emerging �eld of Synthetic Biology,

mathematical modeling has become an indispensable component of research. As com-

plementary to the experimental studies, computer simulations are used to accelerate

the hypothesis generation-validation cycle of research in biological systems.

This thesis is mainly concerned with modeling and inference of gene regulatory

dynamics on the basis of gene expression patterns. At �rst, we make a statistical

analysis over randomly generated genetic networks, based on their oscillatory dynamics.

Then, in our model problem, we aim to design a family of genetic networks that exhibit

stable periodic oscillations with a prescribed period. Later, we investigate the temporal

behaviour of a system utilizing a computer simulation. We design such circuits on the

basis of in silico evolution of the corresponding network model.

The approach starts with a randomized gene network. Then, structural rewiring

mutations are applied to the networks. In this process, evolving networks are selected

depending on their closer approach to the targeted dynamics, after a mutation. By us-

ing this method, networks with required oscillation periods are constructed by changing

the architecture of regulatory connections between the genes.

In addition, we choose a small genetic network that exhibits chaotic dynamics,

and look at the change of its dynamics against a system parameter. Such an approach

is useful in deriving the characteristics of these systems under speci�c variations.

Keywords: Dynamical Systems, Gene Regulatory Networks, Evolutionary Algorithm,

Mathematical Modeling, Inference, Optimization.
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ÖZET

GENET�K DÜZENLEY�C� A�LARIN MATEMATiKSEL
MODELLENMES� VE EVR�MSEL ANAL�Z�

Matematiksel modelleme yöntemleri, Sistem Biyolojisi ve Sentetik Biyoloji

alan�ndaki ara³t�rmalar�n vazgeçilmez bir unsuru haline gelmi³tir. Biyolojik sistem-

leri inceleyen bilgisayar simülasyonu çal�³malar�, deneysel çal�³malara tamamlay�c� bir

yöntem olarak hipotezin geli³tirilmesi-do§rulanmas� döngüsünde kullan�lmaktad�r.

Bu çal�³ma, gen ekspresyonu modellerini baz alan genetik düzenleyici dinamik-

lerin modellenmesi ve analizi hakk�ndad�r. Çal�³mam�za rastgele olu³turulmu³ gen

a§lar�n�n osilasyon dinami§ine ba§l� bir istatistiksel analizle ba³l�yoruz. Sonras�nda sta-

bil periyodik osilasyonlar yapan bir grup gen sistemi tasarlayarak, bilgisayar simülasy-

onu arac�l�§�yla bu sistemlerin davran�³�ndaki zamana ba§l� geli³imleri inceliyoruz.

Ara³t�rmam�z, genlerin regülasyonunun aktivasyon ya da bask�lanma etkile³imiyle

sa§land�§�, rastgele olarak olu³turulmu³ bir gen sistemi ile ba³lat�l�yor. Sonras�nda, gen-

ler aras� etkile³imsel mutasyonlar uygulan�yor. Mutasyonlar sonras� dönü³me u§rayan

sistemler, bir evrimsel algoritma arac�l�§�yla hede�enen dinamiklere yak�nsamalar�na

bak�larak bir seçime tabii tutuluyor. Bu yöntemle, genler aras� düzenleyici yap�lar

dönü³türülerek, hede�enen osilasyon periyoduna sahip sistemler in³a edilmi³ oluyor.

Ek olarak, kaotik dinami§e sahip bir gen modeli ele alarak, modeldeki bir

parametre varyasyonuna kar³�l�k sistemdeki dinamik de§i³iklikleri gözlemliyoruz. Bu

yöntemle, spesi�k varyasyonlar alt�ndaki benzer sistemlerin karakteristi§inin nas�l be-

lirlenebilece§ini gösteriyoruz.

Anahtar Sözcükler: Dinamik Sistemler, Genetik Düzenleyici A§lar, Evrimsel Algo-

ritma, Matematiksel Modelleme, Ç�karsama, Optimizasyon.
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1. INTRODUCTION

All living organisms exhibit a complex hierarchical organisation of small building

blocks. The whole information required for the functioning of a cell is encoded in the

DNA sequence that is passed on from one cell to another in inheritance by genes.

Expression of the genes leads to formation of proteins, then a combination of these

proteins de�nes the speci�c functionality of the cell. Malfunctioning at any stage of

these building blocks may cause a living organism to stop performing normally leading

to a diseased state, and the most causes of diseases can be mapped to the abnormal

activity of some genes in the cells.

It has been discovered in the early sixties that, some proteins can regulate (by

activating/inhibiting themselves or other genes) the expression of genes in a living

organism. ([2],[3]) Furthermore, the researchers realized that these regulations of gene

expression occur through complex networks of regulatory interactions in a nonlinear

way between genes, mRNAs, proteins and small molecules. Understanding the complex

networks of gene regulatory interactions is still in progress. Mathematical modeling

and computer science techniques are the essential tools to understand these complicated

interactions e�ectively.

The Human Genome project [4], one of the primary aims of which was to identify

all protein coding genes, has estimated and identi�ed approximately 20, 000 − 25, 000

protein coding genes in humans. With the identi�cation of all protein coding genes,

various high-throughput technologies (such as DNA microarrays [5], protein arrays [6])

have emerged since the completion of the project. These technologies can measure the

expression (or activity) of all genes in a genome simultaneously. By measuring and

comparing the expression of genes in an unhealthy vs. a healthy cell, it is now possible

to identify genes responsible for various diseases at the entire genome level.
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On the other hand, these high-throughput technologies have lead to the genera-

tion of enormous amounts of experimental data. However, this is a slow and exhaustive

process that fails to adequately approach the true complexities of living phenomena

and is of limited relevance to biological systems as a whole. With such an amount of

new biological data from research labs, a new branch of research is emerged for the

interpretation of data in the most e�cient manner ([7], [8], [9]). Many advanced sta-

tistical and computational tools have been developed to help biologists identify novel

targets from their experimental data.

Studying the behavior of genes with respect to other genes (or proteins) that

are known to play a role in a speci�c disease, is critical to manipulate these genes using

drug molecules. So, the focus of computational and experimental tools has shifted from

just measuring the expression of genes, to construction of gene-gene, gene-protein and

protein-protein interaction networks ([10], [8], [9]). New computational methods are

being developed to model and analyse these interaction networks.

Interaction networks can represent the dynamic behaviour in terms of the �ow of

signaling from a biological entity to another and are named such as signaling pathways,

gene regulatory networks (GRNs). These GRNs can be seen as dynamical systems of

sets of genes and proteins where the gene (or protein) expression is a function of the

expression of other genes (and proteins) with which it can directly interact [11] . By

modeling the dynamical system represented by GRNs, it is possible to make an in silico

simulation of the evolution of a gene (and protein) expression over time. Also, one can

study how the system behaves when it is slightly changed to re�ect gene mutations

inside a cell.

For modeling the behavior of a cell, one could either gather the crucial informa-

tion on the precise biochemical processes or choose to model the �ow of information

in gene interaction networks. In this dissertation, we choose the latter approach to

identify qualitative behavior of the biological system under study.
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Qualitative modeling of GRNs has been a research interest to theoretical biol-

ogists for at least last four decades ( [12], [13], [14], [15]). Most of the initial focus of

qualitative modeling was on studying theoretical properties of the dynamical nature

of GRNs rather than developing computational methods for modeling large GRNs, as

for this study. However in the last decade, a need for e�cient computational tools for

qualitative modeling of GRNs has been arised so as to understand the experimental

data in the context of the dynamical behavior of a cell ([16], [17]).

1.1 Systems Biology and Synthetic Biology

Cells, tissues, organs, organisms and ecological webs are systems of compo-

nents with speci�c interactions, so a system-level understanding should be the primary

achievement of biology. The purpose of Systems Biology is to describe these interac-

tions in precise quantitative mathematical terms that allow making predictions about

how cells may respond to external and internal perturbations [18]. So, it integrates

quantitative experimental results, then builds predictive models.

Systems biology descriptions rely on the modeling and the simulation of so-

called networks, loosely de�ned as ensembles of biological objects (such as genes, RNAs,

proteins, etc.) interacting with each other. One advantage of this approach is that it

considerably simpli�es the problem of conecting networks structure and kinetics to

biological behaviour, while being complex enough to have access to a wide range of

realistic dynamics.

