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ABSTRACT

Functional Connectivity Network Analysis of Alzheimer and
Mild Cognitive Impairment Patients

In our era, while the life span is expanding, neurodegenerative diseases, such as

Alzheimer's disease (AD), pose a great threat upon the quality of life. In such a case,

the best course of action would be to detect, modify or treat the pathologies before

they become too severe. Since the main cause of AD is still unknown, further studies

for possible biomarkers are needed. Therefore, in this study, the objective is to �nd

a distinctive agent for AD and mild cognitive impairment (MCI) from an optimized

auditory oddball task fMRI data via functional connectivity analysis. In order to

achieve that, a group ICA approach using temporal concatenation of the subject data

is adopted. Since, there are no studies investigating functional connectivity of AD

and MCI during an oddball task, especially via group ICA, this study can enrich the

literature. As the results are concerned, in group comparisons, no signi�cant di�erences

are found in spatial maps. On the other hand, there are promising �ndings in temporal

course analysis of the components such as the multiple regression outcomes. Therefore,

our next aim will be to perform a longutidinal study including both resting state and

task related data for �nding a better biomarker.

Keywords: fMRI, Alzheimer's disease, mild cognitive impairment, independent com-

ponent analysis, oddball paradigm.
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ÖZET

Alzheimer ve Ha�f Bili³sel Bozukluk Hastalar�nda Fonksiyonel
Ba§lant�l�l�k Analizi

Ça§�m�zda, insan ömrü gün geçtikçe uzamaktad�r. Fakat, Alzheimer gibi nörode-

jeneratif hastal�klar hayat kalitesi aç�s�ndan tehlike olu³turmaktad�r. Bu tarz du-

rumlarda, yap�labilecek en iyi ³ey hastal�k çok ilerlemeden hatal�§� saptamak, ha�-

�etmek veya tedavi etmek olacakt�r. Alzheimer'�n esas nedeni hala bilinmedi§inden,

olas� biyobelirteçleri bulmak amac�yla yap�lacak çal�³malar büyük önem ta³�maktad�r.

Dolay�s�yla; bu çal�³man�n amac�, Alzheimer'� ve ha�f bili³sel bozuklu§u ay�rt ede-

bilecek etkenleri optimize edilmi³ oddball paradigmas� süresince al�nan fMRG verisine

fonksiyonel ba§lant�l�l�k analizi yaparak belirlemektir. Bunun için, zamansal olarak

denek verilerini birbirine ba§layan bir grup ba§�ms�z bile³en analizi yöntem olarak

belirlenmi³tir. �imdiye kadar Alzheimer hastal�§� ve ha�f bili³sel bozuklu§u olan ki³i-

lerin oddball görevi süresince çekilen fMRG verileri fonksiyonel ba§lant�l�l�k yönün-

den, özellikle de grup ba§�ms�z bile³en analizi ile incelenmedi§inden, bu çal�³ma liter-

atüre katk�da bulunacakt�r. Sonuçlar göz önüne al�nd�§�nda, gruplar aras� kar³�la³t�r-

malarda uzaysal haritalarda anlaml� bir de§i³iklik gözlemlenmemi³tir. Buna nazaran,

bile³enlerin zamansal seyirlerinin analizinde umut verici bulgulara rastlanm�³t�r. Bu

ba§lamda, bir sonraki hedef hem dinlenme halindeki hem de görevle alakal� fMRG ver-

ilerini içeren uzunlamas�na bir çal�³ma yapmak olacakt�r. Böylelikle daha detayl� bir

biyobelirteç ara³t�rmas� yap�labilecektir.

Anahtar Sözcükler: fMRI, Alzheimer, ha�f bili³sel bozukluk, ba§�ms�z bile³en anal-

izi, oddball paradigmas�.
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1. INTRODUCTION

1.1 The Aim of the Study

In order to increase the life expectancy with adequate quality, research interests

are focused on developing both diagnostic and prognostic biomarkers for the diseases.

Undoubtedly, Alzheimer's disease (AD) is the most common type of dementia by a�ect-

ing more than 50% of the elderly population [6]. Thus, it is one of the major research

areas. However, the main cause of this ever growing disease is still a mystery. There are

no exact distinguishing diagnostic methods as well as an e�ective modifying treatment

[7, 6, 8]. The current methods investigating non-invasive techniques, have the focus

on the resting state functional connectivity and e�ective connectivity of neurological

disorders since 2005. The �ndings suggest that the disruptions in the networks have a

pattern and sequence which are yet to be studied. Therefore, in this study, the aim is to

�nd a biomarker for the discrimination of AD and MCI from each other as well as from

healthy controls by a functional connectivity analysis. The novelty presented in this

study is about the functional connectivity analysis of the AD and MCI data related

with an optimized auditory oddball task. To our knowledge, there are no auditory

oddball functional connectivity studies including both AD and MCI patients.
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1.2 Mild Cognitive Impairment and Alzheimer's Disease

Figure 1.1 The di�erence between a healthy brain and a brain with Alzheimer's disease [1]

Mild cognitive impairment (MCI) is a syndrome which causes cognitive decline

greater than the expected rate relating to age and educational level. However, it is not

as severe as to e�ect daily life of a person. Moreover, it is also possible for this disease

to stay stable or vanish over time in the best case scenario [9]. Nevertheless, with more

than 50% probability, it can progress into dementia within �ve years [9]. Particularly,

amnestic sub-type of this syndrome is known to convert into AD (thus referred as a

prodromal stage for AD).

Alzheimer's disease (AD) is a progressive neurodegenerative disorder (Figure

1.1) which involves cognitive, intellectual and behavioural disruption [7]. The pathol-

ogy in AD starts mainly in the hippocampus and entorhinal cortex, and subsequently

spreads throughout most of the temporal lobe and posterior cingulate, �nally involves

extensive brain regions. Thus, the patient's abilities related to memory, attention, rea-

soning, language and executive functions become deteriorated gradually [6]. The main

reason for these deteriorations are still an active area of research. However, current

literature suggest that there are various reasons, some of which are related. These

reasons are:

• Environmental factors such as toxins, viruses, prions, head trauma, low level of

education [1].
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• Aging and genetics [1, 10].

• Misfolded proteins such as β-amyloid that causes plagues and hyperphosphorylated-

τ that causes neuro�brillary tangles (Figure 1.2) [1, 10].

Figure 1.2 Plaques and tangles [1]

• Glucose hypometabolism [11] in areas either close or remote from amyloid toxicity.

The low metbolism in amyloid free areas may be due to the reduced neuronal

communication.

• Functional connectivity disruption [10] which can be explained by an extended

version of disconnection syndrome as can be seen from Figure 1.3. According to

this model, toxicity due to amyloid plaques and hyperphosphorylated-τ might

disturb a brain region deteriorating the communication between other regions,

but not severing them completely. Then the disease a�ects the regions either by

the pathology extention due to structural connection or the bad signals due to

functional connectivity.

In Figure 1.4, a summary of the current literature, also describing the relations

between above mentioned changes can be found. According to the recent review article

[10], in early stages of AD, salience network [12] and certain frontal regions show

increased network connectivity either as a compensatory for the distrupted networks

or due to amyloid excitotoxicity. However, as the disease progresses, the degradation

in those networks occurs. Besides, in default mode network (DMN) (see Section 3.5),

executive control network (see Section 3.2.2) and sensorimotor network (see Section 3.7)

connections are found to be decreased for mild AD. These changes can be observed
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Figure 1.3 The suggested models for network disruption: A representing a healthy network, B
representing disconnection syndrome model and C representing a recently proposed extended version
of disconnection syndrome model [10]. The large arrows in the �gure are depicting the inputs from
other parts of the brain while the small arrows are for the communication between the regions shown
in the �gure. Green color is for a healthy region with intact connections shown by solid black lines.
The pathology is shown by a lightning bolt a�ecting a single brain region and causing network dis-
connectivity (black dotted arrow) or disrupted but ongoing connection (dashed red arrow). The blue
star stands for a structural connection which might allow the spreading of the pathology.

very early, even before the onset of AD if the genetic factors are present. It is also

suggested that the disease starts with the degradation in DMN due to amyloid and τ

deposition, then spreads to the other brain regions where no deposition is observed.
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1.3 fMRI Data

1.3.1 MRI and fMRI Data Acquisition Principles

Magnetic Resonance Imaging (MRI) is a cornerstone non-invasive neuroimaging

technique for both clinical diagnosis and academic research. Primarily, the output is the

structural image of the the organs created by utilizing the di�erences of the magnetic

properties of the tissues. Information about the physico-chemical state, vascularization

and perfusion of the tissues, blood oxygenation, blood volume and even water di�usion

can be gathered utilizing this technique [13].

The basic principles behind this modality is about the intrinsic quantum me-

chanical property, called spin, of the particles. By virtue of the spin, particles also have

intrinsic dipole moment. In the presence of an external magnetic �eld, as the particles

tend to be in the lowest energy state, most of the magnetic dipole moments align in the

direction of the external �eld. The others align themselves in an anti-parallel fashion;

thus, have higher energy states. In the big picture, there is a net magnetization along

the applied magnetic �eld. However, this alignment can be a�ected by the external

magnetic �eld changes, magnetic moments of the particles due to their spins, magnetic

�elds due to orbital movement of the particles and their interaction with each other

as well as electromagnetic waves capable of changing the energies of the particles [14].

In this system, one way to get information is to utilize magnetic resonance so that the

particles can absorb electromagnetic energy and emit it to turn back to their stable

form. This can be done via a radio frequency (RF) signal whose carrier frequency

is equal to the Larmor frequency (ω) of the particle to be detected. The Larmor fre-

quency (ω) depends upon the particle and the external magnetic �eld (B0) through the

gyromagnetic ratio (γ) (ω = γ ∗ B0) [13, 15, 2]. Thus, it is possible to acquire signals

from a desired particle as well as the location information by varying the parameters.

