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ABSTRACT

INVESTIGATION OF OSCILLATORY MECHANISMS AND
THALAMO-CORTICAL CIRCUITRY OF THE VISUAL

SYSTEM BY SIMULTANEOUS EEG-fMRI

Neural oscillation is an indispensable phenomena in the functioning of the cor-

tical networks. Evoked neural oscillations triggered by external rhythmic stimulation

mimic spontaneous ongoing oscillations, thus could shed light on the intrinsic special-

ization and tuning of the cortical networks. In this thesis, �ickering light stimulation

is used to constitute steady state for a wide range of temporal frequencies (6-46 Hz)

during simultaneous electroencephalography (EEG) and blood oxygenation level de-

pendent (BOLD) functional magnetic resonance imaging (fMRI) scans of 40 healthy

volunteers. Firstly, thalamo�cortical loop of the visual system is the subject of interest.

Our �ndings prove that high correlation between the frequency response characteristics

of the lateral geniculate nucleus (LGN) and the primary visual cortex (V1) supports the

oscillatory tuning property of the thalamo�cortical interactions. Secondly, contribu-

tion of oscillations in the modeling of hemodynamic response is discussed based on the

sensitivity of BOLD components (phasic and tonic) to temporal frequency. Our results

show that, tonic BOLD component is decreasing more sharply than phasic component

with increasing frequencies pointing higher dependency of tonic BOLD response to the

stimulation frequency. Finally, EEG informed fMRI analysis is conducted for the sake

of testing resonance phenomena. The correlation maps between the BOLD responses

and the steady state visually evoked potential (SSVEP) amplitudes show signi�cant

correlation for the beta and gamma bands but not for alpha band. This result supports

the view that the global amplitude maximum of the SSVEP in the alpha band is due

to the synchronization without synaptic activity (BOLD) increase.

Keywords: Electroencephalography, Functional magnetic resonance imaging, Oscil-

lator networks, Steady state visually evoked potentials, BOLD transients, Resonance

phenomena, EEG informed fMRI analysis.
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ÖZET

GÖRSEL S�STEMDEK� OS�LATÖR MEKAN�ZMALARIN
VE TALAMO-KORT�KAL DEVREN�N E�ZAMANLI

EEG-fMRG �LE ARA�TIRILMASI

Kortikal a§lar�n i³levselli§inde, nöron sal�n�mlar� vazgeçilmez bir olgudur. Harici

ritmik bir uyaran ile tetiklenen uyar�lm�³ sal�n�mlar, süregiden spontan sal�n�mlar� tak-

lit ederler ve bu sayede kortikal a§lar�n içsel özellikleri ve uyumuna �³�k tutabilirler.

Bu tezde, titreyen �³�k uyaran�, 40 sa§l�kl� gönüllüde, e³ zamanl� elektroensefalogra�

(EEG) ve kan�n oksijenlenme seviyesine ba§�ml� (KOSB) fonksiyonel manyetik rezonans

görüntüleme (fMRG) kay�tlamalar� s�ras�nda, geni³ bir zamansal frekans yelpazesinde

(6-46 Hz) dura§an hal olu³turmak için kullan�lmaktad�r. Görsel sistemdeki talamo�

kortikal döngü, öncelikli ilgilenilen konudur. Lateral genikulat çekirde§in (LGN) ve

primer görme korteksinin (V1) frekans yan�tlar� aras�ndaki yüksek korelasyonla ilgili

bulgumuz, talamo�kortikal etkile³imlerin sal�n�m bazl� uyumunu desteklemektedir. �k-

inci olarak, hemodinamik yan�t�n modellenmesinde sal�n�mlar�n katk�s�, KOSB (fazik

ve tonik) bile³enlerinin zamansal frekansa hassasiyeti baz al�narak tart�³�lmaktad�r.

Bulgular�m�z, tonik KOSB bile³eninin artan frekans ile fazik yan�ttan daha keskin

dü³tü§ünü, dolay�s�yla uyar�m frekans�na tonik KOSB yan�t�n�n daha duyarl� oldu§unu

i³aret etmektedir. Son olarak, rezonans olgusunun test edilmesi ad�na EEG bilgisiyle

fMRG analizi gerçekle³tirilmektedir. KOSB yan�tlar�n�n ve DHUP genliklerinin aras�n-

daki korelasyon haritalar�, beta ve gama bantlar�nda belirgin korelasyon göstermekte

fakat alfa band�nda göstermemektedir. Bu sonuç, alfa band�ndaki DHUP genli§inin

global maksimumu sinaptik aktivite (KOSB) art�³� olmadan senkronizasyon sonucunda

ortaya ç�kt�§� görü³ünü destekler.

Anahtar Sözcükler: Elektroensefalogra�, Fonksiyonel manyetik rezonans görün-

tüleme, Osilatör a§lar, Dura§an hal görsel uyar�m potansiyelleri, geçici KOSB yan�tlar�,

Rezonans olay�, EEG bilgisiyle fMRG analizi.
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1. INTRODUCTION

Neuroimaging studies conducted to examine activities of the human brain sug-

gest that synchronization is a fundamental property of cortical networks and serves

cognitive functions. Likewise, the loss of neural synchrony might be the representa-

tive of the cognitive dysfunction associated with pathological brain stages [1]. Thus,

detecting and recording the synchronized activities are of utmost importance in func-

tional neuroimaging. Emergence of oscillatory activities of a neuronal network is the

outcome of the cortical synchronization, and they can be measured in the macroscopic

domain by the electroencephalography (EEG) technique over the scalp. In this regard,

EEG represents spatial sum of the synchronous electrical activity of neurons belonging

to multiple large neuronal groups with high temporal resolution. However, low spatial

resolution, which is the main drawback of this technique, is one of the concerns that the

current scienti�c e�orts are focused on. At this point, due to its high spatial resolution,

functional magnetic resonance imaging (fMRI) could open a new window and provide

complementary knowledge about the localizations of the oscillatory brain dynamics.

However, oscillatory activities that could be detected easily by EEG do not always

represent a clear counterpart as a signi�cant fMRI blood oxygenation level dependent

(BOLD) signal. This is due to the implicit assumption and expectation of the most

studies that EEG and fMRI measures pick up more or less similar neuronal activity or

fMRI depends on existence of a linear relationship between the neuronal activity and

the oxygenation of the brain tissue.

In this sense, studies dealing with fMRI BOLD contrast and investigating e�ects

of oscillatory activities of cortical circuitry could shed light on many aspects of neu-

rovascular coupling between neuronal activities and consequential vascular response.

Moreover, oscillatory based fMRI research could serve localization and functional con-

nectivity e�orts.
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1.1 Motivation and Objective

The scope of this work covers the examination of the oscillatory activities in the

human visual system, the BOLD contrast mechanism, and the EEG informed fMRI

analysis via steady state visual evoked oscillations. First of all, while discussing the

roles of lateral geniculate nucleus (LGN) and primary visual cortex (V1) which are

e�ective anatomical structures in early visual system, their interaction and response

selectivity at various temporal frequencies are regarded as critical cornerstones for os-

cillations. This point of view allows to reveal contributions of the anatomical structures

in oscillatory activities of thalamo�cortical loop by fMRI.

There are important contributions in the literature about the possibility that the

transient and sustained components of the BOLD response represent di�erent under-

lying neuronal processes. Therefore, examining the relationship between the temporal

frequency parameter of the visual stimulation and BOLD transients is another scope of

this thesis. The way that the frequency of an oscillation e�ects transients of the BOLD

response is an important issue that has to be considered based on the neurovascular

coupling perspective.

As a �nal theme of this study, EEG informed fMRI analysis of the resonance

phenomenon is the focus of attention. Although, local �eld potential (LFP) power as

an index of postsynaptic membrane oscillations has been shown to be temporally well

correlated with the BOLD response to sensory stimuli [2]. The amplitudes of the EEG

do not re�ect simply the total neuronal activity or LFPs, but only synchronized neu-

ronal activities. Moreover neural structures such as the thalamus and basal ganglia,

which have a radial or noncolumnar organization, are less likely to make any signi�-

cant contributions to the scalp EEG, even when large LFPs can be recorded from them

[3]. Findings concerning thalamic activity associated with alpha power increases, for

instance, have not revealed coherent cortical correlates of scalp EEG alpha oscillations;

instead by identifying inverse relationships, they identi�ed brain regions that increase

their activity in the absence of marked alpha activity [4]. Finally, in the light of driven

synchronous patterns, estimating the properties of the transfer function from EEG
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power to BOLD signal change is another purpose of this dissertation for di�erent fre-

quency bands using simultaneous EEG�fMRI recordings in order to derive implications

for the resonance phenomena.

1.2 Outline of the Thesis

This dissertation is organized in the following manner:

Chapter 2 focuses on the anatomical and physiological properties of human

visual system and describes the signal processing capabilities and the synaptic organi-

zation of structures starting from the retina to the cerebral cortex.

Chapter 3 presents an overview about the non-invasive functional neuroimaging

modalities with superiorities and disadvantages of each imaging method in order to

gain insight about them and to make projection for possible multimodal neuroimaging

approaches. Besides, this chapter is covering the basic principles of study and paradigm

design strategies, and stimulus presentation techniques in fMRI. Methodology of the

data collection section includes technical details of the experimental setup, subject

recruitment, visual stimulation, and the data acquisition procedures of simultaneous

EEG and fMRI recordings that were planned and carried on.

Chapter 4 covers the investigation of BOLD�fMRI signal changes due to the

visually driven thalamo�cortical oscillations. First of all, physiological background of

transient and sustained BOLD responses, task�related model based BOLD fMRI anal-

ysis, and statistical inference are presented in general. After that, participation of

LGN and V1 to the thalamo-cortical oscillations is criticized based on their BOLD

responses to the temporal frequency parameter of the visual stimuli via model based

fMRI analysis. Besides, speci�cally BOLD response of the primary visual cortex is

analyzed without using any model based approach by focusing on transient and sus-

tained BOLD components. Temporal frequency dependent characteristics of BOLD

components are described. The results are presented and the discussion is made while
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considering the oscillations and neurovascular coupling.

Chapter 5 includes the speculations of resonance phenomena according to the

results derived from EEG informed fMRI analysis. Source of EEG signal, EEG mea-

surement, analysis, simultaneous EEG & fMRI measurement technique and fusion

methods are presented at the beginning. Results are discussed in accordance with the

resonance phenomena in steady state visually evoked responses.

Chapter 6 summarizes the dissertation research. It provides summary of the

speci�c achievements of this work.



5

2. ANATOMY AND PHYSIOLOGY OF THE HUMAN

VISUAL SYSTEM

Human visual system is the part of central nervous system which interprets

information from visible light to build a perception. Transmission of the visual infor-

mation from the eye to the cortex is enabled by the primary visual projection pathway

(Figure 2.1). In this pathway, the external visual stimulus, visible light is initially

converted into an internal neuronal signal by the retina.

The neuronal signal is carried from the retina through the optic nerves, dividing

and partially crossing over into the optic chiasm. Majority of the axons in the optic

nerve terminate in the lateral geniculate nuclei (LGN) of the thalamus. Finally, LGN

sends outputs via optic radiation that terminate in the visual cortex where further

visual processing takes place [5].

2.1 The Retina

The retina, which is the innermost layer of the eye, is the light sensitive neural

portion of it. The �rst steps in the processing of visible light within the retina com-

prise transduction of light energy into electrical signals, re�nement of these signals by

synaptic interactions, and transmitting them to central targets. Neurons of the retina

that perform these processes can be classi�ed into �ve basic classes: photoreceptors,

bipolar cells, ganglion cells, horizontal cells, and amacrine cells.

The retina includes two types of photoreceptors: rods and cones. Both types

have an outer and an inner segment. Outer segment of photoreceptors is composed of

membranous disks containing light�sensitive photopigment besides the inner segment

contains the cell nucleus and gives rise to synaptic terminals that contact bipolar or

horizontal cells. Horizontal cells and amacrine cells mediate lateral interactions in the

outer and inner plexiform layers, respectively. A tree�neuron chain � photoreceptor cell
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Figure 2.1 The primary projection pathways of the visual system. Adapted from Ref. [6].

to bipolar cell to ganglion cell � is the most direct pathway of the visual information

that transmitted from photoreceptors to the optic nerve. The principle di�erence

between the ganglion cells and most other cells in the retina is in the characteristics of

their electrical response. The neuronal inner circuitry of the retina covers the graded

electrical activity rather than action potentials. Because action potentials are not

required to transmit information over the relatively short distances involved. The

much larger axons of the ganglion cells, which have action potentials, form the optic

nerve and carry information about retinal stimulation to the rest of the central nervous

system.
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2.1.1 Functional Speci�cation of the Rod and Cone Systems

The two types of photoreceptors, rods and cones are specialized for di�erent

aspects of vision. Type of photopigment they contain, pattern of synaptic connections,

and distribution across the retina are distinguishable properties of them.

The rod system is highly sensitive to light but has very low spatial resolution.

Conversely, the cone system has very high spatial resolution but is relatively insensitive

to light. Convergence nature of the neural circuitry makes rod system a better detector

of light but reduces the spatial resolution of it. Each bipolar cell is connected by a

number of rods, and many rod bipolar cells contact a given amacrine cell. In contrast,

the cone system is much less convergent. Each retinal ganglion cell that dominate

central vision receives input from only one cone bipolar cell, which, in turn, is connected

with a single cone in the fovea.

Another di�erence is that, unlike rods, which contain a single photo pigment,

cones are di�erentiated to detect short (blue), medium (green), and long (red) wave-

lengths of light which also allow us to see color. There are also individual cones, like

rodes, which are entirely color blind.

Illumination level of the environment is also an e�ective determinant in pho-

toreceptor responses. As illumination level increases, cones become more and more

dominant in deciding what is seen, especially in the case of normal indoor lighting or

sunlight.

Under conditions of high levels of steady illumination, the response of a rod

system saturates, but the cone does not. The adaptation mechanisms of the cones

are more e�cient than rodes. Adaptation di�erence between rods and cones under

gradually changing light �ash stimulation is illustrated in �gure 2.2. The response

of cones recover more than four times faster (about 200 milliseconds), even in the

maximum current response case.
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Figure 2.2 Adaptation di�erence between rods and cones under gradually increasing light intensity
of �ash stimuli [7].

The distribution of rods and cones across the surface of the retina also has

important e�ects on vision. Despite the cone dominated vision in daytime light levels,

the total number of rods in the human retina (about 90 million) far exceeds the number

of cones (roughly 4.5 million). However, this correlation changes impressively in the

fovea. In the fovea, cone density increases rapidly and in the center of the fovea there

is no rod any more. Thats why, acuity is reduced by 75 percent at the line of just 6

�degree� eccentric to the line of sight. Besides, the presence of rodes in high density

away from the fovea, explains why the threshold for detection a light stimulus is lower

outside the region of central vision.

2.1.2 Receptive �eld: Detecting luminance change

Receptive �eld of a neuron is an area where the presence of an appropriate stim-

ulus causes neuronal activity change. Photoreceptors have receptive �elds which are

limited to their precise location on the retina. Besides, each bipolar cell has a receptive

�eld which covers a small circular patch of the retina. Typically their receptive �elds

did not extend beyond 1 mm in diameter and have overlapping distributions. Center of
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the receptive �eld receives direct connections from a small number of photoreceptors,

while the ring shaped surround �eld receives inputs from a larger set of photorecep-

tors which are connected via the horizontal cells. The response to the stimulation of

the �center� of the receptive �eld is always inhibited by the stimulation of the �sur-

round�. In this sense, response of a bipolar cell to the stimulation of its receptive �eld

is based on the luminance contrast between center and surround rather than level of

illumination.

In fact, bipolar cells are separated into two classes based on their responses to

the stimulation of their receptive �eld, �on��center and �o���center. When a spot of

light turns on in the receptive �eld center, on�center bipolar cell depolarizes thus on�

center ganglion cell produces a burst of action potentials. While o��center bipolar cell

hyperpolarizes which in turn o��center ganglion cell decreases rate of discharge of ac-

tion potential. When the spot falls on the surround �eld, the response of the on�center

ganglion cell decreases below its resting level. O��center cells show similar surround

antagonism. Because of this property, cells are much more active while responding to

small spots of light than to uniform illumination of the visual �eld.

Selective response to the light intensity increments and decrements of two cell

types can be described by their physiological properties and relations. In the absence

of light, photoreceptors are depolarized and depolarization leads to transmitter release

(Glutamate) at their synapses. As mentioned before, photoreceptors and bipolar cells

have graded potentials rather than action potentials. Graded depolarization leads to

an increase in the amount of glutamate release in a graded manner. Besides, on�center

and o��center bipolar cells have di�erent types of glutamate receptors. On�center

bipolar cells have metabotropic receptors (mGluR6) that cause the cells to hyperpolar-

ize in response to glutamate release. On the other hand, o��center bipolar cells express

ionotropic receptors (AMPA and kainate) that cause depolarization. Due to the re-

ceptor di�erence, glutamate has opposite e�ects on two bipolar cell types. Graded

depolarization of both on� and o��bipolar cells results in increment of glutamate re-

lease and consequent depolarization of ganglion cells which have ionotropic receptors

(AMPA, kainite, and NMDA receptors).
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Similar to the on� and o��center response mechanism, antagonistic surround

property is thought to emerge thanks to lateral interactions by horizontal cells. Hor-

izontal cells receive inputs from photoreceptors and connected with many other hor-

izontal cells. Horizontal cell population represent wide range of the retinal surface.

They have GABA transmitter which has a hyperpolarization e�ect on photoreceptor

terminals and reduces the light�evoked response.

Adaptation mechanism also important in luminance change detection of gan-

glion cells. Background level of illumination directly in�uences the relation between

the intensity of spot illumination and evoked discharge rate. Operating light intensity

limits of a ganglion cell adaptively shift in the case of increment in background illumi-

nation which in turn necessitates to increase stimulation intensity in order to get same

discharge rate. In this sense, stimulation light intensity is not directly correlated with

the �ring rate but rather luminance contrast.

As can be seen, the signal carried by ganglion cells pass through the optic nerve,

the optic chiasm, and the optic tractus to the visual centers is already highly processed

by the retina [7, 5].

2.2 Central Visual Pathways

As de�ned in the previous section, larger axons of the ganglion cells form the

optic nerve carry information about retinal stimulation to the rest of the central nervous

system. The optic nerves of two eyes meet and decussate at the optic chiasm. About

60% of axons cross and switch their sides, whereas remaining 40% run on the same

side. Since the crossing axons are from the nasal side of the retina (hemiretina), each

optic tract carries information from the contralateral side of the visual �eld.
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2.3 The Lateral Geniculate Nucleus

Lateral geniculate nucleus (LGN) is the major target for each optic tract. About

90% of the retinal ganglion cells send inputs to LGNs. There are two lateral geniculate

bodies located in the dorsal part of the thalamus on the left and right hemisphere of the

brain. In the cross�section �gure of LGN (Figure 2.3), arrangement of the six de�nite

layers of the cell bodies can be seen. These layers folded around the optic tract like a

bent knee (genu is Latin for �knee�) [7].

Figure 2.3 Cross�section �gure of the human lateral geniculate nucleus showing the magnocellular,
parvocellular, and koniocellular layers [7].