Systems biology can proceed in two directions. A �bottom-up� approach, exam-

ines the mechanisms through which functional properties arise in the interactions of

known components. Thus, a mathematical formalism describes the changes in concen-

tration of each gene transcript and protein as a function of their regulatory interactions.

Such a network can then be used to probe the behaviour of the biological process using

computer simulations and mathematical analysis, to generate novel hypotheses to be

then tested in vivo. The �top-down� approach, on the contrary, is called �reverse en-



4

gineering� and, typically, identi�es molecular interaction networks based on correlated

molecular behavior that observed in gene-gene interactions [19].

In this way, systems biology integrates experimental and modeling approaches

to explain the structural and functional organization of complex biological systems as

networks of dynamic interactions [20]. Over the last two decades, mathematical and

computational techniques have been widely applied in biology aiming to understand

how cells behave and di�erentiate as the result of tens of thousands of molecular in-

teractions. So, computational systems biology, through theoretical exploration and

modeling, provides a powerful foundation from which to address critical scienti�c ques-

tions [8].

Furthermore, advances in molecular manipulation techniques and accumulation

of genetic information, are progressively opening new possibilities for gene therapy and

biomedical engineering. By combining naturally occurring genetic components in novel

ways, it has become possible to arti�cially engineer genetic networks with sophisticated

functional capabilities. The desired characteristics of such networks can be rationally

designed and tested through predictive modeling. This emerging discipline of Synthetic

Biology can be de�ned as the engineering of biology.

Similar to electrical networks, genetic networks possess �input� and �output�

functionality such that they are capable of responding in highly speci�ed mechanisms.

The e�ective control of gene expression leads to the development of regulatory circuits

with a broader range of functional behaviors. Functions like threshold-based switch-

ing, and oscillatory or sequential expression, are promising approaches to construct

autonomous synthetic regulatory systems.

Synthetic biology relies on mathematical modeling, informatics and control the-

ory; and shares tools from genetic engineering, bioengineering, systems biology, and

many other engineering disciplines. Synthetic biology studies does not only investigate

the e�ects of genetic and pathway modi�cation or the cellular responses on genetic vari-

ation/environmental perturbation, but also design and build biological systems with
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novel cellular functions, combining in silico and in vivo experimental approaches [18].

Genetic networks have been studied theoretically and experimentally for many

years, usually by focusing on analysis of naturally occurring circuits. Two pioneering

papers have reported the de novo design of a functioning biological circuit using well-

characterized genetic elements. The toggle switch [21] forms a synthetic, addressable

cellular memory unit and has implications for biotechnology, biocomputing and gene

therapy. Repressilator network [22], on the other hand, was implemented in Escherichia

coli and designed to exhibit a stable oscillation which is reported via the expression of

green �uorescent protein, and acts like an electrical oscillator system with �xed time

periods. Both circuits were designed with the aid of mathematical models, and their

results show that it is possible to design and construct an arti�cial genetic network

with new functional properties.

Such synthetic circuits are used in vivo models to explore the relation between

the structure and function of a genetic circuit [23]. Within a short period of time,

these rational model-guided approaches have turned out to be very fruitful for engi-

neering standardized genetic modules for biotechnological applications from a library

of characterized promoters [24].

A recent survey [25] resumes two periods of synthetic biology by pointing out

both in silico and in vivo approaches. Accordingly, in the �rst wave of synthetic biology,

basic elements are combined to form small modules with speci�ed behaviours. Such

modules include switches, cascades, pulse generators, time-delayed circuits, oscillators,

spatial patterning and logic formulas which can be used to regulate gene expression,

metabolism and cell-cell communication. Then, on the second wave of synthetic biology,

these basic parts and modules are integrated to create systems-level circuitry.

The utility of a model in both Systems and Synthetic biology lies in its ability to

formalise the knowledge about the biological process at hand, to identify inconsistencies

between hypotheses and observations, and to predict the behaviour of the biological

process in yet untested cases. In silico studies of the behaviour of a biological system is
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nowadays often used to complement in vivo experimental observations and accelerate

the hypothesis generation-validation cycle of research [26].

1.2 Gene Regulation

The cell is the basic structural and functional unit of all known living organisms.

The nature of a cell and its functions are mainly characterized by its DNA. DNA

is a nucleic acid that contains the genetic instructions used in the development and

functioning of the organisms. The whole hereditary information that is encoded either

in the DNA or, for some virus, in RNA.

DNA has two strands, the coding strand and the noncoding strand. The strand

of DNA that does not carry the information necessary to make proteins is called non-

coding DNA. Only the coding strand contains the information for making proteins.

The DNA segment carrying the genetic information to produce a polypeptide chain is

called genes. Thus, the genome includes both the genes and the non-coding sequences

of the DNA/RNA.

The so-called central dogma of molecular biology comprises the three major

processes: replication, transcription, and translation. Replication is the copying of

parental DNA to form daughter DNA molecules with identical nucleotide sequences.

Transcription is the process by which the genetic information stored in DNA sequence

is copied precisely into messenger RNA. Translation is the genetic information encoded

in messenger RNA being translated into a protein polypeptide. These processes are

illustrated in Figure 1.1.
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Figure 1.1: The classical central dogma de�nition at whole genome level [27].

Proteins or protein complexes are involved in almost all biochemical processes

of a living organism. For example, they are essential for enzymatic catalyzation of

biochemical reactions, cell signalling, identifying and neutralizing extraneous objects in

cells as an immune response, regulating transcriptional processes of genes, maintaining

cell shape in the cytoskeleton, and many other functions.

DNA is composed of a sequence of the four nucleotides Adenine, Cytosine, Gua-

nine, and Thymine. The prescription for building proteins is in the speci�c regions

of DNA, are de�ned as genes. This information is transcribed and translated into

polypeptides which in turn are transformed into functional proteins. In eukaryotic

cells, these processes of transcription and translation involves several steps that are

illustrated in Figure 1.2.

Figure 1.2: Illustration of gene expression in eukaryotic cells [28].
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1.2.1 Transcriptional Regulation

Gene expression starts with transcription (Figure 1.2), that is the synthesis of a

messenger RNA (mRNA) from a DNA template that have the coding and regulatory

regions. Coding sequences of DNA are transcribed into a complementary mRNA by the

RNA polymerase. A collection of proteins called transcription factors (TFs) regulates

the initiation of transcription. They promote or prevent the binding of the enzyme

RNA polymerase by binding to the corresponding regulatory region of the gene. When

the transcription is initiated, an mRNA copy can be synthesized.

The mRNA is then translated into a protein, the gene product. The rate of

transcription, i.e. the number of mRNA molecules produced per unit time, is con-

trolled by the promoter, a regulatory region of DNA. RNA polymerase binds a speci�c

binding site (DNA sequence) at the promoter, thereby leading to the assembly of a

multimolecular transcription system.(Figure 1.3)

Figure 1.3: Each gene is preceded by a regulatory DNA region called promoter. The

promoter contains a speci�c site that can bind RNA polymerase (RNAp). [18]

After accomplished splicing, the mature mRNA is transported through pores in

the nuclear envelope to the cytoplasm (Figure 1.2), where it is translated into the �nal

protein during the next steps.
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1.2.2 Feedback Control by Transcription Factors

Genes are regulated by a complex combinatorial interplay of TFs. These factors

are gene products and their production is controlled by further TFs. These connections

between transcription factors and genes establish an detailed GRN (Figure 1.4). The

architecture of this network determines the temporal order of speci�cation events in

organisms.

Figure 1.4: Simpli�ed model of transcriptional regulation. Genes are transcribed to

mRNAs and then translated into proteins catalyzed by certain enzymes. Some proteins

serve as regulators for the transcription of genes. Then, these mRNAs and proteins are

degraded. [28]

1.3 Modeling of Gene Regulatory Networks

Genetic oscillatory networks are found in many biological pathways, including

the circadian rhythm, cell cycle regulation, apoptosis, metabolism, and morphogenesis.

Such networks involve hundreds of reactions and thus are extremely di�cult to char-

acterize biologically and mathematically. This highlights the importance of methods

to simplify the analysis of these networks.
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Interaction networks can represent the dynamic behaviour in terms of the �ow

of signaling from a biological entity to another and are referred by various names such

as signaling pathways, gene regulatory networks or genetic regulatory networks. These

GRNs can be seen as dynamical systems of sets of genes and proteins where the gene

(or protein) expression is a function of the expression of other genes (and proteins)

with which it can directly interact [13].