The basic theory behind the general mechanism can be understood via a simple

imaging scheme. When the subject is put in the machine, the initial �eld is applied

to make the net magnetization aligned in z direction (superior/inferior). Shortly after,
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the RF is applied to tilt the net magnetization 90 degrees on x-y plane. At this stage,

the spins begin to move coherently in phase as long as the RF is present. The period of

RF is brief; thus, its e�ects on the net magnetization fade away (relaxations happen)

in di�erent time lengths depending on the tissue type. There are 3 types of relaxation

processes, namely:

T1 (spin-lattice relaxation): The duration needed for the relaxation of the lon-

gitudinal component (in the same direction of B0) is called T1 relaxation. This

happens as the energy is released into the lattice, enabling the longitudinal com-

ponent to become its maximum.

T2 (spin-spin relaxation): The duration needed for the relaxation of the transverse

component is called T2 relaxation. This happens as the transverse component

vanishes by releasing its energy to other spins due to the interaction resulting in

phase incoherence.

T ∗
2 (e�ective transverse relaxation): Magnetic �eld inhomogeneity causes trans-

verse relaxation time T2 variation, which in turn results in the e�ective transverse

relaxation, called T ∗
2 .

In order to encode the locations of the spins, small magnetic gradients are used

additional to the B0 magnetic �eld. Basically, during the RF, gradient in z-direction

is applied for slice selection. Only the particles along that slice are a�ected as their

Larmor frequency �t the applied RF. After the RF, gradient along the y direction is

applied for a period to encode the direction with di�erent phases (Gy, phase encoding

gradient). Next, the acquisition is done while a gradient along x direction (Gx, reading

gradient or frequency gradient) is on; thus, encoding the direction by the frequency.

Naturally, the signals decay due to T1, T2 and T ∗
2 e�ects. As a result, a rephasing

action becomes necessary for the quality and quantity of the signal. This can be

done via various combinations of RF and gradient pulses, namely pulse sequences.

Pulse sequences also de�ne the contrast by re�ecting the relaxation time e�ect by two

parameters; the repetition time (TR) (de�ning how frequently the spins are excited)
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and echo time (TE) (time delay between excitation and acquisition). For optimization

purposes there are various kind of pulse sequences. Two of the main ones used for

cognitive science are gradient echo (GE) or gradient recalled echo, using gradients to

refocus the decayed signals and spin echo (SE), using RF to refocus the decayed signals.

These sequences are also optimized for ultrafast imaging such as echoplanar imaging

(EPI), spiral imaging and parallel imaging (including SENSE and GRAPPA), whose

names describe the trajectories followed on k-space [13, 15, 2, 16]. By k-space, a Fourier

space for the data to be stored is indicated. In Figure 1.5, k-space, which is sampled

uniformly during acquisition, and image space with Cartesian coordinates, which is

obtained after the inverse Fourier transform of k-space, is depicted. The spacing and

sampling of the k-space plays an important role for the spatial extend and resolution

of the image [3]. This is why it is optimized with di�erent pulse sequences.

Figure 1.5 k-space and image space

In biological and clinical studies, hydrogen nuclei of water (a proton with spin

1/2), is mostly the source of the MRI signal since it is the most abundant element in

tissues [13, 17, 15]. For structural MRI, the aim is to examine the anatomical features.

Typical structural MRI consists of a T1 weighted image separating gray and white

matter clearly. On the other hand, T2 contrast is good at separating �uids from tissues;

thus, used for lesion and oedema detection. As for functional MRI (fMRI), the aim is to

�nd the function related parts, neuronal populations, of the brain. Particularly, �nding

clues about top-down or bottom up regulations, inferring about cognitive capacity and

de�ning biomarkers for the diseases from the spatial or temporal di�erences among

groups of people are of interest. This can be done by measuring haemodynamic changes
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with T ∗
2 contrast [13, 17, 15, 2].

1.3.2 BOLD E�ect and Haemodynamic Response Function

Haemodynamic changes are usually traced with the oxygenation of blood as the

relaxation time di�ers between diamagnetic oxyhaemoglobin (locally decreasing the

magnetic �eld) and paramagnetic deoxyhaemoglobin (locally increasing the magnetic

�eld). The chief assumption establishing the adequacy of this measurement to infer

about neuronal activations is that the neurons need more oxygen when they are acti-

vated and this need is compensated by the increase of the blood �ow. In the bigger

picture, the need of energy leads to enhanced glucose utilization with oxygen; however,

the oxygen consumption rate (cerebral metabolic rate of O2 utilization CMRO2) falls

beyond the carried O2 via the increased cerebral blood �ow and this results in the

deoxyhaemoglobin decrease [13, 2].

The contrast depicting the di�erence between blood oxygenation is specially

named as blood-oxygen-level-dependent (BOLD) contrast. The function modeling the

changes in BOLD after a stimulus induced or spontaneous neuronal activation is called

the haemodynamic response function (HRF). As can be seen in Figure 1.6, with the

increase in CMRO2, there is an initial dip followed by a positive BOLD with the rise

of cerebral blood �ow (CBF) as well as the cerebral blood volume (CBV). After 10s,

CBF and CMRO2 turn back to their baseline states. Since the CBV return is slower,

it aids in signal drop due to the building concentration of deoxyhaemoglobin. In the

canonical model of the HRF, the initial dip is not considered as it is invisible at low

�eld strengths. Apart from canonical model, there are various models enabling �exible

parameter choices according to the study [3, 18, 19, 2]. Since there are many unknown

issues about brain dynamics, HRF modeling is an active research area with the aspects

of neurovascular coupling.

The BOLD can be a�ected in a confounding way from breathing patterns, drugs

and substances (like ca�eine, and nicotine), age and brain pathology, local di�erences



10

Figure 1.6 A typical haemodynamic response function with di�erent time constants of the underlying
physiological parameters [2]

in neurovascuar coupling, attention, excitation and inhibition [17]. This is due to the

vulnerability of brain perfusion towards external and internal environment and the

mostly unmeasured e�ect of the amount and diverseness of neurovascular coupling in

a subject and between subjects. Beside the physiological signals, motion of the subject

causes signal blurring as well as spurious activations. Apart from subject related e�ects,

the machines and the agorithms also cause problems such as ghost artifacts, ringing

e�ect, signal drop-out due to thermal motion of electrons and spurious activations due

to wrong or de�cient modeling [3].

1.3.3 Experimental Designs

There are two classic experimental designs, namely block and event-related de-

signs (Figure 1.7). As the name suggests, there is a sustained action period as well as

a no-action period for a block design. On the other hand, for an event-related design

there are recurring on and o� sessions, which are usually a lot shorter than a block

in the former design. The designs are mostly optimized according to HRF. This is

peculiarly important for event-related designs when a linear relation between stimuli
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and BOLD response is required. Naturally, both designs have upsides and downsides.

The prolonged activation in the block design provides higher BOLD signal as well as

sound to noise ratio. However, the temporal information is not as detailed as for the

latter design. Experiments can be shorter if block design is used, but for an experimen-

tal design, there has to be large samples with adequate interstimulus intervals [3, 17].

It is also possible to overcome long experiments by using rapid jittered protocols or

de-convolution analysis methods if they are suitable for the study [17].

Figure 1.7 Block design (top), event related design (bottom) [3]

There is one more possibility for an fMRI study, which is to image the sponta-

neous activity of the brain. This kind of study is called a resting state study [20], and it

gained popularity recently for its potential in distinguishing disease related conditions.

1.3.4 Structural and Statistical Properties of fMRI Data

Typical fMRI image contains a structural image obtained at the beginning for

anatomical details and a functional image for dynamic details. In Figure 1.8, a simple

visualization of fMRI data can be seen.

Generally, whole brain volumes are taken in various time points, which are

usually separated by time of repetition (TR). Each of the volumes consists of voxels

which are simply the volume units. The values of the voxels, the intensities recorded,

depend on the image contrast chosen such as T ∗
2 . In Figure 1.8, the graph at the right

bottom re�ects the time course of one voxel which is repeatedly imaged for N times.
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Figure 1.8 fMRI data structure

There are N×SVn×Sn times of time courses for an fMRI data, where Sn is the number

of slices and SVn is the total number of voxels in a slice. Thus, there are two kinds of

information for each voxel at each time point, one for the location and one for the time

point value. Totally, this makes a 4D data consisting of 3D localization information

and time series information. For computational reasons, the data can be stacked in

various ways such as in 4D and in 3D. Moreover, the methods include several header

information or other related metadata encoding techniques. The most common stacking

formats are Analyze and NIfTI (Neuroimaging Informatics Technology Initiative) in the

neuroimaging community 1 .

The fMRI data can give a high spatial resolution relative to other modalities

measuring brain dynamics. The average voxel size used before any preprocessing is re-

ported to be 55 mm3, encapsulating 5.5 million neurons in human brain [13]. However,

haemodynamics and machine design limits the maximum temporal resolution that can

be obtained. The TR range for most of the studies changes between 0.5 to 4 seconds,

where 2 seconds deemed adequate for the observation of activation patterns which can

be explained by HRF.

Usually, a typical study consists of 100 to 2000 brain volume images with ap-

proximate dimensions of 64 × 64 × 30 for each subject session. Roughly, each of the

122.880 voxels have a size of 3× 3× 5 mm3. The session and subject number depends

on the research, but at least 10 to 40 is required for a population inference [3, 21]. The

1The details can be found at http://nifti.nimh.nih.gov/.
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fMRI data, BOLD response captured with noise, relatively re�ects assembled activity

of neurons. Unfortunately, it has a complicated spatio-temporal correlation for each

subject. In order to get relevant and accurate results from the data, it is crucial to

understand the nature of the data via statistics. Below is a summary of distribution

statistics for each step of (f)MRI data:

Di�erence between the spins parallel and antiparallel to B0: Follows a Boltz-

mann distribution, and the di�erence increases with the �eld strength [13].