LGN layers are distinguished primarily on the bases of cell type that they con-

tain. First two inner layers (ventral layers 1 and 2) are called the magnocellular layers,

besides the outer four (dorsal layers 3, 4, 5, and 6) are called the parvocellular layers.

Magnocellular layers contain M�cells larger in cell body, dendritic tree and receptive

�eld as compared to P�cells of the parvocellular layers.

Functional properties of M and P ganglion cells give idea about the contribution

of their pathway to visual perception and the reason of their separated representation

as a consequence of parallel processing. In addition to larger receptive �eld, M gan-

glion cells have faster propagation velocity of action potential than P ganglion cells.

Responses of M ganglion cells are transient while those of P ganglion cells are more sus-

tained (tonic). Besides, spectral or color information is transmitted by only P ganglion

cells thanks to the di�erent classes of cones that drive their receptive �eld. Moreover,
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P ganglion cells are very sensitive to spatial frequency allowing spatial resolution in

detection of shape and size. On the other hand, M ganglion cells respond more vig-

orously to tiny luminance changes and very sensitive to temporal frequency allowing

detection of rapid movements, and speed. The separate pathways for di�erent types of

information that is initiated by the retina seems to be maintained by the LGN.

There is also a third distinct type of pathway named the koniocellular or K�

cell pathway. Koniocellular layers exist in the interlaminar zones that separate each

magno� and parvocellular layers. Konio cells are di�erent from the other ganglion cells

in terms of their function and neurochemistry. Fine�caliper retinal axons give input

to konio cells which, in turn, project to super�cial layers of primary visual cortex not

uniformly. Koniocellular pathway carries speci�c spectral information derived from

short wavelength (blue) sensitive cones. Contribution of the K�cell pathway to the

visual perception is not clear, but the earlier evolutionary origin of this pathway might

be the reason of separated processing of short wavelength signals.

Individual ganglion cells of lateral geniculate nucleus are originated from either

left or right eye means purely monocular. Furthermore, LGN receives contralateral or

ipsilateral inputs at the separate layers. Thus, information carried by the retinal cells

continues to be segregated at the level of LGN. Magnocellular layer 1 and parvocellular

layers 4 and 6 get input from the contralateral eye (nasal retina), whereas magnocellular

layer 2 and parvocellular layers 3 and 5 get input from the ipsilateral eye (temporal

retina).

The lateral geniculate nucleus receives inputs directly from the retina, and most

of the cells send axons on to the cerebral cortex. In this sense, LGNs contain only one

synaptic stage which implies simplicity. Thus, this observation may lead to the idea

that the LGNs passively relay information from the retina to the cortex. However,

LGNs receive �bers also back from the primary visual cortex (layer 6 of primary visual

cortex), and from the brainstem reticular formation, which takes part in attention

network. Moreover, some geniculate cells make local synapses via their short axons

within the nucleus. In this circuitry, direct monosynaptic feedbacks connections form
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the excitatory inputs while interneurons in the LGN and the reticular nucleus make

inhibitory connections.

The response of the LGN neurons to light is much the same as the response

of the retinal ganglion cells. Similarities are that both of them have center�surround

receptive �eld organization, selectivity for luminance increases or decreases, and similar

responses to color. Based on their response characteristics, excitatory and inhibitory

connections seem to modulate the response of the LGN neurons but do not cause any

profound transformation. It is most probably that the major role of feedback is to

maintain top�down attention.

2.4 The Primary Visual Cortex

Neurons of lateral geniculate nucleus send their axons through the optic radia-

tions which is a portion of internal capsule and these axons terminate in the primary

visual cortex (area V1), or striate cortex (Brodmann's area 17; BA17) in the occipital

lobe of the brain. Primary visual cortex, like all neocortex, is divided into six cellu-

lar layers which have di�erent properties concerning cell density, cellular morphology,

and connections. In primates, due to the laminar complexity, extra letters (Latin and

Greek) are used to designate subdivisions of the layer 4 (4A, 4B, and 4C). Concerning

cell density, layer 4C and 6 are the highest density layers, while layers 1, 4B, and 5 are

the layers with lowest density. Layers 2�3, and 4A have moderate density. There are

two major classes of cortical cells; pyramidal cells and stellate cells. All layers except

4C composed of mostly pyramidal cells. Spiny stellate neurons are located in all layers

and dominant in layer 4C.

Brief description of input and output connections of visual cortex might shed

light on its complexity, although the functional organization of the circuitry is not fully

understood. Initially, layer 4C and 4A are the main target of LGN axons. Sublayer

4Cα (upper half of 4C) receives axons from the ganglion cells of magnocellular layers,

while sublayer 4Cβ (lower half of 4C) receives inputs from parvocellular layers. Fibers
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from the parvocellular layers also terminate in sublayer 4A to a lesser extent. Side

branches (collaterals) of the LGN axons that project to layer 4C also terminate in

layer 6. Konio cells project to layer 1 and layer 2�3 of primary visual cortex as de�ned

in the previous section.

Subdivisions of Layer 4C (4Cα and 4Cβ) have di�erent projections which implies

that separation of geniculate (magnocellular and parvocellular) layers is the starting

point of two di�erent pathways and systems. Layer 4Cα send axons to layer 4B, while

4Cβ outputs synapse with the deepest part of layer 3. Neurons in layer 2�3 give rise to

axons that terminate heavily in layer 5. Many of the projections of layers 2�3, 4B, 5, 6

have collaterals that make local connections. Layers 1, 4A, and 4C do not send axons

out of the cortex. Pyramidal neurons in the layers 2�3, and 4B of visual cortex are the

source of projections to other cortical regions. Neurons in the deeper cortical layers

send their axons to subcortical targets, including superior colliculus in the midbrain

(target of layer 5) and lateral geniculate body (target of layer 6).

Not only the lateral geniculate but also V2, V3, V4, V5 (or MT), MST, FEF,

LIB, and inferotemporal cortex send inputs to V1.

2.4.1 Receptive Fields

When a spot of light turns on in the visual �eld, by using microelectrodes one

can record the cells in the retina and LGN responding normally to the light stimulation.

However, it is very di�cult to �nd any cells responding the same stimulation in the

primary visual cortex. Ine�ectiveness of the stimulation is due to the fact that neurons

of primary visual cortex respond in a di�erent way. Based on their receptive �eld type,

neurons in the visual cortex can be classi�ed into two main groups: simple cells and

complex cells.

Receptive �elds of simple cells are arranged in distinct bars (rectangles) with

particular range of orientations and on and o� antagonistic subregions. Characteristic



15

receptive �eld allow simple cells to respond speci�c orientation and spatial frequency

of visual stimulation. When the stimulus is presented in the o� region or with an

orientation which is di�erent than it tuned, the response of the neuron is reduced. In

this sense, the neuron's preferred orientation is the orientation that the most prominent

response is recorded.

First model for simple cell receptive �eld is proposed by David Hubel and

Torsten Wiesel, who conducted pioneering studies on this �eld and also �rst discovered

receptive �elds of simple and complex cells. According to their model, several adjacent

receptive �elds arranged along a straight line and of the same sign (either on�center

or o��center) are thought to be converged in the receptive �eld of simple cell (Figure

2.4). Recent �ndings continues to support this model.

Figure 2.4 The convergence of adjacent receptive �elds.

Complex cells have receptive �elds with particular orientation and spatial fre-

quency like simple cells but their receptive �elds do not have antagonistic surround
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subregions. Moreover, receptive �elds of complex cells are not sensitive to the location

of the stimulus, in other words they are insensitive to spatial phase of the stimulus.

Besides, they are insensitive to contrast polarity, which means they response both:

increments and decrements of the visual stimulation intensity. Regardless of position

and the contrast polarity, complex cells respond the rectangle shaped stimulus with a

preferred orientation and width. In the case of more than one preferred stimulation,

the response of the complex cell does not increase linearly, thats why, prediction of the

stimulus is not possible from the output of the complex neuron.

2.4.2 Columnar Organization

Neurons that play similar roles, functions and have similar properties make

spatial groups which constitute cortical organization. Visual cortex is organized in not

only layers that is parallel to the surface but also columns which is perpendicular to the

surface. Cortical columns have similar functions and properties, which cover preferred

orientation of the stimulation, ocular dominance and receptive �eld location in the

visual �eld. In this sense columnar organization can be separated into two: Ocular

dominance columns and orientation columns.

Axons of Lateral geniculate that terminate in visual cortex are individually

monocular but from both eyes. Despite the fact that ocular dominance columns receive

inputs from both eyes, all the cortical neurons settled in a column have the same eye

preference. Figure 2.5 shows the occular dominance map of a cortical patch of V1.

Like the eye preference, there are narrow cortical columns in which, cells have similar

preferred orientation. This concept is shown by using vertical electrode penetration of

the V1 (Figure 2.5). Moreover, in the oblique electrode penetration, it is shown that

the preferred orientation changes gradually.
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Figure 2.5 (a) Optical imaging map of orientation preference in macaque striate cortex. The layout of
columns with di�erent orientation selectivities is denoted by the colour code. The black lines represent
the borders of ocular dominance columns. (b) Iso-orientation contours from (a) superimposed on an
optical imaging map of the ocular dominance columns [8].
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3. NON�INVASIVE MEDHODS FOR IMAGING THE

BRAIN FUNCTION

Non�invasive imaging of the brain functions or functional neuroimaging is the

utilization of neuroimaging modalities to measure complicated functional activities of

our brain. The measurement capability of a modality depends primarily on measured

signal which is sensitive to neuronal events, and presence of prede�ned relation (trans-

fer function) between the changes in the measured signal and the functional activity.

In this sense, initially we will discuss basic modalities, in order to de�ne pros and cons

of them, source of their signal, analysis approaches, and possible and e�ective fusion

methods. After giving information about study design strategies and stimulus pre-

sentation techniques in fMRI recordings, methodology of the data collection covering

technical details of the experimental setup, subject recruitment, visual stimulation,

and the data acquisition procedures will be presented in this chapter.

3.1 Basic Modalities

Neuroimaging modalities di�erentiate from each other according to what they

display or the source of their signal. Methods that are sensitive to neuronal elec-

trical processes and recording the electrical voltages or magnetic �elds of electrical

currents are the most direct ways of measuring the neuronal activity, namely Elec-

troencephalogram (EEG) and Magnetoencephalogram (MEG). On the other hand,

functional Magnetic Resonance Imaging (fMRI), and Positron Emission Tomography

(PET) are important indirect ways of imaging, since they measure chemical activities,

hemodynamic, and metabolic responses (e.g. cerebral blood �ow) as the results of a

functional neuronal activity.

EEG is the measurement of the electrical activity along the surface of the

scalp via electrodes that are placed at standard locations known as the 10�20 sys-

tem. Summed excitatory and inhibitory post synaptic potentials of pyramidal neurons
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constitute EEG signals. Besides, measuring potentials on the scalp is only possible with

the quasi�synchronous �ring of large number of neurons in organized layers due to the

low signal intensity [9, 10]. Synchronization of a neuronal network is actually the key

concept of EEG rather than summation of neuronal activations [11]. Moreover their

orientation must be perpendicular to the scalp surface in order to achieve maximum

signal intensity, since the voltage di�erence between the basal and apical dendrites

forms a measurable signal (dipole) and have a direction. MEG is the measurement

technique of the magnetic �elds that is generated by electrical currents occurring due

to the neuronal activities. Array of SQUIDs (superconducting quantum interference

devices) is very sensitive and most common magnetometer system that can measure

magnetic �elds of the brain in the orders of 10�103 femtotesla (1 fT=10�15 T). De-

spite the sensitivity of the detectors, magnetic �eld, which is in the detectable range,

is produced by approximately 50,000 activated neurons with same orientation (such as

pyramidal neurons). In a modern MEG device, more than 300 SQUIDs placed in a

helmet shaped vessel and allowing measurements over the head. Since ionic currents

produce an orthogonally oriented magnetic �eld, detectable signal is produced mainly

by the pyramidal neurons that are oriented tangential to the cortical surface.

There are important di�erences between EEG and MEG in spite of the similarity

of the source of their measured signal. Electrical �elds are distorted by scull and

scalp more than the magnetic �elds, that's why MEG signals represent more precise

data about activations than EEG. However, intensity decay of magnetic �eld with

increasing distance is more than that of electrical �eld, thus EEG covers more brain

areas than MEG. Direction of the signal source is more important for MEG recordings,

that is, activations with tangential direction are detectable with EEG to some extent

but radial components of an active area are not detectable with MEG. Unlike MEG,

EEG recording needs a reference point for measurements. Besides, MEG recording

requires a speci�c shielded room and stable subjects, on the other hand EEG is portable

and more �exible than MEG.

EEG and MEG are the most direct ways of measuring neuronal activities, thus

excellent for tracking time�course of activities with high temporal resolution (on the
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order of milliseconds). This property alone makes them indispensible for functional

neuroimaging studies. However both have limitations. First of all, localization of

activated areas (sources) within the brain by using the measurements on the scalp

namely inverse problem is complicated and does not have a unique solution. Even

feasible solutions can be obtained for cortex, it is di�cult to provide su�cient and

reliable inverse problem solutions especially for subcortical regions. In a nutshell, poor

spatial resolution is the primary limitation of EEG and MEG. Secondly, source of the

EEG and MEG signals are in the vector form, thus covers addition and subtraction of

activations at di�erent locations which may cause misleading in data interpretations.

In other words, existence of the neurons with variable orientation and loss of synchrony

means invisible brain regions for both: EEG and MEG. Thirdly, EEG and MEG give

information about the activations but not about the structure and anatomy of the

brain. That's why data is presented as combined images in terms of activation overlaid

anatomical/template images. In order to overcome limitations of EEG and MEG, one

has to take into account information that the other neuroimaging modalities hold.

Functional MRI monitors neuronal activities by measuring signal intensity changes

in the brain images with relatively high resolution (millimeters). The most widely used

fMRI technique is Echo Planar Imaging (EPI) which is based on the monitoring of blood

oxygenation level�dependent (BOLD) e�ect [12, 13, 14]. BOLD e�ect is the change

in image intensity coupled mainly with deoxy�hemoglobin (HbR; hemoglobin without

bound oxygen molecules) content of the blood. Since, BOLD�fMRI technique is sen-

sitive to the changes in magnetic susceptibility, increase and decrease of paramagnetic

deoxy�hemoglobin content in the diamagnetic plasma of the blood induce signal in-

tensity changes. Besides, blood oxygenation level is highly correlated with neuronal

activity in terms of neuro�vascular coupling which is a mechanism for adjusting hemo-

dynamic responses according to local metabolic needs. Thus, BOLD signal changes in

time�domain occur due to the combined e�ects of cerebral blood �ow (CBF), cerebral

blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) which are the

hemodynamic, vascular and metabolic responses triggered by neuronal activities.

Relatively high spatial resolution of fMRI allows us to localize activated areas
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more precisely. However, hemodynamic response period of the BOLD signal initiated

by a neuronal activity lasts over several seconds, because of the slow vascular response.

Thus, it takes much more time to get a signi�cant change in BOLD signal when com-

pared with the underlying neuronal process. In this sense, main disadvantage of fMRI

is its slow response time, which makes the analysis of fast neuronal dynamics di�cult

and results in overlapping of BOLD signal changes generated by di�erent individual

events.

PET is a nuclear imaging technique which depends on measurement of positron

emissions from radioactively labeled chemicals that are metabolically active and in-

jected into the blood stream. Radioactively labeled compounds (radiotracers) can

be detected from the outside of the body by PET scanner and specialized three�

dimensional image reconstruction techniques with the spatial resolution which typically

falls somewhere between that of fMRI and EEG/MEG. Various organic molecules which

accumulate or participate and perform functional metabolic activity in the brain, can

be labeled with PET isotopes and used as radiotracers. For instance, one can use Fluo-

rodeoxyglucose (18F�FDG), as a glucose analog, to monitor the distribution of glucose

uptake and coupling synaptic activity. In addition, regional CBV or CBF can also be

measured with di�erent radiotracers. However, PET has a very low temporal reso-

lution (tens of seconds to minutes) due to the hemodynamic or metabolic utilization

process in the body. Besides, number of measurements made on a subject is limited

due to the radiation exposure.

Among these modalities, EEG and fMRI are promising candidates that can give

hand to achieve localization of activities with both high temporal and spatial resolution

by the possibility of simultaneous acquisition. Before that, experimental designing is

the critical issue of fMRI. Since fMRI is an indirect way of functional imaging, and

fMRI signal represents combined e�ects, comparison strategies are necessary in most

cases and will be mentioned in the fallowing sections brie�y.
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3.2 Task�Related FMRI Experiment; Design and Strategies

At the beginning of an fMRI research, main hypothesis is formulated, and suit-

able stimulus and paradigm are selected and adapted into this formula. Paradigm can

be de�ned as a temporal pattern of an experimental structure that models predictions

of the functional and cognitive outcomes during the fMRI experiment. Many possible

sensory stimuli are applicable to evaluate, modulate or interfere with brain dynamics,

and di�erent types of periods with or without stimulation in the temporal pattern is

called condition. Besides, desired cognitive or functional e�ects are mostly the prod-

ucts of comparison of conditions, and comparison strategy is the core of a task�related

paradigm design.

Among the fMRI studies, subtraction is the most popular comparison strategy

of the task�related paradigms. Main e�ect is achieved by subtracting e�ects of two (or

more) conditions, namely 'active' and 'control' conditions. In essence, this technique is

based on the assumption of that, desired e�ect (e�ect of stimulation) is added onto the

activities of control condition (e.g. intrinsic activities) without any interaction among

them during the active condition. It is actually di�cult to separate activities and

assume pure insertion while considering highly integrated functional networks of the

brain. Nevertheless, unimodal association areas such as primary visual area might be

more suitable for this type of strategy due to their single sensory information processing

property. Moreover, this technique is easy to implement and suitable for canceling

background noise, and intrinsic activities which lasts during whole fMRI scan and not

easy to model.

Interaction between components is highly complicated if there is not enough

complementary data and su�ciently detailed de�nition of cognitive components. In

order to characterize or investigate interactions, factorial comparison strategy, which

implements conditions including di�erent subsets of cognitive components, can be used

as an alternative of subtraction analysis. Subsets of components are empty subset (con-

dition without any cognitive component), multiple subsets (condition with more than

one cognitive component), and single subsets (condition with one cognitive compo-
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nent). BOLD response resulting from a single cognitive component can be achieved

by subtraction of two conditions including single and empty subsets. Alternatively,

e�ect of same cognitive component can be achieved by subtraction of two conditions

including double and single subsets if there is no interaction. Di�erentiation of these

two subtraction process in the factorial design allow us to investigate interactions.

Conjunction analysis is another way of dealing with interactions. In this ap-

proach instead of subtraction, intersections of conditions are used. Conditions includ-

ing more than one cognitive component and sharing same desired particular compo-

nent are presented and areas that show common BOLD response pattern are detected.

In a similar way, subject di�erences in a group can be eliminated without changing

conditions by �nding activated areas that are common among subjects. Separating

cognitive components in a condition is not easy to implement because in many of the

cases multimodal stimulations or responses are needed, and highly correlated functions

accompany main processes. In this sense, conjunction analysis could be helpful to

purify basic processes involved during particular cognitive component.