A GRN can be considered at varying degrees of complexity and is usually de-

scribed through a collection consisting of genes with regulatory components, nucleic

acids, proteins and signaling molecules. In the transcriptional regulatory networks,

usually a number of proteins act as regulators (i.e. activators or repressors) on the

activity of certain genes by altering their expression rates and thereby changing the

production rates of their protein products.

Figure 1.5: An example of a GRN that consists of 4 genes [18].

The graphical representation of interactions between di�erent biological enti-

ties is convenient to get directly a general idea and to gain a better global and local

understanding of the whole intricate system. How a collection of regulatory proteins

associates with genes across a genome can be described as a network in which the nodes

are genes and the edges are regulations among them. In Figure 1.5, directed edges with

an arrow end represents activation, whereas a dash end represents inhibition.
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1.3.1 Mathematical Representation of GRNs

The most straightforward way to model a GRN is to regard it as a graph.

Formally, a graph is de�ned as a tuple (V,E), with V indicating a set of vertices, and

E ⊆ V × V indicating a set of edges as G = (V,E) [29]. The edges represent the

relation between vertices and may be directed or undirected. A directed edge is a pair

(i, j) ε E of vertices, where i denotes the head, and j denotes the tail of the edge. (i, j)

is an undirected edge if the order of the vertices is of no importance.

The vertices of a graph correspond to genes or other elements of interest in

the cell, while the edges denote interactions among the genes. In the case of directed

graphs, edges point from regulating genes to regulated genes, for example, from genes

encoding TFs to the targets of the TFs. The graph representation of a GRN can be

generalized in several ways. For instance, the vertices and edges could be labeled,

by adding information about genes and their interactions. De�ning a directed edge

as (i, j, s), with s equal to + or −, allows one to indicate whether i is activated or

inhibited by j, respectively.

Figure 1.6: (a) Directed graph representing a GRN and (b) its de�nition.

Many of the pictures of biological networks found in the literature can be mapped to

some sort of graph representation. An example of a simple directed graph model is

shown in Figure 1.7. This graph is described by a matrix and a list of regulations.

Positive and negative e�ects of regulators on targets are distinguished in the graph

by edges with arrows and bars, or in the matrix and table by 1 and -1, respectively.

Components, i.e., genes, mRNAs, and proteins associated to the same node have the
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same index i ε{1, ..., n}.

Figure 1.7: Mathematical representations of a gene regulatory network [28].

Over the last several decades, mathematical modeling of gene circuits have be-

come a mature discipline with a vast literature that includes a number of generally

used approaches such as directed graphs, Bayesian networks, Boolean networks, ordi-

nary and partial di�erential equations, stochastic equations, and rule-based formalisms.

In this study, we will be using the ordinary di�erential equations (ODEs) approach,

which is possibly the most often used formalism for the modeling of gene networks.

1.3.2 Simplifying Approximations in Biological Systems Modeling

A mathematical model is a formalization of the biological knowledge about a

certain system, where each component of the system is described by an equation, which

represents its behaviour as a function of its regulators.

Ideally, all information relevant to a system (concentrations, rates of events,

etc.) would be known to make a maximally accurate in silico replica of the system.

Unfortunately, even for the best-examined systems, the chosen framework fails to meet

the standards of describing the variety of elementary processes, even qualitatively.

So, even at the expense of accuracy, assumptions are necessary. It can be ben-

e�cial to exclude some known data to accommodate available computational power

and to facilitate the analysis as well. Generally, two main approaches (qualitative and
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quantitative) are utilized to overcome such challenges in modeling (Figure 1.8).

Figure 1.8: Di�erent modeling techniques for simulating GRNs.

Qualitative Models

The simplicity of qualitative models is useful to gain insight into general phe-

nomena of complex systems. So, in qualitative modeling, we need to retrieve from

biological data at least the information required for the formulation of logical state-

ments describing, for instance, causal relationships between events involving model

components.

In qualitative modeling, kinetic processes are simulated by tracking over discrete

time states of the system. The weak speci�cation of such models allows simulations to

explore the space of possible behaviours. Moreover, it provides high-level predictions

applicable to a whole family of systems. For example, Boolean models can be applied

to capture the essentials in a conceptual model including chaotic behavior. A revealing

example coming from biology is the supposition of Rene Thomas that multi-stationarity

(the existence of multiple steady-states) requires the presence of a positive feedback

loop in the network [30].

Quantitative Models

Compared with qualitative models, quantitative ones o�er greater detail in mim-

icking reality. Moreover, rich qualitative insights on the system are possible using theo-

retical tools such as bifurcation and stability analysis, which, for example, indicate the
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precise boundaries of parameter ranges to which steady states or sustained oscillations

correspond, or reveal the stability of the solutions before actually solving the dynamical

equations representing the system. Quantitative models can be either deterministic or

stochastic.

Deterministic formalisms are commonly used to describe the average behaviour

of a population of cells [31]. They have been shown to be viable for the analysis of

synthetic networks in a number of works (e.g. [22], [21], [32], [33], [34]). The reaction

mechanism is described by applying the law of mass action: the rate of any given

elementary reaction is proportional to the product of the concentrations of the species

reacting in the elementary process (reactants) [18].

A better comprehension of the relation between the structure and functioning

of a regulatory system calls for the use of dynamical models. ODEs [35] approach

is probably the most-widespread formalism for continuous modeling of the dynamical

behavior of cellular interaction networks. When ODEs are used, the cellular concen-

tration of proteins, mRNAs and other molecules are represented by continuous time

variables. The functional descriptions of transcriptional interactions are usually non-

linear Hill function or Michealis-Menten, where the �rst one di�ers by considering the

cooperativity of a protein on the gene of interest [18].

In this formalism, the concentrations of gene products (mRNAs or proteins) are

represented by continuous, time-dependent regulatory variables, x(t), t ε T where T is

a closed time interval. The variables take their values from the set of nonnegative real

numbers x.

The regulatory interactions between genes are modeled by a system of ODEs

having the following general form:

dxi
dt

= fi(x), i ε{1, ..., n} (1.1)
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where x(t) = {x1(t), ..., xn(t)} is the vector whose component xi(t) represents the

concentration of the ith gene product of the system, for example proteins at time t.

The fi is usually, highly nonlinear function which represents the regulatory interactions

of the n genes on the ith gene.

The above system of equations describes how the temporal derivative of the

concentration variables depends on the values of the concentration variables themselves.

The equations consist of production and degradation constants for each variable in the

system, introduced by Tyson and Othmer [36], which enables the feedback loops to be

modeled.

Our model derivation utilizes two modeling approaches (Hill and Michealis-

Menten formalisms) which are based on ODE modeling. In Chapter 2, these ap-

proaches will be examined by both mathematical derivations and graphical representa-

tions. Also, two example models from Synthetic Biology which employ these formalisms

will be represented.

1.4 Nonlinear Dynamics and Chaos

Rhythms occur at all levels of biological organization, from unicellular to multi-

cellular organisms, with periods ranging from fractions of a second to years. However,

oscillatory behavior does not always possess a simple periodic nature. Thus, both in

chemistry and biology, oscillations sometimes present complex patterns of bursting,

in which successive trains of high-frequency spikes are separated at regular intervals

by phases of quiescence. Yet another mode of complex oscillatory behavior is char-

acterized by its aperiodic nature and sensitivity to initial conditions. Such chaotic

oscillations have been observed in chemical reactions ([37], [38]) and in a variety of

biological contexts ([39], [40], [41]).

So, complex dynamical behavior on a network can be found in a variety of
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biological networks, such as GRNs, neural networks and the food web. Such systems

share a common characteristic: the observed dynamics are robust against disturbance

introduced in the dynamics, as well as against disturbance in the network. For example,

gene expression patterns obtained through transcription/translation regulations are

kept stable in spite of extrinsic noise (i.e. perturbations in dynamics) and mutations

(i.e. perturbations in a network).

It has long been hypothesized that living systems favor the edge of chaos, where

stability and chaoticity coexist. Originally, Kau�man [42] introduced the Boolean

network model as a model of a GRN, and proposed the hypothesis that living systems

prefer the edge of chaos because it allows systems to have complex behaviors.

Chaotic motifs are minimal structures with the simplest interactions that can

generate chaos. In this section, we will analyse a chaotic motif as a simple three-variable

biochemical system, which is also introduced in [1].