Raw k-space data, thus the reconstructed data: They have normally distributed

complex values with independent normally distributed error (V alue = R+I+E)

[3].

The magnitude of k-space data (In most studies only magnitude is used,

phase is discarded): Follows a Rice distribution. If there is no signal, it

converges to Rayleigh distribution; however, if sound to noise ratio is high, it

converges to Gaussian distribution [3].

1.4 Preprocessing of fMRI Data

As mentioned before, fMRI signal is a combination of a relatively weak BOLD

signal and spatiotemporal noise creating a complicated autocorrelated structure. There-

fore, various preprocessing steps are necessary to obtain the signal which satis�es the

statistical assumptions necessitated by the analyzing techniques and tests. Moreover,

for group-wise comparisons, it is essential to match the locations of brain regions in

order to get valid and sensitive results. Thus, preprocessing is an important step for

obtaining cleaned and standardized data. Frequently used techniques [3, 15], which

are prospective unless stated otherwise, are:

Slice timing correction: Each brain volume in fMRI is assumed to be imaged as a

whole so that the acquisition time of each slice in a volume is equal to one another.
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However, the timings depend on the k-space sampling method of acquisition. This

creates a di�erence in time courses as they correspond to di�erent conditions in

the experiment. Consequently, the severity of the situation is more pronounced

in studies using experimental designs. Thus, the timings of the voxels should be

shifted or interpolated to match with each other. This step can be applied before

or after the motion correction depending on the severity of the motion of the

patients and the experimental design (However, there is still an ongoing debate

about the sequence of this step).

Motion correction: One more assumption about the fMRI data is that each voxel

corresponds to the same location for every volume. As the experiments take

time, the subjects move during acquisitions. This change the locations of the

voxels taken, and causing contamination of voxels by the other voxel signals;

thus, leading to spurious activations. The classic way of realigning the data, if

the movement is not too severe, is by using 6 degree of freedom rigid body trans-

formation (including 3 translation and 3 rotation parameters) and a cost function

to be minimized such as sums of squared di�erences. After the correction, the

volumes having movements exceeding 1 or 2 times the voxel size or above 3 to

6 degrees of rotation can be discarded or the motion parameters can be used in

further processing steps. The best is to acquire the cleanest data possible since

current prospective algorithms are not su�cient enough to cope with the contam-

ination [22]. For that, there are ways to minimize the movement inside the MRI

scanner like using head �xation devices. There are also some retrospective meth-

ods such as capturing the position via a camera and correcting the misalignment

online.

Coregistration: As the fMRI data is poor in detailing the anatomy, the results are

usually mapped on the structural image for presentational purposes. In order to

achieve that, the structural and functional images are aligned via rigid body (6

degree of freedom) or a�ne (12 degree of freedom) transformations. Before this

step the structural images are segmented into parts like scalp, skull, gray matter,

white matter and cerebrospinal �uid. Some studies also include skull stripping

before any process is done to structural images in order to get better results at
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this step.

Normalization: In order to do group comparisons, there needs to be a standardiza-

tion for the brain structures. This is done by normalization of the subject brains

to previously created templates such as Talairach or Montreal Neurological Insti-

tute (MNI)brain with non-linear algorithms. (For better results, the templates

can be generated from the subjects if the numbers are enough or other population

speci�c templates such as the ones for elderly people or Asian people can be used

if they �t better for the study.)

DARTEL (Di�eomorphic Anatomical Registration using Exponentiated Lie al-

gebra): It is an image registration algorithm developped by John Ashburner.

It has an e�cient di�eomorphic framework optimized by a Levenberg - Mar-

quardt strategy [23]. Recently a more mathematically correct version using

large deformation di�eomorphic metric mapping with Gauss-Newton opti-

mization algorithm is presented [24] (but it is still in progress for usage as a

toolbox). In studies, it is found that DARTEL has better results when com-

pared to classical methods [25]. Especially in one Alzheimer voxel based

morphometry study [26], it is though to enhance the process. It is also

possible to create templates from subjects' data with this algorithm.

Spatial smoothing: fMRI images are usually smoothed via a Gaussian kernel of 4 to

12 mm full width half maximum. This enhances the normalization via blurring

out subjective anatomical di�erences and increases the signal to noise ratio by

reducing the random noise in individual voxels. Moreover, a kernel with full

width half maximum of 3 to 4 times of voxel size is needed to smooth the data

to �t the assumptions of random �eld theory which will be elaborated later [3].

Additional procedures: According to the needs of the research, some additional

procedures can be applied in the preprocessing or processing step by considering

the bias imposed on the data. Some of these procedures are deskulling of the

structural data [27], intensity correction of the structural data [28], despiking

the temporal course [29], removal of realignment outliers via scrubbing them out
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or regression [30], ventricle masking to avoid ventricular activations [29], band-

pass �ltering [29], global parenchymal signal removal [22, 29], PCA, ICA, and

retrospective methods [31]. In Table 1.1, some preprocessing techniques for the

noise removal are described.

Table 1.1

Noise in fMRI data and possible preprocessing methods to cope

Subject related noise: by PCA, ICA, wavelet analysis,

Cardiac (0.6-1.2 Hz) �ltering, retrospective methods, modelling

Respiratory(0.1-0.5 Hz) �ltering, retrospective methods, modelling

Movement realignment , scrubbing, reggressing out

Scanner related noise: by �ltering, regression,intensity correction

Drift (low frequency noise)

Random noise (independent of task, no spatial structure) due to thermal motion
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1.5 Functional Connectivity

Brain consists of an e�cient network with functional and anatomical connections

of spatially distributed areas [32, 33]. In this context, for information sharing, three

types of connectivity can be distinguished as anatomical, functional and e�ective [32, 3].

While anatomical connectivity refers to physical connections of various brain regions,

functional connectivity indicates dynamic interactions of these regions such as their

temporal dependency on each other [32, 33]. Anatomical connectivity and functional

connectivity are mutually interdependent; however, the extent of this dependence is

still studied for �nding shaping and constraining networks. So far, it is presented

that resting state functional connectivity mostly re�ects the structural connectivity.

However, functional connectivity patterns can be seen when there is no structural

connectivity, which can lead to a conclusion that there might be a third location linking

the connected parts [34]. As for the e�ective connectivity, directed interactions between

the brain regions; thus, patterns of causal in�uence, are the main issue [32, 33]. In this

study, functional connectivity will be studied as it provides comprehension about large-

scale neuronal communication and how this connectivity and information integration

relates to human behavior. Speci�cally, the importance also comes from the point

that functional connectivity is likely to be the indicator of the quality and quantity

of complex cognitive processes [33]. Therefore, hints about neurodegenerative diseases

like AD and MCI can be obtained as mentioned in the subsection of MCI and AD

(1.2).

1.5.1 Functional Connectivity Analysis Methods

In order to carry out functional connectivity analysis, deviations from statistical

independence are assessed by estimating the correlation or covariance, spectral coher-

ence, or phase locking between pairs of time series [32]. Some of the main methods

developed for these processes can be divided into two groups as model dependent and

model free [33, 3, 35, 36].
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Model dependent methods, as the name suggests, construct a prototype of the

BOLD signal as close as to the observed signal by the known and unknown parameters.

The main model dependent methods are:

General Linear Modeling (GLM): In this model, time series of each voxel is

regenerated via the assumed to be known BOLD response and noise model. Then

the residual error is minimized mostly by generalized least squares. This is the

�rst level where each subject's data is considered. There is also a second level

where group di�erences can be modelled.

Seed Based Methods: For this method the �rst step is to determine a seed, which

can be a voxel, a region, a performance or a physiological variable. After selecting

the seed, additional preprocessing steps might be used to obtain relevant fMRI

BOLD signal. Then the brain regions related with the seed by passing a relevant

threshold are found via cross correlation, phase coherence or GLM �t [3, 36].

Model free methods do not assume anything about the response mechanism,

they drive the results from the data. The main model free methods for functional

connectivity analysis are:

Principal Component Analysis (PCA): The aim of this method is to �nd spatial

patterns with greatest amount of variability in their time series. Thus, eigen-

images ordered by the variation they convey are computed via singular value

decomposition (SVD) or eigenvalue decomposition.

Independent Component Analysis (ICA): Aim of this method is to �nd either

spatially or temporally independent, nonlinearly uncorrelated [37], components.

This is obtained either by minimizing the mutual information between compo-

nents or maximizing the non-Gaussianity of the data [38].

Clustering Based Methods: The aim of this method is to combine voxels into

clusters according to their time series' similarity described by the distance metric

[36].
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1.5.2 Method Selection

Each technique investigating functional connectivity needs expertise for careful

enough designing. Whether the study is task related or resting state network assess-

ment, the above mentioned methods can be used [39, 40, 41, 42] and results consistent

with the relevant literature can be obtained. Among functional connectivity studies,

GLM and ICA are the most popular techniques so far. For GLM, the quality depends

on the model parameters and algorithms chosen. In order to avoid any prior infor-

mation about the data, decomposition methods are usually preferred. PCA is mostly

used only for preprocessing as it is ine�cient for functional connectivity analysis. This

is due to the second order statistics utilization and linear independence assumption of

PCA. Based on the study and survey on the analysis methods, ICA is chosen. The

reasons for this approach to be the one for this thesis can be summarized as:

• To avoid mismodeling either by using too many priors or overlooking the param-

eters,

• To avoid seed selection and related problems such as time variance of the response

and erroneous correlations,

• To bene�t from ICA's increased sensitivity to detect subtle di�erences between

subjects when compared to seed-based methods [43],

• To bene�t from ICA's popularity and validity; thus, the broad range of literature

on the topic,

• To search the content of the data in this study, as consensus was made on the

appropriateness of ICA.