In addition to the interaction e�ects among cognitive components, analyzing

the particular component and the e�ect of its di�culty level on the BOLD response

is possible with parametric design. Parametric design is based on the increment of

cognitive demand of a component without changing its way of processing in the brain

and presenting di�erent di�culty levels in di�erent conditions beside control condition.

Changing di�culty level is important in the case of multiple active regions are found

signi�cantly correlated with a single cognitive component. Factorial design might help

us to �nd speci�c anatomical regions which have a BOLD response changing with

di�culty levels of the task and di�erentiate basis of the main process. However, if task

is di�cult more than a certain level, neuronal networks mostly share the weight, and

increasing the cognitive demand often results in participation of other networks which

makes parametric approach not easy to implement.

There are also other alternative comparison strategies which are mostly modi�ed

or combined versions of subtraction, parametric, factorial, and conjunction analysis in
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the literature. Main concern in paradigm design and strategy should be consistency

with the hypothesis of the study.

3.3 FMRI Protocols for Stimulus Presentation

Functional MRI experiments have two main types of protocols; stimulus driven,

and resting�state. Stimulus driven protocols use any sensory stimuli to generate ac-

tivity of the desired function in the brain and constitute conditions to evaluate the

outputs as described in the previous section. Besides, without any experimental ma-

nipulation or stimulation, neuronal networks produce intrinsic activations, and these

spontaneous brain activities are in the scope of resting�state scans.

Stimulus presentation strategies are mostly determined by considering properties

of stimulation processing phases of the brain, and response properties of the measured

BOLD signal. Various presentation strategies including blocked, event�related, and

combined designs are applicable for stimulus driven fMRI experiments.

In the block design, conditions, which are presented with certain duration, cov-

ers repetitively or sequentially presented stimuli in order to maintain a certain cognitive

task. Duration of a condition (block length) is mostly determined while considering

the BOLD signal increase that is aimed to achieve for signi�cant results. High BOLD

signal change relative to the event related design makes experiments statistically more

powerful. However, the most important drawback of the block design comes from the

cognitive aspects. Presenting same kind of stimulus may cause adaptation, low ex-

pectancy for change, and low attention level. On the other hand, event related design

reduces prediction and increases attention of the subject since each successive stimula-

tion does not necessarily similar. Besides, event�related design allows us to analyze and

detect transient variations of BOLD signal due to the unexpected or short term events.

Unexpected events may emerge due to the internal processes such as epileptic seizure

or hallucinations. However, event related experiments are time consuming because in

order to prevent overlapping, inter stimulus interval (ISI) of di�erent conditions must
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be long enough. ISI is mostly chosen to cover dispersion of the BOLD response (spread-

ing out of the response about 12�20 s) which is generated by the previous stimuli. As

an alternative way to deal with long lasting event related fMRI experiments, ISI can

be shorten by utilizing varied ISI namely rapid�presentation (jittered) event related

design with a minimum of 4s, since the time to peak during stimulation is commonly

observed about 4�8 s. Short ISI increases statistical power and e�ciency due to the

increased number of stimuli, while decreasing e�ciency with overlap. Arranging and

optimizing order of the conditions in a controlled manner (pseudo�random) is also

another important way of increasing statistical power.

3.4 Methodology of the Data Collection

Forty healthy volunteers (20 female, 20 male; mean age 25.8± 3.7 years) without

any sensory system related pathology and neuro�pschiatric history took part in the

study. All subjects had normal or corrected-to-normal vision acuity. Ethical approval

was obtained from the local ethics committee of Istanbul University, Istanbul Faculty

of Medicine prior to commencing the study. Every participant was informed about the

procedure and signed informed consent before the application of the experiment. The

subjects were instructed to sleep at their habitual bedtime to prevent feeling sleepy

during the experiment.

Figure 3.1 Demonstrative �gure of experimental setup.



26

The visual stimuli were re�ected on a white surface by a �ashing light at tempo-

ral frequencies of 6, 8, 10, 12, 14, 18, 22, 26, 30, 34, 38, 42, and 46 Hz. Light was �on�

during the half time of a period, thus the energy was constant across all frequencies.

Light source was an electro�magnetically isolated set of light emitting diodes (LED)

driven by a digital I/O card (NI DAQCard�6062E) and located one meter away from

the rear side of the magnet. Screen was a rear facing 45◦ inclined di�user surface (�eld

of view 54.8◦) attached to the top of the head coil of the MRI system and used for

di�use re�ection of the exposed light (Figure 3.1). Subjects' task was to maintain focus

on and to view passively the �xation cross drawn on the center of the re�ection surface.

Figure 3.2 Experimental protocol and average pre�processed BOLD response of the subject ABA.

Stimulus (�ickering light stimulation), and rest (stimulus�free) conditions were

used in the experiment. Time periods of conditions were de�ned based on the duration

of a dynamic scan (2.981 s) by utilizing �external device synchronization output� of

the MR scanner detected via digital I/O card. Signal output of digital I/O card and

synchronization output of MRI scanner were connected with EEG ampli�er to simul-

taneously register event markers on the EEG trace. Stimuli were delivered during 15

dynamic scans (44.7 s), followed by rest periods with same length. In each functional

scan, sequence was initiated with a rest period lasting 10 dynamics and three con-

secutive stimulus and rest periods were presented (totally 100 dynamics)(Figure 3.2).
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There were thirteen separate scans for each �ickering frequency. Order of scans was

randomized to avoid any bias on BOLD responses.

3.4.1 MRI Data Acquisition

Magnetic resonance imaging was performed using a 1.5T Philips Achieva MRI

system equipped with SENSE�Head�8 coil at NPISTANBUL Neuropsychiatry Hos-

pital, Istanbul. At the beginning of each experiment, routine cranial MRI examina-

tion was performed to detect possible abnormalities in healthy subjects. Addition-

ally, whole�brain high resolution structural scans were acquired using a T1�weighted

MPRAGE sequence with voxel size of 1.25x1.25x1.2 mm (130 sagital slices, TR/TE

= 8.6/4.0 ms, acquisition matrix 192x192, scan duration 369.8 s). Thirteen functional

scans were acquired using T2*�weighted gradient echo (GE), echo planar imaging (EPI)

with identical scan parameters (100 dynamic scans, 32 axial slices, slice thickness = 4

mm (without gap), in�plane resolution = 3.59x3.59 mm, FOV = 230 x 230 mm2, TE

= 50 ms, TR = 2981 ms). Two dynamics were acquired prior to each fMRI scan in

order to obtain tissue magnetization. Subjects were allowed to rest among fMRI scans

to relax their eyes without changing scan positions.

3.4.2 EEG Data Acquisition

EEG was recorded simultaneously by using an MR compatible EEG ampli�er

(BrainAmp MR+, Brain Products, Germany) with 30 channels EEG (extended 10/20

system) and 1 channel ECG. The EEG signal �ltered between 0.01 and 250 Hz was

digitized with a sampling rate of 5 kHz. The clocks of the MR scanner and the EEG

digitizer were synchronized using a hardware (SynchBox, Brain Products, Germany) to

obtain MR gradient artifacts as a constant waveform in the EEG recordings. Gradient

artifacts were removed according to the Average Artifact Subtraction (AAS) method

described by Allen and coworkers [15] implemented in the Brain Analyzer software

(Brain Products, Germany). After this procedure, the ballistocardiographic (BCG)
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artifacts were removed with a similar technique based on an average template of the

BCG artifact using the timing of the R wave in the ECG trace [16].
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4. BOLD�FMRI SIGNAL CHANGES IN RESPONSE TO

TEMPORAL FREQUENCY OF THE VISUAL

STIMULATION

4.1 BOLD Response and Model-Based FMRI Analysis

4.1.1 Raw BOLD Response and Transients

Intrinsic BOLD contrast mechanism of functional MR imaging was described

shortly in the chapter 3. Here, we will discuss BOLD e�ect and time course of the

response to a brief transient stimulus. Many BOLD fMRI study uses model of the

activity induced BOLD response while conducting model based analysis. However, it

is important to note that the main concern is the signal change that corresponds to

stimulus mediated activities, not the spontaneous BOLD �uctuations which can be

found with a detailed description elsewhere [17].

BOLD signal is altered by magnetic susceptibility change which is closely re-

lated with the magnetic properties of deoxy-hemoglobin (HbR-paramagnetic) and oxy-

hemoglobin (HbO2-diamagnetic) concentration. Ogawa et al. [14] presented in their

pioneer work that decrease of HbO2:HbR ratio decreases the BOLD signal. As a result

HbR concentration is the basic physical parameter to which MR signal is sensitive. It

has to be highlighted that fMRI BOLD signal is not direct representative of the neu-

ronal activity, instead combined changes in CBF, CBV, and CMRO2. As a result of a

short transient stimulus, combined e�ects of CBF, CBV, and CMRO2 result in a time

course presented in �gure 4.1. BOLD response curve which is comprised of transient

compartments with positive response is termed hemodynamic response signal.

First transient e�ect is initial dip which is de�ned as the early negative BOLD

response. This response is not always observable due to the small intensity change for

a short time period. Initial dip is a potentially important fast signal but source of it is
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Figure 4.1 Demonstration of hemodynamic response signal to a brief stimulation.

a controversial issue. It is proposed that the reason of the initial dip is rapid increase

of CMRO2 before CBF start to increase [18]. According to this hypothesis, initial

dip has a potential to localize activation with superior sensitivity because of the close

relation between neuronal activity and O2 metabolism. In essence, potential bene�ts

will probably attract further investigations.

BOLD signal starts to increase 1�2 seconds after stimulus onset and reaches a

peak in 4�6 seconds. Most signi�cant signal change is positive BOLD response. Positive

response is described by the higher increase of CBF response triggered by activity

than the increase of CMRO2. Actually, expectation about the BOLD signal might

be the decrease due to the HbR concentration increase caused by neuronal activity

or no observable change in the signal due to the compensation of the HbO2:HbR

ratio. However, concentration change is in favor of the HbO2, thanks to the �ood of

oxygenated blood driven by the CBF and washout of HbR. This situation was presented

by Malonek and Grinvald with a popular quotation �watering the entire garden for the

sake of one thirsty �ower.� [19].

Post stimulus undershoot (PSU) is negative deviation of the signal intensity

from the baseline, following the positive BOLD response. PSU response begins to be
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prominent about 6 seconds after the peak and continues up to 30 seconds after the

stimulus o�set. PSU can be treated as the indicator of HbR accumulation. Thus, it

can be explained by rapid return of CBF to its baseline while there is a delayed return

of CBV. Alternative hypothesis and various theories can be found in the literature

[20, 21].

4.1.2 Pre�Processing of fMRI Analysis

Analysis of the fMRI BOLD signal acquired during a stimulus driven paradigm is

typically conducted by utilizing a unit response model, namely hemodynamic response

function (HRF) (Figure 4.1). Aim of the HRF is to identify variance of the BOLD

signal while detecting neuronal activity which is correlated with the paradigm. In this

sense HRF must hold a background in the physiology of the neuronal processes and

act like a transfer function between neuronal activity and BOLD signal. Besides, in

order to construct postulated BOLD time course successfully, the model must have

su�cient variability. However, a large part of the variance in the BOLD signal does

not arise from the neuronal activity but from the technical limitations. Thus there is

a pre�processing part in order to overcome drawbacks of the fMRI scan and increase

signal to noise ratio (SNR).

First step of the pre�processing stage is the motion correction. MR machine

acquires the data from the prede�ned spatial location regardless of the content. Even

the head of the subject was �xed; it is not possible to prevent the movement of it

during the scan. Thus location of a tissue in the space and the corresponding voxel

of the acquired volume might change. Movement of the head in the acquired volume

is corrected by the rigid body transformation. This transformation is limited to the

translations (in X, Y, or Z direction) and rotations (over X, Y, or Z axis). The motion

correction or in other words spatial realignment algorithm tries to minimize the square

of distance between the source and the target images. After the correction in spatial

domain, second step is generally the correction in the time domain which is the slice

timing correction. It is a fact that every slice in a functional EPI volume has a di�erent
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time point, since scanning each slice takes some time. If the order of slices is regular�

up then there would be a sampling time gap between lower and upper slices in the

order of seconds. It is important to shift the postulated or real BOLD time course

based on this time gap and acquisition order, especially in the event related fMRI

experiments or if the model is not su�ciently �exible. Next step is used as a spatial

�ltering by means of smoothing. Smoothing process has the tendency to blur images

by eliminating details. In this sense, smoothing emphasize background or wide spread

signal changes which is dependent to the properties of the spatial �lter. Smoothing

algorithm averages each voxel with its neighbors by using a weighting matrix de�ned

by a 3D Gaussian kernel. The amount of smoothing is given by the full width at

half maximum (FWHM) parameter of the Gaussian kernel. FWHM parameter must

be decided based on the expected spatial scale of the hemodynamic changes while

considering the loss of resolution. In the case of the small spatial scale, limited degree

of smoothness should be selected however the smoothness needs to be greater than the

voxel size [22].

After the pre�processing stage, a model of the expected BOLD signal during the

experiment is created by using multiple regressors in a general linear model (GLM).

4.1.3 General Linear Model (GLM) and Statistical Analysis

General framework of the model based fMRI data analysis includes three main

parts. First part is the model speci�cation, second is the parameter estimate, and the

last part is the statistical inference. General linear model is the most common way and

the core model of functional data analysis. It is the linear combination of the predictor

variables which represent e�ects of interests and confounds. GLM helps us to give

the meaning of BOLD signal changes correlated linearly with predictor or explanatory

variables. Since it is not clear that which anatomical region(s) will respond to which

experimental condition, conducting same analysis for all voxels will give estimated

results with di�erent weights for each voxel and condition (mass�univariate approach).

Results of fMRI analysis are the activation maps derived from these estimated weights
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by contrasting and statistical inference (thresholding).

BOLD time series of a given voxel is the serial observations of consecutive dy-

namic EPI scans during an fMRI session. In an example, 100 dynamic EPI scans

(volumes) in an fMRI session means 100 samples of BOLD time series of each voxel

(volume x element) in the brain. This data can be express as a vector yi, i = 1 : N ,

where N is the total number of volumes, one taken every few seconds, or samples cor-

responding to speci�c time points. Response model is the weighted sum of �regressors�

which is the combination of explanatory variables of the data, and the residual (zero

mean) error. Each regressor can be modeled as separate vectors xik, k = 1 : K, where

K is the total number of regressors in the model. Weights of regressors are the unknown

βk parameter which can be referred to as regression parameters or e�ect size, unique

to each regressor. β0 is a constant corresponding to the mean value of time series. ei

is the noise of the fMRI data (Eq.4.1).

y1 = β0 + β1x11 + β2x12 + . . .+ βKx1K + e1

y2 = β0 + β1x21 + β2x22 + . . .+ βKx2K + e2
...

yN = β0 + β1xN1 + β2xN2 + . . .+ βKxNK + eN

(4.1)

Vector and matrix notation of Equation 4.1 is

Y = Xβ + e (4.2)

All measured data (time course) of one voxel are grouped into Nx1 vector Y.

The NxK matrix X is design matrix including modeled e�ects or explanatory variables.

Regression parameters are grouped into Kx1 vector β. Noise terms are grouped into
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Nx1 vector e. Since β0 is the mean value, it can be subtracted from the data before

GLM analysis or can be inserted into the variables: X and β.

Parameter estimate which can be de�ne as the estimation of model parameters

(β) is the next step of GLM analysis. This estimation process is to �nd the parameters

that allow the best �t to the observations (maximum likelihood) because there are far

more unknown variables than equations. In this sense, aim is to minimize the sum of

square di�erence (Eq.4.3) between the observations and the model by using ordinary

least squares. This di�erence (S) minimizes when the gradient vector or derivative with

respect to β is zero.

S =
∑
i

e2 =
∑
i

(Y −Xβ)2 (4.3)

We can derive normal equations by rearrangements in the derivative of equation

4.3. Matrix notation of normal equations and least square estimates can be written as:

XTY = (XTX)β̂

β̂ = (XTX)−1XTY
(4.4)

where β̂ represent estimated model parameters.

Critical assumption in this part is the Gaussian distribution of the noise (e).

However, there are lots of factors that produce residuals such as thermal noise, cardiac

and respiratory rhythms, unmodelled brain activities, and spontaneous activities of

intrinsic networks. Thus in practice, the data without any stimulation is temporally

autocorrelated. As a processing state this autocorrelation can be cancelled out by

using pre�whitening temporal �lter or pre�colouring. Alternatively, there are Bayesian

strategies dealing with this problem in the literature.

After �tting GLM to the BOLD time series of the voxels, estimated weights
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of the explanatory variables are achieved. However, �nding a non�zero value is not

enough to evaluate results for the signi�cance. Since the parameter estimates of β are

calculated from the noisy fMRI data, level of signi�cance must be de�ned according to

a valid statistical manner. Parameter estimates of β most frequently represented by

T�statistics:

t =
β̂

std(β̂)
(4.5)

In equation 4.5, std(β̂) is the standard deviation or uncertainty. Increase of

parameter estimate relative to its uncertainty increases signi�cance of T�statistic, t.

However, in order to state that null hypothesis (β = 0) is rejected, T�statistic must be

compared with the distribution of T�statistics for the desired level of con�dence. It is

assumed that the distribution of the noise is Gaussian (normal distribution) in fMRI

data. Thus p�value can be calculated easily. However statistical inference is not such

simple.

Signi�cance of a single explanatory variable could be evaluated by aforemen-

tioned procedure. However, there are typically more than one condition in an fMRI

experimental paradigm as described in the following text. Besides, relations among the

explanatory variables might be the answer of the formulated hypothesis. In most cases,

answers to the main question of the experiment necessitate combining di�erent regres-

sors of the model representing di�erent conditions based on the paradigm design. At

this point, linear combination of parameter estimates is de�ned as contrast. Contrast

vector c and parameter estimates of β are the vectors with the same size (P x 1) and

their multiplication gives contrast of parameter estimates. For example, if �nding the

di�erence between two conditions is the aim of contrast (β1−β2), transpose of column

vector c = [1 − 1 0 0 . . . 0] and column vector β = [β1 β2 β3 β4 . . . βP ] should be

multiplied (cTβ = β1 − β2).

Similarly, T�statistic can be derived by dividing the contrast with its standard
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deviation:

t =
cT β̂√

var(cT β̂)
(4.6)

In the equation 4.6, variance of contrast and estimated variance of noise are

de�ned as follows:

var(cT β̂) = σ̂2cT (xTx)−1c

σ̂2 = (êT ê)
(J−P )

ê = Y −Xβ̂

(4.7)

where, ê is the estimated error term.

In order to �nd p�value, T�statistic is compared with distribution of the T�

statistics having J�P degrees of freedom, where J is the number of time points (N),

and P is the number of parameters (Rank(X)). Additionally, the formula of the t�value

(Eq.4.6) gives one�sided results. That is to say, the contrast of the di�erence β1 − β2

searches for the cases in which β1 is higher than β2. In order to search for higher β2 a

di�erent contrast should be de�ned cT = [−1 1].