1.4.1 Bifurcation

Bifurcation theory, tells us how the generic properties of a dynamical system

depend on parameter values. ([43], [44]). The behaviour of a regulatory network is

characterized by the attractors of its vector �eld in a multidimensional state space that

we cannot visualize. The nature of these attractors is determined by parameter values

that are chosen from a multidimensional parameter space that might be extremely

large. Fortunately, bifurcation theory predicts that there is only a limited number

of ways in which these attractors might transform as we move continuously through

parameter space.

These transformations can be visualized by choosing a single variable as being

representative of all the interacting proteins in the network, and a single parameter as

representative of all the rate constants that are involved in these reactions. By plotting

the variable against the parameter (a bifurcation diagram), we get a visual represen-
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tation of the behaviour of the dynamical system in dependence on its parameters.

Figure 1.9 shows a simple dynamical system undergoing a series of bifurcations

leading to a chaotic state.

Figure 1.9: The attractor as a function of µ for the Feigenbaum logistic map f(x) =

4µx(1−x). For small µ < µ1 , repeatedly iterating f converges to a �xed-point x∗(µ). As

µ is raised past µ1 , the map converges into a two-cycle; then a four-cycle at µ2, an eight-

cycle at µ3... These period-doubling bifurcations converge geometrically: µ∞−µn ∝ δ−n

where δ = 4.669201609102990... is a universal constant. At µ∞ the system goes chaotic.

[45]

1.4.2 Period-Doubling

The appearance of aperiodic oscillations beyond a point of accumulation of

a cascade of period-doubling bifurcations is one of the best-known scenarios for the

emergence of chaos [46]. The limit cycle undergoes a series of bifurcations through

which the oscillations successively acquire 2, 4, 8, 16, ...2n distinct maxima per period;

this cascade of period-doubling bifurcations leads to aperiodic oscillations [43].

In the Section 4.3, we will investigate period-doubling bifurcations and corre-

sponding trajectories of a 3-gene network.
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2. MODEL DEVELOPMENT

2.1 Mathematical Modeling of Gene Regulation

2.1.1 Michaelis Menten Kinetics of Transcriptional Activation

A regulator can reversibly bind the binding site D of the gene Y (denoted D0

if unbound and D1 if bound). The binding/unbinding rates are denoted by k1 and

k−1. Only when activated by the regulator X, the transcription of gene Y can start.

The transcription is ensured by the RNA polymerase, P. In a second step, Y-mRNA is

translated into Y protein. The transcription/translation rate is denoted by kt .

The reaction steps for these cases are the following:

ks−→ X
kd−→

X +D0

k1


k−1

D1

D1 + P
kt−→ D1 + P + nY

(2.1)

In this scheme, we can distinguish several time scales (fast vs slow reactions):

The binding/unbinding of the regulatory protein to DNA can occur several times by

second, while processes like protein synthesis and gene transcription last over several

minutes. Thus, to simplify, the transcription of gene Y and the translation of Y-mRNA

can be reduced into a single step. So, the kinetics of the above reaction scheme can be

written as:



19

dX

dt
= ks − k1D0X + k−1D1 − kdX

dD1

dt
= k1D0X − k−1D1

dY

dt
= nktPD1

(2.2)

Because of the fast binding-unbinding rate (k1 and k−1 are high), we can apply the

quasi-steady state assumption for the binding/unbinding of the regulator X:

dD1

dt
= 0 (2.3)

That leads to:

k1D0X = k−1D1 (2.4)

De�ning DT = D0 +D1 the total concentration of binding sites, we �nd:

k1DTX = (k1X + k−1)D1 (2.5)

D1 =
k1DTX

k1X + k−1
=

DTX

K1 +X
(2.6)

where K1 is the dissociation constant, K1 =
k1
k−1

. The larger the dissociation constant,

the higher the rate of dissociation of complex D1. So, we �nd:

dY

dt
= nktP

DTX

K1 +X
(2.7)

Therefore, the rate of transcription in the case of an activation by an activator X can

be expressed as:

V ∼ vmax
X

K1 +X
(2.8)

where vmax is a limiting rate, K1 is an enzyme speci�c constant and X is the substrate
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concentration. The term
X

K1 +X
can be interpreted as the probability of the promoter

to be active (i.e. bound to X).

2.1.2 Michaelis Menten Kinetics of Transcriptional Inhibition

We can derive the transcription rate in the case where X acts as a repressor in

a similar way.

Assuming the following reaction scheme

ks−→ X
kd−→

X +D0

k1


k−1

D1

D0 + P
kt−→ D0 + P + nY

(2.9)

with the quasi-steady state assumption

dD0

dt
= 0 (2.10)

we �nd

V ∼ vmax
K1

K1 +X
(2.11)

where vmax is a limiting rate, K1 is an enzyme speci�c constant and X is the substrate

concentration. The term
K1

K1 +X
can be interpreted as the probability that the pro-

moter is active, i.e. not bound to the repressor X.
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2.1.3 Combining Transcriptional Activation and Inhibition

Many genes are regulated by more than one TF. The combined e�ects of these

regulators can be described by a �multi-dimentional transcription function" [18]. A

simple case is in which a gene is regulated by an activator X and a repressor Y. A com-

mon situation is that the activator and the repressor bind the promoter independently

on two di�erent sites.

Figure 2.1: Gene regulation by several TFs.

Thus, there are four binding states of promoter D: D, DX, DY, DXY, where

DXY means that both X and Y are bound to the promoter. Transcription occurs

mainly from the state DX in which the activator but not the repressor is bound.

The probability that X is bound is given by the Michaelis-Menten function (see

section 2.1.1):

Prob(X bound) =
X

K1 +X
=

X/K1

1 + X/K1

(2.12)

The probability that Y is not bound is given by the Michaelis-Menten function

(see section 2.1.2):

Prob(Y not bound) = 1− Y

K2 + Y
=

1

1 + Y/K2

(2.13)

Since the two binding events are independent, the probability that the promoter

D is bound to X and not to Y is given by the product of the two probabilities:
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Prob(X bound and Y not bound) = Prob(X bound) · Prob(Y not bound)

=
X/K1

1 + X/K1

· 1

1 + Y/K2

=
X/K1

1 + X/K1 + Y/K2 + XY/K1K2

(2.14)

and the output promoter activity is given by the production rate vmax times the prob-

ability:

v = vmax ·
X/K1

1 + X/K1 + Y/K2 + XY/K1K2

(2.15)

This results in an �X AND NOT Y� transcription function.

2.1.4 Transcriptional Regulation with Multiple Binding Sites

(Hill Kinetics)

As portrayed in the previous section, most proteins (genes) and enzymes found

in living organisms are composed of more than one, mostly identical, binding sites. If

one ligand binds to such a macromolecule, a conformational change alters the bind-

ing characteristics at all binding sites and a consecutive binding process is triggered.

Such mechanisms, which assume that one ligand supports binding of others is called

cooperativity.

As shown in Figure 2.2, two types of TFs quantitatively control the expression

rate by their present concentration. Inhibitors, here symbolised by I1, ..., Ip, repress

gene expression while activators A1, ..., An cause the opposite amplifying e�ect. By

coupling gene regulatory units we obtain GRNs, where gene products can act as TFs

for other genes within the network.
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Figure 2.2: Gene regulatory unit [47]. Repetitive expression of a gene leads to generation

of a speci�c gene product.

Even at high ligand concentrations, binding will be initiated by occupation of

one binding site by the �rst ligand, followed by binding of the second one, and so on

[48]. This is formulated by the reaction sequence with n ligand binding sites:

E + A� EA

EA+ A� EA2

EA2 + A� EA3

...

EAn−1 + A� EAn

So, the overall reaction sequence is formulated by:

E + nA� EAn

For the derivation of the general binding equation, a rate function r is de�ned as

the quotient from the portion of bound ligand to the total amount of the macromolecule:

r =
[A]bound

[E]0
=

[EA] + 2[EA2] + 3[EA3] + . . .+ n[EAn]

[E] + [EA] + [EA2] + [EA3] + . . .+ [EAn]
(2.16)

The concentrations of the individual macromolecule forms are replaced by the

dissociation constants:
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K1 =
[E][A]

[EA]
; [EA] =

[E][A]

K1

K2 =
[EA][A]

[EA2]
; [EA2] =

[EA][A]

K2

=
[E][A]2

K1K2

K3 =
[EA2][A]

[EA3]
; [EA3] =

[EA2][A]

K3

=
[E][A]3

K1K2K3

...
...