1.5.2.1 ICA. In Figure 1.10, the equation for spatially independent components

can be seen as XCA = ASICA, where XCA represents the data, A (T × c matrix)

represents the mixing matrix or the time courses of the spatially independent com-

ponents, and SICA (c × N matrix) is source matrix containing spatially independent
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components. If the inverse of the data matrix is used, temporally independent com-

ponents are found. In this equation, A and SICA are unknown. Thus, the problem

(blind source separation) turns into �nding the best unmixing matrix, A−1 for equa-

tion SICA = A−1X iteratively, so that the components are maximally independent

from each other [4]. This can be done either by minimizing the mutual information

between components or maximizing the non-Gaussianity of the data [38]. Thus, the

algorithms are separated into two main groups as the ones using mutual information

minimization (i.e. Infomax algorithm [44]) and the ones using kurtosis or negentrophy

for non-Gaussianity maximization (i.e. FastICA algorithm [45]). For these methods to

be applied, the assumptions to be met are:

• Non-Gaussianity of the data: As can be understood from the methods, the

components in the source matrix are thought to be statistically independent and

linearly mixed by the mixing matrix elements. In order to �nd the best unmixing

matrix providing the independence of the components, the distribution of the

data should be non-Gaussian. As can be seen from Figure 1.9, non-Gaussianty

provides information about the mixing matrix as the joint distribution of the

sources becomes non-symmetric.

Figure 1.9 Example about the joint distributions of Gaussian and non-Gaussian parameters [4]

• Independence of the components: As this is the aim of the method.

• Full rank and square A: A should be full rank and square for simplicity. However,

it can be relaxed if necessary [4].
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For these assumptions to be met, data should �rst be centered (made 0 mean)

and whitened (sphered/ forced to be uncorrelated). After these steps, reduction should

be done by PCA in order to decrease the computational load. A nice demonstration

of ICA by FastICA algorithm can be found at the website http://research.ics.aalto.�/

ica/icademo/.

Up to this point, the only source of stochasticity was the source matrix. There

is also one more type of ICA analysis called the probabilistic ICA (PICA), which

incorporates Gaussian noise into the picture (XCA = ASICA +H) [46, 47].

Figure 1.10 Independent Component Analysis

There are various ways for performing group inferences with (P)ICA [48]. In

this study, GIFT software is chosen for its compatibility with Matlab and the technique

it uses for group inferences. This choice is also based on the literature [43, 48, 49, 50,

51, 40] comparing various methods and algorithms, and indicating that using ICA with

temporal concatenation as well as GICA3 back-reconstruction algorithm gives the best

results for resting state functional connectivity studies. Since this analysis is also valid

for task related fMRI data [40], the details described are used in this thesis.

1.6 About Statistical Correction Methods

The outcome of fMRI study usually involves a statistical parametric map (SPM)

depicting the brain activity via color codes painting the signi�cant voxels according to

some statistical threshold (usually t-value). The threshold is supposed to re�ect the
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balance between sensitivity (true positive rate) and speci�city (true negative rate). At

the same time, as the tests are done simultaneously for each voxel, adding up to 100.000

voxels for each volume, it is important to correct for multiple comparisons. There are

various ways which di�er in the error rate they control, such as family-wise error rate

(FWER) and false discovery rate (FDR) [3, 52].

Family-wise Error Rate (FWER): It is the probability of false positives (Type I

errors, Figure 5.1) in a family of tests, under the null hypothesis. The methods

correcting for this kind of error include Bonferroni, random �eld theory and

permutation tests.

1. Bonferroni is too conservative as it assumes that all voxels are independent

from each other. However, there is an inherent dependency due to spatiotem-

poral autocorrelations in fMRI data as well as neighboring voxel dependency

[17]. This method; therefore, decreases the power of the test, which means

that the probability of accurate rejection of a false null hypothesis drops.

At the same time, false negative rate may increase.

2. With the help of Gaussian Random Fields theory, higher order statistics can

be applied at voxel level or cluster level thresholding with accounting for the

spatial correlation. However, this method is also very conservative and it

necessitates the images to be a derivative of multivariate Gaussian images

as well as to be su�ciently smoothed (like 3 or 4 times the voxel size).

3. Non-parametric methods, like permutation tests, can be used without mak-

ing any assumptions about the distribution of the data. Also, they are found

more successful to control FWER especially with small sample sizes [17, 3].

False Discovery Rate (FDR): Proportion of false positives among rejected tests are

controlled by FDR. Tests are mostly assumed to be independent when they are

dependent. Thus, incorporation of spatial information should be developed. In

the case the null hypothesis is true, FDR becomes equal to FWER. Procedures

controlling the FWER can also have control over FDR. However, procedures

speci�c to FDR are less stringent; thus, resulting in power rise. Moreover, the
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control mechanism only works with p-values; therefore, can be applied to any

statistical test [17, 3, 52].
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2. SUBJECTS and METHODS

2.1 Subjects

Total of 16 subjects (5 AD, 6 MCI, and 5 CT) are chosen among 64 subjects (17

AD, 34 MCI, and 16 CT) according to their ages (68 as average), the goodness of their

structural MRI and functional MRI. Subjects having ages in the outlier range and/or

bad scans as in Figure 2.1 are eliminated for re�ned results. The bad scans in Figure

2.1 include lost superior or temporal brain parts due to the �eld of view shifts (MCI

Subject 08), signal loss due to tooth implants or machine caused reasons (Alzheimer's

Subject 08 and MCI Subject 05), �xable bad normalization due to disorientation of

the scans (Alzheimer's Subject 09) and age and/or disease related big ventricles (MCI

Subject 03).

Figure 2.1 Bad (f)MRI scans of subjects

2.2 Methods

2.2.1 Experiment Paradigm

As the experiment paradigm, an auditory oddball paradigm variant whose inter-

vals between the stimuli are speci�cally optimized for event related fMRI measurements

is used. Classically, in an oddball paradigm, randomized target stimuli having 1500
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Hz frequency are placed with 20% probability between 1000 Hz standard sounds.

The stimuli have a duration of 200 ms, and an inter-stimulus interval of 2 secs. The

participants are supposed to press the button as fast as possible when they hear the

high-pitched sound. In this experiment, the optimization is done by Opt-Sec program

(http://www.opt-sec.com/) on the inter-stimulus intervals such that their minimum

length becomes 1.2 secs. whereas their mean becomes 2.2 secs.

2.2.2 fMRI Data

The fMRI is taken via a 1, 5 T MR scanner (Achieva, Philips Healthcare, Best,

The Netherlands) with SENSE-Head-8 coil at NPISTANBUL Neuropsychiatry Hospi-

tal, �stanbul. T1-weighted MPRAGE sequence is employed as high resolution anatom-

ical scan (voxel size 1.25 × 1.25 × 1.2 mm; 130 slices; �eld of view 240 mm). After

the 20 minute anatomical scan, a dynamic T ∗
2 -weighted gradient echo planar imaging

sequence with 275 dynamics is used for BOLD measurements. Additionally, two other

dynamics, usually not used for analysis of the steady state tissue magnetization, are

added in front of the sequence. Functional EPI volumes are gathered using anterior

commissure - posterior commissure aligned 26 axial slices with slice thickness of 4 mm

without gap and �eld of view 230× 230 mm (matrix = 64× 64 voxel) covering whole

cerebrum. RT is 2400 ms with 50 ms echo time (TE).

2.2.3 Preprocessing

All preprocessing steps are carried out using Matlab 8.2 (R2013b) with Statisti-

cal Parametric Mapping toolbox (SPM12bhttp://www.�l.ion.ucl.ac.uk/spm/software/

spm12b/). In order to use the toolbox, the DICOM �les taken from the MR ma-

chine's software are converted into Nifti-1 (Neuroimaging Informatics Technology Ini-

tiative) format (in which one Nifti �le exist per time point) via MRIConvert software

(http://lcni.uoregon.edu/~jolinda/MRIConvert/). In order to get more accurate re-

sults in the proceeding steps, the data are skull-stripped �rst by watershed algorithm in
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Figure 2.2 Preprocessing pipeline

FreeSurfer v5.3.0 (http://surfer.nmr.mgh.harvard.edu/) and later by BrainSuite v.13a4

(http://brainsuite.org/). Then, with SPM12b two di�erent preprocessing steps are ap-

plied on the data separately as can be seen in Figure 2.2. Namely:

1. Regular method: Realignment, slice time correction with the middle slice as the

reference slice, co-registration of the structurals to the mean of the functionals,

normalization to the MNI template and smoothing with 9mm FWHM Gaussian

kernel.

2. DARTEL method: Realignment, slice time correction with the middle slice

as the reference slice, co-registration of the structurals to the mean of the func-

tionals, creating a template from the average of the structurals with DARTEL

toolbox of SPM12b, normalizing the template to MNI template and smoothing

by DARTEL.
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Figure 2.3 Processing pipeline
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2.2.4 Processing

Data processing is done with Matlab 8.2 (R2013b), Group ICA Toolbox from

MIALab (GroupICATv3.0a http://mialab.mrn.org/software/#gica) and Statistical Para-

metric Mapping Toolbox (SPM12b http://www.�l.ion.ucl.ac.uk/spm/software/spm12b/).

The preprocessed data of subjects are put as inputs in two di�erent ways for group

inferences. For the �rst trial, all of the subjects are processed together whereas the

groups (AD, MCI and CT) are processed in separate sessions for the second trial.