Alternative combinations of parameter estimates or contrasts give answers to

di�erent questions. For instance, contrast of cT = [1 1] can be used to �nd signi�cance

of the average β = ((β1+β2)/2). It is important to note that this contrast example does

not represent the union of two conditions (β1 ∪ β2). If ones concern is for �nding the

union of conditions, then cT = [1 1] is not the correct contrast for the answer. In order

to investigate signi�cance of conditions together but in a separate manner, F�tests

should be introduced with two contrasts: [1 0] representing β1 and [0 1] representing

β2.

F�tests can be used to answer such kind of questions: �Is there any contrast in

a set of contrasts signi�cantly di�erent from zero?� As can be understood, there are

more than one contrast and they are tested for signi�cance simultaneously. There is
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an F�test contrast matrix, c, of size PxK with contrasts in its columns. Calculation of

F�statistic, f, can be made by contrast matrix c:

f =
β̂T c(σ̂2cT (xTx)−1c)−1cT β̂

K
(4.8)

where, K is the number of contrasts.

In the F�test null hypothesis states that all the contrasts are zero (cTβ = 0).

Besides, F�statistic is F�distributed with degrees of freedom K andN−P . Additionally,

F�test is not sensitive to the directionality of the contrasts. For instance, [1 0] and

[−1 0] give the same result. In this sense, two tailed t�test can be conducted by using

F�test.

Results of T�test or F�test are three dimensional (3D) statistical maps or SPMs.

At this point, a simple inference method can be used to detect signi�cance threshold (u)

in order to reject null hypothesis (t>u) namely voxel�wise inference. Due to the mass

univariate strategy of the fMRI data analysis, spatial information of 3D voxel data is

not taken into account. In this context, cluster�wise inference methods were introduced

as an alternative to voxel�wise inference. Cluster�wise inference uses a cluster�forming

threshold (uc) to de�ne binary map and searches for the clusters including more than k

voxels. In other words statistical test is performed for each cluster and null hypothesis

is rejected in the case of cluster size bigger than k. Both methods are applicable for

di�erent situations. Friston et al. presented theoretical power analysis of distributed

activations and showed that cluster level inference is more powerful than voxel level

inference. On the other hand, localization power is higher in the voxel level inference

compared to cluster level inference. Actually, cluster-wise inference is more common

than voxel-wise inference because of the spreading e�ect of spatial smoothing.

Statistical inference methods control the allowed risk of false positives for a single

measurement. However number of false positive results is increased by the number of

multiple tests or measurements. As an example, if the allowed risk of false positives

is α = 0.05 in an fMRI experiment typically measuring 20000 brain voxels, then 1000
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false positive active voxels would be expected. Since this situation is not acceptable,

false positives should be controlled over all voxels or clusters. The standard measure

is the probability of making one or more false positives among all tests, familywise

error (FWE) rate. Bonferroni correction is a famous FWE rate control method. In

this method FWE�corrected P�value threshold is determined by dividing FWE rate

by the number of tests. In our example FWE�corrected new α will be 0.0000025 in

the case of αFWE = 0.05. Bonferroni correction is the most conservative method to

control FWE rate. On the other hand, spatial smoothing procedure makes the voxel

data close to their neighbors. However, there is not any concern about the similarity

among the tests in Bonferroni correction. Thanks to the random �eld theory (RFT),

FWE is controlled while considering e�ect of spatial smoothing procedure.

Meaning of the spatial smoothness in RFT is the increase of spatial dependence

of the tests while decreasing the resolution. This situation introduces a new de�nition

RESEL (resolution element) instead of voxel (volume element). RESEL count of a

volume can be calculated by FWHM parameter of spatial smoothing and the number

of voxels, I.

RESELcount =
I

(FWHMxFWHMyFWHMz)
(4.9)

RFT states FWE corrected voxel�wise inference for Z-statistic images as follows:

P FWE
vox (z) = RESELcount(2π)

−2(z2 − 1)exp(
−z2

2
) (4.10)

As can be seen in the equation 4.10, if we want to have lower P�values without

signi�cant change in z, we have to decrease RESEL count which implies increase in the

level of smoothing. Similarly, if the smoothness of the data is low, z values must be

high for signi�cance due to the exponential term.

There are assumptions in the RFT. First of all, the distribution of the activities

in the brain is assumed to be Gaussian. Besides, smoothness of the data is assumed to

be su�cient, constant and have an exact FWHM value. It is not possible to verify these
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assumptions. Moreover, RFT is still a quite conservative method. Thus, alternative

methods are developed by many groups.

4.2 Visually Driven Thalamo�Cortical Oscillations: Implica-

tions from Temporal Frequency Response Characteristics

of LGN and V1 Using FMRI

Visual stimuli at various temporal frequencies have been used extensively as

a convenient tool in order to investigate the frequency response of the visual system

[23, 24, 25]. Di�erentiation of the output to visual input with a certain temporal

frequency (or in a particular frequency band) from those to the remaining stimulation

frequencies is regarded to re�ect the temporal frequency selectivity hence the intrinsic

tuning of the visual system.

As thalamo�cortical loops are one major source of oscillatory neuronal activities

in the brain, determination of the frequency characteristics of the lateral geniculate

nucleus (LGN) and the primary visual cortex (V1) is essential in order to evaluate the

temporal frequency selectivities of the visual system. LGN is the main source of visual

information for V1 and the main target nucleus of optic tract which receives 90% of

the retinal outputs [5]. On the other hand, proportion of the retinal inputs among

total synapses in LGN is 30�40% in the primates [26], which implies that majority of

the inputs are extraretinal and have a modulatory e�ect rather than being the driver

[27]. In addition to the synapses of the LGN interneurons and of thalamic reticular

nucleus, V1 is the structure with largest number of synapses in LGN carrying feedback

signals from the cortex to thalamus [26]. Therefore, LGN is an important site for the

modulatory e�ects on visual input and therefore can play an important role in the

temporal frequency tuning of the visual system. Although LGN has a relatively small

volume, its activities can still be measured in fMRI [28, 29, 30].

There are various fMRI studies reporting BOLD activity changes due to the
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temporal stimulation frequencies [31, 32, 33, 34, 35, 36, 37, 38]. However, presented re-

sults do not formulate a consensus due to several reasons. One of them is the probable

confounding e�ect of the spatial properties of the patterned stimuli used. This seems

to be a common problem with the studies that used retinotopic mapping scans for

identifying V1 region [31, 33, 39]. Their contradictory results on temporal frequency

characteristics probably depend on the various spatial properties of the visual stim-

uli that were used to activate the V1 region. Therefore, possible interaction among

temporal and spatial frequency [40] should be taken into consideration while compar-

ing the results. Furthermore, these studies reported BOLD responses at only three

or four temporal frequencies with limited overlap while de�ning frequency response

characteristics of V1.

Another reason of con�icting results might be the de�nition of the region of

interest (ROI). Studies creating ROI with limited number of active voxels in V1 [34,

35, 38] have reported increasing BOLD response with increasing temporal frequency

that reaches a peak around 6�10 Hz continuing with a plateau. In contrast, studies

calculating BOLD response in a broader area covering V1 and extra�striatal areas

reported a band pass response with a peak at approximately 8 Hz [36, 37].

A common disadvantage of all these studies except the one by Singh et al. [37]

is the logarithmic sampling of temporal frequencies because of the obligation to use

integer multiples of the refreshing period of the raster screens used.

In order to overcome these drawbacks, we used di�use light stimuli without any

spatial pattern and contrast to avoid potentially confounding e�ects of spatial frequency

which may result in incorrectly derived conclusions about the e�ects of the temporal

stimulation frequency on the BOLD response. Besides, LED light sources have been

used that have no limitations concerning the selection of stimulation frequencies unlike

screens with constant refresh rates. This allowed us to use a large number of temporal

frequencies (13) for investigation of the temporal frequency characteristics of the visual

system. Additionally, we used the intersection area of the functional and template

anatomical masks for ROI de�nition. Individual functional mask of each subject was
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created by using the activation area at all stimulation frequencies. Finally, LGN and

V1 BOLD activities in response to a wide range of temporal frequencies (6�46 Hz) of

di�use visual �ickers are reported. The frequency range included frequencies above

the �icker fusion frequency of the retina ( 30 Hz), because earlier electrophysiological

studies reported steady�state �uctuations at stimulation frequency also for stimuli far

above this frequency [23].

4.2.1 ROI Based Functional MRI Data Analysis and Results

Thirty �ve healthy volunteers (20 females, 15 males, mean age = 25.60 ± 3.87

years) out of forty were recruited for this study after giving informed consent. Data of

�ve subjects were not used in the analysis due to the non signi�cant LGN activity.

Pre�processing steps of fMRI data were performed by using the SPM5 software

package [41] for Matlab (The Mathworks, Inc.). Motion correction and spatial smooth-

ing with a Gaussian kernel of FWHM 8 mm were applied. All functional data sets

were spatially normalized into a standard space (MNI152, 2mm) prior to performing

general linear model (GLM) analysis, which is widely used to obtain stimulus related

hemodynamic activations. For this purpose a design matrix was created using boxcar

model of visual stimulation which was convolved with a synthetic model of the hemody-

namic response function, its time and dispersion derivatives, and the motion correction

parameters. A high�pass temporal �ltering with a cut�o� of 128 s was applied.

In the �rst stage, a single subject multi�session �xed�e�ects GLM analysis was

performed in order to investigate the single and combined e�ects of di�erent temporal

frequencies. Parameter estimates ('beta' images) and SPM{t} maps of each visual

stimulation frequency for each subject were generated.

In this study, ROIs were de�ned as binary masks resulting from the intersec-

tion area of the functional and the structural regions. Subject speci�c functional ROIs

were derived from the thresholded (p<0.05, uncorrected) results of the �xed�e�ects
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multi�session GLM analysis including all 13 stimulation frequencies. Besides, struc-

tural ROIs were de�ned by registering standard template ROIs extracted from two

separate probabilistic atlases for LGN and V1.

Figure 4.2 (a) Structural template for LGN and (b) Structural template for V1, overlay on average
cortical folding pattern of all subjects.

In order to de�ne structural LGN ROI in the MNI space, the cytoarchitectonic

probabilistic map for lateral geniculate body [42] from the Jülich histological atlas

implemented in FMRIB Software Library [43] was thresholded at p=0.01 (Figure 4.2-

a). However, primary visual cortex exhibits a folding pattern which allows surface�

based registration thus decreases prediction error compared to probabilistic atlases in

volumetric coordinates [44]. Therefore, structural V1 ROI was de�ned by implementing

spatial probability map of V1 derived from cortical folding patterns (Figure 4.2-b) [45].

In order to apply surface�based registration method, high resolution structural images

were processed using the FreeSurfer software package [46, 47].

Subject speci�c LGN and V1 masks (Figure 4.3) were used to extract average

'beta'�values (parameter estimates) of each visual stimulation frequency. Parame-

ter estimate images of 13 di�erent stimulation frequencies which were the output of

GLM analysis were multiplied with subjects own binary LGN and V1 masks. Aver-

aged 'beta'�values were calculated separately for LGN and V1 for each stimulation

frequency. Since 'beta'�values might display a high intersubject variability, average

'beta'�values of each subject were normalized across stimulation frequencies by divid-

ing each frequency response by the maximum response. In the �nal stage, repeated
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Figure 4.3 Simpli�ed block diagram of the analysis to create V1 and LGN masks.

measures ANOVA (SPSS 21.0) was carried out to compare responses among various

stimulation frequencies and ROIs.

Additionally, the similarities/dissimilarities between the frequency characteris-

tics of V1 and LGN were studied. For each subject, the correlation coe�cients were

computed between the frequency characteristics of both ROIs, and the resulting cor-

relation coe�cients of all subjects were exposed to one�sample t�test to test whether

they signi�cantly deviate from 0.

For a sample subject, average pre�processed BOLD time series of the voxels in

the V1 mask are shown in Figure 4.4. BOLD signal intensity change to visual stimu-

lation was calculated relative to the �rst rest period of each recording corresponding

to �rst 10 TRs (scans). After this, three consecutive stimulus and rest periods were

averaged. It is obvious that the level of BOLD response depends on the stimulation

frequency. In the same region of interest, average BOLD percent change is decreasing

with increasing stimulation frequency. Besides, a separation of transient and sustained

BOLD components can also be observed with a steeper decrease of the sustained ac-

tivity (plateau) than the decrease of transient on� and o��responses with increasing
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Figure 4.4 Average BOLD percent change time courses of V1 of a sample subject for thirteen
di�erent visual stimulation frequencies.

stimulation frequency. Although attempts have been made to model the transient

components of the BOLD response, there are no clear de�nitions of them yet [48].

Therefore, in the present study we preferred not to arbitrarily de�ne various time win-

dows for each transient but referred to the canonical hemodynamic response function

to quantify the overall activity at various stimulation frequencies.

BOLD activations of a sample subject were projected on to the pial surface of

his own anatomical image in Figure�4.5. Activities are the unmasked SPM{t} maps

derived from the GLM analysis. Threshold value (±3.00) was selected arbitrarily in

order to visualize spatial activity distribution more clearly. It can be stated that the

extend of the signi�cant BOLD activities is changing with stimulation frequency. There

is also a narrowing of the activated area with increasing frequency towards the central

visual �eld.

In order to evaluate frequency dependencies of the LGN and V1 activations, we

�rst carried out repeated measures ANOVA including both the �ROI� (2 areas: LGNs

and V1) and �stimulation frequency� (13 levels: 6, 8, 10, 12, 14, 18, 22, 26, 30, 34,

38, 42 and 46 Hz) as within�subject factors. Main e�ect of ROI was non�signi�cant,

pointing to that the mean activation levels were comparable for active voxels of both
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Figure 4.5 Spatial extend of BOLD activation (SPMt maps) with various temporal frequencies for a
sample subject with an arbitrary threshold value (|t| ≥ 3.00) for representation. First row and second
row, from left to right represent responses to temporal frequencies from 6 Hz to 22Hz and from 26 Hz
to 46 Hz respectively.

LGN and V1. On the other hand, both the overall e�ect of the �stimulation frequency�

(F(12, 408)=13.56; p<0.001) and the e�ect of �ROI x stimulation frequency� interaction

(F(12, 408)=17.11, p<0.001) were signi�cant. These �ndings point out that, although

both LGN and V1 activations get smaller with increasing stimulation frequency, their

rate of decrease are signi�cantly di�erent. This e�ect can be clearly observed in Figure

4.6 in terms of a very steep decrease in the strength of V1 activations compared with

the relatively smaller change of intensity in LGN response.

In a second stage, the frequency dependency of LGN and V1 were analyzed with

separate repeated measures ANOVAs with a single within�subject factor �stimulation

frequency�. In this case, main e�ect of frequency was signi�cant for V1 activations

(F(7.15, 243.14)=32.60, p<0.001, Greenhouse�Geisser corrected), while it was non�

signi�cant for LGN activations (F(12, 408)=1.30, p=0.21). These post�hoc analyses

revealed that the frequency dependent di�erence between both structures (signi�cant

ROI x stimulation frequency interaction) is pre�dominantly due to stronger decrease

of V1 activity with increasing stimulation frequency. To investigate mean activation

levels of LGN and V1 for each stimulation frequency separately, post hoc paired T�
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Figure 4.6 Grand average (N=35) frequency characteristics curves of V1 (solid line) and LGN
(dashed line) obtained by measuring the normalized activations ('beta'�values) in response to thirteen
visual stimulation frequencies (mean ± SE).

Tests between LGN and V1 at each frequency were computed. Signi�cant di�erences

were found for the frequency levels lower than 18 Hz and higher than 22 Hz. This

result implies that, V1 activations are signi�cantly higher than LGN activations in the

6�14 Hz frequency band, and signi�cantly lower than LGN activations in the 26�46 Hz

frequency band (Table 4.1).

Correlation coe�cients between LGN and V1 activations were also computed

for each subject in order to test the existence of any correlation among the frequency

response characteristics of both ROIs. Mean value and standard deviation of correlation

coe�cients among subjects were 0.4389 ± 0.315, which correspond to a signi�cant

correlation at group level (p<0.001). Despite the proven di�erence of the decay of

V1 response with increasing frequency in comparison to that of the LGN response,

signi�cant correlation between LGN and V1 responses re�ects the similarity of the

local peaks of their overall frequency characteristics, which are observed around 10, 20,

30 and 40 Hz (Figure 4.6).
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Table 4.1

Temporal frequency wise mean di�erence between the activation levels of V1 and LGN.

Stimulation

Frequency

6

Hz

8

Hz

10

Hz

12

Hz

14

Hz

18

Hz

22

Hz

26

Hz

30

Hz

34

Hz

38

Hz

42

Hz

46

Hz

Mean

Di�erence -0,13 -0,18 -0,21 -0,16 -0,19 -0,01 0,04 0,11 0,18 0,20 0,23 0,21 0,21

Standard

Deviation 0,28 0,31 0,21 0,31 0,31 0,25 0,20 0,24 0,31 0,28 0,29 0,24 0,22

T�value -2,68 -3,38 -5,75 -3,13 -3,64 -0,29 1,05 2,65 3,37 4,31 4,72 5,22 5,63

Signi�cance

(2�tailed) 0,01 0,00 0,00 0,00 0,00 0,78 0,30 0,01 0,00 0,00 0,00 0,00 0,00

4.2.2 Correlated LGN & V1 BOLD Responses

LGN does not demonstrate monotonously changing or stable average activation

among various stimulation frequencies, but a slight decay of activation with increasing

stimulation frequencies with local peaks around 10, 20, 30 and 40 Hz, which probably

emphasize the frequency selective response characteristic. There are few fMRI studies

reporting temporal frequency response characteristics of the LGN [49, 31, 33] compared

to a high number of studies on the visual cortices [50, 51, 34, 52, 35, 36, 37, 53, 54].

Kastner et al. [31] investigated LGN responses at temporal frequencies of 0.25,

3.75, and 10 Hz (corresponding to reversal rates of 0.5, 7.5, and 20 Hz) by using

checkerboard stimuli of high contrast (100%) and found similar activities at 3.75 and

10 Hz and signi�cantly smaller activities at 0.25 Hz stimulation pointing to a high�

pass characteristic. On the other hand, Mullen et al. [33], in a study based on contrast

reversal of achromatic radial sine�wave gratings (0.5 cpd) at 2, 8, and 16 Hz showed

that LGN response was signi�cantly smaller at 16 Hz with respect to 8 Hz for high�

contrast stimuli, and signi�cantly smaller at 16 Hz with respect to 2 Hz for low contrast

stimuli pointing to a low�pass characteristic. This discrepancy between the results

depends mainly on the limited overlap of stimulation frequencies. Although these

studies have extensively studied the e�ects of stimulus contrast and the di�erences
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between the processing of chromatic and achromatic stimuli, the conclusions about the

temporal frequency characteristics of the LGN are non�comparable and limited due to

this fact. In the present study, by relying on the sensitivity of the visual system to

higher frequencies in the achromatic domain and by using di�use LED light, we could

sample a much wider range of temporal frequencies with a �ner frequency sampling,

which gave more detailed information about the temporal frequency characteristics of

LGN. This enabled us to describe global and local maxima in addition to a general

low�pass trend in the temporal frequency characteristics of LGN.