Kn =
[EAn−1][A]

[EAn]
; [EAn] =

[EAn−1][A]

Kn

=
[E][A]n

K1K2K3 . . . Kn

Thus, the rate function evolves as:

r =

[A]

K1

+
2[A]2

K1K2

+
3[A]3

K1K2K3

+ · · ·+ n[A]n

K1K2K3 . . . Kn

1 +
[A]

K1

+
[A]2

K1K2

+
[A]3

K1K2K3

+ · · ·+ [A]n

K1K2K3 . . . Kn

(2.17)

It is known [49] that the �rst ligand binds with very low a�nity (i.e. large K1),

and all subsequent ligands binds with an increasing a�nity (K1 > K2 > . . . > Kn).

Thus, by approximation, all terms except having Kn in the denominator goes to zero.

r =

n[A]n

K1K2K3 . . . Kn

1 +
[A]n

K1K2K3 . . . Kn

(2.18)

Calling Kn = K1K2K3 . . . Kn, the equation becomes:

r =

n[A]n

Kn

1 +
[A]n

Kn

(2.19)
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Therefore, the rate at which the product X is formed, is then approximated by:

dX

dT
= vmax

[X]n

Kn + [X]n
(2.20)

where vmax is a limiting rate, K is an enzyme speci�c constant, n is the Hill coe�cient

and X is the substrate concentration.

For the cooperative inhibition case, the probability that �Y is not bound� can

be found similar to section 2.1.3 , so that the Hill function for the product Y can be

found by [50, p. 291]

dY

dT
= vmax(1−

[Y ]n

Kn + [Y ]n
) = vmax

Kn

Kn + [Y ]n
(2.21)

For further information, mechanistic interpretations and experimental evidence

for Hill functions are discussed in [51].

2.1.5 Example of the Biological Switch

One of the simplest example of model of GRNs using di�erential equations is

the so called biological switch. (Figure 2.3)
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Figure 2.3: Toggle switch design [21]. Repressor 1 inhibits transcription from Promoter

1 and is induced by Inducer 1. Repressor 2 inhibits transcription from Promoter 2 and

is induced by Inducer 2.

The model consists of two genes X1 and X2. We assume the dynamics of the

genes are similar: inhibition by the other gene (described by a Hill function) and

decreasing of the level of concentration of its protein due to degradation. These as-

sumptions lead to the following ODE system:

dX1

dt
=k1

θ2
n

X2
n + θ2

n − γ1X1

dX2

dt
=k2

θ1
n

X1
n + θ1

n − γ2X2

(2.22)

Many biological systems respond switch-like to changes in input. Depending

on the initial conditions, this system converges to one equilibrium point corresponding

to a maximal level of expression of X2 and about no expression of X1, or the level of

expression of X1 is maximal and there is about no expression of X2.

2.1.6 Example of the Goodwin's Model

The second example is a biochemical oscillator which was invented by Brian

Goodwin [52]. The simplest Goodwin model consists three variables (Figure 2.4).

Many versions have been developed after his �rst model [53].
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Figure 2.4: Goodwin's oscillator involves a single gene that inhibits itself, based on a

delayed negative feedback loop.

These three variables model may be written by the following system of di�er-

ential equations:

dX

dt
=k1

Kn

Zn +Kn
− γ1X

dY

dt
=k2X − γ2Y

dZ

dt
=k3Y − γ3Z

(2.23)

The Goodwin model was originally proposed to model oscillatory processes in

enzymatic control processes. Due to its generic nature, it was generalized in many

forms with di�erent contexts (e.g. gene regulatory processes).

2.2 A Graphical Representation of Cooperative Binding Mech-

anism

Regulation of transcription is a dynamic process involving repeated association

and dissociation of TFs to operator sites on the DNA. As previously stated, the times

involved in TF binding to operator sites (less than a minute) are often faster than

durations of protein production (transcription and translation, typically a minute or

more). Therefore, most models assume that association-dissociation occurs so fast that

TF-operator complexes are considered to be in quasi-equilibrium. In other words, we

can assume that, the fraction of time the TF spends bound to the operator adjusts

instantaneously to changes in concentrations of the involved proteins and DNA.



28

Under this approximation, the bound fraction is given by the following function

of the regulator (the TF) concentration, X, and the dissociation constant, K.

bound fraction ≡
X/K

1 + X/K
(2.24)

This is similar to the Michaelis-Menten description of enzyme kinetics, with X

correspondent to substrate concentration, and K correspondent to the Michaelis con-

stant describing substrate enzyme binding. Just as the Michaelis-Menten formulation

can be extended to incorporate cooperative e�ects, so can the above formula be gen-

eralized by adding a Hill coe�cient n:

bound fraction ≡ (X/K)n

1 + (X/K)n
(2.25)

Cooperative binding of multiple TFs, is represented by Hill coe�cients h > 1.

The above equation can be easily extended to describe di�erent TFs competing for

multiple operator sites [54].

A common type of link in a regulatory network (RN) represents a TF activating

or repressing a promoter. If the TF activates the promoter, its activity is proportional

to the bound fraction from Eq. 2.25:

Activity ∼ (X/K)n

1 + (X/K)n
(2.26)

Whereas, if the TF represses the promoter, its activity equals:

Activity ∼ 1

1 + (X/K)n
(2.27)
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A large Hill coe�cient makes activation more sensitive to variations in X when

X is approximately equal to K, approaching a step function when n becomes very large.

Notice that, in Eq. 2.26 and Eq. 2.27 we have not explicitly modeled transcription

and translation by using a separate equation for the mRNA concentration, which is

reasonable whenever mRNA turnover is faster than protein turnover.

Given the simpli�cations made above, the dynamics of the concentration of a

protein, X, produced from a gene repressed by a TF can then be modeled in the fol-

lowing form:

dX

dT
= capacity .

1

1 + (X/K)n
− degradation (2.28)

where we used vmax term before to stand for the capacity. �capacity� accounts for cases

in which repression cannot reach 100 % capacity, sets the maximum production rate

of the protein. The positive terms model production, whereas the last term models

degradation of the protein.

There is a virtual demonstration of the cooperative binding mechanism, that

shows how the Michaelis functions approach above can be reexamined utilizing par-

tition functions (Figure 2.5). The essence of the framework is to compute the ratio

of transcriptionally active promoter states to the sum of all states, active and inert.

This ratio depends on variables including the binding sites present in the promoter, the

concentrations of proteins that bind these sequences, and the a�nities of the TF-DNA

interactions.

For any particular system, construction of a regulatory function requires three

components: (1) a list of all states, (2) the binding constant for each state, and (3) the

information for whether each state is capable of transcribing or not.
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Figure 2.5: Graphical representation of TF binding. (A) States 1 and 3 indicate where

transcription is inactive, and states 2 and 4 indicate where transcription is active. (B)

The φm function is composed of sum of the concentrations of transcriptionally active

states divided by the sum of the concentrations of all possible states. [55]

In Figure 2.5, state-1 at the denominator corresponds to the reference state

where DNA has nothing bound. State-2 has RNAP bound by itself, state-3 has TF

bound by itself, and state-4 has both TF and RNAP bound. Simply by writing these

states, we are already specifying the architecture of our system. States at numerator

indicates that which of these states are capable of transcribing.

Figure 2.6: Graphical representations of competitive binding. Sequential binding model.

The ovals correspond to RNAP (blue), activator A1 (dark green), and activator A2 (light

green). [55]

In Figure 2.6 there are two binding sites for two activators and their correspon-

dent function is:

φm =
A1.A2

KA1.KA2

1 + A1

KA1
+ A1.A2

KA1.KA2

(2.29)
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Similarly, the function considering repressors binding has no term on the nu-

merator:

φm =
1

1 + R1

KA1
+ R1.R2

KA1.KA2

(2.30)

Because of the saturation condition KA1 > KA1.KA2 , we can eliminate the

term divided by KA1. So, we can generalize these functions and simply writing in the

following form:

φm =
1

1 + (
N∑
j=1

Rj/Kj)n
(2.31)

where n stands for the Hill coe�cient.