As an additional step to the processing, minimum length description criteria (MDL)

[53, 54] is used for all subjects to search for the maximum independent component

number that can be get from the data. The processing pipeline, Figure 2.3, begins

with intensity normalization (in which the time series are scaled into percent signal

change). It is applied on the fMRI data as a preprocessing step of PCA. Next, the

data is reduced with two step Principal Component Analysis (PCA). In the �rst step,

subject speci�c PCA is done to get principal components, 1, 5× c. The reduced data,

cPCA = Subjectn × (1, 5 × c), are then whitened and temporally concatenated. Thus

they become one group instead of as many as the number of subjects. For the second

step, the temporally concatenated data are reduced into the number of chosen inde-

pendent components via the group level PCA. After PCA, independent component

analysis (ICA) is applied with the extended Infomax algorithm, 30 times with the help

of ICASSO. In ICASSO, the infomax algorithm is run each time with both bootstrap

and random initial points. As a result, spatial maps and temporal courses of the spatial

maps as many as the chosen number of ICs are gathered in each time the algorithm is

applied. The maps, 30× c, are clustered by group-average linkage agglomerative hier-

archical clustering. The centroids are then chosen as the most stable components and

put into further analysis. In order to reach to the subject level, back-reconstruction

algorithm GICA3 is applied on the centroids. After this step, both group-wise (aver-

age of all the subjects') and subject-wise spatial maps and their temporal courses are

obtained.

For further analysis, the spatial maps of the group-wise ICs are sorted via visual

inspection with respect to the literature. For the �rst trial, the group network name
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of each component is automatically the same for all of the the subjects. However, for

the second trial, in which each group is processed in a di�erent session, the networks

should be matched among the groups. After the identi�cation of networks, subject's

spatial maps are statistically analyzed with contrasts di�erentiating between AD, MCI

and CT via ANOVA and MANCOVA analysis.

As for the TCs; three di�erent processes - such as spectrum analysis, functional

connectivity and temporal sorting - are carried out. First, spectrum analysis is applied

on group-wise despiked, �ltered (Butterworth �lter with low-pass cut o� 0.2 Hz) and

baseline corrected TCs as well as despiked, �ltered and detrended TCs. Three outputs

for each measure are obtained as power spectrum, dynamic range and low frequency

power integral to high frequency power integral ratio of the components. For dynamic

range, the di�erence of the peak power with the lowest power in the frequencies after

the peak power frequency is used. As for the low frequency range, spectral power

below 0.1 Hz is used whereas spectral power above 1.5 Hz till 2 Hz is assumed to

be in high frequency range. Second, the connectivity between networks are estimated

in a pairwise fashion via Pearson's correlation between despiked, �ltered and baseline

corrected TCs. Then, the functional connectivity map is obtained via transforming

the correlations into z-scores (with Fisher's transformation z = atanh(r), where r is

the correlation between two components). The �rst two methods are also done in a

subject-wise fashion in order to compare AD, MCI and CT groups with MANCOVA.

Third, subject's TCs are temporally sorted via multiple regression with the canonical

HRF and time derivative of HRF convolved target signal, and normal signal (Figure

2.4). This is done in order to �nd the modulation of task in functional connectivity

networks. Moreover, statistical tests are done on β values (4 di�erent values for each

subject) with various contrasts (Figure 2.5) selecting regressors and/or groups.
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Figure 2.4 Multiple regression for temporal sorting

Figure 2.5 Contrasts for the post-hoc, one-way ANOVA statistics on β values can be seen for group
comparison as indicated by the combination of blue and purple parenthesis, whereas for regressor
comparison as indicated by orange parenthesis. On the other hand, two-way ANOVA contrasts com-
paring both of the regressors and groups can be seen as the combination of blue parenthesis with the
white arrow.
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3. RESULTS

The 20, 25, 30, 40, 50, 60 and 75 component results of analyzing subjects all

together and separately in groups like AD MCI and CT are viewed by experienced

neurologists at Istanbul University Çapa Medical School. The former method with 30

components is thought to give the best network results visually. In order to determine

the component number analytically, minimum description length criteria is applied to

all of the subjects. The results of MDL criteria can be seen in Figure 3.1 as suggesting

25 components for the analysis. After these steps, the networks are determined via

visual inspection with respect to the literature.

MDL Results for 16 Subjects

The estimated ICs 25

The mean 24.875

The standard deviation 4.3951

The minimum 18

The maximum 34

The median 24

Figure 3.1 Mean of MDL for 16 Subjects

The results of 30 component ICA, as chosen by the neurologists can be seen in

the following sections. When the spectrum analysis of the time courses of components

and functional connectivity results after ICA are considered, DARTEL method (Sub-

section 2.2.3) is found to provide better preprocessing. Thus, only the outcomes of the

data preprocessed by DARTEL is used for this chapter.

3.1 ICASSO Results

In Figure 3.2, the stability indexes and total component numbers in each cluster

after ICASSO is depicted. Concomitantly, Figure 3.3 show the similarity graph, de-
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scribing the clusters. As can be seen from the �gures, some of the components are less

stable than the others since they have larger extent of red area with total component

number under or above 30. In order to choose the most stable estimates among the

stochastic results of ICA, the centrotypes, shown as the green circles in the clusters,

are chosen. Consequently, these graphs establish the fact that ICASSO is a valuable

step for ICA.
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3.2 Attentional Networks

Attentional networks can be divided in subgroups, such as dorsal attention,

ventral attention (aggregate of salience and cingulo-opercular networks) [55, 56] and

(left and right lateralized) fronto-parietal networks as well as other specialized parts.

The name 'attentional' is used for describing the related networks since the paper of

Allen and his colleagues ,'A baseline for the multivariate comparison of resting state

networks ' [43], providing the basis of this thesis, used this name for a similar group.

In some studies [57, 58, 55], the group is named as task positive networks together

with sensory mechanism related networks and de�ned as goal-directed task activated

networks [59]. Although those networks are studied and grouped as task-active, they

can also be found during resting state [60, 57].

In this analysis 3 di�erent attention related networks are found. Even though it

is very common to �nd dorsal attention and salience networks, there are no networks

similar to them among the networks below.

3.2.1 Attentional Network 1

3.2.1.1 Group-wise (All Subjects' Average) Results. In Figure 3.4, midbrain,

thalamus and insula are seen as the main parts of the network. There are also other

minor brain parts including supplementary motor area. The functional correspondence

of these areas are:

Functions of Midbrain (Mesencephalon): Midbrain provides important connec-

tions between the constituents of the motor system, such as cerebellum, basal

ganglia and cerebral hemispheres. The colliculi constituting midbrain are also

involved in auditory and visual re�exes [1]. Those kinds of stimuli are relayed

to thalamus from here [61]. Moreover, extraocular muscles controlling the eye

movements have cranial nerves directed from this part [1]. It is also thought to

be of importance in reward mechanisms and mood [61].
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Functions of Thalamus: As the biggest component of the diencephalon, thalamus

comprises numerous nuclei, having connections with associative and limbic ar-

eas of the cortex, receiving input from the cerebellum and basal ganglia and

extending to the motor regions of the frontal lobe, and transmitting general and

special sensory information to related parts of the sensory cortices [62]. Sensory

information except olfactory is also �ltered here [1] .

Functions of Insula: The insula as a hidden part of the cortex under frontal and

temporal lobes, has connections with some a�erent signal transferring sensory

thalamic nuclei. It has (mostly reciprocally) connections with the amygdala as

well as with many limbic and association cortical areas [63]. As a result of these

connections, it has vast amount of functions. It is one of the pain centers of

cortex [62]. It also aids in the involuntary activities like autonomous control

of the viscera. There are also extensions of specialized ares in taste and smell

sensations [62]. It has shown that the insular cortex has a key role in several

auditory processes, such as tuning into novel auditory stimuli and allocating

auditory attention. It also has vestibular and somatosensory functions as well

as a role in temperature sensation, viscerosensation, somatomotor control, motor

plasticity, speech production, cognitive control, bodily awareness, self recognition,

individual emotions, social emotions and addiction [63].

Functions of Supplementary Motor Area: Responding to internal cues, speci�-

cally intentions to move voluntarily (whether the movement carried out does not

matter), is supplementary motor area function [62]. Principally, it arranges the

sequences of movements already built in motor memory [62]. Moreover, as an

executive control area, initiation of a new action, inhibiting a response plan or

�exibly changing the plans as well as sorting out the irrelevant distractors are

activation reasons [64].

In the case of this network's activation by the experiment task, the combination

of appropriate functions would be about planning the movement necessitated by the

oddball task as well as di�erentiating the normal and target sounds and pressing the

button when the target sounds are heard.
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Figure 3.4 Attentional Network 1

3.2.1.2 Subject-wise results. When the statistics on β values are considered,

the results for targets regressor are found to be greater for AD and CT than MCI with

p ≤ 0.02.

3.2.2 Attentional Network 2

3.2.2.1 Group-wise Results. In Figure 3.5, the main functional divisions are

frontal lobe, temporal lobe, inferior parietal lobule, anterior cingulate, and precuneus.

As can be seen, mostly the right part of the brain is active. This network is called

right lateralized fronto-parietal network or fronto-parietal control network or multiple

demand system [60, 43, 12, 65, 58] in structure-wise nomenclature and right executive

network [66, 57] in functional nomenclature. However, in some studies like in Smith and

his colleagues', executive network is described as consisting of several medial-frontal

areas (including anterior cingulate and paracingulate) apart from the fronto-parietal

control network consistent with the one in Figure 3.5 [67].

This network has shown to be involved in various cognitive processes, such

as reasoning, attention, inhibition, memory (working memory, episodic memory) and

mental imagery [60, 58]. Moreover, the adaptability in implementation of various tasks
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are thought to be provided via this network as its parts act like �exible hubs [68].