The local peaks of V1 responses are mostly similar to those of LGN responses

yielding a signi�cant correlation. This �nding is in line with the results of both Kastner

et al. [31] and Mullen et al. [33] although their reports on the correlatedness of LGN

and V1 activities rely on only 3 stimulation frequencies. The high correlation we

observed within a wide range of stimulation frequencies from 6 to 46 Hz with 4 local

peaks in both structures might point to preferred signal transmission frequencies in the

thalamo�cortical circuitry of the visual system at these temporal frequencies. Although

present results are not able to explain whether these selectivities are generated by one

of the structures or stem from other structures connected with any one of them, we can

tentatively claim that these speci�c tuning frequencies play a role in thalamo�cortical

interaction in the visual system. The presence of similar maxima in EEG responses

and local �eld potentials of the visual system [23, 24, 25] further support this view.

4.2.3 Low�pass Character of the V1 Activity

However, rapid decay of response intensities in V1 with increasing stimulation

frequencies is not accompanied with a similar decrease in the BOLD signal of the LGN.

Considering that the BOLD signal is mainly driven by the synaptic rather than the

spiking activity of the investigated brain volume [2], the strong decay of V1 BOLD

activity although the LGN activity does not change as strongly with stimulation fre-

quency suggests the role of the local circuitry of V1 and maybe other neuronal projec-

tions from higher visual areas to V1 in this speci�c response characteristics. Assuming
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that the LGN input to V1 does not decrease but rather �uctuates around a constant

level with increasing frequencies, one can explain the low�pass e�ect observed in the

V1 BOLD responses rather as the result of higher extra�synaptic input to V1 at lower

stimulation frequencies. This might depend either on local network of V1 to be able

to produce stronger inputs to higher cortical areas or on stronger feedback to V1 from

extra�striatal areas. However, we can conclude that the selectively stronger activation

for lower temporal frequencies �rst emerges in V1. There are also studies reporting

di�erent V1 response characteristics other than a signi�cant decrease. Possible reasons

why there is no consensus in the literature are discussed further in the following topics.

Considering di�erentiations among experimental setups and analyzing techniques is a

useful point of view while discussing discrepant results.

4.2.4 Spatial Contrast in Stimuli

Main dissociation among studies is related to the existence of the reversing spa-

tial pattern (checkerboard, ring, horizontal or radial gradings, etc.) in addition to the

temporal frequency of the stimulus. Actually there is a positron emission tomography

(PET) study conducted by Fox and Raichle [55] showing that the response curves of

regional cerebral blood �ow (rCBF) percent change as a function of temporal frequency

were nearly identical for �ashing light and reversing checkerboard stimuli. There are

number of BOLD fMRI studies using similar stimulation setup with �ickering light and

agreeing closely with PET results [51, 52, 53]. However, there are some critical proper-

ties of their setup which hinder us to make a general conclusion about the similarity of

the outputs. Firstly, the stimuli were not achromatic but monochromatic (di�use red

light) thus activates parvocellular pathways while (L�cone input) suppressing activa-

tion of magnocellular pathway [56]. In this sense we can speculate that the similarity

does not cover responses of acromatic stimulation. Likewise, there are clues in the re-

cent literature concerning separate BOLD responses of the chromatic and achromatic

stimuli as a function of stimulation frequency [49, 57, 33]. Secondly, duration of the

�ash stimuli was constant (5 ms) thus luminance was linearly related to the �ashing

stimulus rate. On the other hand, luminance of the reversing checkerboard was con-
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stant. E�ect of the increase in illumination accompanies with the �ashing stimuli while

the spatial frequency e�ect accompanies with checkerboard stimuli. Moreover, Mirza-

jani et al. [40] conducted an fMRI study showing possible e�ects of spatial frequency

on the temporal frequency response. As a result, spatial frequency parameter of the

stimuli may introduce modulatory e�ects on the temporal frequency tuning.

In our study, there is no spatial pattern or contrast. Besides, visual stimulations

with di�erent frequencies were compatible to each other regarding the mean light in-

tensity and total time of visual �eld illumination, in other words duty cycle of �ashing

light stimuli was 50%, thus exposure of light was identical for each temporal frequency.

4.2.5 E�ect of ROI De�nition in V1 Response

Another topic is the way of ROI creation in V1, which is one of the main

components directly in�uencing the results. In the literature, ROI selection technique

shows variability which seems to be able to explain di�erent conclusions to some extent.

These techniques can be classi�ed into three main groups; those using limited number

of signi�cantly active voxels in V1, those using a broader signi�cantly active area by

adding extra�striatal areas beside V1, and those using retinotopic mapping scan to

de�ne borders of V1 and signi�cantly active voxels within V1.

Studies using limited number of highest active voxels within ROIs in V1 focused

frequently on the wave characteristics of the BOLD signal rather than the frequency

response characteristics of the visual cortex. Parkes et al. [35] presented checker board

stimuli at temporal frequencies of 4, 6, 7.5, 10, 12, 15, 20 Hz at a �xed duration of

16.7 ms during 10 s with and without a slight jitter, and investigated the e�ect of the

periodicity of the stimuli. They de�ned the activation threshold not based on the level

of signi�cance, but in order to get 10 cm3 ROI. In the most active ROI, the normalized

BOLD responses to periodic stimuli were increased up to 7.5 Hz, and it became sta-

tionary for the rest. As discussed earlier, �xed duration for stimulation causes intensity

increase in higher frequencies, thus pure temporal frequency related change might not
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be presented. Wan et al. [54] used radial checkerboard with stimulation frequencies at

0.5, 1.0, 4.0, 8.0, and 16.0 Hz during 4 s. Average hemodynamic impulse responses of

visual stimuli were calculated for activated areas within a very small (6�mm spherical,

about 4 voxels) volume centered on maximally active voxel which was detected by con-

junction analysis of all frequencies. They conclude that response increase stopped at 8

Hz stimulation and decreased at 16 Hz stimulation. However, statistically signi�cant

di�erence was between high (4�16 Hz) and low (0.5�1 Hz) frequency groups, and the

decrease at 16 Hz was non�signi�cant. Short activation period (4 s) also implies that

the results re�ect mostly transient characteristics, since it does not allow enough time

for the BOLD signal maximize. Muthukumaraswamy and Singh [34] averaged fMRI

data across all temporal frequency conditions (0, 1, 6, 10, 15 Hz) for each subject to

�nd the spatial peak. They reported that the BOLD response modulation in this peak

increased up to 6 Hz and displayed a plateau between 6�15 Hz. They used reversing

square�wave vertical gratings and found similar results for spatial frequencies 3 cpd

(cycles/degree), and 0.5 cpd. Finally, there is a correspondence between presented

results of these studies using a ROI that covers a limited number of active voxels at

V1. There is an increase in BOLD signal change with frequency increase and a peak

value in the 6�10 Hz band, which �nally continues with a plateau. Among studies that

use ROIs of signi�cantly active voxels in the visual cortex covering V1 and extrastriate

area, Singh et al. [37] used checkerboard illuminated with 1 ms �ashing light at 2, 4,

6, 8, 10, 12 Hz, and found a band pass response which has a peak at approximately 8

Hz. Interestingly, they calculated the fMRI signal strength by multiplying the average

BOLD percent change with the number of active voxels detected and applied simple

correlation analysis. Besides, Rosa et al. [36] found an inverted U�shaped frequency

response which has a peak at 7.5 Hz and sharp drop above 15 Hz while presenting

checkerboard stimulation (reversing) at the frequencies of 2, 3.75, 5, 6, 7.5, 10, 15, 30

Hz. They used general linear model (GLM) analysis, and results of �xed�e�ects group

analysis were reported for a visual cortex ROI which is common for all subjects. De-

spite the di�erences in the applied techniques, results are quite similar for both studies,

which show a band pass response peak at approximately 8 Hz.

As can be seen, identi�cation of the visual areas is the most critical step which
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might change the results dramatically. There is no signi�cant BOLD activity decrease

with increasing frequency in the case of limited ROI of V1. Besides, there is a band

bass response of BOLD activity in the case of broader region of visual cortex. It is

obvious that the average activity of a limited number of voxels does not represent the

response of a structure as a whole. In this sense, ROI de�nition must be limited to

cortical regions such as V1 thus retinotopic mapping scan seems to be a good option for

de�ning borders of V1. On the other hand, voxels that are not signi�cantly active could

not be the indicator of the response properties of V1. There might be sub areas in the

V1 that may have temporal frequency selective BOLD response. Presence of domains

for low (0.75 Hz) and high (15 Hz) temporal frequency visual inputs in the human V1 at

a submillimeter resolution supports this view [58]. At this point, retinotopic mapping

might not be su�cient, additional ROI restrictions might be necessary. Moreover,

retinotopic mapping scans uses spatial and temporal frequencies which will introduce

adaptation. Singh et al. faced with a similar situation and excluded 5 Hz from their

data [39].

We decided to use subject speci�c ROI de�nition method beyond those de�ned

by retinotopic scan and preferred to use intersection area of functional and structural

borders. Functional area represents subject speci�c signi�cantly active area of all

stimulation frequencies by using proper contrast in the GLM design. Besides, subject

speci�c structural area de�ned by a surface based method using template cortical

folding pattern. It has been shown that there is a good correspondence between the

borders of V1 de�ned by retinotopic functional scan and by high resolution anatomical

scan which can visualize cortical striation consistent with the stria of Genari [59].

As a result, we aimed to avoid from the aforementioned disadvantage of additional

retinotopic functional scan and used structural border of V1.

4.2.6 Transient and Sustained BOLD Responses

Another interesting aspect of this study is about the time series of the BOLD

response which were presented in �gure 4.4. Existence of the transient and sustained
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components of the BOLD signal, which do not represent similar decrease with in-

creasing stimulation frequency, can be seen clearly. Uluda§ used an 8 Hz �ickering

black�and�white radial checkerboard in order to stimulate only one hemi�eld during

20 seconds and showed a separate activity of the phasic (transient) network covering

interestingly both hemispheres [48]. His study supports the view of separate transient

and sustained networks. Besides, Horiguchi et al. used achromatic high and low lu-

minance levels each lasting 24 sec for stimulation and de�ned transient and sustained

responses as two separate temporal channels which have a balance varying with eccen-

tricity [60]. In other words, from the central visual �eld to periphery, BOLD response

comprises transient pattern more than sustained one. More recently, Sun et al. used

black/white checkerboard whose contrast was reversed at 0.17, 0.75, 2, 4, 8, or 15 Hz

during a brief exposure (3 seconds) and conclude that the transient BOLD response

depended very little on the reversal frequency [61]. As can be seen, there is a growing

body of evidence about the separate temporal BOLD response types emerging at spa-

tially di�erent or overlapping areas. Discarding this separation may hide the e�ects

of temporal frequency and be misleading if the duration of the stimulus is very short.

In the following study transient and sustained BOLD responses were separated and

the weights of temporal BOLD components depend on the stimulation frequency were

reported.

4.3 Temporal Frequency Dependent Response Characteristics

of Transient and Sustained BOLD Components in The Pri-

mary Visual Area

Functional MRI with blood oxygenation level�dependent (BOLD) contrast has

been used to derive information about the intensity of the neuronal activation beyond

the localization of the activations. To some extent, quanti�cation of the neuronal ac-

tivity via BOLD intensity brings assumptions about the linear neurovascular coupling.

Clarifying coupling/uncoupling mechanism between oxygen metabolism (CMRO2) and

blood �ow (CBF) in the proposed biomechanical coupling models is necessary for more
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reliable conclusions [62, 63]. Actually, there are inhibitory, excitatory, and combined

oscillation based mechanisms revealed by electrophysiological data, and e�ects of them

on the BOLD responses and the model outputs are questionable and should be consid-

ered as an important aspect [64]. Instead of a constant hemodynamic response function

(HRF) and neurovascular coupling model, �exible extended models are necessary for

the sake of false negative activations of BOLD fMRI experiments [65]. At this point,

speculation about possibility of the neurovascular coupling (CBF/CMRO2) being the

source of information about the balance of inhibitory and excitatory neuronal activity

might be a good example of this point of view in the literature [66].

BOLD response to a stimulation represents a well�known pattern (HRF) with

a number of transient components that have been reported previously [67]. However

static HRF dictates a constant response intensity for all components in the general

linear model analysis of the fMRI data. Especially overshoots of the BOLD response

at block transitions of the stimulation period (phasic) are promising candidates for

addressing di�erent cognitive perspectives of the response [68, 60, 48]. In this sense,

exploring transient BOLD responses is crucial not only for neurovascular coupling

models but also for di�erent perspectives of cognitive processes.

In this study, we decided to separate transient BOLD responses and quantify

their di�erences by using steady state visual stimulation which allows to discuss state

based response di�erentiations and e�ects of inhibitory and excitatory balance of neural

networks.

4.3.1 Analysis of BOLD Components and Results

Subject recruitment and data acquisition procedure are same as the previous

work since the same data set of forty subjects was used in the presented study.

FMRI data processing was carried out using FEAT (FMRI Expert Analysis

Tool) Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl).
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The following pre�statistics processing was applied; motion correction using MCFLIRT

[69]; slice�timing correction using Fourier�space time�series phase�shifting; non�brain

removal using BET [70]; spatial smoothing using a Gaussian kernel of FWHM 8.0mm;

grand�mean intensity normalisation of the entire 4D dataset by a single multiplicative

factor; highpass temporal �ltering (Gaussian�weighted least�squares straight line �t-

ting, with sigma=45.0s). Time�series statistical analysis was carried out using FILM

with local autocorrelation correction [71]. Single subject, multi�session analysis was

carried out using a �xed e�ects model, by forcing the random e�ects variance to zero in

FLAME (FMRIB's Local Analysis of Mixed E�ects) [72, 73, 74]. Z (Gaussianised T/F)

statistic images were thresholded using clusters determined by Z>2.3 and a (corrected)

cluster signi�cance threshold of P=0.05 [75].

Occipital lobe region of MNI 2mm probability atlas which is distributed with

FSL was used as standard template. MNI occipital probability atlas was binarized to

produce template occipital mask for ROI analysis. Besides, multi�session Z statistic

results of each subject were binarized to create functional mask. Final mask of each

subject was achieved by multiplying functional mask and template occipital mask.

However, all voxels of the �nal mask are not active at each session since the subject�

based multi�session analysis results represents average signi�cance among sessions.

Thus, selecting large number of voxels in the session level may include non�signi�cant

voxels and lower the average activity. Moreover, spatial locations of the activities might

represent variable transient e�ects [60]. In order to �x the e�ect of spatial extend on

the response of transients and achieve maximum response, number of voxels in the

subject mask was limited more conservatively to 300 voxels by increasing threshold of

multi�session Z statistics. Z statistic images were, therefore binarized for most active

300 voxels in the occipital cortex. Finally, combined functional and template mask of

each subject was covering 300 voxels in the occipital cortext which was the most active

voxels of multi�session Z statistic images.

Final masks of each subject were in the MNI standard space while the time

series data were in the subject's own anatomical space. In order to �nd mask for each

session in the subjects own space, �nal mask were registered to average functional
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image of each session. Average BOLD time series data were achieved by multiplication

of pre�processed functional images with registered mask and spatial averaging of time

series data.

Baseline level of BOLD signal was calculated by averaging second half of �rst

rest period which covers 5 samples. Remaining three active and rest time period couples

were averaged in order to increase signal to noise ratio. Percentage change of BOLD

signal from baseline was calculated for each subject and stimulation session according

to the equation 4.11.

Figure 4.7 Example BOLD time series of a stimulation block. First �ve samples were excluded.
Visual stimulation period is shown at the bottom of the �gure (between 5�20 samples). In order to
calculate Onset, pBOLD, O�set and PSU values, samples that are shown with di�erent color bars are
used.

PercentBOLD(t) =
BOLD(t)−∑10

i=6BOLD(i)∑10
i=6BOLD(i)

(4.11)

where, BOLD is the time series data and i = 1, 2, ..., 100 is the sample index.

Four di�erent transient were calculated by averaging samples; early positive

BOLD (early pBOLD), late positive BOLD (late pBOLD), post�stimulus overshoot



57

(PSO), post�stimulus undershoot (PSU) (Figure 4.7). In the literature, the time to

peak of BOLD signal during stimulation is reported approximately 4�8 seconds after

the stimulus onset [67]. We therefore excluded �rst 2 samples of the BOLD signal

which covers 5.962 seconds of stimulation period while quantifying positive BOLD

periods. Total stimulation period was 44.715 s which includes 15 samples of BOLD

signal. After excluding �rst two samples, early and late periods of positive BOLD

signal were calculated by averaging next 7 samples and last 6 samples of stimulation

period separately. Time period of early and late positive BOLD was 20.867 s and

17.886 s respectively. Due to the low sampling frequency, post�stimulus overshoot was

de�ned as the peak value of the BOLD signal after the end of the stimulation period.

Post�stimulus peak value was quanti�ed with the second sample which is 5.962 seconds

after the end of the stimulation. Post�stimulus undershoot was calculated by averaging

5 samples which are in the middle one�third of the rest period. Total rest period was

44.715 seconds and PSU was started 14.905 seconds after the stimulus o�set.

Repeated measures ANOVA (SPSS 21.0) was carried out to compare responses

among various stimulation frequencies and transients.

Figure 4.8 Grand average percent change of BOLD transients.

Figure 4.8 displays a bar graph with four components each for a di�erent BOLD
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transient, which represents the subject and frequency average of percentage change

of BOLD signal intensity. Besides, �gure 4.9 shows the subject average of BOLD

percentage change for four di�erent BOLD transients versus stimulation frequency.

Figure 4.9 Percent change of BOLD transients for di�erent stimulation frequencies.

In order to evaluate frequency dependency and interactions of BOLD transients,

we carried out repeated measures ANOVAs. The ANOVAs had the within�subject fac-

tor frequencies (13 frequencies: 6, 8, 10, 12, 14, 18, 22, 26, 30, 34, 38, 42 and 46 Hz) and

a group factor transients (4 transients: early pBOLD, late pBOLD, PSO, PSU). Main

e�ects of transients (F(3,117)=92.99; p<0.001, Greenhouse Geisser corrected), and fre-

quency (F(12,468)=19.13; p<0.001, Greenhouse Geisser corrected) were signi�cant, as

was the interaction of transient x frequency (F(36,1404)=1.97; p<0.05, Greenhouse

Geisser corrected). This result is indicating a strong frequency dependent change in

transients of BOLD signal besides existence of distinguishable BOLD transients. More-

over, frequency dependent change is signi�cantly di�erent among them. These results

allow us to use ANOVA for the pair wise statistics of BOLD transients.