Likewise, for the activator binding, the simpli�ed form is:

φm =

(
N∑
j=1

Aj/Kj)n

1 + (
N∑
j=1

Aj/Kj)n
(2.32)

2.3 Modular Michaelis Functions as Partition Functions

As previously mentioned, when there are several TFs that jointly regulate gene

i, its expression is determined by a cis-regulatory input function that integrates regula-

tion by TFs. Likewise, in our approach, we assume such multiple TFs act competitively

to regulate a gene. Therefore, the concentrations of these regulatory proteins are addi-

tively a�ecting gene expression, so that the production rate is written in the summation

form.

On the other hand, to increase the rate of production, products binding to a

regulatory region, can work either additively or multiplicatively. In the latter mode,



32

presence of a product binding to a multiplicative promoter is necessary to activate the

synthesis and ampli�es it proportionally to the activation of such promoter. This input

function has a form of

dX

dT
=

m∏
i=1

Ai

n∏
j=1

Rj (2.33)

where A is an activatory and R is an inhibitory regulatory protein.

Including the multiplicative binding, an activator-inhibitor model [56, p. 244]

can be constructed as

dXi

dt
= Vi

(
N∑
j=1

Aj/Kij)n

1 + (
N∑
j=1

Aj/Kij)n
.

1

1 + (
N∑
j=1

Rj/Kij)n
− γiXi (2.34)

where R reduces the overall speed of the catalysis independently of A.

This ODE model includes a term for activators, in addition to the repressor

included ODE model studied in [57].

2.4 Non-dimensionalisation

For our study, we have chosen a simpli�ed model of a genetic network having

activatory and inhibitory interactions between genes. The activity of any gene can be

regulated by itself or other genes in the network. We will consider connected networks

of N genes with M links, where N and M having �xed values.

The mathematical background and the steps of derivation of the ODE are de-

scribed in previous sections. Accordingly, if we assume that the decay rates are the
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same for all proteins, γi = γ, the ith protein undergoes degradation with rate constant

γi, the change of concentration for this protein is given by the following ODE.

dUi
dt

= Vi

(
N∑
j=1

UA
j /Kij)n

1 + (
N∑
j=1

UA
j /Kij)n

· 1

1 + (
N∑
j=1

UR
j /Kij)n

− γiUi (2.35)

where Kij speci�es the strength of the e�ect of the regulatory factor UA
j (or UR

j ) on

the production rate of protein Ui, i = 1, 2, ..., N denotes the gene index, UA
j and UR

j

stand for the molar concentrations of jth activator and repressor proteins respectively.

The structure of a regulatory network having N genes is speci�ed by an ad-

jacency matrix Aij, which is de�ned in such a way that Aij = 1, if an activatory

interaction from the gene j to i exists, and Aij = 0 otherwise. For example, the

adjacency matrix can be described by

A =


1 0 . . . 1

0 1 . . . 0
...

...
. . .

...

1 0 . . . 1



So including the activatory (Aij) and inhibitory (Rij) adjacency matrices, the

ODE form for such a regulatory network becames:

dUi
dt

= Vi

(
N∑
j=1

AijUj/Kij)n

1 + (
N∑
j=1

AijUj/Kij)n
· 1

1 + (
N∑
j=1

RijUj/Kij)n
− γiUi (2.36)

Instead of t, introducing dimensionless time constant τ = γt by measuring time

in the units of γ−1, we have dτ = γdt. Furthermore, inserting the dimensionless con-
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centrations ui = γUi

Vi
and , the activity of the regulatory network gets described by the

following set of ODE:

dui
dτ

=
1

1 + (
∑

j Rij
ujVj
Kijγ

)n

(
∑

j Aij
ujVj
Kijγ

)n

1 + (
∑

j Aij
ujVj
Kijγ

)n
− ui (2.37)

Also, if we assume that φ's are the same for all proteins, φij = φ; then φij =
Vj
γKij

is simpli�ed to φ = V
γK

:

dui
dt

=

(φ
N∑
j=1

Aijuj)
n

1 + (φ
N∑
j=1

Aijuj)n
· 1

1 + (φ
N∑
j=1

Rijuj)n
− ui (i = 1, 2, ..., N) (2.38)

2.5 Parameter Speci�cation

n : The Hill coe�cient n, has been described more appropriately as an �in-

teraction coe�cient� that provides only a minimum estimate of the number of binding

sites involved [58]. For example, in the case of hemoglobin, in which four oxygen

molecules are known to bind with a high degree of positive cooperativity, the measured

Hill coe�cient ranges from 1.7 to 3.2 [59]. In our model, it is taken as n = 3, as in [57].

γ : For the conversion of our dimensionless time parameter, τ , into real time

scale, we referred the experimentally constructed repressilator model [22]. In this

publication, the protein half-life is given as nearly 10 mins. Using the exponential

decay formula

N(t) = N0e
γt

we can derive the γ constant:

γ =
ln(2)

t1/2
=

ln(2)

10 mins
= 0.069
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Our dimensionless time constant was de�ned as τ = tγ. For a realistic transfor-

mation, we can use the γ value to �nd the real period as

t =
τ

γ
=

10.62

0.069
≈ 154 mins

which is very close to the period of the repressilator which is found to be approximately

150 mins in [22].

φ : According to [60], by an approximation the value of the parameter φ is

chosen as 100. That value falls into median of the interval stated in [1], where the

parameter φ renamed as K:

0.005 < K < 0.30

So, instead of φ′ ≡ V

γ
, if we use φ ≡ V

γK
; we get the framework stated in [1]. Thus,

the corresponding interval for φ is

3.33 < φ < 200 .
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3. THE EVOLUTIONARY OPTIMIZATION METHOD

In recent decades, there is a great deal of study on developing and testing

models of GRNs. As GRN models become more developed, a greater understanding

of the particular �wiring�s of regulatory dynamics, allows us to analyze how these

GRNs evolved. Simulations of GRN evolution, bene�t from optimization techniques

of evolutionary computations (ECs). In modeling a dynamical system represented by

GRNs, it is possible to make an in silico simulation of the evolution of a gene expression

over time. In this way, one can study how the system behaves when it is slightly changed

to re�ect gene mutations inside a cell. In the strict sense, in silico evolution mimics

the process throughout a heuristic search in which a system is iteratively modi�ed

(mutation process) and evaluated for its performance towards a pre-de�ned target

(�tness computation). Therefore, depending on the size and complexity of the network,

a large-scale and high performance evolutionary computation is required over many

generations.

In one of the pioneering studies, they have focused on the use of evolutionary

optimization algorithms to engineer synthetic regulatory circuits with speci�ed func-

tionalities [61]. Also, a paper from last decade [62], describes how an evolutionary

approach can be used to generate functional modules (oscillators, bistable switches,

homeostatic systems and frequency �lters), with the goal of building a library of mod-

ules categorized according to their function. Furthermore, the review [63] highlights

several examples of models that have been designed using such procedures, together

with di�erent objective functions to select for the proper behavior. It discusses the

basic principles of evolutionary approaches and how they can be applied to engineer

synthetic networks.

In addition, in a recent study, they have utilized an evolutionary algorithm on

a discrete stochastic modeling approach. This study proposes an automated design of

cell models by combining di�erent modules [64]. At the same year, another publication
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discusses several evolutionary algorithm approaches for quantitative GRN modeling.

These algorithms of interest have been applied both synthetic and real gene expression

data, so this study o�ers a comprehensive comparison of approaches [65].

To sum up, arti�cial GRNs have been instrumental in elucidating basic princi-

ples that govern the dynamics and consequences of randomness in the gene expression

of naturally occurring GRNs. The design of computational circuits, helps us to infer

inherent evolutionary fault tolerance and robustness of these GRNs.

3.1 Evolutionary Algorithms

Evolutionary algorithms are structurally very simple and they work in rounds

that are called generations. They operate on some search space, where points are

assigned some quality via a function f. In the context of optimization, f is usually

called �tness function. ([66])

An evolutionary algorithm operates on a collection of points from the search

space, called a population P. The members of the population, i.e., some points in the

search space, are called individuals. Choosing the �rst population P0 in the beginning

is called initialization. Then, usually for each member of the population its �tness

function is computed and stored. Then some random variation is applied to the initial

population where small changes are more likely than large changes. These variation

operators are called mutation.

After creating the o�spring population, there is selection for replacement based

on the reason that the size of the population is not changed during the whole run.