Which means that the parts of this networks adapt their pattern of global functional

connectivity according to the tasks. It is also shown that the relation between the

DMN and the dorsal attention network is moderated by this network as an intrinsic

control mechanism [57, 58]. Thus, in this study it might work as the intrinsic control

mechanism, attention and inhibition processor.

If all of the regressors are considered for sorting the components according to

their task relatedness, this component has the 3rd place. Apart from that, there are

no other signi�cant results.

Figure 3.5 Attentional Network2

3.2.3 Attentional Network 3

3.2.3.1 Group-wise Results. As can be seen from Figure 3.6, the network mainly

consists of parietal lobe and precuneus which is in the medial posterior parietal cortex.

A similar network is found in Allen and his colleagues' study [43] (as IC 72), with the

function of directing attention among the attentional networks group. In order to look

closely to this component, the largest and the most active part in the network can be

examined as well as its connections with the other parts in the network. Moreover, the

connections of this network with others are of importance. Below is the main part of
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this network, precuneus:

Precuneus: It has three functionally discrete regions, namely the dorsal-anterior pre-

cuneus connected with medial somatomotor regions, the posterior precuneus con-

nected with visual areas, and the ventral precuneus connected with the dorso-

lateral prefrontal cortex, the inferior parietal lobule, and the superior temporal

sulcus [69, 70]. Functionally, precuneus is involved in re�ective, self-related pro-

cessing, awareness and conscious information processing, episodic memory, and

visuospatial processing [70]. Generally, it becomes more active during rest than a

task [70]. Moreover, connectivity patterns are dynamic, like connectivity between

the precuneus and the right frontoparietal network increases during task whereas

connectivity between the precuneus and the default-mode network (DMN) during

rest [71]. As the e�ect is greater for the rest state, it is thought to be more spe-

cialized towards cognition during resting state [71]. If the task is autobiographic

rather than externally stimulating, precuneus becomes a part of DMN [65].

Figure 3.6 Attentional Network 3

In Figure 3.7, functional connectivity map of this study can be seen. There

are 30 × 30 squares, representing the correlation of 30 components with each other.

The color of each square depicts the value of z-score obtained by the transformation
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Figure 3.7 Functional network connectivity

of the correlation coe�cient of the two components. According to that map, this

component have both positive and negative correlation with DMN as shown in the

Figure 3.8. Negative correlation is thought to re�ect the inverse working mechanism

of the components, such as one is active whereas the other is inactive. Consequently,

the positive correlation means that the networks become activated together.

Figure 3.8 Functional network connectivity of attentional network 3

3.2.3.2 Subject-wise Results. This component has both the spatial map di�er-

ence among AD and MCI (p < 0.05) and β value variation. The spatial map variation
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does not exceed 5 voxel in the precuneus area (Figure 3.9). As for the statistics of β

values:

• For all of the regressors: With a contrast ofMCI > AD (meaning a contrast

of [−110] for a group like AD, MCI and CT), p value is found to be 0.02, indicating

a signi�cant di�erence.

• For normals and time derivative of normals: For the contrasts CT > AD

and MCI > AD, the p values are found to be 0.03 and 0.0007 subsequently.

• For normals: With the contrast of MCI > AD, p = 0.003.

• For targets: With the contrast of MCI > AD, p = 0.05.

• Two way ANOVA: With the contrast MCI > CT & Targets > Normals,

p=0.002.

Thus, it might be said that this network �rst becomes enhanced and as the

disease progresses, it becomes disrupted.

Figure 3.9 Spatial map di�erence of attentional network 3 between AD and MCI
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3.3 Auditory Network

3.3.1 Group-wise Results

In Figure 3.10, as the most prominent parts are the superior temporal, insular

and postcentral cortex, it can be seen that the network is auditory network consistent

with the literature [43, 72, 73, 74]. As the name suggests, this network is involved

in audition including tone/pitch discrimination, oddball discrimination, phonological

discrimination, music and speech (in paradigms like action-execution-speech, cognition-

language-speech) [67, 60, 74].

Figure 3.10 Auditory Network

3.3.2 Subject-wise Results

The outcomes are signi�cant only for the β value statistics. The contrasts

having prominent results are AD > CT & Targets > Normals and MCI > CT &

Targets > Normals with p = 0.02 and p = 0.0046.
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3.4 Cerebellum

3.4.1 Group-wise Results

In Figure 3.11, the most prominent part is cerebellum. There are similar

networks found in literature, and declared to be involved in action-execution and

perception-somesthesis-pain chains as well as a variety of sensorimotor, autonomic and

cognitive functions [67, 60, 74].

Figure 3.11 Cerebellum

3.4.2 Subject-wise Results

The signi�cant di�erences are only found for the β value statistics. They can

be summarized as:

• For all of the regressors: With a contrast of MCI > AD, p value is found to

be 0.04, indicating a signi�cant di�erence.

• For normals and targets: For the contrasts CT > AD and CT > MCI the p

values are found to be 0.01 and 0.03 subsequently.
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• For targets and time derivative of targets: With the contrasts of CT > AD

and MCI > AD, p values are 0.03 and 0.003 respectively.

• For targets: With the contrasts of CT > AD and CT > MCI, p values are

0.002 and 0.008 respectively.

The values seem higher for the healthy elderly and lower for the AD patients.

3.5 Default Mode Network (DMN)

The default mode network is one of the most studied networks for connectiv-

ity patterns indicating pathological markers (especially for autism, schizophrenia, and

Alzheimer's disease). It is consisted of medial prefrontal cortex, posterior cingulate

cortex, superior and inferior frontal gyri, medial and lateral temporal lobes and the

posterior extent of the inferior parietal lobule [65]. Those regions are also thought to

be anatomically connected directly or indirectly apart from their intrinsic functional

connectivity [75]. As do the most of the components, the default mode network is also

present whether there is a task. It is mostly active during rest, internal mentation and

mind wandering (both in undirected cognition state and sustained attention states)

[75, 76]. However, it becomes deactivated when the task positive networks are active.

These networks are anti-correlated moment to moment even in the absence of a task.

Thus, it is thought that this anti-correlation may act as an unwanted thought inhibitor

[57]. As a control mechanism on being activated and deactivated, salience network

is thought to play an important role by activating executive network while deactivat-

ing DMN. Moreover, in mediating the the relations between dorsal attention network,

fronto-parietal network is found to be involved [57].

Apart from the functional and structural properties, this network is thought to

be involved in progression of AD. The disruption of the network activity, especially

decrease in task induced deactivation and disruption of molecular cascades in exactly

the same regions corresponding to DMN leads to a probability of a conclusion that
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it might indeed be a cause rather than a consequence [57, 10]. Thus, this network's

activity might accelerate the process of the AD pathology [57].

In this study, 5 networks related to DMN, consistent with the literature are

found.

3.5.1 DMN 1

3.5.1.1 Group-wise results. As can be seen from Figure 3.12, the most promi-

nent parts of this network are medial frontal gyrus and cingulum.

Figure 3.12 DMN 1

In Figure 3.13, the functional connectivity of this network is depicted as positive

with the 3rd visual network whereas negative with the 1st visual network.

3.5.1.2 Subject-wise results.

• For normals: With the contrasts CT > AD and CT > MCI, p = 0.04 and

p = 0.02 respectively.
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Figure 3.13 Functional connectivity of DMN 1

• For targets and time derivative of targets: With the contrast MCI > AD,

p = 0.058.

• Two way ANOVA: With the contrasts AD > CT & Targets > Normals,

AD > MCI & Targets > Normals, and MCI > CT & Targets > Normals,

p = 0.005, p = 0.0047, and p = 0.05 with negative t values respectively.

3.5.2 DMN 2

3.5.2.1 Group-wise results. As can be seen from Figure 3.14, the most promi-

nent parts of this network are superior frontal gyrus and medial frontal gyrus.

In Figure 3.15, functional connectivity of this network with the 3rd attentional

network is depicted as negative.

3.5.2.2 Subject-wise results. The signi�cant results of statistical analysis of β

values are:

• For normals and time derivative of normals: With the contrast AD>MCI,

p = 0.02.
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Figure 3.14 DMN 2

Figure 3.15 Functional connectivity of DMN 2.

• For normals: With the contrasts AD > CT and AD > MCI, p = 0.05 and

p = 0.009 respectively.

3.5.3 DMN 3

3.5.3.1 Group-wise results. As can be seen from Figure 3.16, the most promi-

nent part of this network is limbic lobe. Moreover, positive correlation with the 3rd

attentional network is observed (Figure 3.17).

3.5.3.2 Subject-wise results. As can be seen in Figure 3.18, the di�erence in

spatial maps of controls and AD patients is located in white matter of sub-gyral frontal

lobe. The voxel count in the area does not exceed 5.
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Figure 3.16 DMN 3

Figure 3.17 Functional connectivity of DMN 3

Figure 3.18 Spatial map di�erence of DMN 3 between controls and AD patients
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3.5.4 DMN 4

3.5.4.1 Group-wise results. As can be seen from Figure 3.19, the most promi-

nent part of this network is medial frontal gyrus.

Figure 3.19 DMN 4

In Figure 3.5.4.1, the functional connectivity of this network with the 3rd Visual

Network is depicted as negative.

Figure 3.20 Functional Connectivity of DMN 4

3.5.4.2 Subject-wise results. Signi�cant di�erences are found for the β values

as:

• For all regressors: With the contrast MCI > AD, p = 0.05.
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• For normals and time derivative of normals: With the contrasts CT >

AD, and MCI > AD, p = 0.03 and p = 0.03 respectively.

• For normals: With the contrasts CT > AD, and MCI > AD, p = 0.03 and

p = 0.03 respectively.

3.5.5 DMN 5

3.5.5.1 Group-wise results. As can be seen from Figure 3.21, the main parts of

this network are temporal lobe, precuneus, posterior cingulate and medial frontal gyrus.