In the pair wise statistics of BOLD transients, we carried out six separate re-

peated measure ANOVAs for the six combinations of two BOLD transients out of
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four. The ANOVAs had the within�subject factor frequencies (13 frequencies: 6, 8,

10, 12, 14, 18, 22, 26, 30, 34, 38, 42 and 46 Hz) and group factor transients (2 out of

4 transients: early pBOLD, late pBOLD, PSO, PSU). Main e�ects of transients were

signi�cant for early pBOLD, late pBOLD (F(1, 39) = 54.83; p < 0.001), early pBOLD,

PSU (F(1, 39) = 112.67; p < 0.001), late pBOLD, PSO (F(1, 39) = 20.46; p < 0.001),

late pBOLD, PSU (F(1, 39) = 102.66; p < 0.001), PSO, PSU (F(1, 39) = 129.69; p <

0.001). Notably, the main e�ect of transients was not signi�cant for the early pBOLD,

PSO combination (F(1, 39) = 2.34; NS), indicating similarity of their amplitude while

late pBOLD was signi�cantly di�erent from early pBOLD and PSO. Main e�ects of

frequency were signi�cant for all transient couples; early pBOLD, late pBOLD (F(12,

468) = 13.83; p < 0.001), early pBOLD, PSO (F(12, 468) = 8.51; p < 0.001), early

pBOLD, PSU (F(12, 468) = 20.07; p < 0.001), late pBOLD, PSO (F(12, 468) = 13.32;

p < 0.001), late pBOLD, PSU (F(12, 468) = 30.66; p < 0.001), PSO, PSU (F(12,

468) = 14.64; p < 0.001). The interaction of transient x frequency was signi�cant

for transient couples including late pBOLD; early pBOLD, late pBOLD (F(12, 468)

= 7.44; p < 0.001), late pBOLD, PSO (F(12, 468) = 3.61; p < 0.001), late pBOLD,

PSU (F(12, 468) = 3.16; p < 0.005), showing that frequency dependent change of the

amplitude was a property that di�erentiate late pBOLD from other BOLD transients.

Besides, the interaction of transient x frequency was not signi�cant for early pBOLD,

PSO (F(12, 468) = 1.07; NS), early pBOLD, PSU (F(12, 468) = 0.935; NS), PSO,

PSU (F(12, 468) = 0.729; NS).

4.3.2 Discussion about the Di�erential Responses of BOLD Transients

In order to discuss frequency dependent activations of primary visual cortex,

analyzing BOLD responses in more detail by means of its components, might be a

good next step. Using ideal hemodynamic response function (HRF) brings us to an

assumption that well known BOLD transients react to the visual stimulus with dif-

ferent frequencies similarly. However, this is not the case. It has been shown that

frequency response characteristics of BOLD transients are not coupled strictly to the

stimulation but may re�ect separate underlying neuronal processes. Deriving model
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stimulus response by using HRF and stimulus pattern omits underlying neuronal events

thus explaining biomechanical processes became more di�cult. Without using HRF,

information that the BOLD signal carry can be more accessible.

Without using ideal HRF, we were able to �nd signi�cantly di�erent dynamics of

BOLD transients with changing stimulation frequency. Especially, separation of onset

and o�set responses from pBOLD with increasing frequencies is an important �nding.

We can separate these transients not only with their visual stimulation frequency char-

acteristics but also their features in the BOLD time course. Transient onset and o�set

overshoot signals are phasic responses, while sustained pBOLD is tonic [48]. Phasic

BOLD transients are decreasing their responses more slowly than tonic BOLD response

with increasing stimulation frequencies. Intensity loss of tonic BOLD response implies

the higher dependency of it to the e�ects of stimulation frequency increase.

Visual stimulation frequency increase may cause the transformation of neuronal

processes by which inhibitory inter�neurons start to play a more dominant role. In

this sense, suppression of tonic response might be originated from the increase in the

e�ectiveness of specialized inhibitory local networks.
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5. SIMULTANEOUS EEG/fMRI ANALYSIS OF THE

RESONANCE PHENOMENA IN STEADY STATE VISUAL

EVOKED RESPONSES

5.1 Source of EEG Signal and EEG Oscillations

EEG signal is produced by pyramidal neurons which have a dendritic tree forma-

tion oriented perpendicular to the scalp surface and their cell bodies (soma) are located

in layers 5 and 6 of cerebral cortex. Besides, source of EEG signal is post synaptic po-

tentials of the apical dendrites which create a current �ow in the extracellular medium

and constitute a dipolar source�sink con�guration[3].

Surface electrodes could record current �ow if there is a synchronization and

summation of neuronal activation produced by large number of neurons [76]. Because

signal intensity is very low due to the electrical properties of the structures (glial cells,

meninx, scalp, scull) between EEG source and electrode. Moreover, conducting volume

decreases the spatial resolution besides the intensity of the EEG signal. In other words,

each electrode could detect EEG signal of all possible generators and artifact sources

such as eye, muscle, electrode movements [77].

5.1.1 EEG Oscillations

EEG signal represents oscillations and resonating activities at various frequency

bands (Table 5.1). These oscillations can be classi�ed as three groups based on their

source of initiation.
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Table 5.1

Oscillations of EEG signal.

Name Frequency Band

Delta 0.1�4 Hz

Theta 4�8 Hz

Alpha 8�13 Hz

Beta 13�30 Hz

Gamma 30�80 Hz

5.1.2 Spontaneous (Ongoing) EEG Oscillations

Spontaneous (ongoing) rhythmic activities constitute the core of EEG signal

throughout the human life. Although, there is a hypothesis about the close correlation

between vital activities of the neurons and the origin of spontaneous oscillations, it was

presented that ongoing EEG oscillations manifest signi�cant changes with cognitive

functions, cognitive disorders, lesions, circle of the sleep, and neural development [3].

Spontaneous delta (0.1�4 Hz) rhythm is seen in adults in deep sleep (Non�

rapid eye movement � NREM, sleep�stage 4), under anesthesia, and in coma (state of

unconsciousness). Theta (4�8 Hz) oscillation is seen in sleep (NREM sleep stage 2�3),

in meditation, and during creative moods beside abnormal situations. Alpha (8�13 Hz)

wave is seen in relax and closed eyes condition and is the posterior dominant rhythm.

In the case of high level of alertness and attention, low amplitude beta (13�30 Hz) and

gamma (30�80 Hz) oscillations are emerged in the EEG trace [24].

Discovery of EEG signals and the pioneer �ndings about alpha rhythm are the

most famous achievements of Hans Berger in 1929. He reported that dominant 10 Hz

activity during the period of eyes closed was decreased and replaced with a faster and

lower intensity wave, beta, when the subjects open their eyes. This demonstrates not

only the existence of EEG oscillations but also relatedness with cognitive state.
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Higher signal amplitude during the resting state and eyes closed condition than

the signal amplitude during the cognitive processes implies that increased EEG ampli-

tude could not be direct representative of increased neuronal activity. Similarly, high

amplitude low frequency delta oscillations during speci�c phases of the sleep could

not be explained by the increased cognitive processes. Synergistic activities of the

signal generators is the key point while evaluating amplitude increase of the EEG.

Synchronization of the neuronal networks and resonance of signal generators at the

same frequency increase EEG amplitudes. In a similar manner, deep electrode record-

ings suggest that ongoing oscillations with low intensity and high frequency, namely

beta and gamma, are produced by synchronization of local neuronal groups [78].

It has been known that inhibitory interneurons are a�ective in synchronization

process of gamma frequency oscillations represented by local networks [78]. Besides,

long�range synchrony of large scale networks is pronounced by excitatory connections

composing low frequency oscillations [79, 80, 81].

5.1.3 Event Related Oscillations

Event related measurements are conducted to explore e�ects of experimental

stimulus on EEG signal. Temporal variations of EEG time course can be seen as

a response to the internal or external stimuli and is named as event related poten-

tials (ERPs). However, there are high amplitude spontaneous oscillations which are

accompanied with ERPs, and might not be stimulus mediated or evoked responses.

Therefore, basic approach for separating ERP signal is time domain averaging of many

EEG epocs (time windows) which are temporarily locked to the stimulus onset. The

aim of averaging is to cancel out background activity which is assumed to be random

and uncorrelated with the stimulus [82, 83].

Amplitude and phase of oscillations are also modulated due to the cognitive

or sensory stimulation. As a result of phase resetting and/or amplitude modulation,

event related oscillations (EROs) are emerged. It was proposed that EROs provide
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basic connectivity for the association and communication processes of the brain [11].

In this context, increase of synchronization (amplitude increase) and desynchronization

(amplitude decrease) help us to investigate intrinsic processes of the brain.

5.1.4 Steady State Visually Evoked Potentials (SSVEPs)

Steady state evoked potentials (SSEPs) are EEG signals having particular am-

plitude and phase response during repetitive stimulation period which does not allow to

return to resting state and constitutes a steady state [25]. Since the time domain signal

is stationary, SSEPs are preferably summarized by the power and phase spectrums in

the frequency domain.

There is a complex relation between the temporal frequency of the stimulus

and power of the SSEP response at that frequency. In the case of visual stimulation,

three local maxima of the steady state visual evoked potential (SSVEP) are reported

in the low (6�12 Hz), medium (15�25 Hz), and high (30�60 Hz) frequency bands [25].

Additionally, it was proposed that selective responses correspond to di�erent visual

pathways which can be separated by their sensitivity to the color, frequency, and

contrast of the stimuli [25]. Another study investigating resonance phenomenon in

visual cortex reported similar selectivity to certain resonance frequencies around 10,

20 and 40 Hz in the frequency band of 1�100 Hz, with a �ne sampling with 1 Hz steps

[23].

Visual stimulation with a particular temporal or spatial frequency results in an

SSVEP frequency spectrum with peaks at the fundamental and harmonics (integer

multiple) of the stimulation frequency. For instance, 8 Hz stimulus induces not only

fundamental response at 8 Hz but also at 16 Hz (�rst harmonic), at 24 Hz (second

harmonic), and so on. Also, it has been shown by many researchers that even if the

�icker frequency is very high (80 Hz) and discrimination of �icker is not available to

consciousness, it is possible to record SSVEP at the stimulation frequency [23, 84].
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5.2 Simultaneous EEG/fMRI and Neuro�vascular Coupling

Combined EEG and fMRI studies show great promise to develop a more com-

prehensive understanding of the neural basis of behavior, including brain function and

dysfunction [10]. Understanding the neural basis of brain functioning requires knowl-

edge about the spatial and temporal aspects of information processing. FMRI and

EEG are two techniques widely used to noninvasively investigate human brain func-

tion. EEG signals recorded on the scalp surface represent electrical perspective of the

neuronal activity while fMRI BOLD contrast depends primarily on blood oxygenation

in turn re�ects metabolic activity in the tissue [85]. Neither of these technologies alone,

however, can provide the information necessary to understand the spatio�temporal as-

pects of information processing in the human brain. FMRI yields highly localized

measures of brain activation, with a good spatial resolution (about 2�5 mm) but since

hemodynamic response is indirect and slow motion result of neuronal activity, temporal

resolution signi�cantly longer (about 5�8 s) than the time needed for most perceptual

and cognitive processes [86]. EEG has the necessary temporal resolution to study the

dynamics of brain function, but its poor spatial resolution precludes identi�cation of

underlying neural sources. FMRI and EEG therefore represent complementary imag-

ing techniques, and combining information from them is a particularly useful way to

examine the spatial and temporal dynamics of brain processes [10].

Even though EEG has existed for more than eight decades and relatively young

fMRI for more than two decades [12, 13, 14], the concurrent use of both methods has

been established only in the last couple of years. This is mainly because of several

technical challenges, when combining both methods (i.e., electromagnetic induction on

EEG electrodes by the changing magnetic �eld of MR machine) [87]. Many important

neuroscience groups are now working on combination of EEG & fMRI and construction

of reliable and valid models [67, 88, 89, 90, 91, 92, 93, 94]. However, a reliable elec-

trovascular coupling model which fully describes connectivity between neuronal activity

representations on EEG and hemodynamic response could not be proposed yet.
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5.2.1 The Relation Between EEG and fMRI Signals

Relationship between BOLD signal and neuronal activations could be exam-

ined in di�erent scales via multi�unit spiking activity (MUA), local �eld potentials

(LFPs), and EEG, alternatively excitation�inhibition networks (EIN) and activation�

deactivation point of views are also possible. While, multi�unit activity represents

action potentials of related area, local �eld potentials represent synaptic inputs and

intracortical processes conducted with inter�neurons. Initially, both MUA and LFPs

seemed to be correlated with BOLD response, although in a recent study, strong cou-

pling between LFPs and changes in tissue oxygen concentration in the 25�60 Hz fre-

quency range which persisted even in the absence of spikes has been observed in cat

primary visual cortex [95].

Similarly, in concurrent electrophysiology and fMRI experiments in the visual

system of monkeys, it has been found that LFPs are better predictors of the BOLD

response rather than MUA, especially in the 40�130 Hz (beta and gamma) frequency

range (Figure 5.1) [2]. These results imply that the BOLD signals re�ect input activity

and intracortical processes rather than pyramidal cell output activity [96]. In other

words, all of these observations suggest that the presynaptic (population of excita-

tory or inhibitory) elements of the axon terminals are the sites of enhanced metabolic

activity, and that these might be the elements driving fMRI signals [97].

Although it proved very useful in characterizing the response properties of local

structures (as in LPFs), the method clearly falls short of providing information on spa-

tiotemporal cooperativeness and on the global, associational operations performed by

neuronal networks [98]. At this point, scalp EEG represents operations of global neu-

ronal networks and also re�ects synaptic inputs, similar to beta and gamma frequency

bands of the LFPs it can be assumed that EEG needs to be correlated with BOLD

signal. Many papers published based on the assumption that sources of EEG and event

related potentials (ERPs) coincide with the highly activated areas on fMRI [99, 38].

However, modeling the correlation between electrophysiological processes and increase

in metabolic activity with such a simple way is problematic [90, 87]. EEG amplitudes
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Figure 5.1 Time�dependent frequency analysis for population data. a, Spectrogram of the �rst 6 s of
the neural response averaged over all data collected during 24, 12.5, 12 and 6 s of stimulus presentation
(10 monkeys, 619 experiments). Colour encodes the reliability of signal change for each frequency.
Red and black dashed lines show the LFP and MUA frequency bands, respectively. b, Mean LFP
(red), MUA (black) and total (green surface) neural response (average across all frequencies), together
with the BOLD signal (blue). Error bars are 1 s.d. [2].

represent not the summation of the neuronal activations but the synchronization of a

global neuronal network [11]. Neuronal synchronization in a single voxel as seen by lo-

cal �eld potential measurements might not be enough to produce signi�cant di�erence

in EEG signal. In this context, Henning et al. proposed that neurovascular coupling

model developed based on local �eld potentials is not applicable for EEG based non-

invasive electrophysiological measurements. In their work, visual evoked potentials

(VEPs) and BOLD signal correlation were investigated during visual movement per-

ception. Neuronal activity without synchronization increased BOLD signal but in VEP

measurements which is also an EEG based technique it could not produce detectable

signal change [100]. On the other hand, BOLD signal might also be blind to EEG

oscillations an example of this might be the failure across studies to identify an aver-

age cortical BOLD signal pattern which is positively correlated with alpha power [87].

This is an expected statement since signi�cance of the BOLD signal is evaluated by
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comparing with the baseline signal intensity (at rest). Even at rest a default mode

neuronal network is dynamically active in the brain. Without signi�cant increase in

the BOLD signal of each single voxel, electrical synchronization of many voxels in other

words nonuniform activity of a neuronal population could provide measurable changes

in EEG [101]. Moreover, while alpha oscillations are positively correlated with thala-

mic BOLD activity there is a negative correlation was reported with occipital�parietal

areas by multiple studies [102, 89, 103, 104, 105]. Above mentioned evidences empha-

size that EEG and fMRI do not measure identical responses and can be blind each

other but re�ect complementary information.

5.2.2 Hardware and Artifact Reduction in Simultaneous Acquisition

EEG�fMRI integration strategies for the analysis of brain state �uctuations

started to use simultaneous acquisition more dominantly over separate and interleaved

acquisition. Because, di�erent stages of the vigilance and variations of acting manner

makes the objective assessment of the results di�cult for the recordings of EEG and

fMRI in separate sessions. E�ect of adaptation for perceptual and cognitive experi-

ments, e�ect of di�erent positions of subjects (generally upright in EEG and supine in

fMRI) on physiological responses and �nally environmental di�erences (noise of MR

machine) are other criticisms on separate recordings [106]. In spite of early studies

based on separate recordings, integration strategies applicable for simultaneous acqui-

sition will be discussed in the next part. Before that recent advances in hardware and

artifact reduction which makes simultaneous acquisition possible will be mentioned.

Signi�cant improvements have been made fallowing the �rst reported EEG recording

inside an MR scanner by Ives and colleagues [107]. Di�culties basically due to the

environmental properties of MR room during an fMRI scan. Static high magnetic

�eld, rapid changing imaging gradients, radio frequency (RF) excitations, vibration

and �nally motion make the EEG recording challenging for hardware and achieving

su�cient signal quality.

High magnetic �eld hinders the use of standard EEG ampli�ers consist of fer-
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romagnetic materials in the MR room. On the other hand transferring signals far

from measuring location to the ampli�er increases artifacts despite the reduced �eld

strength, because motion artifacts increases under the inhomogeneity of the gradient

�eld. Preferably, short lead guides are placed parallel to the z axis of the scanner

around which the gradient switching occurs, the signal is ampli�ed and digitized very

close to the measuring site (proximity of the bore magnet) by MR compatible ampli�ers

and digital signal is carried to the recording location by �ber�optic cables [15].

Figure 5.2 Schematic presentation of a modern EEG/fMRI setup.

Recent MR compatible EEG ampli�er systems are free of ferromagnetic materi-

als (mostly copper, gold or carbon), use short leads and could be placed inside the MR

room. Speci�cations of these ampli�ers also satis�es, high amplitude of measured signal

in order not to attenuate (±3.2 mV to ±325 mV), high sampling frequency to partially

catch the slew rate of imaging gradients (5000 Hz) switchable high input impedance (10

MΩ/10 GΩ) for the safety issues [87]. Additionally, for the sake of signal quality using

a vacuum head cushion, tape, bandage or electrode cap to keep wires in a optimized

prede�ned position, twisting of all wires to cancel induced �elds each other out, avoid-

ing loops and immobilize wires via sandbags are other artifact reduction strategies in

the literature (Figure 5.2) [108, 109]. Finally, synchronization (phase�locking) of EEG

sampling with the MR gradient board clock signal by using additional components,
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e�ectively improves performance of the artifact reduction methods and eliminates the

necessity for over�sampling of the EEG signal [110].

Despite the optimized hardware designs in an EEG�fMRI setup, artifacts still

occur in the range of physiological EEG frequency spectrum. De�ning artifact sources

clearly is the key point for artifact reduction algorithms. Artifact caused by the mag-

netic �eld changes and RF excitation, which induce current on EEG leads is referred

as imaging or gradient artifact. Gradient artifact is stationary over time but has the

largest amplitude (about 1000 times higher than EEG signals) [15]. The ballistocar-

diogram (BCG), or pulse artifact is caused by pulsations of the scalp arteries [16]. The

BCG artifact is higher but close to the amplitude range of EEG signal (up to 200 µV at

3T), spatially and temporally unstable. Most of the BCG power lies in the frequency

range of 1�10 Hz, waveforms are often similar to interictal spikes and varies between

EEG channels, within and between subjects [111]. This second type of artifact is more

challenging because of its unpredictable nature. Both of them add linearly to the EEG

signal.