Thus, the new population Pt+1 is selected from the old population Pt and the newly

generated o�spring. Selection for reproduction in preferring individuals with smaller

�tness and the �tness value is either available or will be computed on the run. After

the new generation Pt+1 is produced (and the old population Pt is discarded), it is

checked whether some termination criterion is met. If so, some output is produced
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and the algorithm terminates.

Evolutionary algorithms are a kind of general randomized search heuristics.

Empirical optimization methods, e.g. simulated annealing [67], do not allow to �nd an

exact solution, but they are e�cient in identifying an approximate solution which is

close to the target. In network design, models are typically based on a network whose

topology is evolving towards the optimal target topology that performs prescribed

functions. Most used among such models is the evolutionary optimisation, a version of

Monte Carlo simulated annealing algorithm [68]. Here we will refer to the random local

search and Metropolis algorithm, which is a type of Monte Carlo simulated annealing

algorithm.

Random local search: The search starts with some x ε {0, 1}n chosen uni-

formly at random. In each step another point y ε N(x) is chosen uniformly at random,

where N(x) denotes some neighborhood of x. Then, y replaces x if f(y) ≥ f(x) holds.

Metropolis algorithm: The search starts with some x ε {0, 1}n chosen uni-

formly at random. In each step another point y ε N(x) is chosen uniformly at random,

where N(x) denotes some neighborhood of x. Then, y replaces x with probability

min{1, ef(y)−f(x)/T}.

As for random local search, the most common neighborhood comprises just of

the Hamming neighbors of x. The parameter T is called temperature. It is �xed

and held constant during the complete run. The term min{1, ef(y)−f(x)/T} equals

1 if f(y) ≥ f(x) holds. So, improvements in �tness are always accepted. But for

f(y) < f(x), the two search heuristics di�er.

While such a move from x to y is never done with random local search, it

can be done in the Metropolis algorithm. The probability, however, depends on the

parameter T and the di�erence in �tness values f(y)−f(x). With increasing di�erence,

the probability for such a step decreases exponentially. The selection mechanism helps

to avoid from getting stuck in local optima.
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3.2 The Evolutionary Algorithm Used In The Source Code

The aim of the evolutionary optimization is to �nd networks which can generate

oscillations with arbitrary prescribed periods. The parameters of genetic interactions

should be the same for all such networks, and only their architectures may di�er. The

search for a network architecture which is able to generate persistent oscillations with

a given period can be viewed as an optimization process.

In this process, through repeated rewiring, a network yielding regular oscilla-

tions with a period su�ciently close to the target can be identi�ed. Our evolutionary

optimization process is utilizing the Metropolis algorithm which is in stochastic Monte

Carlo simulations [57]. It consists of a sequence of iteration steps. In each step, a

structural mutation is applied to a network and the change in its performance (the

cost function) is determined. Then the decision, whether to accept or neglect the

mutation, is made.

A dynamic network generates some time-dependent output signal u1(t), not

necessarily periodic. A certain sequence of events can be associated with this signal,

and time intervals between these events can be determined. The de�nition of an �event�

is that, the output signal crosses from below a certain threshold h (In Figure 3.1)

Figure 3.1: Determination of the time series ti from the output signal u1 and the threshold

h. [57]

Monitoring the output signal for a su�ciently long time and �nding the maxi-

mum and minimum bounds umax and umin of the signal, the threshold is chosen as

h = (umax + umin)/2. Explicitly, we determine time moments ti(i = 1, ..., K) at
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which u1(t) = h and du1/dt > 0. Using time intervals ∆i = ti − ti−1 between the

events, we compute the average period T =< ∆i >= (1/K)
∑K

i=1 ∆i and the variance

σ2 =< ∆2
i > − < ∆i >

2 .

If a signal must be periodic, its variance σ should vanish. Moreover, we want

that the period of the output signal coincides with some prescribed period T0. This

means, in our optimization problem, the following cost function can be utilized

ε =
(T − T0)2

T 2
0

+
σ2

T 2

The cost function ε acquires its minimal possible value of zero when we have a periodic

signal with the period T0.

Our optimization algorithm involves structural �mutations� of networks, which

will consist of random rewiring of the links. We randomly choose a link in a given

network and delete it. Then, we randomly choose again, which two network nodes

should be connected by this link after the mutation. A link, after its relocation, can

only connect the nodes which were not linked before that. So, in every mutation, the

total number of the links is assumed to be conserved.

To perform optimization, we start with a random network and check its dynam-

ics. If this network turns out to be in a stationary state, we drop it and randomly

choose another initial network, until a network with some dynamics is found. Then a

mutation (a link rewiring) is applied. By running dynamical simulations of the network

before and after the mutation, we determine their average periods and the variances

and thus compute the values ε and ε
′
before and after the mutation. We accept it with

some probability p = exp(−∆ε

εµ
), if ∆ε ≥ 0. The iterations should be repeated until

the variance σ vanishes and, additionally, until the di�erence |T −T0| becomes smaller

than some given tolerance threshold ∆T .

The value of the parameter µ is chosen with regard to acceptance ratio. Choosing

the acceptance ratio is important for a good numerical performance of the algorithm.
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It should be nearly 50 % for unidimensional problems [69]. So, after a few trials µ is

assigned as 0.2, which almost gives that acceptance ratio.

3.2.1 Speci�ed Description of the Simulation Algorithm

The evolutionary optimization algorithm is written in Python programming [70]

based on the implementations below.

• Initialization: The simulation algorithm starts with the initialization of a ran-

domly generated gene network that controlled by many activators and repressors.

• Mutation: Mutation process is based on link rewiring. After generating a mu-

tated network, its dynamics are checked. If it is in a stationary state, it is

dropped. The process is repeated until another initial network with some dy-

namics is found.

• Selection: Oscillation pro�le of the accepted network is evaluated by measuring

its average period and variance. Then, the cost function is evaluated based on

these values. If it is within the intended period interval |T − T0|, it is accepted.

The selection in this case was aimed at obtaining stable oscillations at the imposed

interval.

This evolution process is iterated over the course of an optimal time, generated

many networks with di�erent architectures, which correspond to di�erent dynamics.

The main idea and pseudocode for Metropolis algorithm can be found at Ap-

pendix A.
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4. ANALYSIS

4.1 Statistical Analysis of Randomly Generated Networks

For this part, we have written a module script that uses the NetworkX graph

generator library [71] which can generate random networks and visualization. Con-

sidering the computation time, we decided to investigate considerably small networks

including 4 and 5 genes.
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Figure 4.1: Period histograms of randomly generated networks with 4 nodes & 8 links.

For Nact = 5 case, peaks at the histogram shows that the number of networks

which oscillates at period T = 10.25 is maximum. If we consider Nact = 5 case, there

is one repressilator motif (3 inhibitory and 5 activatory links). So, these networks

are frequently encountered with their structurally stable dynamics. Considering the

histograms for the other cases, we see that the number of networks which oscillates at

that peak period (T = 10.25) diminishes. In addition, histogram for Nact = 6 becomes
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uniform and there is no peak period at 10.25 which is seen in all of the other histograms.

We can notice that this fact is based on the same reasoning: the repressilator motif is

lost because there are only two repressor links.

Table 4.1: Statistics of randomly generated networks with 4 nodes & 8 links

# of activators percentage of oscillatory networks �rst three peak periods

0 6.37 10.25, 13.75, 9.25

1 7.23 10.25, 10.00, 9.00

2 7.00 10.25, 10.00, 4.25

3 6.37 10.25, 10.75, 4.50

4 6.05 10.25, 7.75, 10.50

5 4.44 10.25, 5.00, 14.50

6 0.89 14.50, 5.00, 7.00

In the Table 4.1, there are the �rst three peak periods for each histogram. The

�rst peak at 10.25 is signi�cant result that arises from a dominant represilator motif

hidden in these networks. Crucially, that dynamic is lost when there are only two

inhibitory links.

In the same table, as the number of activators increases from 1 to 6, the per-

centage of oscillatory networks decreases. This implies that, the increasing number

of activatory links leads the network dynamics to a major positive feedback which

ampli�es the perturbation.

Similar to histograms in Figure 4.1, for Nact = 7 case in Figure 4.2, peaks at the

histogram shows that the number of networks which oscillates at period T = 10.25 is

maximum. Also, histogram for Nact = 8 becomes uniform and there is no peak period

at 10.25 which is seen in all of the other histograms.
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Figure 4.2: Period histograms of randomly generated networks with 5 nodes & 10 links.