The most common pattern of DMN matches very well with this network. However,

there are no other outcomes related with the subjects.

Figure 3.21 DMN 5

3.6 Frontal Network

3.6.1 Group-wise results

In �gure 3.22, one network which can be named as frontal network [43] is present.

The most prominent parts are inferior and middle frontal gyrus along with the pre-
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central gyrus. Those areas are known to aid in motor control, executive, memory and

language related functions [43, 77].

Figure 3.22 Frontal Network

In Figure 3.23, the functional connectivity of this network with the 1st visual

network is depicted as positive.

Figure 3.23 Functional connectivity of frontal network
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3.7 Sensorimotor Network

3.7.1 Group-wise results

In �gure 3.24, the most prominent parts are precentral and postcentral gyruses.

Thus, it can be named as sensorimotor network as in the literature [67, 43]. It is the

�rst network to be found for resting state fMRI data. Action-execution and perception-

somesthesis paradigms speci�cally involving hand movements are shown to activate this

network [67, 60].

Figure 3.24 Sensorimotor Network

3.7.2 Group-wise results

The signi�cant results of the statistical analysis of β values can be summarized

as:

• Two way ANOVA: With the contrasts AD > CT & Targets > Normals and

MCI > CT & Targets > Normals, p = 0.058 and p = 0.009 respectively.
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3.8 Visual Network

This network can be divided into subgroups as medial occipital pole and lateral

visual areas. These sub-networks are known to be involved in functions for paradigms

cognition-language-orthography and covert reading and cognition-space (like mental

rotation and location discrimination in space) [67, 43, 60]. Moreover, functions re-

lated to viewing such as visual stimuli involving emotional content, action observation,

moving object tracking, overt picture naming concerns this area [60]. As for a demon-

stration of plasticity of the brain, Braille reading is found to activate these networks

[60]. Additionally, the functional connectivity of these areas are found to be dynamic in

nature. It becomes connected with fronto-parietal network when task related relevant

visual information is processed whereas with DMN if irrelevant visual information is

processed [78].

In this study, there are 4 networks related to this group.

3.8.1 Visual Network 1

3.8.1.1 Group-wise results. As can be seen from the Figure 3.25, the network

includes inferior temporal gyrus, middle temporal gyrus, occipital lobe (mostly middle

occipital gyrus and superior occipital gyrus with BA 19 and 18 - secondary, and tertiary

visual cortices).

In Figure 3.26, Functional connectivity of this network is depicted as positive

with the frontal network whereas negative with the 1st DMN.
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Figure 3.25 Visual Network 1

Figure 3.26 Functional connectivity of visual network 1
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3.8.2 Visual Network 2

As can be seen in �gure , the most prominent parts are middle occipital gyrus,

middle temporal gyrus, lingual gyrus, inferior temporal gyrus, fusiform gyrus with some

limbic sytem elements as well as related cerebellum, frontal and parietal lobe parts.

Figure 3.27 Visual Network 2

3.8.3 Visual Network 3

3.8.3.1 Group-wise results. As can be seen from the Figure 3.28, the most

prominent parts are occipital lobe, limbic lobe and supplementary motor area.

In Figure 3.29, the functional connectivity of this network is depicted as positive

with the 1st DMN whereas negative with the 4th DMN.

3.8.3.2 Subject-wise results. The most prominent results of the statistical anal-

ysis of the β values can be summarized as:

• For normals and targets: With the contrast AD > MCI, p = 0.03.



54

Figure 3.28 Visual Network 3

Figure 3.29 Functional connectivity of visual network 3

• For targets: With the contrasts AD > CT , and AD > MCI, p = 0.03 and

p = 0.004 respectively.

3.8.4 Visual Network 4

3.8.4.1 Group-wise results. As can be seen from the �gure , the most prominent

parts are precuneus, occipital lobe, fusiform gyrus, middle temporal gyrus, thalamus

and certain parts of parietal lobe.
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Figure 3.30 Visual Network 4

3.8.4.2 Subject-wise results. The signi�cant results of the statistical analysis

of the β values can be summarized as:

• For all regressors: With the contrast CT > AD, p = 0.03.

• Two way ANOVA: With the contrast AD > CT & Targets > Normals,

p = 0.01 with a negative t value.
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3.9 Unclassi�ed Network

3.9.1 Group-wise results

As can be seen in Figures 3.31 and 3.32, the main parts of this network are

temporal lobe (mostly left middle temporal gyrus, superior temporal gyrus), inferior

and superior frontal gyrus and supramarginal gyrus. In the literature, there is not

a network resembling exactly to this network. That may be also due to the clinical

fMRI data having some of the temporal slices lost due to the FOV and the very old

population used as subjects. However, partial overlapping with three di�erent networks

is detected. Those networks include ventral stream [72, 73, 79], semantic network,

auditory processing network [80, 81] and temporo-parietal network [82]. The sagital

view of the network, which can give a better presentation of the activation locations in

this case, can be seen in Figure 3.31. Below are the functions of the most pronounced

areas as well as their connections with each other:

Middle temporal gyrus It aids in language comprehension (lexical syntactic infor-

mation retrieval, resolution of ambiguity) [83], multimodal semantic processing

(verbal and non-verbal), semantic memory, auditory and visual information inte-

gration (information comes laterally from superior temporal gyrus and fusiform

gyrus) [81].

Superior temporal gyrus It has functions in auditory processing together with lan-

guage, reading, verbal semantic processing, social cognition with the interactive

pathways between amygdala, prefrontal cortex and other frontotemporolimbic

structures, regulation of behavior, and neural mechanisms of imitation [84, 85,

81].

Temporal pole It has 4 major divisions as the dorsal part, with predominant con-

nectivity to auditory, somatosensory and language networks; the ventromedial

part, predominantly connected to visual networks; the medial part, connected to

paralimbic structures; and lastly the anterolateral part, connected to the default-

semantic network. Thus, it has functions in language, semantic and lexical skills,
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visual cognition, face recognition, semantic memory, high-level visual and au-

ditory processing (face familiarity judgments, understanding emotion through

faces, integrating visual and auditory information in semantic tasks, the analysis

of musical melody, the identi�cation of speakers via their voice, face and name

association), socio-a�ective behavior like empathy, regulation of eating and sex-

ual behavior. It is also found that the semantic tasks involving auditory stimuli

activates the left temporal pole more robustly [80].

Inferior frontal gyrus It aids in language comprehension (uni�cation via mainte-

nance, selection and integration of various sources of information over time) [83],

multimodal semantic processing (more precisely semantic controlling in order to

behave as time and context necessitates) [81].

Superior frontal gyrus With the help of di�usion tensor tractography, it is divided

into 3 subregions namely anteromedial, dorsolateral and posterior [77]. The an-

teromedial part is found to be anatomically connected with the anterior and

mid-cingulate cortices; thus, aiding in the functions of cognitive control and de-

fault mode network. Also, it has strong resting state functional connectivity

with the posterior cingulate cortex, caudate, middle frontal gyrus, thalamus, and

the opercular and triangular parts of inferior frontal gyrus, which are mostly

the parts found in this network (Figure 3.32). The dorsolateral part is found to

be anatomically connected with the middle and inferior frontal gyri; thus, aid-

ing in functions of cognitive execution network. In addition, it has some weak

resting state functional connectivity with the anterior cingulate cortex, posterior

cingulate cortex and caudate nucleus. Lastly, the posterior part is found to be

anatomically connected with the precentral gyrus, caudate, thalamus, and frontal

operculum; thus, aiding in the functions of motor control network. Additionally,

it has a strong resting state functional connectivity with mid-cingulate cortex,

sensorimotor and speech relate brain areas [77].

Supramarginal gyrus It is involved in verbal working memory [86], self generated

and observed actions [87]. Moreover, the part in the right hemisphere is involved

in self-other distinction, overcoming self egocentricity bias [88], accurate percep-

tion of being upright via processing information from multiple modalities [89].
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As can be seen, most of the divisions are a part of language or semantic pro-

cessing network especially when they are connected. If looked at the possible networks

described above as ventral stream, semantic network, auditory processing network and

temporo-parietal network, there are lots of common structures and functions (espe-

cially with temporo-parietal network). The exact naming and functional attribution

can only be done after a through research.

Figure 3.31 Sagital view of 3rd attentional network

3.9.2 Subject-wise results

The signi�cant results of the statistical analysis of the β values can be summa-

rized as follows:

• For targets and time derivative of targets: With the contrast CT > AD,

p = 0.04.

• Two way ANOVA: With the contrast AD > CT & Targets > Normals,

p = 0.02 with a negative t value.
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Figure 3.32 Unclassi�ed Network
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3.10 Spectral Analysis of Temporal Courses

In Figure 3.33, the dynamic range vs. power ratio graphs can be seen. Those

graphs are the results from baseline corrected and despiked temporal courses of com-

ponents obtained after the preprocessing steps. The colors refers to the network groups

explained above and the number labels represent the component numbers. As can be

seen from Figure 3.33, the artifacts (red ones) tend to assemble to the left part of the

graph. This e�ect is expected since the literature suggest artifacts mostly have lower

dynamic range and power ratios [43] due to their noisy structure. The graph can also

be used as a measure to check the visual artifact selection. In addition to to this graph,

the spectral graphs under the t-maps in the network subsections might also be used to

infer about the artifacts since the artifact spectras tend to have more variation among

subjects.

Apart from these results, the method is also applied to detrended and despiked

temporal courses. As expected, it does not give awaited results. Therefore, it can

be said that detrending badly a�ects temporal courses of the components of the task

related fMRI.
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4. DISCUSSION AND CONCLUSION

The fMRI data in the study is gathered from 64 elderly subjects, having AD,

MCI or being healthy, while attending an optimized auditory oddball task. After

the initial check of the structural and functional images, 16 subjects are found to be

quali�ed enough for the analysis. Although statistically better results can be obtained

with 12 people for each group at least, the study is continued with total of 16 subjects

in order to examine the highest quality of data as a pilot study.