Basic principle of the �rst gradient artifact reduction methods is to �nd an

average template of artifact waveform and subtract it from the measured signal [15].

Template waveform is achieved by averaging the EEG signal for each MR image acqui-

sition period (for each TR). MR and EEG synchronization is very crucial for this step

because even a small drift in detection of the period onsets, due to the low EEG resolu-

tion or time delay, results in inaccurate template generation, residual gradient induced

spikes after correction and �nally unsuccessful artifact reduction. Synchronize EEG

sampling and fMRI scanning using a sole clock is an alternative but modi�cation of

both systems is not possible in many situations [112]. Good results have been obtained

by subtraction of the average template followed by adaptive noise canceling (ANC)

even in the absence of the slice timing signals by using adaptive FIR method [15, 54].

FMRI artifact slice template removal (FASTR) algorithm similarly uses subtraction of

local artifact templates and decomposes residuals using Principal Component Analysis

(PCA) �nally ANC �ltering [113]. Infomax Independent Component Analysis (ICA)

is another technique to �nd most correlated components with artifact template [114].
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It has to bear in mind that, template generation technique is based on the rationale

that the average EEG signal, time�locked to the each TR period, is zero and imaging

artifact waveform does not �uctuate.

BCG artifact reduction methods are very similar those mentioned for gradient

artifacts. Period onsets for template is marked by QRS or �R�peak� detection methods

and using an additional ECG electrode. Because of the non�stationary nature of BCG

artifacts, a sliding average approach with or without additional weighting is bene�cial

[16, 109]. Besides, indirect measure of the BCG waveform by using a piezoelectric

motion sensor located over the temporal artery has been proposed [115]. This method

correlates motion sensing signal and EEG by adaptive Kalman �ltering. Temporal

PCA has also been used to remove BCG artifact [108]. Advantage of this technique is

the slight BCG artifact variations can be tolerated. There is a detailed and comparative

study about the performance of artifact removing algorithms in the literature [111].

5.2.3 EEG & fMRI Data Fusion Methods

Integration strategies can be classi�ed in to two main approaches. Firstly, the

earlier and the widely accepted and used approach is based on giving the prior in-

formation (prediction and constraints) of one modality to the other. This technique

necessitates the initial processing of EEG or fMRI data thus can be named as asym-

metrical analysis approach. Secondly, symmetrical approach is based on the fusion of

both data by constructing a general forward model [87].

Asymmetrical approach includes two di�erent perspectives: i) fMRI constrained

source estimation of electrophysiological data; ii) EEG informed (in time or frequency

domain) prediction of fMRI activations.

Since, inverse problem solutions are problematic basically concerning unique-

ness, using fMRI activation sites to constrain solution space could be bene�cial in

the �nding of ERP source estimation more precisely and approximation of functional
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connectivity [116]. However, hard constraint may cause severe distortions or elimina-

tion of meaningful EEG sources when there are distinct mismatches between the fMRI

activations and the EEG estimates. Adjustable weighting of fMRI information in a pri-

ori source covariance matrix was proposed with simulated data without excluding the

non�fMRI source locations [117]. Another technique which is automatically adjusts the

strength of fMRI constraint according to the mismatch level was suggested [118]. The

relevance of fMRI�derived prior information characterized by Bayesian theory is more

promising because the weighting is determined by data itself [119]. Additionally, it has

been showed that anatomical and functional constraints in the weighting of solution

space by using weighted minimum norm method can improve accuracy of the solution

[120]. Besides, it has to be kept in mind that the two modalities do not measure identi-

cal phenomena. These methods are useful and reliable when the approximate locations

of the ERP sources are known [10]. That's why this type of approach has a limited

e�ectiveness among EEG/fMRI integration strategies.

EEG�informed fMRI can be applied in pathological brain activity such as inter-

ictal epileptiform activity (IEA) and endogenous brain oscillations which is conducted

under uncontrolled experimental conditions such as relaxed wakefulness or sleep [87].

The electrophysiological signal is tried to correlate with variance of fMRI BOLD signal

during the analysis. IEA or sleep spindles are used to mark period or onset of events on

the fMRI signal [121, 122, 123, 124]. In this sense method can be de�ned as a forward

model from EEG data to fMRI [87]. EEG frequency domain correlation with fMRI

signal �uctuations can be done besides aforementioned time domain based correlations

[125, 126, 127]. Beyond that, single trial ERP data has been used to generate predictors

of fMRI activity [128, 129, 130, 88, 131, 132]. This approach is an example of paradigm

controlled experiment since ICA parameters of EEG, P300 or N100 amplitude and/or

latency is convolved with hemodynamic response function and is used directly in the

GLM stage of fMRI analysis.

Symmetrical fusion approaches is aimed at utilizing both electrical and hemody-

namic measurements simultaneously and symmetrically in spatio�temporal assessment

of brain function [133, 87]. This technique requires explicit de�nition of common neu-
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ronal processes that elicits both EEG and fMRI data. Current advances are settled on

neuronal mass model (NMM) in this �eld [134, 135, 136, 137, 91, 64]. As a conclusion,

cross�modal analysis of dynamic coupling using complementary information from EEG

and fMRI within the framework of nonlinear system identi�cation is an important issue

and must further be developed.

5.3 Simultaneous EEG/fMRI Analysis of the Resonance Phe-

nomena in Steady State Visual Evoked Responses

Although functional neuroimaging technologies such as PET or fMRI have made

it possible to localize the brain activations with a high precision in the 3 dimensional

space, electroencephalogram (EEG) as a non�invasive measurement technique of brain

electrical activity is still one of the important tools for investigating human brain

function under physiological and pathological conditions [138]. Beyond the easy and

comfortable application using inexpensive equipments, the continuing importance of

EEG based measurements depends mainly on the high temporal resolution of the EEG

signal in the millisecond range, while the hemodynamic or metabolic activities mea-

sured with fMRI and PET su�er from a poor temporal resolution due to the slower

temporal dynamics of the vascular and metabolic responses, which indirectly re�ect

neuronal activity changes [10].

In fact, EEG is also an indirect signal of the cortical neuronal activity, because

it represents the spatial sum of the post�synaptic potentials generated on the cortical

pyramidal cells. The volume conduction in the brain tissue and in�homogenous electri-

cal conductances of the tissues between the EEG generators and the scalp lead further

to blurring of the signal, which makes it almost impossible to directly relate the EEG

signal with the neuronal activity within the cortex. On the other hand, the spatial

summation of the post�synaptic activity in the brain volume�conductor that builds

the biophysical basis of the measurement of neuro�electric signals from the scalp, of-

fers EEG the special property of representing the local and large�scale synchronizations
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within and among neuronal groups [81]. In other words, the EEG amplitude represents

the level of neuronal synchronicity but not the level of the non�synchronized neuronal

activity [139]. Such synchronization patterns in the EEG can either be observed as

transient waveforms such as epileptic spikes or in the form of spontaneous, evoked or

induced rhythms in various frequency bands [76].

One of the synchronized states in the EEG that can be well�controlled by the

external events is the steady�state evoked potential produced by trains of stimuli with

an inter�stimulus interval (ISI) shorter than needed for the complete processing of a

single stimulus [25]. While the EEG response to a single stimulus decays in hundreds

of milliseconds, regular oscillatory responses are obtained by driving the brain with

stimulus trains with shorter ISIs, which is also used to obtain the photic driving re-

sponse in clinical EEG [140]. Such steady�state stimulation has been mostly applied

in the visual modality, and EEG oscillations at the stimulation frequency could be ob-

served with �ickering light up to 100 Hz frequency, when EEG segments were averaged

phase�locked to the stimuli [23]. The spectral analysis of the averaged steady�state

visual evoked potentials (SSVEP) reveals mainly peaks at the stimulation frequency

and its harmonics.

The stability of the SSVEPs across trials and subjects makes them a suitable

tool for the investigation of the visual system. Furthermore, the well�de�ned frequency

spectra of the SSVEPs make them less prone to EEG artifacts, as SSVEPs can be e�-

ciently quanti�ed by measuring the amplitudes of the spectral peaks at the stimulation

frequency and its harmonics by excluding the e�ects of the artifacts occurring at other

frequency ranges. Because of these properties some research groups developed SSVEP

based techniques also for measuring cognitive processes [141], where the modulation

of the amplitude or phase of the SSVEPs produced by repetitive stimuli in the back-

ground of the task�related event were used as measures of cognitive processes under

study [142, 143].

Studies measuring the SSVEPs with systematically varying �icker frequencies

have shown that their amplitudes do not change uniformly or monotonously with chang-
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ing stimulation frequencies [23, 25]. The reproducible pattern of the frequency char-

acteristics of SSVEPs shows a clear peak around 10 Hz and additional local maxima

around 20, 40 and 80 Hz. While these frequencies have been pragmatically used to

obtain large SSVEP responses [143], it is important to understand the neuronal mech-

anism lying behind this phenomenon to e�ectively use SSVEPs for testing sensory or

cognitive functions. Various studies have argued that the peaks in the SSVEP fre-

quency characteristics represent resonant behavior of damped neuronal oscillators in

the sensory system [23, 144], while for the scalp recorded data these peaks could also

have other explanations such as di�erent positions and orientations of the respective

dipoles to the scalp surface. However, a study carried out in the cat brain with intracra-

nial electrodes supported the resonance hypothesis by showing similar spectral peaks

in the local �eld potentials (LFP) in visual sensory areas 17 and 18 [24]. According to

the authors, these spectral characteristics represent the behavior of strongly damped

oscillators, which are tuned to di�erent frequency bands and get entrained to vari-

able extents at a large range of stimulation frequencies. Therefore, periodic activation

with stimuli matching the frequency preference of these tuned oscillators is expected

to reveal resonance phenomena which can be observed as global and local peaks in the

SSVEP frequency characteristics. The simultaneous EEG/fMRI measurement allows

to test the resonance hypothesis about the selective increases in SSVEP amplitudes

at certain stimulation frequencies in human subjects. While EEG as a measure sensi-

tive to the synchronicity of neuronal activity would catch the resonance phenomena at

the tuning frequencies of the neuronal oscillators with large SSVEP amplitudes, blood

oxygen level dependent (BOLD) signal of the fMRI, which depends on the metabolic

demand of both synchronously and non�synchronously activated neuronal populations

[2], would change independent of the synchronization level. An inverse correlation be-

tween the EEG amplitudes and BOLD response is already shown for spontaneous alpha

rhythm that represents a synchronized state of cortical neuronal activity [89, 105]. Such

frequency�dependent changes in the coupling between EEG and hemodynamic signal

during steady�state visual responses may shed light on the neuronal mechanisms re-

sponsible for the SSVEP generation and visual perception. This study aims to analyze

the neuronal dynamics in the visual sensory system that lead to the SSVEPs by in-

vestigating their BOLD counterparts obtained through visual stimulation at various
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frequencies [14]. For this purpose, �ickering light was used to stimulate visual areas at

systematically varying frequencies between 6 and 46 Hz, and the correlations between

SSVEP amplitudes and the BOLD responses were computed for 3 di�erent frequency

ranges, which showed di�erent levels of correlation between both signals.

5.3.1 EEG Pre�processing

After eliminating the epochs with eye and muscle artifacts manually, EEG was

down�sampled to 1kHz and averaged over non�overlapping epochs of 1 s duration along

the 3 stimulation blocks for each stimulation frequency (Figure 5.3). The amplitude

spectra of the averaged SSVEPs were then obtained by computing the magnitudes of

the Fast Fourier Transforms (FFT) of the repetitive SSVEP signals. As the amplitude

spectra of the SSVEPs obtained with all stimulation frequencies contained peaks at

the stimulation frequency (fundamental frequency) and at least its �rst and second

harmonics, the SSVEPs at each stimulation frequency were quanti�ed by adding the

amplitudes at the stimulation frequency and its �rst and second harmonics. Because

the topographical pattern was clearly occipital, mean amplitudes of the O1, Oz, and

O2 electrodes were used in further analyses.

Figure 5.3 Left column: Sample SSVEPs of a typical subject obtained with three di�erent stim-
ulation frequencies. Right column: The frequency spectra of the SSVEPs showing peaks at the
stimulation frequencies and their harmonics.
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Figure 5.4 The SSVEP amplitudes of a subject quanti�ed as the sum of the spectral peaks at the
stimulation frequency and its �rst and second harmonics at 13 visual stimulation frequencies. Average
amplitudes from the O1, Oz and O2 channels have been used for SSVEP�informed fMRI analysis.

The individual SSVEP frequency characteristics were then obtained by plotting

the SSVEP amplitudes vs. stimulation frequencies for each subject (Figure 5.4).

5.3.2 EEG informed fMRI processing

Software tools within FSL (FMRIB's Software Library, FMRIB, Oxford, UK)

were used in fMRI data processing [145]. Data were pre�processed prior to performing

general linear model (GLM) analysis. Motion correction, slice timing correction, non�

brain removal, spatial smoothing using a Gaussian kernel of FWHM 8.0 mm, grand�

mean intensity normalization of the entire 4D dataset, high�pass temporal �ltering

(Gaussian�weighted least�squares straight line �tting, with sigma=45.0 s) were applied

[69].

In the �rst stage, GLM time series analysis with local autocorrelation correction

was applied in order to �nd BOLD related signal changes discriminating the visual

stimulation periods from the rest periods [71]. For this, basic boxcar model which is

convolved with the double�gamma hemodynamic response function (HRF) was used

with its temporal derivative in the design matrix.

In the second stage, higher�level single subject multi�session GLM analysis was
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applied using random�e�ects analysis for speci�c ranges of stimulation frequencies to

combine analysis of previous level and integrate it with SSVEP derived data [72]. The

frequency ranges were de�ned according to the peaks in the frequency characteristics

of the SSVEP responses that represent SSVEP amplitude changes vs stimulation fre-

quencies. After the analysis of the SSVEP frequency characteristics of 40 subjects,

the sessions were grouped into 3 frequency ranges with a SSVEP amplitude maximum

in each of them. These frequency ranges roughly corresponded to the alpha (6�12

Hz), beta (14�26 Hz) and gamma (30�46 Hz) bands of the EEG. The amplitude pat-

terns of the SSVEP responses of each subject across 4 (alpha: 6,8,10,12 Hz and beta:

14,18,22,26 Hz) or 5 (gamma: 30,34,38,42,46 Hz) di�erent stimulation frequencies were

used as SSVEP derived fMRI regressors. To model only fMRI activity correlated with

the SSVEP amplitudes, mean of the amplitudes representing the common response to

all stimulation frequencies in the frequency band was removed, and a zero�mean vector

was obtained for each frequency band of each subject. Parameter estimates (PEs) of

the �rst�level fMRI analysis were then modeled in the design matrix with a vector of

ones representing mean fMRI activation in the whole frequency band and a zero�mean

SSVEP derived fMRI regressor as an additional covariate representing the SSVEP cor-

related visual stimulation e�ects in the fMRI. By this means, mean fMRI activations

and SSVEP correlated fMRI activations were obtained for each subject and frequency

band. In the third stage, multi�subject single�band group average GLM (one�sample

t�test) design was setup and performed to test the consistency of the fMRI and SSVEP

informed fMRI results obtained in the 2nd stage across 40 subjects. Gaussian Random

Fields (GRF) theory based maximum height thresholding with a (corrected) signi�-

cance threshold of P<0.05 was employed for Z (Gaussianised T/F) statistic images

[75]. Average and EEG correlated Z statistic images were registered to standard space

(MNI152) [69].

5.4 SSVEP results

The total number of 1 s epochs obtained during the 3 visual stimulation blocks

at each stimulation frequency was 132 (3 x 44 s), and after artifact removal the mini-
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Figure 5.5 Short description of the SSVEP�informed fMRI analysis.

mum number of usable epochs was 108 among the 40 subjects. The averaged SSVEP

responses displayed clear oscillatory patterns phase�locked to the visual stimuli and

the frequency spectra of the responses showed peaks at the stimulation frequency and

its harmonics (Figure 5.3). As spectral peaks could be observed at least up to the

2nd harmonic for all stimulation frequencies, the representative SSVEP amplitudes for

each stimulation frequency were obtained by adding the amplitudes at the fundamental

frequency (stimulation frequency) and its 1st and 2nd harmonics.

Figure 5.4 displays the SSVEP amplitudes of one subject at each of the 13

stimulation frequencies. Although the exact peak frequencies had a variability among

the subjects, the general pattern of visual SSVEP amplitudes across the stimulation

frequencies consisted of a global maximum around 10 Hz and secondary local maxima

around 20 and 40 Hz in line with the �ndings of previous studies [23].
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5.5 fMRI and SSVEP�informed fMRI results

In the �rst stage of the three�level analysis of fMRI data, the voxels with signif-

icantly higher BOLD responses during the visual stimulation compared with the rest

period were obtained separately for each stimulation frequency in each subject.

In the second�stage of the analysis, the main aim was to investigate the correla-

tion between the fMRI activations and the SSVEP amplitudes at di�erent stimulation

frequencies. Considering that the generation of the 3 main amplitude maxima observed

in the SSVEP frequency characteristics might depend on di�erent mechanisms, the full

spectrum of visual stimulation frequencies was divided into 3 ranges according to the

location of the peaks, so that each of the 40 subjects had a peak in each of these

frequency bands. The resulting frequency ranges were 6�12 Hz, 14�26 Hz and 30�46

Hz, which roughly corresponded to the alpha, beta and gamma frequency bands of the

EEG.

Second�stage analysis gathered together the results of the �rst�stage analysis

for each of these 3 frequency bands at the single�subject level. To obtain the fMRI ac-

tivations which are correlated with the SSVEP amplitude changes across the di�erent

stimulation frequencies within each band independent of the fMRI activations that are

common among the di�erent stimulation frequencies, two regressors were used in the

GLM design. The �rst one consisted of the same weighting factor, 1, for each stimu-

lation frequency, while the second regressor stemming from the SSVEP amplitudes to

the same stimulation frequencies was transformed to a zero�mean vector by removing

the mean.

The third�stage, which tested the consistence of the �ndings of the second stage

among 40 subjects resulted in fMRI activation maps that are common for all stimulation

frequencies in each of the 3 bands (Figure 5.6) and that are correlated with the pattern

of change of the SSVEP amplitudes among the di�erent frequencies in each frequency

range (Figure 5.7).
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Mean fMRI activity that is independent of the SSVEP amplitudes (Figure 5.6)

shows, that in all 3 bands the lateral geniculate nuclei, the primary visual cortex

(BA17) and visual association areas (BA18 and BA19) were active. In general the level

of activity decreased slightly with increasing frequencies. Additional activations were

observed in the precuneus and bilateral in the hippocampi and dorso-lateral prefrontal

cortices (BA46 and BA47).

Figure 5.6 Mean fMRI activation maps of 40 subjects obtained with visual stimulation in the
alpha, beta and gamma frequency ranges. Colors represent the Z (Gaussianised T/F) scores. For
all frequency bands, signi�cant BOLD increase were observed in the primary (BA17) and secondary
visual areas (BA18 and BA19), bilateral dorsolateral prefrontal cortices (BA46 and BA47), bilateral
hippocampi (left column), LGN (2nd column) and precuneus (right column).