Table 4.2: Statistics of randomly generated networks with 5 nodes & 10 links

# of activators percentage of oscillatory networks �rst three peak periods

0 6.61 10.25, 10.00, 10.75

1 7.09 10.25, 10.00, 10.50

2 7.28 10.25, 10.00, 10.50

3 6.81 10.25, 10.00, 10.50

4 6.57 10.25, 10.00, 10.75

5 5.58 10.25, 7.75, 10.50

6 4.43 10.25, 7.75, 10.50

7 2.14 10.25, 14.50, 5.00

8 0.50 14.50, 15.50, 7.25

Similar to the Table 4.1, in the Table 4.2, the �rst peak at 10.25 is a signi�cant

result that arises from a dominant represilator motif hidden in these networks. Again,
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that dynamic is lost when only two inhibitory links are left.

4.2 Evolutionary Analysis of Networks with 4 Genes

We runned the Metropolis algorithm for networks with 4 genes and 8 links, in

which 3 of these links are activatory. This structure is chosen based on its oscillatory

behaviour within a broader range of period values compared to the other histogram

plots (Figure 4.1). In this process, 100 initial networks are simulated under repeated

mutations over maximum 1000 iterations to reach the given target periods.

The search for target period 10 with 5% tolerance, has performed succesfully

for all of the initial networks, and it has resulted with 27 non identical networks. Some

of these network structures and their respective periods are shown in Figure 4.3.
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Figure 4.3: Examples from designed networks for target period 10.
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Furthermore, the search for target period 4 with 5% tolerance, has performed

succesfully for all of the initial networks, and it has resulted with 15 non identical

networks. Some of these network structures and their respective periods are shown in

Figure 4.4.
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Figure 4.4: Examples from designed networks for target period 4.

4.3 Bifurcation Analysis and Limit Cycle Behaviour of a

3-Gene Network

The 3-gene network in Figure 4.5 consists a repressilator network with additional

three activator links from 0th node to 1st node, 2nd node to 0th node, and 2nd node to

itself. Dynamical behaviour of this network is investigated before in [1] using the same

mathematical model including a di�erent parameter name.
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Figure 4.5: Three node gene system with 3 activatory and 3 inhibitory links.

Critical points can be determined from the bifurcation plot (Figure 4.6), in

which the system switches to a new behavior with twice the period of the original

system. In continuous dynamical systems, when a new limit cycle emerges from an

existing limit cycle, and the period of the new limit cycle is twice that of the old one.
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Figure 4.6: Peak values of p0 plotted as functions of φ.

For 8.7 < φ < 8.9 the system reaches a nonzero steady state. For larger φ, say

φ = 9.2, the system now makes an oscillation in which u0 repeats every two iterations,

is called a period-2 cycle. At still larger φ, say φ = 9.4, the population approaches a

cycle that the previous cycle has doubled its period to period-4.
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Further period-doublings to cycles of period 8, 16, 32, ... occur as φ increases.

φ1 =8.865 period 1

φ2 =9.335 period 2

φ3 =9.429 period 4

...
...

φ∞ =9.452.. period ∞

These values yield the fraction:

δ =
φ2 − φ1

φ3 − φ2

' 5

which is close to the value of 4.669... found by Feigenbaum [46] for the universal constant

characterizing the cascade of period-doubling bifurcations leading to chaos.

Ultimately, the successive bifurcations come faster and faster, and φ converges

to a limiting value φ∞. This value has been found by using the Eq. 4.1 with the

approximation at φ∞.

φ∞ − φn = Aδ−n (4.1)

where A is found to be 2.938 from the original equation (Eq. 4.2):

φn − φn−1 = A(δ−(n−1) − δ−n) (4.2)

Suppose we use our model to generate the subsequent trajectories with the oscillations

of the p0 protein for corresponding φn values. The results are plotted in Figure 4.7.
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Figure 4.7: Trajectories for four di�erent values of the φ parameter. It can be observed

that period 1 oscillation is seen at φ = 8.8, period 2 oscillation is seen at φ = 9.0, period

4 oscillation is seen at φ = 9.4, and chaotic oscillation is seen at φ = 9.6 .
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Furthermore, on the bifurcation plot (Figure 4.6), there is a white window cor-

responding to φ = 9.7 at the chaotic region. It is a period 3 window, which arises

after the period-doubling route to chaos, then eventually yields to chaos again. The

trajectory and the dynamical plots for that window, are shown in Figure 4.8.
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Figure 4.8: The trajectory and the dynamical plots for period 3 window.

Comparison of Results: By a parameter modi�cation on our model (in Sec-

tion 2.5), we generated the same bifurcation diagram (Figure 4.6) for the small chaotic

network demonstrated in Zhang et. al. [1] as shown in Figure 4.9. Notice that, we

called the 0th protein as p0 in Figure 4.6, but they used p1 notation instead.

Figure 4.9: Peak values of p1 plotted as functions of K. Ref.[1, p.3, Fig.1-B]
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5. DISCUSSION AND CONCLUSION

The inherent complexity of biological phenomena requires looking at the whole

picture, applying various abstraction mechanisms and using computational tools. In

this context, the cell can be studied at the systems level by unraveling the regulatory,

signaling and metabolic interactions, and their coordinated action. Prediction, control,

and understanding arise mainly from modeling these systems using iterated computer

simulations.

The main objective of this work was developing a software program that can

generate small oscillatory networks, and applying the stochastic optimization to design

networks with objective periods. Our results shows that, predicting the structures of a

family of networks with desired functionalities through iterative computation, is achiev-

able within at most two days. Although it necessitates parallel computing or longer run

times for GRNs with high number of genes, our script could be applied to investigate

the dynamics of small networks. As a complementary task, phase space analysis has

been performed to infer the operation of a network under parameter changes, and the

same bifurcation diagram for the small chaotic network demonstrated in [1] has been

generated by a parameter modi�cation on our model.

The research which uses the similar modeling approach [57] is composed of only

inhibitory circuits. However, transcription networks often have comparable number of

activation and repression controls. Thus, our work includes both inhibitory and acti-

vatory regulations as an ideal framework. Also, due to computational limitations, we

worked on the networks with 4 and 5 genes; in contrast to the study [57] in which net-

works consisted of 10 and 20 genes. Therefore, our results are not directly comparable

with that study. On the other hand, it has been shown by the statistical analysis that,

even considering the e�ect of activatory links, repressilator motif still plays a dominant

role in the dynamics of networks by generating the period T = 10.5 as stated in [57].



52

The most signi�cant aspect of this thesis is the development of a software pack-

age that can be used as a computational platform to study dynamical properties of

GRNs in a wider context than the topics which have been chosen to apply in this work.

It should be remarked that we opted to use an open-source approach for the software

development. The main code has been written in the Python programming language.

Readily available and convenient modules of Python, such as Numpy, Odespy, Net-

workx have been used. For the analysis of the results, we have also written several

bash scripts in a Linux platform and used other open-source utilities such as Gnuplot.

Although issues such as optimization and parallelization have not been considered so

far, they can be done in the future for higher performance gains.

As possible developments left for the the future, evaluation of robustness against

noise and graph theoretical analysis could be performed on the generated family of net-

works. Furthermore, inclusion of spatial degrees of freedom into the GRN dynamics

would be a very interesting endeavor. In particular, using an inter-cellular communica-

tion mechanism such as di�usion, it would be possible to investigate important topics

such as synchronization [72] and Turing-like pattern formation [73] in multi-cellular

oscillatory systems.
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APPENDIX A. Metropolis-Hastings Simulated Annealing

Basically, simulated annealing is a M-H with stationary distribution exp(
f(x∗j )

T
)

for a �xed T.

Main Idea

• Given a parameter T > 0 (often called temperature), we draw x∗j+1 from exp(
f(x∗j )

T
)

• Function f is the function to maximize.

• As T goes to zero, the values simulated from this distribution become more

concentrated around a narrower neighborhood of the local maxima of f .

Pseudocode

1. Initialize the algorithm with an arbitrary value x0 and M .

2. Set j = 1.

3. Generate x∗j from symmetric q(xj−1, x∗j) from u[0, 1] .

4. If u ≤ {exp(∆f
x∗j
Tj

), 1} then xj = x∗j , otherwise xj = xj−1 .

5. If j ≤M then j  j + 1, Tj  Tj+1, and go to 3.
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