The data is �rst skull-stripped and then preprocessed in two di�erent ways with

DARTEL method and regular method, explained in detail in methods chapter (Subsec-

tion 2.2.3). The reason for using two di�erent ways is to see the e�ects of preprocessing

on proceeding steps. It is known that ICA is a�ected by the preprocessing steps [29].

When subtle spatial di�erences are researched, image registration and normalization

becomes an important element in the study, especially if there is a mismatch between

the template population and the subject group. For this purpose, DARTEL is found to

be superior in accurateness when compared to regular coregistration and normalization

processes [23, 25]. Moreover, it can be applied via SPM written mostly by Karl Friston

and John Ashburner.

The chosen group ICA necessitates further preprocessing due to the statistical

postulates of the algorithms and the computational load. Thus, the following step in-

cludes intensity normalization, subject-level PCA, whitening, temporal concatenation

and group-level PCA. After the preprocessing, the data are decomposed into indepen-

dent components via Infomax algorithm. This algorithm is actually applied for 30

times with ICASSO in order to get the most stable results. The components are then

backreconstructed into subject-wise data. Consequently, the total outcome becomes

the aggregate components (having spatial maps and temporal courses) belonging to all

of the subjects and components belonging to each of the subjects.
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The above mentioned steps are applied to 2 di�erently grouped subject data

with the component numbers of 20, 25, 30, 40, 50, 60 and 70. Firstly, the subjects

are grouped as AD, MCI and CT before the ICA in order to get separate results for

each group. Secondly, all of the subjects are grouped as AD, MCI and CT after the

ICA of all subjects as one group. Neurologists compared the outcomes and favored

the latter grouping with 30 components. The number of components that can be

extracted from the data are also estimated by an algorithm utilizing MDL criteria.

This is done in order to check the liability of the current algorithmic method, o�ered

as a solution for the component number selection problem. The component number

di�erence between the average numbers is 5 since the MDL de�ned 25 as the average

number of components that can be extracted from the data. The di�erence in selection

can be explained by the sub-network e�ect of higher component numbers and the

possibility of underestimation of the algorithm. When the networks of 25 component

ICA and 30 component ICA are compared, some important networks, such as DMNs,

are found to be mixed with the artifacts. On the other hand, when the networks

having higher components, particularly 70 components, are explored, networks which

are mostly separated from the artifact components such as the basal ganglia network

from the vetricular activation artifact are found. However, the 30 component approach

is adopted since the separation of components from each other is not limited with the

artifact containing ones.

There are two di�erent 30 component ICA results due to di�erent preprocessing

steps as mentioned above. These two di�erent 30 component sets have also an ICASSO

history, which means that there are 2×30×30 result set, as the ICA process is applied

30 times with ICASSO. Each 30 × 30 component set is clustered and the centrotypes

are chosen in order to get the most stable outcomes since ICA is a stochastic process.

After considering the overall e�ect of preprocessing steps, the main network

sections in results chapter are designed with the components of the data preprocessed

with DARTEL. In summary, 9 di�erent network groups are found based on the previous

studies [43, 67, 12, 72]; namely:
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1. Attentional Network: 6th, 11th and 20th components

2. Auditory Network: 10th component

3. Cerebellum: 21st component

4. Default Mode Network: 4th, 8th, 16th, 19th and 22nd components

5. Frontal Network: 27th component

6. Sensorimotor Network: 3rd component

7. Visual Network: 7th, 9th, 14th and 17th components

8. Unclassi�ed Network: 23th component

9. Artifact related components: 1st, 2nd, 5th, 12th, 13th, 15th, 18th, 24th,

25th, 26th, 28th, 29th and 30th components

For attentional network group, the expectation was to �nd dorsal attention

network and salience network among others. However, these two common networks

are missing in this study. On the other hand, there is one unclassi�ed network due to

its resemblance to 4 di�erent networks mentioned in the literature (Section 3.9). This

may be due to the quality of the clinical data and the elderly population.

Clues about the extension of artifact contamination in a component can be

gained via the spectral analysis of the temporal courses of the components [43]. For

that, three measures, such as dynamic range and power ratios in addition to the usual

spectral graph including all of the subjects data can be used. In this study, this analysis

is applied to component time courses in two di�erent ways. The di�erence between the

two ways is an additional detrending step, applied before the spectral analysis. The

results are positive only for the trendy temporal courses of the components. This result

is expected as the experiment has a task. The graph depicting the dynamic ranges and

power ratios as well as the spectrums of the components are checked while determining

the artifact related components. The main criteria for selection is the literature about

the components of the movement, respiration, cardiac pulse or known vascular and
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cerebrospinal �uid or air �lled areas. However, the analytic metrics help when there is

a dilemma about the artifact percentage of a component.

When the connectivity between networks are considered, the strengths do not

go higher than 0.4 for the z-scores. However, they are worth to be reported as in the

literature [43]. Additionally, this may indicate age and pathology related factors if the

quality of the data issue is eliminated. The connectivities, whose coe�cients are higher

than 0.3, can be summarized as follows (Figure 4.1):

1. Positive correlation between visual and frontal networks: The related networks

have middle prefrontal gyrus and visual association cortex as parts of them, as can

be seen from the results chapter. Middle prefrontal cortex is found to function as

a top-down control mechanism for the visual assocciation cortex especially when

a visual working memory task is attended. Thus, they are said to be functionally

correlated [90]. Although the task in this study is irrelevant, it is possible that

this connection may be related with this mechanism.

2. Both positive and negative correlation between DMN and visual networks: They

are found to be coupled when there is a need for suppression of task irrelevant

information during a visual working memory task. Therefore, it may even be

the coupled e�ort to suppress distraction of visual stimulation together with

internally generated information [78].

3. Both positive and negative correlation between DMN and attentional networks:

The attentional network in this case is mostly consisted of precuneus. As men-

tioned in the results chapter, this component may have positive correlations with

the DMN during rest, and even become a part of DMN [71]. It can also have

negative correlations with the DMN indirectly since it is found to be mostly corre-

lated with fronto-parietal network during task. Although, there are no signi�cant

correlations above 0.3 between DMN and fronto-parietal network in this study,

this outcome is important.
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Figure 4.1 Functional connectivity summary

When the spatial maps, functional connectivities and spectral bins of AD, MCI

and CT are compared in a multivariate fashion via MANCOVA, 6th (Attentional Net-

work 1), 16th (DMN 3) and 20th (Attentional Network 3) components for spatial maps;

9th (Visual Network 2) for the spectral di�erences are found to have di�erences whereas

there is no result for the functional connectivity comparison. The results being not as

strong as expected might be due to the quality of the data.

In order to have more detailed explanation over multivarite tests, univariate

tests are done. For the spatial maps, FDR is used for multiple comparison correction.

The results include regions in the 16th component (DMN 3), between controls and AD

patients in white matter of sub-gyral frontal lobe, and 20th component (Attentional

Network 3), between MCI and AD patients in precuneus. Unfortunately, no conclusions

can be made upon the spatial map di�erences of AD and MCI since the signi�cant

voxels do not exceed 5-voxel threshold.

As a novelty in the �eld of AD and MCI, temporal sorting is done in order to �nd

the modulation of the task upon the components via multiple regression with the target

stimuli and normal stimuli regressors as well as their time derivatives. Additionally, the

beta values of the regression coe�cients are compared in 8 di�erent ways in order to

detect group or regressor di�erences. In summary, the regressor type a�ects the order
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of the components and the beta value comparison outcomes. As for the group-wise

comparisons, it can be said that all of the network sets have some di�erence between

various couplings of AD, MCI, and CT when various couplings of regressors are taken

into account. The bigger picture can be seen from the Figure 4.2.

To conclude, the aim of this study was to �nd a bio-marker for di�erentiating

AD and MCI from the healthy subjects via ICA as well as studying the e�ect of image

registration for this analysis as a side aspect. For that, a preprocessing step utilizing a

di�eomorphic registration algorithm (DARTEL) is used before the group ICA analysis.

To perform the group inference, the group ICA analysis concatenates the subjects

temporally into a single group. Later, by backreconstruction, the subject information

is obtained. As for the further analysis, the data is inspected both spatially and

temporally. The expected results were mostly for the spatial maps of the components

at the beginning; however, temporal course analysis gave the most abundant outcomes.

The overall results are insu�cient in di�erentiating between the diseases via spatial

maps. On the contrary, since the component temporal course regression of AD and MCI

for the oddball paradigm is novel in the �eld, it may suggest a new frame for the disease

pathology di�erentiation. As for the future interest, this �nding should be supported

by a longitudinal study having both task related and resting state data. Moreover, the

quality and quantity of longitudinal data should be considered beforehand. The �rst

step after the data collection of about 100 subjects would be to utilize a clustering

analysis method. By doing so, the variances of β values can be checked whether they

exist for a larger sample. Moreover, the success of the metrics to be calculated from

those variances can be assessed for their validity in di�erentiating the diseases.
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Figure 4.2 The summary of the β value statistics
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5. APPENDIX

5.1 Relation of Test Outcomes with the Experiment Conditions

Figure 5.1 Relation of Test Outcomes with the Experiment Conditions

5.2 Software Packages for Preprocessing and Processing the

(f)MRI Data

1. AFNI (http://afni.nimh.nih.gov/afni/),

2. FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/),

3. Brain Voyager (http://www.brainvoyager.com/),

4. Brain Suite (http://brainsuite.org/),

5. SPM (http://www.�l.ion.ucl.ac.uk/spm/).

5.3 Anatomical Brain Regions

In Figure 5.3, the anatomical regions of brain are depicted.
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