The fMRI activity maps that were correlated with the SSVEP amplitude changes

across the di�erent stimulation frequencies within each frequency band, while a sig-

ni�cant correlation was obtained in the primary visual area (BA17) and lingual gyri

(BA19) for the beta band, and in a limited area of the primary visual cortex for the

gamma band (Figure 5.7).
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Figure 5.7 SSVEP correlated fMRI activation maps of 40 subjects obtained with visual stimulation
in the alpha, beta and gamma frequency ranges. The maps are based on the signi�cantly correlated
change of the BOLD responses with SSVEP amplitudes across the di�erent visual stimulation frequen-
cies in each frequency band. Colors represent the Z (Gaussianised T/F) scores. For the beta band,
BOLD responses in the primary visual cortex (BA17) and lingual gyri (BA19) showed a signi�cant
correlation with SSVEP amplitudes, while for the gamma band an SSVEP-correlated BOLD response
could only be observed in the primary visual cortex.

5.6 Discussion

The strength of the present study is that it is the �rst study that recorded

simultaneous EEG/fMRI responses with steady�state visual stimulation at systemat-

ically varying stimulation frequencies between 6 and 46 Hz in a large group (40) of

subjects to obtain reliable information about the neural events generating the steady�

state visual evoked responses. The change of SSVEP amplitudes along the stimulation

frequencies revealed individual variability in the peak frequencies among the subjects,

but the presence of three amplitude maxima around 10, 20 and 40 Hz was the common

�nding for all 40 subjects. This result is in accordance with earlier studies on SSVEP

frequency characteristics [23, 24, 25].

In the present study, BOLD responses during steady�state visual stimulation
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revealed signi�cant increases in primary sensory and association areas of vision and

in the thalamus (LGN) when visual stimulation periods were compared with the rest

periods. Although a slight decrease in the strength of this hemodynamic response was

observed with increasing stimulation frequency, the same areas were active along the

whole range of stimulation frequencies. Also some weaker activations were observed in

the precuneus, bilateral hippocampi and prefrontal cortices. We will �rst focus on the

activities recorded in the visual areas, but these latter activations will also be shortly

discussed.

The presence of clear oscillatory SSVEP responses in the EEG in�line with sig-

ni�cant increases of BOLD responses for all stimulation frequencies shows that there

is a high temporal correlation between both electrophysiological and hemodynamic re-

sponses in terms of the signal change during stimulation periods compared with the

rest periods. This �nding is in accordance with the EEG/fMRI results reported by

Rosa an coworkers [36], who showed a high temporal correlation between the EEG

spectral parameters and the BOLD response during steady�state visual stimulation

with checkerboard reversal rates of 2, 3.75, 5, 6, 7.5, 10, 15, and 30 Hz. However, this

study pooled all stimulation frequencies and did not compare the responses in both

modalities among the di�erent stimulation frequencies, which is the main focus of the

present work. For the analysis of the correlations between the SSVEP and BOLD

responses among di�erent stimulation frequencies, we divided the whole range of 13

visual stimulation frequencies into 3 frequency ranges, because the common �nding

was that each subject's SSVEP frequency characteristics contained a peak in each of

the 3 frequency ranges, 6�12 Hz, 14�26 Hz and 30�46 Hz, which roughly correspond

to alpha, beta and gamma frequency bands of the EEG. A further reason for the

analysis of responses at di�erent stimulation frequencies in 3 sub�bands was that the

SSVEP frequency characteristics showed strongly decreasing amplitudes with increas-

ing stimulation frequencies after a global peak around 10 Hz. Therefore, analysis of

the correlations between the fMRI activations and the SSVEP amplitudes along the

whole range of 13 stimulation frequencies would mainly re�ect the e�ects in the lower

frequencies and any normalization procedure to overcome this problem would introduce

an arbitrary bias to the data. The 3 bands allowed to analyze the correlations between
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both modalities through responses of comparable amplitudes.

We found no correlation between the SSVEP and BOLD responses for the stim-

ulation frequencies between 6 and 12 Hz (alpha range), while there was a signi�cant

correlation in the primary visual cortex (BA17) and lingual gyri (BA19) for the stim-

ulation frequencies between 14 and 26 Hz (beta range) and a signi�cant correlation

in a limited part of the primary visual area (BA17) for frequencies between 30 and

46 Hz (gamma range). This pattern of correlations is especially interesting, because

the global maximum of the SSVEP amplitudes is consistently obtained around 10 Hz,

where no cross�frequency correlation was present between EEG and fMRI. Based on

previous results in animal subjects, which show that the BOLD response in a corti-

cal volume is correlated with the synaptic activity measured in the form of local �eld

potentials [2], this �nding suggests that the strong peak of the SSVEP in the alpha

band does not depend on an increase of the total synaptic activity compared with

visual stimulation at other frequencies in the frequency band. This �nding is in favor

of the hypothesis that the global peak of the SSVEP amplitudes re�ects the resonance

of oscillators tuned to this frequency, because the repetitive stimulation at this fre-

quency yields strongly synchronized neuronal activity without a net increase in the

total synaptic activity. The report by Parkes and coworkers [35] on the reduced BOLD

response obtained with periodic stimulation compared with stimuli delivered with a

latency jitter supports this view in terms of a reduced metabolic demand for the en-

trainment of neuronal oscillators into a rhythmic pattern. Hence, resonant entrainment

of the neuronal oscillator leads to large amplitudes in the scalp recorded EEG, which is

sensitive to neuronal synchronicity, while BOLD signal, which is mainly sensitive to the

total amount of synaptic activity, does not show any signi�cant change compared with

the stimuli at non�resonant frequencies. Such discrepancy between the SSVEP and

BOLD response at the resonant frequency is especially plausible if the inter�neurons

within the investigated cortical volume do not play a role in the resonating circuitry,

and therefore their synaptic work does not contribute to the BOLD response generated

in the cortical volume. The modeling study by Robinson and coworkers [146], which

shows that resonant behavior near the alpha peak both in the spontaneous EEG and

in SSVEP can be explained by the cortico�thalamic loop delays, supports this point.
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Furthermore, a number of studies, which reported a negative correlation between the

BOLD activity and the EEG alpha power in the occipital cortex [89, 147, 105] also sup-

port the �nding that high amplitude alpha oscillations do not require a high metabolic

rate in the cortex. The same does not hold for secondary SSVEP peaks observed

within the beta and gamma frequency ranges. In the beta band, a strong correlation

is observed between the SSVEP and the hemodynamic response in a large part of the

primary visual area and partially in the secondary visual area BA19. This contrast

compared with the alpha peak could be explained by either an increased synaptic in-

put to the visual cortex from the thalamus at the beta and gamma peak frequencies,

which would increase the BOLD signal in�line with the SSVEP peak, or again by a

resonance of a neuronal oscillator but this time consisting of a local neuronal network

with signi�cant contribution of inhibitory or excitatory inter�neurons within the corti-

cal volume, which would increase the metabolic demand and therefore BOLD response

in the investigated area. Which of these two possible mechanisms holds true for the

beta and gamma SSVEP peaks needs further investigation by analyzing the possible

changes in e�ective connectivity between the LGN and the primary visual area across

the stimulation frequencies in the beta and gamma frequency ranges. However, in

vitro evidence for the cortex that the interplay between excitatory pyramidal cells and

inhibitory inter�neurons is essential for the generation of oscillatory activities within

beta and gamma frequency ranges [148, 149] suggests that the latter mechanism might

be responsible of the correlation between the SSVEP and BOLD responses at beta and

gamma peaks. At this point, we would like to pronounce that even the presence of a

linear relationship between the electrophysiological and hemodynamic signal does not

dictate that the observed electrophysiological phenomenon re�ects a simple summation

of the synaptic activity, but the increased synaptic activity within the investigated cor-

tical volume might be necessary for the phase�locking of the neuronal oscillators, which

would yield the change in the surface�recorded EEG response. The spatial restriction

of the SSVEP�correlated BOLD activity in the gamma range compared with the beta

range is in accordance with EEG results that show the role of the beta oscillations in

building functional interactions between more spatially distant regions of the central

nervous system, while gamma oscillations build rather local patches of synchrony. In

general, the localization of the SSVEP correlated BOLD activations both in beta and
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gamma ranges were in accordance with previous studies about the generators of the

SSVEPs [150].

The contrasting results obtained in alpha vs. beta and gamma ranges in the

present study are in accordance with the results of an earlier study of our group that

investigated BOLD transients obtained with steady�state visual stimuli between 1 and

44 Hz [50]. BOLD response typically consists of three transients; the initial dip, the

positive BOLD (PBOLD) and the post�stimulus undershoot (PSU), which have been

explained by the balloon model of the dynamics of blood �ow and oxygenation changes

during brain activation [20] or the independent change of model components under

speci�c conditions [151]. Later, a biophysical model of the coupling between neuronal

activity and the balloon model was proposed, which showed that increases in excitatory

activity amplify both the PBOLD and the PSU, whereas increasing the inhibitory

activity evokes decrease in the PBOLD signal without altering the PSU [64]. The

results by Emir and coworkers [50] revealed that PBOLD and PSU were correlated

during visual stimulation between 1 and 13 Hz suggesting that they might be attributed

to exclusively excitatory inputs from a distant source [81]. However, the PBOLD

and PSU were uncorrelated between 13 and 44 Hz, possibly because of the signi�cant

contribution of the inhibitory inter�neurons within the cortex in the neuronal responses

produced within this frequency range. The same mechanism might explain the present

results about the alpha vs beta and gamma oscillations in the following manner: The

synchronizing long�range excitatory input to the cortex at the alpha peak does not lead

to a signi�cant increase in the cortical metabolic rate resulting in uncorrelated SSVEP

and PBOLD changes, while the resonance of the neuronal oscillators that operate in

the beta and gamma frequency ranges requiring interaction of the local inhibitory and

excitatory neurons leads to increased energy demand in the cortical volume leading to

correlated increases in SSVEP and PBOLD responses.

An earlier study with the similar aim to investigate human cerebral activation

during steady�state visual evoked responses [152] as in the present study, applied EEG

and regional cerebral blood �ow (rCBF) measurements with positron emission tomog-

raphy (PET) in separate sessions. The authors reported a SSVEP amplitude maximum
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at 15 Hz. On the basis that the primary visual cortex rCBF follows an activation pat-

tern similar to the SSVEP amplitudes among stimulation frequencies at 5, 10, 15, 25

and 40 Hz, the authors concluded that the SSVEP peak corresponds to a true ac-

tivation of neuronal clusters in primary visual cortex and is not a phase summation

e�ect. First of all, the global SSVEP peak frequency reported in this study does not

correspond to that in other SSVEP studies [23, 25] and in the present study, possibly

because of the di�erent stimulation conditions. The authors used stroboscopic �ashes,

which leads to increasing mean luminance with increasing stimulation frequency. This

problem was overcome by both Herrmann [23] and in the present study by using LED

light sources with 50% due time, such that the mean intensity of the light remained

constant across stimulation frequencies. Additionally, it is well described before studies

[23, 25] and in the present study, that the SSVEP amplitude maxima are not exactly at

the same frequency for all subjects. Regarding the present results for example, SSVEP

amplitude maximum can be obtained at stimulation frequencies between 8 and 12 Hz

for di�erent subjects. Therefore, the grand�average SSVEP frequency characteristics

show rather broad peaks compared with the individual ones. Probably, this is the

reason, why Pastor and coworkers [152] sampled the rCBF measurements at only 5

di�erent stimulation frequencies of 5, 10, 15, 25 and 40 Hz, which were chosen ac-

cording to the SSVEP peaks in their EEG sessions. This low sampling of stimulation

frequencies may be the reason why the authors did not observe the non�linear e�ect

we obtained in the alpha frequency range, which we sampled with stimuli at 6, 8, 10

and 12 Hz. Furthermore, the correlation of the rCBF measurements from the subjects

with a regressor consisting of the grand�average SSVEP amplitudes in contrast to the

individual correlations we computed might also explain the discrepancy between the

results.

There are two other studies that investigated the relationship between SSVEP

and fMRI measurements and reported that the relationship between both responses is

a linear one [37, 54]. The �rst one [37] recorded EEG and fMRI responses in separate

sessions using a checkerboard illuminated with �ashes of 1 ms duration at 2, 4, 6, 8,

10 and 12 Hz, and found a SSVEP peak at 8 Hz in 7 of 8 subjects and at 6 Hz in one

subject. These SSVEP peaks that roughly correspond to the maximal hemodynamic



88

responses both in PET or fMRI studies [55, 35] resulted in a high correlation between

SSVEP and BOLD signals. However, atypical SSVEP peaks at 6�8 Hz instead of the

expected peak around 8�12 Hz and the uncorrected mean light intensity due to the 1 ms

�ashes at di�erent frequencies makes it questionable, whether the linear relationship

depends on the intensity or the frequency of the applied visual stimuli. The thick MRI

slices of 10 mm might also be responsible for the discrepant results compared with the

present study. The other study by Wan and coworkers [54] used radial checkerboard

stimuli at 0.5, 1, 4, 8 and 16 Hz, which cannot exclude the presence of the non�linear

relationship between SSVEP and BOLD responses we observed between 6 and 12 Hz.

A straightforward interpretation of the activations of the bilateral hippocampi,

dorso�lateral prefrontal cortices and precuneus during the steady�state visual stim-

ulation is hard, however, there are a range of studies, which report that the SSVEP

responses in frontal electrodes are sensitive to tasks related with executive functions and

working memory [144, 142, 143], which have been mostly investigated by superimposing

the task�related stimuli on a sinusoidally modulated light at 13 Hz. These studies im-

plicitly show that there are neuronal generators in the prefrontal regions which oscillate

at the visual stimulation frequency. How these areas are coupled with the visual areas

in terms of oscillatory activities and whether oscillations at the stimulation frequency

or its sub�harmonics are obtained with higher stimulation frequencies needs further

investigation. However, a sub�sampling of the visual information in higher areas might

be expected in the light of the results reported on the theta�gamma coupling during

visual perception [79]. The activation of these areas during the passive visual stimula-

tion condition in the present study might depend on the self�instructed attempt of the

subjects to judge the stimulation rate or a self�instructed working memory condition

to predict the end of the �icker period which was constant along the whole experiment.

Additionally, information gained from the SSVEP/fMRI analyses in the present

study, which overcame the temporal registration problem between both modalities by

obtaining electrophysiological signals that are stationary for the duration of the slower

BOLD response, might be extrapolated to the EEG/fMRI analysis of the transient

event�related potentials (ERPs): More reliable and consistent correlations between
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electrophysiological and fMRI responses can be expected, when the EEG/fMRI analy-

ses are carried out on evoked or induced oscillations in separate frequency bands instead

of a search for correlations between the time�domain peak amplitudes or latencies of

ERPs with the BOLD response.
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6. CONCLUSION

In this dissertation research, we have investigated human early visual system's

dependency on the temporal frequency of the visual input by using BOLD fMRI.

BOLD responses of LGN and V1 were investigated in a wide frequency range (6�46 Hz)

with a �ne frequency sampling (13 frequencies). LGN data revealed local peaks on a

background of a non-signi�cant decrease in BOLD response with increasing frequency.

V1 activity also displayed similar local maxima with a global peak in the range of 8-12

Hz but a rapid, signi�cant decrease of BOLD response with increasing frequency, which

became especially steeper in the range of 14-26 Hz. Although the rate of decrease of

V1 response was signi�cantly higher than that of LGN, their frequency characteristics

curves showed a high correlation due to the similar local maxima and minima of BOLD

responses in both structures.

Despite the fact that present results are not able to explain whether these selec-

tivities for local maxima and minima are generated by one of the structures (LGN and

V1) or stem from other structures connected with any one of them, we can tentatively

claim that these speci�c tuning frequencies play a role in thalamo�cortical interaction

in the visual system. Thus, high correlation might point to preferred signal transmis-

sion frequencies in the thalamo�cortical circuitry of the visual system. Besides, strong

decay of response intensities in V1 with increasing stimulation frequencies is not ac-

companied with a similar decrease in the BOLD signal of the LGN. Considering that

the BOLD signal is mainly driven by the synaptic rather than the spiking activity of

the investigated brain volume [2], the strong decay of V1 BOLD activity although the

LGN activity does not change as strongly with stimulation frequency suggests the role

of the local circuitry of V1 and maybe other neuronal projections from higher visual

areas to V1 in this speci�c response characteristics. Assuming that the LGN input

to V1 does not decrease but rather �uctuates around a constant level with increasing

frequencies, one can explain the low-pass e�ect observed in the V1 BOLD responses

rather as the result of higher extra�synaptic input to V1 at lower stimulation frequen-
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cies. This might depend either on local network of V1 to be able to produce stronger

inputs to higher cortical areas or on stronger feedback to V1 from extra�striatal areas.

However, we can conclude that the selectively stronger activation for lower temporal

frequencies �rst emerges in V1.

Another interesting �nding presented in this dissertation research is about the

BOLD components and their dependency to the temporal frequency parameter of the

visual stimulation. Existence of the transient (tonic) and sustained (phasic) compo-

nents of the BOLD signal, which do not represent similar decrease with increasing stim-

ulation frequency, can be seen clearly. We can claim that visual stimulation frequency

increase may cause the transformation of neuronal processes by which inhibitory inter�

neurons start to play a more dominant role. In this sense, suppression of tonic response

might be originated from the increase in the e�ectiveness of specialized inhibitory local

networks.

In the �nal stage, simultaneous EEG/fMRI measurement allowed us to test

resonance phenomena by combining both modalities based on giving the prior infor-

mation of SSVEP amplitudes to the fMRI. In this sense, steady state visually evoked

potentials (SSVEPs) are used as covariate in the GLM analysis of fMRI data. What

is more, whole range of visual stimulation frequencies (6�46 Hz) are introduced to the

GLM analysis in three separate frequency ranges corresponding to alpha (6�12 Hz),

beta (14�26 Hz), and gamma (30�46 Hz) bands. Therefore, SSVEP correlated BOLD

images are reported in 3 bands separately. We found no correlation for the stimulation

frequencies in the alpha range, while there was a signi�cant correlation in the beta and

gamma range.

In conclusion, our results show a non�linear relationship between the surface

recorded SSVEP amplitudes and the BOLD response of the visual cortex at stimulation

frequencies around the alpha band, which supports the view that resonance at the

tuning frequency of the alpha oscillator in the visual system is responsible for the global

amplitude maximum of the SSVEP around 10 Hz. The SSVEP/BOLD relationships

at secondary amplitude maxima of the SSVEP are linear, which however does not
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exclude the possibility that they also represent resonances with signi�cant contribution

of the cortical inter�neurons to the phase�coupling of neuronal oscillators. In short,

the surface�recorded SSVEPs display a frequency�selective non�linear relationship with

the BOLD response, hence do not re�ect a simple summation of the synaptic activity

in the cortex as proposed in earlier studies [37, 54, 152]. Present work further shows

that scalp�recorded EEG and fMRI re�ect di�erent aspects of the neuronal activity,

hence cannot be simply fused to increase the temporal or spatial resolution of each

other in many instances. However, the complementary information in each modality

can e�ciently answer basic questions regarding speci�c phenomena in each modality.
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